810934

SECOND INTERIM REPORT BABCOCK AREA MAY 1973

VOLUME II

GEOLOGY RESERVES AND QUALITY

Prepared by the Quintette Joint Venture

Denison Mines Limited Coal Division #1660, 540 - 5th Avenue S.W. Calgary, Alberta T2P OM2 CANADA World Resources Company 355 Lancaster Avenue Haverford, Pennsylvania 19041 U. S. A.

(Includes pgs. 1 - 56
Summary
Geology
Reserves
Quality)

SECOND INTERIM REPORT

BABCOCK AREA

MAY 1973

VOLUME II

GEOLOGY RESERVES AND QUALITY

Prepared by the

Quintette Joint Venture

Denison Mines Limited Coal Division #1660, 540 - 5th Avenue S.W. Calgary, Alberta T2P OM2 CANADA

1

World Resources Company 355 Lancaster Avenue Haverford, Pennsylvania 19041 U. S. A.

TABLE OF CONTENTS

	PAGE
LIST OF TABLES	(iv)
LIST OF ILLUSTRATIONS	(v)
SUMMARY	1
GEOLOGY	
GEOLOGY OF THE BABCOCK AREA	2
BABCOCK STRATIGRAPHY:	
Gates Formation	2
Quintette Member	2
Middle Gates Interval	3
J. Zone	3
DEF Zone	4
Babcock Member	5
Upper Cates Interval	6
BABCOCK STRUCTURE:	
General	6
Quintette Trend - Waterfall Creek	7
Probable and Possible Reserves	8
RESERVES	
SUMMARY	9
SAMPLING AND ANALYSIS:	
Drill Holes	12
Note on Rotary and Diamond Drilling	13
Adit Samples	14
CALCULATION OF RESERVES:	
Summary	15
Reserve Limits	16
Determination of Thickness	16
Roof and Seam Facies Maps	17
Isopachs of Mining and Dilution Thickness	17
Specific Gravity of Coal in Place	18
Areas of Influence	18

	PAGE
Subdivision of Area of Influence	19
Calculation of Tons in Place	20
Geological Deductions	20
Probable Dilution	21
CALCULATION OF NET CLEAN COAL:	
Summary	28
Nominal 7% Ash Products	29
Specific Gravity of Separation	29
Theoretical Yield	29
Moisture	30
Not Clean Tons	30
Rectorean fond Assuming Total Dilution	31
Products at 1.60 Specific Gravity	31
	48
Summary	48
Loal Washability and flera	50
Ash and specific Gravity of separation	52
Free Swelling Index	52
Volatiles	52
Sulphur	54
Phosphorous	50
COKE QUALITY:	. 50
Summary	59
Coking Data	60
100% Babcock Coal	, 60
Stability	. 60
Japanese Tumbler Tests	, 60
Petrographic Analysis	, 61
Gieseler Plasticity	. 61
Babcock Coal Blends (Canada)	, 63

1

:

(ii)

Babcock Coal Blends (Japan)	63
Conclusions	64
PHOTOGRAPHS OF COKE SAMPLES	6 5

PAGE

APPENDICES (End of Text)

APPENDIX A

Reference Coals Canadian

Japanese

Coking Test Results

By Seam:

Carbonization, Screen Analysis, Tumbler Test, J.I.S. Thermal Rheological Properties Petrographic Analysis Chemical Analysis Physical Tests and Fusibility of Ash J.I.S. Test Results (from Japan only)

APPENDIX B Work Completed

APPENDIX C Delineation of Areas of Influence

LIST OF TABLES

:

		PAGE
TABLES		
II-A	Summary: Reserves In Place	10
11-B	Reserve Summary: Nominal 7% Ash Product - Analyses By Seam	11
	Reserves In Place:	
II-C-1	Seam D	22
II-C-2	Seam E	23
II-C-3	Seam F	24
II-C-4	Seam G	25
II-C-5	Seam I ₁	26
II-C-6	Seam J ⁻	27
	Nominal 7% Ash Product - Analysis by Drill Hole:	
II-D-1	Seam D	35
II-D-2	Seam E	36
II-D-3	Seam F	37
II-D-4	Seam G	38
II-D-5	Seam I ₁	39
II-D-6	Seam J	40
II-E	Reserve Summary: Product at 1.60 Specific Gravity - Analyses By Seam	41
	Product at 1.60 Specific Gravity - Analyses by Drill Hole:	
II-F-1	Seam D	42
II-F-2	Seam E	43
II-F-3	Seam F	44
II-F-4	Seam G	45
II-F-5	Seam I ₁	46
II-F-6	Seam J ⁻	47
II-G	Comparison of Quality: Dry Basis	33
II-H	Comparison of Quality: Product Basis as Received at 5% Total Moisture	34

TABLES (Cont'd)

:

II-J	Examples of Replicate Seam Analyses in Different Laboratories	55
TT-K	Seam D: Investigation of High Sulphur Analyses	57

LIST OF ILLUSTRATIONS

FOLLOWING PAGE

FIGURE

Figure II-1	Generalized Stratigraphic Section of Babcock Area	2
Figure II-2	Gates Formation: Typical Stratigraphic Sections	2
Figure II-3	Babcock Area: Present Access & General Information	2
Figure II-4	Schematic Representation of Babcock Area Structure	6
Figure II-5	Flow Sheet No. 1: Rotary Drilling (Preliminary)	14
Figure II-6	Flow Sheet No. 2: Diamond Drilling (Preliminary)	14
Figure II-7	Flow Sheet: Adit Samples (Preliminary)	14
Figure II-8	Babcock Adit Samples: Plot of Ash % vs Sp. Gr. % for Sp. Gr. Increments from Washability Studies	18
Figure II-9	Histograms of Product Ash at 1.60 Sp. Gr.	51
Figure II-10	Histogram of F.S.I. in Products of 1.60 Sp. Gr.	52

PAGE

r

. S U M A R Y

VOLUME II

SECOND INTERIM REPORT

BABCOCK AREA

SUMMARY

Within the relatively flat-lying Lower Cretaceous Gates Formation at Babcock Mountain in Northeastern British Columbia, 302 million short tons of proven coal have been located in six seams of some economic significance. These seams, designated D,E,F,G,I, and J, range in thickness from 5 to 22 feet although the important upper ones, D,E and F are usually 6 to 10 feet thick while seam J ranges from 14 to 22 feet in thickness.

The present reserve area encompasses a broad monocline on Babcock Mountain. The seams dip up to 15° but are usually less than 10° . Although the reserve area is bounded by a fault on one side and a fold on the other, structeral disturbances within the reserve area are rare. The major fold which marks the southwest side of the reserve area is itself a major asset as it has real potential for the development of hydraulic mining.

Of the 302 million tons of coal in place at least 90-100 million tons are expected to be produced as clean coal through any particular mining plan. The sink-float and washability analysis indicate that it should be possible to produce medium volatile bituminous coking coal with 7% ash and good to excellent coking properties, while maintaining acceptable yields (65-75%)

Coke tests both in Canada and Japan have confirmed the acceptability of this coal product. Average J.I.S. indices range from 92.8 to 93.4 on pure coal samples and the performance of these coals in coke oven blends has also been more than satisfactory. G E O L O G Y

GEOLOGY

GEOLOGY OF THE BABCOCK AREA

Since all of the proven coal in the Babcock area is found in seams within the Gates Formation, only the stratigraphy of that unit will be treated in the present report. The regional stratigraphy is summarized in figure II-1. For more detailed information on the stratigraphy of the Babcock area, the reader is referred to the first Interim Report dated December 31, 1971. To accompany the following descriptive text, a generalized section showing the Gates Formation and its related stratigraphic units, has been constructed from the logs of drill holes number 7102, 7204 and 7217 and is presented in figure 2.

BABCOCK STRATIGRAPHY

Gates Formation

Quintette Member:

There has been some discussion on the advisability of placing the base of the Gates Member at the base of the Moosebar transition zone and limiting the definition of the Moosebar to those sediments derived from a restricted marine environment. While the transition zone does mark the change to a more active environment of deposition (flaser bedding, worm burrows, churning), the practical value of this marker is reduced by the fact that it almost invariably covered in outcrop and the change in lithology is not even distinct enough to provide an expression on air photos. For this reason, and to conform to historical precedent, the base of the Gates Formation is taken as the first persistent sandstone. This sandstone and those following it are generally considered to have been formed in a near-shore marine environment during a major regression of the Lower Cretaceous sea. In

the Babcock area this zone is designated as the Quintette Member and it encompasses all of the units up to the base of the first major coal zone (J zone).

As defined, the Quintette Member in the Babcock area consists mainly of well sorted, massive, lithic sandstone which includes a poorly developed carbonaceous mudstone and siltstone zone. This zone occasionally contains poorly developed coal seams and it probably represents a small hiatus or transgressive period of deposition within the overall regressive sequence. In any case it is quite distinct from the basal coal zone which marks the beginning of the Middle Gates interval of coal deposition.

Middle Gates Interval (Member):

J Zone

As mentioned, the Middle Gates interval begins with the J coal zone. This zone consists of three identifiable seams, each of which can be subdivided into distinct leaves or splits.

The lowermost K seam, consists essentially of 3 or 4 coal splits which are only irregularly developed and do not develop into mineable thicknesses.

The J seam itself is the most persistent seam within the J zone. It consists primarily of two leaves which are only locally separated from each other by a small (less than 1 foot) mudstone band. Even where this mudstone is not present the two leaves can usually be distinguished on the basis of their different ash content, density log response, and washing characteristics. Seam J is probably the best coal seam on the property as it is consistantly thick (14 to 22 feet), and it has low sulphur and phosphorous content.

Seam I might be considered the upper portion of seam J except that

(3)

it diverges markedly from J in the vicinity of hole 7202 and 7204 where it consists of 4 distinct splits. In other areas only 2 or 3 splits are distinguishable. It is apparent that seam I has a different depositional history than seam J even though it may coalesce with it in some areas. Whereas seam J is a broad, widespread seam that probably represents the middle of a depositional cycle, seam I, on the other hand, was formed on top of interfluvial deposits which covered J seam. As such, it probably represents coal deposition along an oscillating, but generally transgressive shoreline. This would account for the larger number of splits and suggests that a given split of seam I may not be internally continuous from one area to another. That is, the upper split in one area may be a lower split in another area.

DEF Zone

In the vicinity of hole 7202 (Northwest area of Babcock) seam I is terminated by a distinct clast zone which marks an erosional hiatus within a zone of interfluvial and deltaic sedimentation. This marks the upper unit of the J zone and above this active zone, the first seam of the DEF coal zone is encountered. This seam, seam G, is a very local development which, where it is thick, has a 1/2 to 1 foot mudstone to silty mudstone roof. Laterally, the mudstone roof begins to predominate until the seam has been totally replaced by this mudstone siltstone assemblage. The washability data obtained from 2 adits in seam G, further demonstrate the close facies association of this seam with the mudstone and siltstone deposition. The results show that seam G has the highest proportion of near gravity material of any seam in the project area. It is not expected that this seam will be mined.

The remaining seams in the DEF coal zone constitute the basis of the upper coal reserves in the Babcock area. All three seams, D, E and F, have excellent lateral continuity, consistent stratgraphic position, and characteristic log responses which provide

(4)

a very high degree of certainty in correlation. Since there is no question regarding the identity of the seams, only minor problems of correlating bony layers, or mudstone bands remain.

Seam F has a bony coal zone (1-2 feet) at the roof which becomes a carbonaceous mudstone toward the southwest side of the property. It also contains a mudstone 1 1/2 - 2 feet from the floor in the northwest corner of Babcock Mountain. This mudstone is not present in most of the remainder of the reserve area.

In the Northwest end of the Babcock area, Seam E is divided into three splits by two mudstone layers 1 - 1 1/2 feet thick. The upper mudstone persists throughout the entire project area but the lower one grades from mudstone to bony coal and coal towards the east and southeast. In addition, one other thinner mudstone and bony coal band appears to the southeast and it is suggested that this simply represents a splitting of the lower layer.

Seam D contains two carbonaceous mudstone - bony coal layers near the base of the seam which do not appear to follow any particular pattern in their development. These mudstones sometimes form the expected mining floor although in development the lower coal split may have to be mined.

As the above descriptions are very general, reference must be made to the roof and seam facies maps (in map box) for specific detail as to the thickness and quality of the seams and expected dilution as they might affect a particular mining plan.

Babcock Member:

Seam D is terminated by a massive, well sorted, somewhat conglomeratic, sandstone some 120 - 200 feet thick. This sandstone has been designated as the Babcock Member.

The base of the Babcock member usually consists of up to 1 1/2 feet of conglomerate although locally this may be as much as 40 feet. It does not appear that there was significant erosion of seam D when this unit was deposited. In some places seam D is still capped by a few inches of mudstone and shale and no washouts have been observed to date. However, it is still possible that washouts may occur locally and allowance must be made for this in mining plans.

Beyond the conglomerate, the Babcock member is a clean well sorted, coarse-grained lithic sandstone with occasional lenses of conglomerate.

Upper Gates Interval (Member):

As mentioned in the regional stratigraphy, the upper Gates interval contains a third coal zone which is generally referred to as the A B C zone at Babcock. This zone contains three smaller seam zones which are poorly developed and rarely attain a thickness of 5 feet. The B seam or zone is perhaps the best developed of the three since approximately 4 intersections 5 feet thick or more were obtained. However, these points are not adjacent to each other and it can only be concluded that this development is too sporadic to be of consequence.

Besides the coal zone, the upper Gates interval reflects mostly interfluvial and deltaic sedimentation. No coal reserves are assigned to this interval and it is terminated by the Hulcross marine transgression.

BABCOCK STRUCTURE

General

The structural setting at Babcock Mountain is illustrated in Figure II-4.

(6)

CRETACEOUS

"

"

KSh
KCm1b)
KCm/h/
KCm lg)
КМЬ
KGI
KCd
KNK

SHAFTESBURY FORMATION

- (BOULDER CK MEMBER) COMMOTION .. (HULLCROSS MEMBER) " (GATES MEMBER) ...
- MOOSEBAR
- GETHING
- CADOMIN
- NIKANASSIN

SCHEMATIC REPRESENTATION OF BABCOCK AREA STRUCTURE

FIG. II-4

Scale: 2" = Imile

The Waterfall Creek Syncline, where hydraulic mining reserves are expected to be developed, is the major structural element as its conjugate anticline is not fully developed. This gives rise to the anomalous monocline on the northeast limb of the anticline. It is in this monoclinal structure (sometimes referred to as a broad, gently plunging syncline) that the "flat" coal reserves of the Babcock area have been outlined.

At present the direction of plunge on the Waterfall Syncline is not known although it is judged to be either essentially flat or to plunge slightly to the northwest. The Babcock anticline dies out to the southeast as the upper beds plunge in that direction.

It is expected that this structural setting will be ideal in regard to the development of coal in the Babcock area from the Murray River Valley. Hydraulic reserves may be developed on the flank of Babcock Mountain and this development should provide excellent access to the major Babcock reserves. For more detailed structure within the Babcock reserve area reference should be made to the geological map sections in the map box and the structure contour maps in the map folder accompanying this report.

Quintette Trend - Waterfall Creek

Along Waterfall Creek the geology of the southwest limb of the syncline is uncertain. However from the headwaters of Waterfall Creek to the southern boundary of the property, a distance of approximately 12 miles, this limb of the syncline forms a long, prominent topographic feature known as the Quintette Trend. There is absolutely no visible warping, drag folding or cross faulting along this structure and it is confidently expected that hydraulic reserves will extend into this area.

Probable and Possible Reserves:

The ideal location of the Waterfall Creek area, adjacent to the main Babcock reserve, and the distinct possibility of extending it into the Quintette Trend make it a potentially ideal location for hydraulic mining. Along the northeast side of the Waterfall Creek area, six of the drill holes which were used at the fringe of the Babcock reserve area, are also close enough to the Waterfall Creek area to be used in calculating an indicated reserve of coal in place. From these drill holes and adit locations on the face of Babcock Mountain as well as a seam measurement in Waterfall Creek itself (14 ft.), it is estimated that 35 million tons of raw coal in place are present. Of this amount, up to 18 million tons of coal may be available as clean product in a seam 14 to 22 feet thick, to a depth of 1,500 feet (450 meters). In addition to this probable reserve, which needs only less than ten drill holes to raise it to the proven category, possible reserves in excess of 75 million tons in place are expected in the Quintette Trend on the basis of there being just one seam 20 feet thick.

As has been discussed in the main reserve section, Seam J has the best overall product quality in the Babcock area. It has particularly low sulphur (.21) and phosphorous (.03) and it can be washed to 7% with yields in the order of 70%. This quality is confidently expected to persist in the hydraulic mining reserves.

(8)

R E S E R V E S

RESERVES

:

RESERVES

SUMMARY

The proven reserves of the Babcock area are summarized in tables II-A and II-B on the following page. Although 118 million tons of clean coal are estimated to be available at 7% ash, it is unlikely that Seams G and I will be mined unless Seam G is augered to some extent. Omitting these seams will reduce the reserves to 98 million tons and if part of Seam E must also be abandoned they might be further reduced to approximately 90 million tons. In any case, the reserves are more than sufficient to support a 2 - 3 million ton per year operation for 20 years.

SUMMARY

RESERVES IN PLACE

(Weighted Averages Where Applicable)

Seam	Reserve Thickness (Feet)	Raw Ash 2	Coal Specific ⁽¹⁾ Gravity	Total ₍₂₎ Probable Dilution <u>(Feet)</u>	Area of Influence Ft. ² x 10 ⁶	In Place Rese <u>10% Geologica</u> Raw Coal <u>10⁶ S. Tons</u>	rves Less ₍₃₎ <u>1 Factors</u> Probable Dilution <u>Tons 10⁶</u>	Estimated Mining Recovery	Total Probable Dilution Mined 10 ⁶ S. Tons	Raw Coal Mined 10 ⁶ S. Tons	Comments
											Equivalent lbs. raw coal per cubic foot
D	7.80	18.56	1.45	1.09	154.216	49.036	11.215	57%	6.401	28.008	90.5
E	6.65	24.45	1.51	0.84	156.193	45.528	8.773	65%	5.703	29.593	97.4
F	8.4	18.72	1.46	1.30	155.452	59.118	14.770	55%	8.123	32.514	91.1
G	6.86	17.87	1.44	1.67	11.769	3.120	1.313	60%	.787	1.873	89.9
Ι	9.45	18.87	1.45	1.05	114.700	44.136	8.013	65%	5.209	28.690	90.5
J	16.60	16.51	1.43	1.42	151.980	101.359	7.367	41.18%	1.921	41.736	89.3
TOTALS					744.310	302.297	51.451	53.72%	29.144	162.414	

Total coal in place 302.297 million short tons. Weighted average recovery of coal 53.72%. Net raw coal mined 162.414 million short tons.

(1) The specific gravity of raw coal in place is obtained from the equation : Spa = .010069 x % Ash +1.262.

(10)

(2) Total probable dilution assumes room and pillar extraction with continuous miners, and therefore may, in effect, be considered a maximum.

(3) Ten percent deduction for undefined faults, folds, washouts, etc. This is in addition to the deletion of reserves assigned to the area pf influence of hole 7205 (an additional 4%).

