
801110

Mr. D. M. Marcier, President, Monet. gorcupine Mines Led., 420-475 illowe street, Vameouver 1, B.C.

Bear Mr. Wercier:
with this, the undersigned rappectfully subnite hie "Interim Evaluation Report on the Rem-llotia-Burkan Joint Venture, Silmonac Mine, Ntew Denver, B.C. ${ }^{*}$

In accordance with your stated requiremente; the report deals mainly with the operational and economic aspects of the mine. However, it includes reasonably comprehensive deseriptions of the geological aetting, ore controis, and physical features of the orebodies - which the writer hopes will encourage the reader to personally speculate on the property's long-range axploration posaibilities. wich are genarally beyond the scope of this re* port.

Etimates and conclusions presented in this report are based on the considerable amount of background and recent information provided by Company principale, and on the writer'9 eontimed personal arperience with the operation and general locality. Estimates pertaining to the evaluation of the near-tenm prospects of the operation are believed to be both factual and conservative.

Yours truly,

TMIERIM EVALHATTON REPORT

on the

RAM-RORTA - BUREAM JOLMT VENXURESIDMONAC MINE
by
W. M. SHARP, M.A.sce, P. ENE.
WORTH VANCOUVER, B.C.
FEBRUARY 2, 1972

 20
sumanzy A comerus rons 1
TMraonvertoie 3
FROPERK 4
LOCATHON A ACOESS. 4
MTEE WORKEMOS A GENERAZ PTAMT 5
MISTOXX 6
cenocy m Mmeralzzaxion. 6
cuxeent mis orrantoats. 10
ORE RESERYE ESTMATES 12
 14
 16
ESTMMATES - Wruve pronucrion 16
ExpLoparion POSSiBILITIES 1.8

SUMMARY A CONCuszods

The simonac claim group inciudas a central $2^{\text {a }}$ mile strike* length of the matn slocan lode which, over its 6 wile atrike-length, has accounted for over 70\% of the 75 million dollar production of the camp. The stlmonae sima workings lie on the main lode, and within the optimum aub-axial part of a jor, bedding fiexure within which eeveral of the former orebodies are iocated.

Within the simmonac mine the loda is a atrong flatly-dipplag composite chear-frecture zone in quartaites and soft to brittle argi1ites. The productive part of the lode eross-section ranges in width from 10 to 40 feet - this ineluding two parallel veing which are mormally saperated by $10-30$ faet of lode rock, but which icealiy coalesce. The buik of the wine production of highogrede silver-iead-yine ore has come from two orebedies on the 'pootwall' veing. Nerose production to date is approximately 32,000 tons, which hae produced lead and zinc concentrates of respective grose and net-Bnelter values of $\$ 3,600,000$ and $\$ 2,300,000$.

Current mine production is slightiy over 100 dry tons per day of ore haviug a net meiter value - milihead basis - of about \$36.00 per ton. With total operatingeexploration costs at about $\$ 25,00$ per ton, the net profit is about $\$ 11.00$ per ton of ore ailled, and well belon the avarage wedixzed to date.

Within the past $6-8$ months production demands, crew whortages, and $\operatorname{ma} 1800$-foot drive to furnish the required 'safety axit' have foreed a severe curtailment of essential exploration-ievelopment operations. The net resuit of this has been to reduce the ore reserves to the point where chey comprise only an 8 -month assured aupply of ${ }^{n} 111$ feed.

The most recent estimates place ore reserves at:
(a) 'Preateive' + "Probeble' category

* 24, 000 cons @ Ag, 17.5 or.ftom $\mathrm{pb}, 6.0 \% \mathrm{zn}, 6.5 \%$.
(b) Short-Term 'Pomsible' category
- 32,000 tons (at above grede
(c) Long-Teris "Possible" Category - at present productive horizon $=300,000$ tons et the above grade.

