by:
Garry Price, M. Sc., F.G.A.C.
Consulting Geologist

Rapitan Resources Inc.
3447 W. Fth Ave., Vancouver, B.C.
V6R 1W2 733-6902.

Feb 20, 1987

Page
Summary
Introduction 3
Location \& Access 3
Property Definition 4
History of the Fed Bird Property 5
Regional Geology 6
Gealogy of the Red Bird Froperty 7
1985-86 Exploration Program 9
1986-87 Exploration Program 11
Exploration Potential 14
Mineralized Zones 14
Prospect Zone 15
Caviar Froperty 15
Mining Conditions 15
Conclusions and Recommendations 16
Suggested Exploration Budget 17
Bibliography 18
Appendix I Core LogsAppendix II Assay SheetsAppendix III Germanium Facts
Appendix IV Adjacent Mineral DepositsReeves MacDonald MineJersey Mine
HB Mine
Salmo Area Mine Production
Metalline Area Production
Figure 1 Location Map
Figure 2 Claim Locations
Figure 3 Regional Geology
Figure 4 Red Bird Area Geology
Figure 5 Composite Geological Plan
Figure 6 Drill Hole Section 1,1A,2,3
Figure 7 Drill Hole Section 4,5
Figure 8 Drill Hale Section 6
Figure 9 Drill Hole Section 7
Figure 10 Drill Hole Flan 2650 Level
Figure 11 Drill Hole Plan 800 Level
Figure 12 Drill Hole 86-5 Mineralized Section
Figure 13 Longitudinal Section
Figure 14 Kootenay Arc. Geology \& Deposits
Figure 15 Reeves MacDonald Geology

INTRODUCTION:

A significant stratiform Zinc-Lead-Silver-Cadmium-Germanium discovery has been made by Golden Eye Minerals Ltd. The prospect is adjacent to the abandoned Reeves Macdonald Mine, from which 7.2 million tons of ore containing approximately 540 million pounds of Zinc, 140 million pounds of Lead, 1.5 million ounces of Silver, and 3. 0 million pounds of Cadmium were produced from 1949 to 1975. Geological data indicate that ore zones mined at the Feeves MacDonald Mine project onto the ground now held by Golden Eye Minerals Ltd. This includes the high grade deposits of the Red Bird and Annex zones.

This report summarizes the geological data and mining potential; recommendations for continued exploration of this significant discovery are included.

The report relies heavily on work done by Gerald Klein, P. Eng. . who was employed as mine geologist at the Feeves Macdonald Mine from 1970 until 1975: Information gathered from Hecla Mining Company, Reeves Macdonald Mines Ltd., Cominco Ltd., Diem Mines Ltd:, and government publications has been used in this report.

The properties are situated 30 kilometres south-southwest of Salmo B.C. and 35 kilometers southeast of Trail, B.C. The claims cover an area roughly 4 km by 8 km , west and east of the Nelway border crossing

to the U.S.A., and are bounded to the south by the International Border.

The western portion of the property can be reached by crossing B. C. Hydro's Seven Mile Dam at Church Creek, and then by good. logging road. The northern part of the property is accessible by a bridge crossing the Fend d'Oreille River on the Reeves Macdonald property.

All supplies and services are available in Salmo or Trail; daily air service from Calgary and Vancouver is available at the Castlegar Airport, 45 km from the property. Power lines cross the Reeves Macdonald property nearby; water is available for drilling purposes from a number of creeks or the Pend D'Oreille River: A significant pool of experienced underground miners is available in Salmo, which has been a mining center for a long time. A partially filled tailings pond is situated on the Reeves Macdonald property. Idle mills are situated at the $H . \mathrm{B}_{\mathrm{F}}$. Mine site 12 miles to the north and at the Pend D'Oreille mine site at Metaline Falls in the U.S.A., 15 miles to the south.

PROPERTY_DEFINITION:

The property comprises several groups of claims acquired by staking; option to purchase and lease-purchase agreements.

The Fed Bird, Caviar and Grouse groups of Crown-granted mineral claims were acquired by Golden Eye Minerals Ltd from Diem Mines Ltd., of Nelson, B.C., a Canadian Subsidiary wholly owned by Hecla Mining Company of Wallace; Idaho. Golden Eye Minerals can, through a series of cash payments and work committments, earn 100% interest in the property subject to a 20% Net Profits Interest payable to Diem Mines Ltd.

The Nor 2 and 3 claims weré acquired from Gerald klein under an option agreement in 1985. These claims, which adjoin the Redbird property on the west, were partially evaluated by the $1985-86$ drilling program and have now been returned to the vendor.

The Blue and Tic claims were staked by Golden Eye Minerals and are owned outright. Claim data are listed in Appendix, I. The spatial arrangement of claims is displayed in Figure 3.

HISTOFY_OF_THE_RED_BIRD_PROPERTY:

The Redbird property was originally owned by S. Coulter and A.J.Campbell of Ymir. In 1925 an option was acquired by Conrad Wolfe and associates of Spokane and in 1926 the property was held by the Red Bird Mining Company of Spokane. By 1927, 1000 feet of tunneling had been done on the property, which included 17 claims. In 1928 , the adit was advanced to 1,200 feet and some diamond drilling was done. In 1929, the property was acquired by Boundary Basin Mines Ltd., who did further drilling (Walker, 19ङ4).

Little work was done on the property between 1929 and 1944, although a sampling plan exists dated 1942. In 1944, the property was purchased by Hecla Mining Company of Wallace, Idaho. Geological mapping and surface work was done by Hecla in 1947. In 1955, Fyles and Hewlett mapped the area (see accompanying figure), but the adits were caved at this time.

In 1961, the property was leased to Consolidated Mining and Smelting Co., who advanced the Redbird heading in the oxide zone about 800 feet, and completed 4,126 feet of diamond drilling. The drilling showed "strong and apparently continuous oxidized zinc-lead mineralization of ore grade", but no sulfides were encountered and the lease was relinquished.

