# C0 T 

## KaNLOOPS MTHTMS DTVISTON

## Haxtsix cowaria

## GAXADA

<br>BY<br>ALPMED R. ALLEN

GBOLDGZGAL EMONEER
MOVIMEBER, 2952.
PACE NUMBER
A. TMTRODUCTION ..... 1
B. LOCATTOR, TRANSPORTATION \& TOPOGRAFHY ..... 2
C. GLaTMS ..... 3
D. HISTORX ..... 3
E. CONCLUSIONS ..... 4
F. REGOMMENDATTONS ..... 5
a. acolocy ..... 6
2. REGGONAL GEOLOGX
6
6
(a) Stratigraphy ..... 6
(b) Structure ..... 6
2. LOCAL GEOLOGY ..... 6(a) Stratigraphy6
(b) Staructure ..... 6
(e) Mineralogy ..... 7
(d) Sample Results ..... 7
撸. HXPLORATORX WORKINGS ..... 10
GENERAL SLATHMDNY AND DETALLS OF WORKINGS ..... 10
(a) Open•PAts ..... 10
(b) Tunnels ..... 10
(e) Shafts and Raise ..... 11
(d) Diamond Dxililing ..... 12
I. METAL MARKETS AND PRICES ..... 12
J. VALUE OF METALLLC CONSTITVEMTS ..... 13
K. TONNAGE POSSIBILITTES ..... 14
L. CAMP ..... 25
M. WATER ..... 15
N. TMMBER ..... 15
O. POWER ..... 16
P. CLIMATE ..... 16
Q. MILLSITES ..... 16
R. RETEREMCES ..... 27
MAPS IN FOCKET

# REPORT ONTHECOTTON BELT 

## BI

ALFRED R. ALLEX
A. TNTRODUCYTON

The Cotton Belt property was examined by the writer September 25th to October 2st, 1952. Mr. A. St.Claire Brindle and Mr. F. M. Johnson accompanied the writer from Vancouver to Seymour. Four additional asaistants were hired at Seymoux, Mr. E. Daniels, Mr. A. Daniels, Mr. A. Molts, and Mr. F. West. The writer and Mr. E. M. Johnson, accompanied by the foux assistanta proceeded to the property. Mr. Brindle remained at Seymour and guided the "Beaver" aeroplane to the Cotton Belt camp where supplies for the period of examination were dropped.

The party rode by truck to the end of the road and baekpacked by trail the remainder of the distance to the Cotton Belt camp. This trip was made in one day-

The object was to complete as thorough an examination of the Cotton Belt property as possible in one week.

## B. LOCATION, TRANSPORYAKION AND TOPOCRAPHY

The property is located in the Kamloops Mining Division 10 miles by road and 28 miles by trail northerly from Seymour Arm, a mall sottlement at the north end of Seymour Arm, Shuswap Lake. Seymour Arm in 36 miles up Shuswap Lake from Sicanous, and there ls a tug-boat service between the two twice weekly. Sicsmous is on the main Iine of the Canadian Pacific Railway.
hack of transportation faclilties have delayed development of the Cotton Belt property. Mining materials and supplies have had to be transported from Seymour Arm by men and horses to the workings. Nevertheless, mining machinery was moved to the Cotton Belt by the Cotton Belt Mining Company Limited in 1926, and considerable surface and underground work was done.

There is a truek road from Seymour Axm to the Lorik of Seymour river, 10 miles, and from there to the property there is a fairiy good trail. This trail may be made passable for horses at a low cost. A road to the property can be constructed at moderate cost, since practicaliy no rock work will be necesaray, and a low even grade wili be possible.

The Cotton Belt claim, mine camp, and workings are loeated on and near the crest of a plateau 5500 to 6200 reet above sea level. The broad open plateau surface is characterized by low rocky humoeks and numerous small lakes. Northwesteriy, the McLeod and Copper King showings lie on the steeply sloping mouthwest side of Deep creek, at about 4000 feet above sea, level, and 800 feet above the oreek. Shuswap Lake is about 2135 Seet and Deep creek Seymour river junction about 2000 seet above sea level. Grace mountain, upon which the showings occur, is heavily timbered with moderately steep sloping sides, particulaxiy where cut by Deep ereek. It is topped, however, by rolling piateau topography rather than rugged peaks so characteristic of the mountains to the north and east in the Big Bend area.

