ADANAC FEASIBILITY REPORT

By: Climax Molybdenum Corporation of British Columbia, Limited

December 19, 1975

104N

April 12, 1977

Mr. Jack Pelletier Adanac Mining & Exploration Ltd. 1111 West Hastings Steet Vancouver, B.C.

Dear Jack,

Re: Adanac Cost Summary

With apologies for the delay, I enclose some comparative figures based partly on current and projected costs at Faro, and partly from C.M.C. data on their Thompson Creek molybdenum property. While we do not pretend that our numbers are particularly accurate, they do reflect a general and often considerable increase over Adanac's projected cost.

Areas in which we would be particularly concerned that Adamac's figures may require adjustment are:

- 1. Mill Labour where a minimum discrepancy of 27¢ based on current labour rates would be apparent.
- 2. Mill Repair Supplies although Adanac should be somewhat kinder on equipment, a 50¢ discrepancy would be apparent by comparison with Faro and reference to Thompson Creek estimates.
- 3. If reagent mix is similar to Thompson Creek, a 14¢ discrepancy would arise, although your cost should be good on this.
- 4. General and administrative costs as experienced at Faro are considerably higher than you would propose for Adanac. However, we certainly can't brag that we are very efficient in this area so you would have to weigh this one fairly carefully.

... 2

5. We would also have some reservations at applying the relatively high product price of \$3.82 although, provided your contracts were for payment in U.S. dollars, the present exchange rate would probably be sufficient cover.

In general, we would not feel happy about an involvement in the Adanac property at this stage of our development, particularly where such involvement might be tied to a production date. For what it is worth, I attach a cost comparison where we would estimate the cost per ton milled in the \$5.50 to \$7.00 per ton range, rather than the \$4.00 range you envisage. Perhaps we can get together with our Mr. Biggs, who was responsible for the data collection and comparative numbers, so that you can get a better idea of just how strongly me might feel on certain items or how reliable any particular comparison might be.

Yours truly,

CYPRUS ANVIL MINING CORPORATION

J. G. Simpson Exploration Manager

JGS/cb Attach.

- c.c. T. Biggs
 - J. Olk
 - J. Bruk (May 19th)

COMPARISON OF OPERATING COST ESTIMATES

ADANAC

	Adan Per Ton	ac Milled	C.A.M.C. Est. Per To in Milled		
	Initial Pit	Onward Pit			
Total Mining	1.24	0.83	1.25		
Milling					
Labour	0.30	0.30	0.57		
Steel	0.67	0.67	0.67		
Reagents	0.37	0.37	0.51		
Power	0.63	0.63	0.92 *		
Maintenance Supplies	0.10	0.10	0.60		
Heating	0.04	0.04	0.46 *		
G&A	0.80	0.80	2.06 *		
	4.15	3.74	7.04		

* Some probable discrepancy in C.A.M.C. figures due to unfair comparison with Faro. If these figures are substituted by Adanac numbers, total cost C.A.M.C. estimate = \$5.03.

Mano 10 GLAN SIMPSON FROM: T. 11 B SUBJACE COSTS M. ADIANAE STUDY ATTACMED ARIZ SOMA VER ROUGH COMPARISONS OF LOSTS DEFENSE PROVIDE L'ART ROUGH COMPARISONS OF SIGNIFICANT BUNG 1) · 2 FROUR 14 TAR MILL \$1774000 (272/052.) THIS IS MINIMUM DISCRAFFANT. REPAR SUPPLIAS \$3,286,000 (SOL/057) 2) · MILL REPAR SUPPLIAS REAGANTS USA DIFRARIANT MIX TO THOMPSON CAX. IF SAMA MIX Q2000 144 · GTA - SAMA AS FARD 2250 5980,000 5 YRS 30,000000 CURRIENT No PRICE US\$ 3.45-116 30,000,000 TOTAL SYR DOS PRISTAX. \$ 60000 000 BASBO ON TOTA ABOUR I WOULD BIZ RELUCTENT TO COMMIT FUND TO THAT PROJECT PARTICULARY IF TIGD TO A PRODUCTION DIFTE COMMITMENT.

Cost COMPARISONS MINING COSTS: AT \$1.40 / CM YO IN LING VITH FARD AFIZ FOR NAN TRUCKS. Minhung RRAGRASS: NOUT 40% OF FARD \$/TON MUN CMC. THOMPSON CRANK MLO 75 32.16 1 RSCALATION 50 77 20% 6-44 RATRA PRAILET ON 3/65 RAAGANTS 12.00 50-60, a ADANAC STUDY 37.0 d STRAL: COULD BIS RAASONAALS RIPPAR SUPPLIAS: FARO 77 PLAN 650/TON 10 + / TON. ADANAC STUDY LABOUR CA.M.C. Op + Repair #1.48 1057 - 77 Plan Based on 166 don't en plays & 10000 TPD ADANAL 115 MILL EMPROYANS & 18000 TP2 EQUIVITARIAT AT FARD RATES 5418- 6570 2 <u>57 k</u> ADANAC STUDY USAS 30 a ALSO 5600LD QUESTON THAT NUMBER OF EMPLOYIEIZS USAD BY FORNAC GENERICL & ADMIN. ANVIL MINASITA 68 A PLAN 77 \$206/05 \$7530 \$ 0.30/05. \$5250 APANAC PROPOSAL.

MOLYBDENUM PRICE HISTORY

\$/lb. Mo

January 1, 1974	\$1.72
March 1, 1974	\$1.87
July 1, 1974	\$2.05
September 1, 1974	\$2.30
January 1, 1975	\$2.43
October 1, 1975	\$2.62
February 29, 1976	\$2.90
August 29, 1976	3.20
DECEMBER 31, 1976	3.45

Cvprus Mines Corporation Date: 3/9/77 From: R. B. Ellingsen То: ____ MAR 1 1 1977 MR. TOM BIGGS CYPRUS ANVIL MINING CORP. 330-355 BURRARD ST. VANCOUVER, B.C., CANADA V6C 268

ADANAC MINING AND EXPLORATION LTD.

Ninth Floor, IIII West Hastings Street, Vancouver, B. C. V6E 2J3 Telephone (604) 685-0351

January 19, 1977

T. BIGGS

MEMO TO: W.W. Bennett

FROM: J.D. Pelletier

SUBJECT: Update of Adanac Feasibility Study

The Equity Mining staff took a quick look at updating projected capital and operating costs for Adanac in the light of their recent costing of a similar plant for the Sam Goosly project. The original feasibility was made in 1971 under the auspices of Kerr Addison Mines with capital costs estimated on the basis of a production commitment in late 1971 and operating costs and metal prices projected to production start in 1974. Our updating reflects a production commitment at year-end 1976 and production startup in the latter half of 1978. Molybdenum prices and operating costs were estimated as of year-end 1976. In keeping with today's marketing requirements, it was assumed that oxide molybdenum would be produced. Summaries of capital and operating cost estimates are attached.

The results of the study indicate that there has been a net increase in the viability of the Adanac project during the five years that have elapsed since Kerr Addison's estimate. On an all equity basis, payback of capital costs is in year 6 and return on investment is approximately 10% (this compares with 8 years and 6% return estimated in 1971). The cash flow was rerun using an assumed 10% increase in molybdenum price to show the sensitivity of the project to small changes in the assumptions. This gave a payback in the 5th year and return on investment of approximately 14%. Another run using 100% bank financing and the higher assumed price of molybdenum showed project loan payback in 6 years. Cash flows are summarized on an attached sheet. Certain critical assumptions that could affect viability of the project are listed below for your consideration:

1. Kerr Addison's ore reserve estimate of 1971 was used. This reserve takes the large upgrading indicated by underground development work in tonnage rather than grade. Further work is needed to establish whether this approach or its alternative of higher grade but fewer tons is valid.

2. We believe our updating of capital costs is within 10% of a value that would be arrived at by a more definitive study. Contingencies were not taken as a blanket percentage allowance. Most of the costs can be directly interpolated from Sam Goosly project costs and are considered realistic. Certain mine equipment ADANAC MINING AND EXPLORATION LTD.

Memo to W.W. Bennett

January 19, 1977

costs were updated by contacting suppliers. Commonwealth Construction furnished valuable assistance in estimating construction costs applicable to the region.

3. Our update of the operating cost came out surprisingly high as compared with Kerr Addison's estimate, even allowing for inflationary increases in costs since their estimate was made. We believe that a definitive study of operating costs could reduce our estimate by anywhere up to 10%.

4. The (oxide) molybdenum price of U.S. \$3.82 that became effective at year-end 1976 was used. Frequent significant increases in price have been customary over the past several years and it is difficult to accurately determine an appropriate price level for this type of study. Similarly, no exchange differential was estimated between the value of Canadian and U.S. dollars although many observers are projecting a differential favourable to Canadian producers.

5. As in the Kerr Addison study, no provision was made for the effects of producing and marketing a tungsten byproduct. Recent increases in the price of tungsten indicate that its recovery may benefit the project.

It is recommended that further work to enhance the economics of the project be directed at:

(1) More precisely determining the grade mined in the early years, and

(2) More precisely determining power and grinding steel costs and the optimum tradeoff between grinding costs and metal recoveries.

It appears to me that any improvements that could be made in the project are worth investigating now in view of the very strong outlook for molybdenum markets.

J.D. Pelletier

JDP:dc Attachments

XC. T.E. Congdon

Summary of Adanac Capital Cost Estimate Updated to Bid Tenders Year-End 1976 Production Startup Late 1978 @ 18,000 TPD

A. Preproduction Pit Preparation:

[i]] (Overburden	Stripping	1,917,000	yds ³	\$2,109,000	
	tal		4,000,000	LUIIS	3,030,000	

B. Mining Equipment:

2-15 Cu. Yd. Electric Mining Shovels 3,410,000 2-45R Electric Rotary Drills 1-15 Cu. Yd. End Loader 9-100T Haul Trucks 4,500,000 1-D8 Dozer 1-824 Wheel Dozer 1-M14 Grader Misc. Vehicles, Supplies, and Inventory

Subtotal

C. Road Construction per Feasibility Study

D. Plant Construction Costs:

	General Site and Utilities	3,290,000
	Crushing and Stockpile Area	8,076,000
	Grinding	8,398,000
	Flotation, Drying and Packaging	2,061,000
	Leaching	600,000
	Plant Service Buildings and Equipment	2,755,000
	Power Plant	6,339,000
	Mobile Equipment - Plant	500,000
	Piping	2,580,000
	Electrical	2,423,000
	Water and Tailings	4,700,000
	Freight and Shipping	2,000,000
	Contractor's Overhead	12,768,000
	Conversion from 15,000 to 18,000 tpd	2,986,000
	Engineering and Construction Management	4,000,000
	Subtotal	
Ε.	Escalation at 8% of Items A to D	
F.	Allowance for Townsite	

G. Options and Royalties (Preproduction)

H. Working Capital

Total Capital Cost (Excluding Interest and Contingency Allowance)

Estimated Additional Cost for Roaster

\$101,230,000

63,476,000

6,356,000

7,000,000

8,000,000

420,000

\$ 5,147,000

10,331,000

500,000

936,000

520,000

186,000

168,000

131,000

480,000

\$ 3,500,000

JDP:dc January 19, 1977 FNPACO

(

SALO:

828. 74 Tots will

Ľ

2.7

Summary of Adanac Operating Cost Estimate Updated to Year-End 1976 Production Rate = 18,000 TPD

	Per Ton	Mined	Per Ton M	illed
Mining:	Initial Pit U	nward Pit	Initial Pit	Unward Pit
Drilling	0.074	0.074		,
Blasting	0.119	0.109		
Loading	0.047	0.047		
Hauling	0.234	0.187		/
Supervision and General	0.079	0.118	A.m.	77/122 135.
Stockpile Reclaim		0.016	unthor	stu to .
Total Mining	0.553	0.551	1.24 0	0.83 1-24
Milling:		TU + 2 × 150 %		
Labour		7113 -	- 0.30 /48	0.30
Steel			0.67 .84	0.67 -67
Flotation Reagents			0.37 102	0.37 7 51
Power			0.63	0.63
Maintenance Supplies 🛺	3 45 y sapplies		- 0.10 .64	, 0.10 -60
Heating	17		- 0.04 .46 at	0.04 7 46
Total Milling			2.11 5.36	2.11 2.89 3.73
General and Administrativ	e Costs	2.06	<u>0.80</u>	0.80 150 2 06
Total Operating Costs*, Y	ear-End 1976		4.15*	3.74*5:03 7 03
Kerr Addison Feasibility	Estimate (esc	. to 1974)	2.586	2.280

11' Work Hatt *Excluding cost of conversion to oxide estimated at 10¢ per pound of oxide produced, and cost of sales estimated at 1% of selling price.

Stripping Ratio? 1.00 : 1.00

0276 3.00 81/12/26

JDP:dc January 19, 1977

3-23 DST/G-19.

2.25 to 610 \$1-40 Cuyp.

1281 Cupp

62

Summary of Updated Adanac Cash Flows Based on 18,000 TPD Production Rate

(

	I	II	III
Financing			
Project	100% Equity	100% Equity	100% Bank Loan
Working Capital	85% Prov. Pavm	ents Equity	Bank Loan
Mo Price (Oxide)	3.82	4.20	4.20
5 Year Summary (Mil	lions):		
Sales	250.5	275.4	275.4
Operating Costs	139.8	140.0	140.0
Interest Expense	6.9		38.5
Taxes	1.7	12.6	-
Settlement Lag	2.6	17.0	17.0
Net Cash Flow	99.5	105.8	79.9
Payback in Years	5 ¹ ₄	4 3/4	6
Total 17 Year Summa	arv (Millions):		
Sales	704.1	773.4	773.4
Operating Costs	427.9	428.6	428.6
Interest Expense	19.1	.	49.5
Taxes	64.8	113.9	78.9
Ongoing Capital Co	ost 7.0	7.0	7.0
Net Cash Flow	185.3	223.9	209.4
Return on 104.7 M	, 10%	14%	
capital cost	<i>2</i> 1		

JDP:dc January 19, 1977

(

OPERATING COST ESTIMATE FOR THOMPSON CREEK MO. PROJECT

VII. OPERATING COST ESTIMATE

A. DEFINITIONS

CUSTER COUNTY, IDANO The operating cost is limited to primary crushing, fine crushing, grinding, flotation, dewatering, concentrate loadout, and haulage to Mackay, tailing berm raising, process water reclaiming, and fresh water supply. The format includes only direct costs specifically identified as: maintenance and operating supplies delivered to site; power; analytical services; maintenance and operating labor; and direct mill administration, supervision, technical and clerical personnel.