In 1973, under an agreement with Hecla, Reeves MacDonald Mines advanced the heading of their 800 level in the Annex mine an additional 700 feet into the Red Bird property. From this heading, 15 diamond drill holes totalling 6200 feet were completed. From the face, 4 diamond drill holes encountered four separate bands of zinc-lead mineralization each 20 feet wide, averaging 4.18% Zinc, 0.12% Lead, $0.56 \quad 0 z / t o n$ silver and 0.04% Cadmium, similar grade to ore being mined by Reeves MacDonald. The Reeves MacDonald Mine closed in 1975, and nothing further was accomplished on the Redbird property.

The 16 crown-granted mineral claims comprising the Red Bird property are now owned by Diem Mines Ltd., of Nelson, B.C., a subsidiary of Hecla Mining Company, of Coeur d'Alene, Idaho.

The Nor claims were staked in 1981 by Gerry klein, P.Eng., who had been mine geologist at Remac, and who recognized the potential for sulphide ore at depth on the Fed Bird property.

In 1985, Golden Eye Minerals secured a lease on the Red Bird, Grouse and Caviar properties property from Diem Mines Ltd., and an option on the Nor Claims from Klein.

REGIONAL_GEDLOGY:
The Red Bird property is situated near the south end of the "Kootenay Arc", described by Fyles and Hewlett (1959) as a curving belt of limy sedimentary rocks of early Paleozoic (mainly Cambrian) age folded around the Cretaceous Nelson and Kuskanax Batholiths. The Kootenay arc is characterized by significant Zinc-lead-silver deposits in Cambrian "Reeves" or "Badshot" carbonates extending from the Lead Point area, near Northport, Washington to the numerous deposits north

```
MAJOR STRUCTURAL UNITS OF THE
SALMO LEAD-ZINC AREA
```


$\alpha>1 \hat{v}>$ Mesozoic volcanic rocks
Cambrlan sedimentary rocks, (Quartzite Range and Reno formations, Laib group)
Ordovicion (?) black argillite (Active (?) formation)
Cambrian sedimentary rocks, (Quartzite Range, Reno and Nelway formations, and Laib group)
${ }_{+}^{+}{ }^{+}+$
Granitic rocks
Major thrust faults
man Transverse foults
\square Lead-Zinc orebodies

GOLDEN EYE MINERALS LTD. SALMO AREA

REGIONAL GEOLOGY

Formation Member		Sheep Creek Articline, South Side of South Salmo River		Truman Hill-Emerald Minc Area, Composite Section		Reeves MacDonald Mine Area, Composite Section	
		ApproxiThickness (Feet)	Lithology	Approximate (Fcet)	Lithology	Approxi- mate Thickness (Feet)	Lithology
Nelway.		Top not exposed.	Grey dolomite containing distinctive black masses with small white spots.				
		500 (?)	Dark blue-grey fine-grained limestone with thin argillaceous beds.				
Gradational contact.							
Laib.	$\begin{aligned} & \text { Upper } \\ & \text { Laib. } \end{aligned}$	3.000	Grey calcareous phyllite, grey brown and green phyllite; thin calcareous lenses.	Top not exposed.	Grey anci brown micaceous quartzite minor green phyllite, black argillite, and limestone.	Top not exposed.	Green and grey phyllite, grey and brown micaceous quartz.te, minor limestone lenses.
	$\overline{\text { Emerald. }}$		Brown-weathering grey siliceous argillite.	200-300	Black calcareous argillite.	500	Black, crenulated calcareous phyllite.
	Recves.	450	Grey, poorly banded limestone.	350	Interbanded white grey and black crystall. ne limestone.	130	Banded grey and white limestone.
	Truman.	350	Green phyllite. Grey-green and brown phyllite, with calcareous lenses most common near the basc.	100	Brown skarny calcareous argillite. Brown micaceous argillite. Brown argillite with thin calcareous beds. $10-20$ feet of white crystalline argillaceous limestone.	60	Green and brown phyllite, white limestone.
Conformable contact.							
Reno.	$\begin{aligned} & \text { Upper } \\ & \text { Renor } \end{aligned}$ Reno.	60	Blocky grey quarizite, of which the upper 30 feet contains coarse calcareous quartzite; cross-bedded.	40-50	Blocky grey quartzite with lenses of cal careous quartzite, micaceous quartzite, and minor limestone.	5-10	Blocky grey quartzite.
	$\begin{array}{\|l} \text { Lower } \\ \text { Reno. } \\ \hline \end{array}$	560	Grey micaceous quartzite and dark-grey to black phyllite.	500	Grey-brown to grey micaceous quartzite with grey blocky beds near tac base	230	Dark-grey micaceous quartzite interbedded with dark-grey to black phyllite.
Conformable contact.							
Quartzite Range.	Upper Navada	250	White quartzite beds as much as 2 feet thick.	135	White quartzite, beds less than 1 foot thick.	35	Thin-bedded white quartzite.
	Lower Navada.	400	Thin hedded greyish-white quartzite and dark grey-brown micaceous quartite some greenish-grey phyllite.	100	Brown micaceous quartzite with greyishwhite beds.	$\begin{gathered} 100 \\ -\quad . \\ \hline 65 \end{gathered}$	White grey and brown quartzite interbedded with grey and green phyllite. -----
						65	Greenish phyllite and grey-brown quartzite.
						20	Interbedded grey and white limestone and greyish-brown phyllite.
						100	Greyisi-brown phyllite and quartzite.
	Nugget.	Base not exposed	Massive write quartzite.	Base not exposed. exposed	Nugget (?) massive white quartzite.	Base not cxposed exposed	Massive white quartzite.

of Revelstoke. Metamorphic grade in the zone varies from chlorite assemblages to sillimanite zones. Deposits occur at several stratigraphic levels within the belt and vary from replacement deposits to metamorphosed sedimentary exhalative deposits; these are well described by Murara, (1966) and the major deposits are shown on the accompanying Figures.

GEOLOGY_OF_THE_RED_EIRD_PROPERTY:

The Red Bird deposit occurs at the southwest end of "The Mine Belt", a broad zone of Proterozoic to Ordovician rocks bearing stratiform zinc-lead-silver deposits that have been folded and cut by transverse, normal and thrust faults.

