

MR EVAN JUST

HOTEL VANCOUVER
VANCOUVER, B. C.
Use
IF CONVENIENT PLEASE CONTACT E. M. THOMSON, ROOM 15, 709 DUNGMUIR STREET
RE PROPERTY HE WROTE ME ABOUT MARCH 19. PROPERTY HEAR KAL8O. WE HAVE mo
IIPORMATION OTHER THAN B. C. MINES REPORT NOR IDEA OF PROPOSAL. DOUBT IF
nock interest. You have reservation biltmore 27th.

BWB/a

BLAIR W. stewart
Charge: Cyprus Mines Corp.
1206-File \& Book - Charge BUS

$$
\begin{aligned}
& \text { Property near Kootenay Lake } \\
& 20 \cdot \mathrm{C}-\mathrm{l} \text { on Hap }
\end{aligned}
$$

ALL MESSAGES TAKEN BY THIS COMPANY ARE SUBJECT TO THE FOLLOWHWG TERMS:

To guard againgt mistakes or delays, the sender of a message should order it repeated, that is, telegraphed back to the originating office for comparison. Fide thy , hale the unrepeated message rate is charged in addition. Unless

1. The Company shall not be liable for mistakes or delays in the transmission or delivory, or for non-delivery, of any message recelved for transmission at the unrepeated-message ery. or for now on any message recelved for trangmission at the repestat -
2. In any event the Company shall not be liable for damages for mistakes or delays in the transmisgion or delivery, or for the non-delivery, of any message, whether caused by
 agreed to be padd, and an additional charge equal to one-tenth of one percent of the amount by which such valuation shall exceed five thousand dollars.
3. The Company is hereby made the ageut of the sender, without liability, to forward this message over the lines of any other company when necessary to reach its destination.
4. Except as otherwise indicated in connection with the listing of individual places in the fled tarifts of the Company, the amount paid for the transmission of a domestic telegram

 the corporate limits of any city or town in which an offee of the Company is located.
5. No responsibility attaches to this Company concerning messages until the same are accepted at one of its transmitting offices; and if a message is sent to such office by one of the Company's messengers, he acts for that purpose as the agent of the sender
6. The Company will not be liable for damages or statutory penalties when the claim is not presented in writing to the Company, (a) wlthin sixty days aftor the message is fled with

 provided, however, tiat this condition shall not apply to clatim for damages or overcharges within the purview of Sectlon 415 of the Communications Act of 1934.
7. It is agreed that in any action by the Corpany to recover the tolls for any message or messages the prompt and correct transmission and delivery thereof shall be presumed, subject to rebuttal by competent evidence.
8. Special terms governing the transmission of messages according to their classes, as enumerated below, shall apply to messages in each of such respeotive classes in addition to all the foregoing terms.
9. No employee of the Company is authorized to vary the foregolng.

1-49

CLASSES OF SERVICE

DOMESTIC SERVICES

FULL-RATE TELEGRAM

A full rate expedited service

DAY LETTER (DL)

A deferred service at lower than the full rate.

SERIAL (SER)

Messages sent in sections during the sume day.

NIGHT LETTER (NI)

Accepted up to $2 \mathrm{~A} . \mathrm{M}$. for delivery not earlier than the following morning at rates substantially lower cian tie full rate telemam or day letter rates.

INTERNATIONAL SERVICES

FULL RATE (FR)

The standard fast service at full rates. May be written in any language that can be expressed in Roman letters, or in cipher.

CODE (CDE)

A fast message service consisting of code words not exceeding 5 letters each. Minimum charge for 5 words applies.

DEFERRED (LC)

Plain lan wage messages, subordinated to full rate and code messages. Minimum charge for 5 words applles.

Room 15,
709 Dunsmuir Street, vancouver, B.C.
february 20th.,1952.

Mr. E. H. Spellmeyer,
coo Coronado Copper Zinc Company, Exploration Department, 1206 Pacific mutual Building, Los Angeles, California.

My Dear Mr. Spellmeyer: Re: Lavina Mine

1 am enclosing herewith geological reports by Mr. B. T. O'Grady of the B. C. Department of mines and

- by Dr. H. C. Gunning, who made his examination and report for the Dominion of Canada Geological Survey.

I recognize that the veins and indications developed, indicate only a silver lead deposit very rich and narrow. However, \perp thought that you might find that the last sentence by Dr . cunning was of interest, in that he stresses the possibility of therebeing limestone replacements disclosed by further development. This limestone belt is attracting a great deal of interest and the following companies are carrying on active development on this formation: C. . $\&$. S. with the Blue Bell nine at Riondel, Sheep Creek Gold with the Wagoner Group, Teddy Glacier recently acquired by Toronto interests, Lardeau Lead and Zinc mines on Duncan Lake, etc., etc.

I can obtain this property on terms well within the lines discussed when you were here.

Would it be too much to ask that you give me your personal reaction as promptly as possible as the owners wish to have arrangements made for work this summer and it' I can assure them of the probability of an examination, theywill be satisfied to wait for that.

