TEL: BUS. 987-5322

> Management Committee,
> Remokotia-surkm Joint Venture,

Gentlemen:

LuysRTM REPORT MO. 72-3
 Re ExPLORATION - DFVELORNTV PROgRAM

General

The following aumaries relate to may August $21-25,1972$ visit to the operation - this, fortunately more-or-lass coinciding with visits by Messes, Walker and Euler. This joint attendance of a majority of the management and geological personnel directly concerned with the project resulted in several Lively and informative discussions of the var* ios geological and operational aspects of current and proposed explorecion. Some of the opinions advanced and decisions reached, which are admittedly only tentative, or subject to change as the program develops, are included with this report.

In this report I have attempted an interpretation of the mine geology - submitted with the hope that it will explain some current theories concerning ore controls, and the underlying reasoning on which some of the current recommendations are based. Hopefully, it will also promote critical discussions of this particular geological approach to the exploration problem.

Summary - Personal Field of office Work

Aug. 21: Review exploration with Mr. Mog * particularly the result e of diamond drilling from 4690 lateral and of advance in 4625 \$2-cut; discuss geological aspects of mapping and corelogging with Masers. Redshaw and olson; commence updating personal set of 20 -scale mine maps.

Aug. 22: Inspect current exploration headings and drill cores with Messes. Hog, Redshaw, and Olson, and discuss geological details. Discuss mine geology and exploration with Mr. Fuller.

Aug. 23: Inspect 4690 and 4855 W . Lat. © rill cores with Mr. Bullet and check-log d.d.h. K-125. Make detailed inspection of 4625 \# 2 seat with Messes. Euler, Hogg, Redshaw, and olson. participate in office discussions re layout e for initial drillexploration from 4625 (2 wc; continue additions and revisions to $20-$ and 100 -scale maps, with attendant discussions.

Aug. 24: wheh Mr. Buller on check-logging d.d. holes $\mathrm{k}-124$, $\mathbf{- 1 3 3}$, -135, with partieular attention to sigmificant changes in 1 thology andfor core-to-bediling anglea (re indirect evidance of intersection of lode elements).
participate, with wassre. Walkey, suiler, and Mogs, in desailed discuse ions on mine geology, posesible ore controls, and proposed exploration of the lode within and beyond the general mine locality.
Continue $20 / 100$ seale revisions and additions with supple" mentary drili-hole plotting.

Aug. 25: With Weasre, Hogg and Buller re detailing exploration layouts and schedules.
Inveatigate, with Messrs, Redshaw and Olson, foasibility of exploring Jonaie ${ }^{2}$ idgernvening Baein lode interval via loug hole cow drilling from a surface site in the astarly part of the basin.

Sept. 1s stady g. . Nayo 1951 report, with loeal additions of vele" vant detail to 100 -seall plan.

Sept. 7: Up-date 20-scale x-secs via plote of original log and checklog data; transfer 20 -seale geological and advance detali to 100-seale plan.

Sept. 8\% Continue sept. 7 detaki.
Sept. 10 - 11: Complete above; plot lode contours, inci. revisions on 20 - and 100 -acale plans.

Current Geologien Interpratations if Concept:

At present, the mine "footwall section" is much batter ess" posed and understood than the corresponding "hangingwali seetion". As (xesult, there has been general tendency to base geological asseaemente of ore potential rather too exclueively on apparent footwall-toiode relationships, and thus overlook possibly moxe, oignificant hang ingwall-to-lode relationchip!.
(a) Footwall Sections Rocks in the footwall of the mine lode axe principally argillites, quartziteb, ond gradational variaties of thene, A pervasive alteration, which produces massive siliceous, to banded silicsous-iniicate assemblages is most evident In rocke relatively near, to the lode, but particularly so in the vicinity of the larger granitic-to-dioritic) ('porphyry') bodies. Mont of the footwall section, ascepting that part of it which is penetrated by the easterly 600 feet of 4755 宏. Laterai, comprises medium to chickly bedded or layered brittle argiliftes and guartaites.

