DRILL HO	LE RECORD				(COMINCO LTD.			2002		₹ 4 °L	tr.		
Property: Commenced: Completed: Co-ordinates: Objective:	KITSAULT August 24, 1988 August 26, 1988 O+18W 7+50N to test down dip of the west end of the west end showing	District: Location: Core Size: Claim: Collar Dip: Length:	Western District BQ thin wall Sault 4 -70° 152.4 m	Hole No. Tests at: Corr. Dip: True Brg: % Recov:	K88-7 76.0, 152.4 -70° 160° 90-95%	4 m	Hor. Comp Vert. Com Logged by Date:	: p: : P.A. Augu	. MacRol Ist 30,	bbie 1988		RCHAU	Я _{Л-} К88 Рас	8-7 ge 1
FOOTAGE	-						•• •• ••••••••••••••••••••••••••••••••			İ	AN	ALYSI	S (pp	om)
FROM TO	DESCRIPTION	· · · · · · · · · · · · · · · · · · ·					SAMPLE	FROM	TO	Ag	Pb	Zn	Cu	
0 - 1.5	Casing.													
1.5 - 27.7	BASALTIC LAPILLI-ASH TUF Heterolithic, poorly sor fragments up to 3.5 cm. phyric flow as well as m medium-grained matrix is calcite altered. No int 0-2% is present. Occasi bleached halos occur.	F ted and matri Fragments in edium-dark ma weakly-moder ørnal stratif onal 1-10 mm	ix supported tuff co iclude medium-dark g iroon, hematite alte ately magnetic and i ication was noted. wide, calcite, quar	ntaining 40- reen, aphyri red flow. T moderately-s Fine-graine tz, chlorite	60%, subang c and pyrox he fine to trongly hem d, dissemina vein/brecc	ular-rounded ene/feldspar atite and ated pyrite, ia vein with								
27.7 - 28.0	Broken core and quartz,	calcite veins	- FAULT.											
28.0 - 30.0	BASALTIC LAPILLI-ASH/ASH TUFF Consists of normally graded lapilli-ash $>$ ash tuff cycles between 10-60 cm thick. These dark green tuffs have a weakly-moderately calcareous matrix and contain 5-30% lapilli from 2-85 mm. Tops of cycles often consist of well laminated ash and cherty ash <1-8 mm thick. 29.0 m - laminations at 63° to core axis. 29.2-29.4 m - laminations at 68° and 70° to core axis. 29.9 m - laminations at 74° to core axis.													
30.0 - 32.0	BASALTIC ASH TUFF (MINOR Dark green, moderate-str 30.4-30.6 - lapilli tuff	LAPILLI TUFF ong carbonate •) e alteration; no int	ernal strati	fication.									
32.0 - 36.9	BASALTIC LAPILLI-ASH TUF As above.	F												
36.9 - 40.1	BASALTIC ASH TUFF Upper contact at 60° to	core axis. l	Unit is massive and	non-descript	. Grades i	nto the								