Stratigraphy in the Red Bird area, as shown in the accompanying stratigraphic column, includes the lower Cambrian Quartzite Range Formation, and the Reno and Laib Formations, in ascending order. To the south and west, the Ordovician Active Argillite is thrust over the Cambrian rocks.

The Laib Formation is subdivided into the Emerald schist, Truman Argillite, Frospect Dolomite, Reeves Limestone, and Upper Laib Member. Dolomitized portions of one band of the Reeves Limestone are the main hosts for the zinc-lead mineralization, although less important deposits are also known in the Frospect Dolomite and Nelway Formations. Deposits in the area, mined from this band of the Reeves Member include the Emerald and Jersey mines, (Placer Development Ltd.), the H.B. Mine (Cominco), the Reeves Macdonald Mine and the Red Bird Deposit, as shown on the accompanying generalized geological map.

The mineralized zones in the Reeves Member are stratabound massive
sulphides surrounded by dolomite. Origin of the sulphide zones is uncertain; some sections have characteristics of sedimentary exhalatives, but textures and alteration patterns indicative of replacement may also be present. The Reeves Ore Zone had a total mined and explored length of 6500 feet, with further plunge extensions likely. Other mineralized zones thought to have the same plunge are the Annex, Annex West, and Redbird Zones, all of which are thought to correlate with oxidized mineralized horizons present on the Reeves MacDonald claims (see Long Section).

The mineralized zones occur in one particular band of the Reeves Member on the south limb of a regional anticline, the Salmo River anticline, mapped by Fyles and Hewlett. At least three other carbonate bands are correlated with the Reeves member, but only the Frospect Dolomite has significant mineralization. The bands are thought to represent repetitions by folding and faulting.

Dominant structural features east of the Red Bird property are transverse normal faults, which have the effect of displacing the orebodies to a higher elevation, providing better conditions for mining than if the orebodies had continued unbroken. A transverse fault originally postulated to occur within the Redbird property has been disproven by Drillholes 86-2 and 3 , and there is now a strong probability that all four mineralized zones, the Reeves, Annex, Annex West and Fed Bird zones continue unbroken along the plunge extending throughout the property. At least two additional zones, the Beer Bottle zone and an un-named zone to the west, are thought to be faulted sections of the Red Bird zone. The relationship of these zones is shown in plan and section in the accompanying figures.

The entire Cambrian sequence is capped by the thick graphitic phyllite unit known as the Active argillite (Ordovician), separated from the older units by a low-angle thrust fault.

1985-86_EXPLORATION_PROGRAM:
In 1985, Golden Eye Minerals extended a logging road from Church Creek valley toward the Redbird property, and this road was extended to the Red Bird showing late in 1985 and early in 1986 by Teck Explorations Ltd. prior to their drilling program. Funds expended on road building and reclamation in 1985 and 1986 were $\$ 43,985.26$.

Core drilling at the property began Jan 6, 1986 and finished March 18, 1986. Six holes were drilled, but only three of these were completed to depth, (three were abandoned because of drilling problems). Drilling Data are as follows:

199ㅡ드으﹎DRILL_PROGRAM

DRILLHOLE	ELEVATION	LOCATION	AZIMUTH	INCL.	DEPTH
GE 86-1	334.3 .31	$\begin{aligned} & 971.52 \mathrm{~N} / \\ & 983.25 \mathrm{E} \end{aligned}$	340	-60	384 FT
GE 86-1A	3368.59	$\begin{aligned} & 991.11 \mathrm{~N} \\ & 1017.15 \mathrm{E} \end{aligned}$	340	-73.5	569 FT
GE 86-2	3570.02	$\begin{aligned} & 1361.84 \mathrm{~N} \\ & 1057.14 \mathrm{E} \end{aligned}$	332	-80	2464 FT
GE 86-3	3570+/-	$\begin{aligned} & 1 \mathrm{~S} 61.8 \mathrm{~N} \\ & 1057.1 \mathrm{E} \end{aligned}$	352	-67.5	2203 FT
GE 86-4	3520.27	$\begin{aligned} & 1647.98 \mathrm{~N} \\ & 2711.92 \end{aligned}$	340	-80	755 FT.
GE 86-5	3494.65	$\begin{aligned} & 1909.12 \mathrm{~N} \\ & 2572.96 \mathrm{E} \end{aligned}$	340	-81	2454 FT

Drillholes_1_and_1 \underline{A}_{1} on Nor 3 claim near West Russian Creek were drilled to intersect the down-dip projection of the Redbird oxide zone; both holes encountered bad ground and excessive water and had to be abandoned prematurely. (Betmanis, 1986).

Drillholes_2 and_s were drilled from the same location above the previous two holes. Weak zinc mineralization was intersected in the Prospect dolomite. Three separate bands of mineralization from 3.5 to 5 feet thick assayed from 1.24 to 4.20% zinc. in DDH GE 86-3. (see core 1 ogs in appendix). No mineralization was encountered in the Reeves member, but a strong strike-slip fault is postulated to have displaced the fed Bird zone easterly.

Drillhole_4, about 500 meters to the east was drilled to test the revised interpretation but was abandoned when drilling problems were encountered in the Argillite Fault.

Drillhole_5, collared about 100 meters north (see drill Section), at a steeper angle, sucessfully passed the fault, and encountered a thick section of Reeves member, near the base of which an oxidized zone of mineralization from 2264 to 2312.8 feet (54.8 feet) assayed up to 7.20% Lead and 8.95% zinc, with up to $0.83 \mathrm{gz} /$ ton silver, indicating oxidized massive sulphides. The 5 assay samples of oxidized mud with dolomite and sulphide fragments average about 10% combined lead-zinc, but can not be considered representative, considering poor core recovery. The 5 foot section of dolomite with sulphides directly below the oxidized material assayed $5.64 \% z i n c$, 0.38% lead, $0.31 \mathrm{oz./ton}$ silver and 0.06% cadmium.

The material is considered to be the oxidized Red Bird zone, perhaps faulted as well, representing a technical drilling success.
[6] EMERALD SCHIST
5 Reeves Limestone
(4) TRUMAN SChist
[远 Reno Quartzte
ERE ZONE

Qverall cost of the initial drill program was in the order of \$400,000 (funded by Teck Explorations Ltd.), of which $\$ 343,919.65$ was filed for assessment purposes in 1986.