Tn ${ }^{\text {E }}$-W vertical section bedding, going dewmurd throwgh the aection, rolls from easterly to westerly dips at about the 5050° ('queen Bens' fold axie) horizon. Between the 5050° and $4800^{\prime}(1)$ horizons the general seetion appaars to dip Ilatly westward. Below the 4800° horizon bedding dips are predonintatly wastward, but with frequent pronounced ('west-panel drag') reversale to easterly dips to, and through the 4625° horizon. Below thit, the bedding seetion is easentielly west-dipping to about the 4000^{\prime} ('Payne' fold) gorizon - with locel exceptions occuring within regions of the payne axie which are confused by multiple overturning, flat-sileings or are localiy diatorted by massive intrusions of porphyry or diorite.

The mont diatinctive and influential element of the foot" wall aection is the steeply dipping (or plunging) section of porphyry and quartsite ponetrated by, but $2 y$ ing largely to the east of the ($\mathrm{N}=\mathrm{S}$ vertical plane chrough) 4625 erosseut. This conprises the "central footwali buttress ${ }^{\text {p }}$ over which a temporary but significant aoutheriy deflection of the lode-atrike oceurs.
(b) Finginguall section: The writer sumpect: chat, beyomet the "pro" duetive" and "potentlaliy productive" intervals or areas of the lode, the gomeral patterm of (dfuplaced) hangingmall bedding struetures is roughly similar to those oucurring within the foot* vali section', However, within the productive, or substantialiy mineralised area of the mine lode evidence provided by a munber of widely aeparated openinge suggests a condition of general con* foxmity of lode and hangingwall bedding attitudes, In regard to this attuation the 'lode' is defined as the (average $10^{\prime}-40^{\prime}$ wide) sone of intense shearing and iracturing within wilich the buik of the ore, "ose-grode" mineraliaation; a nd typical gangue minerals oceur - usually over only a part of the seetion.

In earlier reports and during recent discussions, the specifie configuration of hangingwail bedding atructure has been terned a 'lode panel'. At this tife it appaars adviseable to re" destgnate it an a 'transwarae panel' (see mayo, 1951. pps. 18, 25, 29). Such panels have heen notud at various widely separated (strike and dip) intervals of the general standard-Memmoth-Carnation lode sybtem, and they do not appear to be localized to apecific roek types, or to specific elenente of the sloem Fold. On the other hand, they show a general (apparent?) tendency to welate to lode alemente and/or intervals with general E - W_{W} atrikes and dipa less than 40 degrees. Their general field relationships also indicate that they formed prior to the general period of lode development. Wowever, it is leentw-obvious thet sobicin conformable ${ }^{2}$ assemblages of beds relate to lode displacemente. The lode may 'oplis' within transverse pamels; however, bedded shears may be due to atther lode apilts or to inter-bed diaplacemente relating to the development of the transvere ptanel itself.
p．BLilingeley attributed the oceurrence of transverse panels to a shaxp southvaxd down－warping of the oxial planes of overturns（vkere beds are approx．horizontal）（Mayo，P．29）．筑owever，this explanation would not appear to fit dil auch oc＊ eurronces．

嘼vidence provided by the relativaly few workinge which penatrate beds over the lode，some drill cores，and，indirectly， the charsater and atructural configuration of the lode 4 tseal withia the mine locality suggest that the mine transverse panal apexes at about the 4900^{*} horizon and co－axistes with the iode between 10,300 m and 11,500 z（ref． 4890^{\prime} horizon）．Ite atrength kin 4690 第 $\mathrm{x}-\mathrm{c}$ indicates that $4 t$ will，at least locally，axtend down－dip for a few hundred feet below the 4690° horizon．Wow over，as trantverse panel development；porphyry intrusion，lode－ arching，and silicification appear to comprise inter－related phononoma，it is quite posstble that other transverse panale have developediunere combinatlons of these attendant features are present．On thie basis，it iv kairly possible that trann＂ verse panel has daveloped over，and upedip of the large porphyry body fatersected by the silmonee 5－6i（3996）tateral＊and，pos－
 atbly over other such bodias to the aast of this．
（c）Ore Controle：The productive part of the＂mine lode，＂an indi＂ cated by the present axtent of the workinge，stuates within the interval where it defleete（atrilice and $44 p$ ）over the 4625 porphyxy＂ quartaite footwall buttress－xesuleing in broed，sommhat ere－ mulated，slatly southoplunging nose．The prinelpal ore bodies occur the fianke and aper of this nose．