Property: KIT

FOOTAGE									
FROM TO	DESCRIPTION				L	<u>ANA</u>	LYSIS	<u>(ppn</u>	<u>ı) </u>
36.9 - 40.1	underlying unit.	SAMPLE	FROM	T0	Ag	Pb	Zn	Cu	
continued									
				1					
40.1 - 43.5	BASALTIC LAPILLI-ASH TUFF								
	Dark green. Weakly calcareous matrix with 15-40%, poorly sorted fragments up to 21 cm.		<u> </u>	1					
	Mafic fragments are fine to medium-orained, amvodaloidal (calcite + chlorite infilled) and		<u> </u>	<u> </u>					
	$harre rragineres are rrie to meaning famous any galaretear (caretee \underline{-} enterice minimum and \underline{-} over the rice in the second se$								
	A0.9 m internal discontinuous laminations 1.3 mm at 73° to core avis		<u> </u>		+				
	40.0 m - muernar uisconcinuous faminacions, 1-5 mm ac 75 co core axis.		<u> </u>	<u> </u>					
	38.5 m, 41.3-41.4 m - quartz, chiorite, carcite veni at 30° to core axis.								
					1				
43.5 - 63.2	BASALTIC LAPILLI-ASH/ASH TUFF								
	As above. Contains 10-30% subangular-irregular fragments 2 mm - 11.5 cm and abundant								
	calcite veins with 1-2%, associated, fine-grained pyrite and locally bleached halos.								
	50.8 m - pyritic veinlets, <u><</u> 2mm.								
	51.1 m - quartz, calcite, strontianite, pyrite veinlets with bleached halos containing								
	patchy pyrite alteration. Vein appears vuggy due to calcite dissolution.								
	52.1-55.0 m - pyrite veinlets.		1						
	57.9-60.5 m - bleached rock with andesite appearance (light-medium green) with abundant		1	1	1				
	pyrite veinlets and vuogy quartz, epidote, chlorite veins at 33° to core axis.		1	1					
	67.1-67.2. 61.4. 61.7. 62.3 m - calcite. quartz. pyrite. chlorite veins.		+	+	<u> </u>				
			+						
63 2 - 63 9	RASALTIC ASH THEF		1	+	+				
	Unper contact at 45° to core axis Massive medium_dark green with a slight margon cast		<u> </u>	+	+				
	containing occasional lanili up to 7 mm. Grades into underlying unit		┥─────	+	+				
62 0 72 5									
03.9 - 72.5	BASALIIG LAPILLI-ASH IUFF			ļ					
	Massive lapilitash turr, maroon in colour containing lapilit up to 54 cm locally.		<u> </u>						
	65.8 m - 4.5 cm ash interbed at /5° to core axis.		<u> </u>						
72.5 - 73.6	Sheared rock – FAULT – 30° to core axis.								

COMINCO LTD.

DRILL HULE REGUR	ЭК	U	KIL	L	н	U	L	Ł	ĸ	Ł	C	U	ĸ	U
------------------	----	---	-----	---	---	---	---	---	---	---	---	---	---	---

The Transmission of the second s

Property: KIT

• .

.

FOOTAGE					I	A N1/		: /	-)
72 C 74 E			TROM	170					<u>µ</u>
/3.0 - /4.3	ANDESITIC ASH TUFF	SAMPLE	FRUM	110	Ag	PD	<u></u>		
	Meanum grey green with a singht bluish cast; weakly calcaleous with tragments generally s		 		<u> </u>			·	<u> </u>
	Zmm but up to 5 mm. Impression is one of an altered coarse ash turr - possibly crystal		<u> </u>					I	
	ricn.		 	<u> </u>					<u> </u>
74 6 76 0					ļ			l	ļ
/4.5 - /5.2	INTERBEUDED-INTERLAMINATED, FINE TO CUARSE-GRAINED ANDESTITE ASH TUFF		<u> </u>	<u> </u>	+]	<u> </u>
	Consists of 1-13 mm faminated, very fine-grained asn, fine-grained asn and chert, dark								
	green to grey and interbedded / mm - 10.4 cm, thick, medium green, fine-coarse ash beds.		<u> </u>	·	_			l	<u> </u>
	ine tine-coarse as beds are crystal rich and weakly calcareous. Very tine-grained ash and			+	_			l	
	chert faminations show flame and pillow structures indicating top is uphole.		ļ	<u> </u>	·}			l	
	bedding: 82°, 80°, 75°, 70°, 77°, 78°, 72° to core axis.							l	
			<u> </u>	∔	<u></u>			l	ļ
/5.2 - /5.5	ANDESITIC ASH TUFF WITH BLACK MUDSTONE (?) FRAGMENTS				<u></u>			l	
Contains 10-15% black, a	Contains 10-15% black, angular-flattened fragments <2-18 mm of mudstone or very			·	1			<u> </u>	
	fine-grained black sulphide (possibly graphite?).				<u> </u>				
					1				
75.5 - 77.7	ANDESITIC LAPILLI-ASH TUFF				I				
	Contains 25-30% andesitic flow fragments, 2 mm - 20 cm.		<u> </u>		<u> </u>				
_									
77.7 - 78.1	ANDESITIC COARSE ASH TUFF				<u> </u>			L]	
	Massive unit with no internal stratification as above but contains abundant feldspar		ļ		<u> </u>			L]	L
	crystal fragments locally contains 1-2% disseminated pyrite and pyrite veinlets. Basal		ļ					l	
	contact at 70° to core axis.		ļ					l	
									L
78.1 - 83.5	ANDESITIC LAPILLI-ASH TUFF		ļ	<u> </u>				l	
а.	Medium grey green with diffuse, generally subrounded, feldspar and pyroxene phyric flow		ļ	<u> </u>				j]	
	fragments. Rare chert fragments up to 2.5 cm occur.								
	78.8, 79.3, 80.0 m - strongly bleached areas containing 2-5% pyrite veinlets and patches up		ļ	<u> </u>	ļ	L		L	L
	to 2.5 cm occur associated with strontianite (soft, milk white mineral) veinlets. Pyrite		ļ	ļ	ļ	L		ļ!	L
	appears to alter matrix and feldspar crystals within the bleached area.		I		1		l	L!	
	82.5-83.4 m - quartz, calcite, pyrite breccia vein about 3 cm wide.	İ	L	<u> </u>	<u> </u>			<u> </u>	
					<u> </u>				

