

GEOLOGICAL REPORT

```
HUDSON BAY NTM., SMITHERS, B. C.
``` by

\author{
DR. M. A. KLUGMAN NOVEMBER, 1962
}
```

MTHERAK CLATMS Goat, Beaver, Lynx, Fox \& Coyote Groups
(see attached schecule)
OM\RRS
LOCATIONS
54. 50' Morth Latitude
127*}1\mp@subsup{5}{}{\circ}\mathrm{ West Longitude
MAPPIMG PERIOD June 15 - September 10, 1962

```

\section*{FOREWORD}

Geological mapping of the Hudson Bay Mountain claim groups was conducted for Climax Molybdenum (B.C.) Ltd., by Dr. M. Klugman (Asst. Professor of Geology, Colorado School of Mines). The work was performed under the supervision of R. E.Anderson, Prot. Eng. B.C. Mo. 2922, who is permanently employed as a geologist by American Metal Climax, Inc.

\section*{GBOLOGICAL MAPPIFG EXPENDITURES}

\section*{Pezsonnel}
\begin{tabular}{lll}
Project Geologist & Dr. M. Klugran & June 10-Sept. 15 \\
Geologist & C. L. Smith & June 11-Sept. 25 \\
Geologist & R. McMillan & May 1-0ct. 2 \\
Assistant & D. Varley & May 14-Sept. 9 \\
Assistant & D. Goodbrand & May 14-Sept. 6
\end{tabular}

Expenditures
\begin{tabular}{|c|c|}
\hline Dr. M. Klugman & \$3,240.00 \\
\hline C. L. Smith © \(\$ 525.00 / \mathrm{mo}\). & 1,738.00 \\
\hline R. McMillan \(\$ 450.00 / \mathrm{mo}\). & 2,383.00 \\
\hline D. Varley © \(\$ 300.00 / \mathrm{mo}\). & 1,178.00 \\
\hline D. Goodbrande \(\$ 300.00 / \mathrm{mo}\). & 1.164.00 \\
\hline Total & \$9,703.00 \\
\hline
\end{tabular}

\section*{TABLE OF CONYEBYKS}

\section*{PACB YO}
SECTION 2 - REGIONAL GBOLOGX 1
GENERAL GEOLOGY 1
LITHOLOGY 1
Unit A 2
Unit B 2
Unit C 3
Unit D 3
Unit E 3
Unit \(F\) 4
Unit \(G\) 4
Unit H 4
Unit I 5
TANTRUSIVE ROCKS 5
Granodiorite 5
Quart \(\overline{\text { z }}\) Monzonite (Granodiorite) 5
Basalts (Diabase) 6
REGIONAL STRUCIURE 7
Western Block 8
second Block 9
Third Block. 10
RADIAL FAULTS 10
MAJOR FAULT ZONE 11
SECTION II - CIRQUE AREA 12
LITHOLOGY (Quartz Eye Rhyolite Tuff Unit) 12
Pencil Line Rhyolite 13
Quartz Eye Rhyolite Tuff 14
Well Layered Andesite Fragmental 15
Breccia. 16
GENERAL STATEMENT 16
Andesite Fragmental. 16
Andesite Basalt Fragmental 17
Basaltic Andesite Fragmental 17
Layered Andesite Fragmental. 18
Light Grey Andesite Fragmental 18
GENERAL GEOLOGY 19
ROCK TYPES 20
Granodiorite 20
Quartz Monzonite-Granodiorite 21
Basalt (Diabase) 22
Lamprophyre 22

\section*{TABIE OF CONXENTS}

\section*{PAGE \(\mathrm{NO} \mathrm{O}_{2}\)}
STRUCTURAL GEOLOGY. 23
Major Fault Zone 23
North-Northwest Shears 24
Joints 25
Explanation. 26
ALIERATION. 27
Epidotization 27
Chloritization 27
Feldspathization 27
silicification 29
Quartz Veins 30
Argillization. 31
SCHEDULE OF MINERAL CLAIMS. 32-34

MAP - Geological Map, Hudson Bay Mountain Area scale \(1^{n=1 / 4}\) mile (In Pocket)

\section*{SECTIONI \\ REGIONAL GEOLOGX}

\section*{GENERAL GEOLOGY}

In mapping previously undifferentiated volcanics, particularly where a great thickness of volcanics exists, it is necessary to try and break down the rock-types into mappable units in order to fully understand the geology and structure.

Apart from the intrusive roeks and the overlying sediments, eleven recognizable units were seen on Hudson Bay Mountain. In some the units were uniform and of one specific rock-type (Unit F - limestone), but in most each unit composed an assemblage of rock-types. In order to distinguish distinct units in a volcanic sequence it is necessary to find a characteristic feature in each unit. In most cases on Hudson

Bay Mountain a repeating or predominant member of a unit was the most reliable criterion. Other features such as being quartz-rich or quartz-poor rocks were helpful characteristics in some places. In one particular case the colour is diatinctive. It must be noted that the characteriging member in some cases is not necessarily the most abundant member, but rather the most diatinctive.

\section*{LTTHOLOGY}

The units described are based entirely upon megascopic examination and field characteristics.

Unit A is primarily a greenish-grey, massively bededed fine- to coarse-grained tuff, in places fossiliferous. Sedimentery interbeds of argillaceous and well defined 11 mestone horizons occur throughout the exposed parts of the unit. The most prominent feature of the unit is the abundance of foseils with beds of Mesozolc belemnite guards up to five feat thick. Also present are pelecypods, brachlopods and plant leaves.

