800579
 $92 \mathrm{H} / 16$

NITROCELL CAEADA LTL.,
Hill Grovp
Micola Mining Division
B.C.
July 28, 1972 W.G. Hainsworth P.Eng.
Introduction Pg. 1
Sunmary \& Conclucions 1
Recomuendations 2
Location \& Access 4
Property 4
Topography 4
History of the Area 5
Geclogy 6
Showings 7
Certificate 10
MAPS
Claim Lccation Following Pg 4
Surface Showings 6

W. G. Hainsworthe
 CONSULTING GEOLOGIST

INTRODUCTION

At the request of Mr. V.M. Prescott, managing director of NITROCELL CANADA LTD., this report has been prepared for the company concerning their recent claim block acquisition in the Aspen Grove area of British Columbia. The information contained herein is based on intensive study and evaluation of geological data pertaining to the area in general and information obtained during a visit to the property on November 22 nd 1971.

The property is a copper prospect located in the Nicola Mining Divisjon of British Columbia.

SUMMARY AND CONCLUSIONS

The twenty HILL clains of NITROCELL CANADA LTL., are located in the Nicola volcanics close to the contact with the Pennask Batholith.

Two sets of fracture systems, almost at right angles to one another, run to copper mineralization at the intersection of their planes. Mineralization may, or may not, continue beyond the furction. At the present stage of the property's development it is not known which of the systems was the more responsive to the mineralizing conditions.

Three adits, tine of excavation unknown, have been driven on several of these shear structures along the sidehill of a ridge. 'ine shears, as mentioned, are receptive to copper deposition in the sulphide and oxide versions. Assays taken from two of the adits by the writer ran good copper grades with weak gold and silver analyses.

The presence of copper, the strong structural design, and the favourable geological environnent, all are factors which combine to warrant an intensive investigation of the property. The goal could be that of an undereground high-grade copper operation. All investigation should be geared to thet possibility.

RECOMESOATIONS

The property chould be examined through a two stage program. The first stage would be a reconmiance program completely covering the twenty clatm searching for targets. With the sucessful completion of this phase, the second stage would be the determination of the dimensions of the targets.

The first stage would utilize all surface surveys designed to show the presence of sub-surface mineralization ard structure. For this purpose geochemical (soil analysis for copper) and geophysical (UM 15 for structural interpretation) surveys should be run along prodeterained surface lines. In ordex to outline as may as possible shear intersections it is recomended that the lines be closely spaced, in the order of 200 feet. This tight gedet spacing does not pose an expensive operation due to the opentess of the werrajn. It is also hichly recomerded that a gealogical survey be included at triss point.

Tho aecond stage would be diamond drilling of the better targets resulting from the earlier phase. This initial drilling could well be expanded as taregets proved thenselves.

A later stage, and not elaborated upon at this point in tire, would be madecround exploration of the targets by eanes of adits.

An approximate buget for tho above recomendations is preserted.
stareI
Line Cutting:
31 Ine for 7500 each $\quad=232,500$ foet
I bace line for $6000=6,000$
2 tie linea fon 6000 each $=22,000$

250,500 feet or 47.5 miles
47.5 miles line work $360 /$ mile
$=\$ 3.750$
Sonl Sompling:

F.M. 16 Survey:
187.5 mile of readings $860 / \mathrm{mile}$ $=$ \$ 2,750
Geological Survey:
47.5 miles of mapping © $\$ 50 /$ mile $=$ 2,375
Interpretation \& Consultation $=$ 1,000
Contingencies 10% $=\quad$ J.,575
$\$ 16,700$
Stage 71Diamond Drilling:
5000 feet (63 $\$ 10 /$ foot $=$
\$ 50,000
Cone Analysis: $=$ 3,000
Interpretation \& Consultation $=$
2,000
Contingencies 10\%$=\quad$ 5,500
From the above figures it can be seen that the property can be thoroughly exsmined in two stages for experditures slightly over the 975,000 figure.

Juily 23, 1.972
Yancouvor, 13.C.
H. G . Hainsworth P.Eng.

bocation 6 nocess

The clatn block line 18 miles acuthenst of the village of Moritt. Its
 Lengitude. The N.T.S. lucation of the proparty is $92 \mathrm{H}-16$ e.
necess to the cletms is mode at a point 15 miles somth fron heritt on Higtway " 5 . Thfs eastorly entry, just teath of Courtney lake, is a bypioal dint road of this dyy belt area which is used by tenching, logsing ond mixine personnel. The road cata through the nothwestern portion of the clatm group ile miles fron tho man highoy.

As neighvowrs, Eothehen Copper nas a large block of claims to the southuast of the NTROCELL block. To the north and northeret lie large clain erours belonedng to Intermational Marinera Resources Ltd.

Etopraty

The NTPROCELL CANAD claia biock locatod in the Nicola Mining Division of Bratboh Columbin is composed of thenty (20) contigucus claims hald by Wifht of location.
 B.e.