Yours very truly,
of in harmon
E. M. Thomson

LAVINA GROUP

by
H. C. GUNAING

Momoir 161
Geological Survey 1929

SIDER IEAD VEINS IN LIMESTOHE

The seven orown granted claims comprising this group are at and above 7,000 foet elevation on Lavina Ridge, overlooking Hamill Creek and Duncan Valley. A trail leads to the property from White's ranch on the Argenta-Howser road.

Some 200 tons of ore, shipped from the property between 1899 and 1904 is reported to heve assayed 50 to 60 per cent lead and 60 ounces and over in silver per ton. One carload was shipped by leasers in 1918. Sinoe 1924 this group has been worked more or less continuously by Ed. Nordman and associates. (At present metal prices the 232 tons shipped in past years would have a value of approximately $\$ 250,00$ ton, less freight and treatmont, to the Consolidated Mining and Smelting Company at Trail.) A comfortable cabin stands near the top of the ridge. Under the direction of Mr . Nelson, operations were being carried on in a very efficient mannec with a crew of four men.

The workings consist of many hundred foet of tumels, raises and open cuts on both the Hamill Croek and Glacier Creek slopes of Lavina ridge. At the present time operations are confined to the underground workings on the Glacier Creek slope and to some surface showings on the southwest side of the ridge, overlooking Kootenay Lake. The old workings on the southeast side of the ridge were not examined as they were in a state of disrepair.

On the olaims the rooks are grey to white orystalline limestones. grey to black carbonaceous ohists, rusty weatherinc biotite sohists, and a band of hard, grey silicified limestone or jasperoid whioh lies inmediately northeast of the workings. These sedimente strike northwest, varying from north 60 degrees west to north 20 degrees west, and dip 30 degrees to 60 degrees nor theast.

Surface Werikings on Southwest and of Ridge.
On the southwect end of the ridge a tunnel has been driven 51 feet on a north 28 degrees east oburse, in light groy to black marble. A fault follows the west side of the adit and dips 80 degrees east. Three veins of galena with oxidation products lie in the west wall, the largest being six inches wide. They strike northwest and dip about 30 degrees to the northeast. From the end of the adit a raise has been driven 23 feet and at its top dark grey, carbonaceous schists overlie the limentone. The contaot strikes about north 60 degrees and dips 40 degrees northeast. Just low the sohist a small amount of galena, badly oxidized, appears in the innstons. Quarte is present in the ore and also at the bottom of the raise.

Thirty-five feet above the adit and 25 feet north 25 degrees west from its portal is a new open-out whioh exposes the contact of 11 mestone and schist. A narrow vein of galena, corussite ($\mathrm{PbCO3}$) and angelesite (PBSO4) follows the bedding of the limestone below the contact.

In sum parts of the vein milky white quarts is developed; in others, and partimlarly whare ore is found, the game is caloite or limentowe. Fen foot below and a littlo eat of the out a amilar 12 inch vein follow the bedding. The veins are quito discontinuous, forming lonees and bunohes of clean lead ore whioh is being hand sorted for ahipment to Trail.

Workinga on Olacior Crook Slope

Figure 7 is plan and section of the main workings on the north wast side of the ridge, made by Brunton and ohain, and accordingly its acouracy has limits.

Fo. 1 adit, the upper adit, is driven along a fault dipping 60 degrese cast in grey, oryatallin limetone. Twenty-two foet northoast of the portal. on the sundeo, is a band of the dark grey, biotite achista. They continue on the surface, forming the hanging-wall of the vein, to the orest of the ridge 120 feet vertically above. In the adit the limestone is much fraotured and oxidized. Considerable gangue appears on the fault.

Crossout No. 103, has been driven 20 feet through limestone to hit a shear zone striking north 27 degrees west and dipping 50 degrees east. It carrias galena and gouge and is well oxidized. The drif't to the north from the ond of the orossout follows the lead for 20 feet and one foot of galena and oxidation produote appear in the face. Belom the drift a winse has been sunk about 25 feet on the vein, showing as much as ons foot of good ore in the bottom.

Crossout No. 102 encountered the same shear zone an orose out 108, and in the face of the short drift to the south 188 inches of oxidised are. Dark grey to black liotite sohists overlie the vein whioh is in limestome and dips 55 degrees northeast.

In orosscut 101, the vein was encountered at 25 feet, limestone lying to the west and schist to the cast. The limestone is badly sheared in plaees and oarries small lerses of ore. The dip of the vein is 50 degrees east.

The lower adit. No. S, outs massive or banded white to dark groy eryatalline limentone for 350 feet. The etrike is north 20 degrees west and the dip 30 degrees to 60 dogrees east. Two man systoms of fractures out the limestone, one parallel to, and one mproximately at right angles to the bedding. Numerous etringers and lenses of quartz genarally fodiow the bedding.

Crosseut Ho. 1 follows a fraoture through 150 feet of limestom which is mach sheared. At 150 feet a 5 foot band of dark biotite sohist was oncountered and beyond that lien, hard, banded silicified ilmentone. At the ond of the oromsout a raise has been put up and apparently entered carbonecous sohists, for the orossout is blooked by decomposed, black material.