Because of the fineness of the ash the rocks have a dense massive appearance giving them the appearance of flews. Bedaing is only observable where sedimentary interbeds occur.
onit 8 is \(=\) greyish-purple to redaish-purple, mesesive, crystal tuff. The distinguishing characteristic of the unit is the presence of potash feldspar phenocrysts varying from sub-microscopic to one-quarter inch long. The unit contains scattered elliptical to circular "fossil" remains up to four inches in diameter. They are composed entirely of calcite and some faint internal structures can still be recognized. some graded fragmental and ash beds are the only recognizable bedding. parte of this unit are definitely of subaqueous deposition.

The contact of Unit B with Unit C is gradational over about 200 feet, and is defined by the gradation from purple tuffs (b) to bright red tuffs of Unit C.

Unit C is the most striking unit in the area. It is a bright red, massive, fine- to coarse-grained tuff composed of Thite and pink feldspar crystals in a fine hematitic ground mass. The crystals are from one-sixteenth to three-eighths of an inch long. Because of the uniformity of the colour the hematitic groundmass is apparently primary, and not the result of later alteration. Scattered beds of lithic ash occur throughout the section.

Unit D is a dark purple, well bedded, lithic, coarselapill1 tuff sequence. The recurrence of the well-bedaed purple material is its most alstinctive feature. The rest of the unit is compoced of diverse tuffs. The 14 thic fragments are commonly rounded, volcanics with graded bedding occurring in individual beds in meny places. Some interbeds of massive bright red tuffes are aleo present in a fen perte. The lithic nature of the unit gives it an agglomeritic appearance. The matrix is most cormonly purplish, dense and fine-grained.
unit E a distinctive marker hed, is a greyifh-green, well layered fine- to coarse-grained sequence of tuffs, usually less than 200 feet thick. The layering is the result of an alteration of fine and coarse material, commonly showing graded bedding and cross-bedding. Whe thickness of the unit ts diverse and the unit is in places absent. Its overlying ntact may represent a minor disconformity.

Unit \(F\) is composed of a diverse variety of limestones. In the northwest section of the area, bioclastic and aphanitic types are most common. These limestones are grey-blue, well bedded and contain mainly pelecypod fragments. The unit is less than 100 feet thick here.

In the southwest part the limestone is more diverae in composition and is thicker. Its composition ranges from an aphanitic, dolomitic variety to the more abundant finely bedded aphanitic limestone. The upper part of this unit is composed of a volcanic breccia of green and black volcanics in a groundmass of calcite. The caloite makes up 40 to 50 per cent of the breccia. This member also occurs as a much thinner horizon at the base of the unit in the northwest part.

Unit \(G\) is one of the most variable types observed. Its diagnostic characteristic is the recurrence of dark purple to black, amygdaloidal basic Elows which are rarely porphyritic. Anygulues are commonly calcite iilled. Most of the interbedded material is either a dense purple tuff, a brownish-gray porphyritic diopside bearing flow, or diverse tufis.

Unit H is composed of a variety of dense flows and lithic crystal turig. The unit occurs in the northern, southwestern, and southern parts of the area. The distinguishing member is a Iinely layered felsitic flow rock with layers about oneeighth of an inch thick. The next most abundant member is a
comonly purple or black "trachyte" flow containing feldspax phenocrysts. Minor interbeds of dark coloured flows are also present.

Tuife do not occur in abundance in the northern part, but do constitute a major portion of the unit in the southmest and south. These tuits are notably quartz deficient. They are mainly lithic crystal tuffs with many coarse lapilil. Fxagments as large as \(s 1 x\) feet across were observed but are usually more in the range of one half to two inches.

Unit I underlies the greater portion of the southern part. It consiets of a nondescript pyroclastic composed of polcanic material of all conceivable sizes and compositions. Its most characteristic features are its diverse composition and a notable quartz defictency.

Quartz Eye Rhyolite Tufe Unit is described in detail in section II, under Lithology.

INTRUSIVE ROCKS
Granodiorite is buff, grey to pinkish, fine- to mediumgrained and most comonly hypidiomorphic granular. The composition is diverse, ranging from quartz monzonite to quartz diorite with an average of granodiorite. It is exposed in the northwest part of the area and in the cirque area. Guartz Monzonite (Granodiorite) in many cases greatly resembles the granodiorite observed on the surface and in the diamond drill core, and is probably genetically related to
the massive granodiorite. This rock occurs entirely as dykes and sills. The main difference is that the tabular bodies are usually porphyritic with large (commonly up to one half inch) phenocrysts of potash Eeldspar. Nowhere does it approach the dioritic phase observed in the granodiorite, but within the range quarte moneonite-granodiorite its composition is in places diverse. The rock is most commonly iight grey weathering to a light pink. It is ine- to mediumgrained, slightly ophttic in places but usually hypidiomorphic granular.

Basalts (Diabage) occur throughout the whole area and were variously called greenstone, basalt, diabase and lamprophyre. They occur as rather ixregular, but basically tabular shaped hofdies as dyices and sills. Their composition is from basait a slightly acidic basalt and the grain-size is from veryItine to medtum. They are darlc green to green-black. Some individual dykes, and others in parts, have a well defined sub-ophitic texture, hence the name diabase. Many of the Larger dy\%es cariy a few fragments of slightly more acidic rock. "Pink feldspar" blotches are commonly associated with their contacts with the older volcanicg.
"Lamprophyre" dyloas have many of the characterigtics of the Ine-grained basalt and may merely repreaent a Einer grained variety of that rock.