The unit cost figures are derived from an operating capacity of 7, 140, 000 dry short tons per year of ROM ore, and 36, 128, 400 dry pounds per year (excluding an estimated 5% contained flotation oil) of 92.5% molybdenite concentrate containing 20,032,100 pounds of molybdenum.

Freight and delivery costs for materials and supplies are included in the estimate. Thus the cost factors herein given reflect manufacturers' and suppliers' prices plus all freight to the plantsite. Railroad freight is accounted to the railhead at Mackay, Idaho; at that point the items are transferred to appropriate trucks for the 90-mile haul to the site on Bruno Creek. A trucking figure of \$0.06 per ton-mile was estimated by Tuscarora; however, considering the additional handling for the freight transferred to trucks at the railhead, an average total transfer cost of \$8.00 per ton is used for delivery to the site and unloading to plant storage of materials fob Mackay railhead. The molybdenite concentrate is backhauled to Mackay for shipment to the conversion plant; the additional cost for this backhauling operation is assumed to be \$2.00 per ton fob railcar Mackay.

The Tuscarora Mining Corporation operating cost factors not included in this estimate are:

- 1. Development and mining operations.
- 2. Subsequent refining or processing of molybdenite concentrates after leaving the Mackay railhead.

ENGINEERS

- 3. Onsite general services, specifically administration, personnel, purchasing, accounting, warehousing, safety, security, and shops extraneous to the direct milling operations.
- 4. Tuscarora Mining Corporation home office administration.
- 5. Taxes, fees, rents, or royalties.

The sources of information for this operating cost summary are Tuscarora Mining Corporation, Cyprus Mines Corporation, Cyprus Pima Mining Company, Kaiser Engineers staff, and equipment manufacturers and materials suppliers. The major factors used are itemized in this text, and the estimate summary is presented in Table VII-A, Concentrator Operating Cost Estimate, at the end of this section.

B. MAINTENANCE SUPPLY FACTORS

The crushing and grinding liner costs are projected from: the unit consumption of steel used, percent scrap, current foundry prices, and delivery to the site. These costs are itemized as follows:

	Pounds Per	Cents	Cents
Liner Description	Ton of Ore*	Per Pound	Per Ton
Primary Crusher	0.0083	36.0	0.299
Standard Crusher	0.0107	37.9	0.406
Shorthead Crusher	0.0178	36.1	0.643
Rod Mill	0.0671	38.2	2.563
Primary Ball Mills	0.0571	45.0	2.567
Regrind Mills	0.0037	40.0	0.148

*Includes metal wear and scrap.

The slurry pump maintenance parts are projected at 25% per year of the initial pump prices. The maintenance parts costs for the crushers and grinding mills (excluding liners), and the belt conveyors are projected at 1.5% per year of the initial equipment prices. The maintenance parts costs for the remainder of the mechanical equipment are projected at percentages of the initial equipment prices per year based on manufacturer and experience factors.

C. OPERATING SUPPLY FACTORS

The major operating supplies, grinding media and flotation reagents, are calculated on a per item price consumption basis. The grinding media costs are derived from the projected unit consumption of the iron, current material costs, and delivery to the site. These costs are itemized as follows:

Grinding Media	Pounds Per Ton of Ore	Cents <u>Per Pound</u>	Cents <u>Per Ton</u>
Rods	0.60	17.5	10.50
Balls - 2" Cast (Primary Mills)	1.17	20.05	23.46
Balls - 1-1/2" Cast (Regrind Mill)	0.05	20.05	1.00

The reagent costs are derived from projected unit consumption, current material costs, and delivery to the site as follows:

	Pounds Per	Cents	Cents
Reagents	Ton of Ore	Per Pound	<u>Per Ton</u>
		2 5	0 75
Lime	1.5	2.5	3.75
Vapor Oil	0.56	10.8	6.05
Pine Oil	0.11	34.9	3.84
Dowfroth 250	0.03	44.4	1.33
Syntex	0.04	44.3	1.77
Sodium Cyanide	0.08	34.9	2.79
Sodium Hydroxide*	0.18	27.3	4.91
Phosphorous Pentasulfide*	0.12	39.9	4.79
Sodium Silicate	0.38	7.7	2.93

*Nokes reagent components.

Fuel costs for heating purposes are estimated separately and included in operating supplies for each facility. The fuel is No. 2 diesel at \$0.36 per gallon delivered to the plant storage tank. Miscellaneous operating supplies inclusive of lubricants are projected at 1% of the major equipment purchase price for all items except belt conveyors, cranes, and major crushing and grinding equipment; these exceptions are projected at 0.5% of purchase price.

D. POWER COST

Power costs are calculated into the estimate on the basis of connected operating horsepower. The power cost was obtained from Tuscarrora at \$0.025 per kilowatt hours. Lighting costs are included at 5% of total mechanical connected horsepower.

VII-3

E. WATER COST

CAISER

For this operating cost estimate, the water costs are treated as a separate plant operational entity; that is, the water costs are spread against labor, supplies, and power rather than distributed to the plant operational divisions. This format permits a better examination of the components, and the option remains to distribute the total water costs to grinding and flotation functions if required. The water costs are kept separate for well water and reclaim water. Also, this keeps water reclaim costs separate from the tailing dam lifting account, which is a major operating cost and will require separate analysis.

F. LABOR COST

Labor costs are calculated on an annual cost per shift basis from a pay schedule received from Tuscarora plus 23% for payroll burden. The work shifts* are classified as continuous and non-continuous, defined as follows:

- Continuous (Cont.) for tasks based on a 3 shift per day and a 7 day per week schedule. This four-crew concept results in one overtime shift per 21 shifts of work performed. The overtime cost is calculated into the annual shift costs for this work classification.
- 2. Noncontinuous (N. C.) for tasks based on one shift per day and a 5 day per week schedule. Note that the crushing plants are operating 2 shifts per day and 7 days per week; though actually continuous, these tasks are classified as noncontinuous because overtime shifts do not occur with the three-crew manning arrangement.

^{*}Work shifts are not to be confused with individual workmen, as each man is nominally scheduled for an 8-hour day 5 days per week, whereas the estimate accounting is on a task concept, for better definition.

KAISER

Based on advice from Tuscarora and expanded to suit all necessary job categories, the labor pay schedule is:

	Hourly Base	Job	Gross Annual
Shift Duty Description	Pay (\$)	Classification	Cost (\$)
Instrumentman	\$6.58	N. C.	\$16,510
Electrician	6.58	Cont.	18,020
Electrician	6.58	N. C.	16,510
Dozer Operator	6.58	N. C.	12,280(2)
Repairman	6.46	Cont.	17,690
Repairman	6.46	N. C.	16,210
Carpenter/Painter	6.46	N. C.	16,210
Belt Repairman	6.46	N. C.	16,210
Pumpman	6.46	N. C.	16,210
Concentrator or Control Ru	n.		
Operator (1)	5.77	Cont.	15,830
Crusher Operator	5.54	N. C.	14,030
Ball Mill Operator	5.54	Cont.	15,210
Reagentman	5.54	N. C.	13,900
Sampler	5.54	Cont.	15,210
Filter Operator	5.54	Cont.	15,210
Tailing/Cycloneman	5.43	Cont.	14,920
Truck Driver	5.43	N. C.	13,620
Oiler	5.43	N. C.	13,620
Helpers - Mechanical &			
Operations	5.31	Cont.	14,590
Helpers - Crushing Plant	5.31	N. C.	13,450
Helpers - Mechanical &			
Operations	5.31	N. C.	13,320
Beltman Crushing Plant	5.31	N. C.	13,450
Fine Ore Bin Man	5.31	N. C.	13,450
Loadoutman	5.31	N. C.	13,320
Launder Movers	5.31	N. C.	9,990(2)
Labor	5.00	N. C.	12,550

(1) Flotation operator

7. insta

A MARY

(2) 9 months only, for tailing berm lifting operation

The overall projected ratio of maintenance personnel to operations personnel is approximately four to five. Note that for this operating cost estimate, maintenance is treated as a separate plant operation entity; that is, the costs are spread against labor, supplies, and power rather than distributed to the plant production divisions. This format

permits a better examination of the components of this plant function cost. The option remains to distribute the maintenance costs against direct operational functions if required.

G. MILL ADMINISTRATION COST

For this operating cost estimate, the supervisory, technical, and clerical staffs are limited to those involved directly in mill operations. Supporting services such as general administration, personnel, accounting, purchasing, warehousing, general plant shops, safety, and security are excluded from this operating cost estimate. The incurred mill analytical service is accounted on an average cost of \$1.00 per analysis for 250 analyses per day; these are included in mill technical costs in the Miscellaneous column. If the total operation requires 400 analyses per day, the analytical laboratory will employ approximately 10 analysts and sample preparation men.

Based on advise from Tuscarora and expanded to suit position categories, the mill staff pay Schedule is:

Staff Duty Description		Annual Base Salary (\$)	Gross Annual <u>Cost (\$)*</u>
Superintentent	(one)	\$ 25,000	\$ 30 , 750
Assistant Superintendent	(one)	22,500	27,680
Metallurgist	(one)	20,000	24,600
Maintenance Foreman	(one)	16,000	19,680
Concentrator Shifters	(four)	14,000	68,880
Crushing Plant Shifters	(three)	14,000	51,660
Instrument Engineer	(one)	14,000	17,220
Ore Testing Engineer	(one)	13,000	15,990
Technicians	(two)	11,000	27,060
Clerks, Metallurgy	(two)	11,000	27,060
Clerk, Maintenance	(one)	11,000	13,530
Stenographer	(one)	9,000	11,070

* Includes 23% payroll burden.

H. TAILING DAM ROCK FILL COST

Since there is insufficient local borrows, the rock fill for the starter dam construction and the operations berm lifting is principally mine stripping and waste. The delivery is by the mine haul trucks. The cost is projected as the extra travel distance that would be incurred - Sines bro

to yet fit

「細語」

Public .

- **1**

A strate

- (1946) 1

beyond the normal haul to the geometric center of the waste dump; there is no loading charge at the pit. The net cost for this proportional delivery is \$0.1655 per cubic yard directly chargeable to the tailing disposal operation, and it is accounted as a direct mine backcharge in this estimate. This cost is comprised of \$0.0675 per cubic yard per mile for 2.2 miles plus \$0.017 per cubic yard for road maintenance.

TABLE VII-A

CONCENTRATOR OPERATING COST ESTIMATE

Tuscarora Mining Corporation: Thompson Creek Project

Annual Production: 7, 140, 000 Short Tons ROM Ore; 36, 128, 400 lb Molybdente Concentrate; on a 357 day per year schedule.

	Man Shifts		Supp	lies	D.			Unit Co	osts Per
Plant Functions	Per Week (-/	Labor	Maintenance	Operating	Power	Misc.	Total	Ton-Ore	lb-Conc.
Primary Crushing and Overland Conveying	45	\$ 122,790	\$ 70,720	\$ 16,440	\$ 294,090	\$	\$ 504,040	\$0.0706	\$0.0139
Fine Crushing and Storage	45	. 122, 790	124,390	13,900	398,580	-	659,660	0.0924	0.0183
Primary Grinding	42	119,200	4 36,640	2,437,830	1,440,410	: _	4, 434, 080	0.6210	0.1227
Flotation	83	235,420	127,590	2,474,050	872,250	-	3,709,310	0.5195	0.1026
Dewatering and Loadout	31	87,480	11,940	3,940	28,570	38, 030 ⁽⁷⁾	169,960	0.0238	0.0047
Tailings Disposal and Berm Lifting	²¹ 25 ⁽²⁾	163,930	91,720	174,950	30,660	546,150 ⁽⁵⁾	1,007,410	0.1411	0.0279
Process Water Reclaim	₅ (3)	16,210	4,300	1,180	20,970	-	42,660	0,0060	0.0012
Fresh Water (From Wells)	5 ⁽³⁾	16,210	25,000	2,600	41,950		85,760	0.0120	0.0024
Maintenance	251	626,620	10,000	5,000	6,000	- .	647,620	0.0907	0.0179
Supervision and Technical Services $^{(4)}$	95	335,180	47,500	47,500	1,000	<u> </u>	520, 430	0.0729	0.0144
Total Annual Costs		\$1,845,830	\$949,800	\$5,177,390	\$3,134,480	\$673, 4 30	\$11,780,930	\$1.6500	\$0.3260

NOTES

(1)All shifts are on the 357 day per year or 12 month per year basis except as meted.

(2) These shifts are on a 9 month per year basis due to berm lifting weather prolems.

(3) Duties distributed between both plant functions to assure daily coverage and preventive maintenance.

(4) Includes metallurgical laboratory costs and plant instrumentation hardware.

(5) Mine back charge for delivering 3, 300, 000 cubic yards per year of stripping and waste to the tailing berm at \$0.1655 per cubic yard for the additional haul of 2.2 miles over normal mine weste disposal.

(6) Analytical laboratory work is included at an estimated \$1.00 per average analysis.

(7)Concentrate haul cost to Mackay fob rail car at \$2.00 per ton, backhaul for reagents and supplies from Mackay to concentrator site.

Operating Maintena Total

If replacement requirements are 10% for vacations and absenteeism, then total mill labor payroll is 117 employees.

Total staff employees, direct supervision, technical and clerical - 19.