Bouth of the oresseut, the main drift approximately follows the bedding of the 11 mestom and a strong fisaure, dipping 55 degrees northeast. A raise goes up on this fiasure 110 foet to the intermediate level. Λ little galona wre was onoountered from 95 foot to 110 feet.

The workings on the intermediate level are in fractured and sheared ilmestone. There is somegood ore on the north end, following a north 25 degowa west fissure dipping northeast, near the top of the raise from below. At the junotion of a northeast fissure the ore le etrongest. The raise from the south end of the level follows up a fault dipping 65 degrees. It is intended to top the oro showing in the winze below No.l adit, but it had not reached i.ts objective at the time of examination.

The ore consists of oubic or fine-grained galena. Oxidation has producoa anglesite (cull grey - generally well banded) and oerussite (light grey to white crystaline) from the galene. The ore is found raost commonly as lenses, bunches in fraotures, or shear zones in the limestone, below a narrow cand of dark grey biotite sohist. As a general rule the leads are bedded, but exceptions exist. The gangue consists of limestone or oaloite and minor amounte of quartz. Pyrite, oxidized to limonite, and some oopper mineral, poseibly chaloopyrite, are entirely seoondary in ampunt. The "sand carbonates" of the upper workings consists of a mixture of galena, anglesite, cerussite, iron oxide and particles of gangue. Mineralisod leads might be expeoted at almost any point in the limestone as well as near the schist contact. The sohist-limestone contact is, of course. the most favourable horizon.

The following assays are quoted from the resident engineer's report:

Ore sorted for shipment.........................0.04 Au. $32.7 \mathrm{Ag} .77 .1 \% \mathrm{Fb}$.
Across 4 inches galens in siliceous ledge matter in open out on Hamill Creak s lope..0.03 Au. $\quad 17.8 \mathrm{Ag} \cdot 56.4 \% \mathrm{~Pb}$.

Aoross 8 inches galena and oarbonates in farthest west open out on summit...... $0.04 \mathrm{Au} . \quad 20.4 \mathrm{Ag} .44 .5 \% \mathrm{~Pb}$.

Across 8 inches carbonate ore (including galena) in open out on summit........... $0.02 \mathrm{Au} . \quad 14.6 \mathrm{Ag} .45 .9 \mathrm{~Pb}$.

Extracts from Geological Survey of Canada - Memoir 161, Lardeau Map Area. cover ing Lavina geology, partioularly in conne otion with folding. failting and flat dips (features encountered in replacement deposits.)

LARDEAU SERTES

The Lardeau series is named after Lerdeau map-area. The rocks of this series lie in a gruat synolinal trough extending from Kootenay Lake northwesterly to near the watershed between Illecillewaet and Akolkolex rivers.

The Lardeau series comprises the youngest Windermere rooks in the map-axaa. Its base is taken at the top of the Badshot formation. Its upward extent is detarmined by orosion or the unoonformity at the base of the Nilford uroup.

The Lardean series is a hetergenous assemblage of metamorphosed sediments. The lowest number is, in most places, a black, carbonacecus rock, a slate, phyllite or sohist, dependire on the degree of metamorphis m. This member rests conformably on the Radshot formation. The black member is succeeded by grey to greerish phyllites and schists, calcareous in part in the southern pert of the mapmarea, developing into bends of limestone north and along the strike.

Near the top of the section of the schist is a poculiar black rook weathering with a vesicular appearance which has caused it to be mistaken for an igneousrock. Both field and mioroscopic examination fail to show any trace of igneous rem origin. It is apparently a fine-grained higily oarbonacous, siliceous rook with minor mount of oarbonate which on weathering out gives the porous apparance. It ocours at, the samb stratigraphic horizon on Lavina Kidge, Howner ride, and near the head of Grealy Creek in the northern part of the maparea. Suoceoding the schists in the southern part of the mep-area is a prominent band of limestone, which will be referred to es the Lavina limestone. This ilmestone band is tracasblo northward from Lavina Ridge across clacier Creok, the peninsula in Duncan Lake, and long the west side of Lake Creek valley. Succeeding the Lavina limestone are mica sohists and massive quartzite which for convenionoo are feferred to as the Lavina quarteites. The Lavina Limestone qud quateites ycross Lavina Ridge about the southerly end of the 7,000 foot contour inne. The quarteites are traceable nor theweaterly to about Zealy Creek. North from there the trend appears to be farther way from the Badshot formation, which they have olosely paralielod, due apparently to thickenirg of the intervening sodiments. Succeeding the Lavin quartzites is a succession of mica, quarts and ohlorito, phylifes and schists with, in the viainity of healy Croek, minor bands of quartzites and, in the vicinity of Hamill Creek. several large bands of limestone. The limestone tands appear to die out northward. A prominent band of quartzite outorope on the ridge east from the pase between the south fork of Lardeau Creek and Healy Croek. This quartzite, with the imediately overlying sohists and phyllites, appeare to be about the highest known part of the Lardeau series.

The qua tites striking across the haads of Ottawa, Brown and Triune oreeks, thence through the Silver Cup basin and across Lardeau Creek to the Nottie $L_{\text {, }}$ is apparently the Lavina quartsites...........

