

REPORT ON MERCURY-CARY-DYNASTY DRILLING

PROJECT AT ENDAKO, B.C.

July - August, 1970

N.T.S. 93-K & 93-F • Omineca Mining District

By:

K. M. DAWSON

ATLAS EXPLORATIONS LIMITED

September,1970

TABLE OF CONTENTS

•	
INTRODUCTION	1
SUMMARY	2
RECOMMENDATIONS	3
ACCESS, LOCATION AND PHYSIOGRAPHY	4
REGIONAL GEOLOGY	5
MOLYBDENITE DEPOSITS OUTSIDE OF ENDAKO MINE AREA	7
FORT GROUP DRILLING	9
BONUS GROUP DRILLING	12
COUNT GROUP DRILLING	14
CHESS GROUP DRILLING	15
CONCLUSIONS ON DRILLING PROJECT	17
OUTSIDE EXPLORATION IN ENDAKO AREA	19
1. Shovel Lake Area Proposed Program for Shovel Lake Area Cost Estimates	19 20 21
2. Amax's KEN Claims at Tatin Lake	21
3. United Buffadison's K & S Claims at Owl Lake	22
4. Nithi Mountain Area	22
5. CALEDONIA Claims	22
6. Amax's OWL and GEL Claims	23
7. Lily Lake Area	23
8. Savory Area	24
CONCLUSIONS	25

Page

LIST OF FIGURES

- Fig. 1 Location Map of Endako Area
- Fig. 2 Location Map of Claim Groups and Drill Holes
- Fig. 3 FORT Claims Drill Targets
- Fig. 4 BONUS Claims Drill Targets
- Fig. 5 COUNT Claims Drill Target
- Fig. 6 CHESS Claims Drill Target
- Fig. 7 BARB Claims
- Fig. 8 OWL and GEL Claims
- Fig. 9 Lily Lake and Nithi Mountain Areas
- Fig. 10 Savory Area

LIST OF TABLES

Table 1 Table of Formations - Endako Area

Appendix I Map 1: Geology of the Endako Area

Appendix II Diamond Drill Logs

Appendix III Geochemical Analyses Sheets

TELEPHONE 685-4331

Atlas Explorations Limited

330 MARINE BUILDING355 BURRARD STREETVANCOUVER I, B.C.

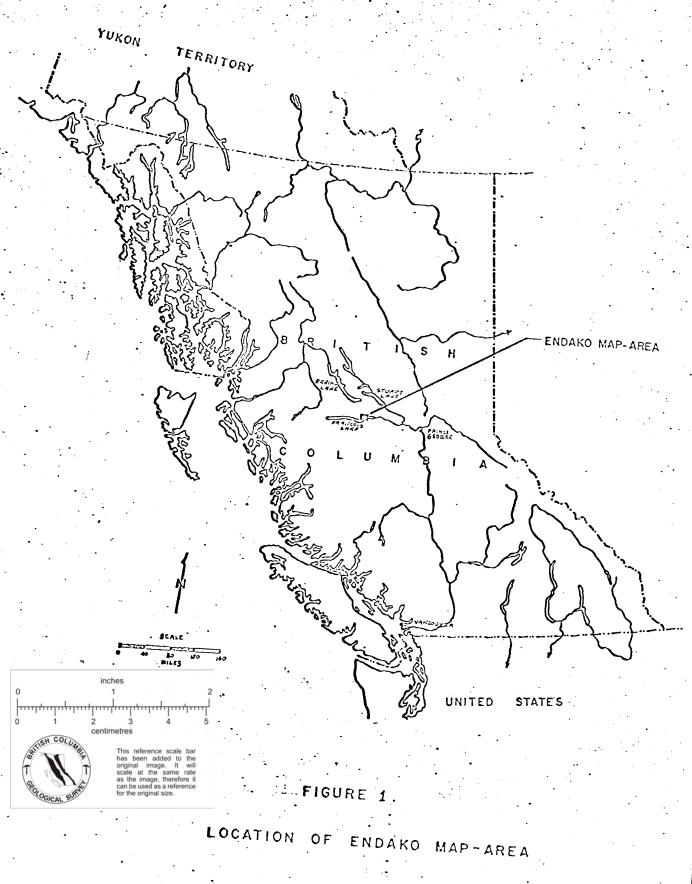
REPORT ON MERCURY-CARY-DYNASTY DRILLING PROJECT AT ENDAKO, B.C. July - August, 1970

INTRODUCTION

During the period July 28 - August 23, 1970, five diamond drill holes, totalling 1,526 ft. were put down on the claim groups FORT, BONUS, COUNT and CHESS in the Endako area. These claims are four of the six groups staked by Mercury Explorations Ltd. in 1968 on the basis of geochemical and geological reconnaissance. In 1969 about 100 line-miles of induced polarization surveys were made over and adjacent to the claim groups. Four I.P. anomalies were located, with supporting geological and geochemical evidence, that merited testing by diamond drilling.

I.P. anomalies on FORT, BONUS, COUNT and TAT groups were checked and confirmed by a Seigel I.P. survey crew in the period April 28 to May 16, 1970. A diamond drilling program was conceived, backed jointly by Atlas - Dynasty, and Cary Canadian Mines Ltd., and managed by Mercury Explorations Ltd. (N.P.L.). Drilling commenced July 28, 1970 under the supervision of Robert E. Chaplin of Mercury and the writer.

-Selected areas and properties in Endako area were examined and sampled during the course of the drilling program.

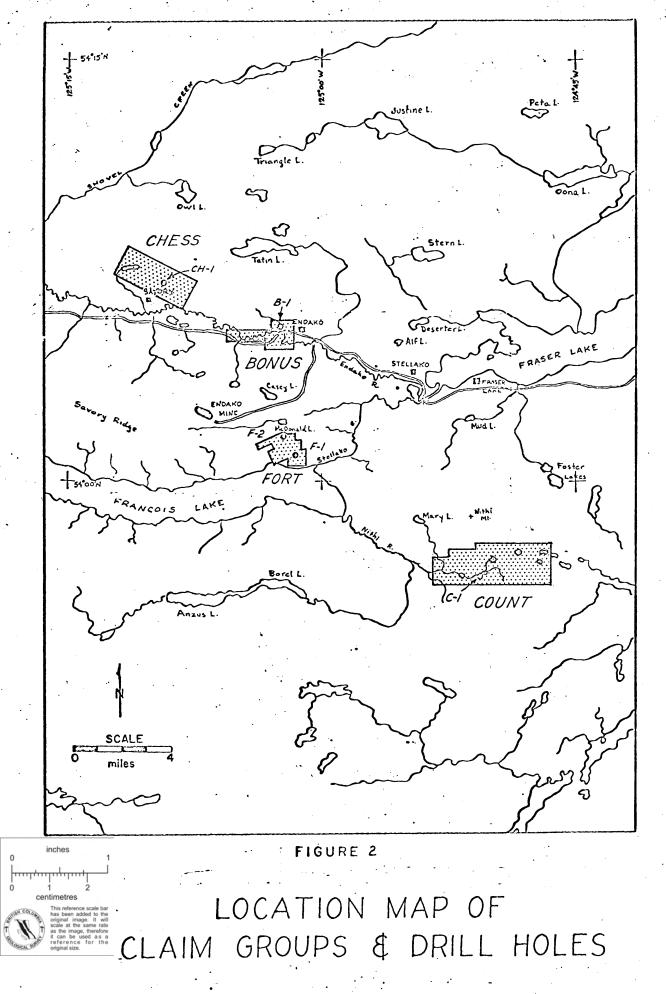

SUMMARY

- 1. Minor amounts of molybdenite with pyrite were found in holes F-1 and CH-1 on FORT and CHESS groups, respectively. Quartz monzonite in these two holes showed weak alteration, but little quartz veining or sulfide mineralization.
- Several basalt dykes and small pyrite veins were noted in Casey alaskite in hole F-2 on the FORT claims. No molybdenite was detected.
- 3. Fresh Glenannan quartz monzonite containing no sulfides was intersected in hole B-1 on BONUS claims. Only 20.5 feet of core were drilled before hole was stopped due to tricone fragments impeding coring bit.
- Bedrock was not reached in hole C-1 on COUNT group, and the hole was stopped at 353 ft. in sandy silt.

- 5. Anomalous I.P. responses were borne out by the nature of rock and/or overburden encountered in each drill hole, with the exception of D.D.H. B-1.
- 6. Areas examined and sampled outside of the six claim groups include JODEE claims on Nithi Mtn; CALEDONIA claims on east bank of Nithi River; Amax's OWL and GEL claims south of COUNT group, Lily Lake area southeast of Nithi Mtn; Amax's KEN claims at Tatin Lake; BARB claims near Shovel Lake; Amax's SAM and LORNE claims at Sam Ross Creek, and an outcropping of the Casey-Endako contact south of Savory Stn.

RECOMMENDATIONS

- Economically significant mineralization and alteration
 was not encountered in diamond drilling therefore neither
 additional drilling nor other exploratory work appears
 warranted on the claim groups drilled.
- Regional geologic work has revealed one area of interest, near Shovel Lake, where additional exploration should be undertaken in the near future.
- The Dynasty-Atlas interest in the joint venture should be retained until the Shovel Lake area has been adequately explored.



ACCESS, LOCATION AND PHYSIOGRAPHY

Location of Endako area in central British Columbia is given in Figure 1. The area is centred upon latitude 54[°]N. and longitude 125[°]W. The town of Endako is 100 miles west of Prince George on Highway 16.

Access to claims is attained by gravel automobile roads branching from Highway 16, and logging and diamond drill site roads suitable for four-wheel drive vehicles. In general, road access in Endako area is excellent. A location map of claims and drill holes is given in Figure 2.

The Endako area is in the southern part of the Nechako Plateau and its topography typifies the dissected upland ridges and broad major valleys common to this physiographic unit. The area is bounded on the west by east-trending hills of Savory Ridge which reach an elevation of 4500 ft., the highest in the area. Endako mine, at elevation 3500 ft., occupies the western crest of a broad east-trending ridge which separates Francois Lake to the south from Endako River valley to the north. Twelve miles east of Endako mine stands Nithi Mountain, elevation 4435 ft. Ground elevation drops off eastward to the Nechako Plain south of Fort Fraser. Elevations range from 2197 ft. at Fraser Lake to 4500 ft. at Savory Ridge, but local relief on the claim groups is in the order of 500 ft.

Bedrock is covered by a thick blanket of till, glaciofluvial and glaciolacustrine deposits. Overburden thickness in excess of 200 ft. is common. The deepest overburden known is on COUNT claims, in excess of 353 ft. Bedrock exposure constitutes about 3% of the area.

The climate in Endako area is typified by warm summers, long cold winters, and light precipitation. Snow is expected in the vicinity of Endako mine in October, and winter weather generally commences about the first week in November. Spring breakup comes about the end of April on the large lakes, but snow does not leave the higher areas until the end of May.

REGIONAL GEOLOGY

Topley Intrusions, of predominately Late Jurassic age, including seven plutons and one small stock, form approximately 80% of the bedrock in Endako area (See Map 1 Appendix). A small area of the Late Triassic Takla Group volcanic rocks on north shore of Francois Lake is intruded by Topley granite. Endako group volcanic rocks of Eocene age overlie older units in the area.

Topley rocks range from dioritic to granitic in composition, with quartz monzonite predominant. A Table of Formations is given in Table 1. Foliated rocks of the Simon Bay diorite

- 5 - 1

complex are the oldest members of Topley Intrusions recognized in Endako area. Foliation is mainly of primary origin and conforms to the regional northwest trend of the batholith. The Simon Bay diorite complex is the southwestern extension of a large mesozonal pluton which was intruded along regional northwest zones of weakness in Middle Jurassic time.

The majority of Topley phases were emplaced during a short, almost continuous period of relatively shallow level igneous activity in Lake Jurassic time. Limited radiometric data indicate a time span of about 18 million years between emplacement of dioritic phases and the predominantly quartz monzonitic rocks of this stage. The Endako, Nithi, Glenannon, Casey and Francois units were emplaced in a northwest trend which follows a preexisting grain in older diorites and also represents fracturing and intrusion under northeasterly-directed compression. The sequence of these plutons may represent differentiation of a parental granodioritic magma. Composition of successive intrusions shows enrichment in silica and/or potash, culminating in Francois It is of interest to note that mineral deposits are granite. preferentially associated with earlier phases of the batholith in this case, i.e. Endako and Nithi quartz monzonites, rather than later, granitic differentiates.

- 6 -

The last major period of plutonism recognized in Endako area is represented by Stellako quartz monzonite and granodiorite of Early Cretaceous age. These young intrusions have been emplaced as a broad discordant belt trending north-northeast at right angles to the regional trend of older Topley rocks. Stellako intrusions are more basic than main stage Topley units, and bear no evident genetic relationship to the older rocks although the time lapse between emplacement of the two stages, as shown by radiometric dating, was in the order of only a million years.