19966=19日Z_EXPLORATION_PROGRAM:
With funding provided by Knights Mineral Partnership Ltd. and a Provincial Government "FAME" grant, a drill program of two holes commenced November 15,1986 and was completed February 12, 1987.

Drillhole 86-6 was spotted at 3300 feet elevation, 260 feet west of the southeast corner of the Royal Fraction Claim (Lot 14155). The hole was started at azimuth 330 degrees and inclination -80 degreees; at total depth $3 \leqslant 13$, Sperry Sun instrument readings indicate azimuth 337 degrees and inclination -57 degrees.

The drillhole cored the expected sequence; Active Argillite to 899 feet, an unnamed Limestone unit 899 feet to 921 feet, a major fault from 921-929 feet, Emerald schist from 929-951 feet, Truman Limestone and schist from 951-1186, Frospect Dolomite from 1186 to 1684 feet, Faults and argillite from 1684 to 1765 , The "Argillite Fault", Emerald Schist from 1765 to 2667, argillite from 2667-2677, Truman Limestone from 2677-2687, Reeves Member (Limestone and Dolomite) from 2687-3204, and Truman Limestone and Schist from 3204 to the end of the hole at 3313.

Drillhole 86-6, intended to test the Redbird mineralized zone below the oxidized intercept in DDH $86-5$ evidently was steeper than anticipated, and passed below the plunge of the mineralization by a distance estimated by Klein to be 400 to 600 feet. Scattered mineralization was present in the Frospect Dolomite, and a narrow section of up to 20% pyrite with minor sphalerite and galena from 3187

Ordovician
Ola Active Argillite Cambrian (Laib Formation)
Eld Prospect Dolomite
Elev Upper Emerald Cherty Phyllite
Ele Emerald Phyllite, Argillite
Elf Truman Limy Argillite, Limestone Elf Reeves Limestone \ddagger dolomite IDDH 87-1
LOOKING AZ 240°
IATC=-ACE $\quad 1^{\prime \prime}=500^{\prime}$ Fer 10/an Grie!n Fin, !
to 3191.7 returned sub-economic values. This narrow zone may represent the Redbird mineralization beyond the ore-shoot.

Drilihole_87-1: was collared Jan 15, 1987 and completed Feb 4, 1987 at a total depth of 3250 feet. This hole, roughly 1600 feet east of hole 86-6 was selected to intercept the "Annex" mineralized zone about 500 feet down plunge from known mineralization in the most westerly heading of the Reeves Macdonald "Annex" mine. Azimuth at the collar was $3 \leqslant 0$ degrees and inclination -73 degrees. At depth 3030 feet the final Sperry-Sun test indicated azimuth $3 \leqslant 8$ degrees and inclination.

The section cored was comparable in stratigraphy with the previous hole; with the fallowing sequence:

Active Argillite;
Limestone, dolomite, schist
Emerald schist
Truman Limestone and schist
Prospect Dolomite
Argillite
Emerald phyllite
Reeves Member

0-1077
1077-1153
1153-1205
1205-1731.5
1731.5-2205

2205-2278
2278-2843
2843-3250

The hole encountered significant zinc mineralization in the Prospect Dolomite, with the following mineralized intervals:

Intercept	Fb \%	Zn \%	$\mathrm{Ag}(\mathrm{Oz} / \mathrm{t})$	Cd \%	Ge ppm
$\begin{array}{r} 1733.3-1766.8 \\ (35.5 \mathrm{ft}) \end{array}$	0.03	2.26	0.02	N.A.	15.5
$\begin{array}{r} 1767-1789 \\ (22 \mathrm{ft}) \end{array}$	0.03	1.73	0.03	N.A.	19.0
1827.5-1828.5	0.05	1.95	0.07	N. A.	10
1852-5-1857.5	0.11	11.21	0.07	N.A.	15
1862.4-1863.6	0.08	3.60	0.06	N.A.	4
1893.4-1901	0.02	2.07	0.02	N.A.	8.3
1915-1916.5	0.02	1.88	0.06	N.A.	7
2098-2102.2	0.15	4.26	0.09	N.A.	2
2125.5-2128.9	0.04	2.06	0.01	N. A.	1
2154-2157.5	0.09	1.58	0.03	N.A.	2
2169-2171	0.06	2.12	0.01	N.A.	1
2173-2176.6	0.02	0.69	0.01	N.A.	1

The_Prospect_Dolomite: intersected at 1731.5 feet extends to
2205 feet (Total thickness 473.5 feet). The unit consists of light to dark grey dolomite with a thick cherty layer in the middle. Minor solution cavities are present and a "Tweedy' texture is common. Bands of massive sphalerite and pyrite are present and a total of 86.2 feet of the Formation is mineralized in many separate bands.

The wide section at the top of the unit, from 1733.3 to 1789 feet (54.5 feet thick) averages 2.06 percent $z i n c$, with very minor lead, silver and germanium values. The best section, a 5 foot zone from 1852.5 to 1857.5 feet averages 11.21% zinc. This is the only section that appears to be of ore-grade, but persistence of the mineralization suggests proximity to an important economic zone which must be further tested, perhaps by wedging from existing drillholes.

The_Reeves Member: intersected at 2857. feet and extending to the foot of the hole at 3250 feet ($\mathbf{~} \mathbf{3 9} 9$ feet thick) has an upper section (21.5 feet) of limestone, and the balance is massive to blocky dolomite with "Tweedy" texture, host to an important, thick mineralized zone. The zone, from 3080.9 feet to $\mathbf{3} 134.7$ feet (5.3 .8 feet) assays as fallows:

Intercept	$\mathrm{Pb} \%$	Zn \%	Ag (Oz / t)	Cd \%	Ge ppm
$\begin{gathered} 3080.9-3134.7 \\ (53.8 \mathrm{ft}) \end{gathered}$	0.87	7.97	1.64	0.085	22.7
including:					
3099-3125	1.64	10.0	2.21	. 10	29.25
(26 ft)					

EXPLORATION POTENTIAL:

Combination of previous exploration data and information from recent diamond drilling by Golden Eye Minerals Ltd. enables projection of at least four potentially productive mineralized zones on to the Red Bird claims. Arbitrarily a 2000 foot plunge dimension (rake) is chosen for calculating potential. Tonnage potential and Gross Metal Value for each of the four zones is shown on the following

车1060 U. 5. /kg.