\section*{REGIONAZ STRUCTURS}

The geologic stracture of the map area can be considered as three distinct structural blocks separated by two faults. The western block Lies to the west of a steeply dipping north-south trending fault and is made up of the overturned unitis \(A, B\) and \(C\). The second major block underiles an estensive thrust-fault, which is exposed in the central, south, southeast and north central parta. This second block is exposed around the perimeter of the thruet and underlles the rest of the mpped area except want of the steeply dipping north-Bouth fault. The lighology of the second block is diverse comprising untte D, E. F. C. \#. and I. The third Slock lies thove the thrust fault and is made up almost entirely of Quartz Eye Phyolite Tufe unit. Sediments overite the Quarez Bye Rinyolite Ture in the north and east.

A dome with its aper just south of the southernmost part of the cirque proper, is probably the most important structuxal Atenture. The tom 1 probasly the result of the intrusion of a granodiorite cupola in thas part. A cupola is indicated becruse tho overall doming appears to be Eairly wide-spread with the main pluton better exposed to the west of the present map-axea. Further, the exposure of two mall granodiorite hodies, one in the efrque area and the other in the northmest part, tends to confirm this overall structure. The doming ie probably the mein feature which controllad and causad mont
of the deformation in the area. The sporadic introduction of this cupola is responsisie for the radial faulting and the annular tensional faults, around the perimeter of the mountain, and also the "block Fault" structures in the southwest part. Most important is its probable role in the developinent of the major fault zone (striling roughly eastwest in the cirque area) and the flat lying silica-carbonate shears and their continued movement. Bvidence in support of the apex of the dome is the flat attitude of the volcanics in this southern part as contrasted with the increasing dips (up to \(70^{\circ}\)) away from it.
me western block has as its most striking features two large overturned folds which are separated by a steeply aipping east-wast trending zone of iritense shearing. The northern most fold is spectacularly exposed on a cliff in the wertern part of the map area. The hinge line plunges at approrimately 20 degrees north with the overlying 1 imb overturned up to 70 aegrees from the vertical. The attitudas in this part appear to indicate a broad steep west plunging syncline upon which the overturn is superimposed. Whether this can be considered as simply a syncline or part of the domal uplift cannot be entirely established at present. The attitude off the beds in the southorn half of the western block indicate a similar structure with the plunge toward the north.

\section*{Because the overturned 11 imb is exposed at a lower}
elevation than in the northern structure, movement along the steeply dipping shear dividing the area mast have been such that the southern block was dropped. There is also evidence that a rotational movement accompanied the folding and faulting, The steep bounding fault appears to be along a "hinge line" of. a deformational structure which might have been an anticline, monocline or a major warp related to the doming. The writer believes that, whatever the exact nature of this structure, it is related to the doraing. The movement of the second block relative to the western block is up as it has older beds exposed at a higher elevation in many placea.

The second block is composed of units, \(D, E, F, G\), and \(H\) In the northwestern and northern parts of the map area. The beds are most commonly steeply dipping in a northerly direction. Thess volcanics are intruded in the northwest by a granodiorite stock and numerous lamprophyre dyjces. Nunerous quartz monzonitegranodiorite dykes cut these units and have a regional trend from southeast to northeast. They also cut the overlying Quartz Bye Rhyolite Tuff Unit in the central part.

In the southwestern part the units of the second block are irragularly folded with a syncline-like structure which plunges at a low angle toward the south. Unit I is exposed in the bouthern and southwestern parte.

The third block lies above a Elat lying thrust fault which transgressea the area Irom the southeast, through the central part where its trace turns northward and leaves the area in the north centre. The thrust Rault is well deflned throughout most of its length and appeazs to be the product of movement along an unconiormity which separates the Quartz Eye Rhyolite Tufi Unit from the underlying units. Ths most notable feature off the relationship between the underlying units and the overIytang unit is that nowhere does the thrust transect one unit In mplte of the great thickness of sone of the units. Also, the attitude of the layering in the Quarta Eye Rhyolite Tuff unit is gently dipping whereas the underlying units are commonly intermediate or steeply dipping. For this reason the writer believes that the prime control of the thrust fault is an unconformity. In one place there is a subsidiary thrust which exposes units of the second block in the underlying wedge. The whole of the third block is made up of merdbers of the Quartz Bye Rhyolite Tuff unit. Nowhere is the Quartz Bye Rhyolite unit exposed below the thrust.

\section*{RADTAZ FAUTKS}

Numerous cliff walla expose radial faults which converge approximately on a point in the southern part of the cirque. The displacement in mary is mail, and they may have been the
product of rotation and tension with the axis of rotation located fairly close to the cirque. Many of the faults ahould more correctly be considered as imbricate zones with differential movement of "blocics" within the zones accounting for the total movement. This differential movernent is seldom more than 50 feet although the composite may total hundreds of feet. This type of movement along the radial faults tends to confirm a domal uplift. The developmant of tensional "small" movement faults in competent rociks can adequately compensate for the space increase produced by the intrusion of a body below the volcatilas.

MANOR FAUM ZONE
This zone is described in more detail in section II. It has been traced out into the peripheral areas of the mountain.

\section*{SECTION II \\ CTROUE AREA}

\section*{LITHOLOGX}

The only volcanic unit exposed in the cirque area is the Quartz Eye Rhyolite Tuff unit. The unit is typified by the premence of quarty eyes in nearly all members including the most basic. Certain horizons within the members do not always contain quartz eyes, however, 80 per cent of all members have this diagnostic feature. The most distinctive members of the unit are the two rhyolite members, which occur periodically throughout as comparatively narrow (usually up to 100 feet thick) Layers. The most distinctive members of the unit are the two rhyolite members, which occur periodicaliy throughout as comparatively narrow fusually up to 100 feet thick) layers. The most extensive occurrence within the saction is at the top of the section as observed in the fiela, Where the two rhyolitic members reach a thickness of over 1,000 feet. Whether this represents the top of the unit. is世nienowm.