The writer estimates that sustained production at on il 3000 tons per month, with a continued exploration program, will produce the following net income - after pre-production expense write-off and sub* sequent production royalties:

1. Assured 8-moath Production Period:

24,000 tons for Nat Income......................... $\$ 14,356$
2. Assured 8 months 4 Posesible 6 mo. Production 42,000 tens for Net Income........................ \$ 95,048
3. Assured 8 months + Possible 10 mo. Production 54,000 tons for Not Income........................ \$168,780
4. Projected production after 18 month

3,000 tome/month for Wet Monthly Income, incl. provision for $\$ 1.00 /$ ton improvement $=\$ 24,000$ per month.

In the writer's opinion, the above estimates are definitely conservative: hence, with some exploration success, and moderate upturn in metal pries, earnings would increase substantially.

Respectfully submitted,

W. M. Sharp; P. Eng.

TMARODUCTION

The writer has prepared thic report at the request of, and on the basis of the terms of reference suggested by Mr. G. C. Gutrath, P. Eng. on, and after mid-January, 1972. Briefly, these stipulate that the weport should place most emphasis ow the following:
(a) A briaf hiatory or sumary of mine development and production.
(b) A description and evaluation of current operating practiees.
(c) Factual estimates of 'positiva-probable' and 'possible' ore reserves.
(d) An eatimate of current operating profitw - based on preseat mine performance, matal prices, and genersil coett.
(e) An estimate of the netearining potential of the operation over the term indicated by the anount of reasonably-assured ore reserves - based on the expected operating costs and matel pricen.
(f) Current plane for continued exploration and development.

The writer and Mr. Cutrath visited the property on Jamaxy 24, 1972 - this providing valuable opportunity to inspect current exploration-development recorde and mining and miliing operations.

During prelininary discusaions between Mr. Cutrath and Mr. C. W. Walkey of Kamolotin Mines Ltd., the latter kindly gave his consent in regard to ouv joint inspection of the property and subsequent preparation of thie zeport. The foregoing id duly acknowledged and, in addition, the writer cakes this opportunity to eapress his appreciation for the kind cooperation and assistanee given by Mr. Wm. Hogest Mine Monager.

PROPEETY

The property comprise on bloek of 65 crowascranted claims, including three held under lease. From a point closely southvent of Sandon, it extends southwenterly along the south slope of Carpenter Creek Valley, over silver Ridge, and down the north $\begin{gathered}\text { lope of silverton }\end{gathered}$ Creak valley. A $2^{\prime /} /$ mile strike-length of the 6 -mile long min (slocan) Lode lies within the silmonac property * this comprising a centraliy* stuated segmant of the through-going atructure. To the southwest and northeast of the '3ilmonae aegment", the lode contained the fonaer, major producing mine of the camp - the "standard", 'Manmoth", 'Hope', "silvarminth-Slocan star', and 'Richmond surekn'。

In addition to the abovenoted interval of the main Lode, the silmonse ciatime faclude: (a) some in miles of the 'footwall lode" sygtem which Le loealiy exposed by workinge on the "Minniehaha'. 'Irene', and 'Dorothy' clatma, (b) mont of the lismile strike length of the formerly-productive Wakefield lode, and (c) arose length of at least if miles on the Adams-Ivanhoe lode syatom.

LOCAETON \& ACCESS

The 4625 portal and mine plant situate on the south slope of Carpenter Creek Valley approximately one limemile W.S.W. of Sandon, B.C. From sandon, the property is reached by approximately 3 milea of good gravel romd. sandon is comnected to 基w Denver; and Highway 6 , by about 8 ailea of paved-to-gravelled public aceese roed.

The Company ${ }^{\circ}$ enill is lecated on the south bank of Carpenter Craek, and closely west (down-atream) of sandon.