The shape and／or orientation of minor fold and fracture struetures within a lode provide a statiatical basis on which to detarmine relative Cootwall－hangingmall displacements．The majority of those observed within the mine lode indicate that，welative to the footwall section，the hangingwall moved almost horisontally along the strike of the lode，but gemerally towards the estevecth orily

The posktion of the easterly group of owebodies，stiuating on the＂lae side＂of the arch or mose，is in aceoxd with one of man Kelomm Ex．exiteria relating to optimum ore ditutiona； however，the other conditions，mecessary for the development of ＂open－space＂conditions，are only very loesily preanat，Alse，on
 not stituate on this＂eight＂intervalsof the bend ym viow of the oxisting etructural relationshipe，ft aeams fairiy apparent that a relatively unique aystem of atrustures provides the necessary ＂open－space＂conditione vithin the lode．Evidence gathozed to date indicates that these comprise somes of crumpliag and fract＂ uring－pitching and striking across，or quite obilquely to the
line of lode displacement, but with plunges locally influenced by gtructural-1itholigical variations within the footwall buttress.

It appears unlikely that significant crumpling would occur within the lode if it were bounded on both walls by strong ore at least relatively competent (east-dipping or west-dipplaggead the other hand, the indicated situation, presumably one in which it is underlain by a fix (inflexible) buttress and overlain by a conformable panel comprising rock e of varied thickness and compofence, is one which would appear to be favourable to the developmont of such crumple-fracture zones. The success of the current "hangingwal1' exploration is at least partly contingent on the
 possibility that the above conditions and structures, as well as open-space conditions relating to dip-rolla, will persist for, or re-oceurat significant distances below the 4690 and 4625 horizons.

Observations - Current Exploration

1. 4690 West Lateral: West of Sec. $10,300 \mathrm{z}$ the lode weakens, and perhaps strands out to an extent which makes it difficult to identify in the drill core. The results from drilling yet to be done at Sec. 9725 玉 may, or may not indicate some change of lode strength or attitude. With reference to the latter possebility, it would be advisable to extend hole K-124 to about 200'.
2. 4855 Wast Lateral: The situation hor is similar so that reRating to the 4690 Lateral.

Recommend ions - Continuing Exploration

These are as agreed upon at the Aug. 24, 1972 meeting and as Listed in Mr , hogs's subsequent memorandum, but with minor revisions as noted in Mr. Buller'a letter of September 5.1972 ; hence, they need not be repeated here. However, in reference to Item 6, it is doubtful that a suitable drilling site exists. The construction of an access road to the foot of the "Jennie" ridge is feasible. However, constructIon and maintenance of an access road and $\mathbf{d r i 1 1 1 \mathrm { ng }}$ bench beyond this point could be difficult, in that bedrock within this area could be overlain by at least 50 feet of coarse, unstable talus. Also, should the foregoing prove to be quite feasible, there is at ill considerable doubt that the local east-dipping assemblage of hard and soft rocks would not deflect the contemplated $1400^{\circ}-1500^{\circ}$ drill hole beyond controllable limits.

Respectfully submitted,

7. M. Sharp, P. Eng.

Kamm=Kotial mines limited

25 Adelaide Street West, Suite 416, Toronto 1, Canada
Telephone 362-4581
March 20, 1973.

Mr. W. M. Sharp, P.Eng.,
171 W. Esplanade,
North Vancouver, B. C.

Dear Bill:
I have your letter of March 15, 1973 and enclosure of sketches to show a possible scale of exploration drilling on a systematic basis. At this moment, whether I agree with the proposed spacing or not is not important, and, I think the coverage is perhaps too broad, at least for certain areas. I don't agree with driving 170 ft . of x -cuts to get sections at 150 ft. centres and I note you propose the x-cuts at 300 ft. centres. What is important, however, is that we have a plan and eliminate or reduce random, spur of the moment type of exploratory drilling.

Your suggestion on drilling procedures are good. Notes a, b, c, f and h can be implemented quickly. Sludge sampling is difficult, expensive, and can be erratic, and your suggestions merit consideration.