The stratigraphy of this unit as determined from the north wall of the cirque area, the grid area and the back of the mountain (weat and southwest sides) is as Rollows - (It muat be remembered that volcanic sequences by the very nature of their occurrence very commonly are erratic and aiscontinuous).

Yhickness in excess of 3,000 feet.

\section*{BGNCIL IINE RHYOLITY}

This member is one of the two youngast members of the unit. In the grid area it is the youngast while immediately adjacent, on the north wall, it is the second youngest. In order to ind the reason for this reversal the contacts ware closely examined to determine whether they were fault contacts. On the north wall this possibility remains but in the grid area it can deilnitely be established that there is no break along the contact and that in fact they are gradational into one another。

The Pencil Line Rhyolite is a white to pink very finely beated turfacaolis rhyolite, The beds are commonly highly contorted and may change their strike through \(90^{\circ}\) over distances of less than 20 feet. A few fragments are occasionally present. Yenses and layers of the massive Quartz sye Rhyolite are present in places. In apite of the contortion the overall attitude in any one area is congtant.

This member is far less wide-spread and appears to be oonfined to the north side of the lower cirque area. It has not been recognized in any of the 1961 and 1962 diamond drill cores.

\section*{QUAREZ EXE RHYOKNE TUFY}

This member is the moet wide-spread of the rhyolite. Its thickest section is near the top of the unit, although it occurs as narrouer layers throughout the section and forms the marker bed at the observed foot of the unit. It is a light grey to white, fine- to medium-grained rhyolite Iragmental although in pleces it intrudes the older mombers and also occurs as a lava to a minor extent. Its most diagnostic features is the presence of quartz eyes which in places make up 30 per cent of the rock and are up to one-atghth of an inch in some places. The quartz eyes are not always obvious but in all cases leaching with whe sheom thatr presence. The fragmente present are most commonly acid-intermediate to acid in composition but moxe basic fregments commily occur. veveriny is sometimes present but the rock is most commonly massive. Lenses and restricted 2ayers of other merbers can occur.

> This rock-type appeare to be particularly susceptible to alteration as it is commonly silicified and/or argillized to diverse extent. However, this may also be due in part to the fact that it is most commonly in contact with the later granodiorite stoek mich underlies the southern and eastern sections of the map area. Furthermore much of the observed member has too high a Tuartm content to wo a primary igneous rock. Two types of "porcellaneous" rhyolite occur in this member.

The one, not observed on the surface is a dense, white to greyish rock which occurs in layere of diverse thickness within the momiber and is not observed in any other rock-type. It is believed that it is the result of alteration of susceptible horizons. The other variety, observed on the surface of the wemtern and wouthwestern parts of the mountain, in dense blufehgrey and may be the appearance of the rock prior to alteration. This variety is also observed in the core. It can be traced over several hundred feet on the surface as distinct layers, and in all probability has already become partially silicified as the Thamer content in too high for a primary igneous rock.

Contacts between the "porcellaneous" horizons and the adfacent çutrtz eye shyolite aro commonly graatifonal. WELL LAYERED ANDESTTE ERACMESTRAL

This mamber occurs throughout the unit but is most prominent in this upper part. The layering is woll defined, consisting of light grey and grey dayers from one inch up to 18 inches thick. From megescoptc esmanation both parte heve the same or \(\$ 1\) milar composition, the main difference being the amount of mafic minerals present. Fragments are not as notable as in the lover members.

The rock is fine- to medium-grained and andesitic in composition. This mamber makes up a relatively small part of the section.

\section*{BEECCIA}

The breccia forms a relatively small part of the unit, but is fairly widespread. The thickest occurrence is imoediately below the Well Layered Andesite Fragmental. It is composed of large (half inch or larger) angular, abundant fragments, mainly intermediate to basic in composition, in a fine- to mediumgrained andesitic groundmass. Quartz eyes are sometimes present. Imandiately underlying the breccia another horizon of well layered andesite is conenonly present. Fuxther work may indicata that these two members should be considered as one. GEMERAL STATEMENY

All of the Following members are fundamentally andesitic in composition although they may range from dacitic to basaltic. Each however can be recognized as distinct layers with slightly gradational contacts in many placas. Together they repreaent ovar 75 per cent or the unit and are not restricted to any position within the unit. However, in the lower cirque and grid areas their seguence is relatively consistent, and that sequence is given below.

All of the Collowing members are layered to diverse extent, but none approach the clarity of layering of the well Layered Andasite Fragmental.

ASDBSKTE FRAGMENEAL
This member is conposed of intermediate to basic Eragmants, making up about 25 to 35 per cent of the rock, in a groundmase
of ifne-grained andesite which commonly contains quartz eyes. The Andesite Fragmental makes up over 50 per cent of the unit. and the presence of quartz eyea is its main distinguiahing feature, The underlying unit, Nondescript TuF\%, is notably quartz deficient. Kayering in this unit is wak but never-theless beill diacernable in many places. In the grid area the layering has been accentuated by altaration which, particulardy in the southweatern section, has been controlled by the innea of weakness represented by the interbeds of the fragmental. ANDESITE BASALT FRAGMENTAL

The Andesitic Basalt Fragmental is a dark grey, fine-grained, andesitic basalt with few fragments. Because of the lack of fragments it might be considered principally as a flow. Apart From the relativaly thick (between 75 and 150 Eeet thick) occurrence in the southern part of the grid area, the rook umally occura as naxrow, (up to 30 feet) elongate layers in the Andesite Fragrental. In this form it can easily be mistaken for a si:11. These layers and itnsos occur throughout all of the andesitic nembers of the unit. lapilil structuxe is commonly observed, however their attitudes do not necessarily correspond to the attitude of the member. BASALITC ANDESITE FRAGMENMAL

This nember is a slightly less basic rock than the previous member and contains far more fragments. The fragments
are intermediate to basic in composition and the groundmass is grey and medium-grained. Layering is discernable with some Layere having far Largor fragments than those adjacent. Lapilli structure is also present in places. This member is commonly Found interbedded with the Andesitic Fragmental, and is widespread.