The mine is serviced by the 4625 adit cross－eut which inter－ aect the lode at som 2900 faet south of the portal．A11 of the prem sent mine workings are situated on and above this level．Development and mining operations are carried out via a mytem of laterals and con－ mecting service and stope raises．A afety oxit，comprising a series of raise and erosscut sogmente，connecte the north and of 4755 ㅃo． 1 cross cut with the Maseot adit－drift．

The following table lists the principal mine workinge only． In the table＂feat easteriy＂and＇feet westeriy＇denote gross lengthe from a ${ }^{1 / S}$ vertical reference plane through the 4625 exosseent．

Yorkiage			$\underset{x=5}{\substack{t \\ \hline}}$	$\begin{gathered} \text { 登。 } \\ \text { nale } \end{gathered}$	$\begin{gathered} \text { 若. } \\ \cot +2 \end{gathered}$
4625 x－C			2960		2960
4625 Drift／Lateral	680	70			750
4690 Drift／Lateral	860	650			1510
4720 Sub－drift	70	50			120
4755 Drift／Lateral	900	320			1220
4625 Wo．6 Serviee Ree．				230	230
4690 \％o． $1 . \mathrm{x}-\mathrm{C}$			280		280
4753 \％o． 1 \％－cc			330		330
Exit Raise－Crosecut			930	750	1800
Total，principal workings$5-$ West（3996）Lateral，emel $\mathrm{X}-\mathrm{C}^{\prime}$＇s－ 4100					9200
					4100

The mine plant，consiating of diesel－driven compressors and electric power units，shop，dry，timber shed，and ore bin axe located next to the 4625 portal．

The flotation concentrator（at 3 miles from 4625 portal，hae a rated capacity of 140－150 t．p．d．of milifoed．Power is supplied by a $312 \mathrm{x}, \mathrm{F}, \mathrm{A}$, diasel－electric set．Current through－put is alightiy over 100 t．pod．It produces clean lead and aine coneentrates，is efficient， and effecte gross recoveries（record－9 months，1971）of：

$$
\mathrm{Ag}, 96 \% \mathrm{~Pb}, 95 \% ; 2 \mathrm{z} / \mathrm{cd}, 91 \% .
$$

MEsto

The kaitial stage of exploration which wat carried out at the (Wuth 5 -level horison, via the 5-west lateral, erosseutis, and dianond drill holes, extanded from late 1963 to mid-1967. Up-holes from the west and of the lateral intersected the silmonae ore sone at some 500 ft. in the hangingwall of the drill station. During the F .11 of 1967 furthar delinnation of the ore mone was aceonplibhed by aurtace illanond drililing from the east Forlk of Ixibutary Greek.

The 4625 erosseut drive, started in late 1968 , was eompleted by aarly apring, 1969. The development of the known ore zones then commenced - this beling aufficieatly Ear edvanced by Augut , 1970 to permit ore axtraction at $3000-4000$ tons por month. Mikling was atarted early in the following month. Mining and milling have contimued at a fairly uniform date ainee September, 1970; hovever, monthly exploration and devalopment aivances or mill through-put have varied in accordance with production requirenments and the aine's faterim productiom capabi1ities.

Lead and sine concentrates produced to January 15, 1972 have groas and net amelter values, reapectively, of tom 3.6 and 2.3 milliom dollare. Theoretically, the grose oxe potential of the Simonee interw val of the Main lode - computed on a purely statistical basie - is as collowns
$\frac{\text { silmopge lode 1ength }}{\text { grose length Main lode }}{ }^{\mathrm{K}} \$ 75,000,000=\$ 25,000,000$.