MOLYBDENITE DEPOSITS OUTSIDE OF ENDAKO MINE AREA

At Nithi Mountain, five miles south of the town of Fraser Lake widespread low-grade molybdenite mineralization occurs on various claim groups. Rock types, mineralization, alteration and structural setting are similar to that at Endako mine, but degrees of fracturing and mineralization are significatly lower. Canex examined the area in detail, and found the mineral potential, based on 7900 ft. of drilling, an I.P. survey and an extensive soil geochemistry survey, was discouragingly low. Maximum average grades over the mineralized area were found to be in the range of 0.06 to 0.08% MoS₂, and no higher grade bodies (>.25%) were found.

- 7 -

United Buffadison Mines Ltd. holds 70 claims in the K & S groups near Owl Lake, three miles north of Savory Station. Scattered molybdenite mineralization occurs in Casey alaskite near the intersection of two regional structures; i.e. the northern extension of Casey Lake fault and a zone of fractures and dykes with northeast trend. Over 6000 ft. of diamond drilling in 1965 and 1966 revealed some high-grade intersections, but most mineralization, in the form of small quartzmolybdenite-pyrite veins, is well below ore grade.

Amax's KEN group is located at the northwest end of Tatin Lake, adjoining Buffadison ground on the east. Twelve bulldozer trenches reveal weakly kaolinized to fresh Casey alaskite in which is developed a stockwork of small quartz veins containing minor pyrite and molybdenite. K-feldspar alteration envelopes occur sparsely in the trenches. Overall grade is estimated to be about 0.01 - 0.03% MoS₂.

Endako Mines' CM group in vicinity of Casey and MacDonald Lakes was drilled in 1967. A few small quartz-molybdenite veins were intersected in four holes.

Amax's SAM and LORNE claims at Sam Ross Creek are located upon small quartz-molybdenite veinlets in relatively unaltered Endako quartz monzonite and porphyritic granite dykes.

- 8 -

Utica Mines Ltd. encountered minor veinlets containing molybdenite and pyrite in diamond drilling on the ROB group southwest of Endako Mine in 1965.

National Explorations Ltd. has diamond drilled and trenched the RON group west of Oval Lake and south of Savory Station where a two-foot wide quartz vein containing minor molybdenite crops out.

Six trenches on Eric Thompson's CALEDONIA claims are located five miles southeast of Nithi River bridge. Coarse-grained porphyritic Topley quartz monzonite is intruded by about eight small basalt dykes and mineralized by four $\frac{1}{4}$ " - 1" quartz-magnetite-molybdenite veins.

Minor occurrences of molybdenite are common throughout the Endako area. Major concentrations appear to be controlled primarily by intersections of two or more regional structural features. Larger deposits are accompanied by pervasive argillic alteration, and K-feldspar and quartz-sericite-pyrite envelopes about quartz veins.

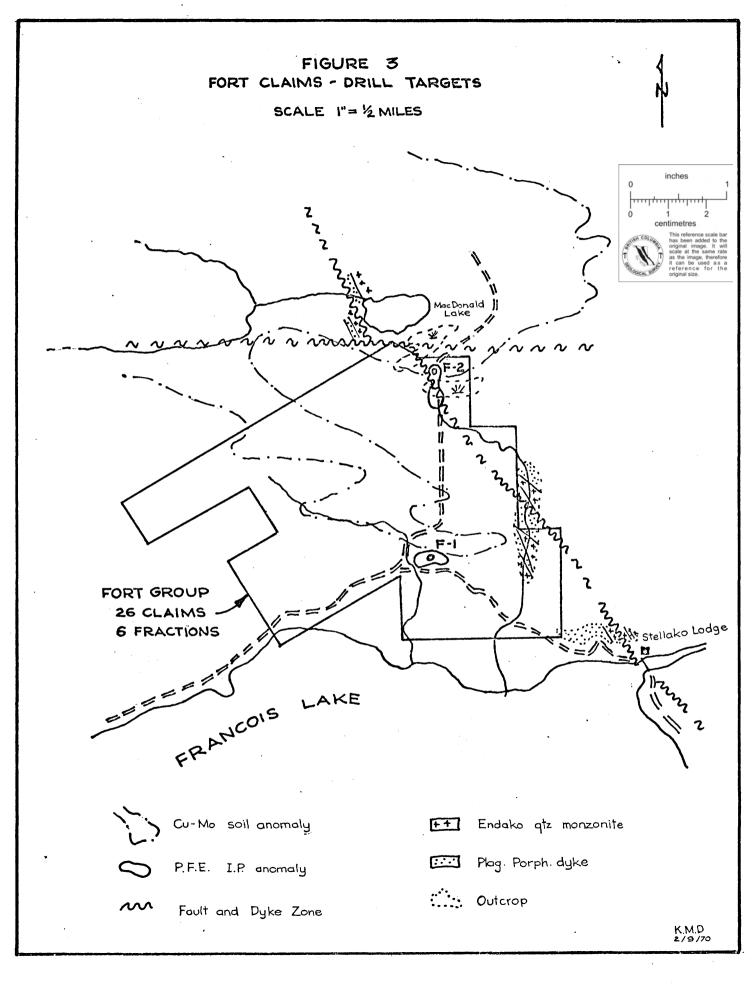
FORT GROUP DRILLING

Target Designation

The 26 claims and 6 fractions of the FORT group were staked in the summer of 1968 on a Cu-Mo soil anomaly, an aeromagnetic

9 -

low, and favourable host rock (Endako quartz monzonite) intruded by plagioclase porphyry dykes.


An I.P. survey showed two percent frequency effect (P.F.E.) anomalies of 5.0% in a background that varied from 2.5 to 3.5%. Minor resistivity highs are believed to indicate a relative thinning of overburden.

Drill holes F-l and F-2 were located on the two P.F.E. anomalies, essentially coincident with weak Mo soil anomalies, along the Glenannan Road (See Figure 3).

D.D.H. F-1 Summary

Depth of	Overburden:	62 ft.
Ultimate	depth of Hole:	343 feet
Average d	core Recovery:	91%

Rock type is medium-grained subporphyritic Endako quartz monzonite throughout the hole. Plagioclase and biotite are generally fresh and unaltered. In zones of fracturing and faulting, cores of plagioclase phenocrysts are altered to a soft green mass of argillic minerals - probably kaolinite plus sericite - whereas rims are fresh and hard. Biotite, and the less abundant hornblende, are partially chloritized in these fractured zones. Red pulverulent hematite fracture-coatings and pseudomorphs of plagioclase and biotite are common throughout the hole.

Sparse pyrite mineralization occurs throughout the hole, mainly as hairline fracture-fillings with little or no accompanying vein quartz. Molybdenite occurs with five hairline pyrite fracture-fillings at 225 ft. - 230 ft. but in insufficient amounts to warrant assaying. Other mineralization includes small vuggy calcite veins and fine disseminations of magnetite near inclusions.

About 10 major shear zones were intersected in F-1, indicating that the Casey Lake fault zone may extend one-half mile west of its mapped location, or more likely, that a parallel zone of northwest faulting occurs in the area.

Remarks

The drill was set up on F-1 on July 29, 1970, drilling was completed in four-eight hour shifts without any problems, and the drill dismantled on July 31, 1970.

D.D.H. F-2 Summary

Depth of overburden: 142 ft. Ultimate depth of Hole: 417 ft.

Average core Recovery: 89.6%

The principal rock type is fine to medium grained Casey alaskite containing 1-2% biotite. Alaskite is intruded by five finegrained grey basalt dykes ranging from a few inches to 40 ft. thick. Basalt contains scattered small white plagioclase phenocrysts and widely-spaced calcite-filled fractures. Plagioclase and biotite in Casey alaskite are generally fresh, but may show weak alteration where the rock is fractured and/or sheared. Plagioclase may be soft and green in this case, and fractures are coated with chlorite and pulverulent red hematite. Alaskite commonly is sheared, brecciated and altered along basalt dyke contacts.

The only mineralization encountered in F-2 is three small pyrite-filled fractures at 378 ft. and 395 ft. No molybdenite was seen.

Remarks

The move from F-1 to F-2 started August 1 and was completed August 2. The August 3 day-shift crew, Gutoski: runner, broke off the tricone bit on a boulder at 62 ft. The drill rig was moved one foot, hole F-2A collared, and bedrock intersected at 142 ft. by night-shift crew on August 4. Two 10-ft. lengths of BW casing were broken and one casing shoe worn out in reaming from 117 ft. to 141 ft. The hole was completed at 417 ft. by the August 6 day-shift, and dismantling was completed by the nightshift.

BONUS GROUP DRILLING

Target Designation

Six miles of reconnaissance I.P. traverses outlined an I.P. zone

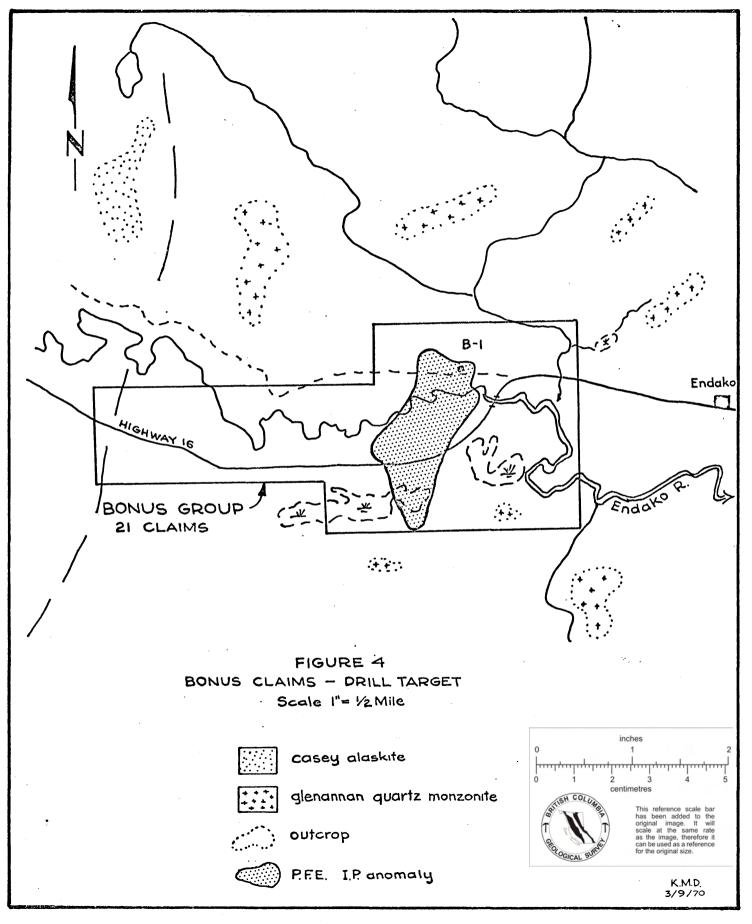
2500 ft. by 1500 ft. The zone flanks on aeromagnetic high on the east. Casey alaskite intrudes fresh Glenannan quartz monzonite in the vicinity of the mag. high. A profile along line BLU 9 is interpreted as depicting rocks containing more than 1% by volume conducting material approaching to within a few tens of feet of surface at station 4W.

Drill hole B-1 was collared at 4W on line BLU 9 (Figure 4).

D.D.H. B-1 Summary

Depth of Overburden: 135 ft.

Ultimate depth of Hole: 155.5 ft.

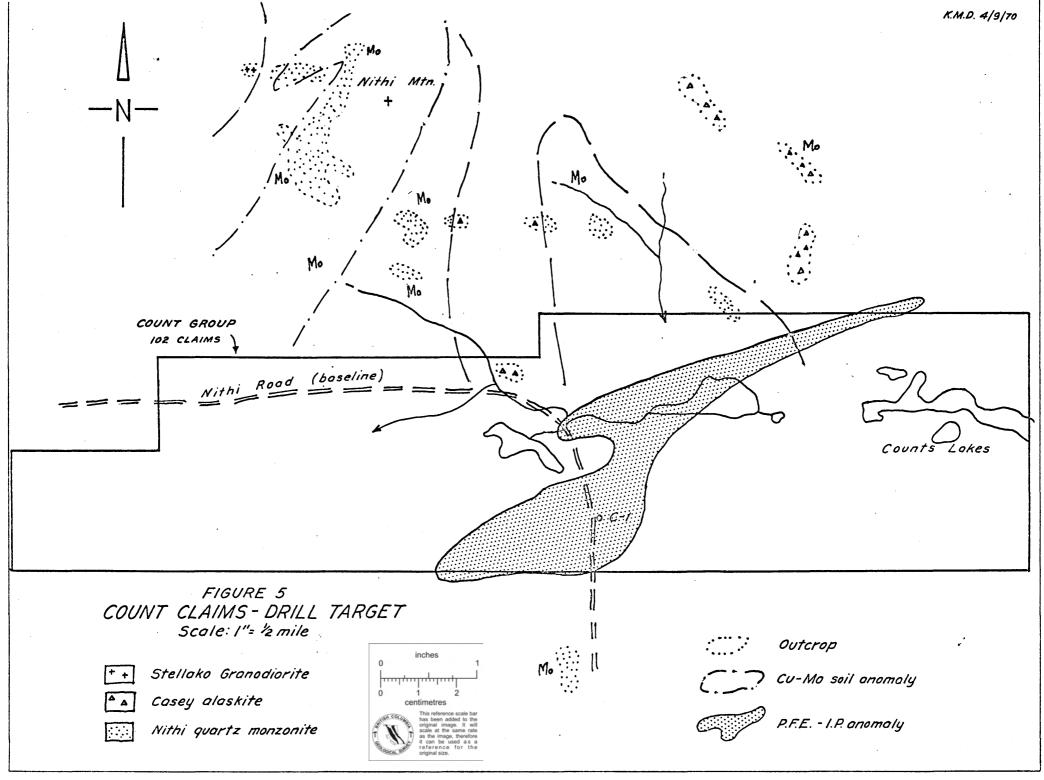

Average core Recovery: 82%

The rock intersected throughout hole B-1 is fresh, coarse grained porphyritic hornblende-biotite Glenannan quartz monzonite. Plagioclase and mafics are unaltered. Joints are coated with chlorite and minor pulverulent hematite.