## C. CLADMS

Twenty-nine mineral claime are held, as Sollowss

1. Mineral Glaims held under option agreement: -

3 Crown Granted claims, being the Cotton Belt
Joe Boyne
7 Located claims, being the Grace Mountain 5
6

| $" 1$ | 6 |
| :--- | :--- |
| 1 | 7 |

" 8

Venus 1 - 3
2. Mineral Claims held by location: -

19 Located clairas, being the June 2 to 16 inclusive.
MoLeod 2 to 3 inclusive.
All the above mineral claims are in good standing.
D. HTSTORY

Indians of the distriet knew of the extensive Cotton Belt mineral zones many yeare before the white settlers arrived. In 1905 the deposit was named and staked by Alexander Clark, a negro prospector, who was guided to it by Johnny Cabbage, an Indian.

Clark and partners, F. N. Daniel. and Isaac Harxis, staked the Cotton Belt, Boyne, Joe, Harrison, Victoria, Jessie, and Wellington mineral claims to cover the mineral occurrences exposed on the plateau.

The next year the Lower showings were discovered and staked by McLeod, Bass, McConnel, Yorkman, Lund, MoMuLlen, Sinclair, Munger and others.

At least seven properties were worked by small groups of prospectors, and during the next eight years they dug hundreds of open pits to expose the "Cotton Belt Lode", "McLeod Lode" and the "Copper King Lode". These properties were amalgamated and actively explored by the Cotton Belt Mining Company Limited, during the years 1925 to 1929.

Wo work has been done on the properties since 1929.

## g. CONCLUSIONS

The Cotton Belt properties are composed of adjoining mineral claims upon which are exposed three long and persistent zones of mineralization, conforming with limestone bands in pre Cambrian schist and gneiss of the Shuswap complex.

The zones are partially covered by overbunden and forest growth, but sufficient exposures have been rade to indicate a 6500 foot zone named the Cotton Belt, a 1000 foot zone named the McLeod, and a 1000 foot and Ionger Copper King zone.

The Cotton Belt and McLeod zones contain silver, lead and zinc, and the Copper King copper. The Cotton Belt and MoLeod zones, along with the intervening unexposed ground lie in a narrow mineralized section about three miles long and over 2000 feet difference in elevation.

From an examination of the showings, I estimate that an average run-of-mine grade of 1.96 ounces silver per ton, $5.84 \%$ lead, and $3.16 \%$ zine may be expected over a minimum average width of 30 inches for the 1000 feet of McLeod zone and 6500 feet of Cotton Belt zone.

Surface showings indicate that the lengths of the zones will be found double the figures given, with a moderate amount of exploratory work. From the data available there is a reasonable possibility that sufficient ore to warrant a 750 ton concentrator may be quickly developed, and that under present economic conditions a net profit of about ten dollars per ton may be expected from such an operation.

## F. RECOMMENDATIONS

It Is recomended that the option agreement be exercised and that the following minimun works program be comnenced as soon as possibles -

Estimated Cost

1. Improve the trail from the end of the road
at Seymour bridge to the Cotton Belt camp
suitable for horses suitable for horses . . . . . . . . . . \$ 2,500.00
2. Construct several camps for small orewa . . $15,000.00$
3. Have a magnetometer survey made of the ontire mineralized section, particularly to locate the northwest extension of the Cotton Belt and both northwest and southeast extensions of the McLeod zones . . . . . . . . . . . . . . 15,000.00
4. Follow up the magnetometer survey with surface stripping and dianond drilling of anomalies ................. 50,000,00
5. Map the various showinge and workings . . . . 5,000.00
6. Clean out the old workings necessary for a thorough examinattion and prepare to extend those warranting further work . . . . . . . $2,500.00$
7. Necessary equipment for the above . . . . . $20,000.00$
8. Contingencies Fund . . . . . . . . . . . . $25,000.00$

TOTAL
$\$ 125,000.00$

## 1. REGTONAL GEOLOGX

(a) Stratigraphy

The property lies in an area underlain by Pre Cambrian schist and gneiss containing long and persistant bands of limestone. G.M.Dawson named the series the Shuswap. Westerly from the property several miles there is a large body of granodiorite。
(b) Structure

The general strike of the schist, gneiss and limestone is north to northwest and dip southwest. Despite the metanorphosed charsoter of the rocks the attitude is remarkably uniforin over the entire area.