Imall ancias derives ite mane from Hamill Creek, south of which it is found with the underlying Horsethief formation of the Windermert series. This series has beon reforred to as the Dumean meries, but a formation on Vancouver Island has a prior olaim to that name.

The Homill serien border: the northesst side of Lardeau maparea from Hamill Creok to Inoomaploux River. It oatorops along the summits gouth of Illocillomet river and form the eastern wall of Columbia valley. south of the Northeast arm of Opper Arrow Lake. It oontinues in two areas separated by granitic rooks, one along Opper Arrow Lake and the other along the sumita west of the Beaton-

The Kanill meries oomprisee the oldeat known rooks in Lardaau mapmarea. It is made ap of auccession of strata varying in nature from quartsite to schist and limestone. The quartaites form a large part of the series along the castern side of the maparea. The division between Horsethief formation and lamill Creak series is made at the base of a great thiokness of rassive quartzite woll exposed between Hamill and Fry Creeks southeast of the mapmarea, and alse on Glacier Creek Just east of the map area. Approximately the same horizon is found at the first bomd in Hel I Creek a short distance west of Duncen River. Along the east side of the map-area the quartaites are white to grey with, in some places, plnkish to rusty tints. The quartsites are fairly uniform in charaoter slong the strike, but ohange in nature across it. In the western part bf the map-area, the quartzites have ohanged to impure quartzites and schista. It is difficult to definte the lower limit of the series in this seotion and it is prokable that considerable Horsothief formation is ineluded in the Hamill series as shown on the map.

Abote themasive quartsites of the eastern part of the maparea is a succession of quartzites, mica sohists, mioa phyllites and limestones. The most prominent and persistent of the Limestones, locally known as the Lis: Dyke, has been mapped as a distinct formation and its base determines the top of the inmill serles.

From the Lavina Ridge to the head of Dunoan Lake the atrata of the Hamill series are overturned to the west and display easterly dipe. Minor folding and faulting have been observed on Lavina Mountain and also on the slopes of Mount 8 impson. North from Duncan lake the dipe vary from vertioal to high to the west. On Hall Creek the general dip is westerly and the struetures apparently aorresponds to that displayed in the Badshot gemetion and desoribed on a later page. On Boyd Ridge the maesive quartaiten are olomely folded in antiolines and aynolines. These folds are mivor struotures on the limb of what appears to be major antiolimal struoture to the east and a large ayolinal struoture to the west.

BADSHOT (LTN DYKE) PORHATION
This formation, so well known locally as the "Lim Dyke," feeoives its name from Mount Badshot, one of soveral high, wedge-ahaped, limestone peake having the appearanoe of a ruined wall or dyke.

The Bedahot Formition outeropa in the atove mentioned prominent mamer Irom the hoad of Boyd Creit to Howner Ridge. South from this pelint it becomen nexrower and loses its distinotive topegraphle charaeter. Around the nerthwest ond of tis mip-area trom south of Albert Oroek te Cheot Greek, the lover one of three peoninent bende of limentone is taicen as the oquitalont of the Bedshot formation. This limestone in tracobile to the south side of Akolkolex River where it is lost in the heavily timbered hillside. Apparentiy the horison is found on spront Wountain asd is tracoable acrosa the northeast arm and south to Trout Mourstain. It is poesible that a lewor band of 1 imestone may be the true stratigraphio equivalent of the Bedshot, but the impossibility of following thif defined horison in the timbered hilisides led to the use of the better defined horizon as to defining the boundary between the Hamill and Lardean series. The Badshot formation separates the Hemill series from Lardeau series and all are conformable and part of one great sedimantary sueoession.

The Badshos formation is a groy, orystralline, somotines sillooous ilmestone in places well banded, at other peints massive. In thioknese it varies Arom 150 feet on laving Radge to eeveral hundred in the region of Lake and Hall Creeks. Intense folding in this region makes it very dififoult to form an estimate as to its thiokness.

On Lavina kicge the Bedshot formationdipe northeaster iy about 48 degreas on the easterly limb of a large syncline overturned to the eouthwest. Following the formation northward its dip stespens and where it arosses Duncan Lake, becomes vertical. North along lake Creek the dip is steeply west and continues to be vertical or nearly so to Royd Creek, where, overturning to the southwest, it is again in evidunce. As exposed in Mounts Abbot and Tempieman the limestone is closely folded upon itself in an anticline with synoline to the east. Worth of Cariboo Creok the fold opens and the arch of the antioline has been eroded away leaving the syncline exposed some distance east of the main band.

Around the northeast end of the map-area the formation dips at lower angles to the south and east. On Sproet hountain it outorops on the west limb of a synclinal struature overturned to the northeast. South from the northeast arm the dips are vertical to high to the northeast.

SILVER-LEAD VEING IN LITESTONE

In the lardeau there are aeveral veins in limestone which contain galena as essentially the only sulphide. They differ markedly from the lead-zino replacement deposita and from the cilver-lead-sinc fiscure veins.

The Yamoth, Badehot and javima are of this type. The first two propertier have been woriced out but the third is still aotive. All three lis at elevations of 7,000 feet or over. In the ftrest two, the ore, congisting of silver-bearing gulena and some argontiferous tetrahedrite. ocourred along dietinot fissures outting the limastone. Very little pyrite was present and the gangue was calcite or milify quartz. The ores, with much quarte on the sadshot and practically no gangue on the Mamoth completely fillied the vain.