MANNING SCHEDULE

	12 Month	$9 \text{ Month}^{(2)}$
g men	54	5
nce men	47	-
	101	5

MOLYBDENUM PRICE HISTORY

\$/lb. Mo

,

January 1, 1974	\$1.72
March 1, 1974	\$1.87
July 1, 1974	\$2.05
September 1, 1974	\$2.30
January 1, 1975	\$2.43
October 1, 1975	\$2.62
February 29, 1976	\$2.90
August 29, 1976	3.20
DECEMBER 31, 1976	3.45

MARCH 9, 1977

ANVIL, VANCOUVER.

1.

REIMOLYDDENUM

TALKING TO CLIFF MARIE OUN CHIEF GEOLOGIST, IT APPEPRS THAT CHIMAY IN US AND MORANOF IN CAMPER COMPROL A SIZEADLE PORTON OF MOLYBOENUM MARIKET. PRICE IN US IS \$3.40 AND CAMPER \$3.70/LB BECAUSE OF RAMADIAN GONT CONTROL BUT CAMPAN MAY NOT EXPORT MOLY TO THE U.S.

PERSIBILITY STUDY ON THIMPSIM CREEK.

REGARDS.

LEON/EL

the three sinte	1970 when d Chart	1 we filler		MAJON MAL	TREASING F UNITED STA	LCALED TRS AND	PROSEZ CANADA	23 H (7	970		1	C.A.	MARK.
of proparty			Ytar Estimato Made	Reserves Millions of tona	GRADE % Mo Average	Poends Mo Per Tee	Critoff Grado S Ma	Gross \$ Per Toa Averaga	Total Gross S Value	Mining St Method	ripping Eatro	Milling Tons <u>Per Bur</u>	Pounda 320 Por Year
Name Thompson Creek	Iocation	Ownership Cyprus	1970 1970	135. Q 18. Q	0, 124 0, 231	2.48 4.62	0.030 0.150	4,27 7,95	(3600 0005) 576. S 14. 3	Open Pit Underground	2:1	25,700 10,000	(21111.023) 20.0 14.9
Adango 1	nch 1976 - G Braish	Korp-Addison	A 10 72 4 1969	turned it de	0.085	A. To	0.018 0.018	2,92	201.1	Opea Pit	and hermony for the stand	15,000	The second s
D.C. Moly	Columbia British	(Ke)ascott	1965	40.2	0,138	2.76 a a	• • • • • • • • • • • • • • • • • • •	4.75	109.9	Open Pit	2:1	6,000	5.0
(Boss Min. Gype	Columbia british British	for Alta	1059	in 1969-70	Jut Soffel 0.240	4,80	conty flow	lille mi 8.26	ad in 1971. 24.8	Godergrmand	Deficiency of the second se	1,505	2.3
Climax	Colorado	Aniax	1066	400.0	\$. 240 0. 136	4.80	and a submitted of the case of	8.26	3,382.4	Block Caving		×3.800	57.0.3/
Eodako	British Columbia	Placer	F10G9	230.0	9.0%	T.80	0. (48	3, 10	736.9	Ques Pit	0.8:1	\$9,000	14.0
lienderson ^{2/}	Colorado	Amax	1969	303, 0	0,294	5.38		10, 11	3,064,4	Block Caving	a south a state of the state of the	\$10.000	59,0
Questa ative.	New Mexico	Molysorp	1968	20, 5 157, 0 282, 6	0.113 0.112 0.097	0.36 2.24 1.94	0.015	6, 12 3, 85 3, 34	125, 5 604, 9 642, 9	Open Pit Open Pit Open Pit	3:1 2.5:1 6:4:1	8,000 11,000 16,500	10.0
Urad	Colorado	Апах	1967	12.0	0.240	4, 80		8,26	09, 1	Block Caving		5,400	3/
TOTAL			V	n i k	6. sos	3.91		6,22					
$\frac{1}{7}$ To be placed in pr	oduction in nuk	1-1973		June 0 T. G	ruck 1	oo n r G	2 0.1	1 -	17				
2 To be placed in pr 3 Climax and Urad a	oduction in 197 No production a	5 are combined	*	Clem B. Lo He	iy. X Heoly le A.	0011 C 10 C 00 C	, 138 .24 . 24	7. 7. 8	s:s= 6 7 _ 188:3	-			
3-45	5			Horan KCC +	her adama 7 Apros 3 Cirdika 2 Werky 6. 2	14 C 14 C 14 C	.0 F5 .24 .09	6. 21. 21	3 12 ZF-1 25 ZF-1	•			•

w/r F.J. 18.4. 3.2. - 3.45

II. ECONOMICS

Cash flow calculations are based on the following controls and assumptions:

Production Start Up	- 3 years after go ahead decision
Annual Milling Rate	- 7,000,000 tons ore
	20,000 tons per day for 350 days per year
Second Shooning Ratio	5 tons waste per ton ore
Grade of Ore	0,1529 Mo
Metallurgical Recovery	90 % Mo
Metal Price	\$1,87/lb. Mo (FOB on railcars Mackay)
Operating Costs	
Mining	24 - 32 c/ton material depending on depth in mine pit
Milling	89 ¢/ton ore dr - 1-76 × 150 - \$2-64
G & A	\$2.5 million per year (equivalent to 35.7¢ per ton ore)
Capital Costs	
Production Facilities	\$43,967,000
Proproduction Strippin	g 17,650,000
Mine Development & T	esting 2,500,000
Ecological Reserve	2,000,000
Total	\$66,117,000
- Additional capital	required in:
Year + 1	\$ 2,949,000
Year + 5	\$ 550,000
Working capital r	equirements \$ 6,250,000
Tax Allowances	
• Depreciation -	Straight line over 15 years.
- Depletion -	227 of net sales or 507 of gross income.

whichever is less.

Tax Levy

State

Property	1.37	of Market Value
Corporation	6.5%	of State Taxable Income
Mine License	3 E	of State Taxable Income

Federal

48% on Federal Taxable Income

Rate of Return

The cash flow calculations on the listed controls resulted in a 13.9% D.C.F. rate of return with a payout of \$66.12 million in 5.3 years.

and have been a marked

Breakeven Price

Ş

Ŵ

1

h

The breakeven molybdenum price ranged between \$1.15 and \$1.37 per pound:

	Years ! - 4	Years 8 - 12
Direct Cost, \$000	16,660	19,065
G & A	2,500	2,500
Property Tax	538	538
8 S Capital Cost	6, 612	-
Total	26,310	22,103
Breakeven Price	1.37	1.15

Effect of Varying Price, Recovery and Stripping Ratio

Additional cash flow calculations have been made at variable prices, recoveries and stripping ratios. The results are shown in graph form.

- Price Each 1¢ increase in price results in an increased ROI of 0, 21 precentage points. Industry experts predict a 15c/lb, price increase about mid year 1974. Such an increase would increase ROI to 17%.
- Recovery Each 1% increase in recovery results in an increased ROI of approximately 0.38 percentage points.

- Stripping Ratio - Each 0, 1 decrease in stripping ratio results in an increased ROI of approximately 0, 25 percentage points.

- Comparison with September 1972 Technical Services Order of Magnitude Feasibility Assumptions:

	<u>April 1974</u>	September 1972
Annual Milling Rate		. N .
Tons ore	7,000,000	7,000,000
Tons per day	29,000	20,000
Cutoff Grade, 😤 Mo	0,080	0,080
Mill Heads, 😤 Mo	0,152	0, 148
Stripping Ratio,		
tons waste per ton ore	5.0	4.5
Preproduction Stripping, 000 tons	75,000	75,000
Metallurgical Recovery, S Mo	90	90
Operating Costs		
Total direct and indirect, S per ton ore	2,74	2, 25
Molybdenum Price,		
S per pound	1.87	1.70
Capital Investment, 8000		
Production facilities	48, 867	40,270
Preproduction stripping	17,650	14,650
Mine development & testing	2,500	3,500
Reological reserve	2,000	2,000
Total	66,117	60,420
Working Capital	6,250	6,000
Equity Position		
Equity Investment, Se	100	100

Assumptions: (Continued)

ALC: N

144

April 1974 September 1972

Tax Allowances & Levies

Depreciation	Straight-Line Over Mine Life	Straight-Line Over Mine Life
Depletion	22% of net sales or 50% of gross income	22% of net sales or 50% of gross income
State Taxes		
Income, S	6	6.5
Mine License, 🛞	3	3
Property	1.3% of market	1.3% of market
	value	value
Federal Taxes, %	48	48
Payout Period, years	5,30	4,96
Return on Investment (DCF)	13.9	14.2

TINGULAIN CREEK PROMET

Order-of-Mignitude Feasibility

5. 9 : 1 Stripping, 20% No Recevery, \$1, 61/16. Malybomum Price

						and a second		<u> </u>											
				• 1	+1	3	<u></u>	* 5	+0	+7	<u></u>	- 9	+ 11)	+11	+12	-11	+ 14	+15	Totel
PRODUCTION DATA Strippion, 002 loss Ore, 000 loss Grade, 15 Mo Pounds No Presserved, 2001s Peop Concertants 15 545				32, 038 7, 038 . 152 19, 152 ST, 733	85, 209 7, 203 . 192 10, 192 11, 192	35, 300 T, 060 . 152 (P, 152 17, 705	15,000 1,000 .152 15,352 17,753	38, 020 3, 030 . 352 18, 152 17, 733	11, 540 1, 540 1, 52 152 10, 152 10, 153	07, 300 7, 809 . 182 13, 188 17, 130	27, 500 7, 000 , 152 29, 152 17, 703	17,800 7,000 ,152 19,252 17,783	97, 504 7, 303 . 152 13, 152 17, 133	17,610 7,010 . 152 19,152 11,731	17,840 7,030 .052 19,151 17,733	12,640 1,000 . 152 19,152 17,733	7, 099 . 183 30, 182 37, 733	7, 203 . 122 29, 152 17, 733	458,600 106,084 247,240 255,695
Sheranati 2003 Salar at \$1, 87/20, Ma Salar Espense (Insight 65 mil) Ref Salar				35,614 96 35,118	35, 814 De 35, 719	25, a 14 D8 35, 73a	25, 814 54 35, 720	35, 834 37 35, 316	88,884 90 38,318	38, 814 86 38, 718	35, 414 54 35, 718	35, 834 96 36, ti e	35. 414 64 83, 718	25, 814 86 36, 711	35, 814 96 35, 714	35, 614 96 95, 714	05, 814 P3 25, 718	85, 944 56 35, 116	537, 200 1,460 635,370
KR1+ENARS, 2003 Differen Costa Strupping Salatog Concentrating Total Forcet Indirect Costa R & A Tutal Silvert & Indirect Suprecisions				8,753 1,750 0,160 16,656 2,508 19,768 4,603	H, T50 1, T50 6, 140 16, 635 2, 503 29, 163 4, 650	9,730 2,350 4,169 14,600 2,800 15,100 4,100	4, 350 1,750 4, 165 30, 660 2, 550 15, 150 4, 500	4,450 1,494 4,160 27,600 23,600 23,605 4,600	14, 125 1, 850 4, 110 28, 176 2, 500 23, 675 4, 604	10, (25), 630 6, 140 (9, 278 1, 500 20, 415 6, 620	10, 125 1, A9P 6, 162 16, 175 3, 65D 20, 675 4, 103	10,473 8,424 4,140 39,065 8,503 21,314 4,430	10,075 2,020 6,100 19,005 2,509 20,509 20,509	33, 575 3, 616 6, 163 19, 163 19, 163 2, 510 31, 543 4, 105	10, 675 2, 034 6, 160 19, 066 2, 840 31, 565 4, 643	3, 475 3, 170 6, 100 12, 205 2, 500 14, 705 4, 610	2, 170 2, 170 4, 178 4, 150 2, 550 10, 610 4, 650	7, (TP 4, 163 8, 420 2, 820 (9, 830 4, 830	1 32, 506 23, 153 3 2, 153 3 2, 160 3 43, 730 3 7, 536 587, 596 63, 596
Gathai 18-30915, - 5000 Batomic Sistem: 5000ettos Batolicitos Incestoren Cardit				1,058 5,875 2,100	1.1, 858 8, 878	11,958 5,979	11,95N 6,913	21,13A 8,859	29, 443 6, 221	10,443 8,221	14,443 6,231	R, 633 4, 776	9, 653 4, 770	0, 653 4, 176	9,453 4,735	16,413 7,858	20, 588 7, 158	22, 384 7, 458	165,468 87,006 2,169
STATE: LANES, \$955 Taxable income (State) Some for one for at 3, 35 Attac Lierane Towar 35 Property Towar 1, 25 market Total Sinte Taxes	าหวับส			5, 479 752 1 4 573 828	5, 919 049 179 858 1, 346	6,979 349 179 191 191 191	5, 579 105 173 534 1 ₀ 109	5, 353 361 167 538 }, 618	5, 222 230 157 538 1, 034	8, 222 339 151 836 1, 604	6, 233 338 853 838 8, 834	4, 979 310 143 534 301	4, 777 3%0 145 836 831	4, 111 810 142 808 891	797 212 212 201 201 201 201	0,535 559 257 534 1,351	12,453 363 313 823 1,713	12, 430 888 379 578 7, 119	85, 65) 11, 515 2, 651 9, 575 17, 145
FRUERAL VAN, 5000 Taxable Income (Federal) Income Tay at 452				2, 973 L, 427	4, 313 2, 319	4, 873 2, 339	4, 870 2, 339	4,493 2,167	4, 186 2, 010	4,184 2,010	4, 164 1, 210	3,784 1,817	\$,286 2,817	3,769 1,817	0,788 1,817	t, 204 3, 458	10,211 \$,141	LO, 112 6, 142	TN, 513 27, 623
INCOME AFTER TAX. \$ 600 CAPTEL INVESTMENT, \$600 Productor Facilities Mine Drivelogment & Testing Emlogical Proteive Working Capital Total Copicit Investment	Tenr-3 1,627 2,620 2,020 8,117	Y047-2 24,080 4,259 30,250	¥###*-1 36,000 34,308	9, f23 2, 940	8,613	e, 613	8,512	7, 895 562), 39 9	7,399	7,350	0, 145	8, 745	4,745	6,746	11,634	13,426]_421	30, 59G
CASSI FLOWF, S202 Income After Tax Degeneration Working Capital Total	б, 1(1)	po, 250	- po, 650)	8, 625 4, 900 (1, 285	8, 543 4, 629 (3, 113	8,613 4,630 13,113	8,619 4,620 13,213	1,895 4,600 1,943	t, 195 4, 195 13, 199	3,209 4,469 J1,080	040,5 8,340 8,980 51,998	8, 746 4, 630 13, 245	E, 745 4, 803 21, 245	4,745 4,639 11,346	8,345 4,600 11,365	51, 384 4, 636 16, 204	13, 428 4, 600 38, 928	8 0, 428 4, 626 6, 293 24, 278	212, 426 136, 696 136, 696
. CUMULATIVE CASH FLOW	6, 3175	06.311	(72, 167)	D1,012) II], PCD	- DIL, 156) (21.743)	\$,7031	1, 101	14,200	29,133	27,644	<\$, [8]	69, 234	T1, 578	81, 753	105,811	139,089	