## 2. LOCAL GEOLOGX

(a) Stratigraphy

Thin and thick bands of crystalline limestone lie conformable with the schist and gneiss of the Shuswap series. Long zones of thin bedded limestone and schist are replaced and altered by sulphide, oxide, and silicate minerals. The schist, essentially mica, quartz and garnet, comprises the largest proportion of the country rock. A band of hard grey gneiss lies between the Mcieod and Copper King zones. A 50 foot band of white crystalline limestone Lies about 200 feet above the Cotton Belt zone, and the zone is associated with thinner 2 to 12 inch bands of limestone. The MoLeod zone is associated with a 30 foot band of white cxystalline limestone. The Copper King zone appears to be two or more thick siliceous bands in gneiss.
(b) Structure

The strike of the entire assemblage of country rocks and mineralized zones is about north 30 degrees west and the dip 35 to 45 degrees southwest. In the bottom of the "Bass" shaft the vein steepens to more than 50 degrees dip. No faults were observed by the weiter, but a fault of small displacement has been reported near the "Bass" ghaft.

The mineralized zonea appear to be replacement of the limey constituents
and bands in the mica. schist. These zones contain hard bands of non metallic silicates and oxides along with softer bands of quarti, celeite, mica, and oxides and aulphides of iron, lead, zine and ailver. Some shearing is ovident throughout the wone. The bwads containing sulphides are from 2 inches to 12 Leet thick and very long.
(e) Mineralogy

The country rock is comprised of cchist, gneiss, and limestone. The schist is composed of white and brown mica, quartz, gaxnet, epidote, andalusite (?) and minor silicates and oxides. It is dark brown to grey, compact and tougha The gneise is composed of biotite, quartz, feldspars, epidote, and minor silicates. It is finely banded light and dark grey. The limestone is white and fine-to-coarsely crystalline.

The Cotton Belt and MeLeod minezallzed zones are composed of galena, aphalerite, magnotite, pyrite, pyrrhotite and limonite, in a gangue of garnot, quartz, mica, diopside, epidote, feldspara and hornblende. The Copper King zone contains in white quarta, chalcopyrite, bornite, pyrite and chaleocite with inclusions of micsceous silieified country rock.
(d) Sample Results

The exposed mineralized zones were sampled by the writer and the assay results are listed below. These do not represent sampled ore shoots only, since the underground workings were marked off in 20-foot lengths and then sampled every 20 or 40 feet as deemed necessary without regard to the width of the zone. Exceptions to the sbove were where the tunnels were off the zone in one or two places, and there no samples were taken.
2. COTRON BELT ZONE - Surface Open Cuts:

| $\begin{gathered} \text { SAMPXE } \\ \text { NO. } \end{gathered}$ | LOCAITON | Width <br> Inches | $\begin{aligned} & \text { Silver } \\ & \text { Oz/Ton } \end{aligned}$ | $\begin{gathered} \text { Lead } \\ 0 \\ \hline \end{gathered}$ | $\begin{gathered} 2 \operatorname{lnc} \\ 8 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5001. | Southeast open cut near top of Plateau | 18 | 1.2 | 6.00 | 0.36 |
| 5002 | 1.062 Feet northwest from Sample 5001 | 84 | 1.2 | 2.50 | 1.00 |
| 5003 | 534 Feet northwest from Semple 5002 | 36 | 1.45 | 3.50 | 3.60 |
| 5045 | Southeast of Bass Shaft | 30 | 2.0 | 2.80 | 2.50 |
|  | Arithmetic Averages | 42 | 1.46 | 3.92 | 2.86 |


| NO. 2 TUNTELT |  |  |  |  |  |  | - |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { SAMPLE } \\ \text { NO. } \end{gathered}$ | LOCATTION |  |  |  |  |  | Width <br> Inches | Silver 0z/Ton | Lead \% | Zinc |
| 5044 | Portal | plus | 20 | feet | - well |  | 42 | 2.80 | 7.30 | 2.50 |
| 5043 | - |  | 60 | * | 1 |  | 26 | 1.40 | 2.30 | 0.70 |
| 5042 | " | " | 100 | " | " |  | 27 | 1.10 | 3.70 | 3.90 |
| 5042 | " | ${ }^{1}$ | 140 | " | " |  | 28 | 1.10 | 3.80 | 1230 |
| 5040 | " | " | 180 | " | " |  | 36 | 1.30 | 3.00 | 0.80 |
| 5039 | " | $1{ }^{1}$ | 220 | " | " |  | 16 | 1.30 | 2.00 | 3.00 |
| 5038 | " | $1{ }^{1}$ | 260 | * | " |  | 12 | 0.80 | 9.50 | 3.90 |
| 5037 | " |  | 306 | n | Tunnel | Face | 13 | 2.75 | 2.30 | 1.90 |
| Arithmetic Averrages |  |  |  |  |  |  | 25 | 1.44 | 4.84 | 2.43 |

