Progress Report on Exploration

The Manson Creek Property

Omineca Mining Division

British Columbia, Canada

<u>Location</u>

Latitude: 55 37' North Longitude: 124 24' West

N.T.S.: 93N/09W

<u>Claims</u>

Rare:	1	to	20	units
Rare #2:	1	to	18	units
Wolf:	1	to	14	units
Wolf #2:	1	to	20	units
Wolf #3:	1	to	20	units
Wolf #4:	1	to	20	units
Blue:	1	to	18	units
Blue #2:	1	to		units
Grouse:	1	to	8	units
Grouse #2:	1	to	20	units
Eat:	1	to	15	units
Trap:	1	to	10	units
Ice:	1	uni	t	
Ice #2:	1	uni	t	

Report for:

Diamond Hill Mining Corporation 300 - 789 West Pender Street Vancouver, B.C. V6C 1H2

by

W.G. Hainsworth, P.Eng.
W.G. Hainsworth & Associates Ltd.
570 - 789 West Pender Street
Vancouver, B.C. V6C 1H2

Vancouver, B.C.

August 31, 1989

TABLE OF CONTENTS

Page No.

SUMMARY		1
INTRODUCTION		3
LOCATION AND ACCESS		4
PROPERTY		5
HISTORY		6
1989 WORK PROGRAM		7
REGIONAL GEOLOGY		9
LOCAL GEOLOGY		11
MINERAL OCCURRENCES		13
GEOPHYSICAL SURVEYS	Approach	15
	Manson Grid	16
	Wolverine Grid	17
	Grouse Grid	18
DISCUSSION		19
CONCLUSIONS AND RECOMMENDATIONS		21
COST ESTIMATES		23
EXPENDITURES TO DATE		25
BIBLIOGRAPHY		26
CERTIFICATE		27

Appendices:

Appendix "A"	Geochemical Data Sheets
Appendix "B"	Certificates of Analysis

Figures:

1

Figure 1 - Location Map Following Page 4 Figure 2 - Claim Map Following Page 5 Figure 3 - Geology Map Following Page 11 Figure 4 - Mineral Map Following Page 14 Figure 5: Grid Location Map Following Page 8 Figure 6: Grid Geology Following Page 12 Figure 7: Manson Grid - Magnetics Following Page 16 Figure 8: Manson Grid - Magnetics Following Page 16 Figure 9: Manson Grid - VLF Following Page 16 Figure 10: Manson Grid - Geochemical Following Page 16 Figure 11: Wolverine Grid - Magnetics Following Page 17 Figure 12: Wolverine Grid - VLF Following Page 17 Figure 13: Wolverine Grid - Geochemistry Following Page 17 Figure 14: Grouse Grid - Magnetics Following Page 18 Figure 15: Grouse Grid - Magnetics Following Page 18 Figure 16: Grouse Grid - VLF Following Page 18 Figure 17: Grouse Grid - VLF Following Page 18 Figure 18: Grouse Grid - Geochemistry Following Page 18

SUMMARY

The Manson Creek Property, under exploration by Diamond Hill Mining Corporation, is situated 1 kilometer east of the Manson Creek village and 350 kilometers (215 miles) northwest of Prince George, British Columbia. The area is primarily known for placers whose origins could be local.

The Diamond Hill Property adjoins ground controlled by Chevron Exploration of Vancouver who have been exploring their ground for the last three years. In addition, the company has recently secured ground vacated by Esso Minerals upon which a known lead soil anomaly exists and from which silver assays have been cut from trenched small lead veins.

Structurally the Manson claims are interpreted to sit astride the Manson Creek Fault Zone. This structure, coupled with its associated gabbro intrusive, has been identified in geophysical surveys which have been recently concluded. The structure is considered to have provided ground preparation for the ensuing mineralizing solutions. The geophysical surveys identified the carrier of possible mineralization but the vegetation sampling of tree leaves and stems failed to confirm the presence of mineralization. The dictates of the season favoured this form of sampling.

The initial exploration program on the Manson Creek claims has included biogeochemical and geophysical evaluation of the fault zone in two locations within the claim group. The program under the direction and supervision of John Hajek, Zelon Enterprises Ltd., collected 133 tree samples and 19 rock chip and water samples. In addition, geophysical surveys were carried over hip-chained and flagged lines totalling 106 kilometers for the magnetic and 66.3 kilometers for the VLF electromagnetic surveys. The interpretations of the magnetic and electromagnetic surveys over the three grids is displayed in Figures 5 through 17.