TABLE II-A

RESERVE SUMMARY NOMINAL 7% ASH PRODUCT - ANALYSES BY SEAM

							Tons x 10 ⁶						
	Plant Product Theor. Yield:			As Re	ceived	Durk		Raw Tons Mined (Allowing	Total Probable Dilution	Total Tons Mined &	Net Clean Tons (Theory Viold	Probable Yield Assuming	
Seam	(+28,-28 M.) Less 4%	Ash	Proxima Vol.	te Anal	<u>F.C.</u>	Produc <u>S.</u>	<u>F.S.I.</u>	Deduction)	(Contin. Mining)	<u>Dilution</u>	x Raw Tons)	Dilution*	Comments
D	76.90	7.07	24.42	5%	63.60	.65	512	28.008	6.401	34.409 YIELD	21.539 - NO DILUTION:	62.59 76.90	
E	64.36	7.06	23.50	5%	64.47	.24	7	29.593	5.703	35.296 YIELD	19.165 - NO DILUTION:	54.29 64.76	
F	78.40	6.80	20.84	5%	65.13	.23	7½	32.514	8.123	40.637 YIELD	25.493 - NO DILUTION:	62.73 78.40	
6	59.02	7.74	22.74	5%	64.49	.42	7½	1.872	.787	2.659 YIELD	1.105 - NO DILUTION:	41.55	Not used in Interim Report #2 Mining Plan
I	68.30	7.04	21.10	5%	66.82	.27	7½	28.690	5.208	33.898 YIELD	19.598 - NO DILUTION	57.81 68.30	Not used in Interim Report #2 Mining Plan
J	74.59	6.80	21.14	5%	66.95	.21	7	41.736	2.921	44.657 YIELD	31.133 - NO DILUTION	69.71 : 74.59	
TOTAL	PRODUCT							162.413			118.033		Yield 72.67 (No dilution)
TOTAL	(EXCLUDING G, I)							131.851	23.148	154.999	97.330		Yield 73.81 (No dilution) Yield 62.79 (With dilution)

Weighted Averages Based on Actual Analyses of Combined +28 and -28 Mesh Products

TABLE II-B

1

SAMPLING AND ANALYSIS

Drill Holes

The lithologies and coal intersections in each drill hole were visually logged and all observations were recorded on the drill logs in the field. At the same time each hole was logged at a scale of 1 inch = 20 ft. with radioactive sondes and counters. The intervals corresponding to seam intersections were then re-logged with this equipment at a scale of 1 inch = 2 ft. The responses measured were natural gamma radiation (i.e. potassium or clays), neutron (i.e. porosity as a function of hydrogenion concentration) and density as a function of induced gamma bombardment. These three logs have an excellent response to coal and were invaluable in determining seam characteristics where recovery was poor and particularly in rotary drill holes.

In addition to the geological logging, the core representing the roof of each seam intersection was also examined by the engineering staff to determine the probable dilution under room and pillar, continuous mining conditions.

After considering the above data, a decision was made as to what interval constituted the most likely full mining height, including in-seam dilution and roof dilution where this was considered to be an obvious contaminant. This subjective procedure has given rise to some anomalies in that certain out-of-seam sections are included in the sample in one case but not in another. The result is a conservative estimate of plant recovery where mining plans are now expected to rely on other less diluting methods. In future work, it is suggested that more incremental analysis be done and that compositing according to specific mine plans be done by computer. In any case, all of the sample intervals used in this instance are documented on the data summary sheets.

In the case of diamond drill samples, very little adjustment for lost core

(12)

recovery was necessary and the usual procedure was to take the seam thickness as it was determined by the density log and to relate the sample proportionately to it. The rotary drilling samples themselves were less precise than the diamond cores since the drillers had difficulty accurately defining the top and bottom of the seam and because sample material tended to lodge in the inner, reverse circulation pipe. For these reasons the radiation logs were used exclusively to define the seam and sample intervals on rotary holes.

Once the samples had been obtained, they were shipped to the laboratory and analyzed according to flow sheets No. 1 and 2. (Figures II-5 and II-6). The prime purpose of the rotary and diamond drill sample flow sheets was to obtain a sample which would closely resemble the product which might be obtained from the seam. Since the rotary samples contain a disproportionate amount of fines, this product data was obtained from sink/float analysis of the entire sample ($\frac{1}{4} \times 0$ mesh) while, for diamond drill core, an actual 7% ash product was prepared from the coarse (+28m) fraction and combined with the froth flotation product from the fines before being analyzed as a nominal 7% ash product. The data summary sheets in the map box summarize the sampling data for each seam intersection.

Note on Rotary and Diamond Drilling

In the Babcock area both HQ and NQ diamond drilling and rotary drilling have been used. The average core recovery for diamond drilling was approximately 85% but there was a distinct difference between the HQ which gave excellent recoveries of about 91% and the NQ drilling which resulted in core recoveries of only 82%. The recoveries on the rotary drilling were much more difficult to measure since there was considerable driller error in measuring the one foot increments. Some supposedly one foot increments had 150% recovery indicating that part of the previous sample remained in the drill pipe. The overall recovery, though, appears to have been similar (80 - 90%) to the diamond drilling. Besides the overcrushing which is discussed later in this report, the main problem with rotary drilling was the lack of precision in seam thickness measurements. In all cases it was necessary to use the electric logs to determine the seam thickness in rotary holes. In future drilling programs only HQ diamond drilling can be recommended where analysis of the seam is necessary. There is also no cost saving with rotary drilling in the Gates sequence.

Adit Samples

As the adits were being driven, samples were taken at 10 to 20 foot intervals to test for ash and F.S.I. Once a consistent F.S.I. was obtained (usually 3 samples), the face was logged and a bulk 5 to 6 ton sample was taken. The samples were placed in bags and then the bags were, in turn, placed in drums for shipment to the laboratory for analysis as outlined in Flow Sheet #3. After the samples were washed in a heavy media and water cyclone circuit, the product was shipped to Ottawa for coke tests. The adit samples sent to Japan were cleaned in Japan.

CALCULATION OF RESERVES

Summary

The reserves dealt with in this report are only those which are considered to be proven in the closely defined, relatively flat area at Babcock. The reserve limits are inclinations of 25%, depth of 1500 feet (approx. 450 meters), and the seam outcrop. The steeper, inferred reserves on the Waterfall Creek flank of the Babcock Monocline are not considered in detail at this time.

The basic method of reserve calculation has been to first define an area of influence for each hole or data point (adits) and then to subdivide each area of influence by contouring the seam thickness and using the area between contour intervals as the sub-area in which the thickness is defined as being the average of the two bounding contour values.

Each of the sub-areas in each area of influence was assigned the ash value of the corresponding hole. This percentage of ash was used to determine the appropriate specific gravity of coal in place to convert the area and coal thickness in each sub-area to tons of coal in place. The weighted average thickness and the total tons for the area of influence represented by the drill hole were then determined.

The probable dilution was calculated in a similar fashion, although a constant specific gravity (2.37) was used.

The amount of coal to be obtained as mined product was calculated on the assumption that extraction would be by room and pillar using continuous miners. Individual mining plans may differ from this, but it is expected that the mining recoveries would usually be greater and dilution less by other methods.

CALCULATION OF RESERVES

1

Reserve Limits

On the structure contour map for each seam, the points at which the seam inclination exceeds 25% have been plotted and the resultant line has been used as the primary reserve limit. This effectively excludes reserves which have potential for hydraulic mining. In addition to this limitation and the seam outcrop, the 1500' depth of cover line has been chosen as a cut off. An examination of the Seam D depth of cover map will demonstrate the fact that most of the reserve area which is likely to be mined in the first 20 or 30 years is under less than 800 ft. of cover (1100 ft. for Seam J). Consequently, extending the reserve cut off to 2000 ft. is not considered necessary at this time. (See plan in map folder for specific details)

Determination of Thickness

As has been mentioned in the sampling procedure, the primary sources of information for seam thickness are the radiation logs and the core logs. On the Data Summary Sheets, three thickness measurements are given. The <u>Geological Thickness</u> does not refer to reserves or mining. It is simply the distance between two convenient markers which have been used in internal discussions regarding correlation and variation within the seam. In some cases the geological thickness may correspond to either the reserve thickness or the production thickness but this is not of particular consequence.

The <u>Reserve Thickness</u>, as shown on the data summary sheets, corresponds to the thickness which has been used to calculate the tons of coal in place. As such, it is the thickness which the mined coal will come from and seam mining recovery figures in the tables are based on the proportion of this coal which will be extracted. Consequently, the Reserve Thickness has been referred to as the <u>Mining Thickness</u> on the isopach maps even though the actual production section or thickness may be different. The <u>Production Thickness</u> is also shown on the data summary sheets. The amount of coal to be removed from this thickness is prorated over the Reserve Thickness to obtain the net proportion of raw coal to be extracted in the mining plans which accompany this report. This volume of the report deals basically with gross reserves based on continuous mining (in benches where necessary) over the full measured height.

In summary, the <u>Reserve Thickness</u> or <u>Mining Thickness</u> defines the primary coal section which is used in the reserve calculation. In particular mining plans, the <u>Production Thickness</u> may vary within the Reserve or Mining Thickness and this may change the figures for net tons mined somewhat.

Roof and Seam Facies Maps

Before the isopach maps of mining and dilution thickness could be constructed, it was necessary to prepare facies interpretation maps of each seam and the immediate roof (map box). In doing this, both the detailed radiation logs and core logs were used as well as the analytical data. The resultant facies maps graphically present the variations in roof and seam conditions and they clearly demonstrate some trends in the seam facies in the Babcock reserve area. For this reason, the facies maps were used as a guide to contouring both dilution and Mining Thickness data and the trends evident in them were used to override the rigid rules of mathematical interpolation.

Isopachs of Mining and Dilution Thickness

As has been explained, the mining thickness on these maps is equivalent to the reserve thickness and, as such, it does not always correspond to the production section which is used in the mining plans accompanying this report or which may be developed at a later date. Nor is the probable dilution indicated by these maps necessarily a true measure of what might be expected in a given mining plan, since a lower section of a seam might be selected for mining, thus eliminating rock dilution. Most problems of this nature will occur in Seam J since the lower bench
of the seam is distinctly better than the upper bench. The better mining and cleaning plant recoveries in the thinner section though, should compensate for the loss of the top coal where the decision is made to mine only the lower bench.

Specific Gravity of Coal in Place

:

Since there is a fairly wide variation in raw ash of the coals in the Babcock area, an empirical curve of ash versus specific gravity was developed from the washability data on increments of the adit samples (Fig. II-8). This graph is based on the assumption that the coal and ash in each "mixture" are of constant quality or specific gravity. Even though this is known to be an over simplification, the cumulative effect of variations due to such things as fluctuation in volatile content does not appear to be significant. Consequently the lower limit of the range of values has been used to estimate the SPG. of coal in place and the projection of the line through the upper limit to 100% ash has been used to estimate the SPG. of dilution. The fact that this upper projection gives a value of 2.37 for pure rock (siltstone - shale) is a good indication that the procedure is sound, or at least conservative as the curve should probably level off somewhat in the higher ash regions. The calculated specific gravities are shown in the tables of Reserves in Place for each seam and the equivalent value in pounds per cubic foot for the weighted average specific gravities for each seam are shown as comments in the Reserve Summary Table. The weight used for coal ranges from 88 to 94 pounds per cubic foot. (Table II-A)

The equation used to calculate the specific gravity of coal in place at Babcock is SPG = (.010069 x % ash + 1.262).

Areas of Influence

The areas of influence which control the calculation of reserves were constructed around each drill hole and adit. This was done by first triangulating all the data points and then dividing each triangle so

formed into three equal area quadralaterals by joining the bisectrix of each side to the opposite apex or data point and using the mid-point so determined as a common point to the three quadralaterals. On the fringe of the reserve area, the right bisectrix of the line joining two "outside" points was extended to the 1500 ft. depth line or to the 25% slope line to close off each area of influence. This subject is treated more fully in Appendix C. (See also area of influence plans in map folder)

The first part of this procedure produced the seam nets which were used as the basis for all subsequent contouring of analytical data including the isopachs of mining and dilution thickness. These isopachs were also used in conjunction with the areas of influence, constructed in the second part of the procedure, to calculate the amount of coal reserves in place and the total probable dilution.

Subdivision of Areas of Influence

Although the specific gravity, that is quality or percent ash, was considered constant throughout each area of influence, the thickness of the seam was treated as being variable. Each area of influence was therefore subdivided into sub-areas bounded by isopach lines from the contour maps of mining (reserve) thickness. The seam thickness in each sub-area was considered to be the average of its two boundary values.

Each sub-area was carefully measured with a planimeter and the sum of the sub-areas was determined within 1% of the measured total for each area of influence before any minor corrections were made in averaging out discrepancies between the two values. (work done by Burnette Resource Surveys Ltd.)

A similar procedure was used for subdividing each area of influence for the calculation of total probable dilution.

This procedure of subdividing the area of influence means that measured

<u>thicknesses</u> are not used directly in the reserve calculations, instead the amount of coal in each increment of the area of influence is calculated and the <u>weighted average thicknesses</u>, which differs slightly from the <u>measured thicknesses</u> is obtained.

Calculation of Tons-in-Place

For each increment or sub-area, the number of tons of coal was calculated in the following manner.

Short Tons coal in place = <u>Area (ft.) x Thickness (ft.) x SpG. x 62.4283</u> tons 2,000 of water per where thickness = <u>(Lower Contour + Upper Contour)</u> 2

In those cases when the upper or lower contour was undefined, then the thickness was taken as one half of a contour interval above or below the last defined contour.

After all the increments had been calculated, they were added to give the total for the area of influence, then all the areas of influence were summed to provide the total reserve. This is documented in the various reserve tables.

Geological Deductions

Ten percent of each area of influence was deducted for geological errors due to any unobserved faults, rolls, washouts etc. In addition to this, the reserve associated with hole 7205, representing some 4% of the total, was not included because faulting was observed in this hole. It is felt that this faulting is well understood but one or two additional holes may be required before mining commences. Even though mining is confidently planned in this area, the reserves were still omitted from the proven totals for these reasons.

Probable Dilution

As has been mentioned, the probable dilution represents that amount of roof rock and dirty coal which was <u>not included in the sample</u> and which our engineering and geological staff consider would probably be too weak to hold up as roof in a room and pillar, continuous mining system. Dilution tonnage is kept separate in the various tables accompanying this report since it may obviously be decreased significantly with the choice of different mining methods. The method of calculating the total dilution is similar to that for coalin-place. Each drill hole area of influence is divided into increments of dilution thickness and the sum of these is the total for the area. The specific gravity of dilution is considered to be constant at 2.37 (see discussion of SpG. page).

SEAM D

			_		Pr	obable	Amos of	In Place Rese 10% Geologica	erves Less al Factors Probable	Fstimated	Total Probable	Raw Coal
	<u>Seam Thi</u>	ckness (Feet)	Ray	w Coal	UTILITION I	Heighted Av	Influence	Raw (na)	Dilution	Minina	Mines	Mined
Hole or	Meas'd In	Weighted Av.	Asn	Specific	meas d in	For A of Infl	F+ 2v 106	106 S Tons	Tons 106	Recovery	106 S. Tons	106 S. Ton
<u>Adit No.</u>	Drill Hole	For A. of Infl.		Gravity	Drill Hole	FOR A. OF INT.	<u>1 6. × 10</u>	10- 3. 1013	10/13 10	10001019		
	<i>с</i> 1	7.0	12 79	1 30	05	0.8	13.443	3.667	.678	64%	.434	2.347
QBD 7101	6.1	7.0	12.70	1.55	2 0	2.3	6.364	2.457	.968	62%	.600	1.523
QBD 7102	9.0	8.0	31.4/	1.07	1.0	0.8	9,222	3,230	.512	57%	.292	1.'841
QBR 7103	9.4	9.2	9.64	1.30	1.0	1.4	1 806	1 641	438	65%	.281	1.051
QBD 7104	6.5	7.7	32.88	1.59	1.5	1.4	9.000	2 804	870	57%	496	1.598
OBR 7105	8.0	7.5	25.05	1.51	1.5	1.5	0.704	2.004	1 102	50%	703	1 602
OBR 7106*	6.7	7.1	25.05	1.51	2.0	2.0	8.985	2.710	1.192	55%	./05	1.002
OBR 7107			Drill	hole starte	d below seam	n's stratigraphic	level.					
OBR 7108			Drill	hole starte	d below seam	n's stratigraphic	level.					
088 7109			Drill	hole starte	d below seam	n's stratigraphic	level.			100	145	2 165
080 7110	1A A	11 5	14.34	1.40	Nil	0.5	9.990	4.511	. 303	48%	. 145	2.105
000 7114	7 1	7 1	13 75	1.46	Nil	0.5	9.862	2.852	.347	62%	.215	1.768
QDK /114	/.1	20	11 02	1.37	0.5	0.8	4.109	1.415	.222	61%	.148	.863
QBD 7201	0.0	0.9	10 26	1 46	1.8	1.6	11.593	3.998	1.231	53%	.652	2.120
UBD 7202	9.0	7 4	14 01	1 / 1	Nil	0.3	11.260	3.306	.199	59%	.118	1.947
QRD 1203	7.3	7.4	14.01	1.41	1 1	1 1	7 472	2,165	.527	70%	.369	1.515
QBD 7204	7.3	1.3	14.74	1.41	1.1	0.4	7 704	2 198	. 195	60%	.216	1.319
QBD 7205	* 6.4	6.7	24.33	1.51	N11	U.4 .l. atuatiguaphio	1000	2.170	. 150		•	
QBD 7206			Drill	hole starte	ed below sear	n's stratigraphic	level.	t in meconic				
OBD 7207			Drill	hole shut	down before	seam stratigraph?	c level; no	it in reserve		579	037	594
OBD 7208	6.0	5.7	37.04	1.64	Nil	0.25	4.003	1.043	.000	576	.057	
0BD 7209	8.1	-	-	-	1.5	-	Not in	reserve area	• • • • • • • • •	-	- E 70	1 715
08D 7212	8.3	7.5	19.41	1.46	2.4	1.6	12.390	3.897	1.295	44%	.570	1./15
ORD 7213	0.0		Drill	hole shut	down before :	seam stratigraphi	c level - n	ot in reserve	area.			1 005
080 7215	57	6 1	11.85	1.38	Nil	0.4	8.147	1.917	.215	54%	.117	1.035
000 7210	7.6	7 0	0 98	1 36	1.2	1.6	8.230	2.490	.862	50%	.431	1.246
QDD 7217	7.0	0.0	13 70	1 40	1.2	1.3	3.507	1.233	.291	70%	.203	.863
QBD 7218	9.0	0.9	10 51	1 /5	1 0	1 3	5.626	1,735	.485	52%	.252	.902
QBD 7219	6.3	7.0	10.01	1.45	2.0	2 3	1 760	735	.262	62%	. 162	.456
ADIT D4	7.0	9.9	24.00	1.50	2.5	2.5	3 8/0	1 224	252	70%	. 176	.857
ADIT D9*	10.5	7.7	20.60	1.4/	0.5	1.0	3.049	1.224		10%	• • • •	• • • •
WEIGHTED	AVERAGES &	TOTALS LESS 7205	C:							570	C 401	20 000
		7.8	18.56	1.45		1.09	154.216	49.036	11.215	5/%	6.401	20.008
+000 710		wie from D7105	noor roo	roverv								

*QBR 7106 Raw analysis from R7105, poor recovery.
*QBD 7205 Raw analysis from D seam, lower fault block.
* ADIT D9 Encompasses area of influence of R7107.