NO. 2. TUNNES

| $\begin{aligned} & \text { SAMPLE } \\ & \text { MO. } \end{aligned}$ | LOCATION |  |  |  | Width <br> Inches | $\begin{aligned} & \text { Silver } \\ & \mathrm{Oz} / \text { Ton } \end{aligned}$ | $\begin{gathered} \text { Lead } \\ \% \\ \hline \end{gathered}$ | $\begin{gathered} \text { Zinc } \\ \% \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5004 | Portal | plue 20 | reet | - wall | 14 | 0.55 | 0.65 | Erace |
| 5005 |  | " 40 |  | n | 22 | 2.05 | 3.30 | 3.50 |
| 5006 |  | ( 60 | " | \# | 30 | 0.80 | 2.90 | 1.50 |
| 5007 | n | 1180 | n | " | 18 | 0.80 | 2.00 | 3.10 |
| 5008 | " | " 100 | " | * | 22 | 1.30 | 5.20 | 7.50 |
| 5009 | * | " 120 | " | " | 22 | 1.00 | 1.80 | 4.70 |
| 5010 | " | $\cdots 140$ | $\cdots$ | " | 24 | 0.85 | 2.80 | 2.00 |
| 5017 | " | " 260 | " | " | 24 | 0.50 | 1.80 | 2.80 |
| 5012 | " | " 280 | " | " | 26 | 0.90 | 4.90 | 5.20 |
| 5013 | " | (1200 | " | " | 30 | 1.60 | 3.30 | 1.80 |
| 5014 | " | " 220 | " | " | 26 | 2.20 | 3.50 | 3.30 |
| 5025 | " | " 240 | " | , | 26 | 0.90 | 3.90 | 8.00 |
| 5016 | " | (1260 | " | - | 12 | 0.45 | 2.90 | 2.00 |
| 5017 | " | - 280 | ${ }^{*}$ | " | 28 | 2.80 | 8.50 | 2.50 |
| 5018 | " | (1320 | " | " | 12 | 0.95 | 7.00 | 5.70 |
| 5019 | " | (1)340 | " | " | 12 | 2.45 | 3.30 | 7.70 |
| 5024. | * | " 440 | " | " | 24 | Tx. | 2.30 | 3.50 |
| 5025 | * | (1) 460 | " | " | 12 | 0.50 | 3.20 | 5.20 |
| 5026 | * | " 500 | " | " | 16 | 0.30 | 1.30 | 2.00 |
| 5027 | ${ }^{1}$ | (1) 540 | " | " | 14 | 1.20 | 5.60 | 4.20 |
| 5028 | n | " 600 | " | , | 48 | 0.90 | 5.50 | 4.80 |
| 5029 | " | " 640 | " | " | 18 | 1.30 | 4.40 | 8.00 |
| 5030 |  | ( 680 | " | " | 12 | 2.65 | 8.70 | 9.00 |
| 5031. | * | " 740 | " | " | 6 | 2.90 | 6.20 | 12.50 |
| 5032 |  | " 780 | " | \% | 6 | 2.40 | 8.50 | 10.50 |
| 5033 | " | " 820 | " | " | 24 | 0.50 | 1.30 | 2.30 |
| 5034 |  | " 855 | * | Face | 24 | 1.30 | 4.00 | 5.20 |
|  |  |  | Axithmetic Averages |  | 20.44 | 1.11 | 3.99 | 4.72 |
| NO. 3 TUNNEL |  |  |  |  | Width | Silver | Lead | Zine |
| SAMPLS NO. | $\frac{\text { NO. } 3 \text { TUNEL }}{\text { LOCAT }}$ |  |  |  | Inches | O2/2on | 1 | \% |
| 5046 | Portal <br> Portal | plus 110 | feet - | widest showing | 36 | 2.00 | 4.30 | 0.30 |
| 5047 |  | plus 420 | feet - | Tunnel face | 4 | 4.55 | 14.80 | 0.20 |
| Arithmetic Averages |  |  |  |  | 20 | 3.27 | 9.56 | 0.25 |