MINERALIZED ZONES - RED BIRD/NDR CLAIMS

TOTAL GROSS METAL VALUES ALL ZONES: 1,070,000,000.in 8. 3 Million Tons.

PROSPECI_ZONE:
Some potential for mineable ore exists in the Prospect Dolomite, since the discovery in DDH GE $87-1$ of wide sections of near ore grade material.

CAVIAR_PROPERTYE

The 16 crown-granted claims comprising the Caviar prospect are owned by Diem Mines Ltd., wholly-owned (since 1981) Canadian subsidiary of Hecla Mining Company., and are included in the lease to Golden Eye Minerals Ltd.

Surface zinc mineralization is exposed for a length of 150 feet and widths up to 20 feet. Four holes were drilled, the best intersection being 20 feet assaying 6.5% zinc. This zone is open to the west and down plunge.

Little is known of this zone, or its relationship to the other mineralization in the area. Exploration is warranted. MINING_CONDITIDNS:

The orebodies at the Feeves Macdonald mine lent themselves, because of their steep dip, good width, and favorable ground conditions, to low cost sub-level benching and blast-hole mining methods. Direct operating costs, inclusive of mining, milling, development etc. in June 1973 , were $\$ 10.62$ per ton on a throughput of approximately 18,000 tons. The orebodies were capable of being mined at the rate of one vertical foot per day and milling averaged 1200 tons per day.

Present mining costs have not been calculated, but modern bulk mining methods could be used. A tailings pond area is present on the adjacent property.

CONCLUSIONS_AND_RECOMMENDATIONS:

The writer concludes that the Redbird property presents an exceptional opportunity to develop economically mineable reserves in an area where logistics are favorable and mining conditions are excellent. The property may contain the nearest zinc-rich reserves to the zinc smelter at Trail.

It is recommended that at least six more deep drillholes be completed to test plunge extensions of all four mineralized zones. If these drillholes are successful, calculation of probable reserves and a mini-feasibility study could indicate that underground development and exploration and environmental studies should begin, with a view to economic production of zinc-lead-silver-cadmium-germanium from an underground mine. The possibility that near surface oxide material may be treated should not be completely ruled out, as large reserves of oxide material are certainly present.

It is likely that an early start on environmental work would be worthwhile. Additional geological mapping should be done during the next summer season, and initial mettalurigical testing of mineralized material would be useful.

It is recommended that orthophoto basemaps be prepared and additional surveys be done to tie in roads, drillholes and claim posts with as much accuracy as possible and to aid in surface geological mapping and preparation of reserve estimates.

SUGGESTED_EXPLQRATION_BUDGET:

The preferred targets for exploration are the massive sulphide zones of the Red Bird and Annex areas. Proposed exploration is by surface diamond drilling, construction of an exploration/haulage heading, and underground diamond drilling. Initially, at least 5 surface diamond drill-holes are necessary to determine continuity of all of the mineralized zones. Estimated costs of the next two stages of exploration are as follows.

STAGE I

STAGE II:
Combined exploration/haulage drift

Diamond drilling 25,000 ft @
500,000
Associated costs Hydro, overhead, Camp and equipment.

1,000,000
TOTAL $\$ 3,300,000$
STAGE III:
Feasibility Study
$1,000,000$
Permits, Bonds, Environmental etc.
STAGE IV:
Mi 11 Construction etc. Costs not estimated

Respectfully submitted:

BIBLIOGRAFHY:

Eetmanis, A.I., P.Eng., (1986): Report on Diamond Drilling, Redbird Group, Nelson Mining Division., Pend D'Oreille River. Assessment Report for Teck Exploration Ltd. dated May 27, 1986.

Canadian Mines Handbooks, Misc. Issues to 1985.
Dings, McClelland G., and Whitebread, Donald H., (1965); Geology and Ore Deposits of the Metalline Zinc-Lead District, Pend Oreille County, Washington. U.S.G.S. Frof. Faper 489.

Elson, M., (1986): Redbird Project, Private Memorandum, Sept 17, 1986.

Fyles, James T., and Hewlett, C.G., (1959); Stratigraphy and Structure of the Salmo Lead-Zinc Area. B. C. Department of Mines Bulletin No. 41.

Green, L.H., (1953), Wall-rock alteration at certain Lead-Zinc Replacement Deposits in Limestone, Salmo Map-Area, B.C., G.S.C.Bull 29,

Guinet, V., (1986); Golden Eye Minerals Ltd., Company Review., (Private), September 18, 1986.

Hecla Mining Co. Unpublished Company Documents, 1956-1977
Hecla Mining Co., (1977); Report on the Redbird Zinc Lead Froperty, Remac, Nelson Mining District. B.C. Internal Private Report.

Klein, G.H., F.Eng., (1986); Redbird Project - Exploration Proposal and Summary of Geology. Private Fieport to Golden Eye Minerals Ltd. May 24, 1985.

Klein, G.H., P.Eng., (1986): Redbird Project - Summary of 1985-86 Winter Program and Recommendations for Further Work. Private Report, April 1986.

Klein, G.H., P.Eng., (1987); Redbird Project - Core Logs and Drill Sections.

Little, H.W. (1960) Nelson Map Area, West Half, Eritish Columbia, Geol. Surv. Canada Memoir 308, 205 pp.

Monger, J.W.H and Freto, V.A. (1972); Geology of the Southern Cordillera, Excursions AOS - COS, XXIV International Geological Congress, pp.36-38.

Muraro, T.W., (1966): Metamorphism of Zinc-Lead deposits in Southeastern British Columbia. CIM Special Volume \#8, pp 239-247.