TABLE II-C-1

1

5

SEAM E

								In Place Rese	erves Less		Total	·•
					Pr	obable		10% Geologica	al Factors		Probable	
	Seam Thi	ckness (Feet)	Raw	Coal	Dilution T	<u>hickness (Feet)</u>	Area of		Probable	Estimated	Dilution	Raw Coal
Hole or	Meas'd In	Weighted Av.	Ash	Specific	Meas'd In	Weighted Av.	Influence	Raw Coal	Dilution	Mining	Mines	Mined
Adit No.	<u>Drill Hole</u>	For A. of Infl.	%	<u>Gravity</u>	<u>Drill Hole</u>	For A. of Infl.	<u>Ft.²x 10⁰</u>	<u>10º S. Tons</u>	<u>Ions 100</u>	Recovery	10° S. Tons	10° S. Ton
OBD 7101	7.0	7.4	18.41	1.45	Nil	0.5	13.305	4.016	.485	65%	.315	2.610
OBU 7102	5.5	5.5	25.21	1.52	1.0	1.0	7.379	1.729	.473	65%	.307	1.124
OBR 7103	6.7	7.4	60.89	1.86	1.0	1.0	10.176	3.957	.646	65%	.420	2.572
OBD 7104	6.0	6.3	5.58	1.32	Nil	0.4	4.806	1.120	.135	65%	.088	.730
OBR 7105	5.7	5.8	17.55	1.44	2.0	1.7	9.011	2.129	1.041	65%	.677	1.383
OBR 7106	6.0	5.8	29.99	1.56	1.8	1.6	8.800	2.240	.945	65%	.614	1.456
OBR 7107*	5.5	5.5	29.45	1.56	Nil	0.3	3.756	.899	.067	65%	.044	.584
OBR 7108	0.0	Drill hole	started	below stra	tigraphic le	vel of seam.						
OBR 7109		Drill hole	started	below stra	tigraphic le	evel of seam.						
OBR 7110	6.2	6.8	21.19	1.48	1.0	0.9	9.990	2.815	.579	65%	.377	1.830
OBR 7114	9.5	9.0	19.10	1.45	Nil	0.3	10.182	3.723	.168	65%	.110	2.420
08D 7201	6.5	6.5	32.43	1.59	1.5	1.5	4.096	1.182	.418	65%	.272	.768
0BD 7202	5.5	5.5	26.98	1.53	1.0	1.0	11.689	2.796	.797	65%	.519	1.817
ABD 7203	8.8	8.2	25.37	1.52	Ni1	0.4	11.261	3.945	.266	65%	.176	2.565
0BD 7204	6.0	5.6	17.27	1.44	Ni]	0.6	7.382	1.653	.309	65%	.201	1.075
080 7205*	5.6	5.5	22.51	1.49	0.5	0.4	8.410	1.928	.200	65%	.130	1.254
0BD 7206	0.0	Drill hole	started	below stra	tigraphic le	evel of seam.						
0BD 7207		Not in res	erve area	a.	•							
0BD 7208	7.0	7.7	16.80	1.43	Ni1	0.4	4.768	1.462	.117	. 65%	.076	.950
0BD 7209	6.2	Not in res	erve area	a.	Nil							
OBD 7212		Seam too d	eep for d	drill used.								
OBD 7213		Not in res	erve area	a.								
OBD 7216	7.8	7.5	21.54	1.48	2.0	1.3	10.045	3.141	.887	65%	.576	2.041
OBD 7217	7.1	7.5	26.54	1.53	1.1	0.7	17.389	5.518	.818	65%	.532	3.587
0BD 7218	8.0	8.1	24.33	1.51	0.5	0.3	3.552	1.226	.070	65%	.045	.796
0BD 7219	5.8	5.5	21.69	1.48	1.5	1.2	5.626	1.290	.456	65%	.296	.839
ADIT F8	5 5	5.6	19.38	1.46	Nil	0.5	2.233	.508	.078	65%	.050	.330
ADIT EIO	5.2	5.5	29.45	1.56	Nil	0.3	.748	.179	.012	65%	.008	.116
WEIGHTED	AVERAGES &	TOTALS LESS 72050	•									
ALIGHTLU	mennues a	6.65	24.45	1.51		0.84	156.193	45.528	8.773	65%	5.703	29.593
*0BR 710	7 Raw analv	sis from ElO. rec	overy po	or.								
40.0 7 107			- v r-									

.

*QBD 7205 Not in proven reserves.

(23)

TABLE II-C-2

•

SEAM F

					Pr	obable		In Place Rese 10% Geologica	erves Less al Factors		Total Probable	
	<u>Seam Thi</u>	<u>ckness (Feet)</u>	Raw	Coal	Dilution T	hickness (Feet)	Area of		Probable	Estimated	Dilution	Raw Coal
Hole or	Meas'd In	Weighted Av.	Asn	Specific	Meas'd In	Weighted Av.	Influence	Raw Coal	Dilution	Mining	Mines	Mined
Adit NO.	Urill Hole	FOR A. OT INTI.		Gravity	Urill Hole	FOR A. OT INT!.	<u>Ftx 10°</u>	100 S. Tons	10ns 100	Recovery	100 S. Tons	100 S. Ton
QBD 7101	7.9	9.5	11.12	1.37	1.0	1.4	12.992	4.831	1.222	55%	.673	2.657
QBD 7102	9.3	9.5	24.23	1.50	1.0	1.0	7.706	3.113	.526	55%	.289	1.711
QBR 7103	15.0	13.0	6.82	1.33	2.0	1.8	10.080	4.877	1.198	55%	.660	2.682
QBD 7104	6.5	7.4	11.80	1.38	1.0	2.2	4.797	1.399	.695	55%	.382	.769
OBR 7105	9.0	8.9	31.63	1.58	0.5	0.7	8.816	3.497	.427	55%	.235	1.923
OBR 7106	10.0	10.0	16.65	1.43	1.0	0.9	8.704	3.491	.532	55%	.293	1.920
OBR 7107	9.8	9.8	20.38	1.47	2.5	2.0	3.955	1.578	.519	55%	.285	.868
OBR 7108		Drill hole	started	below stra	tigraphic po	sition of seam.						
OBR 7109		Drill hole	started	below stra	tigraphic po	sition of seam.						
OBR 7110	7.8	8.2	22.30	1.51	0.6	0.8	10.131	3.544	.531	55%	.292	1.949
OBR 7114	7.9	8.2	14.30	1.40	1.5	1.3	10.006	3.178	.873	55%	.480	1.748
OBD 7201	10.0	10.0	19.89	1.46	1.5	1.4	4.067	1.664	.371	55%	.204	.915
OBD 7202	9.3	9.7	20.19	1.47	Nil	0.6	11.773	4.654	.496	55%	.273	2.560
0BD 7203	9.5	9.0	23.98	1.50	0.5	1.2	11,459	4.385	.910	55%	.500	2.412
0BD 7204	11.9	10.4	12.68	1.39	4.0	3.0	6.989	2.838	1.376	55%	.757	1.561
0BD 7205*	7.6	8.0	23.15	1.50	2.8	2.7	9,190	3.054	1.646	55%	.905	1.680
0BD 7206		Drill hole	started	below stra	tigraphic pr	sition of seam.						
0BD 7207		Not in res	erve area									
0BD 7208	10.4	9.0	18.56	1.45	1.0	1.0	4.339	1,601	.279	. 55%	.153	.881
0BD 7209	8.8	Not in res	erve area	1	4.0							
0BD 7212	010	Too deep f	or drill	used.								
OBD 7213		Not in res	erve area									
0BD 7216	9.0	8.9	17.86	1.44	1.9	1.7	11.424	4.161	1.305	55%	.718	2.289
0BD 7217	9.6	9.7	11.99	1.38	1.8	2.1	15.424	5.821	2.132	55%	1,172	3.201
0BD 7218	10.0	9.3	24.84	1.51	1.0	2.6	3.296	1.310	. 558	55%	. 307	.721
080 7219*	r 9.0	9.0	11.20	1.38	1.5	1.3	5,658	1,993	.491	55%	.270	1.096
ADIT FI	9.2	83	15.1	1.42	0.5	1.3	1.389	.460	.117	55%	.064	.253
ADIT F6	6.2	7 2	22.67	1.49	0.5	0.8	1.426	. 426	.080	55%	.044	.235
ADIT FIL	7 9	7.8	20.82	1 47	2 5	2 2	912	297	132	55%	072	.163
	1.5	7.0	20.02	1.47	2.5			.237		00%		
WEIGHTED	AVERAGES & 1	TOTALS LESS 72050	:									
		8.4	18.72	1.46		1.3	155.452	59.118	14.770	55%	8.123	32.514
*QBD 7205	5 Not in pro	oven reserve.										

•

*QBD 7219 Poor recovery data from 7104.

(24)

RABLE II-C-3

~

SEAM G

Hole or Adit No.	Seam Thi Meas'd In Drill Hole	<u>ckness (Feet)</u> Weighted Av. For A. of Infl.	Raw As h %	<u>Coal</u> Specific Gravity	Pi <u>Dilution</u> Meas'd In Drill Hole	robable Thickness (Feet) Weighted Av. For A. of Infl	_ Area of Influence . Ft. ² x 10 ⁶	In Place Re <u>10% Geologi</u> Raw Coal <u>10⁶ S. Tons</u>	cal Factors Cal Factors Probable Dilution Tons 106	Estimated Mining Recovery	Total Probable Dilution Mines 106 S. Tons	Raw Coal Mined <u>106 S. Ton</u>
QBD 7101 QBD 7102 QBR 7103 QBD 7104 QBR 7105	6.9	6.4	Hole sh 17.62 No seam No seam No seam	ut down be 1.44 intersect intersect intersect	fore stratig 2.1 tion. tion. tion.	graphic level of 1.9	seam. 3.725	.968	. 459	60%	.275	581
QBR 7106 QBR 7107* QBR 7108 QBR 7109 QBR 7110 QBR 7114 QBD 7201 QBD 7202 QBD 7203	6.3	6.1	No seam 26.01 Hole st Hole st No seam No seam No seam No seam	intersect 1.52 arted belo arted belo intersect intersect intersect intersect intersect	tion. 3.3 bw stratigra bw stratigra tion. tion. tion. tion. tion.	2.8 phic level of se phic level of se	2.947 am. am.	.738	.538	60%	. 323	.442
QBD 7204 QBD 7205* QBD 7206 QBD 7207 QBD 7208 QBD 7209 QBD 7212 QBD 7213 QBD 7216 QBD 7217 QBD 7218	5.0 4.2	6.1	1.5 26.01 Hole st No seam Hole st Hole st Hole st Seam to No sear No sear	Seam 1 1.52 arted belo but down be intersection out down be out down be out down be out down be out down be out town be	too poor a q 3.2 ow stratigra efore strati tion. efore strati efore strati be economic tion. tion.	uality to be eco 1.7 phic level of se graphic level of graphic level of graphic level of graphic level of	nomic. .870 eam. ⁵ seam - not ⁵ seam - not ⁵ seam. ⁶ seam - not	.225 in reserve a in reserve a in reserve a	.103 rea. rea. rea.	• 60%	.062	. 135
QBD 7219 ADIT G5 ADIT G12	6.7 8.3	7.5 8.4	No 53ar 16.26 20.23	n intersec 1.43 1.47	tion. 1.4 Nil	$1.1 \\ 0.8$	3.091 1.430	.929 .485	.233 .083	60% 60%	.140 .049	.558 .291
WEIGHTED	AVERAGES &	TOTALS LESS 72050 6.86	: 17.87	1.44		1.67	11.769	3.120	1.313	60%	.787	1.872
*QBR 7107 *QBD 7205	Not in pr	very, used analys oven reserves.	SIS OT 720	JJ • .								

-

TABLE II-C-4

1

(25)

.

D 7

.

~

SEAM I1

					Γ.			In Place Res	erves Less		Total	•
	Soom Thi	eknoss (Feet)	Dave	(o.)	Dilution 1	Dable	Auron of	10% Geologic	al Factors	-	Probable	
	Seam Ini	Unichted Au			Dilution	Inickness (Feet)	Area or	D 1	Probable	Estimated	Dilution	Raw Coal
Adit No	Drill Hole	For A of Infl	AS /1 9/	Gravity	meas a in	For A of Infl	F+ 2v 106	Raw LOal	Dilution	Mining	Mines	Mined
		<u>10: A: 01 1011.</u>		diavicy_	DITIT HOTE	<u>101 A. 01 1011.</u>	<u>10. × 10-</u>	100 5. 1015	1005 100	Recovery	10° 5. 1005	10º 5. 10n
QBD 7101		Not drille	d to sea	m depth.								
QBD 7102		Seam not i	ntersect	ed.								
QBR 7103	22.3	18.8	15.47	1.42	Nil	0.5	9.856	7.394	.312	65%	.203	4.806
QBD 7104	6.8	7.0	16.42	1.43	2.7	2.4	5.046	1.410	.801	65%	.521	.917
QBR 7105	7.7	8.2	20.40	1.47	Ni1	0.1	7.085	2.371	.054	65%	.035	1.541
QBR 7106	10.0	8.5	27.12	1.54	Nil	0.0	9.990	3.672	0	65%	0	2.387
QBR 7107		Seam not i	ntersect	ed.							•	21007
QBR 7108		Seam not i	ntersect	ed.								
QBR 7109		Seam not i	ntersect	ed.								
QBR 7110	8.3	8.9	12.87	1.39	1.5	1.4	9,991	3,455	. 946	65%	.615	2 246
QBR 7114	7.5	7.9	21.87	1.48	2.5	2.4	8.262	2.736	1,293	65%	.840	1 778
OBD 7201	10.6	10.8	15.12	1.41	Nil	0.3	3,923	1.697	.087	65%	057	1 103
QBD 7202	10.9	8.5	18.35	1.45	Ni1	0.5	7.847	2.725	251	65%	163	1 771
OBD 7203	12.4	10.0	15.23	1.42	1.6	1.3	15.427	6,138	1 309	65%	851	3 000
OBD 7204	6.2	6.6	21.98	1.48	5.3	2.6	1.615	448	277	65%	180	201
OBD 7205		Seam not i	ntersect	ed.	•••	2.00		. 4 10		000	.100	. 231
OBD 7206*	8.1	7.1	12.64	1.39	4.0	25	1 197	338	108	65%	120	220
0BD 7207		Not drille	ed to sea	m denth - r	not in reserv	/e area	1.1.57	. 550	.150	05%	.125	• 2 2 0
0BD 7208*	5.5	6.2	12.64	1.39	0.5	0 5	7 290	1 790	253	659	164	1 164
0BD 7209		Not drille	d to sea	m denth - r	nt in recerv	le area	1.230	1.750	.235	058	.104	1.104
0BD 7212		Not drille	d to sea	m denth	iot in reserv	ic urea.						
0BD 7213		Not drille	d to sea	m denth - r	not in recer	a araa						
0BD 7216		Seam not i	ntersect	ed	iot in reserv	ic uicu.						
OBD 7217	11 1	9.2	25 15	1 52	1.9	1 2	16 662	6 512	1 440	654	041	1 222
08D 7218	6 5	67	12 64	1 20	20	1.5	2 220	0.012	1.440	05%	.941	4.233
0RD 7210	9.1	0.7	10 00	1.35	2.0	2.5	2.339	.012	. 380	05%	.247	.398
QUD 7213	0.4	0.5	10.09	1.40	0.2	0.75	8.170	2.838	.404	65%	.203	1.845
WEIGHTED	AVERAGES AN	D TOTALS:										
		9.45	18.87	1.45		1.05	114.700	44.136	8.013	65%	5.209	28.690
* QBD 72	06 & QBD 72	08 Poor recovery	use anal	ysis 7218.								

(26)

TABLE II-C-5

SEAM J

.

					Pr	obable		In Place Rese 10% Geologica	erves Less al Factors		Total Probable	·•
	Seam Thic	kness (Feet)	Raw (Coal	Dilution T	hickness (Feet)	Area of		Probable	Estimated	Dilution	Raw Coal
Hole or	Meas'd In	Weighted Av.	Ash	Specific	Meas'd In	Weighted Av.	Influence	Raw Coal	Dilution	Mining	Mines	Mined
Adit No.	Drill Hole	For A. of Infl.	%	Gravity	Drill Hole	For A. of Infl.	<u>Ft.²x 10⁶</u>	<u>106 S. Tons</u>	<u>Tons 106</u>	Recovery	<u>106 S. Tons</u>	<u>106 S. Tor</u>
080 7101		Drill hole	shut down	before s	stratigraphic	level attained.						
08D 7102	16.1	16.1	26.31	1.53	Nil	0.1	7.462	5.122	.045	45%	.020	2.305
0BR 7103	19.9	18.8	10.41	1.37	2.0	1.7	9.856	7.035	1.136	34%	.386	2.392
0BD 7104	16.0	18.0	14.58	1.41	1.0	1.1	5.046	3.622	.370	43%	.159	1.557
0BR 7105	17.7	18.6	18.33	1.45	Nil	0.6	7.085	5.380	.295	46%	.136	2.475
0BR 7106	22.2	20.8	20.59	1.47	0.5	0.6	10.707	9.274	.418	42%	.176	3.895
OBR 7107	19.7	18.8	27.22	1.54	1.0	0.4	7.498	6.135	.202	53%	.107	3.252
0BR 7108	6.2	8.2	36.44	1.63	0.5	0.6	4.550	1.690	.166	50%	.083	.845
OBR 7109		Oxidized c	oal - hold	e in area	of influence	of 7108.					·	
OBR 7110	22.5	21.0	20.72	1.47	1.5	1.5	9.990	8.736	1.022	34%	.347	2.970
OBR 7114	* 19.5	19.3	16.20	1.43	2.0	1.6	8.262	6.364	.904	42%	.380	2.673
OBD 7201	** 16.8	18.1	11.41	1.38	2.0	1.7	3.923	2.773	.451	42%	.189	1.165
OBD 7202	* 19.2	18.3	16.60	1.43	0.2	0.3	8.330	6.068	.176	34%	.060	2.063
OBD 7203	** 19.6	17.8	14.57	1.41	1.0	0.7	14.716	10.467	.648	38%	.246	3.977
0BD 7204	** 19.2	16.7	14.84	1.41	1.0	0.7	5.712	3.813	.274	44%	.121	1.678
OBD 7205	*** 7.6	10.8	28.05	1.55	Nil	0.3	10.880	5.216	.188	48%	.090	2.504
0BD 7206	* 20.6	19.7	13.20	1.40	1.0	1.1	1.658	1.273	.122	48%	.059	.611
OBD 7207		Drill hole	shut dow	n before :	stratigraphic	: level attained	- not in re	eserve area.				
OBD 7208	10.0	12.4	13.54	1.40	Nil	0.3	5.245	2.529	.087	45%	.039	1.138
OBD 7209		Drill hole	e shut dow	n before	stratigraphic	: level attained	- not in re	eserve area.				
OBD 7212		Seam too c	leep for d	rill used	•							
QBD 7213		Drill hole	e shut dow	n before	stratigraphic	c level attained	- not in re	eserve area.	•	450	•	0.010
QBD 7216	10.0	11.0	10.36	1.37	Nil	0.0	12.288	5.146	0	45%	0	2.316
QBD 7217	10.0	11.4	6.11	1.32	Ni1	0.2	16.966	7.172	.196	42%	.082	3.012
QBD 7218	18.3	18.3	15.46	1.42	0.6	0.9	2.576	1.879	.146	45%	.066	.840
0BD 7219	17.3	18.2	14.00	1.40	1.5	1.1	8.170	5.803	.598	34%	.203	1.9/3
ÀDIT JI	4 15.4	14.3	12.00	1.38	1.0	0.9	1.939	1.078	.112	55%	.062	. 593
NETCHTED	AVEDAGES . T	OTALS 1555 7205										
WEIGHIED	ANCIAUES & I	16.60	16.51	1.43		1.42	151.980	101.359	7.367	41.18%	2.921	41.736
* Lower	J											

•-

** Upper & Lower J combined *** Not in proven reserves

1

CALCULATION OF NET CLEAN COAL

Summary

The reserves of clean coal are expressed on the basis of a product with approximately 7% ash. In the drill hole analytical procedures, this was obtained by compositing the float product at 7% ash with the froth floatation product as it occurred. The result is products with ash ranging generally from 6.5% to 7.5%. The theoretical yield for the plant product was obtained by deducting 4% from the combined theoretical yield of these coarse and fine products. In the case of rotary drill samples, the full sample ($\frac{1}{4} \times 0$, sink/float recovered portion) was used. The analysis shown are, therefore, actual analyses of products which have been prepared in such a way that they simulate the expected plant product as nearly as possible. As it is felt that each drill hole analyses represents approximately a year's production from any seam, no weighted average washabilities from the seams were prepared. Instead, predicted quarterly products have been calculated as part of the mining plan and they are presented in that part of the report. Although wide variations in specific gravity are indicated within individual seams, they should be quite gradual and the washabilities from blended feed are not expected to have even that much variability.

Since data for sink-float products at 1.60 are not given in the data summary sheets, and the mining plans have assumed this cut-off as a convenient approximation of the ultimate plant operating point, reserve data has also been calculated and quality tables prepared for coal cleaned by this procedure. The gross yield of net clean coal and the product quality do not differ much from the nominal 7% ash products, indicating again that a fairly consistent setting will be possible for blended raw coal coming into the plant.

Nominal 7% Ash Products

The section on sampling and analytical procedures adequately covers the methods used to obtain quality data for the nominal 7% ash products. The variation in this data is due solely to the variation in the froth floatation products. At present, a computer program is being developed to provide data on a move precise product-ash base, however this refinement is not necessary at the present time and will provide only extrapolated data, whereas the present method has provided a reasonably accurate and realistic simulation of variations which may have to be dealt with.