\section*{-TISRED ANDESTITE ERWGMENTAL}

This nember represents a layered phase of andesite fragmental with layering distinct and traceable over several hundred feet, but not the sharp distinct layering of the well Zayered Andesite Fragmental. The layering in the southern portion of the grid area has definitely been accentuated by subsaquent altaration. The composition of the rock is the same as that of the Andesite Fragmental and it is from grey to dark पrey.

\section*{LIGHT GREY ANDESITE ERAGMENTAL}

The light grey Andosite Fragmental represents a more ailicaous variety, probably dacitic in composition. Its proximity to a major fault may account for the higher quartz content and the slight argillization. The occurrence of this member throughout the cirque area is spotty, and it may represent an altered variety of Andesite Fragmental. The presence of quartz eyes in this member is notable giving
expport to it being an alteration product rather than a primary rock type.

\section*{GEMERAL GEOLOGY}

Two major structures are present in the cirque area.
The firat and probably the major structure of the mountain is reflected in the attitudes of the volcanics exposed in the cirque area. These attitudes indicate doming with the apex of the uplifted area just south of the cirque proper. This structure is modified by a major fault zone, post doming, Which runs in and along the south wall of the lower cirque across the circue and passes through the west and southwest of the bergschurund. The stiflce of the aone is approximately \(240^{\circ}\).

The attitudes of che volcanics are consistent along the entire north wall and grid area with a strike of between \(80^{\circ}\) and \(110^{\circ}\) with dips from \(45^{\circ}\) to \(85^{\circ}\) towards the northeast. The average dip along most of the area described 1 is \(65^{\circ}\). On the northern section of the bergschrund the strike swings toward the weat until they are approxtrately east-west. The dips here reach \(60^{\circ}\) north but decrease going south along the bergschrund to \(25^{\circ}\) until they reach the mafor fault zone.

South of the fault zone the strike changes radically
along the bergschund with the dominant airection \(\pi N . N \%\). The dip is low and toward the west. Along the south wall of the cirque proper the strike swings back toward the east-west
\(\left(300^{\circ}\right)\) with decreasing dips toward the southwest. In the southernmost section of the cirque the volcanic layering is hoxizontal indicating the apex of the uplizt. East of this area the strikes swing back towaxd the north with an average attitude of \(330^{\circ}\) dipping east. Along the south wall of the lower cirque area the strikes are erratic as rach of this area lies within the fault zone.

A third prominent feature of the cirque area are northnorth westerly striking silica-Carbonate sheare which dip gently west. The attitude of these is diverse along any one shear with dips up to \(60^{\circ}\) and as Low as \(10^{\circ}\). The overall dip however is \(35^{\circ}\) or less.

ROCK TYPES
The volcanios in the cirque area have already been described under tithology. The volcanic rocks are cut by three major intrusives.

Granodiorite intrudes the volcanica as a diacordant body of the south wall were the lower cirque area joins the alrque proper. This intrusive iles almost entirely within thie major fault zone. The body is both pre- and post-movement as evidenced by faulte both transgressing it and abutting againgt it.

The composition is diverse, ranging from monzonite to quartz diorite with an average of granodiorite. The granodiorite
probably represents a small cupola or finger of the underlying larger body.

Suaxts Monzonite-Granodiorite dykes and Bills transgress the volcanics along both north and aouth walls. The most notable ooncontration of this intrusive is in the centre of the north wall. Here the dykas strike roughly north-south and are in placts complex, bleurcating and commonly rejoining. In places they transgress the volcanic layering and in others they swing along it to form sills. Two north-north-east trending dykes ere also exposed on this wall. In most cases these dyres are post faulting although some minor fault s do cut them but with no noticeable displacement.

On the southern wall the dykes and sills strike east-west, southeast and southwest. Hare the intrusives are both pre-and post-faulting. The continuing movement of the major east-west fault zone has aisplaced some while others have been đisplaced by low angle Eaults which strike north-south and dip west and east. These faults are quite possibly related to the mafor thrust fault exposed around the perimeter of the monntain and desoribed under Regional Geology.

The composition of these intrusives 1 s quartz-monzonitegranodiorite and in many cases greatly reaembles the granodiorite
observed on the surface and in the diamond drili core.
The main diffarence ia that the tabular bodies are uøually porphyritic with large (comonly up to one haly inch) phenocryets of potash feldapar. These aylces are probably genetically related to the main granodiorite. No correlation across the cirque is possible due to the displacament by the major fault sone.

Basalt (D1abase) dykes and sills cut and are cut by the previousiy described rocks. Only the quartz monzonite cuts them in places. These intrusives have no dominant attitude and commonly occur as rather irregular, though basically tabular shaped,bodies. In the grid area particularly they tned to follow either the volcanic layering or the trend of the major fault zone. Their composition is from basalt to a slightly acidic basalt and the grain wive is from very-fine to medium. Some individual dyikes and others in parts have a Frell defined sub-ophitic textuxe hence diabase. Many of the Harger dylces carry a few fragments of slightly more acidic rock. "Pink feldspax" blotches are conmonly associated with their contacts with the older volcanics.
"hamprophyre" dylces are commonly seen in the core and are exposed at a fev places on the surface. These dykes have many of the characteristics of the basalt and may merely represent a \(\mathbb{E}\) iner grained variety of that rock.