| $\begin{gathered} \text { SAMPLE } \\ \text { NO. } \end{gathered}$ | LOCATION |  | Width Inches | Silver Oz/Ton | Leod. \% | Zine |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 5035 \\ & 5036 \end{aligned}$ | 40 Feet above | Tunnel 2 | 14 | 3.60 | 12.80 | 2.50 |
|  | 100 Feet above | Tunnel 2 | 12 | 1.20 | 3.30 | 6.00 |
|  |  | Avithmetic Averages | 13 | 2.40 | 8.05 | 4.25 |


| SAMPLE NO. | LOGATION |  |  |  |  |  | Width Inches | Silver $02 /$ Ton | Lead \% | $\begin{gathered} \text { zine } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5020 | 108 | Feet | from | Southeast | End |  | 36 | 3.85 | 6.50 | 21.50 |
| 5021 | 288 | , |  | 1 | " |  | 66 | 3.50 | 5.80 | 6.30 |
| 5022 | 840 | " | " | " | " |  | 84 | 3.20 | 5.80 | 3.30 |
| 5023 | 1000 | " | " | " | " |  | 50 | 0.80 | 0.65 | 0.65 |
| Arithmetic Averages |  |  |  |  |  |  | 59 | 2.09 | 4.69 | 5.44 |

3. COPFER KING ZONE

The Copper King Tunnel is caved at the portel, and since the examination was primarily to assess the silver - lead - zinc showings, only one sample was taken.

| $\begin{gathered} \text { SAMPLE } \\ \text { NO. } \end{gathered}$ | LOCATION | Width Inches | $\begin{aligned} & \text { Gold } \\ & \text { Oz/Ton } \end{aligned}$ | Silver 0z/Ton | $\begin{gathered} \text { Copper } \\ \text { \% } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5049 | Near Tunnel Portal | 34 | 0.005 | 1.10 | 1.00 |

The overall average of the Cotton Belt and McLeod Zones is herein taken to represent what grade may be expected from these presently exposed silver - lead - zinc showings, and is as followss -

| Width <br> Inches | Silver <br> 02/Ton | Lead <br> $\%$ | Zine <br> $\%$ |
| :--- | :---: | :---: | :---: |
| 29.83 | 2.96 | 5.84 | 3.16 |

Between the years 1905 and 1925 the Cotton Belt and adjoining properties were explored by numerous individuals and groups. Along the narrow 3 -mile zone, over a vertical range of 2500 feet, numerous open pits, shafts and adit tunnel. wexe oxcavated.

From 2925 to 1930 the properties were amelgamated by Cotton Belt Mines Limited and, using mechanical equipment, extensive underground and surface explosatory work wai done, including drifting, raising, and diamond drilling.
(a) OPG PTSS

About 30 open pits which expose the Cotton Belt zone were examined by the weiter. Several of these which appaar representative of the zone were sampled. Fifteen in which the zone is well exposed measured 12 to 96 inches true mineralized thickness, or an average of 48,8 inches.

Six challow pits were observed on the McLeod zone. These along with natural exposures show the continuity of the zone for 1000 feet along the steep side of Deep creek. The zone is atrong where it passes under overbuxden at both end.s.

The Copper King zone was not examined by the writer except at the eaved tunnel portal. The zone is reported to have been exposed by pits at one time parallel to the MeLeod zone, and across the entire Moleod group of claims.

## (b) TUNELS

The uppermost, or No. 2 tunnel at elevation 5660 feet above sea. Level, is an adit drift south 30 degrees east on the Cotton Belt mineral zone. It is approximately 5 by 6 feet in section and 306 feet long. The mineral zone is exposed from portal to face.

The No. 2 tunnel, 100 feet vertically below No. 1, is also an
adit drift south 30 degrees east on the Cotton BeIt zone. It is approximately 5 by 6 feet in section and 855 feet long. The mineral zone, except for 100 Leet near the middle portion of the tunnel where it is believed in the footwall, is exposed from portal to face.

No. 3 tunnel, elevation about 5150 feet above sea level, is an adit drift about south 30 degrees east on the Cotton Belt zone. It is about 5 by 6 feet in section and 420 feet long. The mineralized zone is exposed from portal to face.

No. 4 tunnel. reportedly 200 feet below the "Bass" shaft was not examined by the writer. It is reportedly an adit crosscut for 100 feet. Drift ing amounting to 200 feet was reportedly done from the innes end of the cross cut, but not on the Cotton Bellt zone, since apparently the erosscut did not reach the zone.