Specific Gravity of Separation

The specific gravity of the cleaning plant medium for nominal 7% ash products has been obtained from the sink-float analysis. The variations are due both to inherent variations in the coal, and also, to differences in sampling decisions and proportions of roof dilution which were included in the sample.

Theoretical Yield

The theoretical yield used for the <u>plant product</u> is the proportionately combined sink-float yield of the +28m fraction with the corresponding floatation yield from the -28m fraction, discounted by 4% for plant inefficiencies. The decision to reduce the theoretical yield by 4% is based on the observation that the washing efficiency curves (see Vol. III, preparation section) indicate that approximately 1 1/2 to 4% of the product will be lost in water only systems operating at 1.60 specific gravity (r=0.10). If it is necessary to wash a part of the Babcock coal at lower specific gravities, then heavy media circuits (1.50 to 1.55) may be necessary since the losses in a water-only plant would exceed 5%. In any case, for the purpose of reserve calculation, it is presumed that the plant will be designed to minimize washing loss. To be safe, a total of 4% has been deducted. Allowance for the possible interference effect of near gravity material from the probable dilution, has been made by assuming that the dilution has a high specific gravity (2.37).

The predicted wash plant efficiency data is more fully discussed in the section on cleaning plant design.

The yields from the diamond drill samples may be considered reasonably representative since the coal was crushed to yield approximately 20-25% of -28m material before it was analyzed. Also, it can be generally considered that soft clean coal is more easily lost in drilling than hard coal or shales. On the average, rotary drill sample yields were distinctly lower (up to 8%) than the diamond drill yields. This is probably due to contaminants in the sample and to poor sink-float separations due to overcrushing. Despite these observations the rotary yields have been used as measured as there is no certain method of correcting them (there are not enough data points to conclude with certainty that the recoveries should be higher). The result is a conservative estimate of plant recovery.

Moisture

In the nominal 7% ash product, total moisture is set at 5% to reflect the quality of a shipped or received product. In the first Quality Comparison table, the moisture in the weighted average 1.60 products is also set at 5% for comparison. In the second table, both products are stated on an air dry basis for ease of comparison with other similar coals. (Residual moisture is assumed to be the same in each product). (Page). The clean coal product tonnages have not been increased to reflect the weight of moisture.

Net Clean Tons

In the reserve tables, the figures for net clean tons have been obtained by reducing the raw tons mined by the theoretical yield (previously adjusted by 4%). The product thus stated is in millions of short tons.

Probable Yield Assuming Total Dilution

As an estimate of the most conservative expectation, the probable yield assuming total dilution has been calculated. Regardless of the mining system used, dilution can be expected to be of this order. As has been explained previously various systems may be selected which could significantly reduce this dilution. For this reason, the other extreme (no dilution) has also been summarized on each table along with the total dilution summary. Although more detailed interpretation may be made in the future, mine planning and plant designing should make appropriate allowances for this range of possibilities.

In estimating the total probable dilution which will be mined with the product coal, it is assumed that this will be in direct proportion to the amount of coal which may be mined and to the mining recovery factor which has been used for the coal.

Products at 1.60 Specific Gravity

The tables for the coal product at 1.60 are generally self explanatory. They are similar to those for the nominal 7% ash product except that the diamond drill data are calculated on an air dry basis and are derived from mathematical composites of the +28m float portion at a specific gravity of 1.60 and the -28 mesh froth floatation product. Consequently the F.S.I. values are estimated.

For rotary holes, sample results were taken directly from the analytical data since sink-float analysis was done directly on the $\frac{1}{4} \times 0$ head sample.

In the case of Seam E, where the section analyzed was greater than the section to be mined (i.e. when the lower shale band is to be used as the floor and the lower coal leaf is to be abandoned). The recovery was adjusted on the assumption that it would be improved in proportion to the amount of rock and coal left out. For example: If the original recovery was 50% on 8 total feet including 3 feet of rock, and the production section is 5 feet with only 1 foot of rock, then the recovery on the remaining 5 feet is

$$R = \frac{4}{5} \times .50 \times \frac{8}{5} = 64\%$$

The quality of the product is assumed to be the same as it was on the original sample since the density logs indicate that the lower coal split in the seam is generally of poorer quality than the upper two splits.

In the case of Seam J, where the mining height is represented by two analytical samples, the mathematical composite was obtained simply by calculating each sample as indicated above and then combining them in proportion to their individual sample thickness and calculated recoveries at 1.60 SPG.

The amount of sulphur in the 1.60 product was estimated by extrapolating on a straight line basis between the ash and sulphur content of the head sample to the ash and sulphur content of the nominal 7% ash product since these are the only two data points that are available which contain both +28m and -28m portions.

2

COMPARISON OF QUALITY DRY BASIS

Weighted Average Analyses 1.60 SPG. and Nominal 7% Ash Products

<u>Seam</u>	Product	<u>Ash</u>	Vols.	<u>F.C.</u>	<u>S.</u>	Moisture
D	1.60	7.25	25.11	66.78	.67	.83
	7	7.44	25.49	66.35	.61	.83 est.
Ε	1.60	7.70 7.40	24.52 24.64	66.91 67.15	.26 .25	.84 .84 est.
F	1.60	4.8 6	24.51	69.49	.32	.90
	7	7.10	23.99	67.97	.34	.90 est.
G	1.60	10.97	22.34	65.87	.49	.78
	7	8.08	23.75	67.35	.42	.78 est.
I	1.60	9.06	21.44	68.46	.31	.98
	7	7.33	21.99	69.65	.27	.98 est.
J	1.60	7.57 7.13	21.98 22.14	69.58 69.79	.23 .22	.85 .85 est.

(33)

COMPARISON OF QUALITY PRODUCT BASIS AS RECEIVED AT 5% TOTAL MOISTURE

Weighted Average Analyses 1.60 SPG. and Nominal 7% Ash Products

<u>Seam</u>	Product	Ash	Vols.	<u>F.C.</u>	<u>S.</u>	Moisture
D	1.60	6.94	24.05	63.97	.67	5
	7	7.09	24.43	63.58	.61	5
Ε	1.60	7.37 7.09	23.50 23.61	64.10 64.33	.26 .25	5 5
F	1.60	4.65	23.49	66.61	.32	5
	7	6.81	23.00	65.15	.34	5
G	1.60	10.50	21.39	63.06	.49	5
	7	7.74	22.74	64.49	.42	5
I	1.60	8.69	20.57	65.68	.31	5
	7	7.04	21.10	66.82	.27	5
J	1.60	7.24	21.07	66.67	.23	5
	7	6.84	21.21	66.87	.22	5