 \oplus

	*. 1 + 14 + 1 at , 1 + 40	44		na ana ao sa ta	, and the second se	en galen en galen. En galen er galen	درد اختراری کو راهد مراجع در کرد کرد	ىيەر مەكەرىيەر. مىيەمەر مەرقىرىيە	مردی افغانی در در ره و مردهاند و ومر از ارز				· · · · ·
# 	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
Course Malugar	the second second second second	and the second second	a a fa		and an		The second		An a division of the second second second	50000000000000000000000000000000000000			1 1 0
Questa – Molycorp	10.1	10.1	11.0	11.0	10.0	11,0	11.0	(1.0)	11.0	11.0	11.0	11.0	11.0
Choopson Creek - Cyprus	~	1000 1000			***			10.0	15.0	15.0	15.0	15.0	15.0
Annax - Amax Al Preh	59.0	53.0	53.0	53.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Action - Amax Allog 10-1-	- 7.0	7,0	7.0	6.0	-		-	-					
<u>A Renderson - Amax</u>	1 22 5				-			15.0	30.0	50.0	50.0	50.0	50.0
Chamita Dural	17.0	13.4	14.0	15.0	15.0	15.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
Siering - Dava	3.0	12.0	12.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Manara Mark - Mavai	3.5	3.5	3.2	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Esperanza - Daval R. C.	2.0	2.0		1.0	2.0/	2.0	2.0	2.0	2.0	2.0	2,0	2.0	2.0
San Manuel - Newmont 1/1/10	4 3.6	3.8	4.9	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Twin Buttes – Anaconda	.3	1.0	2.1	2.5	3.2	3.1	2.7	3.5	3.5	3.5	3.5	3.5	3.5
Pima – Cyprus	1.5	1.2	1.1	1.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Bagdad – Cyprus				.5	.5	.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Mission - Asarco	1.2	1.2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Silver Bell - Asarco	.4	.4	.2	~	.2	.5	.5	.5	. 5	.5	.5	.5	. 5
Inspiration – Inspiration	.5	.3		.3	.5	.5	.5	.5	١.5	. 5	.5	.5	. 5
Other	And the second	1700 ⁰⁷ 1700100370000000000000000000000000000		.2	. 6	.6	. 8	1.0	1.0	1.0	1.0	1.0	1.0
Total U.S. A broke	111.1	108.9	110.0	115.0	113.0	114.2	118.0	144.0	164.0	184.0	184.0	184.0	184.0
CANADA 7 How 1917-													
Alice Arm(- Kennecott)	6.1	5.1	1.1				-	-	-	-		-	
Eudako - Noranda - Placor	18.2	14.5	11.0	12.0	15.0	15.0	15.0	18.0	18.0	18.0	18.0	18.0	18.0
Breada – Noraeda	8.1	9.5	10.4	>10.1,	9.3	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Gibraltar - Noranda - Placer	-		0.5	1.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Lornex - Rio Algom	-	-	0.6	~1.5	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Island Copper - Utah Int'l.	*****	-	1.2	1.6	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Highmont	-	-			1010		3.2	5.3	5.3	5.3	5.3	5.3	5.3
Valley Copper	whee	~~	-		-		2.0	4.0	4.0	4.0	4.0	4.0	4.0
Caspe - Noranda	0.4	0.4	0.4	0.8	1.2	1.2	1.2	1.5	1.5	1.5	1.5	1.5	1.5
Uner .	5.8	3.1	0.5	aning: The State of the State	. 2	.3	1.1	1.7	1.7	1.7	1.7	1.7	1.7
Total Canada	38.6	32.6	25.7	27.0	31.0	32.0	38.0	46.0	46.0	46.0	46.0	46.0	46.0
OTHER													
Chile	10.8	13.1	13.4	13.0	13.0	14.0	15.0	15.0	15.0	18.0	18.0	18.0	18.0
Peru	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Other	1.3	1.3	1.3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Total Other	13.6	15.9	16.2	16.0	16.0	17.0	18.0	18.0	18.0	21.0	21.0	21.0	21.0
TOTAL	100 0	1 57 24 4											053 0
* *** A # 5 4.0	103.3	157.4	151.9	158.0	160.0	163.2	174.0	208.0	228.0	251.0	251.0	251.0	251.0

Source: Molycorp

and NWC listed in Section - .-.

4 (b) (ii) were paid by the Company during Year 1 to its employees when they worked.

For Year 2 of the Collective Agreement compensation shall be paid and provided as follows:

(a) <u>Wages</u> - Subject to Section 3 of this Part II the wage rates provided for in Article 12 of Part III which incorporates Appendix "A" shall not apply and in their stead the Company shall pay the following rates:

Year 2 - Wage Rates

1.	Labourer	6.280	
2.		6.404	
3.	Coal crusher helper, blaster helper II, crusher helper, Labourer (Coal Mine), filter helper (sectors)	6.528	
4.	Coal crusher operator, pump man, equipment operator under 75 h.p.	6.652	V
5.	Reagent operator II, load out helper, primary crusher operator, tradesman's helper, mill repair helper	6.776	
6.	Tail ings operatcr, service truck driver	6.9 2 0	

5.

Lil

42

- 7. Shift assayer, bucker, dryer operator miner nelper (Coal Mine) 7.024
- 8. Grinding operator, secondary crusher operator, reagent operator I, rotary driller trainee, blaster helper I, secondary driller, lube serviceman II, heating plant operator - 4th class
- 9. Filter Operator II, trammer (Coal Mine)
- 10. Tireman I,filter operator I, HD truck driver - under 100 tons, equipment operator II, tool crib attendant (mill & shop)
- . 11. HD truck driver over 100 tons, heating plan operator - 3rd class.
 - 12. Load out operator, mill repairman II, HD mechanic II, machinist II, electrician II, welder II, gas mechanic II, flotation operator II, mill & mechanical lube serviceman I, HD truck driver - 150 ton & over, equipment operator I, tradesman II, instrument mechanic II, equipment operator & maintenance man (Coal Mine), miner (Coal Mine)
- 13. Rotary driller, blaster
- 14. Heating plant operator (prov. 2nd class)
- 15. HD mechanic I, instrument mechanic I, machinist I, welder I, flotation operator I, electrician I, mill repairman I, gas mechanic I, tireman, tradesman I.

.7.644 7.768

7.892

8.016

7.396

7.148

7.272

7.520

8.1

17. Shovel operator, chief mill operator, journeyman certified in Canada, heating plant operator - 2nd class permanent, mobile crane operator - 25 tons and over, drag line operator 8.264

18.

16.

19. Lead hands

8.388 8.512

(b) Non-Wage Compensationa (NWC)

Subject to Section 3 of this Part II, the Cost of Living Allowance provided for in Section 11.26 of Part III in so far as it incorporates Appendix ' "E" shall not apply, but all other NWC provided for in Part III shall apply. (ii) Subject to Section 3 of this Part II, the NWC paid by the Company on September 30, 1975, pursuant to the Agreement executed on March 1973 shall apply insofar as the matters listed in Section 4(b)(i) above are concerned.

(iii) For greater certainty the rates of pay and NWC listed in Section 4 (a) and ,
4 (b) (ii) were paid by the Company during Year 1 to its employees when they worked.

5. For Year 2 of the Collective Agreement compensation shall be paid and provided as follows:

(a) Year 2 - Wages - Subject to Section 3 of this Part II, the wage rates provided for in Article 12 of Part III, which incorporates Appendix "A", shall not apply and in their stead the Company shall pay the following rates:

Year 2 - Wage Rates

JOB CLASS

1

Switchboard Operator/ Receptionist Clerk Typist II Accounting Clerk III Kardex Clerk II

HOURLY RATE \$6.280
	() () () () () () () () () () () () () (~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
JOB CLASS		HOURLY RATE
2	Clerk Typist I Key Punch/Machine Operator Accounting Clerk II Warehouseman III	\$6.466
3	Engineering Assistant Accounting Clerk I Secretary	6.652
4	Kardex Clerk I Guard Operations Clerk Warehouseman II	6.838 /
5		7.024
6	Shipper/Receiver II	7.210 /
7	Shipper/Receiver I	7.396
8		7.582
9	Pay master Technician II Assayer II Senior Warehouseman	7.768
10		7.954
11	Tech nician I Assayer I Accountant I Engineering Draftsman	8.140
12		8.326
13	Senior Assaver	8.512

(b) Co-Operative Wage Study (CWS)

The parties agree to implement CWS effective to the date of the signing of this agreement. The parties agree to use the necessary portion of the allotted 77 cents referred to in Appendix "A" of Part III that is necessary from time to time to implment the CWS program.

The parties recognize the principle of parity as specified in Recitals 3 and 4, and Mr. Pepin's telex of August 13, 1976.

The Company will submit AIB-2 forms, or such other forms as

1974 1976 Mulins 18,000510. 18,000 780. Increase Could use 1.33 factor Labor. 19.94 1.50 9,97 29.91 -5feel 41.26 67.15 4 25,89 . Flot. Respects. 40.2 V 18.53. 21.37 -35.04. x <u>45</u> 1.85 Pour \$5.23 ~ 50,19 . Mail Supplies 6.00 × 1.7 10.20.4 4,20 Healing 1.37 1.95 × 1.7 3.32. 1.2302 OR 1.92 times 236.01 Milling 1976 = \$2.36 per ton. GEA GOTS 0.7546 genter × 1.75 = 0.7956 per tom. Torm GFA + Milling = #3.16 perton Mining 1.2.4 \$ 4.40 parton total property. recluce by 22 then to for makare poren.

Assures \$100 por the Fit. Adamac. New. FOB VAN. 4.0 1976 UNIT Fit Consumption CAME & parton Reagents. PRICES. Spelle lbs Ha 7.92 - 5.30. * Cypus Amideost. 0.60 - 7.55 . * Cypus Amideost. 9.55 perton. 5.254/18 \$44/tan 7.2 1.1 Line \$44/1- 7.2. Syntert. 55tper 16. 60 .01 5. 1 5.1 feb . 22 f. a. 16. 45 .4 18.04 18.00 × 7.20 41.878, 2 1/ Houst J. J. S. Licate 8.2" 13.2.05 Shell Cornea 21 32 37.22 0.66 N 37 .22 8.14 70 75.065. 4.88 Da fost 250 5. per Alec. 255. 26. vere 15.80. USE 40.27 per to UNITS. Consumption Cost. & perton. Surrt. 59per16. Steel. Primary Crisher. 0.01 75 0,75. Secondary Crishers. Rod Mil 0,05 75 3,75 0.052 65 3.38. Ball Mill 0.655 45 171 2.48. 20,5 1.02 Ruds 20.91 20.5 Balls 1.30 26.65 Regind 0.45. 9.23 20.5.

Total Steel use

67.15. penton.

Paver Costs. Study = 0.7832 herton × 4.5 = 1.85. 190,5 per to. Lighting Study \$0.0630 perton x 4.5 15.3. The tom. T.85.

TABLE XVI -1

"这种学校的,这个性好的。""这种影响"

PERSONNEL

SUM	MARY		Base	Cost	Fringe	Total	Cost/T
Rate	s escalated to 1974	Number	Month	Year \$	Cost/Yr \$	Cost/Yr \$	Milled \$
A.	15,000 TPD Mill						· · · · · · · · · · · · · · · · · · ·
	Administration	19	18,850	226,200	17,800	244,000	0,0465
	General Engineering	8	7,450	89,400	6,600	96,000	0.0183
	Mining	107	100,541	1,206,492	169,569	1.376,061	0.2621
	Milling	103	91,670	1,100,039	144,040	1,244,079	0,2370
	Plant Services	46	42,626	511,512	55,047	566,559	0.1079
	Townsite	10	9,016	108,192	14,589	122,781	0.0234
		293	270,153	3,241,835	407,645	3,649,480	0.6951
B.	18,000 TPD MILL						
	Administration	19	18,850	226,200	17,800	244,000	0.0387
	General Engineering	8	7,450	89,400	6,600	96,000	0.0152
	Mining	115	107,919	1,295,028	182,849	1,477,877	0 2345
	Milling	104	92,533	1,110,395	145,593	1,255,988	0.1994
	Plant Services	46	42,626	511,512	55,047	566,559	0.0899
	Townsite	10	9,016	108,192	14,589	122,781	0.0195
		302	278,394	3,340,727	422,478	3,763,205	0.5973

A STATE OF A STATE OF

GRISWOLD LTD.