The McLeod tunnel is an adit dxift south 30 degrees east on the MoLeod mineralized zone. It is 5 by 6 feet in section and 62 feet long. The mineral zone is exposed from portal to face.

The Copper King is reportedly an adit drift south 30 degrees east, on one of the Copper King quarta zones. It is 5 by 6 feet in section and 1,0 feet long*
(e) SHAFTS AND RAISE

The "Bass" shaft is a 40 degree incline on the Cotton Belt zone. It is 5 feet high and 7 feet long directed down a minus 40 degree slope, for reportedly 60 feet. The mineralized zone is reportedly exposed the length of the shaft and steepaning in dip at the bottom.

The "Victoria" shaft Located on the Cotton Belt zone about a mile southeast of the tunnels was the first shaft aunk on the property. It is caved and was not examined, but high grade mineraliastion was reportediy exposed. The "Tastax" shaft, reportedly 48 feet deep, was not exomined by the writer. This shaft also was reported to have exposed good grade mineralIzation on the Cotton Belt zone.

The No, 1 and No, 2 tunnels are connected by a raise. The bottom of the raise is 570 feet from the portal of the $\mathbb{N o} .2$ tunnel and 200 feet from the portal of the No. 2 tunnel. The raise exposes the mineral zone from bottom to top. The mineralization is strong for the entire length and appears to average better than 18 inches thick.
(d) DIAMOND DRILLLING

Sixty five hundred feet of the Cotton Belt zone was diamond drilled by the Cotton Belt Mining Company. Sixteen holes were drilled and 15 reportediy interseeted the Cotton Belt mineralized zone. The interseetions indicated greater width of zone than exposed in the No. 1 and No. 2 tunnels, this being 4 to 12 feet. The intersections were 270 to 370 feet down the dip from the outorop. A total of 3333 feet of drilling was completed.

The Copper King zone was diamond drilled by the Granby Consolidated Mining and Smelting Company Limited, but no data relating to results obtained have been seen by the writer.

## I. METAL MARKETS AND PRICES

Experts in the field of metal marketing believe that the derand for lead and zine will remain high for several years.

The present metals prices, as of November 1951, are high, but with an anticipated steady or increased demand, the indications are that the prices will remain at about this level for some years; - they are as follows:

$$
\begin{aligned}
& \text { Lead - New York } \quad \text { - } 19 \text { cents per pound. } \\
& \text { Zinc - East St. Louis - } 29.5 \text { n }
\end{aligned}
$$

Since these prices are in American funds the exchange must be added and the present rate is about $5.2 \%$, hence although the exact amount changes weekly with slight fluctuations in exchange rate, the present prices, in Canadian funds are about: -

Lead - 20 cents per pound.
Zinc $\quad 20.5 \mathrm{n}$

## 3. VALIE OF METALLIC COMSHINUENSS

Sampling of the Cotton Belt and Moleod mineralized zones by the writer indieates average grades of 1.96 ounces per ton silver, $5.84 \%$ 1ead and $3.16 \%$ zinc. Although these values are considerably lower than those reported by other engineers, it is suggested that a dilution factor of $20 \%$ be allowed, thereby reducint the indicated run-of-mine values down to 1.57 ounces per ton silver, $4.67 \%$ lead and $2.53 \%$ zinc.

Oniy preliminary ore dressing tests have been made on this material, but assuming that a $65 \%$ lead concentrate and a $55 \%$ zinc concentrate msy be produced with $90 \%$ lead and zinc and $80 \%$ silver recovexy, the following celoulations give net velue of a ton of ores, using the C. M. \& S. Smelter schedules as standard: -/-

| LEAD | (.9) (20-2) (.925) (4.67) (20) | - ${ }^{\text {d }} 23.98$ |  |
| :---: | :---: | :---: | :---: |
| ZINC | (.9) (20.5-3.25) (.84) (2.53) (20) | - 6.60 |  |
| SILVER | (.8) (.85) (.92) (2.57) | .98 | \% 21.56 |
|  | NHT SMELTER PAMMENT | - 21.56 |  |