NOMINAL 7% ASH PRODUCT - ANALYSES BY DRILL HOLE

SEAM D

Actual Analyses on Combined +28 and -28 Mesh Products

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
Plant Product Recovery Proximate Analysis of Product Mined (Allowing) Probable (Contin, Probable (Contin, Probable (Contin, Probable) Tons (Theor, Yield (Contin, Probable) Net (Theor, Yield (Theor, Yield) Assuming Assuming QBU 7102 1.55 6.40 6.96 25.77 5% 62.27 56 7% 2.347 434 2.781 1.971 Tild, Theor, Yield Tons Net Mined (Theor, Yield) Tons 1.023 Mined (Theor, Yield) Tons Net Mined (Theor, Yield) Tons Net Mined (Theor, Yield) Tons N			- ·							Raw Tons	Total	Total		Probable	
Sp. 6. of Theor. Field:As Received(Allowing DilutionMined & Clean Tons AssumingAdit No.recovery 428, 28 A.(Allowing DilutionMined & Clean Tons AssumingAdit No.recovery 428, 28 A.(Allowing DilutionMined & Clean Tons AssumingMined & View 1Converted Total(Allowing Dilution(Allowing Dilution(Allowing Dilution(Theor. Field: TotalAdit No.Less 4%(Allowing DilutionMined & Clean Tons Assuming(B0 7104Less 4%(Allowing Dilution(Mined & Clean Tons Assuming(B0 7104Less 4%(Allowing Dilution(Mined & Clean Tons Assuming(B0 70)(Allowing Dilution(Mined & Clean Tons Assuming(B0 70)(Allowing Dilution(Mined & Clean Tons Assuming(B0 70)(Mined & Clean Tons Assuming(B0 70)(Allowing Dilution(Mined & Clean Tons Assuming(B0 70)(Mined & Clean Tons Assuming(B0 70) <td></td> <td><u> </u></td> <td><u>it Product</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Mined</td> <td>Probable</td> <td>Tons</td> <td>Net</td> <td>Yield</td> <td>••</td>		<u> </u>	<u>it Product</u>							Mined	Probable	Tons	Net	Yield	••
Hole or (228 H.) Protenties Analysis of Product (28 H.) Divesting (28 H.) Product (28 H.) Divesting (28 H.) Divesting		Sp.G. of	Theor. Yield:		0	As Re	ceived			(Allowing	Dilution	Mined &	Clean Tons	Assuming	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hole or	Recovery	(+28,-28 M.)	Ach	Proxima	TE Anal	ysis of I	Product		10% Geol.	(Contin.	Probable	(Theor. Yield	Total	• ·
QBD 7101 1.69 84.0 6.96 25.77 5% 62.27 1.56 7% 2.347 4.34 2.781 1.971 70.9 QBD 7102 1.55 64.0 7.06 2.32 5% 64.02 27 9 1.841 2.92 2.133 1.685 79.0 QBD 7104 1.58 60.0 6.69 23.14 5% 65.17 59 7% 1.598 4.96 2.094 1.023 44.8 QBR 7105 1.58 64.0 6.69 23.14 5% 65.17 59 7% 1.602 .703 2.305 1.023 44.5 QBR 7105 Drill hole spudded bolow seam's stratigraphic level. 87105 0.1025 44.5 87105 9711 1.62 .703 2.310 1.873 81.1 QBR 7109 Drill hole spudded bolow seam's stratigraphic level. 2.165 .145 2.310 1.873 81.1 QBR 7109 Drill hole spudded bolow seam's stratigraphic level. 2.165 .145 2.310 1.873 81.1 QBD 7201 1.68 86.5 <t< td=""><td>Adit No.</td><td><u>+28 M.</u></td><td>Less 4%</td><td>Asn</td><td><u>voi.</u></td><td><u>I.M.</u></td><td><u>F.L.</u></td><td><u>s.</u></td><td><u>F.S.I.</u></td><td>Deduction</td><td>Mining)</td><td>Dilution</td><td><u>x Raw Ions)</u></td><td>Dilution*</td><td>Comments</td></t<>	Adit No.	<u>+28 M.</u>	Less 4%	Asn	<u>voi.</u>	<u>I.M.</u>	<u>F.L.</u>	<u>s.</u>	<u>F.S.I.</u>	Deduction	Mining)	Dilution	<u>x Raw Ions)</u>	Dilution*	Comments
QBD 7102 1.55 64.0 7.06 23.92 5% 64.02 51 6 1.523 .600 2.123 .975 45.9 QBD 7104 1.58 50.0 8.05 23.81 5% 64.82 .27 9 1.841 .292 2.133 1.685 79.0 QBD 7104 1.58 64.0 6.69 23.14 5% 65.17 .59 7½ 1.598 .496 2.094 1.023 48.8 QBR 7105 Drill hole spudded below seam's stratigraphic level. 087 708 0.025 44.5 Wash data from QBR 7109 Drill hole spudded below seam's stratigraphic level. 087 7168 2.15 1.983 1.549 78.1 QBR 7101 1.85 66.5 6.72 27.12 5% 61.6 2.49 2.165 .145 1.933 1.549 78.1 QBR 7101 1.86 86.6 6.558 2.374 5% 64.85 5.863 .188 1.011 .747 74.1 QBD 7201 1.64 64.5 8.59 22.479 5	QBD 7101	1.69	84.0	6.96	25.77	5%	62.27	.56	7 ¹ 2	2.347	.434	2.781	1.971	70.9	
QBR 7103 1.85 91.5 6.68 23.50 5% 64.82 2.7 9 1.841 .292 2.133 1.685 79.0 QBR 7105 1.58 64.0 6.69 23.14 5% 65.17 .59 7% 1.598 .496 2.094 1.023 48.5 QBR 7105 1.58 64.0 6.69 23.14 5% 65.17 .59 7% 1.602 .703 2.305 1.023 48.5 QBR 7105 Drill hole spudded below seam's stratigraphic level.	QBD 7102	1.55	64.0	7.06	23.92	5%	64.02	.51	6	1.523	.600	2.123	.975	45.9	
QBD 7104 1.58 50.0 8.05 23.14 5% 63.14 .41 6 1.051 .281 1.322 .526 39.5 QBR 7105 1.58 64.0 6.69 23.14 5% 65.17 .59 7% 1.508 .2034 1.023 48.8 QBR 7105 Drill hole spudded below seam's stratigraphic level. QBR 7109 Drill hole spudded below seam's stratigraphic level. R7105 .2300 1.873 81.1 QBR 7104 1.68 86.5 6.72 27.12 5% 61.16 .24 9 2.165 .145 2.310 1.873 81.1 QBR 7104 1.68 86.5 6.72 27.12 5% 61.16 .24 9 2.165 .145 2.310 1.873 81.1 QBR 7101 1.88 86.6 6.58 23.74 5% 63.14 .35 7 1.768 .111 .011 .74 74.1 QBD 7202 1.45 64.5 8.59 22.49 5% 63.92 .77 5 2.120 .652 2.772	QBR 7103	1.85	91.5	6.68	23.50	5%	64.82	.27	9	1.841	.292	2.133	1.685	79.0	,
QBR 7105 1.58 64.0 6.69 23.14 5% 65.17 .59 7½ 1.598 .496 2.094 1.023 48.8 QBR 7107 Drill hole spudded below seam's stratigraphic level. 088 7107 081 10025 44.5 84.5 QBR 7108 Drill hole spudded below seam's stratigraphic level. 087 1.602 .703 2.305 1.025 44.5 QBR 7109 Drill hole spudded below seam's stratigraphic level. 087 1.602 .145 2.310 1.873 81.1 QBR 7110 1.85 86.5 6.72 27.12 5% 61.16 .24 9 2.165 1.45 2.310 1.873 81.1 QBR 7101 1.85 86.5 6.72 27.71 5% 63.14 .35 7 1.67 74.1 QBR 7104 2.165 1.457 7.7.7 6.72 27.12 5% 63.42 7.7 5 2.210 .652 2.772 1.367 49.3 QBD 7204 1.57 77.7 6.75 22.37 5% 65.88 .594 </td <td>QBD 7104</td> <td>1.58</td> <td>50.0</td> <td>8.05</td> <td>23.81</td> <td>5%</td> <td>63.14</td> <td>.41</td> <td>6</td> <td>1.051</td> <td>.281</td> <td>1.332</td> <td>.526</td> <td>39.5</td> <td></td>	QBD 7104	1.58	50.0	8.05	23.81	5%	63.14	.41	6	1.051	.281	1.332	.526	39.5	
QBR 7106 1.58 64.0 6.69 23.14 5% 65.17 .59 7½ 1.602 .703 2.305 1.025 44.5 Wash data from R7105, poor recovery QBR 7107 Drill hole spudded below seam's stratigraphic level. R7108 Drill hole spudded below seam's stratigraphic level. R7105 2.305 1.025 44.5 Wash data from R7105, poor recovery QBR 7109 Drill hole spudded below seam's stratigraphic level. 087 716 2.310 1.873 81.1 QBR 7114 2.00 87.6 6.69 23.17 5% 63.14 35 7 1.768 215 1.983 1.549 78.1 QBD 7201 1.66 86.6 6.58 23.74 5% 63.92 7.7 5 2.120 .652 2.772 1.367 49.3 QBD 7201 1.45 64.5 8.59 22.49 5% 63.87 7 1.515 .369 1.884 1.177 62.5 QBD 7203 1.94 82.1 64.66 6.56 1.30 5½ .94 .037 .631 .343 54.4	QBR 7105	1.58	64.0	6.69	23.14	5%	65.17	.59	7 ¹ 2	1.598	.496	2.094	1.023	48.8	
QBR 7107 Drill hole spudded below seam's stratigraphic level. R7105, poor recovery QBR 7109 Drill hole spudded below seam's stratigraphic level. R7105 1.457 2.310 1.873 81.1 QBR 7109 Drill hole spudded below seam's stratigraphic level. R7105 1.465 2.310 1.873 81.1 QBR 7114 2.00 87.6 6.69 25.17 5% 61.6 .24 9 2.165 1.45 2.310 1.873 81.1 QBR 7107 0.87.6 6.69 25.17 5% 61.68 2.9 7.7 5 2.120 .652 2.772 1.367 49.3 QBD 7203 1.94 82.1 6.45 24.18 5% 61.82 1.26 5% 1.319 .216 1.535 .844 50.0 Not in proven reserves QBD 7204 1.57 7.7 6.75 2.2.37 5% 66.56 1.30 5% .319 .216 1.535 .844 50.0 Not in proven reserves Lower fault block QBD 7204 1.57 7.7 9.57 2.487 5% <t< td=""><td>QBR 7106</td><td>1.58</td><td>64.0</td><td>6.69</td><td>23.14</td><td>5%</td><td>65.17</td><td>.59</td><td>7¹ź</td><td>1.602</td><td>.703</td><td>2.305</td><td>1.025</td><td>44.5</td><td>Wash data from</td></t<>	QBR 7106	1.58	64.0	6.69	23.14	5%	65.17	.59	7¹ź	1.602	.703	2.305	1.025	44.5	Wash data from
QBR 7108 Drill hole spudded brlow seam's stratigraphic level. QBR 7110 1.85 86.5 6.72 27.12 5% 61.16 .24 9 2.165 .145 2.310 1.873 81.1 QBR 7114 2.00 87.6 6.69 25.17 5% 63.14 .35 7 1.768 .215 1.983 1.549 78.1 QBD 7201 1.68 86.6 6.58 23.74 5% 63.92 .77 5 2.120 .652 2.772 1.367 49.3 QBD 7201 1.45 64.5 24.18 5% 63.92 .77 5 2.120 .652 2.772 1.367 49.3 QBD 7203 1.94 82.1 6.45 24.18 5% 64.37 2.065 1.947 .118 2.065 1.598 77.4 QBD 7204 1.57 77.7 6.75 22.37 5% 65.88 .58 7 1.319 .216 1.535 .844 50.0 Not in proven reserves Lower fault block QBD 7205 Drill hole spudded below seam's s	QBR 7107		Drill hole	spudded	below se	eam's s	tratigra	phic 1	evel.						R7105, poor recovery
QBR 7109 Drill hole spudded below seam's stratigraphic level. QBR 7110 1.85 86.5 6.72 27.12 5% 61.16 24 9 2.165 .145 2.310 1.873 81.1 QBR 7114 2.00 87.6 6.69 25.17 5% 63.14 .35 7 1.768 .215 1.983 1.549 78.1 QBD 7201 1.68 86.6 6.59 22.47 5% 63.14 .35 7 1.768 .215 1.983 1.549 78.1 QBD 7203 1.94 82.1 6.45 2.49 5% 64.37 2.06 5 1.947 118 2.065 1.598 77.4 QBD 7203 1.57 77.7 6.75 22.37 5% 61.82 1.26 5½ 1.319 216 1.555 .844 50.0 Not in proven reserves Lower fault block QBD 7205 1.56 64.0 7.92 25.26 5% 61.82 1.319 .037 .631 .343 54.4 QBD 7206 Dri11 hole shut down before seam's st	QBR 7108		Drill hole	spudded	bolow se	eam's s	tratigra	phic l	evel.						
QBR 7110 1.85 86.5 6.72 27.12 5% 61.16 .24 9 2.165 .145 2.310 1.873 81.1 QBR 7114 2.00 87.6 6.69 25.17 5% 63.14 .35 7 1.768 2.15 1.983 1.549 78.1 QBD 7201 1.68 86.6 6.58 23.74 5% 64.32 77 5 2.120 .652 2.772 1.367 49.3 QBD 7203 1.94 82.1 6.45 24.18 5% 64.37 2.06 5 1.947 .118 2.065 1.598 77.4 QBD 7205 1.56 64.0 7.92 25.26 5% 61.82 1.28 1.319 .216 1.535 .844 50.0 Not in proven reserves QBD 7206 Drill hole spudded below seam's stratigraphic level - not in reserve area. .037 .631 .343 54.4 QBD 7209 Not in reserve area, hole shut down before stratigraphic level - not in reserve area. .037 .631 .343 54.1 QBD 7213 Not in r	QBR 7109		Drill hole	spudded	below so	eam's s	tratigra	phic l	evel.						
QBR 7114 2.00 87.6 6.69 25.17 5% 63.14 .35 7 1.768 .215 1.983 1.549 78.1 QBD 7201 1.68 86.6 6.58 23.74 5% 64.68 .45 5 .863 .148 1.011 .747 74.1 QBD 7202 1.45 64.5 8.59 22.49 5% 63.92 .77 5 2.120 .652 2.772 1.367 49.3 QBD 7202 1.45 64.5 24.18 5% 63.82 .77 5 2.120 .652 2.772 1.367 49.3 QBD 7204 1.57 77.7 6.75 22.37 5% 65.88 7 1.515 .369 1.884 1.177 62.5 QBD 7205 1.56 64.0 7.92 25.26 5% 61.82 1.26 5½ 1.319 .216 1.535 .844 50.0 Not in proven reserves QBD 7203 1.941 not in reserve area, seam intersected. .037 .631 .343 54.4 QBD 721	QBR 7110	1.85	86.5	6.72	27.12	5%	61.16	.24	9	2.165	.145	2.310	1.873	81.1	
QBD 7201 1.68 86.6 6.58 23.74 5% 64.68 .45 5 .863 .148 1.011 .747 74.1 QBD 7202 1.45 64.5 8.59 22.49 5% 63.92 .77 5 2.120 .652 2.772 1.367 49.3 QBD 7203 1.94 82.1 6.45 24.18 5% 64.37 2.06 5 1.947 .118 2.065 1.598 77.4 QBD 7204 1.57 77.7 6.75 22.37 5% 65.88 .58 7 1.515 .369 1.884 1.177 62.5 QBD 7205 1.56 64.0 7.92 25.26 5% 61.82 1.26 5½ 1.319 .216 1.535 .844 0.0 Not in proven reserves Lower fault block QBD 7205 1.56 57.7 9.57 24.87 5% 65.6 1.30 5½ .594 .037 .631 .343 54.4 QBD 7212 1.47 72.1 8.66 24.68 5% 61.66	QBR 7114	2.00	87.6	6.69	25.17	5%	63.14	.35	7	1.768	.215	1.983	1.549	78.1	
QBD 7202 1.45 64.5 8.59 22.49 5% 63.92 .77 5 2.120 .652 2.772 1.367 49.3 QBD 7203 1.94 82.1 6.45 24.18 5% 64.37 2.06 5 1.947 .118 2.065 1.598 77.4 QBD 7203 1.57 77.7 6.75 22.37 5% 65.88 .58 7 1.515 .369 1.844 1.177 62.5 QBD 7205 1.56 64.0 7.92 25.26 5% 61.82 1.26 5½ 1.319 .216 1.535 .844 50.0 Not in proven reserves QBD 7207 Drill hole spudded below seam's stratigraphic level not in reserve area, .594 .037 .631 .343 54.4 QBD 7212 1.47 72.1 8.66 24.68 5% 61.66 .25 6½ 1.715 .570 2.285 1.237 54.1 QBD 7213 Not in reserve area, hole shut down before stratigraphic level of seam. <td>QBD 7201</td> <td>1.68</td> <td>86.6</td> <td>6.58</td> <td>23.74</td> <td>5%</td> <td>64.68</td> <td>.45</td> <td>5</td> <td>.863</td> <td>.148</td> <td>1.011</td> <td>.747</td> <td>74.1</td> <td></td>	QBD 7201	1.68	86.6	6.58	23.74	5%	64.68	.45	5	.863	.148	1.011	.747	74.1	
QBD 7203 1.94 82.1 6.45 24.18 5% 64.37 2.06 5 1.947 .118 2.065 1.598 77.4 QBD 7204 1.57 77.7 6.75 22.37 5% 65.88 .58 7 1.515 .369 1.884 1.177 62.5 QBD 7206 Drill hole spudded below seam's stratigraphic level. 1.319 .216 1.555 .844 50.0 Not in proven reserves QBD 7206 Drill hole shud down before seam's stratigraphic level. .001 in reserve area. .594 .037 .631 .343 54.4 QBD 7209 Not in reserve area, seam intersected. .594 .037 .631 .343 54.4 QBD 7216 1.70 86.6 24.68 5% 63.17 .83 4½ 1.035 .117 1.152 1.021 77.7 QBD 7216 1.70 86.6 6.90 24.93 5% 63.32 .57 4½ 1.246 .311 1.677 1.087 64.8 QBD 7217 1.64 87.2 6.68 25.00 5% 63	QBD 7202	1.45	64.5	8.59	22.49	5%	63.92	.77	5	2.120	.652	2.772	1.367	49.3	
QBD 7204 1.57 77.7 6.75 22.37 5% 65.88 .58 7 1.515 .369 1.884 1.177 62.5 QBD 7205C 1.56 64.0 7.92 25.26 5% 61.82 1.26 5½ 1.319 .216 1.535 .844 50.0 Not in proven reserves Lower fault block QBD 7206 Drill hole spudded below seam's stratigraphic level. not in reserve area. .631 .343 54.4 QBD 7207 Drill hole shut down before seam's stratigraphic level - not in reserve area. .631 .343 54.4 QBD 7209 Not in reserve area, seam intersected. .594 .037 .631 .343 54.4 QBD 7213 Not in reserve area, hole shut down before stratigraphic level of seam.	QBD 7203	1.94	82.1	6.45	24.18	5%	64.37	2.06	5	1.947	.118	2.065	1.598	77.4	
QBD 7205C 1.56 64.0 7.92 25.26 5% 61.82 1.26 5½ 1.319 .216 1.535 .844 50.0 Not in proven reserves Lower fault block QBD 7206 Drill hole spudded below seam's stratigraphic level. Drill hole shut down before seam's stratigraphic level - not in reserve area. .631 .343 54.4 QBD 7209 Not in reserve area, seam intersected. .594 .037 .631 .343 54.1 QBD 7213 Not in reserve area, seam intersected. .594 .035 .171 1.152 1.021 77.7 QBD 7216 1.70 86.6 6.90 24.93 5% 63.17 .83 4½ 1.035 .117 1.152 1.021 77.7 QBD 7213 Not in reserve area, hole shut down before stratigraphic level of seam. .082 .035 .117 1.152 1.021 77.7 QBD 7217 1.64 87.2 6.68 25.00 5% 63.22 .79 6 .902 .252 1.154 .675 58.5 QBD 7219 1.55 74.8 7.38 23.09 5% <	QBD 7204	1.57	77.7	6.75	22.37	5%	65.88	.58	7	1.515	.369	1.884	1.177	62.5	
QBD 7206Drill hole spudded below seam's stratigraphic level.Lower fault blockQBD 7207Drill hole shut down before seam's stratigraphic level - not in reserve area631.34354.4QBD 72081.56 57.7 9.57 24.87 5% 66.56 1.30 5^{1}_{2} $.594$.037.631.34354.4QBD 7209Not in reserve area, seam intersectedQBD 7213Not in reserve area, hole shut down before stratigraphic level of seam <td< td=""><td>OBD 7205C</td><td>1.56</td><td>64.0</td><td>7.92</td><td>25.26</td><td>5%</td><td>61.82</td><td>1.26</td><td>5¹₂</td><td>1.319</td><td>.216</td><td>1.535</td><td>.844</td><td>50.0</td><td>Not in proven reserves</td></td<>	OBD 7205C	1.56	64.0	7.92	25.26	5%	61.82	1.26	5¹₂	1.319	.216	1.535	.844	50.0	Not in proven reserves
QBD 7207Drill hole shut down before seam's stratigraphic level - not in reserve area.QBD 72081.56 57.7 9.57 24.87 5% 66.56 1.30 5^{1}_{2} $.594$ $.037$ $.631$ $.343$ 54.4 QBD 7209Not in reserve area, seam intersected.QBD 7213Not in reserve area, hole shut down before stratigraphic level of seam.QBD 7213Not in reserve area, hole shut down before stratigraphic level of seam.QBD 72171.64 87.2 6.68 25.00 5% 63.32 $.57$ 4^{1}_{2} 1.035 $.117$ 1.152 1.021 77.7 QBD 72181.70 82.6 7.08 23.30 5% 64.62 $.86$ 4^{1}_{2} $.863$ $.203$ 1.066 $.713$ 66.9 QBD 72191.55 74.8 7.38 23.09 5% 64.52 $.79$ 6 $.902$ $.252$ 1.154 $.675$ 58.5 Adit D41.51 63.0 6.68 24.47 5% 63.85 $.437$ $.456$ $.162$ $.618$ $.287$ 46.4 Adit D91.80 77.0 6.73 24.23 5% 63.60 $.65$ 5^{1}_{2} $.857$ $.176$ 1.033 $.660$ 63.8 WEIGHTED AVERAGES & TOTALS LESS 7205C: 76.45 7.07 24.42 5% 63.60 $.65$ 5^{1}_{2} 28.008 6.401 34.409 21.539 $YIELD - NO DILUTION:76.90$	OBD 7206		Drill hole	spudded	below se	eam's s	tratigra	phic 1	evel.						Lower fault block
QBD 7208 1.56 57.7 9.57 24.87 5% 66.56 1.30 512 .594 .037 .631 .343 54.4 QBD 7209 Not in reserve area, seam intersected. Not in reserve area, seam intersected. .616 .25 612 1.715 .570 2.285 1.237 54.1 QBD 7212 1.47 72.1 8.66 24.68 5% 61.66 .25 612 1.715 .570 2.285 1.237 54.1 QBD 7213 Not in reserve area, hole shut down before stratigraphic level of seam.	OBD 7207		Drill hole	shut do	wn befor	e seam'	s strati	graphi	c level	- not in res	erve area.				
QBD 7209 Not in reserve area, seam intersected. QBD 7212 1.47 72.1 8.66 24.68 5% 61.66 .25 $6\frac{1}{2}$ 1.715 .570 2.285 1.237 54.1 QBD 7213 Not in reserve area, hole shut down before stratigraphic level of seam.	OBD 7208	1.56	57.7	9.57	24.87	5%	66.56	1.30	5 ¹ 2	.594	.037	.631	.343	54.4	
QBD 7212 1.47 72.1 8.66 24.68 5% 61.66 .25 $6\frac{1}{2}$ 1.715 .570 2.285 1.237 54.1 QBD 7213 Not in reserve area, hole shut down before stratigraphic level of seam.	OBD 7209		Not in rese	erve are	a, seam	interse	cted.								
QBD 7213Not in reserve area, hole shut down before stratigraphic level of seam.QBD 72161.7086.66.9024.935%63.17.83 $4J_2$ 1.035.1171.1521.02177.7QBD 72171.6487.26.6825.005%63.32.57 $4J_2$ 1.246.4311.6771.08764.8QBD 72181.7082.67.0823.305%64.62.86 $4J_2$.863.2031.066.71366.9QBD 72191.5574.87.3823.095%64.52.796.902.2521.154.67558.5Adit D41.5163.06.6824.475%63.85.437.456.162.618.28746.4Adit D91.8077.06.7324.235%64.041.46 $5J_2$.857.1761.033.66063.8WEIGHTED AVERAGES & TOTALS LESS 7205C: 76.457.0724.425%63.60.65 $5J_2$ 28.0086.401 34.409 21.53962.59YIELD - NO DILUTION:76.90	OBD 7212	1.47	72.1	8.66	24.68	5%	61.66	.25	6 ¹ 2	1.715	.570	2.285	1.237	54.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OBD 7213		Not in rese	erve are	a, hole	shut do	wn befor	e stra	tigraphi	c level of s	eam.				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OBD 7216	1.70	86.6	6.90	24.93	5%	63.17	.83	_4¹₂	1.035	.117	1.152	1.021	77.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OBD 7217	1.64	87.2	6.68	25.00	5%	63.32	.57	412	1.246	.431	1.677	1.087	64.8	
QBD 7219 1.55 74.8 7.38 23.09 5% 64.52 .79 6 .902 .252 1.154 .675 58.5 Adit D4 1.51 63.0 6.68 24.47 5% 63.85 .43 7 .456 .162 .618 .287 46.4 Adit D9 1.80 77.0 6.73 24.23 5% 64.04 1.46 5½ .857 .176 1.033 .660 63.8 WEIGHTED AVERAGES & TOTALS LESS 7205C: 76.45 7.07 24.42 5% 63.60 .65 5½ 28.008 6.401 34.409 21.539 62.59 YIELD - NO DILUTION: 76.90	OBD 7218	1.70	82.6	7.08	23.30	5%	64.62	.86	41 ₂	.863	.203	1.066	.713	66.9	
Adit D4 1.51 63.0 6.68 24.47 5% 63.85 .43 7 .456 .162 .618 .287 46.4 Adit D9 1.80 77.0 6.73 24.23 5% 64.04 1.46 5½ .857 .176 1.033 .660 63.8 WEIGHTED AVERAGES & TOTALS LESS 7205C: 76.45 7.07 24.42 5% 63.60 .65 5½ 28.008 6.401 34.409 21.539 62.59 YIELD - NO DILUTION: 76.90	OBL 7219	1.55	74.8	7.38	23.09	5%	64.52	.79	6	.902	.252	1.154	.675	58.5	
Adit D9 1.80 77.0 6.73 24.23 5% 64.04 1.46 5½ .857 .176 1.033 .660 63.8 WEIGHTED AVERAGES & TOTALS LESS 7205C: 76.45 7.07 24.42 5% 63.60 .65 5½ 28.008 6.401 34.409 21.539 62.59 YIELD - NO DILUTION: 76.90	Adit D4	1.51	63.0	6.68	24.47	5%	63.85	.43	7	. 456	.162	.618	.287	46.4	
WEIGHTED AVERAGES & TOTALS LESS 7205C: 76.45 7.07 24.42 5% 63.60 .65 5½ 28.008 6.401 34.409 21.539 62.59 YIELD - NO DILUTION: 76.90	Adit D9	1.80	77.0	6.73	24.23	5%	64.04	1.46	5 ¹ 5	.857	.176	1.033	.660	63.8	
WEIGHTED AVERAGES & TUTALS LESS /2050: 76.45 7.07 24.42 5% 63.60 .65 5 ¹ 2 28.008 6.401 34.409 21.539 62.59 YIELD - NO DILUTION: 76.90						210			- 4						
/6.45 /.0/ 24.42 5% 63.60 .65 5½ 28.008 6.401 34.409 21.539 62.59 YIELD - NO DILUTION: 76.90	WEIGHTED	AVERAGES &	TOTALS LESS 72	2050:		= 01	~~ ~~				e		61 500	60 50	
YIELD - NO DILUTION: 76.90			/6.45	7.07	24.42	5%	63.60	.65	5'2	28.008	6.401	34.409	21.539	62.59	
												YIELD	- NO DILUTION:	/6.90	

* Probable Yield = (Net Clean Tons/Total Tons Extracted) x 100

÷ .

(35)

TABLE II-D-1

1

NOMINAL 7% ASH PRODUCT - ANALYSES BY DRILL HOLE

SEAM E

Actual Analyses on Combined +28 and -28 Mesh Products

<u>Tons x</u> 10⁶ Total Probable Raw Tons Tota1 Mined Probable Tons Net Yield Plant Product As Received (Allowing Dilution Mined & Clean Tons Assuming Sp.G. of Theor. Yield: Probable Proximate Analysis of Product 10% Geol. (Contin. (Theor. Yield Recovery (+28,-28 M.) Total Hole or Adit No. +28 M. Less 4% Ash Vol. <u>T.M.</u> F.C. <u>s.</u> F.S.I. Deduction) Mining) Dilution x Raw Tons) Dilution* Comments 6.88 24.32 5% 63.80 2.610 2.925 65.55 QBD 7101 1.55 73.50 .31 7 .315 1.918 QBD 7102 65.54 7.55 22.80 5% 64.65 .21 75 1.124 .307 1.431 .737 51.44 1.53 QBR 7103 6.68 23.03 5% 65.29 2.572 1.50 55.46 .20 8 .420 2.992 1.426 47.66 QBD 7104 1.67 90.75 7.59 23.36 5% 64.05 .28 71/2 .730 .088 .818 .662 81.51 QBR 7105 23.04 5% 65.27 1.383 6.69 .28 75 2.060 .968 1.65 70.02 .677 47.01 QBR 7106 53.20 6.69 22.47 5% 65.27 .19 815 1.456 .614 2.070 .775 37.40 1.54 (Poor recovery, QBR 7107 6.71 22.33 5% 65.96 .51 .584 .628 56.73 1.63 61.00 6¹2 .044 .356 (E10 analysis used QBR 7108 Hole started below seam's stratigraphic position. **OBR** 7109 Hole started below seam's stratigraphic position. QBR 7110 65.82 6.72 24.48 5% 63.80 .22 815 1.830 2.207 .384 54.58 1.53 .377 OBR 7114U 75.80 6.70 24.49 5% 63.81 .25 712 2.420 .110 2.530 1.834 84.65 1.67 QBD 7201 6.72 23.16 5% 65.12 .21 8 .768 1.040 .441 42.40 1.61 57.44 .272 QBD 7202U 8.36 22.08 5% 64.56 .26 6 .519 2.336 1.189 50.90 1.67 65.46 1.817 QBD 7203 QBD 7204 5% .24 7 2.565 1.569 61.16 7.15 24.07 63.78 .176 2.741 57.23 1.50 23.38 812 5% 64.33 .20 .726 1.45 67.53 7.29 1.075 .201 1.276 56.86 QBD 7205 E2 1.80 QBD 7206 64.73 7 1.254 5% .28 72.54 6.88 23.39 .130 1.384 .910 65.72 Not proven reserve Hole started below seam's stratigraphic position. QBD 7207 Hole shut down; seam too deep for drill used. QBD 7208 1.55 77.75 7.74 23.33 5% 63.93 .20 7 .950 .076 1.026 .739 72.00 QBD 7209 Hole not in reserve area. **OBD** 7212 Hole shut down; seam too deep for drill used. QBD 7213 Hole shut down; not in reserve area. QBD 7216 1.62 71.94 7.15 24.53 5% 63.32 .25 615 2.041 .576 2.617 1.468 56.09 QBD 7217U 23.12 1.91 69.00 7.02 64.86 .19 3.587 .532 4.119 2.475 60.09 5% 6 QBD 7218U 1.67 72.85 6.84 23.11 5% 65.05 .23 51,s .796 .045 .841 .580 68.89 QBD 7219 75.12 7.01 22.57 5% 65.42 .26 .839 .296 55.54 1.68 615 1.135 .630 ADIT E8 1.72 78.00 7.00 22.81 5% 69.23 .54 3 .330 .050 .380 .257 67.72 ADIT E10 1.63 61.00 6.71 22.33 5% 65.96 .51 615 .116 .008 .124 .071 57.25 WEIGHTED AVERAGES & TOTALS LESS 7205C: 64.76 7.06 23.50 5% 64.47 .24 7 29.593 5.703 35.296 19.165 54.29 YIELD - NO DILUTION: 64.76

* Probable Yield = (Net Clean Tons/Total Tons Extracted) x 100

(36)