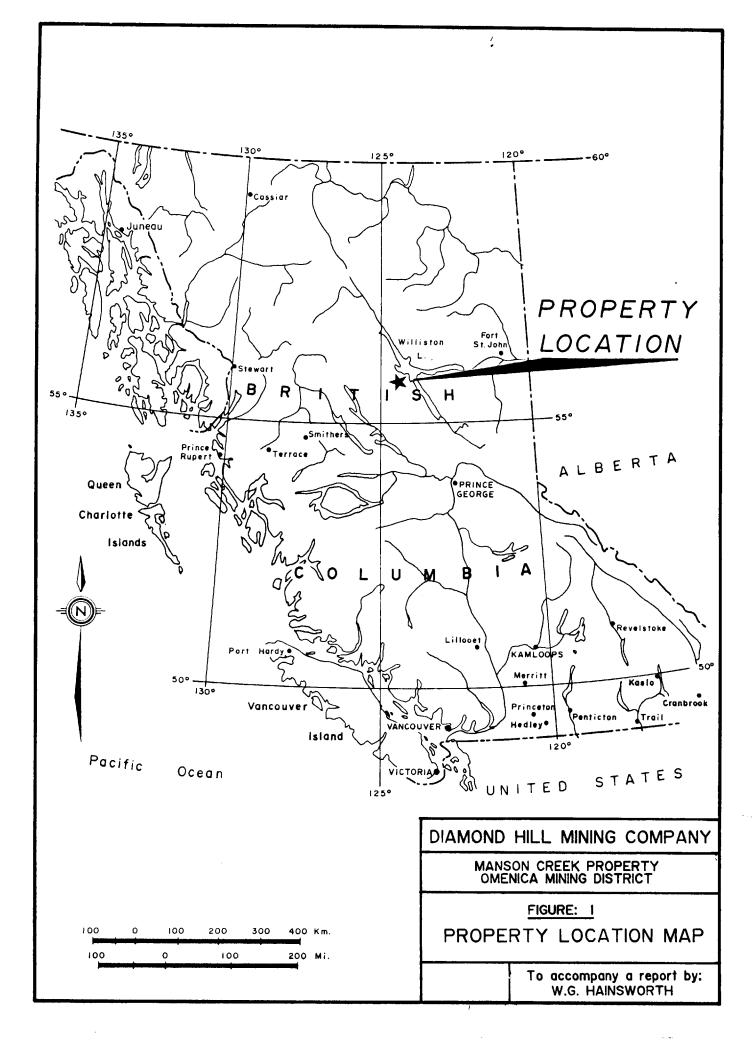
The writer recommends success contingent staged surface plus drill work for testing the structural, mineralized and soil anomalous situations on the Diamond Hill Property. A recommended Phase II detailed surface investigation program of geophysics plus limited soil collection and trenching is estimated to cost \$103,000. A contingent Phase III trenching and limited drilling program is estimated to cost \$135,000. Contingent on the success of the Phase III program, a Phase IV, 10,000 foot reverse circulation coupled with a diamond drill program, is estimated to cost \$300,000.

geophysics plus limited soil collection is estimated to cost \$103,000. A contingent Phase III trenching and limited drilling program is estimated to cost \$135,000. Contingent on the success of the Phase III program, a Phase IV, 10,000 foot reverse circulation coupled with a diamond drill program, is estimated to cost \$300,000.

INTRODUCTION

At the request of Mr. Alan Yong, President of Diamond Hill Mining Corporation, the writer has reviewed the results of the initial exploration program recommended by the writer (Hainsworth, 1989) and conducted by Zelon Chemicals Ltd. on the Manson claims near Manson Lake, British Columbia.