I note your comments on geological staff and we will discuss this with you at our next meeting.

I am sending a copy of your letter and the sketches to Bill Hogg so he can study your suggestions and be in a position to make comments.

I now plan to go to New Denver, March 27, and will fly out to Vancouver March 26 in the morning. I want to leave Vancouver on the 2:00 p.m. flight on Friday, March 30 so I should have the best part of three days at New Denver and I hope you can arrange to be at the mine at the same time.

Yours very truly,
KAM-KOTIA MINES LIMITED,

G. W. Walkey,

GWW/rk
Vice-President and General Manager.

March 2, 1973.

Mr. W. Sharp, P. Eng.,
171 W. Esplanade,
North Vancouver, B. C.
Dear Bill:
Re: Kam-Kotia-Burkam Joint Venture.
I refer to our conversation on the telephone last week in Vancouver. As I told you, recent drill holes from the 4,625 E. lateral ${ }_{7}$ drilled between co-ordinate ll,400 E. and co-ordinate ll,500 E. have given very encouraging results and, we are developing in this area now by means of a x-cut to the S.E. from 4,625 lateral, boxholing, and, ultimately laterals and dip raises in the lode. We are also developing an indicated pod of ore at co-ordinate $11,000 \mathrm{E} .$, by a stub x-cut at 4,625 \#2 x-cut, and a raise.

We also are extending the 4,625 H.W. lateral to 11,800 E. co-ordinate and this should be completed late in March.

We have given Bill Hogg instructions to do everything possible to maintain mill operations at the current level, even though material may have to be milled that will not provide an overall profit. Basically, we have instructed Bill to mine and mill material that has enough net value to cover direct costs of mining and milling and make a contribution to exploration and overhead costs. Obviously this policy could not continue indefinitely and, generally, the highest grade material available should always be milled first.

I have given Bill Hogg data on how to quickly and simply assess the net value of ore at various grades and I enclose a copy of these notes. Metal prices, particularly silver, have fluctuated widely and quickly in recent times, and, even lead prices are constantly changing these days. I am also enclosing a copy of a recent letter to Bill Hogg which provides answers to the above and shows the minimum grades we can mine and mill currently, and make a contribution to costs, as long as we are committed to an all out program of exploration. I must ask you to treat the enclosures as confidential, but, if you are going to make the maximum possible contribution to our efforts, I feel you must know how we are thinking. Our primary target continues to be to

Mr. W. Sharp, P. Eng., - 2 -
make the maximum possible profit from exploiting the property and we should never forget this fact. There are a great many aspects of the operation that concern me, but, there is thic in particular stand-out about which we can take some positive action. These three items concern geology and diamond drilling.

Diamond drill core drilling remains as the most economic and efficient method of locating and defining ore pods or lenses along the lode or lodes, even though it is an imperfect tool and may give misleading results. Those of us who have worked on the problem of finding ore in the Slocan lodes know how difficult it is to locate, and define, ore lenses due to the extremely erratic nature of the quality and extent of the economic mineralization. The chances of locating ore lenses would appear to be related to the density of the drill hole sampling, when drilling or testing a mineralized and potential panel of the lode. The density of drill coverage in this case will be completely different to the pattern required in drilling to locate the lode and mineralized panels. At this time, we have two mineralized panels, one east of 4,625 No. 1 x-cut, and south from the 4,625 E. lateral, with the down dip extension and strike extension to the east still not defined. We are in reasonably good shape to drill test this panel, on a density basis over an area of about 500,000 sq. ft. on the plane of the lode, and can easily extend this area by more development. Basic drill exploration is best done on a firm pattern, once strike and dip is known. Detail drilling to define and expand a good drill intersection may require variations in the pattern and, will require very high density drilling to sample and define tonnage potential. This means, of course, a high exploration and development cost, but, a less expensive program that does not test and define, is far more expensive overall, and, may be unsuccessful, which would make it more expensive.

I believe this is a matter that requires much study and, I would like you to treat it this way and give it a lot of consideration.