Sulfide mineralization was not encountered in the hole. A few small carbonate and carbonate-chlorite veins are the only mineralization.

Remarks

The crew moved and set up the drill on B-1 August 7. On August 8 the night-shift (Gutoski: runner) broke off the tricone bit upon hitting bedrock at 133 ft. Crew stood by August 9 and 10


waiting for new bits and heavier rods. Night-shift on August 11 (Gutoski: runner) hit bedrock in the new B-l hole at 135 ft. and lost a wheel from the tricone bit. August 12 day-shift cored 18 ft. in four hours due to tricone fragments impeding the coring bit, and ruined one BQ bit. The night-shift cored 4 feet, then reamed with casing shoe from 135 ft. to 157 ft, ruining 2 BQ bits in reaming. The hole was abandoned August 13.

The 20.5 feet of core recovered in B-l offers no geologic explanation of the strong I.P. anomaly. The fresh, unmineralized nature of the rock appears to rule out the possibility of any significant sulfide concentrations at the shallow depths indicated on the I.P. profile. Since this profile is near a highway, pipeline, railroad tracks and power line, the possibility that cultural features may have caused the I.P. response cannot be ruled out.

COUNT GROUP DRILLING

The claim group lies in the Nithi valley adjoining properties to the north and south with molybdenite in outcrop. The induced polarization survey discovered an anomalous P.F.E. zone about 7000 ft. by 1000 ft. at 030[°] trend across the claims. A broad P.F.E. profile up to 7.0 is about twice background. Resistivity indicates overburden thins southward. The anomaly was interpreted either as a relatively flat-lying body of conducting

- 14 -

material at shallow depth, or an overburden effect. Hole C-l
was located at 10N on the Road Line.

D.D.H. C-1 Summary

Depth of overburden: 353 ft.

Ultimate depth of Hole: Same

A thick layer of boulder-free, sandy unconsolidated silt was intersected by hole C-1. The hole was stopped at 353 feet without reaching bedrock.

This great depth of overburden represents either a terrace deposit or a lateral moraine along Nithi Valley, and apparently gave rise to the I.P. anomaly.

Remarks

The move to C-1 started August 13 and was completed August 14. Very good drilling conditions prevailed, and the 353 ft. was drilled in three shifts. The hole was completed by night-shift on August 16.

CHESS GROUP DRILLING

Target Designation

The CHESS group of 48 claims was located along strike from an outcrop of sheared and altered Endako quartz monzonite. Reconnaissance I.P. traverses outlined a weakly anomalous P.F.E. zone elóngated in a westerly direction. Resistivity profiles indicate shallow but widespread overburden. Hole CH-1 was located at the centre of I.P. anomaly 125S on Line 2W (Figure 6).

D.D.H. CH-1 Summary

Depth of Overburden: 20 ft.

Ultimate depth of Hole: 256 ft.

Average core recovery: 91.4%.

The rock intersected throughout hole CH-1 is fresh to weakly kaolinized, medium to coarse-grained porphyritic Glenannan quartz monzonite. Alteration is more intense in jointed and sheared zones, where plagioclase is a soft, dark green mass of kaolinite plus chlorite (?), often pseudomorphed by red, pulverulent hematite. Hornblende and biotite are partially chloritized, but K-feldspar megacrysts are unaltered.

Sulfide mineralization in Glenannan quartz monzonite consists of about a dozen pyrite and pyrite-molybdenite veinlets from hairlines to ½ inch thick. Most sulfide veins are fracturefillings with little or no associated quartz veining. Molybdenite occurs in minor amounts with pyrite at 127 ft. and 147 ft., but not in amounts worthy of assaying.

Calcite veinlets are relatively common throughout the hole. Fractures are coated with chlorite-hematite.

inches approx. lo-----Shovel cation of FIGURE 7 BARB centimetre claims v BARB CLAIMS Mo geocham 33337 M 33339 (0) SCALE I = Z MILE Ó, HARD. HADDIA basalt? 3333 33340 35374 HARD 27 HARDHARD ~ proposed 18 16(Crroneous staking location of 33334 3326 | 3332 33330 33320 20 claims: 0 BARB Jaims MICIN HHAAD HAAD N. ALARD HAND 10 claims east 10 C 2 0 0 and west of 33320 313710 awpha 33331 33323 existing group. IM mE)HAR HARD HARD VHAND C In tory of the ere c 19 6 .70 Carria 3, . . 9 HOK 433204 43320431 794. Shove ben (?) Graben (?) UIZ. Carr, 1965. Differ HARD HAR (31 494.8 10à 317 78 K3 ES (43371 A 3321) 4 627.41 2.20 N[3 57. HARD 84 9.8 C(32 : 30 1602 (e.'((o) 67579 6758 07583 6758 751K3122983172.4 A 18131408.14 hours 3. 4. 1.12941 10 294 790 2 X8 6 194830 NERTH YORTH VORT INS 66. SOSTUN NIB 62718 5 N'113 440 x 22 K31 K33 K 35 BARB KEIA 46 cm ig is 45 59R8 (0) 60 67580 67582 67584 6758 3/760K3,758KB1756K31728K31720K 1. -. 131-5.13146311294740294140294760294780294800294820 NORTH NORTH NORTH NORTY Y 31716 7 7/4 NIB NIB 8 13 LAKE 4 Ö 2 42 K 34 14 K25 K26 X 28 Bo K 32/ OWL 76178H 76179H 76632NY 631 - 31731K31722K31724K31726K 29452029453029454029456029458029450 29462 29464 294840294850 NJB NIBI N/3 N/B NIB GE 0 K 37 76176 H 76177 H 76181 H 76180H 7 KBG .530 K15 K 5 K 7 K 4 KSS '℃ SUDIN SUDIN SUDIN SUDIN CCCit. 317301317234 5 317271 29750 29450 29455029157 29459 29461 2946 10 9 6 23 294460294870 28463 6174 H NIB NIB ALSO 76175 H 76183H 76182H 7 02-人 39 位 10 K 6 725'9E 2 SUDIN SUDIN SUDIN MINERAL 500,001 STRVID BIT33K 1406TR DECK -1 294700294672 246, 22948802948902 3 12 11 40:8K 31,799K31798K31796K31797K31739K31737K 1/2 MILE 76172 H 76173H 76185H -13H F. 5.4 FISH NIB WIB 24]:'[B 20 5 11 -3055 K 1 22 76194 H THER 5152 0/0/2169 property 30 F K11 KAG K41 22 58 9 ULY 11 1963 SUDIN SUDIN SUDIN SUDW 00.1 V0589 14065x 1064 02070K14071A 30552 3655 8 2946 96 294680 SUBJ. TO CONDITIONS 31801K31900K31794K31795K31738K31736K31734K31732K 2 \mathcal{O} 14 13 1 60583 - ALSO 32341-640 FISH FISH FISH NIB NIB 7 B 25 23 72531E N/E) 21 5 5 2 3 2/1 120 522 512 521 605 g1 16515 H. 16516 H 56 737636 737646 616354 1 C. 200 72520 2 12529L 9.80, 31802K31792K31793K31747K31745K31743K ALSO KEN KEN KEN KEN MEN 26550 4 XLOL3X 140621 16 72K 140731 26551 50 49 19 20 520 519 60592H 75810 616 394 61240× 61253 60593 ALSO \mathcal{O} KEN NEN KEN 136094 179! K317468 31 74-11 351742 K31740K 140740 1406 | K V 4060X CISH NIA NOL NIB NIB 152 1515 1.5

One fault zone and five smaller shear zones were intersected in core.

The presence of some sulfides, and sheared, altered rock apparently accounts for the weak chargeabilities recorded on the I.P. survey.

Remarks

The drill crew moved to CH-1 on August 17 and set-up on August 18. Good drilling conditions were encountered; 20 ft. of overburden and 236 ft. of core were drilled in four shifts, without any problems. Drilling was completed August 21, and the rig dismantled and moved to Fraser Lake for storage on August 22.

CONCLUSIONS ON DRILLING PROJECT

The minor amounts of sulfides in drill holes F-1 and CH-1, in conjunction with shearing and alteration in host rocks, probably gave rise to the I.P. effects detected in the survey. Molybdenite mineralization was encountered in very minor amounts. The nature and degree of hydrothermal alteration in these two holes was not indicative of significant nearby mineralization. No justification for further drilling or exploration in these areas could be found. Several basalt dykes and small pyrite veins in hole F-2 may have caused the P.F.E. anomaly on the northern part of the FORT claims. This area probably is underlain by a major fault zone which would also affect its I.P. response. No molybdenite mineralization was detected. The rocks and mineralization are similar to that encountered in Endako Mines drill holes on the CM group to the north and west of F-2, where no significant mineralization or alteration was discovered. No further work in this area is warranted.

Drilling on the BONUS claims was terminated due to drilling problems before the I.P. anomaly could be adequately tested. The fresh and unmineralized nature of the rock encountered does indicate that the strong I.P. anomaly may be due to cultural features.

Drilling on the COUNT claims apparently was located on an overburden I.P. effect. The area does have potential, as the numerous molybdenite occurrences north and south of Nithi testify. No other I.P. anomalies worthy of drilling were detected in the survey, and no further work on the COUNT claims is foreseen.

- 18 -

OUTSIDE EXPLORATION IN ENDAKO AREA

1. Shovel Lake Area

The most significant alteration and mineralization encountered in regional work in Endako area occurs south of Shovel Lake on the BARB Group of 10 mineral claims (Figure 7). Bulldozer trenching and blasting in the creek valley have exposed granite that shows intense sericitic and argillic alteration. A stockwork of quartz-pyrite veins is exposed for about 100 ft. along the open-cut. A soil sample taken from this opencut ran 32 ppm Mo. No molybdenite mineralization was seen.

The area lies along a linear NNW feature outlined by a chain of small lakes including Shovel Lake and Owl Lake. This lineament is parallel to the Casey Lake fault and may be a major strike-slip fault en echelon with it.

The area is deeply drift covered, and soil geochemical response probably would be of little value other than to detect float dispersion.

The geologic setting, hydrothermal alteration and geochemical response of the Shovel Lake showing warrant further investigation of the area. Negative factors considered include:

- (1) the property is presently held by Messrs. Foote
 and McCubbin of Endako, but comes open September 9,
 1970, since no assessment work or payment in lieu
 of, has been submitted to date;
- (2) the area is heavily mantled by overburden, obscuring outcrop and rendering soil and silt geochemistry of little value.

Proposed Program for Shovel Lake Area

In consideration of the above factors, the following program is proposed for the Shovel Lake area:

- (a) The 10 BARB claims should be re-staked upon their
 expiry date of midnight, September 9th, 1970. 20
 additional claims, in two groups of 10 claims each,
 should be staked east and west of the BARB claims,
 at that time.
- (b) An induced polarization survey should be run over the three claim location lines, and over three cut lines; an east-west baseline plus two intermediate NS grid lines. Lines need not be cut, only flagged. A total of 10 line-miles of I.P. survey should be done.

- 20 -

(c) Crew for this work should include Robert E. Chaplin plus two assistants. The crew will use Mercury Exploration's Geoscience Frequency - Domain Induced Polarization Unit. Staking and I.P. survey should be accomplished in 5 days.

Cost Estimate

I.P. survey; incl. wire, crew wages - 10 line-miles @ \$250	\$2, 500.00
Staking costs, 30 claims	500. 00
Ca mp support: 15 man-days @ \$13	200.00
S upervisor's salary: 5 days @ \$100	500.00
Truck rental and gas	100.00
	\$3,800.00
Contingencies, overhead: allow 10%	380.00
TOTAL	\$ <u>4,180.00</u>

Anomalies located on the I.P. survey should be prospected and soil sampled if warranted. A small drilling program should be considered, if I.P. response is favourable.

2. Amax's KEN Claims at Tatin Lake

This property was described previously. It lies 2 miles southeast of Shovel Lake showing, along the NW lineament. Alteration exposed in trenches is not as intense as that on BARB claims, and molybdenite mineralization is sparse.

3. United Buffadison's K & S Claims at Owl Lake

No systematic examination of this property one mile southeast of Shovel Lake was made in 1970, since adequate knowledge had been gained from previous visits during 1965 and 1966. The geology is described previously. The claims occupy an area of structural intersection probably analogous to that at Shovel Lake.