\section*{STRRUCTYURAZ GBOYOGY}

As mentioned previously, two major structuras dominate the dirque area, the dowing, which is one of the primary Btructures of the mountain, and the major Eault zone which trends roughly \(240^{\circ}\). A thixd important gtructure is the north-northwest striking Low angle Silica-Carbonate shears.

Other faults, mainly earlier, are related to the regional doming. The most prominent of these are radial faults which appear to have been the control for much of the quarta-monzonite porplyyy intrusions. A few annulax Saulte also appear to be related to this period.

Major Pault Zond is not a single fault but is represented by numerous strong steeply dipping faults. Thedr dip is elther north, south, or vertical with aubeldiary faults at al1 attitudas to form lenses or blockos which have been differentially displaced. The sone is from one to two thousand feet wide, with an average of one thousand. On the Western wall the rone splits into two, the southernmost a complex zone one thousand feet wide and the northern a major Fault zone 250 feet wide. On the surface the zone runs, from east to west, along the south flank of the lower Glacier Gulch, thxough thei bouth talle and bensath the talus on the south side; cuts through and along the nose of the lower cfrque wouth wall and southern grid areas and bifurcates
beneath the glacier into the two breaks on the west wall. The fault zone does not represent one period of movement: out rather a contthutng movament which initiated at the time of the granodiorite intrasion and continued after consolidation. Most of the dovaiant was prior to the daponition of the major sediments on the eastern Elank of the area. Howevar, some doming and some faulting occurred subsequently as they are tilted toward the east, southeast and northeast and are cut to a minor extent by Zauit of the fault zone. Evidence in aupport of this major fault zone arez(2) The marlod ohange in attitude of the volcanics from the grid area to the south wall.
(2) The change in triend of the quarta-monzonite porplyyy across the cirque area.
(3) Tha concentration of roughly east-west trending steeply dipping and subsidiary faults in this area.
(4) The hith degres of "breakage" in tha rocics along the south wall.
(5) The marked ixon oxide ataining on the south wall and in the two areas on the west wall.

MoFth-Northwest Shears have been called silica-carbonate sheare although not all carry ailica and/or carbonate, but gonerally they do.

Close examination of the individual shears in the grid area shcws that even within one shear they form wedges and an analyses of the shear attitudes strongly indicates this ame phenomenon on the gross scale. The silica-carbonate shears are in many cases correlatable with the north wall of the lower circue area, but no correlation can be made with the south wall.

These shears are recognizable along most of the south wall as flar west as the most southern part of the cirque although their occurrence at this western portion is sparse. The min concentration of theae shears \(i s\) in the grid area and along the south wall of the lower cirgue area.

Subsidiary faults trending roughly noxth-south and eastwest are related to thase two major structures.

The milor thrust exposed in the perimeter does not cxop out in the cirque area. It cuts under and underlies this area. Whather it has an affect on the underlying stock is not known. Joints - the main joint sets in the grid area trend \(110^{\circ}\), dip \(10^{\circ}-50^{\circ} \mathrm{s.W.}, 30^{\circ}\) dip \(80^{\circ} \mathrm{s}-80^{\circ} \mathrm{N}\) and \(65^{\circ}\) dips between \(45^{\circ} \mathrm{N}\) and \(45^{\circ} \mathrm{S}\) 。

The most eignificent "joints" are the quartz filled breaks Which occur in all parts of the grid area and along the lower cirque south wail. The maximum concentration of these "quartz Weins" is in the bouthern, gouthwestern, and oentral parts of
the grid area and along the central and western parts of the lower cirque south wall. In many places they reach a dansity of 14 per square inch. Also notable is the persistence of sone of these "quartz veins". Where theae "occur they have been shown schematically on the grid area map. (Peraistent veins \(=\) longer than 20 feet)

The most striking feature of these joints is thsir "movement". No one dixaction seems to particulazly offset others, Chey appear to be mutually affected. Displacements are as mach as one foot but on the average only a fraction of an inch to one or two inches. The width of the veins does not appear to have any relation to the displaciomont as in many cases hairline veins will have the maximun offaet along them. Volns arte as moth an two inches wide vut in the mean are between one-eighth and half an inch. Explanation - The most probable cause for the brealcup of the volcanics to produce this highly fractured structure is a continued movembnt of the major fault zone and the silicacarbonste shears and the "wedgas" formed by them. The elasticity of the volcanics is not great and in order to compensate for this coupled movement the competent volcanics have Iractured. Further movement and subsequent breaicage has accounted for this apparently comples structure. Tha forces eserted on the "wedges" by the two systems are horizontal, diagonal and
vertical causing rotational, tensional and compressionm tresses simultaneousiy.

\section*{ATM Panixok}

No major alteration, such as that found at climax or the porphyry coppers exista in the area. The alteration present ia not generally widempread and heare a direct relation to the major structural breaks in the elrque area. spidotization is widespread occurring as light alteration in the peripheral aveaw. In these arees it is sometimes accompanied by minor chioritization. In the cirque area, particularly in the lower cirque area it becomes intense in places and is commonly accompantee hy "pink blotches" of "feleappothization". Chloritization is in places accompanied by amphibole (actinolite and hornblende) and commonly magnetite. The most intense ohloritiontion occurs in areas of \(\mathrm{MOS}_{2}\) mineralimation, het cannot be specificaliy tied to grade an it is often intense Whot \(\mathrm{MOS}_{2}\) is low particularly in the granodiorite. Chloritization is to a lesser extent widespread throughout the whole hudson Bay Mountein area.