Property: KIT

• 、

.

FOOTAGE	NESCRIPTION				1	ΔΝΔ	1 7519	(000	•)
FROM TO			EDON	TTO	1 4 0		7- 1		<u>17</u>
83.5 - 85.4	ANDESTITC ASH TOFF	SAMPLE	TRUM	110	PA	PD	Zn	ับบ	
	As above.								
85.4 - 87.7	ANDESITIC LAPILLI-ASH TUFF			T					
	As above. Contains 30-40% lanilli up to 8.5 cm.		1						
			<u> </u>	+					
			<u> </u>		+				
87.7 - 87.8	CHERTY ASH TUFF								
	Medium grey green, aphyric and well laminated at base; 65° to core axis.		L						
87.8 - 108.6	ANDESITIC LAPILLI-ASH TUFF								
	Medium green. The moderately calcareous matrix contains 30-40% matrix supported								
	cubandular subcurded andesitic flow fragments			+					
	Subangulai - Subi bundeu andesitte internet aginents.			+					
	89.5, 91.3 m - abundant quartz, calcite, chiorite, pyrite veinlets and locally developed			+	 				
	pyritic patches. Up to 5% pyrite.								
	95.6-97.2 m - lapilli-ash tuff with a crystal rich matrix.				[
	100.8-101.4 m - 25-30% fragments generally about 7.5 cm almost a tuff-breccia.								
	105.5. 105.7. 105.8 m - pyritic patches up to 2.5 cm.								
			1	1					
100 0 100 1	ANDESTTIC ASU THEE WITH MUDSTONE EDACHENTS		+	+	*				
108.6 - 109.1	ANDESITIC ASH TUFF WITH MUDSIONE FRAGMENTS		<u> </u>	+					
	Weakly calcareous, fine-grained ash matrix contains subrounded-angular, <1-5 mm mudstone		ļ						
	and andesitic flow fragments. Sharp basal contact at 48° to core axis.								
109.1 - 131.5	INTERBEDDED ANDESITIC ASH/LAPILLI-ASH TUFF AND CHERTY ASH CHARACTERIZED BY ACCRETIONARY								
	LAPTILT AND ABUNDANT, SEDIMENTARY CLASTS								
	Light to medium grey colour and weakly moderately calcareous			<u> </u>	+				
	Light to meaturing the corour and weakly-inductive carear coust.			+	+				
	109.1-111.8 M - Incerbedded very the contine-grained striceous ash cutt concatning few				+				
	andesitic fragments. Locally up to 40% accretionary lapilli, 2-18 mm occur in								
	siliceous/cherty layers up to 16 cm thick. Accretionary lapilli are subrounded-rounded and								
	consist of a calcareous ash core rimmed by silica. Unit contains 2-5% black mudstone			1					
	fragments 1-4 mm and locally up to 20% subangular volcanic fragments up to 5mm.								
	110 7 m _ hedding at 45° to core axis.		1	1	1				
	110.7 III - Dedding at 40 to tole axis:		<u> </u>	+					
		l	I	1	1				L