Production costs are estimated as Collows: -/ -

| MLNING | - | 4.00 per ton |  |  |
| :---: | :---: | :---: | :---: | :---: |
| MTLLING | - | 1.75 |  |  |
| CONCIENTRATE transportation and treatment | - | 2.25 |  |  |
| ORS transportation | - | 1.00 |  |  |
| EXPLORATTON and development | $\cdots$ | 2.00 |  |  |
| ALL OTHER | - | 1.56 |  |  |
| TOLAL PER MON |  | \$11.56 | * | 11.56 |
| ESTTMATED NET PROITS PRik TON O\% | ORR | INED | * | 10.00 |

## K. TORNAGE POSSTBILTTTES

The sampled sections only indiaate an avexage width of mineralized zone of 29.83 inches. The average of 15 mes ured surface exposures is 48.8 inches. Diamond drilling over 6500 feet of zone indicated 4 to 12 feet widths. The 1000 foot Mcheod zone appeass to average 5 feet wide. Hence, for considerable lengths the aineralized zones will, in the writer's opinion, be 4 feet and widex. However, if the 29.83 inches is congidered average available width, and $20 \%$ added for dilution, a width of 36 Inches is arrived at and may be taken as a conservative average. The Cotton Belt zone has been indicated by diamond driliing to be continuous for 270 to $3 \% 0$ feet down the dip along 6500 feet of length.

Neglecting the fact that the zone is exposed over a vertical range of 1200 feet, consider the average indicated depth to be 320 feet, the average of the depth of drill intersections. The rock in place is estimated to measure 9 cubie feet per ton. The reasonably indicated tonnage, using the above data, on the Cotton Belt zone may be calculeted as follows: -
$\frac{6500(3)(320)}{9}=673,333$ tons

The Mcheod zone has been exposed for about 1000 feet and more than 320 feet vertical difference in elevation, but if the same 320 reet depth is taken, the following tonnage may be indicated: -

9
$=106,667$ tons

The total reasonably indicated tonnage is, therefore, 780,000
tons. This is suifielent to operate a 750 - ton per day coneentrator over three years.

There is presentiy available one cabin at the Cotton Belt camp in whioh may be accormodated Pive men. The several other log buildings are in a state of disropair, but could be made habitable for a small crew until a road is built to the property. There is one small cabin at the end of the road, about 10 miles from Seymour Arri, owned by the Daniels brothers. There are several other cabins along the trail which could be acquired and used uring preliminary opening of the property, notabiy the treaper's cabin at "The Meadows".

## M. Water

There are large flows of water in Seymour river and Deep creek, and hydro possibilities reported available on both. There are numerous small oreeks irributary to Seymour river and Deep creek and ample water available for camp, mining and milling requirements. On the plateau there are numerous mall lakes and sloughs, but during a dxy year there is a scaroity of suffieient water for a large mining operation. This ia one of the seasons the main concentrator should be at a lower elevation, probably on Deep creek.

## M. TMBER

Up to an elevation of 5000 feet there is an ample supply of timber for camp, and mining requirements for years. The trail to the property passes through large stands of fir, cedar, hemloek, spruce and pine e

## 0. POWER

There are reportedly several possible power sites for hydroelectric development on both Deep creek and Seymour river. Some of the smaller tributary areekg may also have power posaibilities. During the preliminaxy development stage of the property, however, diesel power would have to be utilized.

## P. GLDMATE

The olimate is typical of central. British Columbia. The snowfull is moderately heavy at higher alevations. There is usually a cold spell in Jamuaxy or Februaxy when, during several weeks, the temperature drops 30 to 40 degrees below nero.

A arew worked during the winter of 1927 on the Cotton Belt. Several mines in more rigorous climates in British Columbia, with considerably heavier snowfall, operate all year.

## Q. MTLLSTIT

The practical location for a millsite is somewhere in the vicinity of Deep areek, below the McLeod mineralized exposures. If a suitable location can be found it may pay to instal two or more sink-zloat concentrators at strategic locations between and on the lower and upper showings, and truck the sink to the selective Motation coneentrator at the main millsite.
A. REFTRRENCES

British Columbia Minister of Mines Reports.


Waut $300000+10 \%$ wee

Want roooo hey auy 1952

Gountu ffer uruldres adcefecroer



Bus sociotorie smolsqizased - x tojoll
.E0LJzequm aris to adgamatodY

1165 West 16 th Shenue
Yancouver, $\mathscr{B}$. C.


Nerw Tu. Glecenycs.
eead zine hict regred ot che nctorbect semp yhoperty, a lival ancorin do have fererously hent. tm. Tegreal Decen from fircusecal enack, have made us an Jfec Foo the yary each, which we hare accepted. Ther fromp accepected Tus Hecenis repart and Lave noed the daven yeay ment, mithout irppeting this is in aceucs anee with anv conricescantive, eoten tau were leve and a purnis or to vicee y/an conmediateap of any ceal.
I hav nat heaw keon
Thu conce tow effot iancing un am Eferyace freceming ifar. itis cace ly wo mice nat Meser anl weingements of Yavis. bich oust micatco for 1952.