A. Regional

The stendon aection of the camp is centraliy aituated within the atrongly deformed corridor of (Trisesie) argillaceous-quartaitie* Liny zock between the kasio greanstomes to the northeast and the Nelaon batholith on the south. The deformation hat taken the foxm of a
regional-seale, composite recumbent fold ('siocan Fold'). The tu-eroded lower part of the otrueture withia the sunden area hase an indicated amm plitude of 5000 feet. The three recogniseble componente of this strueture have been ternet, going upward from ite base, the 'Payne', 'Queen Bess', and 'silver eldge' folde or 'over"turna'. withim adeh, and encluding local complications, strata which $4 i p$ to the southovat ("weatedip panels") are stretigraphiealily zight"eide tap similarly, those which ifp to the northeast ('eanst-dip panals') are over-turned.
sedding, fold axee, bedding tauite, and silla have predominantly northoasteriy Ezends. Dipm, aceowilng to their position within the gen-
 within the upright 14 mb of a apeciefe fold ; mortheasterly, if withia the over-tumed limb; and vartical te flat-rolling, if wichin "axial aections" of the atructure.
surface mappiag within higher parte of the simonac property speciticaliy to the west of, above the carnation 6100 adit - has re" vealed an extanaive and diatinctive saction of asteriy co mortheasteriy striking, southeriyedipping beds in the hangiugwail of the lode. The Silmonec mine woricing sarely penatrate the hanging wali bedding aeetiom; however, the admittediy aparse but signtifeant evidence provided by occasional bos-hole and stope exposuree and drili-hole intereections suggents a similar parallelidem of the lode and hangingonil etrata. sueh bedding sactions are categorised as 'iode pmele'.
(any 192)
The district silver-lead-aine mineraliation oceure within a mystem of easterly to northeasterly etriking, southerly dipping "Lodes" which cut sharply across the general bedding aection. Thete are siagle or composite gones of shearing, fracturing, and breeciation. In groses width, they samge from leas than 10 feat to over 100 feet. In general, lode displacemente were auch that hangingwall elemente of the atructure have moved eastward and dommward with respect to its footvail elensente.

From atudien of many former minas in the sloegn camp it has been thown, in a broad way, that the prineipal orebodies occurred where the lode traverse axial sectiona: of the major bedding folds - with the ore tendiag to persiat withim the west"dipping limb of the fold, and to pinch within the aast-dipping limb. With the above, sones of pronounced lode deflection provide apecifie locel ore controls.

B. Property A Mine

A long vertical section aeroses the proparty ahows tho higher beds dipping gently, but complexly northeaatward to about she 5200^{\prime} horizon. Here, they roll downard, through a zone of drag-flexuring, to bend back to southvesterly dips in the vieinity of the 5000° horison. This 'wost-dip' panel appears to persist, within the more competent: squartsitic beds, to at least 100 feet below the 4000^{*} horison. Furthar east on the 5-w lateral, and for parhaps 400 ft. above and below the 4000° ($5-W$) horison, the bedding section consists of ilatly and closely Colded, sheared and fauited mixed argillites and quartsites. From the above, the writer tentatively sets the axial planes of the 'queen sess' and 'Payne' folds at elevations of about 5100 and 3900 feet, respectively. Allowing for the affect of lode displacemente, the general hangingwall bedding atructure ahould match the above " exeept where it has been warped into ganervil parallelism with the lode.

Within the silmonac mine workings, the siocan lode appears as -broad, strong, composite shear zone traversing a complexiy-folded assmblege of thiekiy to thiniy layered quartzites and argillites which, in turu, have beon intrudad by silis, dykes and irregular masees of granitic weckial. Within the mine workings, the aross width of the productive part of the lode appaara to range between $10-40$ feet. In detail, it appears as a zone of nultiple, braiding, interconnected shaars between which lentieular masses of wall roek are fractured or brecciatad. The lodo filling is veined and cemented by quarta, siderite, and caleite.

The suiphide minaraligation, consiats of galena, sphalerite, minor aulpho-salte, mind aesociated pyrite and pyrrhotite; it oceure in both fracture-fililing and diasominated torms. The kull width of the lode is mot uniformly mineralised; instead, ore-grade material tends to oecur within two fairiy diatinet pinching and swelling layars which are reforred to as the 'footwall veim' and "hangingnall vein". Normaliy, these axe separated by aome $10-20$ feet of relatively barren lode rock, but loeally marge, or converge maffieiently so that they may be mined together. With thit, grow widthe mined range irom 1 to 20 feet - the average being about 7 Ifeet, including normal wall-roek dilution. The bulk of the mine production derives from the footwall structure. The hangiagwall vein is only loealiy mimeable: in fact, it is only vaguely indicated by drilimholes on sone cross*eections.