COSTS, DETAIL

Act 3

MARKETING

CONOMIC FROITCITONS

TABLE XVI -1 Cont'd

SUMMARY cont'd

		Base	Cost	Fringe	Total	Cost/T
	Number	Month	Year \$	Cost/Yr \$	Cost/Yr \$	Milled
C. 20,000 TPD Mill						
						•
Administration	19	18,850	226,200	17,800	244,000	0.0348
General Engineering	8	7,450	89,400	6,600	96,000	0.0137
Mining	123	115,297	1,383,564	196,129	1,579,693	0.2257
Milling	104	92,533	1,110,395	145,593	1,255,988	0.1794
Plant Services	46	42,626	511,512	55,047	566,559	0.0809
Townsite	10	9,016	108,192	14,589	122,781	0.0175
	310	285,772	3,429,263	435,758	3,865,021	0.5521

ECONOMIC PROJECTIONS

CHAFMAN WOOD & GRISWOLD LTD.

MARKETING

PROPOSED WORK SCHEDULE FOR

3 SHIFT X 7 DAY OPERATION

13 X 29 DAY PERIODS

FOUR CREWS

Each man works 21 days out of 28 (42 hr week)

		l <u>Su</u>	2 M	3 T	4 W	5 Th	6 F	7 	8 Su	9 	10 T	11 W	12 Th	13 F	14 S	15 Su	16 	17 T	18 W	19 Th	20 F	21 S	22 Su	23 M	24 T	25 	26 Th	27 F	28 S
NITE SHIFT 12 M - 8 A		-	-	-	-	-	-	-	S	S	S	-	-	-	-	-	-	-	S	S	-	-	-	-	-	-	-	S	, S
DAY SHIFT 8A - 4 P		-	-	-	-	S	S	-	-	-	-	-	-	-	S	S	S	-	-	-	_	-	-		S	S	• . 	-	-
AFTERNOON SH 4P -12 M	ł.	-	S	S	_	-	-	B1	-	-	-	S	S	-	-	-	-	-	-	-	s	S	S	-	-	-	-	-	-

TABLE XVI -2

1. 10

PERSONNEL

DETAIL

CHAPMAN WOOD & GRISWOLD LTD.

			Unit	Bas	e Cost	Fringe	Total	Cost/T
<u>Cla</u>	ssification I	Number	Rate	Month	Year	Cost/Yr	Cost/Yr	Milled
1.	ADMINISTRATION							
	Head Office			\$-3,000	\$36,000	-	\$ 36,000	•
	Mine Office							
	Manager	1	2,300	2,300	27,600	7,400	35,000	
	Assistant Manager	1	1,800	1,800	21,600	3,100	24,700	
	Chief Accountant	1	1,200],200	14,400	500	14,900	
	Personnel-PR Director	1	1,100	1,100	13,200	500	13,700	
	Purchasing Agent	1	1,000	1,000	12,000	500	12,500	
	Payroll Accountant	1	800	800	9,600	500	10,100	
	Stores Accountant	1	800	800	9,600	500	10,100	
	Stores & Shipping Clerk	c 2	700	1,400	16,800	800	17,600	
	Warehouseman	4	650	2,600	31,200	1,600	32,800	
	Timekeeper	1	650	650	7,800	400	8,200	
	Steno	4	450	1,800	21,600	1,600	23,200	
	Receptionist	1	400	400	4,800	400	5,200	
		19		\$18,850	\$226,200	\$17,800	\$244,000	\$0.0465

COSTS, DETAIL

MARKETING

ECONOMIC SKOJECIJOH2

XVI. - 7

			Unit	Bas	e Cost	Fringe	Total	Cost/T
Cla	assification	Number	Rate	Month	Year	Cost/Yr	Cost/Yr	Milled
2.	GENERAL ENGINEEF	RING						
	Chief Engineer	1	1,500	1,500	18,000	2,500	20,500	
	Geologist	1	1,200	1,200	14,400	1,500	15,900	
	Pit Engineer	1	1,100	1,100	13,200	500	13,700	
	Surveyor	1	950	950	11,400	500	11,900	
	Surveyor Helper	1	750	750	9,000	400	9,400	
	Mine Clerk	1	700	700	8,400	400	8,800	
	Draftsman	1	650	650	7,800	400	8,200	·
	Technician	1	600	600	7,200	400	7,600	
		8		\$7,450	\$89,400	\$6,600	\$96,000	\$0.0183

A scored to the animation

CHAPMAN WOOD & GRISWOLD LTD.

WARKETING

		1.70

× ,		$+t_{i}$			

			Unit	Base	Cost	Fringe	Total
<u>C1</u>	assification	Numbo	er Rate	Month	Year	Cost/Year	Cost/Year
3.	MINING						
	Mine Superintendent	1	1,600	1,600	19,200	2,600	21,800
	Pit Gen Foreman	. 1	1,300	1,300	15,600	500	16,100
	Pit Shift Boss	4	1,200	4,800	57,600	2,000	59,600
	Equipt Operations Tr	ainer l	1,100	1,100	13,200	500	13,700
	Blasting Foreman	1	925	925	11,100	500	11,600
	Shovel Operation	4	6,36	4,274	51,288	7,693	58,981
	Maint Lead Hand	4	6.34	4,260	51,120	7,668	58,788
	HD Mechanic	grd 1 4	6.11	4,106	49,272	7,391	56,663
	Electrician	grd 1 5	6.11	5,132	61,584	9,238	70,822
	Welder	grd 1 6	5,98	6,028	72,336	10,850	83,186
	HD Mechanic	grd.2 4	5,74	3,857	46,284	6,943	53,227
	Tireman	1	~ 5.74	964	11,568	1,735	13,303
	Rotary Driller	8	5.62	7,553	90,636	13,595	104,231
	Shovel Helper	4	5.49	3,689	44,268	6,640	50,908
	Pit Truck Operator	20	5.49	18,446	221,352	33,203	254,555
*	Dozer Operator	4	5.49	3,689	44,268	6,640	50,908
*	Grader Operator	4	5.49	3,689	44,268	6,640	50,908
>;<	Loader Operator	4	5.49	3,689	44,268	6,640	50,908
	Welder	grd.2 2	5.49	1,845	22,140	3,321	25,461
	Lube Serviceman	1	5.25	. 882	10,584	1,588	12,172
	Secondary Driller	1	5,14	863	10,356	1,553	11,909
*	Sand Truck Operator	4	5.14	3,454	41,448	6,218	47,666
	Drill Helper	8	4.51	6,061	72,732	10,910	83,642

STONOBIC SPOTOS

THAPMAN WOOD & GRISWOLD LTD.

* Operators interchange seasonably as required.

MARKETING

会议**、我们在这些**你是我们的"你的。"

COSTS, DETAIL

A STORE TRANSPORT

			Unit	Base	e Cost			
Cla	ssification	Number	Rate	Month	Year	Cost/Year	Cost/Year	Milled
3.	MINING cont'd							
	Blaster Helper	3	4.51	2,273	27,276	4,091	31,367	
	Maintenance Helper	4	4.51	3,031	36,372	5,456	41,828	
	Dry Attendant	4	4.51	3,031	36,372	5,456	41,828	
	TOTAL MINING	107		\$100,541	\$1,206,492	\$169,569	\$1,376,061	\$0.2621

XVI -10

mines a rest a militar

CHAPMAN WOOD & GRISWOLD LTD.

			Unit	Bas	e Cost	Fringe	Total	Cost/T
<u>Cla</u>	assification	Number	Rate	Month	Year	Cost/Year	Cost/Year	Milled
4.	MILLING							•
	Supervision							
	Mill Superintendent	1	1,600	1,600	19,200	2,600	21,800	
	Chief Metallurgist	1	1,250	1,250	15,000	1,500	16,500	
	Mill Foreman	1	1,200	1,200	14,400	500	14,900	
	Shift Foreman	4	1,000	4,000	48,000	2,000	50,000	
	Crusher Foreman	1	1,000	1,000	12,000	500	12,500	
	Repair Foreman	2	1,000	2,000	24,000	1,000	25,000	
	Metallurgist	1	950	950	11,400	500	11,900	
	-	11	\$	12,000	\$144,000	\$8,600	\$152,600	\$0.029
	Assay Office							
	Chief Chemist	1	1,100	1,100	13,200	500	13,700	
	Shift Chemist	4	900	3,600	43,200	2,000	45,200	
	Technician	4	5.14	3,454	41,448	6,217	47,665	
	Sampler	1	4.77	801	9,612	400	10,012	
	Helper	1	4.51	758	9,096	400	9,496	
	-	11	\$	9,713	\$116,556	\$9,517	\$126,073	\$0.0240

ent company in a solid of the

Sand and the second second

CHAPMAN

The former of the second second second

14

WARKETING

			Unit	Bas	se Cost	Fringe	Total	Cost/T
Cla	ssification	Number	Rate	Month	Year	Cost/Year	Cost/Year	Milled
4.	MILLING cont'd							
	Operating Labour				•			
	Chief Mill Operator	4	5.74	3,857	46,284	6,943	53,227	
	Grinding Operator	4	5.38	3,615	43,380	6,507	49,887	
	Flot Operator	4	5,38	3,615	43,380	6,507	49,887	
	Filter-Dryer-Leach Op	. 4	5.14	3,454	41,448	6,217	47,665	
	Conc. Loader Operator	1	5.14	863	10,356	1,553	11,909	
	Primary Crusher Op	2	5.14	1,726	20,712	3,107	23,819	
	Secondary Crusher Op.	4	5.14	3,454	41,448	6,217	47,665	
	Tailings Operator	8	4.77	6,410	76,920	11,538	88,458	
	Reagent Man	1	4.77	801	9,612	1,442	11,054	
	Packer	4	4.51	3,030	36,360	5,454	41,814	
	Crusher Helper	4	4.51	3,030	36,360	5,454	41,814	
	Labourer	8	4.41	5,927	71,124	10,669	81,793	
		48		\$39,782	\$477,384	\$71,608	\$548,992	\$0.1046

CHAPMAN

80

GRISWOLD LTD.

COSTS, DETAIL ECONOMIC PROJECTIONS

13

WARKETING

				Unit			Fringe		Cost/T
<u>C1</u>	ssification		Number	Rate	Month	Year	Cost/Year	Cost/Year	Milled
4.	MILLING cont'd								
	Maintenance Labour								
	Instrument Technician		1	6.11	1,026	12,312	1,847	14,159	
	Electrician	grd.l	4	6,11	4,106	49,271	7,391	56,662	
	Welder	grd.l	4	5,98	4,018	48,216	7,232	55,448	
	Mill Repairman	#1	4	5.74	3,857	46,284	6,943	53,227	
	Electrician	grd 2	4	5.74	3,857	46,284	6,943	53,227	
	Welder	grd.2	4	5.49	3,689	44,268	6,640	50,908	
	Mill Repairman	#2	4	5.14	3,454	41,448	6,217	47,665	•
	Mill Repairman	#3	4	4.77	3,205	38,460	5,769	44,229	
	Labourer		4	4.41	2,963	35,556	5,333	40,889	
			33		30,175	362,099	54,315	416,414	\$0.0793
	TOTAL MILLING	3	103		\$91,670	\$1,100,039	\$144,040	\$1,244,079	\$0.2370

ECONOMIC PROJECTIONS

CHAPMAN WOOD & GRISWOLD LTD.

keep and the second sec

MARKETING

			Unit	Base	e Cost	Fringe	Total	Cost/T
Cla	ssification	Number	r Rate	Month	Year	Cost/Year	Cost/Year	Milled
5.	PLANT SERVICES							
	Plant Engineer	1	1,600	1,600	19,200	1,000	20,200	
	Electrical Supt.	1	1,400	1,400	16,800	500	17,300	
	Shop Foreman	1	1,100	1,100	13,200	500	13,700	
	Electrical Forema	an l	1,100	1,100	13,200	500	13,700	
	Surface Foreman	1	1,000	1,000	12,000	500	12,500	
	Safety Engr. & Sec	urity Chf. 1	1,000	1,000	12,000	500	12,500	
	Medical Officer	1	1,000	1,000	12,000	1,000	13,000	
	Power & Heat Pla	nt Fore. 1	1,000	1,000	12,000	500	12,500	
	Maintenance Sche	d.Cont, 2	850	1,700	20,400	1,000	21,400	
	First Aid Attenda	nt 4	800	3,200	38,400	2,000	40,400	
	Maintenance Cler	k 1	700	700	8,400	400	8,800	
	Security Guard	4	700	2,800	33,600	1,600	35,200	
	Electrician	Grd.1 1	6.11	1,026	12,312	1,847	14,159	
	HDMechanic	Grd.l l	6.11	1,026	12,312	1,847	14,159	
	Machinist	Grd.l l	6.11	1,026	12,312	1,847	14,159	
	Carpenter	2	6.11	2,053	24,636	3,695	28,331	
	Pipefitter	1	5.98	1,005	12,060	1,809	13,869	
	Rigger	2	5.98	2,010	24,120	3,618	27,738	·
	Welder	Grd.l l	5.98	1,005	12,060	1,809	13,869	
	Machinist	Grd.2 l	5.74	964	11,568	1,735	13,303	
	Power Plant Oper	ator 4	5.49	3,689	44,268	6,640	50,908	
	Heating Plant Ope	rator 4	5.49	3,689	44,268	6,640	50,908	
	Dozer Operator	1	5.49	922	11,064	1,660	12,724	
	* Grader Operator	2	5.49	1,844	22,128	3,319	25,447	

* 1@6mos.; 3@6mos.

XVI -14

CHAPMAN WOOD & GRISWOLD LTD.

			Unit	Bas	e Cost	Fringe	Total	Cost/T
Classification		Number	Rate	Month	Year	Cost/Year	Cost/Year	Milled
5.	PLANT SERVICES cont'd							
	Tradesman Helper	2	4.89	1,643	19,716	2,957	22,673	•
	Power Plant Helper	1	4.89	821	9,852	1,478	11,330	
	Truck Operator	1	4.89	821	9,852	1,478	11,330	
	Labourer	2	4.41	1,482	17,784	2,668	20,452	
		46		\$42,626	\$511,512	\$55,047	\$566,559	\$0.1079

CONOMIC PROJECTION

CHAPMAN WOOD & GRISWOLD LTD.