4. Nithi Mountain Area

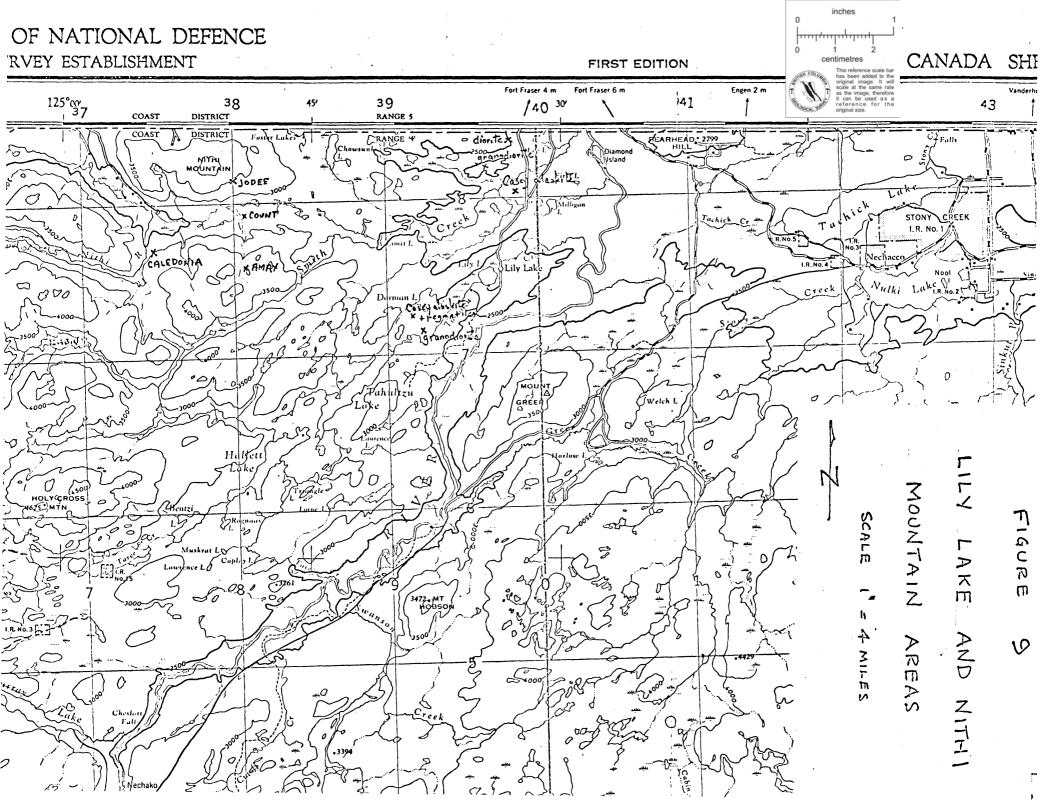
The geology and potential of this well-known molybdenite area was described previously. The Jodee claims of the Bibby brothers and M. Sherwin were visited, to examine new mineralization in recent trenches. Widely-spaced quartz-pyrite-molybdenite veins in moderately-kaolinized Casey alaskite were exposed in new trenches adjacent to the old TAN showing. Flakes and rosettes of molybdenite occur in weakly kaolinized Nithi quartz monzonite on the Jodee claims on southern slopes of Nithi Mountain. Neither new showing appears to warrant a drilling program, and no deals were discussed with the owners.

5. <u>Caledonia Claims</u>

This property, owned by Eric Thompson, was visited and sampled, as described previously. (See Location Figure 9). Mineralization and alteration are not economically significant.

15/16 20 20 20 20 20 20 20 20 20 20 20 20 20
6 55/18 SK 000 55712 21 15/056 2 19488 10 156594 156594 1968 156594 1968 1968 1968 1968 1968 1968 1968 1968
A 5 715 55711 55184 T 151830 156554 POGO 5 10 J BS J BS J BS NITHI 16 13 16 15 1830 POGO 3 4 (1) J BS J B
101 5K1000 16536 151886 18 15658 156604 156604 156604 156604 156604 156604 156604 156604 156604 156604 15658 15658 15658 15658 15658 156604 156604 15658 156
Molly A BS J BS MITHING NITHING NITHIN
ENCO 19 C ENCO 898 MOLLY G MALLYS SAN OY SALLY 15603 H 4 30 134000 60 NITHI 5 40 3
21533 NBISSAN ENCO 21 165400 - 151696 - 15644 - 15644 - 1564 - 15
ORY E GRY 1 16556N 16555 ALSO 16533N 4 G 15170G 15675 54NOY 15605H LODE 0129
BISSSN BISSAN 24 20679 16542N 16541N 20673 16532N 16551N 20673 16532N 16532N
GAV 4 GAV 3 16550 16557 206786 131736 MOLLY 7 4 15676 21 2008 0 31
B1556N 25 16544N 16543N 0 2830N 15672 LINDA 6 17171PC 58946 58946 58945 B14 JON
5 THE ALLY HOLLY LINDA TORAL 5
684 8 684 7 K 16546N 151776 15176 15176 LINDA 14 K 18264 33140 6499N ENCO 12 ENCO 12 ENCO 151766 151766
18156/M 81560N ENCO 29 20676G 2076G 20776G 207776G 20777776G 20777777777777777777777777777777777777
RAY 10. 3 16564N 16563N 16548N 174 174 174 174 174 174 174 174 174 174
27870R R 51 32 31 MOLLY MOLLY 15 17/344 C 100510 539470 W- 158166 1009 (
E 3 (10) (10) (10) (10) (10) (10) (10) (10)
278682 27863 (2007 COUNT
3 6 27876R 27876R 278778 15 507716 (6) (6) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
5 SCOTT SCOTT SCOTT 67661 67652 COUNT COUNT COUNT 53 55 57 159 61 63 65 67
278678 278658 295630 67662 67664 67666 67668 67670 67672 67674 67676 67688 67630 67682 67684 67886 278678 278658 278658 67630 67682 67684 67666 67668 67678 67678 67678 67678 67678 67630 67682 67684 67886
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
A COUNT COUN
60 67620 67624 67626 67628 67680 67634 67634 67635 67638 67640 67642 67646 67646 67646 67658 67650 C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10 55657 69 C 71 C 73 C 75 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55660P 55662P 55664P 5 41550 11550 11550 11550 11550 11500 1
NIT
DKB2061K ES5670P 55668 A 55666 #1555 #1557 #1559 #1561 #1563 A BEDERT 4330AN 43503N 4
MUNCHERDANIA EXAMPLE 84C 84C 82C 11 13 15 17 MUL 124 GEL33 GEL33
iok 32062k
50 501 (501 996 551 296 551 226 551 23 551 216 551 299 551 437 551 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 550 996 551 996 550 996 550 99
$\frac{171320491}{12000110} = 0.0517$ $\frac{1}{24} = \frac{1}{22} = \frac{1}{20} = \frac{1}{12} = \frac{1}{12}$
224222524224 55628P 55626 55626 55626 55628 55620 55618P 55618P 55618P 55612P 55612P 55610P P (1
Remarker CONTRACTOR IS 13 11 9 1 5 3 MT
FIGURE 8 (36 (34 (32) (30) (20) (** 556420 556400 556360 556360 556340 556340 556340 556340 556340 556340 556340 556340 556547 556540 556540 5565
OWL & GEL CLIAINIS NIT NIT NIT NIT WIT WIT
$\begin{array}{c} \text{inches} \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
$\widehat{\boldsymbol{\mathcal{S}}} = M_0 P_{PM}$
This reference scale bar has been added to the original image. It will scale at the same rate as the image, therefore
the use have a set of the used as a reference for the original size.

6. Amax's OWL and GEL Claims


This ground adjoins the COUNT claims on the south. Two soil samples along the road south from Nithi Valley yield 10 ppm Cu in each case, plus 2 and 3 ppm Mo. A small creek containing black organic silt yields a silt Mo value of 34 ppm. A trench in a creek valley beside an old Amax campsite had exposed a barren quartz vein in fresh Casey alaskite. A silt sample below this trench yields 7 ppm Mo. Quartz-molybdenite veins are reported by Canex personnel to occur in quartz diorite south of Casey alaskite. All samples are plotted in Figure 8. No further work appears warranted in this area.

7. Lily Lake Area

This broad area south and east of Nithi Mountain and west of Nechako River was reached by the Lily Lake road south of Fort Fraser (Figure 9.

Southwest of Dorman Lake an outcrop of Casey alaskite was noted that was veined by quartz-feldspar pegmatite. A similar outcrop of Casey alaskite occurs two miles WNW of Milligan Lake.

South of Dorman Lake the predominant rock type is grey, medium-grained biotite granodiorite. Small guartz-epidote

veinlets with orthoclase envelopes were noted.

Four miles WNW of Milligan Lake an outcrop of granodiorite was observed. The rock is quite similar to granodiorite south of Dorman Lake, but is lower in potash feldspar.

A coarse grained melanocratic diorite was found one and one-half miles west of Leg Lake.

In conclusion, whereas some rocks south of Nithi Mountain contain minor molybdenite mineralization, the rocks observed to the west do not contain alteration or mineralization of economic significance. No further work is warranted in this area.

8. Savory Area - Figure 10

A creek draining the Casey-Endako contact west of Savory Station was silt-sampled and yielded 10 ppm Mo.

The SAM and LORNE groups of Amax at Sam Ross Creek were visited briefly, and no development in addition to that seen in 1967, was noted. The showing was described previously. The sparse nature of exposed mineralization does not appear to warrant any work in the area.

Res Min. & Placar & Disson - AN NATIONAL Savory 500' either side 53771M 53769 337620 337 63 33764 コニオニニ LORNE LOPNE JK 9 C/ 10 , CALSO 3 \$ 44 C/ 42C 22978 P3768M 5276711 566: 512883 573096 56830P 56681P 39282 573030 310831 11 9100 56063 22980 0 LORNE LORNE 30616 Lorch KY LAD LAD LAD 15-7-1-15 56 75 PP LNO 6 1 10/22 22982 40 (Z2*95*3 2255.7 41 JUI C. 10 C. 1 5 1 30619 JZ2905 Z2903 22979 30609 30508 56082 660701 22981 30618 739320 799490 5151 739400 739410 739420 029. G 22987 LORNE LORNE รคศ NSAD) SAM N. ~ 6 Abolt ñ 30 47 60 55 7:30 557040 306/1 306/0 6 30621 30620 13977 0 55705P 55706P 739500 73933 0 739/9 D (739/8 D 73887 D) 73886 P 39400 30594 LORNELORNE LOAAL? AL50 ALSO SAM à 601 SAM SAM SAM SAM LOENE SAH SAM X3 74 52 139430 21 310 22 321 48 34 31% 33 70 5 30613 306/12 30596 30623 30622 739340 739210 739200 738890 738380 73914 D 739150 53707R 55708P 7.9252 LORNE LOKNE LORNELORNA 22 JULI -RNE! HLSO ALSO SAM SAM SAM SAM SAN SAM SAM 3. 2. -1 7394007799450 7 54 350 29 30 36 35 49 4 72 823651 R-15 306/1 30598 739350 739230 739220 738910 738900 739120 739130 55709P 55710P 739540 SAM 555 LORNE DORNE LORNE 30623 AC50 ALSO SAM SAM SAM SAM SAM SAM SAM 69 14 25 9 38 739480 739470 50 37 5 27 28 б 36 8236 5 SAM 66035 300006 + 50 2 4 22968 1360 739250 739240 738930 738920 739100 739110 739550 900 R ORNE 82362 5HM SAM SAM SAM SAM MIKE SAM SAM SAM MIKO 40 39 25 20 76 11 51 SAM SAN 306026 229 1. 1.19370 139270 137260 138950 738940 739080 739090 ··· 8231 6502 650 LORNE SAM c. SAM MIKE SAM SAM SAM SAM SAM SHIM 130 94 52 23 24 93 42 41 10 823738 306046 22972 739380 739290 739280 73897 D 73896 D 739060 739070 66638 65839 SAVORY 13/048 SAM SAM MIKE MIKE LORN'E, C ß SAM SAM 94 SAM SAM SAM | SAM 92375P 150 2374 SAM SAM RIDGE 229; 98, C-82374 FIGURE 10 SAM 229 82318F SAM 0 SANORY AREA 101 Haney L. inches SCALE 1" = 5 MILE

CONCLUSIONS

- Significant mineralization and alteration was not encountered during the Mercury-Cary-Dynasty drilling program of 1970.
- 2. Only one area, Shovel Lake, warrants additional work in the Endako area. A program of staking, I.P. survey and prospecting is proposed with follow-up drilling if warranted.