The second matter is the actual drilling procedure, and the interpretation and use of the results. We all know that core recovery of the lode material is difficult and tends to be poor. In fact, in many cases, it is possible that only bottoms are recovered.
buttons
This is obviously a very important matter, as we depend almost entirely on core results to find the ore zones.

One possibility would be to recover sludges, as soon as there is reason to think the hole is close to the lode. This could be done but the technique and procedure would be critical.

I think we can do a better job of recording core

Mr. W. Sharp, P. Eng. 3 - March 2, 1973.
recovery and assessing the actual amount of grinding and this should be done. This means more accurate logging and recording of results from drilling. I don't think that Redshaw fully understands this problems, although I know he is aware of the problem and records what the drillers show by the blocks. You can help on this matter too, by educating and training Redshaw.

The third factor is Redshaw himself and the amount and quality of geological staff that we require.to carry out the programs as I see them. I would appreciate your comments on this matter.

Assuming we continue to mine and mill, grade control and stope geology is almost a full time job for one man, if done properly. Supervising, controlling, logging, recording and maintenance of maps and records seem to me to be a full time job as well. In any event, I would like your thoughts on these matters, and you should discuss them with Bill Hogg on your next visit. I hope to go out to New Denver later this month, but, I can't set a date as yet.

Earlier I pointed out we have two mineralized panels that require exploration, and I covered the east panel. The west panel, i.e. west of $4,625 \mathrm{No}$. 1 x -cut, and south of 4,690 W. lateral, obviously has potential and continues down dip below the 4,625 level. This panel has potential, in mineralized and requires more work. However, I believe we should concentrate our efforts on the east panel at this time. You could give this zone some thought as well.

Yours very truly,
KAM-KOTIA BURKA JOINT VENTURE,

GWW/rk
Encls.

G. W. Warley.

From: G. W. Walkey
Subject: As noted.
mucebe gr

1. Further to my memo of February 8, and my visit to New Denver on February $20 \& 21$, I want to restate and confirm the items we discussed last week.
2. I refer you to my memo on net mine value for silver, lead and zinc content of ore, dated December 20, 1972. In this study, the prices used were as follows: - silver - \$l.95/ounce, zinc 18.0 cents /lb. and Pb .14 .667 cents /lb.

Current prices are as follows: - silver - \$2.40/ounce, zince 19.5 cents, lead 15.78 cents /lb. (幺.M.E. spot price).

Using these prices, the net value to the mine for silver is $\$ 1.89$ per ounce, for lead, $\$ 1.76$ per 1.0% or 8.8 cents per lb. and, for zinc per 1.0% - $\$ 1.47$ or 7.35 cents per lb.

The exact net value for any metal price can be calculated by the formula used in my December 20 , 1972 memo. Currently, material grading 10 ounces silver $5 \% \mathrm{~Pb}$. and $5.0 \% \mathrm{Zn}$. would have a net value of $18.90+5 \mathrm{x} \mathrm{l.76+5} \mathrm{\times 1.47}$ equals $\$ 35.05$ /ton. January's production costs were $\$ 34.67$ /ton (including exploration and overhead) so this grade would allow a break even. ox a

However, at this time, when we are short of ore for the mill and, we are committed to maintaining the operation and continuing exploration, and, again using January's cost figures, any material that will have a net value in excess of actual mining, milling and haulage expense, e.g. about $\$ 18.24 /$ ton, should be mined, if available, as it would make a contribution to the exploration and overhead costs. The mill heads required would be 5 ounces silver (5 x l.89 = 9.45) plus $4 \% \mathrm{~Pb} .(4 \mathrm{x} \mathrm{l.76}=\$ 7.04$) plus $3 \% \mathrm{Zn}$. ($3 \mathrm{x} \mathrm{l} .47=4.41$) $=\$ 20.90$, or any combination of heads that will net plus $\$ 18.24$, say a cut off grade of $\$ 25.00$. This should provide a reasonable margin of safety. However, metal prices must be watched and values adjusted as metal prices change.
3. It is agreed that the $4,625 \mathrm{H} . \mathrm{W}$. lateral (e) will be continued to co-ordinate E. ll, 800, but, no further at this time. The $4,625 \mathrm{H} . \mathrm{W}$. lateral's only function is as a base for exploration of the lode below the 4,625 adit level. Our objective is to indicate sufficient ore reserves, with reasonable assurance, to warrant carrying out the necessary development work to provide access for mining and extractions. If this can be done, continuing and further exploration can be carried out much cheaper from the new access workings.