CONCERNED ON THE

		Unit	Base Cost		Fringe	Total	Cost/T
Classification	Number	Rate	Month	Year	Cost/Year	Cost/Year	Milled
6. TOWNSITE							
Supervisor	1	1,100	1,100	13,200	1,500	14,700	·
Recreation Director	1	1,000	1,000	12,000	1,500	13,500	
Clerk	1	700	700	8,400	400	8,800	
Carpenter	2	6.11	2,053	24,636	3,695	28,331	
Plumber	1	5.98	1,005	12,060	1,809	13,869	
Tradesman Helper	2	4.89	1,643	19,716	2,957	22,673	
Janitor	2	4.51	1,515	18,180	2,727	20,907	
	10		\$9,016	\$108,192	\$14,589	\$122,781	\$0.0234

AN STAR

Rate Basis 1974

63

STATE A STATE & CONTACTOR

WOOD & GRISWOLD LTD.

and the second second second second

MARKETING

TABLE XVIII - 2

FLOTATION REAGENT COSTS

4	1 meson			
Reagent		Lb/Ton	Cost/Lb. Delivered (Cents)	Cost/Ton (Cents)
Lime	1.5	1.10	6.0	6.600
Arctic Syntex L		0,01	54.5	0.545
Sodium Sulphide		0.40	15.6	6.240
Sodium Silicate		0.05	7.2	0.360
Shell Carnea 21		0.22	9.5	2.090
Dowfroth 250	·03	0.065	46.0	2.990
Superfloc 127			247.0	0.004
Total		1.845		18.829
		,		

Annual Cost at 5.25 million T.P.Y.	=	\$ 988,500
Annual Cost at 6.30 million T.P.Y.	=	1,186,200
Annual Cost at 7.00 million T.P.Y.	=	1,318,000

AHOMPSON CARAK 32.164 \$75. Extra Just 15. 47.16

TABLE XVIII - 3

Item	Lb/Ton	Cost/Lb (Cents)	Cost/Ton (Cents)
Gyratory Crusher	0.010	52.0	0.52
Cone Crushers	0.050	60.0	3.00
Rod Mill Liners	0.052	41.0	2.13
Ball Mill Liners	0.055	41.0	2.26
Rods	1.020	12.6	12.85
Balls (forged steel)	1.300	15.0	19.50
Regrind mills-allow	-	-	1.00
TOTAL			41.26

CRUSHING AND GRINDING STEEL COSTS

Annual (Cost	at	5.25	million	T.P.Y.	7
Annual (Cost	at	6.30	million	Т.Р.Ү.	11
Annual C	Cost	at	7.00	million	T.P.Y.	=

CHAPMAN WOOD & GRISWOLD LTD.

ECONOMIC PROJECTIONS

ののうちには、「ないないないない」のないである。

XVIII_40

\$2,166,150

2,599,380

2,888,200

GENERAL AND ADMINISTRATIVE COSTS AT VARIOUS MILLING RATES

	A		B 18 000 TRD			C 20 000 TRD			
		\$ Year	\$ T Milled		\$ Year	\$ T Milled		\$ Year	T Milled
Administration - salaries General Engrg salaries Plant Services	\$	244,000 96,000	.0465 .0183	\$	244,000 96,000	.0387 .0152		\$ 244,000 96,000	.0348 .0137
Salaries and Wages \$491,825 (excl. power labour) Fuel, parts, supplies				. · ·					
for roads, yard, office <u>100,000</u> Insurance, taxes, permits, est.		591,825 100,000	.1127 .0190	800	591,825 100,000	.0939 .0159		591,825 100,000	.0845 .0143
Outside services Townsite, wages and salaries		50,000 122,800	.0095 .0234	182	50,000 122,800	.0079 .0195		50,000 122,800	.0071 .0175
Communications Catering subsidy,		33,000	.0063	100	33,000	.0052		33,000	.0047
150 men @ \$9/day Ancillary heating,		492,750	.0939	1442	492,750	.0782		492,750	.0704
KE Table VIII-7		155,790	.0297		155,790	.0247		155,790	.0222
Concentrate haul equalization,		208,900	.0398		234,100	.0371		251,100	.0359
mine to North Vancouver docks		621,900	.1185		734,900	.1181		815,915	. 1165
TOTAL G & A	\$2	,716,965	.5175	\$2	2,864,165	.4546		\$2,953,180	.4219

- Standard State

ECONOMIC PROJECTIONS

XVIII-49

104 N

THE ADANAC MINERAL DEPOSIT

ATLIN, B. C.

A paper presented to the Fourth Northern Resources Conference Whitehorse, Yukon Territory

April 7, 1972

James E. Wallis, P. Eng.

Adanac Mining & Exploration Ltd. (N.P.L.)

ACKNOWLEDGEMENT

I would like to thank the principals of Adanac Mining & Exploration Ltd. (N.P.L.) for permission to publish the data included in this paper.

THE ADANAC MINERAL DEPOSIT

The Adamac mineral deposit is located approximately 20 miles northeast of Atlin, British Columbia. Access to the property is by well maintained gravel road from Atlin to Surprise Lake and by rough access road from Surprise Lake to the headwaters of Ruby Creek.

Early History

Molybdenum mineralization at the 5000 foot elevation along Ruby Creek was located by early day prospectors searching for the lode source of the placer gold deposits on the surrounding creeks. The prospect was examined and noted by geologists of the Canadian Geological Survey in 1905. Although the property was staked and held almost continuously over the following years, exploration of the mineralized zone was not seriously attempted until late 1969.

Regional Geologic Setting

The Adamac deposit occurs within a regional tectonic unit known as the Atlin Horst, which in turn lies within the Whitehorse Trough. The Coast Range Mountains are located 40 miles to the west. The Atlin Horst is composed mainly of Paleozoic rocks which have been intruded by large granitic batholiths during the Cretaceous and Jurassic periods.

The area was glaciated during the Pleistocene, effects of the glaciation being readily apparent as widespread and locally thick morainic deposits.

Regional geology of the Atlin area was mapped by Dr. J. D. Aitken during the period 1951 to 1955, and is described in Geological Survey of Canada Memoir 307.

The molybdenum deposit occurs near the periphery of a small pluton called the Mount Leonard Boss, which probably is connected at shallow depth to the Surprise Lake Batholith. The rocks of both the boss and the batholith are classed as alaskite, a leucocratic granite usually containing less than 2 per cent mafies by volume.

The boundary relationships between the Alaskites and older intruded rocks are obscured by extensive roof pendants of the Cache Creek Group and contained ultrabasic Atlin intrusives. The contact between the Alaskites and the older granodiorites which lie immediately northwest. of the deposit appears to dip steeply away from the younger intrusive. The boundary contact with amphibolitized volcanics to the northeas[†] of the deposit is not exposed, while glacial debris and fluvial deposits effectively mask relationships at the head of Ruby Creek valley. Olivine basalts and scoria cover the lower valley. At lower elevations, Ruby Creek has cut through the basalt cover forming an impressive canyon and exposing underlying auriferous gravels. The principal source of the basalts and scoria was for the volcano forming Ruby Mountain which is located approximately 2 miles southeast of the deposit. These volcanic rocks are dated as being late Tertiary in age.

In addition to molybdenum and minor tungsten at the Adanac mineral deposit, economically significant amounts of tungsten and placer gold occur in the same general area.

Early-day placer mining flourished on Boulder Creek and that portion of Ruby Creek which was not covered by basalt flows. Portions of the auriferous gravels underlying the Basalts on Ruby Creek were drift mined until the late 1930's.

Transcontinental Resources Ltd. in 1951 - 2 attempted to develop the Black Diamond Tungsten prospect which lies approximately 1 mile south of the Adanac deposit. This prospect consists of a quartz vein up to 4 feet in width, carrying variable amounts of wolframite and trace amounts of sulphides.

- 3 -

GEOLOGY OF THE ADANAC MINERAL DEPOSIT

GENERAL

The Adanac mineral deposit is classified as an epigenetic, bulk-type, low-grade molybdenum property. It occurs entirely within a late-Cretaceous Alaskite pluton which lies in contact with an older dioritic batholith to the north.

Molybdenum occurs primarily in quartz filled fractures within an alaskite host. Molybdenum content appears to be almost directly proportional to fracture density, but is erratically distributed within the individual fractures.

A notable characteristic of the deposit is the lack of hypogene minerals other than quartz and molybdenum.

Known molybdenite mineralization of economic significance is confined to an area along Ruby Creek between Ruby Creek and Molly Lake. The deposit is roughly oval in shape, with dimensions of approximately 2000 feet in an east-west direction and 1,200 feet from north to south. Reserve grade mineralization extends from surface to approximately 500 feet below surface. Concentration of mineralization appears to diminish gradationally in an

- 4 -

outward direction from a central area or core.

Lithology

Within the immediate area of the deposit the Mount Leonard Boss is composed of four distinct lithological units. These are:

- a) Coarse Alaskite
- b) Alaskite Porphyry
- c) Fine Alaskite
- d) Granodiorite

The alaskite porphyry is essentially a transitional phase between the coarse and fine alaskites. Contacts between them are generally gradational and irregular.

Granodiorite is actually a misnomer for this rock unit as it is in fact a slightly more mafic alaskite. In addition, the plagioclase feldspar makes up a higher percentage of the total feldspars.

This classification is based almost entirely on textural variations of chemically similar rock units. Each of the four phases is effectively an alaskite characterized by abundant smoky quartz (approximately 35 %), low mafic content (1 - 5%) and lack of colour contrast between the two feldspars. In surface exposures it has a characteristic

- 5 -

light brown colour while fresh specimens are a mottled light-grey.

Average modal compositions are shown in the following table:

<u>Average Composition, %</u>									
<u>Minerals</u>	Coarse <u>Alaskite</u>	Alaskite <u>Porphyry</u>	Fine <u>Alaskite</u>	<u>Granodiorite</u>					
Quartz	36.6	33.1	34.9	31.3					
K-Feldspars	41.1	39.1	37.8	27.8					
Plagioclase	20.5	26.0	24.9	36.2					
Mafics	1.7	1.8	2.4	4.8					
Opaq ue s	0.5	0.3	0.2	1.4					

Analyses indicate that the principal minerals in the deposit other than molybdenite are pyrite and magnetite with trace amounts of scheelite, chalcopyrite, arsenopyrite, galena, monazite, zircon, rutile, gold and silver. Of these scheelite probably is the only one of economic significance.

<u>Mineralization</u>

Molybdenum is found as unusually coarse platey rosettes or scales in otherwise barren quartz fractures. The fractures are for the most part randomly oriented although the stronger fractures exhibit a low angle, northerly dip. These fractures are quite continuous and range in thickness from a normal 1 cm. up to 5 or 7 cm. Molybdenite is also found in some cases as an erratically distributed filling in dry fractures.

Molybdenum content within the deposit appears to be closely related to fracture density and magnitude. No fixed relationship between molybdenite concentration and the various phases of the alaskite has been determined. Locally the fine alaskites appear to be more closely fractured than the other rock units, perhaps because of their more brittle nature. Sampling within a number of shear zones indicates that the molybdenum content in these zones is comparable to that of the wall rock. It thus appears that shearing does not significantly affect the overall grade.

<u>Alteration</u>

Hydrothermal alteration within the deposit is noticeably lacking. Alteration of shear zones is well defined and does not extend into the wall rock.

Beyond the boundaries of the deposit there is a halo of greater alteration, which although still relatively weak, does exhibit more intense chloritization and sericitization

- 7 -

along with an increase in pyrite content.

Supergene alteration is evidenced by a shallow oxidization cap over the deposit. The degree of oxidization is slight and rarely extends more than 50 feet into bedrock except within the confines of some large shear zones. Minor decomposition of the feldspars and some oxidization of the molybdenite is noted within the capping.

Structure

Some post mineralization shear zones have been located although movement along them does not appear to be extensive.

One major fault zone involving substantial movement cuts the deposit near the known northern limit. The magnitude and direction of movement along this fault zone has not been effectively determined. Diamond drilling to the north of the zone indicates that the ore zone was faulted off, probably by a down thrust fault.

Structural relationships between the various phases of the alaskite pluton have not yet been determined due to its complex nature.

- 8 -

EXFLORATION TECHNIQUES

Geochemistry

During the 1968 summer field season, soil samples were collected on 200 foot centres over a 400 foot grid covering the 12 original Adera claims. These samples were analysed for Mo, Ag, and Cu. Significant Mo anomolous areas covering portions of the upper Ruby Creek valley were indicated by the study.

Diamond Drilling

A series of 500 foot holes were spotted on the north side of Ruby Creek parallel to the surface exposure on the basis of structural information gained from surface mapping. Initially 2 BQW holes were drilled from each drill site; one at -90° and the other at -50°. The angle holes were drilled to investigate the possibility of sampling bias based on fracture intersection angles.Later studies showed the amount of bias to be insignificant. All future holes were drilled at -90°. Approximately 3000 feet of drilling was completed before inclement weather forced closure of the program in 1968.

Assay results indicated that the program was worthy of pursuit the following year with only minor changes.

- 9 -

Core recoveries in the 70 per cent range experienced with the BQW drilling prompted changing the hole size to NQW during 1969. This change over raised recoveries to approximately 80 per cent. Several HQW holes were drilled within a few feet of existing NQW holes to investigate the relationship

between the larger hole size and both recovery and grade. Little variation was noted.

Logging and Sampling

The drill core from each hole was carefully logged both descriptively and visually and all molybdenite bearing fractures carefully noted. The molybdenite bearing fractures were marked on the visual log in red; a practice which proved to be a help in later fracture density - mineral intensity studies. All holes were then sampled in 10 foot sections and the core split and bagged. Carefull examination and subsequent testing indicated that bias was being introduced to the results depending on which portion of the split core was being assayed. Coarse rosettes of molybdenite

irregularly distributed through the core resulted in variations of assay value up to 100 per cent, depending on the split. As a result of these findings, the entire 10 foot sections / were assayed.