The Lavin ores - Galena, aittle pyrite, and their oxidation produats - ocour Riong Bhemr sones or Clesures generally parallel to the bodding of the $1 i m e s t o n e$. There has boen a $i l t t i o$ replacement, but it is unimpertant is the ore-bodies so far developed. Ho totrahedrito was obeerved, but the eilver values are good. A ghipment made in the early daye of 200 tons is roported to have aesayed 50 to 60 per cent lead and 60 to 70 ounoes ailver per ton. On the hanging-mail gide of the cere-
bedies the limastone has boon extonsively silicified to grey jasporold In which 30 ore han been found. The lamoth and Badshot, and ore or two other propertios like them, are amall doposite that give iittie pronise of future peduetion. The lavine, however, is more promiuing and it is poasible that, with further developwnt, replacoment mey be found to have played a more important part. (The geological struetuxe of Lavina according to meveral ongineer. B. F. 0^{\prime} Grady, etc., is very favourable for replacomont deposit.)

BY
 B.T. O'Gredy, Eneineer Dept. of Mines, 1925

This property consiating of the Lavim, Bute, Iron Cap, Stojoseph, noul Ruthio Boll, orown granted olaims, is situated ou both sides of the sumith of the ridge botween Eamill mad Glacier Creeks, tributaries of the Dunean River, north of Kootoray Lake, at an levation of 7,000 feet (abin). Formerly the cladme wre reached from Hemill Croek by a trail from the and of the wagon road, but as the upper paet of the road hae been washed out, the precent route, nore roundabout is by a trail laeving the Argenta-Howser road at White's Rench.

A conside able anount of developmert work wae done between 1899 and 1904 during which period som 200 tons of ore was shipped, reported to have assayed from 50 to 60 per cent laad and 60 to 70 ouncex in 111 ver to the ton. The mine was olosed down unt11 1924. when Ed. Nordman, and ascooiates took it ovor unier lease and bond from the Bank of Montreal. Since 1924 development writs has been proceeded with continuously exoept for short periods in the winter months whon difficulty wes experienced in gettinc in suppisios.

The old workings, consisting of tunnels and open outs are on both sides of the summit, and extend down for several hundred feet below os The formation is composed of phyllites, banis of limestone and a fow bands of dimbameschist. In the centre of the mineralised ares there is a banded silionous rook, probably altered limestone. The strike of the formation is north-westerly across the ridge, with dips from 80 to 50 degrees to the northeest.

In the above reck there is a network of smell veins, some parallel to and othere ororsing the formation. The ore, which is onfefly clean galona and carbonetes, shows aredilection foo the limestone, occurring usually oither in a limestone band or near one. The gangue in some of the voins is wifto miliky quartig. In others, on loite.

The work done by the rresent opreators from three to four men includen a 176 foot raise put up from the No. 2 (Ir on Cap) tumsl on the Glacior Creek aiope to tap a nice showing of or in in underham stope oommenced from the Fio. 1 tumel level. They also tave opened up several grall showings of clean galena and carbomates on the surface near the sumalt and on the Hamill Creak slope. The following aples were taicen from these now shorings.
Ore sorted for shipment.e................ 0.04 oz. Gold 32.7 oz.Ag. 77.14 Pb.
Loress 4 inohes of galena in siliosous ledge matter in open out; on Eamill Creok slope
.08 of. Gold 17.8 o8.Age $56.4 \% \mathrm{~Pb}$.
Aerose 8 inches of galema and carbonates
in farthest west open out on sumait04 08. Gold 20.4 oz.Ag. $44.5 \% \mathrm{Fb}$.
Aeroes 8 inahes of carbonates ore
(exciuding maggets of galona) in open
out on aumit. OR os. Gold 14.6 ozoig. 45.0\% Po.

Col. E. Murray Thomson
Roon 15
509 Dunsmuir Street
Vancouver, B. C.
Dear Col. Thomson:
Your letter of December 14th about the possible lead-zinc mine with rather high iron and manganese content. offhand, I think that 15% manganese content associated with high iron would not be economic in the north as a mixture of that sort would be unlikely to respond to elther gravity concentration or to flotation. I know of no plants for chemical concentration of manganese in the north.

The U. S. Government has a program to buy $6,000,000$ long ton units (22.4 lbs) of manganese. At the reception center in Deming, New Mexico it will take ore as low as 15\% manganese but will only pay $\$ 6.10$ per ton for it. It will pay $\$ 2.00$ per unit for ore of the following assay:

There is premium $1 / 2$ per unit on an assay value of over 48% and another $1 / 2 \phi$ per 1% for 1 ron under 6%.
any lot of ore which cannot be beneficiated to the following specification will be rejected:

Mn	40\% minimum	
Fe	16%	maximum
$\mathrm{S}_{1} \mathrm{O}_{2}+\mathrm{Al}_{2} \mathrm{O}_{3}$	15%	n
Phosphorus	$.3 \%$	n
$\mathrm{Cu}+\mathrm{Pb}+\mathrm{Zn}$	1%	n

Even if treatable, freight rates would prohibit shipping ore of that grade.