Noter Tramolite is found in many of the shars, sometimes with associated actinolite.
peverpathitetion it not widespread. In the core logs feldspath-
i.zation has been used incorrectly and should in many cases be refarded as argillimation. This alteration represente the
removal of a constituent (usualiy 8i) rather than the adaition of some. Three types of feldapathizition are recognized.
(i) The Eormation of "pink EeJdepar" blotches, restricted, but usually associated with opidotization and/or with the contactis of basalt and "lampropiyre" dyise. The determination whether these are in fact "pink feldspar" must await closer thin-Bection esamination.
(1i) Associated with silica-carbonate shears. The intensity of alkalization along these shears and their subsidiary breaks is directiy related to the complexity, mineralization and mittaration of the shear. These sones cain extend for as much as 10 feet on efther side of a sheax. The width of the zones tenta to the greatar on the uppar block of the shear. The alteration is distinctly light pink to pink and commonly produces \(=\) gramular appearance.
(11i) Feldspathization associated with the granodiorite intrusive. This variaty is not observed on the surface but is seen in the core. The proximity of the intrusion can in mny enmen be detccted in the volcantos adjacent to the intrusive. A distinct increase in pinkish alkali feldspar oun be \#eon in tha Quarta Eye Rhyolite tusf mambar of the Quartz Eye Rhyolite tuff unit. This type of feldspathization does not mppear to be related to metallic mineralisation but rather to
the intrusion of the stock. Some feldspathization of this nature is however related to metallie minexaliaation in that the granodiorite is itbeli Reldspathised and in Bome places made up almost entirely of alkali feldspar.

Both of these types of Eeddepathizations are commonly associated with silicification.

Si.1icification appoars as three types. (1) As the moderate silicification of ausceptible horizons in rocics of the Quartz Bye Rhyolite Tuif unit in the upper peripheral areas of the whole area. This silicification is most notable on the upper weet, southmest and southern Elanics of Hudson Bay Mountain. There appeara to be a distinct spatial relationship between the apar of Che uplift and this silicification, and hence its relation to the underlying stock. This type of silicification protuces a denme stutith grey roc\% in tha miore subceptible horizons and a diatinct increase in quartz and a concomitant 1ightening of the rock is less auscoptible. The latter is comonly accompanied by slight argilliastion. (2) This type 1s, 1100 the thira type of feldapathination, intenge in the prosimity of the intrusion and is also wndorbtediy associated With metallic mineralizetion. The predenct of "too muct" quarta in the rocles of the Quarta Eye Rhyolite Tuft member adjacent to the granodiorite in the stock, indicates ita souroe.

The granodiote is also in places highly silicified, shown by a distinct incresse in the silica content, a lightening or the rock, and a mord dense rock in places indicates a later silicification.

The samin is trun for the Quartw-Bye Rhyolite Tuff mamber as described in the preceding paragraph. The intense milicification of the susceptitole horizon of this member has proctuced a dense white "porcellaneous" rock which shows a minisum amount of Iracturing. The Eractures Iound in adjacent Layera not porcelianired appeax to have been healed by the introduced. Bilica. This in itselt is excellent evidence of mubsequent ailicification. (3) Silicification of the andesite fragmentals is noticeable in the southwestern part of the grid area and along the adjacent lower cirque south wall. This has produced a lightentng of the roct and a notioeasie increase in the guartiz content. The light Gray Andesite Fragmental member may in fadt be a \(\quad\) silicified variety of the Andeaite Fragnental mambar. Suaxtig Veing may in part be considered as silicification. In places there is a derinite lightening of the rock adjacent to them and quartz can be recognized as part of the cause in some. Host veins are however cleanly bounded by the country rock on the surface although in the core there is a definite impregnation in many cases. This erfect however only extends for fractions of an inch.

A noticeable increase in the numbor of quarts veline cain be seen in the southrest part of the grid area and on the adjacent wall.

AEstillization and leaching (the removal rather than addition of material) is most evident both in the scuthwestern part of the grid area and the adfacent wall, and more particulerly In the core. On the surface this alteration is controlled by fractures, hairline in places, and by the "bedding planes" of the volcanics. The layers are made more evident by the contrast producod by this alteration. The effect of these fractures sometimes extends up to one foot. The feldspars became cloudy and stand out in greater eontrast.

In the core the breakdown of the feldspars is more obvious in places becoming so intense that the rock becomes earthy in appearance.

Hoter Most intanse alteration oocurs associated with breaks. Apart froan the regional epidotization and chloritization, and silicification, alteration is localiged, oceurring mott commonly with the major fault zone and with silica-carbonate shears.
Dr. M.A. Klugman

Per: \(\qquad\) Prof. Eng. B.C. \#2922
(czimax molybdemon (B. Go) z/wd.

HELD UMDER OPTIOM BY CLIMAX MOLYBDENUM (\(\mathrm{B}, \mathrm{C}\).) LTMD.