Property: KIT

K88-7 Page 5

FOOTAGE									
FRUM IU		TOMPLE		1=0	+	AN/	LYSIS) (ppr	<u>n)</u>
109.1 - 131.5	1 111.8-112.5 m - interbedded fine-coarse asn/lapilii-asn tuff. Unit contains 3 lapilii asn	SAMPLE	FROM	10	<u>PA</u>	PD	Zn	Cu	
continued	beds, 2 cm, 3 cm and / cm thick (40°, 4/°, 42°, 38° to core axis) containing /0-90%		<u> </u>						
	fragments (60% andesite, 1-3 mm, 40% sedimentary, 1-9 mm). The matrix appears light green		ļ						ļ
	and siliceous. The basal bed is reverse graded. Fine-grained ash beds are light-medium			1					L
	grey, siliceous and contain accretionary lapilli.								
	112.5-117.6 m - lapilli-ash/ash tuff near top containing 60-80% matrix supported fragments							i	
	consisting of light-dark green volcanics, 1-48 mm and mudstone and chert fragments up to 12								
	mm. Two 3 cmthick ash beds with accretionary lapilli occur (46° to core axis). Towards								
	the unit's base the ash tuff becomes finer-grained and contains abundant accretionary			1					
	lapilli.								
	117.6-119.4 m - very fine-grained ash with interbedded lapilli-ash tuff. Normal grading								
	defines the internal stratification.								
	119.4-121.1 m - fine-grained lapilli-ash tuff interbedded with contorted and slumped dark								
	grey ash and very fine-grained medium-light grey ash tuff. Good contacts at 54°, 55° to								
	core axis.								
	121.4-122.4 m - slumped and contorted, very fine-grained ash tuff.								
	122.4-122.5 m - <1-4 mm laminated chert/cherty tuff with interlaminated 5-12 mm ash at 50°								
	to core axis.								
	122.5-122.8 m - medium green, andesitic lapilli tuff containing 80% flow fragments, 2-40		1						
	mm. Exhibits no sedimentary fragments or structures.								
	122.8-123.0 m - laminated chert/ash tuff.				1				
	123.0-123.1 m - quartz, calcite vein.								
	123.1-124.6 m - coarse to fine-grained lapilli-ash tuff with interbeds of very fine-grained			+	1				
	ash.								
	124.6-128.9 m - interbedded accretionary ash tuff with fine-coarse lapilli-ash tuff. Ash				1				
	tuff beds are 8-45 cm thick and contain up to 60% accretionary lapilli. 2-8 mm and ovoid.			1	1				
	A total of 7 beds occur. 52°-70° to core axis. Interbedded lapilli-ash tuff is as above.			1					
	both normally and reverse graded locally.		1		1				
	128.9-129.0 m - quartz, calcite, chlorite vein with 1-2 mm chloritic halo.		1	+	1				
	129.0-129.5 m - interbedded/laminated very fine-grained ash and cherty ash tuff		1		1				·
	characterized by contorted and slumped, 1-26 mm, dark-light grey ash laminations 43°, 52°		1		+				
	to core axis.		1	1					
		I						J	<u> </u>

.

COMINCO LTD.