Walker, J.F., (1934); Geology and Mineral Deposits of Salmo Map Area GSC Memoir 172

SAMFLLE\#	Fb	Zn	Ag	Cd	Ge
	\%	$\%$	$\square Z / T$	$\%$	FFM
GE 1025	. 04	2.06	. 01	. 010	1
GE 1026	. 09	1.58	.0S	. 010	2
GE 1027	. 06	2.12	. 01	. 010	1
GE 1028	. 02	. 6 ?	. 01	. 010	1
GE 1029	. 19	4.98	. 32	. 080	1
GE 10SO	. 25	4.62	. 45	. 080	1
GE 1081	. 01	. 09	. 01	. 010	1
GE 1032	. 02	1.09	. 04	. 010	1
GE 10E3	.01	. 54	. 01	. 010	2
GE 10S4	.01	. 44	. 01	.010	1
GE 1036	.09	10.05	1. 5	. 110	40
GE 10.7	. 18	9.67	. 77	. 110	17
GE 10.8	. 31	1.06	. 09	. 010	16
GE 10397	4.87	9.01	2.00	. 100	22
GE 1040	1.80	11.35	2.50	.110	30
GE 1041	. 29	10.71	2.39	.100	23
GE 1042	. 07	9.56	1.30	.110	59
GE 104.	. 07	9.67	- 0.01	. 110	S5
GE 1044	. 06	4.79	. 47	. 050	20
GE 1045	.10	6.00	-. 41	. 070	16
GE 1046	. 02	. 52	. 11	. 010	9

ACME ANALYTICAL LABORATOFIES LTD.
852 E.HASTINGS ST.VANCOUVEF B.C. VGA 1R6
FHONE 253-3158 DATA LINE: 251-1011

DATE RECEIVED: JAN 291987
DATE FEFORT MAILED:

ASSAY CEFTIFICATE

ASSAYER:

FILE \# 87-0190
FAGE 1

Golden EyE Minerals lTD
PROJECT RED BIRD
PROPERTY
RUS ELF
beAring AZ 330°
rAGE \qquad

PROJECT
PROPERTY $\frac{R E D B / R D}{~} 1 / T S 82 F / 3 W$
INCLINATION - 80°
HOLE NO. TE B6-6
STARTED NOV 151986
COORDINATES 260 feet $Q A \geq 281^{\circ}$
COMPLETED DEC 91986
SPERRY SUN TESTA $\angle A S T$ PAGE.
from SE Corner pIn ROYAL FRLA4I55
LOGGED BY GKLEIM.
DEPTH \qquad ELEVATION ASSUMED 3300 feet ASL

$\angle 33.5-305$ ACTIUE ARGILLITE, med 94, oce limy parting, L's gen $80^{\circ} \mathrm{c} . \mathrm{a}$. I'fault zones @ 279, 282, 292 \} num mornor shear zones sen 30° c.a.
305-332 Csabove, gouge zone 4'@ $4^{\prime} 22$ fit appears $40^{\circ}-60^{\circ} \mathrm{c.a}$.
332-455: Active, competent, graphitic, crenulated sects oce bleb gtz woc py str. 3% py throughout. \angle sqen 65; c.a. but vary. 3"gtzvela@800@429.5.
455-510 As above, some minor folds. $\angle 5$ gen $70^{\circ} \mathrm{c} . a$. Silic sects to a tew inches $486-506$
510-542, as a bove, $a t z$ ankerite (?) veining to 2" Ls gen $75^{\circ}-80^{\circ}$ c.a. 3-5\% py. siluceous sects 517-542
542-546. hamp dyke, cts $Q 45^{\circ} \mathrm{c} a$.
546-569: Active, cherty sects, loc contort, L 's gen 70°, to 40° c.a. ee end. atz veining alonq argullete a 561
569-585 FAOLT - 2 gouge zones - $20^{\circ}-30^{\circ} \mathrm{c} \cdot$ a: some atz veining, 4 "healed bx zone.
585-637.5 ACTIVE, contort, qea 65 c.a. oce qtz velo tol"
631.5-682, as above, oce gtzvein to 3". cherty sects, minor py $l s$ gen $60^{\circ} \mathrm{C} \cdot a$.
682-688 FAULT minor lamp dyke $;$ qtz veins, broken a rallite.
688-695.3: Lamp dyke, greentinge.
695.3-755 ACTIVE, dKay to black, silic sects. upper of broken for 1 's queuge. L's gen 70°; blocky zone 717-719.

155-772 Active, black, less silic than above. oe $9 t 2$ vein. $2 "$ gouged 764 , blocky zone 763-772, L's vary but gen $75^{\circ} \mathrm{C} . a$.

$$
772 \text { - } \begin{aligned}
& \text { Active, } d k \text { qu, silic. oe gtzvein, } \angle \text { 's }
\end{aligned}
$$

$$
\text { gen } 75^{\circ} \text { caa. very salic 781-802, ocd }
$$

blocky sect.

819-824 FAULT - sects gouge livery broken arg, 2^{\prime} L.C. this sect. Faust $20^{\circ} \mathrm{c} . a$.

$$
\text { 824-869.5 MAJOR FAULT - } 10 \text { arg, silic. atzveins }
$$

$$
\text { a } 30^{\circ} \text { e.a. } \varepsilon^{\prime} \perp \text { to bedding, broken }
$$

$$
\text { sects, healed } 6 x \text { zones, crushed zone }
$$ Q 862, 1"qouge e 866, FAJCT appears to be $40^{\circ} \mathrm{C} . a$.

869.5.887! ActIVE, irreg banding, vel competent.

887-894 Active argillite, dK gq, 3% by, bedding more regular $65^{\circ} \mathrm{C} . a$.
894-899, Lamp dyke, med green-gy, bloc weathered, sects Irony argillite $0894.5 .60^{\circ} \mathrm{C} . a$. 899-909! LIMESTONE, thin banded, niestlydk ak, oe thin white band, $60^{\circ} \mathrm{c}$ a. upper ct distorted ξ leached, then sects dyke. 909-921 Limestone, med ayi many graphitic partings, $60^{\circ} \mathrm{C}$ a.
921-929: FAULT ZONE sects dyke (lamp), gouge, schist, bad limestone $\dot{\Sigma} 1^{\prime \prime}$ coarse calcite @ 929. 4' LAc. © 925.
929-951 EMERALD??? crenulated calcareous phyllite-schest 60° caa, hoc lower to $20^{\circ} \mathrm{ca}$ 951-988.5 TRUMAN limestone, med'blue-9y, $45^{\circ}-60^{\circ}$ caa.