For the most part, the strike and dip-trends of the vein have been deterained (by) diamond Arilling (from the footwall laterala and erosscute - the data being transiated as footwall vain (lode) "contours", These indicate, from wast to east, a trend from easterly; to southeasterly, to northeastarly - resulting in an irregular, flatly south-plunging nose. Lode dips ganeraliy range betwaen $10-30^{\circ}$. The bend in the lode appears to be the reault of atrike daflections through and over (a transverse fault
 workings, the lode $i s$ trending northessterly within weak, thin-bedded argilities in this interval it appears 'cight' and containe only oceasLonal leased and atreaks of ore. A more favourable atructursi stuation is expected where the lode benda so reaume ite uaual atrike - possibly vithin the next 200 feet of its projeeted trand.

The (oxiating ore bodies situate on both flanks of the abovenoted "mose". The west orebody has been mined over respective strike and dip-lengthe of 220 ft . and $350 \mathrm{ft} . ;$ the possibility that it will extend down-dip for at least another 150 feet seams reasonably good. The asst orebody has currently-developed atrike and dip dimensions of about 200 ft . by 220 ft .5 drillhole intersestions indicate that the ore
axtend for at least an additional 100 st. up-dip. It possible an* tensions beloy the $4 \operatorname{cin}^{2} 5^{-}$- 10 de contour ase reletively unexplored.

To date, about 60% of the mine production has corse from the west orebody. Recent diamond-drili Internections on the lode over tha mast weaterly workinga tudichte poaathla 300 - Loot wenterly atrike" eatenston of this owobody; further infiling in requixed betore astimatea of the dip-aztent of this ore saction are possible.

The 'structurel position" of the went orebody appeers "anome" Leus' - on the banis of the unul reletionahips betweer lode trends, selative displacomente, and the iocalization of ore bodies. Mcwaver. the writer suspecte that local atructural relationships are unique, fu that A_{4} seetion of bod over the footwall of the lode and well into the hanginganil is escentially parallel to the lode. With this, the pravailing lode diaplaement: could canse drag-golding and buckifite * ro*ulting in the devalopment of favourable S.W."pitchtng cxumple and brecela zones.

Coranme min orbaizyons

Morisontal. exploration and development is done mainiy by meane of footwall latexais and diamond trililing. The iaterala may be defined at "footwall drifts"。 Their position, at $50-100$ faet (dipponormal airection) under the footwali of the lode, facilatee diamond drill exploration of up-dip areat of the atweture. A lateral ean obviously bo advanced faster, and at lewer coat chan a drift which would in moft; heavy lode material require close support. Also, it 4.0 not moceranay to Arive footwoll crosscute to obtain drilling position, at in the case where drifting is employed - this providing fundimentil advanteges as regards nat edvance rates, conte, and the ilsited avaLiability of akilied miners.

Tha up-4ip axploration and dovelopmant of the lode from a Laternl is accompliahed by box-holes and raises * the latter being driven on the footwall vein or, generally, withik the fookwall section of the lode. In tevelopias a etope block,boxholes, at 75-foot anntezs, are đriven through the veia * with ahutes batng imstalled m mequired. Noxt, if thare is a aub-drift or lateral above in the wine vantilation zystem, a (slushar) raise is drivan to comaett vith it. Tha box molea are then conmented by a sil-arifz, after which ateping, via niots and (10 ${ }^{\prime}$ pillare is comnanced. The brokon ore is sluahed to the sill drift, thence to the (bom-hole) ehute raises. From the chutee ft it losded inte ore cart, whlch are then hauled by battery trimans to the portal, ore bin.

The nime ore is truck-trensported to the nill coarse ore bin. From this bis the oxe pasaes through jow and ayratory exushers; thxough
 Eier, with the classifier over-riew paseing through a lead-gine floce tion cixeuit. The reopective comeswtrates are thiekaned, fitured, and aceanaiated in bins.
\%oth lean and zine cencentrates are truetwranspoxted to che Bunker Mill smekter at Kellogg, Idaho vie a nimketing contraet with "ritiah wetals Comp.