This report summarizes the initial geophysical and geochemical exploration of the Manson Property as outlined in the following reports prepared for Diamond Hill Mining Corporation:


Hajek, J.H. 1989, Geological and Geochemical Prospecting for Diamond Hill Mining Corporation.
Appendix MA-5 - Wolverine Grid Geophysical Data Base.
Appendix MA-6 - Manson Grid Geophysical Data Base.
(Both Appendix addendums to initial report)

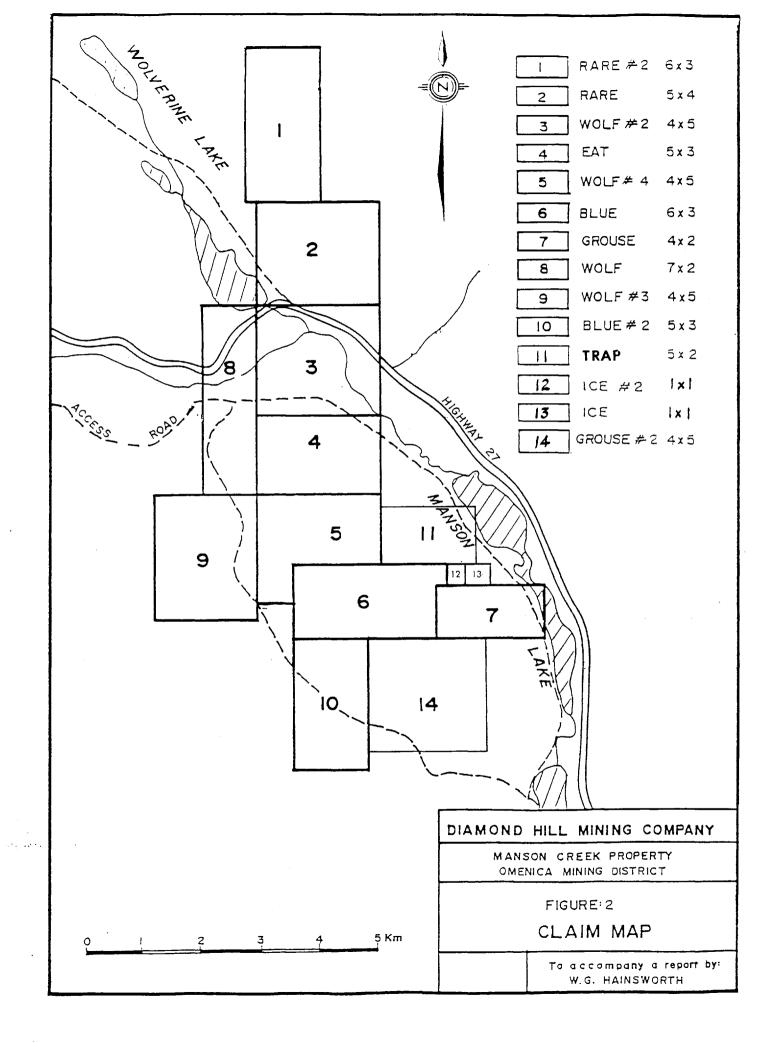
and provide the writer's recommendations for further success contingent, staged exploration of the Manson Property.

LOCATION AND ACCESS

The claim group lies 0.6 miles (1 kilometer) east of the village of Manson Creek, British Columbia in the Mining Division of Omineca. By highways 27 and 16, Prince George is 215 miles (350 kilometers) to the southeast. Prince George is 490 miles (786 kilometers) north of Vancouver. Access to the claims is quite handy as highway 27 passes through the northern portion of the property while several gravel roads make other claim areas easily reached. See figures 1 and 2.

The Diamond Hill Mining Corporation's claims are in unsurveyed territory with the claims centering on north 55° 37' latitude and west 124° 24' longitude. Its National Topographic Series location is 93N/09.

PROPERTY


The Diamond Hill Mining Corporation's "Manson" claim group is located in the Manson Creek area, north central British Columbia. Manson Creek is approximately 215 miles (350 kilometers) north northwest of Prince George.

The property consists of 14 contiguous claims containing a total of 200 units. They are arranged in a north-south fashion across the structural trend of the area. Refer to Figure 2. In total, the group occupies approximately 5,000 hectares (12,355 acres) of area extending north-south for some 9.0 miles (14.5 kilometers) and covers an east-west section of 5.0 miles (8 kilometers). During the recent exploration program, four claims totalling 32 units were staked and added to the Company's property portfolio. The staking was done for additional protection. In addition, one claim, the Grouse #2, is said to have anomalous soil conditions plus silver mineralization contained within it.