- 10 -

Sludge Sampling

Sludge samples were collected throughout the diamond drilling program in the hopes of finding a means of determining the true grades of the sample sections. Initially the return water from the holes was run through a vane type sludge splitter and the 1/16th split run through settling tubs. Separan was added to the tubs to help depress any floating molybdenite. This system was later changed slightly whereby the split portion was filtered through a porous sample bag. This method proved to be as effective and eliminated the human error encountered when adding separan and decanting the sample.

Intensive correlation studies were undertaken in hopes of finding a logical correlation between core assays and sludge assays. Unfortunately no correlation existed.

Diamond Drill Summary

Since 1968, 106 NQW drill holes on a pattern grid varying from 200 to 400 feet have been completed. Total diamond drilling footage completed to date approachs 60,000 feet.

MDERGROUND DEVELOPMENT AND BULK SAMPLING

<u>General</u>

During the early spring of 1970 an agreement was signed with Kerr Addison Mines Limited to undertake a feasibility study of the Ruby Creek prospect. Kerr Addison was to retain a 40 per cent interest in the property for continued development. Based on the results of the feasibility study, Kerr Addison deemed it financially unwarranted for them to continue development. Their option was relinquished early in 1971.

Underground Development

A drift was collared on Ruby Creek at the 4690 level in May 1970 with drifting to intersect a line of diamond drill holes on an approximate east west grid line. Both north and south cross cuts were developed from this drift to intersect diamond drill holes on a north-south grid line. Raises were driven on seven of the drill holes that were intersected to provide grade correlation with the drill hole assays.

Total underground exploration consisted of 2, 711 feet of lateral development and 873 feet of raising.

- 12 -

Underground Mapping

using conventional methods and closely following daily advance. The only deviation from normal mapping practice was that the ribs rather than the back were mapped to enable accurate recording of both horizontal and vertical fracture systems.

The surveying staff maintained up to date plans of all workings showing daily advance and limits of each round. This made it possible to plot the average grade of each round on the plans of the underground workings and establish average grades for both the horizontal and vertical planes of that portion of the orebody tested.

Bulk Sampling Methods

Seven large open concrete bins were constructed in a line approximately 100 feet downstream from the portal. The mine tracks continued from the portal to dump points on the upper edges of the individual bins. Muck from each round was dumped in separate bins and transfered to the crusher-loading-hopper by rubber tired,966B loaders.

Muck from the individual rounds travelled from the crusher-loading-hopper by conveyor to a roll crusher where it was crushed to -3/4 inch and sent by conveyor to the sampling tower. The crushed product flowed by gravity through a timed sample cutter with the reject going to a product bin. The cut sample then passed through a small cone crusher where it was reduced in size to - 10 mesh and fed to a Denver Vezin splitter. The average round sample of approximately 35 pounds was then bagged and sent to the assay office.

A yard stockpile of lateral development crushed product was maintained for use as feed during tune up of a 100 ton per day pilot mill.

The raise crushed product was stored in large heated bins, one bin for each raise, and partially dryed for final mill feed.

PILOT MILL OPERATION

A 100 ton per day pilot mill was purchased from Brenda Mines Limited, with reconstruction on the Adanac property begining in mid-May. Equipment within the mill was set as determined during the bench scale milling tests. Basically the circuit consisted of primary grinding, bulk flotation, primary cleaning, secondary grinding, secondary cleaner and concentrate dewatering through a vacuum pan filter. A bank of new Humphrey Spirals on the head of the tailings line produced a rough tungsten concentrate.

The mill tune up proceeded on schedule and encountered fewer problems than anticipated. When final tune up was completed the mill was shut down for several days to permit a thorough flushing of all circuits in preparation for processing of the raise product. The crushed raise product was then transfered to the mill bin and processed raise by raise with temporary shut downs and cleaning of all circuits between raises. Both head assays and total recoveries were then checked against the calculated grade of each raise, providing an excellent check on the bulk sampling method used. These checked within tolerable limits.

Mill recovery during processing of the raise product averaged 97 per cent and produced a concentrate averaging 97 per cent MoS₂. Individual runs showed recoveries as high as 98 per cent with concentrate grades as high as 98 per cent MoS₂.

ROTARY DRILLING

A rotary drilling contract was let at this stage with the view of finding another method of sampling which would give results comparable to bulk sampling. Two holes were drilled within a few feet of two of the completed

- 15 -
raises to enable comparisons to be made with the diamond drill and bulk sampling results. Comparison of these results showed the rotary assays to compare almost exactly with the bulk sample assays and to be slightly higher than the diamond drill assays. Extreme winter conditions forced closure of the program at this point.

On the strength of these results, further rotary drilling was undertaken during the 1971 season. After considerable testing, it became apparent that the rotary results were comparing with the bulk sampling results only in dry ground. Those holes which encountered appreciable water gave results identical to the diamond drill results. As a result, rotary drilling was suspended pending clarification of this problem.

ORE RESERVES

The Adanac deposit lends itself to removal of higher than average grade material during the early operating years, with stockpiling of marginal ore for subsequent reclamation.

Preliminary pit designs based on variable adjustment reserves indicate that the following production schedules could be anticipated:

- 16 -

	Mill Feed		Tons to	Cumulative	
Pit Source	% MoS2	Tons	<u>Stockpile/Waste</u>	Stripping Ratio	
Preproduction	_		10,036,000		
Stage 1	0.210	6,293,000	2,534,000	0.40 : 1	
Stage 2	0.185	7,373,000	13,680,000	1.18 : 1	
Stage 3	0.184	5,613,000	933,000	0.89 : 1	
Stage 4	0.184	7,027,000	15,827,000	1.25 : 1	
Stage 5	0.183	7,306,000	1,799,000	1.04 : 1	
Onward Pit	0.146	70,622,000	37,433,000	0.53 : 1	
,					
TOTALS	0.160	104,234,000	65,414,000	0.63 : 1	

The pattern of metal distribution as observed in the underground workings is such that grade control in mining should not be a difficult problem. Large tonnages of low grade material lie within the normal pit path and hence could be stockpiled and eventually reclaimed for mill feed. These factors combine to indicate a low waste to mill feed

ratio of 0.63: 1 for a proposed pit.

1

CONCLUSIONS

, **;**

Metallurgically the Adanac ore is relatively simple and is amenable to inexpensive beneficiation techniques. The high recoveries and premium grade of concentrate produced during the pilot mill studies greatly enhance the overall grade of the deposit. These factors together with ore reserves virtually assures that the deposit will make a profitable producing mine with the advent of stronger mineral markets and demand.

ADANAC FEASIBILITY REPORT

By

Climax Molybdenum Corporation

of British Columbia, Limited

December 19, 1975

TABLE OF CONTENTS

FOREWORD

 \odot

I.	BACKGROUND
II.	CONCLUSIONS
III.	RECOMMENDATIONS
IV.	GEOLOGIC INVESTIGATION
V.	GRADE INTERPRETATION
VI.	MINE DESIGN
VII.	ECONOMICS

LIST OF TABLES

		Page
TABLE 1	Comparison of Geologic Reserve Estimates for Adanac	1
TABLE 2	Comparative Mine Design Tonnage and Grade at Various Cut-Off Grades for an Ultimate Pit	10
TABLE 3	Production Schedule	13
TABLE 4	Canadian General Wholesale Price Index Values	14
TABLE 5	Cost Schedule	16
TABLE 6	Adanac Financial Data	18

LIST OF FIGURES

FIGURE 1	MoS, Grade vs.	Cost Per Lb. Mo for V	Various Costs Per
	Ton ² of Ore • •		

LIST OF ATTACHMENTS

ATTACHMENT	1	Geology of the Adanac Molybdenum Deposit
ATTACHMENT	2	Geostatistical Study of the Adanac Deposit
ATTACHMENT	3	Reserves and Mine Evaluation Study of the Adanac Deposit

This report and the enclosed attachments are in fulfillment of the obligation to provide a feasibility report as described in the Agreement between Adanac Mining and Exploration, Limited, and Climax Molybdenum Corporation of British Columbia, Limited, dated December 6, 1972.

Grateful acknowledgment is extended to the following people for their advice and participation in preparing this feasibility report:

Mr. E. W. Peiker, Jr.

Mine Evaluation Manager

Climax Molybdenum Company Mr. W. H. White

Climax Molybdenum Company

Dr. Michel David

IREM-MERI

Mr. Michel Dagbert

IREM-MERI

Mr. John Thornton

AMAX Inc.

Mr. A. Fred Banfield, Jr. Mintec, Inc. Golden, Colorado

Chief, Geology and Exploration Western Operations

Golden, Colorado

Consultant

Montreal, Quebec

Consultant

Montreal, Quebec

Senior Operations Research Scientist

Greenwich, Connecticut

President

Tucson, Arizona

Thomas & Cherrier

Thomas E. Cherrier Mine Evaluation Engineer

I. BACKGROUND

The property was staked by Adanac Mining and Exploration, Limited, in 1967. During 1968, an access road was extended to the claims, a camp established, a geochemical survey carried out, and a diamond drilling program initiated. Twelve diamond drill holes totaling 4,928 feet were completed prior to winter shutdown.

During 1969, a major grid pattern diamond drilling program consisting of 36,985 feet in 68 holes was implemented. Bench scale metallurgical test work was begun, and preliminary economic studies were undertaken.

Early in 1970 an agreement between Kerr Addison Mines, Limited, and Adanac was finalized, and a full-scale feasibility program commenced. It included a continued grid pattern diamond drilling program, a large underground bulk sampling program, a pilot milling program, together with related engineering studies. In April, 1970, Chapman, Wood and Griswold, Limited, was retained by Kerr Addison to act as coordinating consultant with prime responsibility for producing a final feasibility report covering all aspects of the property.

The conclusion of this report, completed in February, 1971, indicated a potentially mineable open pit reserve of 104,234,000 tons at an average overall grade of $0.16\% \text{ MoS}_2$, based on a $0.10\% \text{ MoS}_2$ cutoff grade, with an average strip ratio of 0.63 to 1. Economic studies indicated that this might not be a viable mining situation, and Kerr Addison terminated their agreement with Adanac. The report also enumerated substantial difficulties in the areas of sampling, assaying, and grade interpretation for the mineralized zone.

Climax signed an agreement with Adanac on December 6, 1972, for the primary purpose of expanding the geologic knowledge of the mineralized area and specifically for investigating the potential, both laterally and at depth, of expanding geologic reserves. Diamond drilling was carried out in both 1973 and 1974, and the discussion and results of the program are contained in Attachment 1.

In an effort to better understand the grade interpretation problems of the deposit, Climax retained a geostatistical consultant, Dr. Michel David of IREM-MERI located in Montreal, Quebec, to analyze the drill hole data used in the Chapman, Wood and Griswold study. Dr. David's report is included as Attachment 2.

An additional study of the same data was done by Mr. John Thornton of AMAX, Inc., in cooperation with Mr. Fred Banfield of Mintec, Inc., located in Tucson, Arizona, to provide a third opinion on grade interpretation and to provide open pit mine design techniques for the mineralized area. Mr. Thornton's report is included as Attachment 3.

II. CONCLUSIONS

A. The geologic investigations based on the two-summer diamond drilling program indicate that the possibilities of finding significant additional quantities of potentially mineable ore reserves are very remote.

B. The grade interpretation techniques applied by Mess'rs. David and Thornton both indicate that the quantity of potentially mineable reserves appears to be substantially less than previously indicated, while the grade appears to be slightly less. C. At the present time, this molybdenum deposit is not economically mineable, but perhaps it could be in the future with a higher product price and less restrictive British Columbia royalty and tax legislation. In fact, it will be shown later in the study that the deposit is uneconomic even assuming all factors except costs were correct as stated in the Chapman, Wood and Griswold report.

In view of these circumstances, it is not felt necessary to reassess Chapman, Wood and Griswold's descriptions of preproduction work, production equipment, mill and support facilities, etc., for this study. Their philosophy of developing a mining plan is correct (i.e., obtain the best grade first) and remains applicable. No additional assessments regarding metallurgical treatment of the ore have been undertaken for the same reason.

III. RECOMMENDATIONS

In an effort to resolve the differences that are apparent in grade interpretation for the lower grade areas of the mineralized zone, it is recommended that additional drilling be done to confirm the estimated grades in these areas.

IV. GEOLOGIC INVESTIGATION

During 1973 and 1974, Climax completed nine diamond drill holes and deepened two others for a total of 9,581 feet. The drilling was undertaken to further delimit the mineralized zone and to enhance the geologic knowledge of the area. The zone is associated with the western contact of the Ruby Creek stock and is cut off to the north by the Adera fault. It was felt that the stock contacts were not well defined in the other directions or at depth.

Drilling on the east, south, and extreme western contacts of the stock indicated no additional mineralization of consequence. Drilling through and on the north side of the Adera fault showed that the displaced section of the mineralized zone is probably included within the slip surfaces of the fault or is very deep. Drilling at the 1W - 1N location in the central portion of the deposit revealed a 1,700 foot intersection of post-mineral intrusive that effectively eliminates mineralization potential at depth. Complete details and analysis of the geologic investigation program are included in Attachment 1.

V. GRADE INTERPRETATION

The techniques used by Mess'rs. David and Thornton to determine the best grade estimate to assign to each 100 x 100 x 40 foot block in the mineralized zone vary slightly but arrive at essentially the same result. David uses a method called Kriging, described in Attachment 2, and Thornton uses a mathematical technique contained in the MEDS computer ' program package developed by Banfield, which is described in Attachment 3.

Table 1 lists the geologic reserves and grade at various cut-off grades for both methods. It can be seen that the tonnages and grades compare favorably. The higher grade ranges show less tonnage in David's method because the Kriging technique apparently does more smoothing of higher grades than does the MEDS procedure.

Selecting a $0.10\% \text{ MoS}_2$ cutoff grade for comparison purposes, the table shows 86 million tons of geologic reserves from David's mineral model and 82 million tons from the MEDS model, all grading $0.10\% \text{ MoS}_2$ or better. Analyzing the result of the "variable adjustment reserve calculation" used by Chapman, Wood and Griswold to estimate grade for 200 x 200 x 40 foot blocks, one arrives at a total of 2,222 blocks grading $0.10\% \text{ MoS}_2$ or greater. At 12.5 cubic feet per ton, this is 284 million tons of geologic reserves.

