Glacier Gulch 802586

CLIMAX MOLYBDENUM CORPORATION OF BRITISH COLUMBIA LIMITED

HOLE No. 54

DETAILED GEOLOGY, DRILL LOG

FOOTAGE		MAP UNIT	ROCK DESCRIPTION (Color, textures, structures, etc.)	ALTERATION (Wall rocks, veins)	MINERALIZATION (Wall rocks, veins,
ROM	TO				(See detailed vein data sheet)
0	62	Green grey to dark green grey fg 6-6	Mixed green grey & dark green grey fg granodiorite aplite.	Some femag clotting. Garnet clots in lighter coloured phases.	Weak MoS ₂ . Best set @ 10-30°/ca Several barren qtz veins @ 20-45 3" qtz @ 30 @ 58.
62	122	As above 62-100 Lighter grey 6-6 100-122	As above to 100. Overall colour tone much lighter 100-122, although some short runs of darker green grey. Locally rock in tones of brown (more biotitic) Odd small qtz-feld phenos.Possible small slip @ 10°/ca @ 120.	Irreg arg, serpartic near drusy qtz-carb veinlets.	Weak MoS ₂ 1½" banded @ 40-60° @ 121 Several barren qtz veins @ diver attitudes. Some drusy.
122	178	Green grey 6-6	F.g. weakly grano. odd qtz-feld phenos to 1/8" Colour tone darker than previous run. 150-165-get browner tones (more biotitic)-also 176-178.	Weak ser, some femag clotting. Carb ser adjac- ent to ½ carb vein @ 45° @ 167.	MoS ₂ weak. Sets @ 30 & 45°.
178	185	Dk green grey dioritic phase?? mag.	Colour tone abruptly darkenslooks like dioritic phasefg fabric of feld ; abundant femagrock is magnetic. Subsequent runs suggest this is merely femag rich phase of 6-6.		
185	* 241	Mixed dk green & green grey 6-6 Weak "block" zone?	Mixed dark green (resembled dioritic phase) and green grey 6-6. Darker phases gradationalapparently areas of femag conc. Mag first few feet of runthen weak spotty mag. Locally biotitic.	Femag clotting. Some garnet. Carb ser adjacent to ½" carb @ 40 @ 224 1/16" carb @ 15 @ 190	Weak MoS, but improved. sets @ 10-30, & 45°/ca. 1" banded ; sparce MoS, @ 40 @ 2 Massive mag @ 188. A few K-spar bearing qtz veins.
241	289.5	Green grey 6-6	Mostly green grey 6-6. Groundmass becomes f.g. sugary. Still a few anhedral qtz & feld Phenos. Ground core, small carb-qtz @ 20 @ 279.	Some femag clotting. Irreg, weak arg. carb ser. Some garnet.	Weak MoS ₂ . Best set @ 10-30° Numerous barren qtz @ 30 & 60°/c Some of these have very sparce MoS ₂ .
289.	5 290.5	Buff quartz porphyry dike	SHarp but irreg contact @ 35° into buff brown qtz Ø dike. Subhedral to euhedral qtz to 1/16" in dense aphanitic matrix. MoS ₂ veins cut this dike. Dike cuts one obscure pre MoS ₂ femag vein.		MoS ₂ weak.

ES 0/ 7

CLIMAX MOLYBDENUM CORPORATION OF BRITISH COLUMBIA LIMITED

HOLE No.

FOOTA	1GE	MAP UNIT	ROCK DESCRIPTION (Color, textures, structures, etc.)	ALTERATION (Woll rocks, veins)	MINERALIZATION (Wall rocks, veins)
ROM	70			A.E. E. A.	(See detailed vein data sheet)
290.	5 298	Green grey 6-6	As above.		Intensity of veining stronger (best @ 10-30 & 60°) but MoS still weak.
298	351	Green grey 6-6 to 335. 335-361 more intense veining feld.	As above to 335. At 335-351 get more intense veining (barren or very sparce MoS ₂) and ubquitous K-feld.	K-feld <u>+</u> carb-ser 335-351	Mos ₂ weak. Increase in intensity of veining (barren or very spa Mos ₂) 335-351.
351	409	Mostly 6-6. Some porphyritic phase some bleached argd zones.	As above to 353. 353-356 Bleached, arg'd some dissem MoS ₂ . 356-378 Green grey porphyritic granodiorite aplite. Some anhedral to subhedral qtz & feld to 3/32" in f.g. sugary matrixlocally texture obscured by greasy alt. 378-389 Light grey bleached, arg'd ± coarse feld; dissem MoS ₂ . More abundant dissem MoS ₂ in lighter coloured phases. 389-394-highly replaced by SiO ₂ ,K-spar,epidote(?)-some dissem MoS ₂ w/sericite. 394-409 green grey normal 6-6.	As above. Extensively bleached, arg'd 353-356 378-389. Replaced by qtz K-spar + epidote? 389-394. Minor femag clotting in normal 6-6.	Weak MoS with exception of dissernant'1.
409	477	Green grey-brown grey silicified 6-6 some HiSiO, zones lamp? 427-430	409-419 Green grey normal 6-6. 419-427 Highly replaced by SiO ₂ or one large irreg vein; host rock frags and/or relicts. 427-430 fg velvety dark green, mag lamp?@ 45°/ca-unit also cut by barren qtz veins. 430-439 green grey weakly silicified 6-6 with irreg bleaching. 439-443 High SiO ₂ replacement. 443-448 green grey weakly silic 6-6 448-477 Mixed green grey, brown grey (biotitic) silic (weakly) 6-6. Textures clouded.	Becomes more intensely silicified2 zones of complete silic 419-427 and 439-443. Neak silic 430-477. Minor bleaching, femag clotting.	Intense barren qtz veining. Weak MoS ₂ .