Respectfully submitted,

Kenneth M. Dawson, Geologist

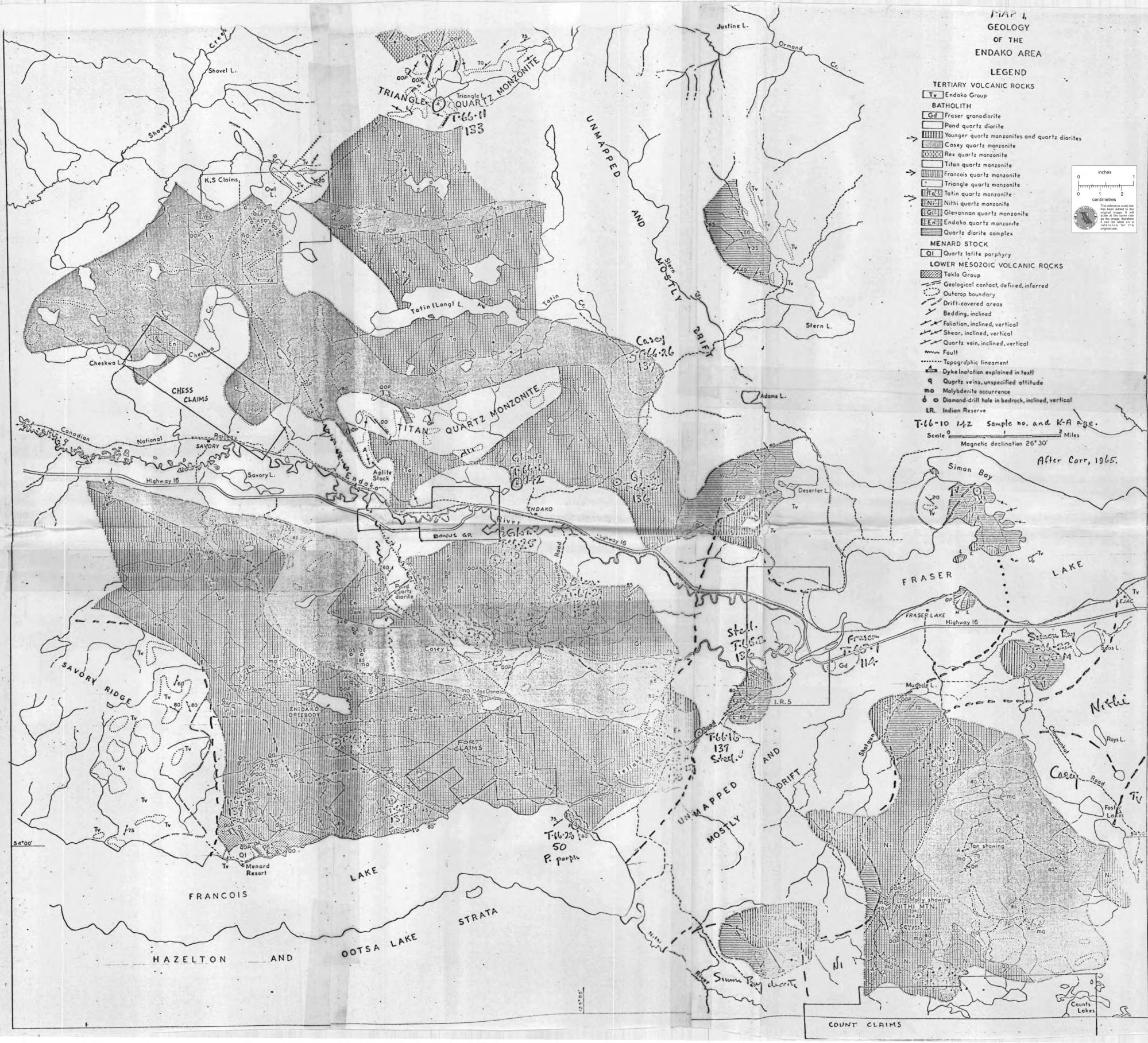
September, 1970.

TABLE 1

Table of Formations - Endako area

ERA	PERIOD OR EPOCH	NAME	LITHOLOGY
•	RECENT		Streem deposits,telus, soil
Ŋ	PLEISFOCETE		Silt, clay, send, gravel, till, boulder clay, erratics.
20		UNCONFORCITY	
CENCZOIC	ECCENE	Endsko Group	Vesicular and amygdal- oidal andesite and
			baselt flows and related dykes;flow breccia,tuff and conglomerate.
		UNCOMFORMITY, INTRUS	
	LOWER CREPACEOUS	Fraser quertz monzonite	Medium-grained subpor- phyritic pink biotite- hornblènde quartz monzonite.
-		UNCONFORMITY, I	
	LOWER OREFACEOUS	Stellako quartz monzonite and gra diorite.	Medium-grained pink horn-
		9 UNCOMFORMITY, I	NPRUSIVE
JIOZOE	UPPER JURASSIC	O UNCOMFORMETY, I	Coarse-to fine-grained leucocratic pink granite and quartz monzonite.
302		UNCONFORMITY, I	NTRUBIVE
ME	UPPER JURASSIC	Glenannan granit quartz monzonite	ritic pink biotite granite; coarse-grained pink biotite-hornblende quartz monzonite.
		UNCONFORMITY, I	NP: USIVE
	UPPER JURASSIC	Francois granite	hedium-grained red biotite granite.
		UNCOMPORATIVA, I	MTHUSIVE

TABLE 1


Table of Formations - Endako Area

	ERA	PERIOD OR EPOCH		NALE	LITHCLOGY
•		UPPER JURASSIC		Nitni quartz monzonite	Median- to coarse- graine subporphyritic pink to gray blotite quartz monzonite.
			ONS	UNCOMFORCIPY, INTR	
		UPPER JURASSIC	ISUMTRI	Endako guertz monzonite	Coarse- to medium- grained subporphyritic pink biotite-hornblande quartz monzonite
		•		UNCONFORMITY, INTR	<u>ÚSIVE</u>
	DIOZOSEN	- lower (?)Jurassio Middle	TOPLEY	Simon Bay diorite complex	Folisted diorite, quartz diorite and granodiorite; hybrid gneiss, amphibolite and gabbro.
	E			UNCOMPORATIVY, INTE	USIVE
	· · · · · · · · · · · · · · · · · · ·	UPPER TALASSIC AND LOWER JURASSIC	GROUP	Menard rhyodscite stock	hed to purple feldsper- biotite porphyry stock and dykes.
			TAXLA		Lark green rhyodacite crystal_tuff and breccia.

Appendix I - Map 1: Geology of the Endako Area

8 -

2

Appendix II - Diamond Drill Logs

		DIAMOND DRI PROPERTY	ILL RECO	•	KO PROJ	ECT				HOLI	NO		F-1	<u> </u>	
		T NUMBER 1 of 10	SECTION FROM					STARTEI COMPLET) /70	-			
	DEPA	RTURE	BEARING					ULTIMAT	CE DEPTH	34	3'	·			
	ELEV	ATION	DIP	Vert	içal				D DEPTH						
DEPTH	CORE	ROCK TYPE AND ALTERATION	1	CORE			CORE	ASSAYS	· · · · · · · · · · · · · · · · · · ·	SLUDGE		MIN	ERALIZ	ZATION	:
FEET	RECOV	DESCRIPTION	·	SAMPLE NO.	FOOTAGE	AG.	cu.	PB.	ZN.	SAMPLE NO.	FOOTAGE				
0		Overburden 0-62', casing													
· · · · · · · · · · · · · · · · · · ·	den –	Commence BQ (wireline) corir	ng at 62'		•										
	rbyr						_								
•	Ove														
62	V	<u> </u>									62	Hairli	ne cal	cite v	ns. on
64	гУ	Med. grained subporph. Endako g	Itz. monzonite	e. Fre	sh to w	eak						fractu			
66		argillic alteration of plagc	ores of plag.	phen	os						65	Hairli on fra	ne, bl ctures	ebs of	pyrite
68	ке	soft, green. Biotite fresh to p	partially chic	ritiz	ed.		-				67			n frac	
70	$\infty \omega$	Red hematite pseudomorphs after	: biotite, ran	ely.							70-73	Fine d ind	iss. n Iusior	lagneti 15	te near
72		Irreg. grey ½" feldspathic dyk	<u>e at 66.5'.</u>	lag.										• ,	· · ·
74	62 25 =	alteration more intense along	small fractur	es.							73.5	<u>at 4</u>	00		hearing
76	5/	Vuggy calcite-lined fractures.	, 75'-84' plac	. cor	es						75.5 76.	Tr. py	rite c	n frac	te at 50 <u>tures</u> .
78	Box 21.	alteration to green kaolin + r	ed hematite :	stain.	,						77. 78.5	1/16"c Hairli	alcite ne_pyr	on 60 ite_or	o fract. 900 ra
80		Calcite & minor qtz-filled fra	ictures commor	Į.		······································					80.0 81.5	Hairli Hairli	ne pyr ne pyr	ite or ite or	650 ira 900 ira
82		K-spar fresh and unaltered thr	coughout.			•					82-83	3 x r	usty c	alcite	veinlet

			DIAMOND		L RECO	-	KO PRO	JECT		:		HOLE	E NO	•	F-1		•
	SHEE	T NUMBER	2 of 10		SECTION FROM_		TO			STARTED	Ju	ly 29/ [.]	70	-			
	T.AጥT	TUDE			DATUM					COMPLET	ED Ju	ly 31/	70				
		RTURE			BEARING					ULTIMAT		241		_			
	ELEV	ATION			DIP	/ertic	al			PROPOSE	D DEPTH	ł		_	•		
DEPTH	CORE	·····	TYPE AND ALTER			CORE		T	CORE A			SLUDGE		MI	NERALI	ZATION	• .
DEPIR FEET	RECOV		DESCRIPTION			SAMPLE NO.	FOOTAGE	AG.	CU.	PB.	ZN.	SAMPLE NO.	FOOTAGE				
84	Ŷ	Med. grain	ed Endako Q.M.	Fresh t	o very weak								84.5'	1/32"	calcit	at 3	50
86		argillic a	lt. 84'-86': fe	w plag.	grains rep	•							86.5'	Pyrit	e on 90	o fra	et.
88		by red hem	atite. Most pla	g. gree	n cores. Sar	ne.							88.0'	Hairl	ine ca	cite	at
90		Fresh Enda	ko Q.M. plag. h	lard, gr	een & some 1	emati	te pse	udo's.			 		89.2' 90.1	Pyrit Tr. p	e on 90 vrite o minor o	$\frac{1}{2}$ $\frac{1}$	¢t. fra
92		Same	·							· ·			90.5	1/32"	calci	te at	250
94		Fresh Enda	ko Q.M. Minor r	ed hema	tite on frac	ts.							93.	Hairl	ine ca	cite	at
96	B0X B0X	Same		- <u>-</u> , -, -, -, -, -, -, -, -, -, -, -, -, -,			• .						00 51	37	1/10"		. + c
98	/er/	Fresh med.	grained Endakd	Q.M. P	lag. green h	ard.	Tr. he	matite	stain.				98.5' 99.	1/32"	1/16" calci	te vei	n a
100	80 80	Several cl	ose-spaced frac	tures a	t 99.5'						 		100. 101.5	Small	n frac fault	goug	e_a
102	К	Vuggy calc	ite-filled frac	ts.// co	re axis. اد	g. gr	een, h	ard.					103.5	Shear	ing, w	th ca	lci
104		Fresh med.	grained End. Ç	.M. Vug	gy calcite-	illed	fract	s. at]	04.5'								<u> </u>
106 ·		plag. core	s soft, green;	rims wh	ite. Biotite	fres	<u>h.</u>										_
108		Same			••								<u>108–109</u>	6-bar	ren fra	cts.	at_
110	m	Weak argil	lic altn. of pl	.ag. per	vasive. Shea	red z	one be	low.									
112	- and	2" gouge a	t 112'. Red hem	atite i	n plag. alom	g fra	cts.					· · · ·	111	l gra	in pyr	ite in	fr
114		Broken cor	e, Fe stain 112	'-114'.	No mineral:	zatic	n.										