TABLE II-D-2

~

SE	E A	M	F
----	-----	---	---

-

•

•

•									Dave Tomo	Tor	<u>15 x 10⁶</u>			
	<u>Plan</u>	<u>t</u> Product							Minod	IOTA Drobable	Total		Probable	
Holo on	Sp.G. of	Theor. Yield:	•		As F	Received			(Allowing	Dilution	lons Minod P	Net	Yield	
Adit No	Recovery	(+28,-28 M.)		Proxim	ate An	alysis of	F Product		10% Geol	(Contin	Probable	Clean Tons	Assuming	
AUTL NO.	<u>+28 M.</u>	Less 4%	<u>_ Ash</u>	<u>Vol.</u>	<u>T.M</u>	. F.C.	S.	F.S.I.	Deduction)	Mining)	Dilution	(Ineor. Yield	Total	
QBD 7101	1.93	90.00	6.51	23.19	5%	65.30		71.	2 657		Dilucion	<u>x Raw Ions)</u>	Dilution* Comments	
QBD 7102	1.73	57.50	6.96	22.77	5%	65 27	.20	Ω1.	2.03/	.6/3	3.330	2.391	71.81	
QBR 7103	Raw	96.00	6.82	22.84	5%	65 34	.20	02		.289	2.000	.984	49.19 Debesels Ask	•
QBD 7104	2.11	88.60	6.39	22 60	5%	66 01	.00	0	2.682	.660	3.342	2.575	77.05 BADCOCK ASh VS S	2.G
QBR 7105	1.59	44.50	6 70	22.00	5%		. 27	8	.769	.382	1.151	.681	59.23 Curve: Sp.G. 1.3	3 est.
OBR 7106	1.87	82 00	6 70	23.03	5/6 E 9/	05.21	.34	2	1.923	.235	2.158	.856	39.65	
OBR 7107	2.06	84 00	6 70	22.3/	ン を	65.93	.32	812	1.920	.293	2.213	1.574	71.18	
OBR 7108	2.00	Drill c+a	U./U mtad bal	22.9/	5%	65.33	.27	812	.868	.285	1.153	.729	63 23	
OBR 7109		Drill Star Drill star	ried belo	ow strat	igraph	ic level	of seam	1.					00.20	
ORR 7110	2 00		rtea beli	ow strat	igraph	ic level	of seam	1.						
ORP 711/	1 01	01.50	0.52	22.44	5%	65.49	.27	7	1.949	.292	2.241	1 588	70 00	
0RD 7201		92.00	6.69	23.93	5%	64.38	.24	71/2	1.748	480	2 228	1.500	70.00	
0PD 7201	1.00	/5.59	6.70	22.63	5%	65.67	.54	8	.915	204	1 110	602		
QDD 7202	1.79	/4.10	7.69	22.78	5%	64.53	.23	7	2.560	273	2 0 2 2 2	.092	01.78	
	1.69	67.91	7.25	22.83	5%	64.92	.37	8	2 412	500	2.000	1.09/	66.97	
UBD 7204	1.92	87.00	6.41	24.93	5%	63.66	.30	6	1 561	- 300	2.312	1.038	56.22	
UBD 7205C	1.91	71.04	6.57	23.21	5%	65.22	.21	7	1 680	./5/	2.318	1.358	58.60	
QBD 7206		Drill star	rted belo	ow strat	igraph	ic level	of seam	,	1.000	.905	2.585	1.193*	46.16 Not in proven rese	irve
QBD 7207		Seam too d	deep for	drill u	sed.		UT JEUM	•						
QBD 7208	1.67	52.59	7.43	22.67	5%	64 00	21	71.	001	150				
QBD 7209		Out of res	serve are	 a.	U 10	04.30	• 21	12	.881	.153	1.034	.463	44.79	
QBD 7212		Seam too c	leep for	drill u	ha 2									
QBD 7213		Out of res	erve are	ערייים. קר	seu.									
QBD 7216	1.79	75.79	7 13	22 El	E 4	65 00	0.0	-						
OBD 7217	1.79	85 74	6 53	22.01	ວ⁄ວ ເຊ	05.20	.23	/	2.289	.718	3.007	1.735	57.70	
OBD 7218	1.86	71 22	7 06	22.40	3% E <i>q</i>	05.0/	.23	12	3.201	1.172	4.373	2.745	62.76	
OBD 7219	2 11	88 60	6 20	22.70	5% 5%	64.34	.24	7	.721	.307	1.028	.513	49 85	
$\Delta dit Fl$	1 67	72 20	0.39	22.00	5%	66.01	.27	8	1.096	.270	1.366	.971	71.08 Poor recovery data	
Adit F6	1.07	79.00	0.40	23.04	5%	65.50	.37	8	.253	.064	.317	185	58 Al from D7104	
	1.00	78.00	5.64	22.61	5%	66.75	.60	8	.235	.044	279	183	55 70	
	1.90	78.00	5.53	22.16	5%	65.39	.40	75	.163	.072	235	127	52.7U	
WEIGHTED AV	ERAGES & T	OTALS LESS 72	2050:					-			• • • • •	• 1 4 7	33.04	
		78.40	6 RN	20 24	E 9/	66 10	0.0	3 1		_		-		
			0.00	20.04	56	05.13	.23	12	32.514	8.123	40.637	25.493	62.73	
* Probable	Yield = (Net Clean Ton	c/Total	Tone Fue		1)					YIELD -	NO DILUTION:	78.40	
		net orean run	is/iula I	IUNS EXT	racted	I) X 100								

(37)

.

NOMINAL 7% ASH PRODUCT - ANALYSES BY DRILL HOLE

Actual Analyses on Combined +28 and -28 Mesh Products

.

.

.

1

.

-

TABLE II-D-3

.

:

	P1	an	t Pr	oduct	
	Sp.G. o	f	Theo	r. Yie	ld:
Hole or	Recover	у	(+28	,-28 M	.)
<u>Adit No.</u>	+28 M.		<u> Le</u>	<u>ss 4%</u>	
08D 7101					
OBD 7102	1.44		59	.00	
OBR 7103			•••		
OBD 7104					
OBR 7105					
OBR 7106					
OBR 7107	1.43		53	. 84	
OBR 7108			- •		
OBR 7109					
OBR 7110					
QBR 7114					
QBD 7201					
QBD 7202					
QBD 7203					
QBD 7204					
QBD 7205C	1.43		53	8.84	
QBD 7206					
QBD 7207					
QBD 7208					
QBD 7209					
QBD 7212					
QBD 7213					
QBD 7216					
QBD 7217					
QBD 7218					
QBD /219					
AULI G5	1.49		65	1.00	
ADI I G12	1.41		48	3.00	
WEIGHTED A	VERAGES	&	TOTAL	S LESS	5 7205
* Probable	e Yield	=	(Net	Clean	Tons/

SEAM G

(38)

NOMINAL 7% ASH PRODUCT - ANALYSES BY DRILL HOLE

Actual Analyses on Combined +28 and -28 Mesh Products

.

.

•

•

.

•

							Ton	s x 10 ⁶		
						Raw Tons	Total	Total		Pro
-			• · •			Mined	Probable	Tons	Net	Yi
	~ · ·	As Re	ceived			(Allowing	Dilution	Mined &	Clean Tons	Ass
	Proximat	<u>e Anal</u>	ysis of	Product	<u> </u>	10% Geol.	(Contin.	Probable	(Ineor. Yield	
<u>Asn</u>	<u>VOI.</u>	<u>I.M.</u>	<u>F.L.</u>	<u>5.</u>	<u>F.S.I.</u>	Deduction	<u>mining)</u>	DITUTION	<u>x Raw Ions</u>	01
Hole	shut dow	n befo	re strat	igraphi	c level	reached.				
7.81	22.64	5%	64.55	. 34	8	.581	.275	.856	.343	4(
No s	eam inter	sectio	n.							
No s	eam inter	sectio	on.					•		
No s	eam inter	sectio	on.							
No s	eam inter	sectio	on.							
9.45	23.47	5%	62.07	.43	7 ¹ 2	.442	.323	.765	.238	3
Hole	started	below	stratigr	aphic p	osition	of seam.				
Hole	started	below	stratigr	aphic p	osition	of seam.				
No s	eam inter	sectio	on.							
No s	eam inter	sectic	on.							
No s	eam inter	sectio	on.							
No s	eam inter	sectio	on.							
No s	eam inter	sectio	on.							
Seam	too thin	to be	e economi	с.						
9.46	23.47	5%	62.07	.43	75	.135	.062	.197	.073	3
Hole	started	below	stratigr	aphic p	position	of seam.				
Dril	1 shut do	wn bet	fore stra	itigraph	nic leve	l reached.	-			
No s	eam inter	sectio	on.							
Dril	1 shut do	wn bet	fore stra	atigraph	nic leve	I reached.				
Dril	1 shut do	wn bet	fore stra	itigraph	nic leve	l reached.				
Dril	1 shut do	wn bet	fore stra	itigraph	nic leve	I reached.				
Seam	too thin	to be	e economi	с.						
No s	eam inter	sectio	on.							
No s	eam inter	sectio	on.							
NO S	eam inter	sectio	on.	20	-	660	140	60.0	205	r
6.96	22.97	5%	65.07	.39		.558	. 140	.698	.385	5
6.69	21.05	5%	67.05	.69	82	.291	.049	. 340	.139	4
205C:										
7.74	22.74	5%	64.49	.42	7½	1.872	.787	2.659	1.105	4
ns/Total	Tons Ext	racted	d) x 100					YIELD	- NU DILUIIUN:	5

.

• .

TABLE II-D-4

1

. r 🔶 Probable Yield Assuming Total Dilution* Comments

40.00

.

Poor recovery & qual. Used 7205C analysis 31.70

Not in reserve area 37.11

55.12 40.88

41.55 59.02

~

NOMINAL 7% ASH PRODUCT - ANALYSES BY DRILL HOLE

SEAM I₁

Actual Analyses on Combined +28 and -28 Mesh Products

	.*									Ton	s x 10 ⁶			
									Raw Tons	Total	Total	N 1	Probable	
	P1an	t Product			4 - D.	.			Mined	Probable	lons	Net Close Tees	field	
	Sp.G. of	Theor. Yield:		Duguing	AS KE	eceivea lucic of	Dreduct		(Allowing	Contin	Probable	(Theor Vield	Total	
Hole or	Recovery	(+28,-28 M.)	Ach	Vol			- Froduct	FST	Deduction)	(concina)	Dilution	y Raw Tons)	Dilution	t Comments
Adit NO.	+28 M.	Less 4%	<u>ASII</u>	<u>, 104</u>	<u>1.m.</u>	doneh	<u>.</u>	1.3.1.	Deddetrony	<u>mining</u>	Diracion	<u></u>	Dirideroit	
QBD 7101			Not dr	rillea to	o seam	aeptn.								
QBD 7102		76 07	Seam r		rsected	1.	21	01.	1 906	203	5 009	3 656	72 91	•
QBR 7103	1.52	/6.0/	5.72	20.60	5%	07.00	.21	0 ² 2 71.	4.000	.203	1 /38	707	50 45	
QBD 7104	1.56	//.15	7.01	20.55	5% Fø	67.65	.30	0	1 5/1	035	1 576	832	52 80	
QBR 7105	1.40	54.00	6.70	20.05	5% ra/	0/.00	. 32	0 01.	2 207	.055	2 387	1 373	57 51	
QBR 7106	1.58	57.50	6.70	19.81	5%	100.02	.20	°2∕2	2.307	U	2.307	1.070	57.51	
QBR 7107			Seam r	not inter	rsected].								
QBR 7108			Seam r	not inter	rsected	1.								
QBR 7109		71 00	Seam I		rsected	1. 67 24	24	6	2 246	615	2 861	1 602	55 96	I ₁ plus I ₂ analysis
QBR 7110	1.53	/1.32	6.72	20.00	5% E%	66 57	.24	0	1 778	840	2 618	1 173	44.82	cômbined -
QBR /114	1.53	66.00	0.09	21.74)/0 E 0/	66.37 66 AE	.20	6	1 103	057	1 160	744	64.20	•
QBD 7201	1.43	67.48	1.21	21.34	5% F%	00.43	.33	01.	1 771	163	1 934	1 292	66 84	
QBD 7202	1.45	72.97	8.40	21.45	5% F%	00.14	. 30	072 61-	3 000	851	4 841	2 833	58.50	
QBD 7203	1.45	/1.01	7.04	22.48	5% 5%	05.40	.21	02	201	180	4.041	152	32.26	
QBD 7204	1.43	52.38	7.08	21.90	5% 20010	4 00.90	.4/	0	.231	.100			02120	
QBD 7205C		00 50	Seam		rsecte	u. 	20	0	220	120	349	182	52.02	poor recovery, used
QBD 7206	1.54	82.58	0.83	20.54		00.14	.20	o noriti	.220	.125	.345		02.02	analysis for 7218
QBD /20/			Urill	snut do	wn bet	ore stra	20	0		163	1 327	927	72 40	Poor recovery, used
QBD 7208	1.54	82.58	0.03	20.54	0% 	07.03	.20 tiananhi	o nociti	ion of coom	.105	1.527		12010	analysis for 7218
ORD 1503			Drill	shut do	wn bei	ore stra	tigraphi	c positi	ion of seam.					
QBD 7212			Drill	shut do	wn ber	ore stra	tigraphi	c positi	ion of seam.					
QBD 7213			Drill	snut do	wh ber	ore stra	reigraphi	c posici	ion of seam.					
QBD 7216		50.00	Seam		rsecte	u.	20	0	1 222	0/1	5 174	2 490	48 12	
QBD 7217	1.4/	58.83	7.40	21.40	5%	00.14	.30	0	4.233	247	645	329	50 93	
QBD 7218	1.54	82.58	0.83	20.54) (د ۲۵	07.03	.20	0 71.	1 9/6	263	2 108	1 306	61.96	
QBD 7219	1.50	/0.//	7.34	20.85	5%	00.01	. 37	/* <u>2</u>	1.045	.205	2.100	1.000	011.50	
WEIGHTED A	VERAGES &	TOTALS:												
		68.30	7.04	21.10	5%	66.82	.27	71 ₂	28.690	5.208	33.898	19.598	57.81	
											YIEL	D - NO DILUTION	: 68.30	

* Probable Yield = (Net Clean Tons/Total Tons Extracted) x 100

(39)

TABLE II-D-5

1

SEAM J

•

	-									Ton	s x 10 ⁶		
	01	+ Due due h							Raw Tons	Total	Total		Pro
	Pidn So C of	Theory Vields	-		Ac Do	aniund			Mined	Probable	Tons	Net	Yi
Hole or	Decovory	(+29 _20 M)		Drovinat	AS RE	Veiveu	Drondu	~ +	(Allowing	UILUTION	Mined &	Clean Ions	Ass
Adit No.	+28 M.	<u>Less 4%</u>	Ash		<u>T.M.</u>	<u>F.C.</u>	<u>S.</u>	F.S.I.	Deduction)	(Contin. <u>Mining)</u>	<u>Dilution</u>	(Ineor. field <u>x Raw Tons)</u>	10 <u>Dil</u>
OBD 7101			Dril	1 shut do	wn bet	fore str	atigra	aphic level	reached.				
OBD 7102F	1.43	57.00	8.97	22.38	5%	63.65	.21	81	2.305	.020	2 325	1 313	Б
OBR 7103F	1.88	91.00	6.72	21.69	5%	66.59	.38	5	2.392	386	2.778	2 177	7
OBD 7104F	1.64	77.50	6.78	21.31	5%	66.91	.18	7	1.557	159	1 716	1 207	7
OBR 7105	1.45	68.00	6.71	20.31	5%	68.80	.27	75	2.475	136	2 611	1 683	5
OBR 7106F	1.49	68.00	6.70	19.50	5%	66.42	.21	81	3,895	176	1 071	2 6/0	6
OBR 7107F	1.54	67.00	6.72	21.86	5%	67 30	19	<u>81</u>	3 252	107	3 350	2.049	6
OBR 7108F	1.46	46.00	6.70	21.00	5%	68 10	24	6	845	.107	028	200	0
OBR 7109	~ ••••		Oric	lized coal		00.10	• • • •	U	•0+3	.005	• 720	• 305	4
OBR 7110F	1.73	76.00	6 52	20 86	• 5%	67 62	23	51	2 970	317	2 217	2 257	5
OBR 7114F	1 56	68 85	6 68	20.96	5%	67 33	.25	7 7	2.570	200	2.052	1 0/0	0 2
0BD 7201F	1 63	84 51	6 71	20.50	5%	67 70	10	7	1 165	.300	3.033	1.040	07
OBD 7202F	1 ΔΔ	74 01	7 60	21 30	5%	66 00	- 15	72	2 062	.109	1.304	.900	/ 7
ORD 7203F	1 /8	76 50	6 70	22.05	5%	66 24	• ८ 1	72 7L	2.003	.000	2.123	1.527	/
ORD 7204F	1 /6	76 65	6 95	22.05	56	66 A0	•14 24	72	3.3//	.240	4.223	3.040	/ 7
08D 72041	1 51	F2 00	7 56	21.07	5 /o E q/	00.40	• 24	12	1.0/0	.121	1.799	1.280	/
QDD 7205C	1.51	75 10	7.00 6.07	21.13	0 /s E o/	67.00	. 10	D C	2.504	.090	2.594	1.552	5
QDD 7200F	1.40	/5.19	0.0/	21.04	5%	67.09	• 24		.011	.059	.670	.459	6
QDD 7207	1 67	77 07		in reserv	e area	1; ariii	Snut	down beton	e stratigra	ipnic level	attained.	~~~	_
QDD 7200L	1.57	//.0/		20.88	5%	00.94	.30	5%	1.138	.039	1.1//	.8//	7
			NOT	in reserv	e area	a; ar111	SNUT	down Detor	e stratigra	iphic level	attained.		
QBD 7212			100	deep tor	arill	equipme	nt use	ed.					
QBD 7213	1 70	01 60	NOT	in reserv	e area	i; drill	shut	down befor	e stratigra	phic level	attained.		
QBD 7216L	1.70	81.60	6.//	21.33	5%	66.90	.13	/	2.316	0	2.316	1.890	8
QBD 721/L	1.80	93.50	5.88	21.40	5%	67.72	.24	612	3.012	.082	3.094	2.816	9
QBD /218F	1.44	72.60	7.51	19.33	5%	67.89	. 19	6	.846	.066	.912	.614	6
QBD 7219F	1.46	75.32	6.94	20.71	5%	67.36	.15	6	1.973	.203	2.176	1.486	6
ADIT J14	1.47	76.42	6.61	20.56	5%	67.84	.38	75	.593	.062	.655	.453	6
WEIGHTED A	VERAGES &	TOTALS LESS 7	205C:										
	•	74.59	6.80	21.14	5%	66.95	.21	7	41.736	2.921	44.657	31.133	6
											YIELD	- NO DILUTION	1: 7

.

* Probable Yield = (Net Clean Tons/Total Tons Extracted) x 100

.

(40)

NOMINAL 7% ASH PRODUCT - ANALYSES BY DRILL HOLE

Actual Analyses on Combined +28 and -28 Mesh Products

,

.

. .