The $\begin{gathered}\text { and } \\ \text { operates tero ohifts per day and five days pex week; }\end{gathered}$
 tive for minntonane and rappirs. The total work force is nownelig:

$$
\begin{array}{r}
\text { staff }-10 \\
\text { Mine }-40 \\
\text { M111 }-\frac{15}{65} \\
\text { Totai }=\frac{1}{6}
\end{array}
$$

The average operating coste per dry ton, besed on a production rate of approwimetely 3000 short $\mathbf{d r y}$ tons per monch, and with an allowe ance for an facrease in future labour conts, wre follow fis foll

The operation is affieiant, and it is doubtful that operating costa could be substantialiy reduced by any alteration of the preaent operating practices - other than by an fnerease of the production rate. Inowever; in some casal atope development coste might be reduced by restrieting slot exeavation to the more uniformiy mineralized areas of the lode. Probably this could be best accomplished by a preliminary "bloeking-out' of atoping panels via wider-spaced raises and/or intermediate aub-drifte \qquad
Alse, more attention should be given cowarde mintaining a uniform lateral-to-lode apacing - which could increase average diamonddrillimg efficiency and reduce unit drilifing costs.

ORE RESERVE ESYMAKES

perinttions

Tonnage factor m 10 ew . fe. per dry ton
(a) 'Positive' ore willars and blocks with ore exposed over most of perimeter.
(b) "Probable" ore = a block within or adjacent to working atope, and which has oxe amposed over $1 / 3$ to $1 / 2$ of ite perimeter, or a bloek which has been fairly conclusively delineated by dianond drilling.
(c) 'Poastble' ore m Blocks which could, from geological and/or atatistical evidence, be astensione of "probable" ore blocke and/or bloeks which could exist beyond the explored area of the lode where geological settings appear optimum for an ore oceurrence.

Present Ore Rewerve per mise office datat
Gxose Fonttive + Probable Ore
26,000 dry tons
Wht Recoverable Poaitive + Probable ore - with nomal dilution w $21,000 \mathrm{dry}$ tome $\mathrm{Ag}, 17.5 \mathrm{oz} . / \mathrm{ton} \mathrm{Fb}, 6.0 \%$ 2n, 6.5%, cd, 0.045% Addicion allowed (by writer) for hidden axtensiong and piliar salvage * 3,000 dxy tons at the above grade, giving:

Gross Recoverable Positive + Probable Ore $=$
24,000 ury tom @ Ag, 17.5 oz. $/$ tom $\mathrm{Fb}, 6.0 \%, 2 \mathrm{n}, 6.5 \%, \mathrm{Cd}, 0.045 \%$

The following astinates of possible ore refer to "local" or 'short-term ${ }^{\text {t }}$ possibilitias namely, ore which could acerse from a me tained exploration affort over the next $8-18$ month - at an average rate of 200 新. of emploratory tumelifigg and 1000 ft . of controlied dianond-drilling per month:
sloek Lecation

Estingated Tong

W-1 down-dip, West ore sone

$$
8,000
$$

W-2 up-dip, West ore zone 4,000
W-3 vest extension, Weat ore sone 4,000
g-1 up-dip, East ove zone 2,000
(2-2 down-dip, gast ore zone 6,000
E-3 lode bend, N.E. Lode extension
short-Tenin Posaible ore (a above grade) -
$\frac{8,000}{32,000}$
tons
\qquad
Estimates of the-prose-residual, ore potential of the, Simonac interval of the main lode are necessarily based on statistical y probabilities; hence are essentially of a speculative eharacter. However, the 'statistical-total' may be rationalised considerably by reatricting the scope of the estimate to the dip-range of the lanown deposits, and by ineluding a geological-discount factor which represente the probable frequeney at which optinum ore situations ${ }^{\text {b }}$ ight oecur within the un" axplored extensions of the lode. The basic, premieas, and renulting estimates follows
Grose stritre-length of lode in stimonac ground. $21 / 2$ mi.
strike-length within mine workiuge. 1/4 mid.
Total production to date, approx. 52,000 tont
Total, posikive + probable ore reserves 24,000 tons
Ceological "discount factor" 0.5
Frojected Ore 書eserves * "Possible" Category
$-\frac{2.5}{0.25} \times 76,000 \times 0.5-76,000=304,000$ tone${ }^{4}$ Rouxded "stimate $=300,000$ tons at above-noted grade.