TABLE 1

COMPARISON OF GEOLOGIC RESERVE ESTIMATES FOR ADANAC

Cut-off	M. David	Mode1	MEDS M	odel
Grade	Tons	Grade	Tons	Grade
% MoS2	(000)	% MoS2	(000)	% MoS
0.02	437,024	.070	415,936	.072
0.04	341,920	.082	332,064	.083
0.06	232,928	.097	222,592	.099
0.08	148,480	.112	139,200	.118
0.10	85,984	.129	81,568	.138
0.12	46,016	.147	47,232	.159
0.14	22,272	.167	28,736	.178
0.16	10,176	.189	16,288	.201
0.18	5,184	.211	10,080	.220
0.20	2,432	.236	5,760	.244

This rather large difference appears to be caused by the variable adjustment methodology of Chapman, Wood and Griswold wherein large upward adjustments were made to low grade drill hole assay values, and smaller downward adjustments were made to high grade drill hole assay values. The adjustment equation was developed based on apparent differences between raise assays versus coincident drill hole assay values.

The statistical analyses done by David and those of Thornton indicate that there is no significant difference between assays when several assays are available for a given sample. The best estimate of the grade of a sample is the average of all assays available for that sample and not the arbitrary selection of one or some of them. This point, however, may not have much overall significance since the average of all available assays is nearly identical to the average of all "select" values.

The statistics also point out that there does not appear to be a significant difference between the assays of the raises when compared to their coincident drill hole assays. In fact, David points out that in the area bounded by sections 2W, 2E, OW, and 4N and between 4700 level and 4800 level, the average grade of raise samples is $0.191\% \text{ MoS}_2$ and of coincident drill hole samples is $0.190\% \text{ MoS}_2$.

David intimates that the variable adjustment technique is not wrong; however, it was erroneously applied in the low-grade area. Since the adjustment equation was developed from information only in the higher grade zone, it then is the only area in which the adjustment can be applied. This is evidenced by the fact that the point of zero adjustment was at a grade of about 0.20%, which is nearly the average of the area containing the

> Seem legical to bulk somply less grade areas to solve the problem.

raises <u>but</u> which is much higher than the average grade of the deposit. The potential hazards of applying the variable adjustment on a deposit-wide basis were mentioned several times in the Chapman, Wood and Griswold study.

Because this is a low-grade deposit having an essentially lognormal distribution of grade, there is an enormous amount of lower grade material relative to higher grade material. This is demonstrated quite vividly in Table 1. Making an upward grade adjustment to the lower grade material will affect a major portion of the mineralized zone, which apparently occurred.

VI. MINE DESIGN

Applying the open-pit mine design technique contained in the MEDS computer programs to the two current mineral models, the quantity of mineable reserves comes out quite close. The parameters estimated by Climax for design purposes were as follows:

Strip Cost	\$0.50/ton strip
Mining Cost	\$0.50/ton ore
Milling Cost	\$1.25/ton ore
General and Administration	\$0.75/ton ore
Depreciation	\$0.50/ton ore
Pit Slope	45 Degrees
Mill Recovery	90%
Selling Price	U.S. \$2.62/pound molybdenum contained

The results of the mine design on both mineral models are contained in Table 2. It is seen that the total mineable reserves compare amazingly closely, and the average grade is comparable. The grade for the MEDS model is slightly higher, again because of the smoothing technique. The smoothing along with a slightly different pit shape is responsible for the slight difference in stripping ratio.

The significant factor is that the average of the two totals of mineable tons is now directly comparable to the mineable reserves listed in the Chapman, Wood and Griswold study. We can compare 39 million tons at .145% MoS_2 , based on a .10% MoS_2 cutoff, having an average strip ratio of 0.95 to 1, against 104 million tons at .160% MoS_2 , based on a .10% MoS_2 cutoff, having an average strip ratio of 0.63 to 1.

This is a very dramatic difference and can be attributed to the methods of grade interpretation used to develop the respective mineral model inventories.

TABLE 2

COMPARATIVE MINE DESIGN TONNAGE AND GRADE AT

VARIOUS CUT-OFF GRADES FOR AN ULTIMATE PIT

Cut-off	М.	David Mo	del	Μ	IEDS Model	
Grade	Tons	Grade	Strip	Tons	Grade	Strip
<u>% MoS</u> 2	(000)	<u>% MoS</u> 2-	Ratio	(000)	<u>% MoS</u> 2	Ratio
0.14	15,067	.173	3.9	18,400	.184	3.3
0.13	20,767	.163	2.5	22,433	.175	2.5
0.12	26,267	.155	1.8	27,967	.165	1.8
0.11	32,567	.147	1.3	33,267	.157	1.4
0.10*	38,633	.140	0.9	38,533	.150	1.0

*0.10% MoS₂ is assumed to be the lowest possible grade that can be mined and put in the mill with no stripping.

VII. ECONOMICS

Figure 1 relates grade of ore in the ground to cost per pound of molybdenum produced at selected costs per ton of ore based on 90% mill recovery. It can be seen that at a \$3.00 cost per ton of ore and a \$2.62 per pound of molybdenum selling price the break-even mineable grade is between 0.10% and 0.11% MoS₂. The \$3.00 cost assumption includes mining, milling, G and A, and depreciation but no stripping, royalty or profit.

It was decided that a cut-off grade of 0.10% MoS₂ would be used for mine design and minimum mill feed grade because of the general nature of the cost estimates and differences in philosophy and opinion of what costs should be included when determining a minimum mineable grade. It is unlikely that anything less than 0.10% material could be economically mined with no stripping considered.

An evaluation of the potentially mineable reserves defined in this study was undertaken by Thornton with the fairly obvious result that it is uneconomic. In an effort to shed additional economic light on the deposit, an evaluation was made assuming that grade and tonnage as defined in the Chapman, Wood and Griswold report were correct. Table 3 lists their annual tons of ore along with grade and pounds of molybdenum recovered.

Their capital and operating cost estimates were made current by making an adjustment based on the change in the CANADIAN GENERAL WHOLESALE PRICE / INDEX. These index figures are shown in Table 4 and were obtained from the PRICES AND PRICE INDEXES catalogue of Statistics Canada.

TABLE 3

PRODUCTION SCHEDULE

YR.		STOCKPILE & WASTE	MILL FEED 350 DAYS	GRADE	LES. MO RECOVERED @ 90% R.
1	Preproduction				
2	Preproduction				
3	Preproduction	10,036			
4	Production	7,875	6,300	.210	14,288
5		7,875	6,300	.185	12,587
6	•	7,875	6,300	.184	12,519
7		7,875	6,300	.183	12,451
8		7,875	6,300	.183	12,451
9		3,150	6,300	.161	10,954
10		3,150	6,300	.148	10,069
11		3,150	6,300	.148	10,069
12		3,150	6,300	.148	10,069
13		3,150	6,300	.148	10,069
14		3,150	6,300	.148	10,069
15		3,150	6,300	.148	10,069
16		3,150	6,300	.148	10,069
17		3,150	6,300	.148	10,069
18		3,150	6,300	.148	10,069
19		1,077	6,300	.142	9,662
20	· · ·	•••	3,434	.110	4,080
		81,988	104,234	.160	180,000

NOTE: Waste total includes 16,574,000 tons of Stockpile material that is also included in Mill Feed total. This material is double handled. True Waste total is 65,414,000 tons.

TABLE 4

CANADIAN GENERAL WHOLESALE PRICE INDEX VALUES

1931-39 = 100 1

Date	Value	Annual Percent Change	1974-76 Percent Change	1972-76 Percent Change
Jan. '71	285.0	5 2		
Jan. '72	299.7	12.6]
Jan. '73	337.4	27.2		
Jan. 74	429.2	12.8		81
Jan. 75	484.3	12.0*	26	
Jan. 76	542.4*		J	J

*Estimated value.

Capital costs contained in the report were based on an assumed 1971 bid situation; therefore, they were escalated from January, 1972, to January, 1976, which means they were increased 81%. Likewise their operating costs were expressed in 1974 dollars and needed escalating from January, 1974, to January, 1976, which meant an increase of 26%.

The total previous capital was \$73,763,000 which, when increased 81%, becomes \$133,511,000. The previous figure did not contain any money for replacement equipment which is now taken as \$4 million in the ninth and in the fifteenth years. The preproduction period has been increased to $2\frac{1}{2}$ years, and development costs were added which reflect moving 10 million tons of material at \$1.00 per ton and allowing \$1.00 $h_{246/\mu_{10}}$, per ton to cover general, administration, and start-up costs. This totals \$20 million in the third year.

Original unit operating costs and the current estimates are as follows:

Activity	Original	x $1.26 = January$,	1976
Strip/Ton Strip	\$0.40	\$0.50	
Mine/Ton Ore	0.40	0.50	
Milling/Ton Ore	1.23	1.55	
G and A/Ton Ore	0.45	0.57	

Table 5 lists these total capital and operating costs by year. The amount of capital shown in each of the first three years is a rather arbitrary estimate and is only done to facilitate a reasonable cash-flow schedule over time.

TABLE 5

COST SCHEDULE

					OPERATING			
	YR.		CAPITAL	DEVELOPMENT	Stripping 50¢/T	All Other \$2.62/T	TOTAL OPERATING	
	1	Preproduction	\$ 33,000	\$	\$	\$	\$	
	2	Preproduction	50,000					
	3	Preproduction	50,000	20,000			·	
	4	Production			3,938	16,506	20,444	
	5				3,938	16,506	20,444	
	6				3,938	16,506	20,444	
	7				. 3, 938	16,506	20,444	
	8				3,938	16,506	20,444	
	9		4,000		1,575	16,506	18,081	
	10				1,575	16,506	18,081	
	11		• •		1,575	16,506	18,081	
	12	· ·			1,575	16,506	18,081	
•	13				1,575	16,506	18,081	
×	14		•		1,575	16,506	18,081	
	15		4,000		1,575	16,506	18,081	
	16				1,575	16,506	18,081	
	17				1,575	16,506	18,081	
	18	•			1,575	16,506	18,081	
	19				539	16,506	17,045	
	20					8,997	8,997	
	•		\$141,000	\$20,000			\$309,072	

The production and expenditure data were put into a computer program which calculates the Discounted Cash Flow Return on Investment based on the net cash flows generated. The following situations were examined:

- CASE 1. Project undertaken by a U.S. corporation paying Canadian branch tax, U.S. income tax, and 27.5 percent of net proceeds to the optionor.
- CASE 2. Project undertaken by a U.S. corporation paying Canadian branch tax and U.S. income tax but no payment to the optionor.
- CASE 3. Project undertaken by a Canadian corporation paying Canadian taxes and 27.5 percent of net proceeds to the optionor.
- CASE 4. Project undertaken by a U.S. corporation paying Canadian branch tax, U.S. income tax, and 27.5 percent of net proceeds to the optionor but with a 20% reduction in capital expenditures.

The super-royalty was not used in any of the runs under the assumption that it will be removed in the near future in order to stimulate the mining industry. The provincial royalty was used and is assumed deductible for provincial taxes but not for dominion taxes. All capital is assumed to be available on an equity basis. Runs were made at prices of \$2.62, \$3.00, and \$3.50 per pound of molybdenum contained for all cases.

The results of the computer runs are found in Table 6.

TABLE 6

ADANAC FINANCIAL DATA

January 1976 Dollars

Mo Price	Capital Cost	Tax Resident	Optionor's % of Net Proceeds	(\$000,000) NPV. (\$000,000)					
				DCF	Payback	Avg Inc/Yr	···· @10%	@12%	@15%
\$2.62	Std	U. S.	27.5%	%	Never	\$(1.11)	\$(64.9)	\$(69.3)	\$(73.5)
3.00	Std	U. S.	27.5	1.7%	13.7 yr	0.20	(53.3)	(59.1)	(65.0)
3.50	Std	U. S.	27.5	3.9	9.7	1,84	(39.6)	(47.0)	(55.0)
2.62	Std	U. S.	. 0		Never	(1.11)	(64.9)	(69.3)	(73.5)
3.00	Std	U. S.	0	2.1	12.7	0.54	(50.4)	(56.5)	(62.9)
3.50	Std	U. S.	0	5.1	8.3	2,77	(32.1)	(40.4)	(49.4)
2.62	Std	Canadian	27.5		Never	(1.88)	(74.0)	(77.9)	(81.2)
3.00	Std	Canadian	27.5	1.5	14.3	0.17	(57.4)	(63.3)	(69.3)
3.50	Std	Canadian	27.5	4.2	9.7	2.36	(40.0)	(48.1)	(56.7)
2.62	-20%	U. S.	27.5	1.0	15.5	(0,24)	(45.6)	(49.8)	(54.1)
3.00	-20	U. S.	27.5	3.2	10.5	1.04	(34.3)	(39.8)	(45.6)
3.50	-20	U. S.	27.5	5.7	7.4	2.49	(21.8)	(28.8)	(36.4)

Canadian Tax Assumptions: Bill 31 without super-royalty, Bill 31 deductible for Provincial taxes but not for Dominion taxes. Dominion income tax effective tax rate of 27% with Branch Tax of 25% on U. S. resident corporation.

U. S. Tax Assumptions: WHTC, income tax rate @34% with 14% gross percentage depletion allowance. Geod back later Adamage and the date of the second depletion allowance.

As shown in Table 6, the Discounted Cash Flow Return on Investment does not get up to 6 percent even under the most optimistic conditions. The number of years required for payback does not include the preproduction period. The rather large negative Net Percent Value figures also demonstrate the lack of economic viability of the Adanac deposit.

Thus, even when assuming that the original tonnage and grade exists, the deposit cannot support today's capital and operating costs at today's price nor at escalated prices. Quite obviously a small deposit has even less chance with the higher unit costs involved in all areas.