+

•

•

bable eld suming stal ution* Comments 56.51 78.35 70.32 54.44 55.06 54.83 41.91 • • 58.04 50.27 U & L combined 72.70 71.96 U & L combined 72.55 U & L combined 71.50 U & L combined 59.83 Not in pr. reserves, 68.57 U & L combined Lower J 74.50 Lower J 81.60 Lower J 1.00 Lower J 57.40 U & L combined 58.49 U & L combined 59.23 U & L combined 59.71 74.59

~

TABLE II-D-6

**

RESERVE SUMMARY

PRODUCT AT 1.60 SPECIFIC GRAVITY - ANALYSES BY SEAM

TABLE II-E

1

Weighted Averages Based on Mathematically Combined Actual Analyses of +28 and -28 Mesh Products

									Ton	s x 10 ⁶			
								Raw Tons	Total	Total		Probable	-
	Plant Product							Mined	Probable	Tons	Net	Yield	
	Theor. Yield:			Dry E	Basis			(Allowing	Dilution	Mined &	Clean lons	Assuming	
~	(+28, -28 M.)		Proxim	ate Anal	ysis of I	roduct		10% Geo1.	(Contin.	Probable	(ineor. rield	Intal	0
Seam	<u>Less 4%</u>	Ash	<u>Vol.</u>	<u>R.M.</u>	<u>F.C.</u>	<u>s.</u>	<u>F.S.I.</u>	Deduction)	Mining)	Dilution	<u>x Raw Tons)</u>	Dilution	Comments
D	76.77	7.22	25.12	.82	66.81	.71	5	28.008	6.401	34.409 YIELD	21.513 - NO DILUTION:	62.52 76.81	,
Ε	67.70	7.68	24.46	.84	66.69	.25	7	29.593	5.703	35.296 YIELD	20.037 - NO DILUTION:	56.76 67.70	
F	73.16	5.02	25.06	.89	69.37	.30	8	32.514	8.123	40.637 YIELD	23.784 - NO DILUTION:	58.53 73.16	
G	75.32	10.97	22.34	.78	65.87	.49	6	1.872	.787	2.659 YIELD	1.410 - NO DILUTION:	53.02 75.32	Not used in Interim Report #2 Mining Plan
I	75.30	9.06	21.44	.98	68.46	.31	7½	28.690	5.208	33.898 YIELD	21.605 - NO DILUTION:	63.73 75.30	Not used in Interim Report #2 Mining Plan
J	78.69	7.66	21.95	.85	69.53	.22	7	41.736	2.921	44.657 YIELD	32.846 - NO DILUTION:	73.55 78.69	
TOTAL P	RODUCT							162.413			121.195		Yield 74.62 (No dilution)
TOTAL (EXCLUDING G, I)						×	131.851	23.148	154.999	98.180		Yield 74.46 (No dilution) Yield 63.34 (With dilution)

SEAM D

Mathematically Combined Actual Analyses of +28 and -28 Mesh Products (1)

TABLE II-F-1

	-								Tor	ns x 10 ⁶			
Hole or Adit No.	Plant Product Theor. Yield: (+28, -28 M.) Less 4%	Ash	<u>Proxima</u> <u>Vol.</u>	Dry Ba te Analy <u>R.M.</u>	asis sis of Pr <u>F.C.</u>	<u>oduct</u>	<u>F.S.I.</u>	Raw Tons Mined (Allowing 10% Geol. Deduction)	Total Probable Dilution (Contin. Mining)	Total Tons Mined & Probable Dilution	Net Clean Tons (Theor. Yield <u>x Raw Tons)</u>	Probable Yield Assuming Total <u>Dilution</u> *	Comments
QBJ 7101 QBD 7102 QBR 7103U QBU 7104	83.79 66.63 85.88 56.26	6.85 7.87 5.05 8.94	26.96 25.00 24.93 24.82	.89 .47 .48 1.23	65.29 66.73 69.54 64.99	.56 .52 .42 .41	7½ 5 9 6½	2.347 1.523 1.841 1.051	.434 .600 .292 .281	2.781 2.123 2.133 1.332	1.966 1.015 1.581 .591	70.70 47.79 74.11 44.36	
OBR 7105 OBR 7106 OBR 7107	65.44 65.44	7.41 7.41 Drill	23.88 23.88 hole spue	0.63 0.63 dded be]	68.08 68.08 low seam'	0.59 0.59 s stra	7½ 7½ atigraph	1.598 1.602 ic level.	.496 .703	2.094 2.305	1.046 1.048	49.90 45.47	Wash data from R7105 poor recovery
QBR 7108 QBR 7109 QBR 7110	82.84	Drill Drill 5.70	hole spue hole spue 24.86	dded bel dded bel .96	low seam' low seam' 68.48	s stra s stra .61	atigraph atigraph 7	ic level. ic level. 2.165	.145	2.310	1.793	77.63	
QBR 7114 QBD 7201 QBD 7202	80.59 84.86 74.33	3.79 6.49 11.06	26.96 24.88 23.26	.72 .65 .89	68.53 67.96 64.77	.35 .46 .83	7½ 5 4½	1.768 .863 2.120	.215 .148 .652	1.983	1.425 .732 1.576	71.82 72.41 56.81	
QBD 7203 QBD 7204 QBD 7205C	82.83 78.71 69.68	6.03 7.64 8.65	25.56 23.58 26.16	.50 .90 .82	67.84 67.86 64.91	2.12 .62 1.32	5 5 5 atigraph	1.947 1.515 1.319	.118 .369 .216	2.065 1.884 1.535	1.194 .919	78.10 63.28 59.80	Indicated reserves only due to geological factors
QBD 7200 QBD 7207 QBD 7208 QBD 7208	56.56	Drill 10.71	hole spu 25.72	dded bel dded bel 0.93	low seam low seam' 62.61	s str 1.36	atigraph 5 atigraph	ic level. .594	.037	.631	. 336	53.11	
QBD 7212 QBD 7213 QBD 7213	77.40	10.33 No in	25.61 tersectio	1.39 n hole :	62.65 shut down	.26 beca	use of s	1.715 tructural co	.570 cmplicatio	2.285 ns.	1.327	58.08	
QBD 7217 QBD 7217 QBD 7218	84.88 85.36 70.35	6.71 8.51	25.94 25.94 24.63	.90 1.40 .86	65.94 65.97	.64 .58 .63	5 5 5 5	1.035	.431 .203	1.677	1.064 .607	63.42 56.84	
QBD 7219 Adit D4 Adit D9	77.91 80.75 75.71	8.96 7.47 6.13	23.72 25.59 25.54	.52 .64 .92	66.67 66.19 67.39	.83 .48 1.43	5 6 5 ¹ 2	.902 .456 .857	.252 .162 .176	1.154 .618 1.033	.703 .368 .649	60.85 59.44 62.76	
WEIGHTED A	VERAGES & TOTALS 76.77	5 LESS 7 7.22	205C: 25.12	.82	66.81	.71	5	28.008	6.401	34.409 YIELD -	21.513 • NO DILUTION:	62.52 76.81	

* Probable Yield = (Net Clean Tons/Total Tons Extracted) x 100 (1) For Rotary Holes, Product is Actual Analysis of Float/Sink of $\frac{1}{4}$ x 0 Mesh

(42)

1

SEAM E

Mathematically Combined Actual Analyses of +28 and -28 Mesh Products (1)

TABLE II-F-2

7

	-								Tor	15×10^{6}			
								Raw Tons	Total	Total		Probable	•
	Plant Product							Mined	Probable	Tons	Net Class Tana	Vield	
	Theor. Yield:			Dry B	asis			(Allowing	Dilution	Mined &	(Theory Viold	Total	
Hole or	(+28, -28 M.)		Proxima	ate Analy	sis of	Product		10% Geol.	(Contin.	Probable	(Theor. The lu	Dilution*	Comments
Adit No.	Less 4%	<u>Ash</u>	<u>Vol.</u>	<u>R.M.</u>	<u>F.C.</u>	<u>5.</u>	<u>r.S.I.</u>	Deduction	<u>mining)</u>	Dilucion	X Raw TUIIS	DITUCTOR	Connerres
QBD 7101	76.06	6.85	25.42	.46	67.26	. 32	7	2.610	.315	2.925	1.933	66.04	
QBD 7102	73.36	8.11	23.38	.49	68.00	.22	7½	1.124	.307	1.431	.825	57.65	·
QBR 7103	61.35	8.69	23.75	.48	67.08	.21	7½	2.572	.420	2.992	1.578	52.74	
QBD 7104	89.42	7.71	24.37	1.27	66.64	.28	7 ¹ 2	.730	.088	.818	.653	/9.82	
QBR 7105	67.70	6.63	24.19	.62	68.56	.28	8	1.383	.6//	2.060	.936	45.43	
QBR 7106	56.90	8.10	23.36	.66	67.88	.21	8	1.456	.614	2.070	.828	40.00	Dec
QBR 7107	52.05	7.63	23.90	.90	67.55	.55	. ^{6½}	584	.044	.628	. 304	48.23	Poor recovery, Elu
QBR 7108		Hole	started	below se	am stra	tigraph	nic posit	.10n.					analysis used
QBR /109	~~ ~ ~	Hole	started	Delow se	diii Stra	lu i grapi		1 020	277	2 207	1 273	57.68	
QBR /110	69.56	8.15	25.15	1.11	65.59	.23	0	2 420	. 377	2.207	1.670	66,00	
QBR 71140	69.02	7.99	25.39	.83	05.79	.23	0	2.420	.110	1.040	1.070	42 01	
QBD 7201	56.96	6.92	24.22	.08	67.10	.22	٥ د	1 017	.272	2 336	1 1//	48.96	
QRD 72020	62.98	8.18	23.00	.92	07.22	. 27	7	2 565	176	2.330	1.144	60.30	
QBD 7203	64.55	8.64	24.84	.59	02.91	.20	<i>'</i>	2.505	201	1 276	786	61.59	
QBD 7204	/3.0/	9.35	24.07	.03	67 00	. 2 2	0 71,	1.075	130	1 384	597	62 73	
QBD 7205 1	-2 69.25	5./5	25.01	1.20	0/.90	.24 tiomani	/2 ic posit	1.2J4	•150	1.304	. 557	02.75	
QBD 7206		Hole	starteu	Derow se	iam Stra	i ci grapi	ne posit						
QBD 7207	70.02	0 61	24 10		66 10	21	6	950	076	1 026	750	73.09	
QBD 7208	70.93	0.04 Holo	24.19 not in r	.30 .30	00.13	• 4 1	U	. 550	.070	1.020	.,		
QBD 7209		Soom	r too doo	eserve a	$1 \in a$.	d							
QDD 7212		Spam	is too dee	ip for dr	ill use	d d							
QDD 7213	71 33	7 96	25 61	1 02	65.39	.26	61	2.041	.576	2.617	1.456	55.59	
	71.33 66 6A	6 13	24 71	1 38	67 75	20	6	3,587	.532	4,119	2.387	57.94	
QDD 72170	71 02	6 70	24 32	97	68 00	.24	6	. 796	.045	.841	.597	66.86	
000 72100	72 35	6 72	23 76	.57	68 85	.27	7	.839	.296	1,135	.607	53.48	
	12.33	8.76	22 40	1 30	67.49	.50	41	.330	.050	. 380	. 157	41.00	
	52 05	7.63	23.90	.90	67.55	.55	615	.116	.008	. 124	.060	51.67	
	AVEDACEC 0 TOTAL	C 1 E C C	72050		5								
WEIGHTED	AVERAGES & IUTAL	3 LE33	21 16	04	66 60	25	7	29 593	5,703	35,296	20.037	56.76	
	0/./0	1.00	24.40	• 04	00.09	• 2 3	,	23.030	0.,00	YIEL	D - NO DILUTION	: 67.70	

.

* Probable Yield = (Net Clean Tons/Total Tons Extracted) x 100

(1) For Rotary Holes, Product is Actual Analysis of Float/Sink of $\frac{1}{4} \times 0$ Mesh

(43)

SEAM F

Mathematically Combined Actual Analyses of +28 and -28 Mesh Products (1)

TABLE II-F-3

~

	-								Tor	15×10^{6}			
	<u>Plant Product</u> Theor. Yield:			Dry B	asis			Raw Tons Mined (Allowing	Total Probable Dilution	Total Tons Mined &	Net Clean Tons	Probable Yield Assuming	•
Hole or Adit No.	(+28, -28 M.) Less 4%	Ash	Proxima Vol.	R.M.	F.C.	roduct S.	F.S.I.	10% Geo1. Deduction)	(Contin. Mining)	Probable Dilution	(Theor. field x Raw Tons)	Dilution*	Comments
080 7101	02 07		24 09		70 10			2 657	673	2 220	2 202	66 10	
	63 30	6 14	23 60	.41	60 00	.23	8	2.057	289	2 000	1 083	54 12	
OBD 7102	89 24	3 18	24 62	94	71 26	.20	85	2 682	660	3 342	2 393	71 61	
OBD 7103	83 15	3 96	24.62	1 17	70 21	24	8	769	382	1 151	639	55 55	
OBR 7105	45 73	7 17	24.11	.76	67 96	55	2	1 923	235	2 158	.879	40.75	Rotary hole: poor recovery
0BR 7105	63.60	5.56	23.86	.68	69.89	.31	81 81	1,920	.293	2,213	1,221	55.16	
OBR 7107	76.66	4.67	24.88	.64	69.81	.28	9	.868	.285	1.153	.665	57.99	
OBR 7108		Drill	hole star	ted belo	ow strat	igraph	ic posit	ion of seam.					
OBR 7109		Drill	hole star	ted belo	ow strat	igraph	ic posit	ion of seam.					×
OBR 7110	72.56	3.90	24.61	.86	70.63	.2 ⁶	812	1.949	.292	2.241	1.414	63.10	
QBR 7114	74.90	3.75	25.88	67	69.70	.21	71/2	1.748	.480	2.228	1.309	58.74	
QBD 7201	73.65	6.62	23.61	.82	68.93	.56	8	.915	.204	1.119	.674	60.16	
QBD 7202	70.58	6.45	24.14	1.09	68.31	.21	7	2.560	.273	2.833	1.807	63.66	
QBD 7203	61.92	5.96	24.38	.59	69.06	.37	8	2.412	.500	2.912	1.494	51.24	
QBD 7204	81.76	4.29	26.22	.80	68.68	.27	7	1.561	.757	2.318	1.276	55.03	
QBD 7205C	88.59	4.84	24.67	1.24	69.24	.22	7½	1.680	.905	2.585	1.488	57.57	Not in proven reserve
QBD 7206		Drill	hole star	ted bel	ow strat	igraph	ic posit	ion of seam.	•				
QBD 7207	_	Seam	too deep f	or Dril	l used.	_			_	_			
QBD 7208	73.75	6.67	23.79	.79	68.72	.31	8	.881	.153	1.034	.650	62.86	
QBD 7209		Drill	hole out	of Rese	rve Area	•							
QBD 7212		Seam	too_deep_f	or dril	l used.								
QBD 7213	70 41	Driii	hole out	OT Kese	rve Area	• • • •	•	0 000	710	2 007	1 (10	F 2 F 2	
QBD 7216	/0.41	5.53	23.82	1.31	69.33	.23	87	2.289	./18	3.007	1.612	53.58	
QBD 7217	81.33	5.17	24.54	1.52	68.74	.22	/	3.201	1.1/2	4.3/3	2.603	59.52	
UBU 7210	00.00	0.0/	23.0/	1.10	70.30	.24	0	1 006	.307	1.028	.401	40.02	Doon nocouchy data
VDU /219	70 16	5.90	24.03	71	60 02	.24	07	1.090	.270	1.300	100	62 22	from D7104
Adit E6	70.10 64.09	5.42	23.04	./1	70 00	. 37	0	.203	.004	270	153	5/ 51	1101 07104
	72 55	5.04	23.75	1 12	70.00	.41	0	163	.044	.275	120	54.51	
AUTUFII	/5.55	5.04	23.52	1.12	70.50	.55	0	.105	.072	.235	.120	50.85	
WEIGHTED A	VERAGES & TOTALS	S LESS	D7205C:				_						
	73.16	5.02	25.06	.89	69.37	.30	8	32.514	8.123	40.637	23.784	58.53	
* Probat	ole Yield = (Net	Clean	Tons/Total	Tons E	xtracted) x 10	0		TIELD	- NU DILU		/3.10	

(1) For Rotary Holes, Product is Actual Analysis of Float/Sink of $\frac{1}{2} \times 0$ Mesh

(44)

.

SEAM G

(45)

Mathematically Combined Actual Analyses of +28 and -28 Mesh Products (1)

TABLE II-F-4

~

									Tor	15 x 10 ⁶			
	Dlant Broduct							Raw Tons	Total Probable	Total	Not	Probable Viold	•
	Theor Vield:			Drv f	lacie			(Allowing	Dilution	Mined &	flean Tons	Assuming	
Hole or	(+28 -28 M)		Proxima	te Anal	vsis of 1	Product		10% Geol.	(Contin.	Probable	(Theor. Yield	Total	
Adit No.	Less 4%	Ash	Vol.	<u>R.M.</u>	<u>F.C.</u>	<u>S.</u>	F.S.I.	Deduction)	<u>Mining</u>)	Dilution	x Raw Tons)	Dilution*	Comments
OBD 7101		Hole sł	nut down	before	stratig	raphic 1	level of	seam.					
OBD 7102	76.12	10.77	22.72	.45	66.04	.38	7½	.581	.275	.856	.442	51.52	1
QBR 7103		No sear	m interse	ection.									
QBD 7104		No sear	m interse	ection.									
QBR 7105		No sear	m interse	ection.									
QBR 7106		No sear	m interse	ection.									
QBR 7107	66.91	13.51	22.48	1.26	62.73	. 47	7	.442	.323	.765	.296	38.65	Poor recovery. Used
QBR 7108		Hole s	tarted be	elow str	atigrapl	hic leve	el of se	am.					7205C analysis
QBR 7109		Hole st	tarted be	elow str	ratigrapl	hic leve	el of se	am.					
QBR 7110		No sear	m interse	ection.									
QBR 7114		No sear	m interse	ection.									
QBD 7201		No sear	m interse	ection.									
QBD 7202		No sear	m interse	ection.									
QBD 7204		Seam to	oo thin 1	to be ed	conomic.								
QBD 7205C	66.91	13.51	22.48	1.26	62.73	.47	7	.135	.062	.197	.090	45.87	Not in proven reserves
QBD 7206		Hole s	tarted be	elow str	ratigrap	hic leve	el of se	eam.					
QBD 7207		Hole s	hut down	before	stratig	raphic	level of	f seam.					
QBD 7208		No sea	m interse	ection.				-					
QBD 7209		Hole sl	hut down	before	stratig	raphic	level of	r seam.					
QBD 7212		Hole s	hut down	before	stratig	raphic	level of	r seam.					
QBD 7213		Hole si	hut down	before	stratig	raphic	level of	r seam.					
QBD 7216		Seam to	oo thin i	to be eq	conomic.								
QBD 7217		No sea	m interse	ection.									
QBD 7218		No sea	m interse	ection.									
ORD 1518	<u> </u>	No sea	m interse	ection.	67 67		-	550	140	600	45.4	65 07	
ADIT G5	81.35	9.11	22.76	./5	6/.3/	.5/	5	.558	. 140	.698	.454	05.07	
ADII G12	/4.8/	11.68	20.52	.8/	66.91	.03	b	.291	.049	.340	.218	03.82	
WEIGHTED	AVERAGES & TOTAL	LS LESS 7	205C:										
	75.32	10.97	22.34	.78	65.87	.49	6	1.872	.787	2.659	1.410	53.02	
										YIELD) - NO DILUTION	: 75.32	

* Probable Yield = (Net Clean Tons/Total Tons Extracted) x 100

(1) For Rotary Holes, Product is Actual Analysis of Float/Sink of $\frac{1}{4} \times 0$ Mesh

SEAM I

Mathematically Combined Actual Analyses of +28 and -28 Mesh Products (1)