The following calculationa are based ons
(a) Texme of the oxiating lead and mine concentrate purchase agreemente with gritish Motala corp., Canadia.
(b) Current metal prices © $\mathbf{A g}=\$ 1.50$ per oz. (unofficial apot © \$1.35)
pb $=14.50$ per 1 b . (Nev York basis)
$\mathrm{zn}_{\mathrm{n}}=(17.5-0.5)$ © per $\mathbf{1 b}$. (New Yorit basis)
Cd $=\frac{\text { S }}{} 1.75$ per 1 b .
(c) Treatment archarges for pollution abatement a $1 / 3$ per 1bo of contained lead and aine in the concentrates.
(d) taad concentwate grade:
(avg. Jan. 1 - Sept. 30, 1971)
(e) 2inc concontrite grade: (Avs. Jen. 1 " sept. 30, 1971)

Ag, 100 oz./ton	
	66.0\%
2n,	7.37
	$80 \mathrm{ez} /$.
2n:	34.1\%
Pb,	1.08
ca,	0.4\%

(i) Approw, parity of v.s.- Canadian currency.

2EAD Condratayys

Paymente

2n c 7.38 - 146 (80.0175 2.56 \$303.42

Amelter Charges

```
Truatment
$23.00
    FoliutLon abmtement, 1320| m w/34...*-**********)
    zop. & ssmaylig, (per recowd).
        0.66
```



```
        8.28.47
        Net value per Ton, S.0.b, V,S. Smelter,0.*.0.0.0.0.0***** $274.95
    Buty an lead m (66.0-2.0)% m 1280/ 0.0075 ........ $ 9.60
    Buty on sime (7.3-2.0)% - 106 - 0.0067 ....... 0.71
```


Lets:

zine conchnantis

zomente

Pb ca 1\% - mo payment or duty

sinditer charsen

Truatment (per sched. w, 2n (a 17h) 856.25
Pollution abatement $-1082=1 / 30$ 3.61
sep. A aseaying (per recosd) 0.54
Holatare penalty (par record) $0.57 \quad 60.97$
 $\$ 198.13$
Lass:
 3 6.45
Freight to manter (per record) 15.66 \$ 22.11
 $\$ 176.02$

Production rate ．．．．．．．．．．．． 3000 dry tons per month

Mill secoveries a 96% of Ag； 95% of Pb ； 91% of $\mathrm{tn} / \mathrm{Cd}$
Average grades of concentrates，Jan． 1 －Sept。 30,1971 ＊see prav．seet．

Calculation

Cross recov，metal to $\mathrm{Pb}+2 \mathrm{~m}$ eomeentratess
$\mathrm{Pb}=3000 \mathrm{x}$（1201 $\mathrm{m} 95 \% \mathrm{~m}=32,000 \mathrm{Lbs}$ 。per mo． $z=3000$ z 130 x $91 \%=354,900$ 2bs．per mo．

Po to lead cone．$-94.5 \%=323,190 \mathrm{lbs} . / \mathrm{mo}$ 。

Lead concentrate production $=\frac{325,190}{1320}-244.8$ dry tons par mo．
mine concentrate production $\frac{283.920}{1082}=262.4$ dry tom per me．

TOKAZ ．．．．．．．．．．＝ 107,226
 3，000（＠above grade）

The following mickinutes aru based on：
（a）Matal priees an usad in the foregokag oalaulationa．
（b）Wet oparating expense total oparating expense lass exploration expense，or