Property: KIT

FOOTAGE FROM TO	DESCRIPTION				1	AN/		(000	1)
109.1 - 131.5	129.5-130.8 m - medium grey reverse graded ash tuff containing zones of increased fragment	SAMPLE	FROM	TO	Ag	Pb	Zn	Cu	<u> </u>
continued	content and size defining a wide stratification. Tuff contains 60-80% fragments (80-85%								
	volcanic, 15-20% sedimentary, occasional massive pyrite 2-5 mm). 40° to core axis lower								
	contact.		ļ	┢───		···			
	130.8-131.2 m - laminated-bedded, light-medium grey chert and fine to coarse-grained ash		 	┥───					
	tuff. 1-10 mm laminations, 40° to core axis.			+					
	131.2-131.5 m - calcite, quartz, chlorite veins + sheated rock.			4	+				
131.5 - 133.5	ANDESITIC LAPILLE-ASH TUFF		1	1	1				
10110 10010	Medium green and contains 30-40% poorly sorted, heterolithic, matrix supported, angular to								
	subangular andesite lapilli up to 26 mm and rare sedimentary fragments.								
			ļ		+				
133.5 - 133.7	LIMESTONE BRECCIA		<u> </u>	+					
	Medium-dark grey containing subrounded-rounded limestone tragments up to 4.5 cm in a limey		<u> </u>	+					<u> </u>
	structures.			+		<u> </u>		· · - ·	
					+	<u> </u>			
133.7 - 135.2	LIMESTONE WITH MINOR CHERT INTERBEDS		1						
	Cherty intervals up to 4 cm thick, 75° to core axis; grades downwards into underlying unit.								
			ļ		-				
135.2 - 135.6	LIMESTONE WITH CHERT FRAGMENTS		<u> </u>		<u>_</u>				
	Contains <3-47 mm chert fragments of irregular shape due to slumping.		<u> </u>						
125 6 126 2			<u> </u>	+					
155.0 - 150.2	Dark bluish grev, massive, recrystallized chert with minor limev interbeds.		<u>† </u>	1	+	<u> </u>			
			1	1					
136.2 - 138.9	ANDESITIC ASH TUFF								
	Medium grey green, massive, homogeneous, containing few lapilli and is locally well		 						
	laminated 60°, 63° to core axis.								
									<u> </u>
138.9 - 144.0	LIMEDIUNE Black dark grow locally appears laminated (contorted) and brecciated - Contains abundant		+	+	+		┼───		<u> </u>
	I DIACK-WAIK HIEY, INCALLY APPEars laminated (contented) and Diecelated. Contains abundant	I		1		1	L	l	L

Property: KIT

• .

FOOTAGE									
FROM TO	DESCRIPTION	<u>.</u>				<u> </u>	LYSIS	5 (pp1	<u>ı)</u>
138.9 - 144.0	calcite-graphite shears.	SAMPLE	FROM	TO	Ag	Pb	Zn	Cu	
continued									
144.0 - 144.2	Strong calcite, graphite shear - FAULT - 60°, 43° to core axis.								
144.2 - 146.1	ANDESITIC LAPILLI-ASH/ASH TUFF								
	Matrix is weakly calcareous, dark green-dark grey. Contains 65-75% feldspar rich andesitic								
	fragments, angular-subangular, matrix supported, poorly sorted, <2-34 mm. Tuff grades								
	downwards into a medium-grained massive feldspar rich ash tuff (144.8-145.3 m) and back								
	into lapilli-ash tuff.								
	145.0 m - quartz, calcite, graphite shear 45° to core axis.								
146.1 - 148.6	INTERLAMINATED/INTERBEDDED SILICEOUS ASH/ASH TUFF (WATERLAIN TUFF)								
	1-4 mm laminated siliceous ash occur in 1-2.5 cm thick beds. Ash tuff is 5-40 cm thick								
	locally normally graded beds, and is medium green-green grey.								
	136.1-146.4 m - bedding 53° to core axis.								
	146.5 m - bedding 45°, 40° to core axis.								
	147.3 m - bedding 50° to core axis.				<u> </u>				
	147.4 m - bedding 40° to core axis.				<u> </u>				L
					ļ				
148.6 - 151.2	ANDESITIC ASH/LAPILLI-ASH TUFF		ļ	+	<u> </u>				
	Medium green, poorly sorted, matrix supported feldspar-rich fragments, as above. No		ļ						ļ
	internal stratification.		<u> </u>		<u> </u>				<u> </u>
151 0 151 0	Constitute stress 750 to some suit		<u>}</u>	+	+	<u> </u>			
151.2 - 151.3	Graphitic shear, 75° to core axis.		<u> </u>						
161 2 162 4				+					
131.3 - 132.4	(ANUESITIC LAFILLI-ASH/LAFILLI TUFF Madium dank annon - Contains 60 90% (1 75 m annular subrounded foldsoar physic fragments			+	+				├
	Meulum-uark green. Concarns ou-oux, (1-/5 m, angular-subrounded reluspar phyric fragments				+				<u>├</u>
	anu laiyei ciasts ui lapilili-ash tuli. Abuut 1-2% line-ylaineu uisseninateu pyrite is		<u> </u>	+	+				├
	present.		+	+	+				<u> </u>
152.4			<u> </u>	+	+				<u> </u>
<u></u>		I	1			L		L	L

COMINCO LTD.