February 18, 1963.
\begin{tabular}{|c|c|c|c|c|}
\hline Grous & \begin{tabular}{l}
Cladm \\
No.
\end{tabular} & Record No. & \begin{tabular}{l}
Tag \\
No.
\end{tabular} & Record pate \\
\hline Goat & J-47 & 15945 & 447379 & Sept. 17/62 \\
\hline " & J-45 & 15943 & 447377 & \\
\hline * & J-43 & 15941 & 447376 & \\
\hline " & J-41 & 15939 & 447374 & * \({ }^{\text {a }}\) \\
\hline " & J-39 & 15937 & 447372 & * \\
\hline * & J-37 & 15935 & 447370 & \({ }^{\prime \prime}\) \\
\hline * & J-35 & 15933 & 447368 & * \\
\hline \({ }^{\prime}\) & J-36 & 15934 & 447369 & * \\
\hline " & J-38 & 15936 & 447371 & \(\cdots\) \\
\hline * & J-40 & 15938 & 447373 & 0 \\
\hline " & J-42 & 15940 & 447375 & * \\
\hline - & J-44 & 15942 & 447381 & \({ }^{\circ}\) \\
\hline " & J-46 & 15944 & 447380 & " \\
\hline " & J-48 & 15946 & 447378 & * \\
\hline \({ }^{\prime \prime}\) & J-33 & 15931 & 447350 & * \\
\hline \(\cdots\) & J-31 & 15929 & 447348 & * \\
\hline " & J-29 & 15927 & 447346 & " \\
\hline * & J-27 & 15925 & 447344 & " \\
\hline * & J-25 & 15923 & 447342 & " \\
\hline * & J-23 & 15921 & 447340 & - \\
\hline Beaver & J-21 & 15919 & 447332 & Sept. 17/62 \\
\hline " & J-22 & 15920 & 447333 & n \\
\hline \(\pm\) & J-24 & 15922 & 447341 & \(\cdots\) \\
\hline * & J-26 & 15924 & 447343 & " \\
\hline * & J-28 & 15926 & 447345 & * \\
\hline \(\cdots\) & J-30 & 15928 & 447347 & * \\
\hline * & J-32 & 15930 & 447349 & * \\
\hline * & J-34 & 15932 & 44.7351 & \% \\
\hline \(\cdots\) & T-48 & 15946 & 447378 & n \\
\hline * & T-47 & 15945 & 447379 & \({ }^{\circ}\) \\
\hline \({ }^{\circ}\) & T-46 & 15944 & 447380 & \% \\
\hline \% & T-45 & 15943 & 447377 & " \\
\hline \(\cdots\) & E-12 Fx. & 15865 & 447249 & Sept. 5/62 \\
\hline & H-11 Fx. & 15864 & 447250 & \\
\hline & T-44 & 15963 & 447395 & Sept. 19/62 \\
\hline \(*\) & T-43 & 15962 & 447396 & * \\
\hline \(\star\) & T-42 & 15961 & 447393 & " \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Grous & \begin{tabular}{l}
Cles． \\
迢。
\end{tabular} & \begin{tabular}{l}
Record \\
Ho．
\end{tabular} & \begin{tabular}{l}
Tag \\
圈。
\end{tabular} & Record Date \\
\hline Eesver & T－41 & 15960 & 447394 & Sept．19／62 \\
\hline ＊ & T－40 & 15959 & 447391 & \\
\hline ＊ & \％－39 & 15956 & 447392 & ＊ \\
\hline Lymax & T－22 & 15976 & 447313 & Sept．20／62 \\
\hline ． & T－23 & 15977 & 447316 & ， \\
\hline ＂ & \％－24 & 15978 & 447325 & ＂ \\
\hline ＊ & 5－25 & 15979 & 447324 & ＊ \\
\hline ＊ & T－27 & 15981 & 447315 & ＂ \\
\hline ＂ & T－20 & 15982 & 447338 & ＂ \\
\hline ＂ & ［ \(\mathrm{P}-29\) & 15983 & 447337 & ＊ \\
\hline \(\cdots\) & T－30 & 15984 & 447328 & ＂ \\
\hline ＊ & T－31 & 15935 & 447327 & － \\
\hline ＂ & 5－32 & 15951 & 447384 & Sept．19／62 \\
\hline ＊ & T－33 & 15932 & 447386 & ＊－10／62 \\
\hline － & \％－34 & 15953 & 447315 & ＂ \\
\hline ＊ & T－35 & 15954 & 447388 & ＂ \\
\hline ＊ & T－36 & 15955 & 447387 & ＊ \\
\hline ＊ & T－37 & 15956 & 447390 & － \\
\hline ＊ & \％－38 & 15957 & 447389 & － \\
\hline & T－26 & 15980 & 447326 & Sept \\
\hline Fox & M－69 & 14608 & 439169 & Feb．26／62 \\
\hline ＂ & M－1 & 14540 & 439101 & a \\
\hline ＊ & M－2 & 14541 & 439102 & ＂ \\
\hline ＂ & M－3 & 14542 & 439103 & n \\
\hline ＊ & M－4 & 1.4543 & 439104 & ＂ \\
\hline － & M－5 & 14544 & 439105 & ＊ \\
\hline ＂ & M－6 & 14545 & 439106 & ＂ \\
\hline ＂ & \(\mathrm{M}-7\) & 14546 & 439107 & \(\cdots\) \\
\hline ＊ & M－8 & 14547 & 439108 & \(\cdots\) \\
\hline ＊ & M－9 & 14548 & 439109 & ＂ \\
\hline ＂ & M－22 & 14562 & 439122 & ＊ \\
\hline \({ }^{\circ}\) & M－23 & 14562 & 439123 & ＊ \\
\hline ＂ & H－8 Fr． & 15961 & 447242 & ＂ \\
\hline ＊ & H－9 Px． & 15862 & 447243 & ＊ \\
\hline －－ & \(\mathrm{M}-70\) & 14609 & 439176 & Fes．25／62 \\
\hline
\end{tabular}
```