Suftejent ascosmmont wort has becn moorded agamst the clains to hold twom in pood standing foe a year fron then ordomi rocowang data.

The duirs wero rocoded in tho lonett wame Rocoders office on 20029. 997.

The clains:
 umbl Amal 9, 2473.

Troomemy

starting in the western half, approximately 3900^{\prime} above sealevel, to a height exceeding 4400^{\prime} along the eastern boundary. The claims ile along the northwestern flank of a two mile long ridge which peaks in the 4900^{\prime} elevation.

The ground is typical of this dry belt area being predominately rolling pasture lands. Little timber is present except for small clumps of spruce, pine and $12 w$ normally located near low swampy areas.

The overburden does not appear to be very thick. The amount of rock exposures is modest due to the persistent but thin soil mantle.

HISTORY OF THE AREA

The Aspen Grove area is an integral portion of the well-established Princeton-Merritt-Kamloops copper belt. The mineral deposits of this area are represented by a number of diverse types. The principle copper deposits occur as vein structures, shear zone fillings and disseminated material.

The quartz-diorite intrusive mass which covers most of the northeastern portion of the Princeton map area has seen sporadic but intensive investigation during the last century. The early gold and platinum placer miners working the Tulameen and Similkameen Rivers and their tributaries in the early 1860's edged further inland to this large intrusive body. Small lode deposits along the creek beds were the initial discoveries. However this area despite scattered showings of base and precious motals was singularily unsuccessful in developing a producing mine during the first half of the Twentyth century. An exception to this was the Copper Mountain deposit near Princeton.

In 1964 Brenda Mines started their field program on one of the better known old properties. The program eventually led to the proving up of a large tonnage porphry copper orebody. In 1968 Newmont of Canada using a new approach to the old Copper Mountain property developed a large reserve of low grade material at the present Ingerbelle Mine.

GROLOCX

Geologically the large area under consideration covers part of the western margin of an intrusive mass that connects the Okanagan Batholith to the south with the Pennask Batholith on the north. Several offshoot plugs of the batholiths lie peripheral to the main bodies. Between the two batholiths and intruded by the connecting mass are stratifiedcountry rocks of the Nicola Group, which occur partly as an uninterrupted expanse to the west and partly as fair-sized isolated bodies further east within the intrusive structure.

The Coast intrusions, of which the Okanagan and Pennask batholiths are prodigies, are believed to represent a protracted and, possibly, intermittent period of intrusion continuing from Jurrassic through to the Upper Cretaceous period. Three phases of this intrusion have been recognized. Government mapping of the area shows the various types to cut one another whereas in other localities the contacts are gradational. Characteristic of the three phases is a tendency to be acidic, carry large amounts of free quartz and to maintain a composition between granodiorite and quartz diorite.

Structurally the formations of the Nicola group have been folded into tight, north to northeast trending anticlines and synclines. Faulting is well developed in the area extending north from Princeton but is not as much in surficial evidence in the Aspen Grove area. The fault action, thought to be pre-intrusive, has had later movement which affected the Jurassic intrusive bodies.

The NITROCELL group of HILL claims lies a mile and a half west of the western boundary of the Pennask batholith.

The claims are represented on government geological maps as being completely underlain by Nicola volcanics. The writer verified the presence of these volcanics during the examination. In addition some granitic material was

identified in one trench.
The general trend of the fracture systems in the volcanics on the NITROCELL claims is north to northwest with steep dips to the east. A strong set of northeast trending fractures also exists.

SHOWINGS

The showings on the property consist of three adits and several trenches. The adits date back several decades at least whereas the trenches have been put in quite recently.

The three adits are located at several points up the side hill of the ridge with the two trenches being at higher elevations.

Adit \# 1: This adit is located a short distance from the road at valley level (3975 ' elev).

The host rock is Nicola andesites of a dark greenish to black colour in an aphanitic texture. The adit has been driven over a hundred feet into the sidehill on a bearing of $S 40^{\circ} \mathrm{W}$. Objective of the drive was a shear structure which resulted from two cross cutting fracture zones. The fracture zones run 120° and 35° azinuth. At their junction a strong shear results along the 35° set, which dips steeply to the east. Mineralization in the form of chalcopyrite and its accompanfing oxide form, malachite, prevails at the intersection of the fractures. Strong oxidation is present. The width of the shear varies from $12^{\prime \prime}$ to $18^{\prime \prime}$ but mineralization often runs into the wall rock.

At a point 20 feet in from the portal the writer chipped a. 3 foot sample (\# 142152) from the back across a highly oxidized zone. The assay:

$$
\text { Cu: 2.58\%; Au: Tr; Ag: } 0.15 \mathrm{oz} / \mathrm{t} \text {. }
$$

At another point in the same adit 30 feet from the face a 2 foot sample (\# 14253) was chipped from the back across weakly mineralized shear rock. The assay:

$$
\text { Cu; 2.62\%; Au: } 0.02 \mathrm{oz} / \mathrm{t} ; \quad \mathrm{Ag}: 0.96 \mathrm{oz} / \mathrm{t} \text {. }
$$

Adit / 2: This adit is located some 200 feet further up the sidehill at the $40500^{\prime \prime}$ elevation. It has been driven for 35 feet on a south bearing. Again the point of interest is a weakly mineralized shear varying from $2 \frac{1}{2}$ feet at the portal to $2^{\prime \prime}$ at the face. No sample was taken from this working.