CLIMAX MOLYBDENUM CORPORATION OF BRITISH COLUMBIA LIMITED

HOLE No.

DETAILED GEOLOGY, DRILL LOG

FOOTAGE		MAP UNIT	ROCK DESCRIPTION (Color, textures, structures, etc.)	ALTERATION (Wall rocks, veins)	MINERALIZATION (Wall rocks, veins)
FROM	TO				(See detailed vein data sheet)
479	535	Nrown grey silic 6-6	Mostly brown grey silic 6-6/6-5. Texture largely cloudedwhere apparent fg granular-weakly grano weak to strongly porph.	Pervasive silic clouds ly texture.	Intense barren qtz veining Best sets @ 0-30°/ca weak WO ₃ . MoS ₂ weak in narrow vns,post qtz vein stockwork.
535	593	Mixed brown grey green grey silic 6-6. Lamp(?) dikes 556-558, 596-597	As above. Two small lamp(?) dikesdark velvety fg mag @ 70°/ca @ 556, irreg @ 558, @ low angle but irreg @ 596-597.	As above.	As above.
593	654	As above to 599. 599-654 Mostly SiO, with some silic relicts of 6-6	As above to 599. Rest of run mostly SiO ₂ with silic relicts of brown grey & green grey 6-6.	Strong silic-partic 599-654.	MoS ₂ weak. Mag veining in qtz partic 639-654. 3" cg qtz-carb-pyr ser @ 636 core broken-attitude??
654	660.	Mostly SiO ₂ with some silic relicts of 6-6(?)	Mostly SiO ₂ ; some green & brown silic relicts that are presumed to be 6-6.	As above.	Weak MoS ₂ . very weak WO ₃ . Intense barren qtz veining, pre weak MoS ₂ . Pyrite veinlets post-moly.
660.	5 715.0) Qtz-porph.	Buff qtz porph-up to \% rounded anhedral to subhedral qtz in aphanitic to very fine grd grano buff matrixes. Intensity veined with qtz. Some flow banding (marked by streaks of qtz.)	Locally get weak chl or carb-ser of OP -colour tone becomes greenish.	MoS ₂ fair in Q.P. Intense qtz veining-some of which mag be SiO ₂ replacement. Sets @ 10-30, 45 & 70-90° ca. Excellent 700-710 includes 8'' banded qtz MoS ₂ @ 70°/ca.
715	788	Qtz-porph fault @ 750?	As above. Buff to greenish buff. Rubble at end of 740-750 run-rec. poor. Start of 750-760 highly chl, carb ser, argalteration may be related to a fault.	Ch1, carb ser, arg. 750-752. Some small arg'd zones 760-780.	Intense qtz veining a little weake MoS ₂ good. Best set @ 70-90°/ca 2º banded qtz-MoS ₂ @ 70 @ 716 2" " @ 70 @ 768 1½" " @ 70 @ 769. Moly vns post-qtz vns stockwork ver WO ₃ .

EC 6/7

CLIMAX MULYBUENUM CORPORATION OF BRITISH COLUMBIA LIMITED

HOLE No.

DETAILED GEOLOGY, DRILL LOG

FOOTA	1GE	MAP UNIT	ROCK DESCRIPTION (Color, textures, structures, etc.)	ALTERATION (Wall rocks, veins)	MINERALIZATION (Wall rocks, vains)
ROM	TO				(See detailed vein data sheet)
788	853	Qtz Ø green buff	Mostly greenish buff qtz-porph. Anhedral to subhedral qtz to 1/8" in very fine grd sugary to aphanitic matrix. Some subhedral feld. Flow banded.	Colour tone greenercarb- ser alt??	MoS ₂ good to 812. Best set @ 70-9 /ca. v/weak WO ₃ . 2" banded @ 70 @ 798 2" " @ 70 @ 812
				And the state of t	Secondary sets @ 45 & 20°/ca MoS ₂ weaker 812-853 Still strong barren qtzpre-moly veining.
853	915	Qtz Ø buff. Fault or ground core @ 890.	As abovecolour tone greenish buff to 860. Then becomes buffer in colour tone. Groundmass becomes more consistently very fine grd sugary. Qtz & feld anhedra to euhedra to 1/8". Phases resemble 5-5. Poor recovery, rubbly @ 890 block.	Greener colour tone related to alt. ends @ 860.	MoS ₂ weaker. Sets @ 70-90 45 & 10-30°/ca. 70-90 set cut 10-30. 1" banded @ 70 @ 904 v/weak WO ₃ / barren silica veining reduced, also @ 908±
915	974		As above. Flow banding essentially absent. Qtz phenos larger, more enhedral and more abundant. Some anhedral feld. Matrix very f.g. sugary. Fairly abrupt textural change @ 908/	Rock becomes pinkish buff @ 968-974	MoS ₂ Weaker. Stockworks type- sets @ 45, 10-20, 70-90 6" banded @ 70 @ 918 2" qtz-MoS ₂ @ 40 @ 934
974	987		Buff with pinkish overcast. Qtz pheno development larger more abundant. No flow banding. Matrix still v.f.g. sugary but more coarse grd than previous run.		MoS ₂ as above. 1½" banded @ 70 @ 980 WO ₃ essentially absent.
END				The second secon	
987	989	LOST CORE			
771					