It is probably premature to start planning development far below the 4,625 level. However, there are only so many possible methods, and, it may be useful to list them now for possible study.

Ore below the 4,625 level can be developed by access provided as follows: - 1) by sinking an internal shaft. 2) by a new adit from surface at a lower elevation. 3) by one or more decline headings from the 4,625 level. 4) by a raise from the Silmonac 3,990 level. All these methods would be expensive, and the correct method will require much study, and, perhaps more exploration to increase potential ore reserves. This could result in extending the $4,625 \mathrm{H} . \mathrm{W}$. lateral, to allow for testing more of the lode before making a development decision. In any event, cross sectional exploration drilling from the H.W. lateral should be completed as soon as possible, and, diamond drilling should proceed at the maximum rate possible, as allowed by plant and personnel. Any extension of the 4,625 E. H.W. lateral may be best carried out on a different strike, to the east of co-ordinate $11,800 \mathrm{E}$: but, any decision will depend on future results and information.

Diamond Drilling - Diamond drill coring to test, locate and sample the lode is obviously an imperfect and somewhat unreliable tool, primarily due to the problem with core recovery. However, it is still the most feasible method, other than actual development work in the lode which is impossible for broad exploration. Diamond drilling must be used to locate and generally define minable pods or zones of ore and this may require extremely close spaced holes. Every drill hole intersection that gives ore grades must be checked by additional drilling, and, if confirmed, should be developed if the economics are reasonable. Judgement will be important and we must be prepared to take some risks.

With the above in mind, we should make every effort to improve the drilling technique, in regard to coring in the lode. Perhaps an improvement in logging and recording of core data, in the lode is possible. We should even consider collecting sludge for sampling, particularly when in the lode. I discussed this problem with Bill Sharp in Vancouver, and asked him to spend time on the problem with you on his next visit. I know you are aware of the problem and perhaps, collectively we can develop improved technique.

Future production - As I wrote in my Feb. 8 memo and told you in my Feb. 20 visit, it is important to try and maintain continuity of production and retain present work force. I fully understand the present situation with regard to available milling material and our immediate prospects for developing good grade mill feed. However, in view of the current metal prices, there may be material available that can be mined and contribute to the cost of exploration and overhead.

Currently, you are developing two zones, l) by a short x-cut and raise off the 4,625 No. 2 x-cut, at about 11,000 E. co-ordinate. Two narrow good grade bands are indicated by several drill holes and this area should provide some production. 2) By means of a x-cut and raise, a zone indicated by holes Kl68 \& 170 plus additional holes. To expedite development to provide quick production, access to the lode is placed well above the x-cut back and holes K129, 171 and 167 show that the ore should continue down dip to at least 4,640 elevation, and this will require extending the x-cut to the south east.

Studying the whole area and all the drill holes, the lode is certainly mineralized from at least ll,600 E . to west of $11,300 \mathrm{E}$. although actual ore zones may by lensy and somewhat erratic. While our immediate objective is to get production, from this zone, you must be prepared to test this whole area and have a development plan. The zone can be tested by short drill holes from the $4,625 \mathrm{E}$. lateral, and, it may be necessary to drive a second lateral close to where the lode cuts through the 4,625 level.

I know you got disappointing results from the lateral driven to the east off 4,625 west lateral, along the lode. However, the lode to the west, i.e. west of 10,600 E. co-ordinate and below the 4,690 panels, still has potential and requires more exploration. Present drill results are inconclusive and erratic, but, do show good values, both above the 4,625 level and down dip. This area is still a prime testing area, and requires more exploration although the east blocks have priority at this time.

Generally, we must be prepared to take risks, and expect some disappointments. The actual ore pods are difficult to locate and define. However, as long as we can finance continuing exploration and development by production, the operators are agreeable to continuing with the program, and, we are well placed to explore a major segment of what appears to be a favourable panel of the lode.

GWW/rk
G. W. Walkey.