			DIAMOND PROPERTY		RECO	-	O PROJE	СТ				HOL	E NO	•	F-1		
	SHEE:	T NUMBER	3 of 10	SE0	TION FROM_		TO			STARTE	DJ	uly 29	/70				
	LATI	TUDE	· · · · · · · · · · · · · · · · · · ·	DA.	CUM					COMPLE	TEDJ	uly 31	/70	_			
	DEPAR	RTURE		BEA	ARING					ULTIMÁ	TE DEPTI	134	3'	- .			
	ELEVA	ATION		DI	P	Vertio	cal			PROPOS	ED DEPTI	ł			•		
DEPTH	CORE	ROC	CK TYPE AND ALTE	RATION		CORE	[CORE	ASSAYS		SLUDGE		MIN	ERALIZ	ATION	
FEET	RECOV		DESCRIPTION			SAMPLE NO.	FOOTAGE	AG.	CU.	PB.	ZN.	NO.	FOOTAGE				
116			Q.M. Plag. core	s hard,	green, bi	tite	fresh						116	4 fra	ct. 70	-85'.	min
118	Re Re	Same			·		•			_		ll	118.5			The prov	
120	- 0	Vuggy fract	. rock fresh. 1	20 - 121'b:	roken cor	 						.		Black		I	rac
122	128	Fresh End.	Q.M. Diss. pyr	ite in i	nclusion								119.5	Pyrite	on 85 at	50	- E
124	3 5 725	Plag. cores	s soft, green.										121 122	Pyrite Diss.			
126	Вох 05. 2.5	Core broker	n. Calcite veinl	ets. Min	or rust.								123 125	Pyrite Hairli	on 80 me cal	<pre> frac cite a </pre>	ts.
128		Fresh End.	Q.M.				•										
130		Same. Core	broken 129'-130	•		•							129.5'	Tr. P	yrite	on fra	ict.
132	ver	Numerous sn	nall fract. Plag	. white,	soft.								131.5	2-pyr	ite on	fract	:5.
134	ec o	Plag. greer	n, soft. Tr. pyr	ite.									133.		8	00 nlets	
136	~ ₩	Same.		······							-						
138	ő	Fresh Endak	(0 Q.M.										137.5'	Pyrit	e on 8	0 ⁰ fra	ict.
140			ing at 140'. He	matite s	tain.								139.	Pyrit	e on 7	0 ⁰ fra	det.
142							1						142	1	1	5° fra	
144	01101										-		143 144.5	Magne	tite q	rains. cite v	
146	2		an a										145		1	0 ⁰ fra	

		DIAMOND D	RILL RECO FORT CLAIMS -	•	PROJEC	т				HOLI	E NO	•F	-1			_
	SHEE	T NUMBER 4 of 10	SECTION FROM_					STARTED	Ju	ily 29,	/70			-	_	
		TUDE	DATUM					COMPLET	ED_JU	ly 31,	/70					
		\RTURE	BEARING					ULTIMAT								×
	ELEV	VATION	DIP	Vertic	al			PROPOSE	D DEPTH			-				
DEPTH	CORE	ROCK TYPE AND ALTERATIC	ON	CORE			CORE	ASSAYS		SLUDGE		MIN	ERALIZ	CATION		
FEET	RECOV	DESCRIPTION		SAMPLE NO.	FOOTAGE	AG.	cu.	PB.	ZN.	NO.	FOOTAGE					
148	× 02	Broken core 147/5'-150' Plag.	green, soft.									Nor	е			_
150	м ч	Fresh Endako Q.M.										Nor	e			
152	——※	Same. Few hairline calcite ve	einlets.		·							Random	hairl	ine ca	lcite	2
154		Same. Core broken 153'-154'				<u></u>					155.5	Pyrite	on 80	^o frac	t.	
156		Weak kaolinitic altn. plags	soft green core:	5 												
158		Same.									158.5	Pyrite	<u>& 1/3</u>	<u>2" cal</u>	cite	_a : 4
160	.5.	Core broken 159'-16-'. Weak b	aolinitic altn													
162	1	Core broken, weakly altered I	L61'-162'													
164		Intensely sheared, granulated	d core 162'-164													
166	50. 25	Core broken, weakly altered, s	small shear 30 ⁰	at 16	6'.		,						·			
168	I A A	Small shear 40 ⁰ at 167'. Weak									167.8'	Pyrite	on 70	o _{frac}	t. Mj	lnor
170		169'-173.5' intense shearing,												cite		
172	BO	Plag. soft, white, specs. o														
174	-	stain. No mineralization.														
176	一米	Weak shearing, alteration- + broken core 173.5'-176.3	aolin & hemati	e												_
178	x o	4" inclusion at 178'. Endal	co Q.M. fresh.								F.			· · ·	1	
	Bo		,					- ·								

DIAMOND DR	FORT CLAIMS	•	AKO PRO	JECT				MOL	e No	•F	-1		
SHEET NUMBER 5 of 10	SECTION FROM_		TO		֥	STARTED		July 2	29/70	-			
LATITUDE	DATUM					COMPLET	ED	July 3	31/70				
DE PARTURE	BEARING					ULTIMAT	E DEPTH	34	131				
ELEVATION		ertic				PROPOSE							
DEPTH CORE ROCK TYPE AND ALTERATION		CORE	·		CORE	ASSAYS		SLIDGE		MIN	ERALIZ	ZATION	1
FEET RECOV DESCRIPTION		SAMPLE NO.	FOOTAGE	AG.	CU.	PB.	ZN.	SAMPLE NO.	FOOTAGE				
180 ¹⁰ Broken core 178'-180'. Plag.	green.												
182 - 8 Broken core 181'-183'. Plag.	soft, green to	182.							181'	Hairli	ne ca	lcite	at 45 ^C
$-\infty$ 184 ω Rock fresh at 184'. Plag. cor	es green, hard												
186 🏳 🖑 Fresh Endako Q.M.									186'	Hairli	ne ca	lcite	at 30 ⁰
188 R Fresh. Hematite stain on frac	ts.					•							
190 x $>$ Sheared, white altered granit	e 188'-189'. s	heari	ng at 3	0°.									
192 Fracts. at 10°. Broken core 1			• .										
194 Core broken, slightly sheard.	⊳lag. soft, w	hite,	Minor	hemati	te.	-			194'	Pyrite	on f:	cact.	at 85 ^C
196 Fractures at 5 ⁰ -10 ⁰ . Minor sh	earing.								194.5' 195	Pyrite Vuqqy	on fi calci	act. le at	at 80 ^C
198 🔨 Core broken. Weak kaolin altn	. Plag. soft,	green								pyrite	on f	act.	at 80 ^C
200 Fracts. parallel & perp. core	e at 199'. Weak	altn	local	•									
202 Fresh. Core broken, weak altn	. 202'-203'												
204 Shearing at 80° 203'-204'. Ep	oidote altn. pl	ag. a	203'										
206 Nhite altered plag. minor she	earing at 205'.												
208 X Core broken 207'-210'. Weak k	aolin. altn.												•
210 Same									210'	Pyrite	on fi	act.	at 70 ^C
				•		· .							

•		DIAMOND DRI PROPERTY	FORT CLAIMS -	•	O PROJE	CT					E NO	•			· <u> </u>
	SHEE	T NUMBER 6 OF 10	SECTION FROM_		TO			STARTED	Ju.	ly 29/	70				
	LATI	TUDE	DATUM					COMPLET	ED_Ju	ly_31/	70		·		
	DEPAI	RTURE	BEARING		······································			ULTIMAİ	E DEPTI		3 '	- .		·	i
	ELEVA	ATION	DIP	Vert	ical			PROPOSE							
EPTH	CORE	ROCK TYPE AND ALTERATION	·	CORE	<u> </u>		CORE	ASSAYS		SLUDGE		MIN	ERALIZ	ATION	
EET	RECOV	DESCRIPTION	•	SAMPLE NO.	FOOTAGE	AG.	· CU.	PB.	ZN.	SAMPLE NO.	FOOTAGE				
12	221 94%	Minor shearing weak altn. 212	'-213'						•						
14	. 5-	Small shear at 214'. Plag. gre	enish	• •	•										
16	197	Weak kaolin altn. to fresh.	•		·			•			215 216	2 x py Pyrite	rite o on fr	frac act. a	ts. t 70
18	7.23	Fresh Endako Q.M.													
20	Box Rec	Same.									218'-22	0' Tra			
22		Same. l" aplite at 45 ⁰ .											fr	acture	\$.
24		Plag. green. Small 45 ⁰ shear a	at 223'. Red	emati	te on f	racts									
26		Plag. green, hard. Rock quite	fresh. Hemat	ite on	fracts	·					225.5'	Pyrit	e & mi	nor Mo	or
28	0	Same.									226	2x py	rite &	tr. M	act.
30	889	Plag. unaltered, rock fresh.									226.5-2	27.5 P	fract rite	Tr.	Mo.
32	25=	Fresh. Fracturing at 45 ⁰ at 23	30.5', minor	ltn.							229.5	Hairli	he atz	+pyrit	
34	24:22/2	233.5'-234' -6" aplite at 90 ⁰ .	. Endako Q.M.	fresh	•						232	a Pyrit	t 850. e at 8	50	
36	221- 221-	Fresh. Minor hairline calcite	at 30°.												
3.8	8 Ve	238'-239' shearing at 45 ⁰ , kao	olinitic altn	•											
40	N N N N N N N N N N N N N N N N N N N	Fresh Hairline calcite at 30 ⁰	, 40°.								239.5	Haïrl	ine ca	lcite	at :
2		Grey inclusions at 240' and 24	11'.								¥-				

•	DIAMOND	DRILL REC	ORD,						MOL	E NO.		F-1		
	PROPERTY	FORT CLAIM	S - ENDA	KO PROJ	JECT									
	SHEET NUMBER7 of 10	SECTION FRO	ом	TO			STARTED)	July 2	29/70			· -	. ·
	LATITUDE	DATUM					COMPLET	ED	July :	31/70				•
•	DE PAR TURE	BEARING	•				ULTIMAT	E DEPT		43'				•
	ELEVATION	DIP	570 204	ical			PROPOSE							
			CORE	1	1	CORE	ASSAYS		SLUDGE		MINE	ERALIZA	ATION	
DEPTH FEET	CORE DESCRIPTION		SAMPLE NO.	E FOOTAGE	AG.	·CU.	PB.	ZN.	SAMPLE NO.	FOOTAGE				
244	Box 8 243 end of Box 8. Core bro	oken weak altr		51				•					+	
246	Fresh End. Q.M. to 245'.													+
248	altn., poor recovery from		COLE. Ka			-								
250	245' through	······································												+
250	0 0 10 $253'$. Shearin g at 30°	 2 2521_2531	·····			_							+	+
254											<u></u>			
	$\sim \stackrel{\sim}{\sim}$ Fresh to very weak alterative $\stackrel{\sim}{\sim}$ $\stackrel{\sim}{\sim}$ $\stackrel{\otimes}{\sim}$ Fresh. Fractures at 0° ar			-										
256		_												
258	o ∥ Fresh. Small fractures at x o o v 258-258.5' shear zone at							-					· · ·	
260			at 259.											-
262	N 261' shearing at 60°. Roc													
264	Fresh. Core broken, shear						·							
266	Weak argillic altn. plag.												<u> </u>	
268	Rock fresh. Broken at 269				ļ <u>.</u>									
270	Intense shearing 270'-290)'. Shears at 60	•		· · · · · · · · · · · · · · · · · · ·		-					<u> </u>	<u> </u>	+
272	Sheared, altered. Hemati	te stain.						ļ				<u></u>		

		DIAMOND DRI		•						HOLI	E NO	•	F-1		
		PROPERTY	FORT CLAIMS	- ENDA	KO PROJ	ECT			· · ·						
	SHEE	T NUMBER 8 of 10	SECTION FROM_		TO			STARTED		July 2	9/70 .				
	LATI	TUDE	DATUM				· .	COMPLET	ED	July 3	1/70				
	DEPA	RTURE	BEARING					ULTIMAT	E DEPTI	ł	343'				
	ELEV	ATION	DIP	Verti				PRO PO SE							
DEPTH	CORE	ROCK TYPE AND ALTERATION		CORE		<u></u>	CORE	ASSAYS		SLUDGE		MINE	RALIZ	ATION	
FEET	RECOV	DESCRIPTION		SAMPLE NO.	FOOTAGE	AG.	CU.	PB.	ZN.	SAMPLE NO.	FOOTAGE				
276	L.5 ery	Shearing at 30 ⁰ . Hematite				•							<u></u>		
278	0 >	Sheared			•										
280	.9. Re	Sheared. Rock pulverized 279'-2	81'.												
282	90%	Unsheared section 281.5'-282. R	ock fresh.												
284		282'-283' pulverized. 283-284'													
286		284'-286' intense shears at 75 ⁰		ain.			-				285.5'	2-1/8	calc	ite ve	ns
288		Unsheared fresh rock 286'-287'.				· · · · · · · · · · · · · · · · · · ·				· ·		=			
290		Weakly altered, sheared at 45 ⁰ -	60°, blocky.												
292		Pulverized at 290'. Broken core	to 291.5. E	nd of	Box 10.						-				
294		292' shearing at 15 ⁰ -20 ⁰ . 294'		<u> </u>											
296		294'-300' intense shearing. Hem					-								
298		Pulverized core.	·												
300		Pulverized to 299'. Broken to 3	00.5' Hemat	te st	ain.		-					•			
302		Broken core. Fresh, unmineraliz				•	-	-						· · · · · · · · · · · · · · · · · · ·	
304	ž	303'-304' sheared at 45°-60°, p						-			303	1/16"	caloi	le voir	$at 30^{\circ}$
306 [.]	1	305.5'-307.5' shearing at 30°,		 .							<u> </u>		Carer	ue_veii	
	.			A.A	.	. •		<u></u> .	L	. 	<u> </u>			A	······

		DIAMOND DI	RILL RECO	RD,		•				HOL	E NO		F-1		
		PROPERTY	FORT CLAIMS -	ENDA	KO PROJ	ECT									
	SHEE	T NUMBER 9 of 10	SECTION FROM_		TO			STARTEI) <u>Ju</u>	l <u>y 29/</u>	70	_		-	
	LATI	TUDE	DATUM					COMPLET	redJ	uly 31	/70	-			
	DEPA	RTURE	BEARING					ULTIMA	CE DEPTH	ı3	43'	-			
	ELEV	ATION	DIP	Vertic	al			PROPOSE	ED DEPTI	1		_	•		
DEPTH '	CORE	ROCK TYPE AND ALTERATI	ON	CORE			CORE	ASSAYS		SLUDGE		MINE	RALIZAT	NOI	
FEET	RECOV	DESCRIPTION		NO.	FOOTAGE	AG.	cu.	PB.	ZN.	NO.	FOOTAGE				
308	11 313 88	Fracturing at 30 ⁰ . Weak altn.	plag. white,	soft.											
310		Fracturing at 30 ⁰ . minor calc													
312	291 22/	Broken sheared core, shearing	at 30 ⁰ .												
314		Core pulverized, sheared alte	red to end. Bo	× 11 a	t 313.	5'									
316		Core broken, jointed, weak al	tn. of plag.								317	Pyrite	on 30) frac	tures.
318		Core broken, pyrite at 317'.	Fe stain, weak	altn.	of pla	ig.									
320		Intense shearing at 45 ⁰ -60 ⁰ ;	318'-327'. Fe	stain,	poor 1	ecover	у.		·						
322	lery	Sheared & pulverized.												•	
324		Sheared & pulverized.													
326_		Sheared & pulverized.													
328	5.5	Core broken, plag. greenish.									328.5'	Hairl	ine ca	lcite	at 60° .
330		Same.													
332	5	Core broken, joints at 45 ⁰ . F	resh.								331'	Pyrit	e on 8	5 ⁰ fra	ctures.
<u>·334</u>		15' fract. at 333'. Rock fres	h.												
336	B0 25/	Core broken 334'-335'. Sheare	d, weak altn.	Red he	matite.										
338		Stained shear at 336'. 336'-	338' - Fresh.												