Col. E. Murray Thomson
Page 2

It is suggested that if this property is located in the limestone area along a major break that the lead-ainc possibilities be investigated. We would be interested if it can be demonstrated that there is a good possibility of a 20 thick replacement ore body of sufficient combined lead-zinc to be ore.

Vith personal regerds and best wishes for a Merry Christmas and Happy New Year, I am

8AS/a
Very truly yours,
S. A. spefzpetrer.

1

In. S. a. Apellmayer.
1206. Pacifie Thuliul Bloy.

Las angelles it.
lealefarma

- iny dear Inr Apellorneyin-
property (replacement limestion) whech while it has indiaitions of lead and sinc and is in ihe
- lead and zinc ared coniarins a weir awer aging 20^{\prime} in widelt auhich has a meial conient of 2urn. 358% and metathe manganeat of is 0%. As 2 ham no pnoullege of manganese ar rather eve ccononucs of rnanganese, inis etter is io enquiry if there is a form manhet for. it and would such a bepasil to one ithat could he breatio econo mioally. This purperty is in an area on on a lerake ewhich has Trany propicialle mines. I thosight of daing somi gealogical wank lefare going snuch further, but the economics of manganese ruauli seem ti be the deleirnining factór contialling as io whether it be reparded as a manganese ar a lead zune propect'

Suncerely
c.m. 2homoon.
P. S. leritten long hand as ony Secretary is awayill Esn-d.

Andu terms outhing furtax ky
Antin hi lith of Betrh. Io
thipupinty is ntf of itacy 2 aducue
Wht Nefsq that of thrusom
coued or woued mot gain
män iquitible undetmo ele the Re showed defonity dip the surthe. We mied af emux huy the mitter kefore un on

To: Blair W. Stewart
From: S. A. Spellmeyer
Re: Seven Sisters Mine

Location: On the west flank of Seven Sisters Mountain at an elevation of about 4400 feet looking down on the It is 8 miles by trail from Cedervale and probably 4 miles air line from the track of the Canadian National Railroad.

Suggested
by: Col. E. M. Thomson, Suite 81, 553 Granville, Vancouver, B. C.

Topography: The mine outcrops are just above timber line on the west flank of the mountain on rather even slope of about 20° toward the valley.

Geology: The outcrops are found in the argillites and quartzites of the Hazelton Series a short distance in the footwall of a granitic intrusive. In general the bedding strike is NIOW dipping easterly into the mountain at 30°. The mineralization seems to follow the bedding and is of a replacement type. The favorable band is approximately 300^{\prime} wide and can be traced for more than a mile. It is partly covered by glacial drift, sometimes rather heavily and at other times it is clear. There is no more than 200 feet of vertical distance at any point along the outcrop. There is no deep dissection in the mineralized zone but canyons cut across the projected strike, Coyote Creek to the north and the basin at the head of Flint Creek to the south.

The granitic batholith is toward the northeast (distance unspecified). Two andesite dikes of strength and regularity have been found, one of which has penetrated the mineral zone (no strike or dip given in report).

Mineralization: Pyrite, pyrrhotite, sphalerite and galena with some tetrahedrite with the lead. The silver values go up to $3-4$ ounces of silver to 1% of lead at times. The ore occurs as lenticular replacement along bedding planes. (It is not stated whether argillite or quartzite is more favorable nor is any size given for the lenses.) The mineralized belt probably containing parallel lenses is about 300 feet wide and a mile in length. (300 feet on a 30° dip is a thickness of 100 feet of the bedding.)

The tenor of the assays of scattered samples from workings and open cuts is more or less as follows: Gold - none; silver l-$7-1 / 2$ ounces; lead 0 to 3%; zinc, up to 25%. A picked sample of galena ran lil oz. Ag., $48 \% \mathrm{~Pb}$. and $6 \% \mathrm{Zn}$. A sample of pyrrhotite from the shaft ran 1 oz . Ag ; no Pb and $16 \% \mathrm{Zn}$. The widths on these scattered samples were reported from 2 to 5 feet.

Workings:

One 75 -foot shaft along a vertical N2OW andesite dike with a few-short drifts and crosscuts. One 86-foot crosscut tunnel and a large number of pits and open cuts and short tunnels. (Nothing to do more than indicate mineralization no ore blocked or developed to show size of lenses.)
Proposal: A free interest of 25%; about $\$ 5000.00$ cash; a stated time; commitment to spend $\$ 25,000$ per year for an unup.

Discussion: This is a prospect that might be worth a preliminary inspection when the snow has cleared away, provided a more satisfactory proposal could be arranged. It is not sufficiently attractive to warrant paying out any money for the privilege of getting an examination in the spring or summer of next year. From the sketchy report, probably a copy of the Minister of Mines Report for 1928, it looks as if the two principal places of operation were on the dike contacts though some mineral is found over a considerable area. So far, time has not been found to try to trace any history of the property in the literature at the Geological Survey Library. It is quite probable that the proposer, Col. Thomson, is feeling out the situation to see how much, if any, money could be obtained. While we don't want to discourage him, as yet, as he may turn up something more favorable, we'll have to convince him that we do not consider this an attractive proposition as presented and that before paying out cash we have to know what we are getting.