Adit \# 3: This cribbed structure is located 200 feet further up the hill at elevation 4150^{\prime}. The 30 foot drive shows a steep dipping mineralized shear striking $\$ 40^{\circ}$ E. A high-grade ore dump at the portal yielded the following from a grab sample:

Cu: 4.84\%; Au: $0.02 \mathrm{oz} / \mathrm{t}$; $\mathrm{Ag}: 1.36 \mathrm{oz} / \mathrm{t}$.
Trench \# 1: Thirty feet further up the hill from the last adit and at the 4175^{\prime} elovation a trench has boen ripped through the shallow overburden for several hundred feet. The trench shows a strong oxidation effect and is well stained with malachite and small amounts of azurite. Some sulphides, chalcopyrite and pyrite, were noticed but were not strong. Unfortunately the ripped rock was not cleared nor was the ripping taken below the oxidation level in order to show trench walls. A narrow dyke of fine-grained, acidic material appeared to cut the ripped area.

Trench \# 2: At the 4350' elevation another trench showed very little mineralization.

With reference to sketch showing the adits etc, it would appear that \#l and \# 3 edits are on diametrically opposite shears. Presumably the stronger and better mineralized of the two sets at the portal of each adit decided the direction that that particular drive would take. In the case of \#2 adit the writer postulates that at the portal the streagth of the shears and the mineralization was confusing to the miners so they drove due south. As they progressed south the shear would naturally weaken as they drove across and
out of the strikes of both fracture zones.
It should be noted that copper oxides are present in all adits and trenches. This could be due to either an oxide zone extending an unknown depth below the bedrock or to the breakdown of chalcopyrite brought about by the time element involved since the adit and trenches were opened.

The survey of the adits and trenches was by rough pace and compass during the examination.

The assays were for total copper and would include the oxide copper in the final figure. Assaying was done by General Testing Laboratories of Vancouver.

Respectfully submitted,

July 28, 1972
W.G. Hainsworth P.Eng.

Vencouver, B.C.

W. G. Hainsworth
CONSULTING GEOLOGIST

CERTIFICATE

I, WILLIAM G. HAINSWORTH, HEREBY CERTIFY:
1.

That I am a geologist residing at \#303-2187 Bellevue St., West Vancouver, British Columbia.
2. That I am a graduate of the University of Western Ontario, London Ontario with a B.SC. degree in Monours Geology and am a registered menber of the Association of Professional Engineers of the Province of British Columbia.

That I have no financial interest, either direct or indirect in the subject properties, in the securities of Nitrocell Canada Ltd., nor in that of any of its affiliates and that I do not expect to obtain any such interest.
4. That the information contained in this report is based on my personal knowledge of the general area and specific examination of the property pertained to in the report on November 22, 1971.

Vancouver, B.C.
July 28, 1972
W.G. Hainsworth P.Eng.

Nabian -zetine

TO.

- 7719 - 170 Cramilie

Vancouycr 2, B.C. \qquad
\qquad
 1001 EAST PENDER STREET
PHONE t604• 254-1647
TELEX 0.5-5075:2

721102633
Flle No.
Troraber 26, 2972
, . .
general testing Laburataries division

VANCOUVER E. B. C
-

Gold whinturted at

Ac. Kencte recam two weeks
Fulth etand atree mentro

©

Crettifitate of Agatu

GENERAL TESTING LABGRATIRIES DIVISIDN

 superintendence conpayy (canada litd.1001 EAST PENDER STREET VANCOUVER 6, B. C. PHONE (604) 254-1647

TELEX 04-507514

7111-2413
FILE No.
Movember 26, 1971 DATE

3 ore

SH: AT

Note: Rejects retained two weeks
Pulps retained three months
Pulps and rejects may be stored for a maximum
of one year by special arrangement.
© ○ P V
Gold calculated at $\$$
per ounce

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATEMENTS. CONCLUSION OF EXTRACTS FROM OR REGARDING OUR REPORTS IS NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

CTA
Hra EaG. Hativalotich
TO- $3719-470$ Granvilic
Tancourer $2, B$ B.
\qquad

Crtifftrate of Absum

GENERAL TESTING $\angle A B D R A T D R I E S ~ D I V I S I D N ~$

1001 EAST PENDER STREE
PHONE 1604: 254-164
TELEX 04-507514

7232-2hㄴ․․

File No.
Moveaber 26, 2972

3 ore

Golu ... whatad at S

Nore: Refeer retamed two weck.
Pulps tctained tiret month

at enc yiat on spianal arrangement.