					FORT CLAIMS -		O PROJE	ECT						•			
	SHEE	T NUMBER _	10 of 10		SECTION FROM_		TO	•		STARTED	J\	<u>1 29</u>	/70	_			
	LATI	TUDE	<u> </u>		DATUM					COMPLET	ED <u>J</u> l	uly 31	/70	_			
	DEPA	ARTURE		· · · · · · · · · · · · · · · · · · ·	BEARING					ULTIMAT	E DEPTH	3	43'	_			
	ELEV	ATION			DIP	Vert	ical			PROPOSE	D DEPTH	·····	·····		•		
)EPTH TEET	CORE RECOV		ROCK TYPE AN DESCR	D ALTERATI IPTION	ON		FOOTAGE	AG.	CORE CU.	ASSAYS PB.	ZN.	SLUDGE SAMPLE	FOOTAGE	MINI	ERALIZ	ATION	1
		,				NO.						NO.					<u> </u>
340 342					. Rock fresh. Rock weakly a			2.					339.5	3-1/16 at 209			rein
	Box 13	3	hole at 343'														
		Ave	erage core re	covery for	hole = 91%					•							
					•		•										
		-		•										·		·	
			······		······································				•								
			· ····	·													
				<u></u>			· · · · · · · · · · · · · · · · · · ·										
								· •								*	
														ļ			<u> </u>
				•									•		ļ		

	DIAMOND	DRILL RECO	DRD,					• •	HOL	E NO.	F-2			
	PROPERT	Y FORT CLAIMS	S - END	AKO PRO	JECT									
SH	EET NUMBER 1 of 4	SECTION FROM	٩	TO			STARTEI	Aug.	2/70		-			
LA	TITUDE	DATUM					COMPLE	TED Aug	. 6/70		-			
DE	PARTURE						ULTIMA	TE DEPTH	417'		<u> </u>			
EL	EVATION	DIPVert:	lcal				PROPOSI	ED DEPTH	I		-			
EPTH CORE	ROCK TYPE AND ALTH		CORE			CORE	ASSAYS		SLUDGE		N	INERAL	IZATIC)N
EET CRECO	n control to the total t		SAMPLE NO.	FOOTAGE	AG.	cu.	PB.	ZN.	NO.	FOOTAGE				
0 III	Overburden 0-142', cas	sing									,			
rbu	Commence BQ (wireline)) Coring at 142'												
0V6														
40 1														<u> </u>
142	7142'-169': finegrained	d gray basalt dyk	e .						l	î				<u> </u>
50 - 5	Scattered small white	plag. pheno's Wi	lely	·					<u> </u>					<u></u>
2 X	spaced joints, mainly	calcite-filled								142-16				
52 - 06	Core broken to 150, b	· · · · · · · · · · · · · · · · · · ·			:						<u> </u>	60 ⁰ . N	No sul:	<u>f16</u>
-190 25/	Calcite veins abundan	t. No sulfides. B	asalt a	ppears	fresh	where	not sh	eared.						ļ
.70	Shearing 167'-169' pa				1		_		<u> </u>	169	<u>3x1/</u>	8" Calo	<u>dite a</u>	<u>t 2</u>
5 5					+	stn.	_		<u> </u>		Case	X •		
80 80	173-188 basalt dyke.	Competant. Wide s	paced c	alcite	vns.		-					<u> </u>		
Box 25.5	Few small white plag.	pheno's. Shearin	g	ļ	ļ		•					<u> </u>	· ·	
.90	<u> 182'-187'</u>								 			<u> </u>		+
n e	Fine-med g'd Casey 18 C carbonate + chlorite.	8-202. Few joint	s at 40	'-60' w	lith					191	hle	carbona	ate VN	at

		DIAMOND	RILL RECO	RD,		·				HOL	E NO.	<u>F-2</u>			
		PROPERTY	FORT CLAIMS	-ENDAK	O PROJI	ECT		ul<u>o</u>n Island							
	SHEE	T NUMBER 2 Of 4	SECTION FROM_		TO			STARTED	Aug	. 2/70		- .			
	LATI	TUDE	DATUM	· · · · · · · · · · · · · · · · · · ·	·			COMPLET	ED Aug	6/70		_			
	DEPA	RTURE	BEARING			·	·•	ULTIMAT	E DEPT	<u>417'</u>		_			
	ELEV	VATION	DIPVertic	al				PROPOSE	D DEPT	н		_	•		
DEPTH	CORE			CORE			CORE	ASSAYS		SLUDGE			SLUDGE	ASSAYS	
FEET	RECOV	DESCRIPTION		SAMPLE NO.	FOOTAGE	AG.	cu.	PB.	ZN.	SAMPLE NO.	FOOTAGE	AG.	cu.	PB.	ZN.
	0-13 012	Basalt dyke 202-224.5. 4" scr	een of sheared	Casev								``			1
210	190 190	at 207', contact at 35 ⁰ , cal	ite veins.	1											
	Long in	Basalt dyke same as previous.		calcit	e vns.	1									
20	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Sheared 212-214 ¹ .													
	22	2	<u>, , , , , , , , , , , , , , , , , , , </u>										1	-	1
230	xo	Fine-med. g'd Casey alaskite.	Sheared, brec	ciated	224.6	226'									
	10% 10%	Abund. joints at 40 ⁰ -60' 225-	232, chlorite	coated	. Red 1	hematit	е				1				
240	1 2	stain, pseudo's after weakly	altered plag.	No sul	fides.	no at:	. vns								
		236-240.5 Casey jointed, shea							00						
250	X 5 N	Fresh f.g. Casey to 248'. Chl	•												1
	B	plag. soft, green in sheared													
260	17.00	Plag. wk. altd in sheared zor	es. Zore broke	n at 2	56', 20	63'									1
	CV CO	Shearing at 30° at 268'. Chlo		11			nted	-							
270	D N N N	to 277. Soft green plag. Join		1		1			<u> </u> .				1		
	w x	Fresh Casey to 283'. Green pl			·										1
280	BO			1	j.	+	1	-	1		<u> </u>	·		-	1

DIAMOND DRILL RECORD,

٠

HOLE NO. F-2

PROPERTY FORT CLAIMS-ENDAKO PROJECT

	SHE	ET NUMBER 3 of 4	SECTION FROM_		TO			STARTED	Aug.	2/70			• *			
•	LAT	'I TUDE	DATUM				<u></u>	COMPLET	ED Aug	g. 6/7	0			•		
	DEF	ARTURE	BEARING				. <u> </u>	ULTIMAT	E DEPTH	₹_417ª						
	ELE	VATION	DIPVertica	al	2			PROPOSE	D DEPTH	ł						_
DEPTH	CORE			CORE			CORE	ASSAYS		SLUDGE		MI	NERALI	ZATION		
FEET	RECOV	DESCRIPTION		SAMPLE NO.	FOOTAGE	AG.	cu.	PB.	ZN.	SAMPLE NO.	FOOTAGE					
	. 66	289'-290' shear zone at 20°-Chlo	rite-hemati	e alt	ı n							,				
290	N 100	14 12Plag fresh 292-294, joints at 29													·	
		Fresh Casey to 298. Wk chloritic	,	99.												
300	Box	Broken core at 301', joints at 2						•								
	95	30° hematite-stained shear at 30)5'. plag he	n. sta	ined											
310	320 86%	310-320 Casey wk. alt., hematite									309	1/8" q	tz-car	bonate	vn at	25
		Widely- spaced fractures, minor		1		altn										
320	2 B	of plag.	· · · · · · · · · · · · · · · · · · ·	-					· ·							
	v √2 3 √2	320-341 Core competant, few frac	ctures		 ,											
330	5-3 =92	plag weakly altered, red stained		- 327-	2											
		shears at 15 ⁰ 340-342 chloritic				se										
.340	3 0	calcite vns at basalt contact														
	30X	Basalt dyke 342-350.5'	•								342	3X1/8	calc	te vns	at 2(4
350		d fine grained basalt, wide spaced	calcute vn	5												
	H 1 100	Chl. alt Casey 350.5-352. 4"basa			ev to	354 '				1	x -				•	
360	BO 3333	2"basalt dyke at 354'. Med g'd c	asey, soft	reen	plag 30	o. shea	r at	363'.								

DIAMOND DRILL RECORD,

•

HOLE NO. _____

PROPERTY _____ FORT CLAIMS-ENDAKO PROJECT

			ION FROM_					STARTED COMPLET				- ·				
	DEPA	RTUREBEARI	[NG					ULTIMAT	E DEPTI	417		_				
-	ELEV	ATION DIP	Vertic	al				PROPOSE	D DEPTH	I						_
DEPTH	CORE			CORE			CORE	ASSAYS	·	SLUDGE			SLUDGE	ASSAYS		
FEET	RECOV	DESCRIPTION		NO.	FOOTAGE	AG.	cu.	PB.	ZN.	NO.	FOOTAGE	AG.	CU.	PB.	ZN.	
	ы Т	368-372 Joints, shears at 30 ⁰ chlor.	altn o	f plac								``				
370	为 B D D	unjointed to 378. 2 pyrite-filled fr	acts at	378.							2.					
	66- 2%	379'-380', 30 ⁰ jointsintense ch	l. altn	•												
380		382 shear at 15 ⁰									387	2X1/8	' pyri	te on	fracts	at
	x 1 3/2	Rock fresher to 385, chl. altd plag.	385-38	basa	lt at 4	50		•								
390		Chloritic altn to 389														
	412 2	Shearing, chloritic altn at 396'			•						395'	pyrite	on fr	act at	50 ⁰	
400	89- 5=8	Pyrite at 50 ⁰ at 395', shearing at 3							· ·							
	x13 3/2	398.5' - 402' chlorhem. shear zone	at 25 ⁰	Rock	become	s										
410	B0 2	freșher, plag still green, few chlor	ite-coa	ted fr	act's a	t 30 ⁰ -	60 ⁰ .									
	m	Same to 417. 4Xchlor. fracts at 30 ⁰		11												
420	2-12.	416'-417', End of hole at 417'														
	4															
		AVERAGE CORE RECOVERY= 89.6%														
		N N													•	
					1											

		DIAMOND DRILL	RECORD,	,	•				Moli	E NO	CH-		
		PROPERTYCHESS CLAI	IMS - ENDAKO	PROJECT									
	SHEET	NUMBER 1 Of 4 SECTIO	ON FROM	TO			STARTED	Aug.	19/70		_ ·		
	LATI	TUDE DATUM		·····			COMPLET	ED4	Aug. 21	/70	_		
	DEPAR	TUREBEARIN	NG				ULTIMAT	e depti	1256'			•	
	ELEVA	DIP	Vertical				PROPOSE	D DEPTH	ł		-		
DEPTH	CORE	ROCK TYPE AND ALTERATION		RE PLE FOOTAGE		CORE	ASSAYS		SLUDGE		MIN	ERALIZATION	1
FEET	RECOV	DESCRIPTION			AG.	cu.	PB.	ZN.	NO.	FOOTAGE			
		Overburden to 20', Commence BQ (wireline)	coring										
10		at 20'							<u> </u>				
											\		
20		Med-coarse-grained porphyritic Glenannan (2	Tatin?)										
•	44	atz-monzonite. Plag dark green (Kaolin & ch	hlorite?), o	ften			·						
30	20 ⁻	pseudomorphed by red pulverulent hematite.	Rock genera	11y							· · ·		
	× 1 4/25	competant, unjointed-cores very well. 31'-4	4" aplite at	35 [°] &						31.5'	1/4" massi	<u>ve pv. vei</u>	n at 35 ⁰
40	B0) 2/	1/4" massive pyrite vn at lower contact. N	Minor Ksp al	tn along									
		30° fract. at 38.5'. Wide spaced chlorite	fract's at 3	0°- 45°			<u>`</u> .						
50	67.5 -94	Hb & biot chloritized, hematite pseudo's. (Close sp. 45	o jts 52'.									
	44-44-(725)	Kspar megacrysts 55'-60'.						-					_
_60	23.5	Fault zone 62'-64' at 45°, rock granulated,	, altered. 3	<u>" gtz. vn 1</u>	ower								
·	BO	contact. 64-67.5 Kspar bleached, plag & ma	afics dk gre	en, soft.	,					64'	3" Barren	tre.	
70		Fault zone 74' - 75'. Plag & mafics soft, g	green.						<u> </u>	71.5	5x calcite 1/16 -	vn'\$ at 60	<u>3-80°,</u>
	5=9 5=9	79-80' fault zone at 60°, rock granulated,	altered							¥:		<u> </u>	· ·
80	Box 67.	Rock rel. fresh below fault.											