UKILI HUJK L () j
PAGE_ OF \mathcal{E}
GOLDEN EYE MINERALS LTD
PROJECT RED BIRD
bearing A<330
hole no.
GE 87-1
PROPERTY NUS 82F/3W
INClINATION - 73° coordinates \qquad
started JAN 151987
SPERRY SUN TESTS LAST PAGE
1370^{\prime} \& Az 83 from SE
completed FEB O4 1987
\qquad G KLEIN

DEPTH 3250°
corner pin ROYAL FR L14155
logged by \qquad ELEVATION ASSUMED 3100^{\prime} ASL

1205-1287 Limestone, conform with above, blue qu, thin banded, arqullaceous partings, $70^{\circ} \mathrm{c}$ a., conform lamp dyke 1238-1245, 1'xcutting lamp dyke a $1247.5,1248.5,1252$
1287-1346.5 TRUMAN, bands greenish sencite schist ioceband 1.s., $65^{\circ}-55^{\circ}$ cia.
1346.5-13495. Lamp dyke, conform, darkgy.
1349.5-1437 TrumaN limestone, blue 94 , oe schist sect, $70^{\circ}-90^{\circ}-60-65-65^{\circ}$ cia. irreg bands py@1362. . 7'conform lamp dyke a 1405 . excellent core $l l 50 \rightarrow$
Greenish sericite schist, spots speckled ankerite (?) $65^{\circ} \mathrm{c} \cdot a$. irreg $14^{\prime \prime}$ bands pyrrhotite @ 1447 \& 1448;

$$
1456
$$

1457-1500 Sericite schist, q-eent brown, limestone bands, oe irreg band py, $60^{\circ} \mathrm{ca}$. 1500-1558 Limestone, blue-qy, wisps schist $60^{\circ}-75^{\circ}$ caa. I' dark lamp x cutting dyke e 1502, 1.5^{\prime} conform green lanypdyke 1553
1558-1641 stull TrumAN - green si brown serikite schist, bands blue gy 1.5 . $700-75^{\circ} \mathrm{c}$. a. lampdyke-conform 1601-1604
1641-1681 Limestone, bands qu schist, $60^{\circ}-50^{\circ} \mathrm{C} \cdot a$
1681-1722 Green-gy schist, calcareous, $60^{\circ} \mathrm{C.a}$.
1722-1731.5. Limestone, thin banded, mylonitic, gl, 60°, conformable. END OF TRUMAN.
1731.5-1748.3 Pros Rect dolomite bands to. 1^{\prime} $\mathrm{ZnSE} \mathrm{Fe}_{2}$, massive in dol. . 3'dyke 1748

Figure 15-1
Map of the Kootenay Arc showing approximate distribution of the Lower Cambrian Bad-shot-Reeves limestone, pre-Reeves and post-Reeves metasediments and principal granitic masses. Inset reveals style of folding near Duncan Lake. Numbers locate deposits treated in text. Modified after Fyles, 1964.

APPENDIX_III

GERMANIUM
SOURCES._RECOVERY_METHODS_AND_USES
U. 5 STATISTICS

	1982	1983	1984 (E)
REF INERY PRODUCTION	26,000 KG	20,000 KG	20,000 KG
IMPORTS	6,000	6,500	6,000
REPORTED CONSUMPTION	42,000	35,000	35,000
PRICE; U. 5 * PER KG	\$1,060	\$1,060	\$1,060

Source: Mining Annual Review, 1985.

Germanium is considerably rarer than gallium, and makes up only 0.0004% of the earths crust. Up until the present, it has been produced only as a by-product of smelting of copper and zinc. From zinc ore, germanium is volatilized during the refining process, and is collected electrostatically. In copper smelting it is collected magnetically in flue dust. These are leached with Hydrochloric acid to form germanium tetrachloride which is hydrolyzed and reduced to metal with hydrogen.

The metal is produced in the U.S. by Eagle-Ficher and a subsidiary of Union Miniere; elsewhere in the world it is produced by Union Miniere, and such well-known metals producers as Pennarroya, and Preussag, and others. About 5\% of production is used in electroničs, most is used in infra-red optics (important in military and civil).

New uses are in gamma radiation detectors, germanium-silicon thermoelectric devices, and in fibre optics. It is also used as a catalyst in petroleum and polyester fibre industries and a high growth usage is in polyethylene terephthalate, the plastic used in soft-drink bottles.

Recent data acquired by Golden Eye Minerals Ltd. suggests that the usage of germanium for semi-conductor technology may increase relative to gallium in the near future, and consequently, forecasts for germanium prices are optimistic.

APPENDIX IV

ADJACENT_MINERAL_DEPOSITS_IN_THE_MINE_BELT

REEVES_MACDONALD_MINES_LTD.
The presence of zinc-lead gossan zones on the Reeves-Macdonald and Red Bird properties led to surface and underground exploration on both properties in the 1920^{\prime} s; the mining of near-surface sulphide mineralization in the Reeves resulted in the production of 7,252,000 tons of ore yielding 110,000 tons of lead concentrate, 499,000 tons of zinc concentrate, 500,000 ounces of silver and $3,000,000$ pounds of cadmium prior to its closure in 1975. In today's values, this represents over $\$ \mathbf{\$ 3 0 , 0 0 0 , 0 0 0}$ in production.

Four distinct zones were mined by Reeves Macdonald Mines Ltd. Orebodies averaged 600 feet in length, were 20 to 30 feet in width, had a steep plunge to the south-west, were mineralogically distinguishable from each other and had distinctive metal ratios. None of these zones were traced to mineralogical termination at depth.

The most westerly portion of the Reeves mine, known as the Annex Zone contained more than double the grade of ore previously mined, having a grade of 1% lead, 8.0% zinc, 2.5 ounces per ton silver, and 0.09\% cadmium.

Plans and sections accompany this brief summary.