Excerpt from SAS memo to BWS 10-18-51 (Original filed in SAS Explorations - B.C. fldr.)
"One of the properties proposed by Thanson is the Seven Sisters on the west flank of Seven Sisters Mountain near Cedarvale in the Skeena River Valley. The proposal made is as follows: "A 25% interest in the operating compony and some cash to allow them (the 5 vendors) to maintain themselves until work starts in the spring, which sum can be stipulated as $\$ 5000.00$ with the additional stipulation that a minimum of $\$ 25,000$ per year be spent on the property while the option is in exisonce. The vendors wish your company to agree that they will undertake that the issue of this stock to them will be free stock and not take any steps to escrow same.

The above are general terms and it is underatood that they will be submitted into a regular option form agreement setting out the usual particulars, one of which should be that they are entitled to receive copies of all assay maps and assay plans as they become available. Mr. Thomson was told that these are not at all the terms we would donsider satisfactory. In the first place we would not pay out any money before seeing a pooperty (this property is at 4100^{\prime} elev. and is already partly covered with snow), next that we would not commit ourselves in advance for definite or irrevokable expenditures. That we do not like the idea of having a large outside interest not particularly when it is/under option and might be kicking around a market. That we are not in the habit of making public the results of our sampling or drilling particuidatly

81-553 Granville Street, R ROM 510
475-HOWE-STREET VANCOUVER

October 12, 1951

Mr . S. A. Spellmeyer, Mining Engineer, 1206 Mutual Building, Los Angeles, California, U. S. A.

Dear Mr. Spellmeyer:
Re: Seven Sisters Mountain Group.

- I attach herewith a copy of a report by a Geologist of the Department of Mines at Victoris, B. C.

The following terms have been submitted to me as being acceptable to the vendors of whom there are five in number:

A 25% interest in the operating company and some cash payment to allow them to maintain themselves until work starts in the spring, which sum can be stipulated as $\$ 5,000.00$, with the additional stipulation that a minimum of $\$ 25,000.00$ per year be spent on the property while the option is in existence. The vendors wish your company to agree that they will undertake that the issue of this stock to them will be as free stock and not take any steps to escrow same.

The above are general terms and it is understood that they will be submitted into a regular option form agreement, setting out the usual particulars, one of which should be that they are entitled to receive copies of all assay maps and assay plans as they become available.

It would be advantageous if you would advise me if the above terms are such as you would be willing to recommend as there are several more properties on which I am negotiating and if I can get a clear picture of the way you wish the deals to go forward I can shorten the negotiating period a great deal.

Yours very truly,

EMT: jp

Encl.

This group, owned by Steve Young, is distant 8 miles by packtrail from Cedarvale, on the Canadian National Railway. It is under option to the D. W. Mines, Limited, which has carried
SEVEN SISTERS. on work with a small force during the entire year, having erected camp buildings, sufficient to accommodate a force of 12 men, in a convenient location just below timber-line at 4, 100 feet elevation. Workings are above timberline and lie between elevations of 4,300 to 4,500 feet. W. H. O'Connor is in charge of operations.

The salient features of the mineral occurrence are as follows: On the upper western flanks of Seven Sisters Mountain, overlooking the Skeena River, not far distant from an intrusion of granitic rock in the argillites and quartzites of the Hazelton series, there is exposed by open-cuts and shallow workings a replacement mineralization. This persists with remarkable regularity and can be readily traced for upwards of a mile in length. It is covered in places with glacial drift somewhat deeply, but in others the cover is very thin or non-existent. At the great majority of points, however, if it has not already been disclosed by natural agencies, it can be readily exposed by surface-trenching. The strike differs but little from true north and south, being on an average perhaps $\mathrm{N} .10^{\circ} \mathrm{W}$. (true). The dip is flat, at about 30°, and easterly into the mountain. The strike is such, likewise the topography, that all surface exposures are, broadly speaking, at much the same horizon, lying between elevations of 4,300 and 4,500 feet above sea-level. Further, the mountain-side slopes very gradually away from the surface exposures, at an angle in most places of not over 20°. There is practically no deep dissection of the surface near the mineralization, except at the extreme north and south ends of the property. In the former case Coyote Creek affords somewhat deep dissection and at the south end the basin at the head of Flint creek is of great size and depth.

The mineralization is essentially pyrrhotite-zinc blendegalena, with a large amount of accompanying iron pyrites. Silver values evidertly vary considerably, but some of the galena lenses containing grey copper show quite high silver values; this class of ore carries from 3 to 4 oz . of silver to the unit of lead. The mineralization appears to be a replacement following the bedding-planes of the enclosing argillitic and quartzite country-rock, although the bedding-planes are somewhat obscured. While quite insufficient work has been done to prove the matter, it seems likely that a belt of rock about 300 feet in width wi $¥ 1$ be found to contain parallel ore-lenses.