（c）Net smelter value of ore reserven（dil．）．．．\＄35．74
（d）Nat＂zecovaruble＇ponitive＇＋＂prolatia＂ ex รeserves．．． 24,000 dry tent
（b）Mill throughmpist constant a ．．．．．．．．．．．．．．．．．．3，006 dry tonn per mo．
（4）Continuation of exploration a min．monthly advance of $100^{\circ}-200^{\circ}$ on Latersile and crowseut 51000^{\prime} on Ais．driling．
（8）Curxentiymestiv．wintnman＇iffe＇of ore reserves $m 8$ monthe．
（h）Curxently－estin．Life of positive + probuble $4{ }^{\text {＇mhort tarm }}$ poseible

（with exploratory dimend－drililwg e $1000^{\circ} / \mathrm{mo}$ ，© $\$ 6.50 / \mathrm{ft}$ ．）
N．s．v．ore silled． $\$ 35.74 / 4$
maploracion sxpenat per ton ．．．．\＄3．83
Net Operatins tupanse per ton ．．．． 820.25 24．08／4
Crase Oparating Proftt 除11．66／2
Grose Operatiug Profit on 24，000 tone $\$ 279,840$
Lese B．E．Miniag Tam。 $-25,484$
Net Operating Profic on 24,000 tons \＄254， 356
Lesat gal．of pre－production loan． 240，000
Grose saraings \＄14． 356
BSEMANE B－Zos postible 14 maonth Produtcion Pariod
（With exploratory laternle Es－auts $200^{\prime} / \mathrm{mo}$ 。 $\left.847.50 / \mathrm{ft}.\right)$（with exploratary diamond－drililiag a $1000^{\prime} /$ mo．e $5.50 / \mathrm{ft}$ ．）
M．S．V．ore willeal $\$ 35.74 / 2$
Exploration Erpente per ton ．．．．\＄3．33
Wet Operating zxpense per ton $\ldots .0$ ． 820.23 $25.58 / 2$
Cros：Operating Profit $\$ 1.0 .16 / 4$
Grose Operating Profit on $14 \times 3,000$ tons \＄426，720
Le＊＊3．C．Miniag Tax（ 1 year $+1 / 6$ year） － 37.572
Net Operating Prosit on 42,000 tons 令389，048
Less：3al．of pre－production loan $=\$ 240,000$ toyalty on（14－8） 6 months $=54,000$ 8294，000

sswane C. - for posatble 18-nonth Protuation Pariod
 1000' (\$6.50)
Gross Operating Prolit. \$10.16/4
Growe Opuratiag Proinit on 18 n 3,000 tone \$348,640
Lan B.C. Nining Tas (1 year $+1 / 2$ year) $-49,860$
Wet Operatiag Profit on 54,000 tons 4988,780
 Royalty on (18-3) 10 momths = 90,000 $\$ 330,000$
Grose : Eaminge $\$ 168.730$

The writer considers the above estimaten of grose earminga to be anfely consexvative. There is a good chanee that they would be dig" afficantly higher if nsw ore discoverien neduce the operation" prosent dependence on pillars and pariphervi ore blocke, which tend so incxesse dilution of the mili-feed. Ala, an up-turn in matal prices may be axpected by the fall of 1972, if observations by British Matala Corp. prove to be correct (ref., C.C. Wewn letter No, 16; 1972).

EXPLORATION POSSIBILTXME

Some of these have alxendy been noted in the preceding text but, for convenience of reference, are included in the following teat:

A- Short Tax

2. Up, and downdip extensions of the current vest ore zone.
3. Weaterly axtension of the above some.
4. Up, and down-dip axtensions of the current east ore zone.
5. Wos. extenaion of the lode, in the vieinity of the anticipated sharp bend to an easterly atrike.
6. Westerly extension of the lode possibly ($500^{\circ}-1000^{\prime}$) so interval containing the anticipated aoutherly defiection to a W.S.W. atrike.

 horisen of the caraatson 3480 tumala, and expected at 2000° -

3. othar lodien elthin ehe propurty - epeetictcally winaze they
 intervalis of the slocen Folit.