Property: Commenced: Completed: Co-ordinates: Objective:	KITSAULT August 24, 1988 August 26, 1988 0+18W 7+50N to test down dip of the west end of the west end showing	District: Location: Core Size: Claim: Collar Dip: Length:	K88-7 SUMMARY 76.0, 152.4 m : -70° 160° 90-95%	Hor. Comp Vert. Com Logged by Date:	: p: : P.A. Augu	K88-7 SUMMARY Page 1							
FOOTAGE	cha showing								1	A	NAL YST	S (pp	m)
FROM TO	DESCRIPTION					SAMPLE	FROM	TO	Aq	Pb	Zn	Cul	<u></u>
0 - 1.5	Casing.		· · · · · · · · · · · · · · · · · · ·										
1.5 - 73.6	BASALTIC LAPILLI-ASH TUF With minor interbedded a veinlets within zones of	F sh tuff - dar ˈbleached roc	k green to maroon c k.	olour. Loca	ally contains pyritic								
73.6 - 75.5	ANDESITIC ASH TUFF WITH Medium grey green to gre deformational features. Impression is one of a <u>c</u> mechanisms.	INTERBEDDED-I y. Fine ash Unit also co לואלבוק deri	NTERLAMINATED FINE- beds and chert lami ntains epiclastic(? ved volcanic debris	COARSE GRAIN nations show) fragments deposited b	NED ASH TUFF AND CHERT soft sediment near its base. by epiclastic								
75.5 - 108.6	ANDESITIC ASH/LAPILLI-AS Medium green. Contains fragments and shows no i volcanic source.												
108.6 - 131.5	INTERBEDDED ANDESITIC AS LAPILLI AND ABUNDANT SED Light-medium grey and we	H/LAPILLI-ASH IMENTARY CLAS akly-moderate	TUFF AND CHERTY AS TS ly calcareous.	H CHARACTER	ZED BY ACCRETIONARY								
131.5 - 133.5	ANDESITIC LAPILLI-ASH TU Medium green with rare s	FF edimentary fr	agments.										
133.5 - 135.6	LIMESTONE Medium to dark grey lime downwards.	stone with in	creasing component	of laminated	i and fragmented chert								
135.6 - 136.2	CHERT					_ [

1

Property: KIT

۰.

المحاجم والمحاج المحاجرين والمحدوق والمحمد ومجرعه ويتجربه المحاج المحاج

FOOTAGE	DESCRIPTION				1	ANA	LYSIS	(00m	1)
136.2 - 138.9	ANDESITIC ASH TUFF	SAMPLE	FROM	TO	Ag	Pb	Zn	Cu	
138.9 - 144.0	LIMESTONE								
144.0 - 144.2	FAULT								
144.2 - 146.1	ANDESITIC LAPILLI-ASH/ASH TUFF (FOOTWALL VOLCANICS) Contains 65-75°, matrix supported, poorly sorted, volcanic fragments up to 34 mm. Interpreted as footwall due to the abundance of feldspar crystals.								
146.1 - 148.6	INTERBEDDED/INTERLAMINATED ASH/SILICEOUS ASH TUFF Well bedded and locally normally graded.								
148.6 - 151.2	ANDESITIC ASH/LAPILLI-ASH TUFF		<u> </u>	<u> </u>					
151.2 - 151.3	Graphitic shear.								
151.3 - 152.4	ANDESITIC LAPILLI-ASH/LAPILLI TUFF			<u> </u>					
162 4				1					
152.4			<u> </u>	1					
				+	<u> </u>				
			<u> </u>	<u> </u>					
	L								