·

•			DIAMOND DRILL REC	ORD,					•	Hole	NO	•	CH-1		
			PROPERTYCHESS CLAIMS	- ENDAKO	PROJECT		·····								
-		SHEE	T NUMBER 2 of 4 SECTION FR	OM	TO			STARTE	Aug	. 19/70		-	• .		, ,
		LATI	TUDE DATUM					COMPLE	TED A	ug. 21/2	70				
		DEPA	RTUREBEARING					ULTIMA	IE DEPTH	256	I				
		ELEV	ATION DIP	Vertical				PROPOSI	ED DEPTH	I		_			
DEPTH	0	RE	ROCK TYPE AND ALTERATION	COR	1		CORE	ASSAYS		SLUDGE		MI MI	NERALIZA	ATION	
FEET	1	COV	DESCRIPTION	SAMPI NO	E' FOOTAGE	AG.	CU.	PB.	ZN.	SAMPLE NO.	FOOTAGE				
	e		Hematite stn. Mafics green. Kspar megacrysts.								86'	1/8" q	tz-calci	te mino:	r pyrite
90	Box		5" aplite at 88.5', at 45°. Otz veinlets. Hle	calcite.							87		t 600 alcite v		
	4	\uparrow	Rock rel. fresh. Plag & mafics green. Chl. she	11	5 ⁰ at 94'	•					94'	1/8" c	alcite a	t 50°	
100	-11	2%	Anhedral Kspar megacrysts. Chl-hem. jts at 20 ⁰	at 99'											
	4 9	25=	Rock fresher. Plag hard, green. Mafics fresh o	r wk chl	oritized.	30 ⁰		·							
110	Box	23/	jts. at 112'. Rock rel. unjointed. No veins												
· <u> </u>		<u> </u>	Chl-hem shear at 30 at 114'												
120	4-13	%9													
	11	5=9	pyrite-moly at 127'. No gtz veining, alteratio	n.							122	2x 1/8	" calcit	e at 20	0
130	X	24/:	Diss. py at 129'. No moly. Py & chl. on 60 ⁰ fra	ct. at 1	30'						127 '	hle py	rite-mol	y at 60	0
			Rock fresh. Few fracts. Plag. hard, green												
140	. 	<u> </u>	Shears at 139', 140' ch1 & hem & minor pyrite								139'-1	40' pyr	te on S	0 ⁰ fract	s
	-163		Core broken 141-142. Small fracts with py & mo	•							146	hle py	on 50 ⁰ f	ract.	
150	138	=10	155' ch1 & hem. shear at 50 ⁰								147'	hle py	& moly	at 60 ⁰	
	9	5/25	Rock fresh. Plag green, some hematite stain												•
160	Bo	2	Fracts // core 158'-163'. No mineralization.								. ,				

•

, ·

			DIAMOND DRILL	RECO	RD,						HOL	NO.		CH-1			-
			PROPERTYCHES	SS GROUP -	ENDAK	O PROJE	ECT										
	S	HEET	NUMBER 3 Of 4 SE	CTION FROM_		TO			STARTED	Auc	<u>1. 19/</u>	70	- '				
	L	ATI	TUDE DA	.TUM					COMPLET	ED_Aug	, 21/	70	-				
	D	EPAF	BE	ARING					ULTIMAT	E DEPTH	256	1	_				
	E	LEVA	TION DI	pVertic	cal	·····			PROPOSE	D DEPTH			_				
DEPTH	COR	E	ROCK TYPE AND ALTERATION DESCRIPTION		CORE			CORE	ASSAYS		SLUDGE	1	M	INERALI	[ZATIO]	N]
FEET	REC		DESCRIPTION		SAMPLE NO.	FOOTAGE	AG.	cu.	PB.	ZN.	SAMPLE NO.	FOOTAGE] .
		\leq	Plag green, rock competant, rel-	uniointed									`]
170	-18		Same. Fract at 60° with tr. pyrite	-								169	l gra	in pyr	ite or	60 ⁰ f	grac
	163	5=96	177' - 60° fract. with pyrite & r	ust. Plag	gree	n						172	3x 1/	16_cal	cite v	eins a	dt 4
180	× 1	4/2	179' - traces diss pyrite									177		e on 6			
•	- B		$185' - 187'$ shears at $60^{\circ} - 80^{\circ}$, ch		ain.	Rock so	ft.					179		iss py			
190	209		193' close spaced chl. fract's. a	it 35°									-				
	187	=88	Core broken 196-198' Few fracts.	Plag gree	<u>& he</u>	matite											
200	∞ ×	2/25	stain. No mineralization		ļ												
	Boy	2	Rock fresh. Few wide spaced fract	.s.												•	_
210	. 5	<u> </u>	Same													20-4	jc
	9-23	-94%	Calcite veins at 212. Fresh Glena	nnan qtz r	onz.							212		8"-4"			-
220	9 20	5/25	219' - 50 ⁰ shear, hematite. 221-2	22 calcit	vein	lets.			<u> </u>			221-2	3x ca	lcite	hle's	30 ⁰ -6	fc f
	X	23.	tr. py. on fract. 227' - 1/8" cha	lcedonic d	tz. v	n at 45	0					225	tr. p	yrite	on 68'	feet	-
230	Bo		Rock fresh					 									4
			Rock fresh except for small silic	ified shea	r zon	es						233.5	diss	py alc	ng 70	frac	t.
240			with pyrite or hematite-stained f	ractures.								236-23		's pyr		ong]

		DIAMOND PROPERTY _			OJECT					HOLI	E NO.) <u></u>	CH-1	7	
	SHEET	NUMBER 4 of: 4	_ SECTION FROM_		TO		·	STARTED	Aug	. 19/70					
	LATIT	UDE	DATUM					COMPLET	ED_Au	g. 21/7	0	-			
	DEPAR	TURE	- BEARING					ULTIMAT	E DEPTI	H <u>256</u>	1	-	•		
	ELEVA	TION	Vert	tical	·····			PROPOSE	D DEPT	H		-			
PTH	CORE	ROCK TYPE AND ALTERAT		CORE	TOOTTACT		CORE	ASSAYS		SLUDGE]	MINERALI	ZATION	
ET	RECOV	DESCRIPTION		NO.	FOOTAGE	AG.	cu.	PB.	ZN.	NO.	FOOTAGE				
		Small chl. fract's 70-90°. Co	re fractured, wk ch	. alt.							248	Vuggy	qtz. a	t 10°,	calcite
50	256 25=9,	of plag. and mafics. Shear zon	e, breccia ed grani	е							249	calci at 90	e // con	e, min	dr qtz-
	10	4" wide at 253' - hem & chl.	4 <u>" aplite at 15° at</u>	256'			-				251	1/4"	alcite	at 20 ⁰	
260	^E 0x 23 23	End of hole at 256'.											· .		
			· · · · · · · · · · · · · · · · · · ·					·					ļ		
	· · · · · · ·	Average core recovery 91.4	%.												· ·
		•							· ·						
							·								ļ
							· · · · · · · · · · · · · · · · · · ·								
										. 				<u> </u>	
	·		· · · · · · · · · · · · · · · · · · ·												
														ļ	•
							<u> </u>								
		· · · · · · · · · · · · · · · · · · ·					<u> </u>						· .		·

		DIAMOND DR	ILL RECO).IECT					HOLE	NO.	<u> </u>	1		
		PROPERTYB	SECTION FROM_ DATUM		TO			STARTED.	٨٠٠٥	8/70 ;. 12/70		- ·		• •	
	DEPAR	TURE	BEARING					ULTIMAT	e depth	155.5	1	-			
	ELEVA	TION	DIPVert	ical	¹	·		PROPOSEI	D DEPTH	[-			
DEPTH	CORE	ROCK TYPE AND ALTERATION		CORE	EXO TA OF		CORE A	ASSAYS		SLUDGE		MIN	ERALIZ	ATION	
FEET	RECOV	DESCRIPTION		NO.	FOOTAGE	AG.	CU.	PB.	ZN.	SAMPLE NO.	FOOTAGE				
0		Overburden to 135' Casing.										`			
<u>О</u> .В		Commence BQ (wireline) coring at 1	351												
1															I
		Lost tricone wheel at 135', ruined	-	-		<u>le abano</u>	loned a	t 155.5'							
136		Fresh, coarse-grained porphyritic	hb-biot Glenanna	otz n	onz.					┃				· !	
138		135'-136' biot-hb inclusions with	magnetite. Pink	spar						138'	1/8" ca	lcite vh.	. at 20) ^o	
140		Phenos, fresh mafics and white pla	gioclase. Core b	oken t	o 138'					140'	jo ints .	1/8" cal	lcite a	it 15°	
142	ery	Core_broken 141'-142'. Joints at 1	$0^{\circ}-20^{\circ}$ minor ca	cite v	ns. Roc	k fresh				140.5	1	alcite vr	1		
144	5.5 ecov	Core broken 143'-145'. Joints at 1								143'		lcite at			
	R 15	145'-147' joints at 20°-30 coated								143	_1/8 _Ca	lcite at	15	ł	
	82%			il	1	ite sta	.n.			-					
148	1351	Core jointed, broken. Joints coat	ed with chlorite	hemat	ite.				<u> </u>	148'	1/8" ca	rbonate-c	chlorit	<u>e vn at</u>	100
150	/2	Fresh unjointed Glen.QM. Kspar pol	e pink to white.	Plag.	rel. abu	nd.									
152	0 x 1 20.5	Kspar megacrysts 151-152'. Joints	at 30' - minor	hlorit	е										
154	Bo 2	Fresh rock. Kspar megacrysts. Inc	lusions at 153',	154'.										s'	
_156		Fresh coarse g'd por.hb-biot Glen.	QM. End of hole	t 155.	5 '					155'	1/8" ch	lorite-ca	lcite	vn at 2	0 °
	End of Hole														
		Average core recovery=82%													

•••	•	•	CHEMIST		GEOCHE	MISTS		ALYSTS		a'ss/	AYERS N	o. 7 45	9
TO:	3 30	s Explo - 355 B couver,	urrard	Ltd.,			// <i>/</i> -///	₩₩₩	Ď	ATE	NOICE N RECEIVI	o. 243 ^{ED} Nov	8 • 27/0
ATTN:	Mr.	Ken Da	PPM		PPM			·			ANALYS	Dec	- 1/69
Soil Soil	<i>€</i> 1		<u>Сорре</u> 10 10	<u>er</u>	Molyb 3 2	denum				unt unt			

,								•				•	•
			÷	<u>.</u> .	•	•						• •	•
•								•					
	-			•		· · ·	•						
			••••••••••••••••••••••••••••••••••••••							•			
	•		•			•	•		· · ·	•			
			· ·					•					

Vancou 1521 PEMBERTON					<i>CAL LADOP</i> Ver, b.c. canada	Drie PHONE &		•	
COMPANY		as_Expl	orati	on Ltd.	70-15-019 REPORT N₀.		LOF	1	
						 		1	
MARKING	Mo	Re	marks		MARKING	 			
BARB = N. Face	32			soil					
BARB - S. Face	2	-		81					
Shovel - 1	ָ י ב	organ	ic	silt					
2	3								
Shovel - 3	1	, • ,		•1					
Count - RD	34	61		81					
Amax-Count	7			17					
Savory	10			"					
			-						
						 · .			
								•	

REMARKS

All values are reported in parts per million unless specified otherwise. All values are believed to be correct to the best knowledge of the analyst based on the method and instruments used.

Endako Project / Seel Samples

Auf 31 /10

D Shovel 1. 1st E. trib above BARB scheering in Rangen - silt. 1 ppm Mo @ Shovel 2. 2nd trib above canyou - silt. 3 -ppm- He Shivel 3 main ck 1/2 mi belaw shewing, near Shovel Cle- silt 1 ppm Mo BARB N. face - sael or decomposed rack in campon. homonitic altin + qt2-py veining. Host rock shaws kadt ser. alta. 32 ppn No BARB 5 face - sail as decompound rock, apend by 5) buildager ent. Pusky, argellic alker rack, no vis. min. 2 ppm ple AMAX Count - trench in Cascy (?) with barren gtz un. near ald Amox completo 5 of COUNT plains. Silt. 7 ppm No COUNT RD - Creek dranning from W alread rd near 5 border claim graup - amall crick, black mud. Within & Carey plant on road marky. SIT. 34 ppm Mo SAVORY - Silt from anall che 1/2 mi W if Endako Rod & Gun - deand Cany - Endales unhact. and dry. Sandy sample. 10 ppin Mo