Whincerely.
Méfarvey
Thu. I. A. Fpucemeyen.
1206-Nalipic Nuava kers
ades tugles. 4 Gul.


Mr. N. L. Harvey
1165 West 16th Avenue
Vancouver, B. C.
Dear Mr. Harvey:
Thank you for letting me know so promptly that you have made a contract for the Cottonbelt Group. It was our understanding that you were free to take any satisfactory offer.

I am glad you were able to turn it so quickly and hope that the mine proves up to be a good and profitable producer.

I hope that you are feeling much better than you were when I last saw you and that you got that rest you were talking about. Give my regards to Mr . Allen when you see him.

With best personal regards and wishes for a happy and prosperous year, I am

SAS/a



Re: Cotton Belt Property

Location: Kamloops Mining Division, on Grace Mountain about 42 miles northwest of Revelstoke, B. C.

Accessibil-
ity: Nearest railroad is Sicamous, B. C. on Canadian
Pacific Ry., 36 miles from Sicamous northerly up
Shuswap Lake to Seymore Arm by boat. From Seymore Arm 10 miles by road to Forks of Seymore River and 18 miles by pack trail to Grace Mountain.

General: A very long narrow vein can be traced for approximately 3 miles - it has an average width of $30^{\prime \prime}$ and will assay Ag. 1.96 oz ; Pb. $5.84 \%$; Zn . $3.16 \%$. The elevation range along this vein is about 2000'. Two parallel veins lie in the foot wall down the north flank of the mountain considerably lower. One of these is also a $\mathrm{Pb}-\mathrm{Zn}$ vein and the other carries values in copper. These veins cannot be traced as far as the Cotton Belt Vein but seem to be a little wider. They also carry values which would be commercial under milling conditions. One geologist suggests the tonnage available as being sufficient for a 750 ton mill for more than 3 years. This estimate seems rather optimistic but is set down only to call attention to the fact that there is a high probable tonnage in spite of the narrowness of the main Cotton Belt Vein. There is rather high magnetite in the ore so it could be traced even under the glacial till cover by magnetometer. It is understood that drilling would be feasible.

Reports: Report and maps by A. R. Allen are attached. Reports by S. Clair Brindle and other geologists were read and a number of short reports in the annual reports of the Minister of Mines for British Columbia were also seen.

Allen's report is the most conservative as the length, width and values. Most of the other give it wider widths and a higher grade. Allen did not follow the main vein personally for the three miles reported but some of the government reports say it is traced that far.

Allen is a geologist in Vancouver, B. C. with a satisfactory reputation. He does some work for Estella, Giant Mascot as well as being in general practice.

St. Clair Brindle is an elderly engineer and geologist with a reputation for competence but he has been connected with various promotional activities of which several have developed into pretty good mines. The government reports are all rather optimistic in tone.

Presentation: By Norman L. Harvey, 1165 West 16 th Avenue, Vancouver, B. C., who says he represents the owner. Mr. Harvey is secretary of the Estella Company.

Terms of Pro-
posal: Price $\$ 300,000$ and retention of $10 \%$ interest; wants \$5,000.00 as preliminary holding payment; \$20,000 August, 1952; balance in 3 years. He was informed that we would not pay any money down before examination and exploration and that the time of payment is too short. He indicated held welcome a counter proposal.

Discussion: The attached report by Allen can probably be assumed to be conservative and correct so far as length, width, assays and geology are concerned. He says there is a reasonably indicated tonnage of 780,000. He goes out of his sphere to some extent in recommending methods of work and milling at this time but he seems to have been asked to do that by his principal.

Whether or not it is believed that a vein as narrow as this can be worked profitably seems to be the main point to be considered. The terms proposed are not satisfactory but if it is of interest there is little doubt that a modification can be obtained.


SAS/a


4800
4700

5000
4900
SECTION THROUGH WORKINGS



$$
\Gamma
$$





82-M-7 - RPT. COTION BELT PROPERTY Kamloops M.D.
By: A. R. Allen, 1951