IHE_JERSEY_MINE:
The Jersey Mine, situated 50 kilometers northeast of the Red Bird prospect, comprises 56 crown granted claims and is owned by Placer Development Ltd. Between 1949 and 1970, the mine operated suceessfully, starting at 300 tons per day production and increasing to 2500 tons per day in 1969. It was the first major mine in Canada to adopt trackless mining methods. During 1969 and 1970 production increased from pillar recovery as the orebody was depleted. Production ceased in 1970 , and milling machinery was moved to the adjacent Invincible tungsten orebody, which had been discovered in 1968, and production in 1970 amounting to 430 tons per day came from the rehabilitated Dodger orebody, as the production shaft had not yet reached the Invincible ore.

The concentrator was located on the highway south of Salmo but the mine offices, plant buildings, 60 company residences, and a school were located at the 4000 ft elevation on Iron Mountain.

The zinc-lead-silver-cadmium ore occurs at the base of the Reeves Limestone member of the Laib Formation, concentrated in the western limbs of two fold structures, which are overturned to the west. The "A" zone (the more westerly), has an axis striking about due north, and consists of several ore bands up to several feet thick, with an overall thickness of 80 feet. The eastern structue, the "Dodger Trough", has an axis striking North 15 degrees east, and is more complex. The ore occurs as a variety of band lenses and mantos which dip from flat to 30 degrees easterly.

Mining was by open stope methods. Lead concentrates were shipped to the Bunker Hill Smelter at Kellog, Idaho, and zinc concentrates were shipped to the Anaconda Smelter at Black Eagle, Montana. In 1967 there were 225 men emplayed, 94 of whom worked underground.

THE_H_B._MINE

The H. B. Mine, operated from 1955 to 1978 by Cominco (originally Consolidated Mining and Smelting Company Ltd.), is situated on the west side of Aspen Creek, on the north side of Sheep Creek, 7 miles by road from Salmo.

The ore occurs as a sphalerite-galena -pyrite replacement of dolomite in the Reeves member of the Laib Formation. Several types of ore zones are present; the No 1 zone - the main productive zone was a steeply dipping lens with a long axis plunging gently to the south. Several flat-lying tabular zones occur; and the Garnet zone outcrops at surface, where it was mined by open pit; the same zone was mined undergound by long hole methods. Dre production began in 1955 at a level of 1000 tons per day. Although ore reserves were not exhausted, the mine was closed down November 1, 1966, because of low metal prices. Froduction resumed in 1973 and continued to August 17, 1978, when the mine was permanently closed.

From 100 to 130 people were employed, about 28 of whom were on Staff payroll. Concentrates were shipped to the Trail Smelter. Small amounts of gold were recovered in 1975 and 1976.

SALMO AREA MINE PRODUCTION

MINE	TONS	ZINC LB.	LEAD LB,	SILVER 02	CADMIUM LB
YEARS	PRODUCTION	GRADE \%	GRADE \%	GRADE OI/T	GRADE \%

REEVES MAC	$7,232,000$	$541,850,405$	$142,625,454$	$1,572,173$	$3,000,000$	$\$ 322,872,863$.
(TO 1975)	3.74%	0.98%	$0.2107 / T$	0.02%		

H. B.	7,282,997	648,186,804	135,463,744	875,376*	$1 ; 954,868 \pm$	\$367,456,960.
(T0 1978)		4.45\%	0.93\%	0.12*	0.013%	
JERSEY	6,256,000	490,000,000	231,000,000	600,000	3,730,000	\$312,845,000.
(T0 1966)		7.19\%	1.85\%	0.09\%	0.030\%	

RED BIRD (1974) 1,702 ? ? ?
hetaline area mine production

MINE	TONS	ZINC	LEAD	SILVER	* COPPER $*$	GROSS VALUE \$
YEARS	Production	GRADE \%	GRADE \%	GRADE 0L/T	GRADE \%	
PEND D, OREILLE	5,451,328.	281,290,369	145,362,573	257,226	201,648	\$179,056,176.
(1924-1956)		2.58\%	1.33\%	0.047	0.002\%	
grândviel	2,347,974	139,344,708	64,394,015	76,261	152,983	\$86,449,903.
		2.96\%	1.37\%	0.032	0.003	
metaline	431,480	36,944,947	10,346,736	9,710	202	\$21,132,123.
		4.28\%	1.20\%	0.022	0.00005	

SOURCE: USGS PAPER 489

NOTE: METAL PRICES ASSUMED; ZINC - $\$ 0.50 / L B$, LEAD- $\$ 0.25 / L E$, SILVER $\$ 7.50 / 02$, CADMIUM $-\$ 1.50 / L B$ CALCULATED IN CANADIAN dOLLARS

SUMMARY

This report details exploration results from the "Red Bird" stratabound sulphide zinc exploration project on claims adjacent to the Reeves Macdonald Mine, a long term producer of zinc, lead and silver located 25 miles east of the Cominco Trail Smelter in the prolific mine-making southern portion of the Kootenay Arc.

Golden Eye Minerals Ltd. can earn an 80% interest in Hecla Mining Company's Red Bird property which contains the high grade Red Bird Deposit and adjacent Beerbottle, Annex, Prospect, and suspected Annex West and Reeves zones that are plunge continuation of zones mined at the Reeves McDonald Mines. Additional ground has been staked by the company adjacent to these prospects.

The mineralized zones are massive to disseminated base-metal sulphides in stratiform tabular bodies striking southwest, dipping. steeply southeast and plunging southwesterly within dolomitized "Reeves Member" limestone of the Cambrian Laib Formation.

From November 22, 1985 to March 23, 1986, a total of 6 diamond drill holes totalling 8924 feet were completed under an exploration agreement with Teck Corporation, at a total cost of approximately $\$ 400,000.00$

From November 1986 to February 10, 1987, an additional two deep drill-holes were completed by Golden Eye Minerals Ltd., with financing provided by Knights Mineral Partnership, and a FAME grant from the Provincial Government ($\$ 80,000$). A ninth hole, funded by a private placement, is currently drilling.

The project has been successful in locating zones which may provide substantial tonnages of excellent grade zinc with associated lead, silver, cadmium and germanium values.

Recommendations are made for at least 6 additional deep drill holes to be followed, if results warrant, by underground development and exploration.

Barry J. Price, M. Sc.
Consulting Geologist.
Feb 20, 1987