Besides the intrusion of batholithic rock, previously mentioned, in the north-eastern portion of the property in Coyote creek, another important geologic feature is the intrusion of certain igneous dykes of andesite porphyry in the sedimentaries. Two of these have been discovered so far, both of which persist for considerable distances with great regularity. One of these dykes, which has penetrated the mineralized zone, has probably influenced ore-deposition and this relationship should undoubtedly be closely studied.

Last winter, at the point of original discovery of galena of high silver content at 4,285 feet elevation, a shaft was sunk 75 feet on an incline of 32° on a bearing N. 850 E. (mag.). At the collar of the shaft a
vertical dyke of andesite porphyry, striking N. $20^{\circ} \mathrm{W}$. (true) and about 3 feet wide, penetrates the ore-zone and ore occurs on both sides of it. While the ground encountered showed a considerable amount of massive zinc-blende with a little galena occurring in bunches, it will be noted that this shaft is in the nature of crosscutting, as the bearing is not at right angles to the observed strike of the ore on the surface at thispoint, which is N . 10° W. (true). Just below the collar of the shaft a tunnel was run a distance of 28 feet on a bearing S. 120 E . (mag.), which also does not coincide with the observed strike of the ore. Near the bottom of the shaft a crosscut was also run westerly a distance of about 30 feet. In the spring of 1927, owing to water, further sinking was stopped and an extensive system of surface-trenching was carried out south of this point, in the hope that, the vein might be found to bear ore as far south as Flint Creek basin; in which event the vein could be advantageously developed in depth by an aditdrift from this basin.

The results of this open-cutting were not, however, very conclusive and the mantle of glacial drift was heavy in places necessitating deep trenching. Good ore, it is stated, was found at one point distant l,087 feet from the shaft, and doubtless a very considerable extension of orebearing ground is to be expected south of the shaft. On the other hand, examination of the surface showings north of the shaft, coupled with the fact that the intrusion of batholitic rock with injection tongues therefrom is in the extreme northern portion of the property, and further, that an andesitic dyke striking $N .200 \mathrm{~W}$. (true) penetrates the mineralized zone by the shaft, indicate major possibilities near and north of the latter. With this idea in mind, in September, investigation of the region in the more immediate vicinity of the shaft was commenced, with gratifying results. A few feet north of the shaft, and about 15 feet below the latter, an open-cut followed by a crosscut tunnel 86 feet in length struck a width of 4 feet of mixed galena and zinc-blende and pyrrhotite with much calcite. The strike of the ore is $\mathrm{N} .10^{\circ} \mathrm{W}$. (true), corresponding with that struck at the collar of the shaft and which latter is doubtless the apex. This ore was being followed by drifting at the close of the year. At the time of the inspection in November a width of 2 feet of ore was exposed. A sample across this width assayed: Gold, trace; silver, 7.5 oz . to the ton; lead, 3 per cent; zinc, 18 per cent.

At a point about 300 feet north of the shaft another open-cut exposed a width of 5 feet of ore consisting of zinc-blende and pyrrhotite with some galena. Very little ore showed at the surface at this point. A picked sample of this ore assayed: Gold, trace; silver, 3.6 oz . to the ton; lead, 2 per cent.; zinc, 25 per cent. By Chishold creek, about 750 feet north of the shaft, there is exposed a nice showing of solid zincblende. About 3,000 feet north of the shaft a large area of rock is heavily stained with iron, which probably marks the continuation downward of this mineral-zone. The elevation of this point is 4,530 feet. Still farther north, at an elevation of $4,4,60$ feet, an old tunnel was run in the zone, crosscutting for a distance of 12 feet massive zinc-blende and pyrrhotite. The need of further work at this point is imperative. A sample of the ore at this point assayed 14 percent. zinc, no lead, and traces only of gold and silver.

A sample of picked galena from the shaft assayed; Gold, trace; silver, 111 oz. to the ton; lead, 48 per cent.; zinc, 6 per cent. A seapple of zinc-blende and pyrrhotite from the shaft assayed: Gold, trace; silver, 1 oz . to the ton; lead, nil; zinc, 16 per cent.

During the winter of 1927-28 (at which time only underground development is possible) the intention is to drift and sink in the ore which has recently been struck near the shaft. It might be mentioned that in winter very little water is met with in sinking.

When seasonal conditions permit, the advisability of following up the various exposures north of the shaft is apparent. A very large amount of surface-trenching in this region will be necessary to determine the best points for further investigation; indeed, the property has hardly been scratched as yet. While ultimately the ores will require treatment by selective flotation prior to shipment, it is possible that development will yield lenses of galena, which can be hand-sorted and shipped direct. The galena evidently varies widely in silver con tent.

While this property is still in the prospect stage, it gives promise of developing into a property of magnitude. It is distant in a straight line from the railway probably not over 4 miles. It must. therefore be apparent that, when developments justify such, a mill by the railway-track and an aerial tram thereto will satisfactorily dispose of the transportation question. Kefer also to the 1925 and 1926 Annual Reports.
$93 . \mathrm{b}$
TAB ER, John W.
$\begin{aligned} & \text { Mining Engr. App. } \\ & 1947\end{aligned}$

3

THOMSON PROSPECTS - GEneral

1206 File