TABLE II-F-5

1

	Tons x 10 ⁶												
									Ton	s x 10"			
								Raw Tons	Total	Total		Probable	•
	PlantProduct							Mined	Probable	Tons	Net	Yield	
	Theor. Yield:			Dry Ba	sis			(Allowing	Dilution	Mined &	Clean Tons	Assuming	
Hole or	(+28, -28 M.)		Proximat	e Analys	is of Pr	oduct		10% Geol.	(Contin.	Probable	(Theor. Yield	Total	
Adit No.	Less 4%	Ash	<u>Vol.</u>	<u>R.M.</u>	<u>F.C.</u>	<u>s.</u>	F.S.I.	Deduction)	<u>Mining)</u>	Dilution	<u>x Raw Tons)</u>	Dilution	* Comments
OBD 7101		Not d	rilled to	seam der	oth.								
OBD 7102		Seam	not inters	ected.									,
0BR 7103	79 92	7 95	21.34	.87	69.84	.35	8	4.806	. 203	5.009	3.841	76.67	
OBD 7104	77 61	7 96	21 22	1.26	69.53	.31	7	.917	.521	1.438	.712	49.47	
080 7104	76 47	10 67	20 84	0 64	67 85	35	5	1 541	035	1 576	1,178	74.71	
000 7105	66.85	0 16	20.33	0.07	69 74	30	7	2 387		2 387	1 596	66.83	
000 7100	00.05	5.10 Soam i	not inters	acted	05.74		,	2.007	0	2.007	1.050	00.00	
000 7107		Seam	not inters	ected.									
UDK /100		Seam	not inters	ected.									
UBR 7109	75 20	Seam			60.02	20	c	2 246	615	2 061	1 602	50 12	I, plus I, analysis
QBR 7110	/5.38	7.80	20.84	0.99	69.93	.20	0	2.240	.015	2.001	1.033	33.13	combined f
QBR 7114	/0./0	8.02	22.53	0.62	68.83	.20	12	1.778	.840	2.018	1.257	47.90	
QBD 7201	81.69	10.60	21.46	1.01	66.93	.45	5 2	1.103	.05/	1.160	.901	81.04	
QBD 7202	77.72	9.8/	21.79	1.31	67.11	.38	8	1.//1	. 163	1.934	1.3/6	/1.16	
QBD 7203	77.73	9.86	21.79	1.30	67.03	.24	7 2	3.990	.851	4.841	3.101	64.03	
QBD 7204	65.13	10.32	21.85	.62	67.21	.68	7	.291	.180	.471	.190	40.17	
QBD 7205 C		Seam	not inters	ected.									Poor recovery, used
QBD 7206	86.23	8.19	21.19	1.24	69.36	.31	8	.220	.129	.349	.190	54.04	analysis for 7218
OBD 7207		Drill	shut dowr	before	stratig	raphic	: positio	n of seam.					Poor recovery used
OBD 7208	86.23	8.19	21.19	1.24	69.36	. 31	8	1.164	.163	1.327	1.003	75.51	analysis for 7218
OBD 7209		Drill	shut dowr	before	stratio	raphic	positio	n of seam.					
0BD 7212		Drill	shut dowr	before	stratio	raphic	positio	n of seam.					
0BD 7213		Drill	shut dowr	before	stratio	raphic	positio	n of seam.					
080 7216		Seam	not inters	ected.			, h.e.						
OBD 7217	66 55	10 07	21 73	1 12	67 08	44	7 <u>1</u> ~	4 233	.941	5.174	2.817	54.42	
000 7219	86.23	8 10	21 10	1 24	69 36	31	8	398	247	645	343	53.04	
000 7210	76 20	0.13	21.15	59	69 63	.01	71	1 845	263	2 108	1 407	66 74	
Q60 7219	/0.20	9.52	21.45		00.05	.40	12	1.045	.205	2.100	1.407	00.74	
WEIGHTED A	VERAGES & TOTALS	5:											
	75.30	9.06	21.44	.98	68.46	.31	7	28.690	5.208	33.898	21.605	63.73	
										YIELD -	NO DILUTION:	75.30	

* Probable Yield = (Net Clean Tons/Total Tons Extracted) x 100 (1) For Rotary Holes, Product is Actual Analysis of Float/Sink of ½ x 0 Mesh

(46)

SEAM J

Mathematically Combined Actual Analyses of +28 and -28 Mesh Products (1)

	-								Т	ons x 10^6			
								Raw Tons	Total	Total		Probable	
	Plant Product			Dur	Deede			Mined	Probabl	e Tons	Net	Yield	
Holo on	(120 20 M)		Drovin	Ury	Basis	Dueduet		(Allowing	Dilutio	n Mined &	Clean Tons	Assuming	
Adit No	(720, -20 M.)	Ach	Vol			Product	E C T	10% Geol.	(Lontin	Probable	(Ineor. Yield	lotal	a
Aure no.	LESS 4/6	ASI	<u>vor.</u>	<u>R. M.</u>	<u> </u>	<u>s.</u>	<u>F.S.I.</u>	Deduction	Mining)		x Raw Tons)	Dilution*	Comments
OBD 7101		Drill	shut dow	n befo	re strati	oraphic	level	reached					
OBD 7102F	77.68	10.09	22.98	. 36	66.43	.22	81	2 203	020	2 325	1 701	77 00	
0BR 7103F	83.89	4.98	23 01	98	71 03	.20	6	3 392	386	2.323	2 007	77.00	,
0BD 7104F	76.19	6.58	22.11	1 12	70 17	18	7	1 557	150	1 716	2.007	60 00	
OBR 7105F	77.97	9 34	20 76	80	69 10	29	7	2 478	136	2 611	1 0 2 2	72 02	
OBR 7106F	74 61	8 63	20 10	.00	70 52	.23	, 7	3 805	176	4 071	2.006	73.93	
088 7107F	69 61	7 63	22 68	.75	68 97	20	01,	2,052	107	4.071	2.900	/1.38	
OBR 7108	56.06	9.84	21 32	.02	69.22	.20	0^2 5	J.2J2 945	. 107	3.339	2.204	67.39	
QBR 7109	50.00	Oxidi	zed coal.	.02	00.22	.20	5	.045	.063	.928	.4/4	51.03	
QBR 7110F	72.42	6.17	21.95	.86	71.02	.27	5½	2,970	. 347	3, 317	2,151	64.83	
QBR 7114F	71.13	7.30	21.94	.60	70.16	.15	7	2.673	.380	3.053	1,901	60.94	11 & 1 combined
QBD 7201F	83.05	6.87	21.93	.66	70.52	.20	61	1,165	.189	1 354	968	71 38	o a c como med
QBD 7202F	75.45	9.13	21.98	1.28	67.57	.22	7	2.063	.060	2 123	1 557	73 20	11 & 1 combined
QBD 7203F	82.25	8.37	22.95	. 79	67.87	.16	7	3.977	.246	4 223	3 271	77 01	I & L combined
OBD 7204F	86.56	8.45	22.34	. 71	68.47	.26	7	1.678	121	1 799	1 452	80 74	
QBD 7205C	64.15	8.55	21.58	1.19	68.67	. 19	6	2.504	.090	2.594	1 606	61 89	Not in pr reser lower.
OBD 7206F	80.51	8.14	21.76	.93	69.13	.16	6	.611	059	670	1.000	73 38	Il & I combined
OBD 7207		Not i	n reserve	area:	drill sh	ut down	hefore	stratigraphi	c level	reached	• 452	13.30	o a c combrited
OBD 7208	82,94	8.25	21.57	. 88	69.27	31	6	1 138	010101	1 177	011	80 15	1. 8. 1. combined
OBD 7209		Not i	n reserve	area:	drill sh	ut down	hefore	stratigranhi	c level	reached	• 344	00.15	o a L combined
OBD 7212		Too d	eep for d	rill u	sed.		501010	se dergrupht		reachea.			
OBD 7213		Not i	n reserve	area:	drill sh	ut down	before	stratioraphi	c level	reached			
OBD 7216L	79.27	6.29	22.43	. 91	70.35	12	7	2 316	0 10 0	2 316	1 836	70 27	Lowon 1
OBD 7217L	93.35	4.88	21.95	1 26	71 89	25	, 71-	3 012	082	3 004	2 912	00.96	
OBD 7218F	82.43	9.54	20.52	1 22	68 69	21	6	846	1001	012	720	76 46	
0BD 7219F	84 40	9 05	21 36	55	69 02	17	7	1 072	202	2 176	./29	70.40	
ADIT J14	85 65	7 43	21.66	1 01	69.02	- 17	ģ	1.575	.203	2.1/0	1.000	/0./1	
		7.73	£1.00	1.01	03.07	• 50	U	. 555	.002	.005	.508	//.54	U & L COMDINED
WEIGHTED A	VERAGES & TOTAL	S LESS	7205C:										
	78.69	7.66	21.95	.85	69.53	.22	7	41.736	2.921	44.657	32.846	73.55	
										YIELD) - NO DILUTION	: 78.69	

* Probable Yield = (Net Clean Tons/Total Tons Extracted) x 100

(1) For Rotary Holes, Product is Actual Analysis of Float/Sink of $\frac{1}{4} \times 0$ Mesh

*

-

(47)

.

TABLE II-F-6

`

QUALITY

COAL QUALITY

1

Summary

There is every indication that the Babcock coal will wash readily, at an acceptable yield, to provide excellent medium volatile coking coal with 7% ash. There may also be some advantages in producing some coals at a lower ash and others at higher ash but this would require dual circuits which may not be warranted during the early years of production. Product F.S.I.'s are expected to range generally from 7 to $8\frac{1}{2}$ with the exception of coal from Seam D which has a wide range of indices $(4\frac{1}{2}$ to 9).

Volatiles from each seam can be expected to be very consistant. Sulphur is only a problem in Seam D but the average sulphur in a blended product is expected to be below 0.5%.

The phosphorous content of Seam E and F is somewhat high but not overly so when compared with other Canadian coals. The combined product is expected to average 0.05 to 0.06 phosphorous pentoxide.

Coal Washability and Yield

While the philosophy governing the analytical procedures, and much of the discussion in this report is based on the concept of producing a 7% ash product; it must be kept in mind that other ash specifications both higher and lower than this are possible provided economics of operation favour them. In this particular case, the choice of 7% ash appears to have been a fortunate one since average yields (discounted 4%) appear to be in the 65 to 75% range for those seams which will be mined. This product specification will also allow a relatively high range of cut-points in the wash plant (1.55 - 1.60) for blended coals. Although there is a relatively wide range of ash indicated for the cleaned product for each seam when washed at a constant specific gravity, most of the values for each seam lie within a short 3 or 4% range (See Histograms of product ash at 1.60 SPG.). When mined concurrently with periodic adjustment of the cut-point the resulting range should be much narrower and it should be possible to attain the required ash level.

Although it is apparent that cleaning with water only at a relatively high specific gravity will yield an acceptable 7 to 8 per cent ash product, an improved product may be available if there is sufficient economic advantage in preparing it. The main problem in preparing a lower ash product is that a dual circuit wash plant would have to be designed and costly provision would have to be made for separating the mined coal underground and in providing extra stockpile capacity and/or alternate conveying systems to the plant. If this were economical it might be advantageous to consider one production plan for Seam F and the lower portion only of Seam J and another plan for Seams D and E. The F, J production could be washed in a water-only cicuit to provide low ash, low sulphur, medium volative (21 - 23%), high quality coking coal (FSI $6\frac{1}{2} - 7\frac{1}{2}$), while the D, E production could be washed at about 1.50 - 1.55 in a heavy media circuit to provide coal with 7% ash, medium volatiles (24 - 25%), reasonable sulphur (0.5), and better than average coking quality (FSI $5\frac{1}{2} - 6\frac{1}{2}$). The D, E product could be considered a reasonably average Canadian coal, whereas the F, J product would be of decidedly premium quality. While the present plan to mix the production from all four seams will produce a distinctly better than average coal, it would not be as good as the F, J product.

As an aid in visualizing the various quality ranges in the less optimistic case of a constant specific gravity setting; the ash, volatiles, F.S.I., and sulphur in the 1.60 products have been plotted on the plans in the accompanying map folder.

(49)

In addition to this, d.m.m.f. volatiles and the phosphorous content of nominal 7% ash coals have also been presented along with mining plan overlays so that quality may be related to the specific mining plans as they are presently envisaged.

Ash and Specific Gravity of Separation

The average raw ash of the coal seams at Babcock ranges from 16.5 to 24.5%. In the case of seams D, E, F and J this ash is expected to be reduced to approximately 7% or less in the clean coal product. The cut points required to attain this reduction vary significantly for each individual seam according to the data tabulations. (D 1.47 to 2.00; E 1.45 to 1.91; F 1.55 to 2.11; and J 1.42 to 1.88 - mostly full seam). It is not expected, however, that the weighted average specific gravity for the mined coal blends will vary much beyond the 1.55 to 1.60 range.

As ash is probably the most important criterion for estimating product quality once the overall quality of the coal has been determined, histograms of ash and contour plans of ash content in 1.60 SPG products have been prepared for Seams D, E, F, and J. It appears that rotary samples contribute somewhat to the low ash distribution of most seams, although many values are apparently normal and some are even high.

Seam D

Ash at 1.60 generally ranges from 6 to 8 per cent. It is generally high in the central and northwestern parts of the reserve area and moderately lower along the southwest side.

Seam E

Two apparent high ash trends indicating difficult cleaning conditions transect the centre of the northwest part and southeast portion of the reserve area. Seam quality is quite consistent with most values ranging from 6 to 9 per cent.

Seam F

The histogram for Seam F is somewhat misleading as 5 values are shown in the 3 - 3.99% range. Actually most of these are 3.5% or more and, as demonstrated on the ash contour map, very little area is actually under 4% at 1.60 SPG. Most of the ash values are between 4 and 7% for the product from this seam and it should be relatively easy to prepare a 7% product from it.

Seam J

When all of J Seam is mined, it is apparent that the ash content may be relatively high (6 - 9%) if washed at 1.60 since the upper bench of the seam contains a disproportionate amount of near gravity coal and has distinctly different cleaning characteristics compared to the lower seam. Two high ash trends, similar to those in Seam E are indicated by the iso-ash contour plan.

Seam I

Although mining is not planned in Seam I, it is interesting to note that the weighted average ash at 1.60 is above 9% and the individual results are consistantly high. If this seam were mined it would require a heavy media plant with gravities between 1.45 and 1.55.

Free Swelling Index

The histograms of F.S.I. in 1.60 SPG products demonstrate that while r moderately large overall ranges in quality occur, the majority of the values fall in reasonably narrow ranges. For example, in Seam D, the F.S.I. values which most commonly exceed the 5 to 5½ range are those from rotary holes. The F.S.I.'s on Seam J appear to have regional variations in that the highest values (8 to 8½) all occur from data points near the northwest corner of the reserve area. The lowest values (5-5½) are both from rotary holes and may be suspect on that basis. The results in the 6 to 6½ range are generally located near folding on the fringe of the reserve area and consequently may be the result of additional pressure on the seam. There are an equal number of "good" values though from similar locations so that nothing definite may be said on this subject. The F.S.I. on Seam J product at 1.60 will probably vary between 6 and 7 except in the northwest corner of the reserve area.

The 1.60 SPG. product F.S.I.'s for Seam E are also presented as contoured data to show regional variation. This has not been done for Seam F which is remarkably consistant, considering that all of the values over 8 are from rotary drill holes. The F.S.I. for Seam E generally ranges from 7 to $8\frac{1}{2}$ for 7% ash products although some slightly lower values occur sporadically. One adit in particular (E8) was oxidized.

Volatiles

Although it is important to know the proportion of volatiles present in the expected coal product, trends or variations in volatile content can only be meaningfully studied on a dry, mineral-matter free basis (dmmf.). For these reasons, volatile content has been presented in two contour maps for each seam. The first plan of product volatiles at 1.60 reflects the effect of cleaning variations on both ash and volatile contents, while the second plan on which

dmmf. volatiles are contoured relates only to the natural volatile content of the coal. (Map folder)

Before trends within the volatile maps could be interpreted, the variation and standard deviation of the sampling and analytical procedures were estimated by calculating the standard deviation in dmmf. values of samples analyzed in six Japanese laboratories. (The analytical results are shown in table II-G)

These standard deviations were then compared with the standard deviations obtained from all of the seam data points. The surprising result was that all of the standard deviations of replicate laboratory analyses were essentially of the same order of magnitude as those of the seam data points. This would seem to indicate that no valid trends can be interpreted from the dmmf. volatile contour maps, since the error in sampling and analysis can be as much as the total variation shown in the results. The results of the standard deviation calculations are given below.

Seam	Replicate Analyses	Drill & Adit data Points
D	0.85	1.02
E	N/A	0.84
F	0.62	0.62
G	N/A	(1.08)*
I	N/A	0.63
J Upper	0.74 J I	Full 0.78
J Lower	0.46	

Standard Deviation

* Insufficient data for meaningful calculation.

Despite the above points, it is worth noting that there does appear to be a weak but persistent trend from lower volatiles in the northwest corner of the reserve area to slightly higher values to the southeast and still higher values to the east. Even though no statistical significance can be suggested for these trends, it is possible that they relate to tectonic stress since the lows are adjacent to a sharply folded area and the slight increase to the southeast is coincident with a broadening of that structure.

Except for Seams I and J, the dmmf. volatiles show a distinct decrease in relation to stratigraphic depth or depth of original burial.

Seam	Weighted Average dmmf. Volatile			
D	26.70			
E	26.27			
F	25.87			
G	24.46			
I	23.19			
J	23.45			

The volatile content of the coal products at their stated ashes are shown in the various reserve and reserve summary tables. On the contour maps of this data, there is an obvious enhancement of the dmmf. volatile trends. Naturally, this does not import any more significance to this observation.

Sulphur

Only the sulphur in Seam D has been presented graphically as contoured data (map folder) since the other seams have such low concentrations of the contaminant that analysis of the data would not be meaningful. The information is summarized in the reserve tables for each seam as well as on the plans in the map folder.

In Seam D, the weighted average sulphur at 1.60 is 0.67%. It would appear, from the data contouring, that the disproportionately high sulphur values are concentrated in two areas: one at the eastern corner of the northwest end of the reserve area; and the other in the EXAMPLES OF REPLICATE SEAM ANALYSES

	Moist (%)	IN DIFFERENT LABORATORIES		TABLE II-J		
		Ash (%)	V.Matter (%)	dmmf. Vol.	F. Carbon (%)	Sulphur (%)
(J Upper)						
Lab 1	1.3	7.0	21.7	23.10	70.00	0.33
Lab 2	1.0	7.0	21.9	22.15	71.1	0.31
Lab 3	1.02	7.66	20.41	22.27	70.41	0.35
Lab 4	1.3	7.0	21.6	22.98	70.1	0.34
Lab 5	0.8	7.0	21.6	22.00	71.4	0.30
Lab 6	1.2	5.8	22.9	24.15	70.1	0.34
(J Lower)					·	
Lab 1	1.4	6.9	22.2	23.63	69.5	0.39
Lab 2	1.1	8.1	22.4	22.80	69.5	0.35
Lab 3	1.02	8.64	21.42	22.99	68.92	0.43
Lab 4	1.5	7.2	22.0	23.50	69.3	0.40
Lab 5	1.0	7.9	22.0	22.39	70.1	0.40
Lab 6	2.6	7.2	21.8	23.56	68.4	0.41
(F Upper)			04.0	06.10	C0 E	0.41
Lab	1.3	5.4	24.8	20.13	00.0	0.41
Lab 2	1.2	5.4	24.7	24./1	69.9	0.36
Lab 3	1.0	5.33	24.94	25.96	68.93	0.42
Lab 4	1.2	5.0	24.9	26.12	68.9	0.42
Lab 5	1.0	5.4	24.7	24.86	69.9	0.40
Lab 6	1.2	4.6	25.0	26.15	69.2	0.38
(D Upper)	1 /	67	24 9	26 47	67 0	0.69
	1.7	6.7	25.2	25.47	69 1	0.65
	1.1	0./	23.2	20.02	00.1	0.00
Lab 3	1.02	6.6/	24.79	20.25	67.52	0.05
Lab 4	1.3	6.8	24.3	26.45	67.0	0./5
Lab 5	1.0	6.8	24.5	24.84	68.7	0.70
Lab 6	1.1	5.8	26.2	27.59	66.9	0.72

.

a designed and the second

vicinity of holes 7208 and 7203 just south of the middle of the reserve area. It is possible, however that the distribution of sulphur in Seam D is more erratic than the data indicates. More random distribution of sulphur highs could give equally convincing patterns considering the number and spacing of the data points. Some support to the concept of regional or gradual variation is given by the apparent build-up of values towards holes 7203 and 7208 by the moderately high assay from hole 7216 (.84%). This is also true of the northwest high which is supported by values for holes 7202 (.83%) and 7219 (.83%).

1

The sulphur content of a number of Seam D samples has been investigated further to determine the proportion of organic sulphur. In the raw samples the organic sulphur ranges from 30 to 50% of the total sulphur. In the two clean samples (sink/float) tested, this proportion was just over 50%. This seems to indicate that some improvement may be possible in the reduction of pyritic sulphur, especially in the froth floatation product from a fines circuit.

Seams E, F, and J all have weighted average sulphur content below 0.25% and therefore the blended products are not expected to be unduly high in sulphur since Seam D will seldom make up more than 33% of production.

Phosphorous

Analyses of phosphorous pentoxide in the ash of nominal 7% ash products have been completed for most intersections. These have been converted to phosphorous in coal and the results have been contoured for each significant seam. Two seams, E and F, have relatively high arithmetic average phosphorous contents (Seam E, 0.10; Seam F, 0.08) and the two others, D and J, have reasonably low contents (Seam D, 0.04; Seam J, 0.03).