CI	ai	m	s

<u>Claim Name</u>	Number	<u>Units</u>	Expiry Date
Rare	9425	20	May 24, 1989
Rare #2	9426	18	May 24, 1989
Wolf	9427	14	May 24, 1989
Wolf #2	9428	20	May 24, 1989
Wolf #3	9429	20	May 24, 1989
Wolf #4	9430	20	May 24, 1989
Blue	9431	18	May 24, 1989
Blue #2	9432	15	May 24, 1989
Grouse	9433	8	May 24, 1989
Eat	9434	15	May 24, 1989
Trap	N/A	10	N/Á
Ice	N/A	1	N/A
Ice #2	N/A	1	N/A
Grouse #2	N/A	20	N/A

Since the field work of February - March, 1989, the Company has recorded a sufficient amount of work to keep the initial claims in good standing for a period of three years. It requires only the report to be submitted by Zelon Chemicals to the Ministry to make the assessment registrations valid.

- .

HISTORY

In 1857, placer gold was discovered on lower Fraser and Thompson Rivers. The discoveries spread northward through the Cariboo with the Omineca placers becoming prominent by 1871. Gold valued at more than \$400,000 is reported to have been produced in the Omineca district in 1871, most of it coming from Germansen and Manson Rivers. From 1880 interest waned as the creeks became exhausted. Despite a renewed attempt from 1897 to 1912, the gold production remained low with interest falling into the doldrums in the succeeding years. From 1933 to 1941, the area experienced a revival with larger equipment being moved in. The war effectively ended interest in the area.

Lode exploration did not take hold in the area until the arrival of the railway at Vanderhoof going on through to Prince Rupert in 1914. Sporatic discoveries including gold, silver-lead-zinc, copper and molybdenum deposits were made through to 1936. The Geological Survey of Canada began mapping of the area in that year. Numerous mineral occurrences were discovered or examined by the Survey. Cominco brought Pinchi Lake mercury mine into production in 1940. The mine operated until 1944 with heavy production. It was reopened in 1968 with trackless equipment but, like 1944, closed down in 1975 due to the depressed price of mercury. It has not reopened since that date.

There has been no unusual mineral discoveries in the area in the intervening years.

1989 WORK PROGRAM

A total of 132 tree samples of needles and stems of 1 and 2 year old growth were collected over the three grid areas. The objective was to establish reconnaissance data over the property. As opposed to soil collection, this style of investigation was chosen due to the heavy snow conditions in the area during the survey making a program of this nature less costly and less time consuming. In addition, some 20 samples of rock outcrop and streams were collected where exposure permitted. The vegetation samples were analyzed for gold and some 15 other elements. (Refer to Appendix B.) Unfortunately, the vegetation analysis did not include silver, mercury, lead or zinc. Descriptions of the samples taken are located on the field sheets as Appendix A.

As the surface was covered by a heavy blanket of snow and as it was deemed necessary by the Company to have its assessment work ready for filing by the middle of May and as the snow cover would not be gone by that time, the Company agreed to the vegetation survey approach.

In analysis alone, the Company paid Chemex of Vancouver the sum of \$3,950.

Since the claims during the Phase I program were under snow, a geological survey was impossible or would be of a very restricted value therefore the subsurface geology of the Manson Property is mainly interpreted from electromagnetic and magnetic survey results conducted over the claims. Because of the size of the property, certain sections thought to contain underlying anomalous conditions of a structural or geological nature were singled out for investigation. The interpretation of the data collected was not advanced by the contractor and is therefore the writer's inferences. These interpretations are shown on separate plan maps of the grids by the writer. The contractor supplied just profiles and then only 80% of the total lines run.

Magnetic geophysical surveys were conducted in order to define subsurface rock units and geologic structure of the grid areas on the Manson Property. Approximately 106 line miles of magnetic data were surveyed using a portable proton precession magnetometer MP-3 coupled to a 1GS-2 integrated geophysical system. The system

- 7 -

used by the contractor was leased from Scintrex of Vancouver. In addition to taking and recording magnetic data, the field instrument also carried a VLF EM-16 circuit. Readings were taken and recorded at each station concerning the magnetic and the electromagnetic conditions at that point. In addition to the field magnetic recorder, a base station recorder gave duirnal magnetic variations for later corrections. The field readings were assisted by offset readings some 15 meters each side of the line stations (either north-south or east-west). The line stations were at 25 intervals. In essence this corresponded to two additional lines with readings paralleling the original line.

Some 106 kilometers of magnetometer surveyed lines produced a data base which confirmed the regional northwest magnetic trend.

To complement the magnetic data, a VLF electromagnetic survey utilizing an EM-16 tied into the Scintrex system was run over an aggregate 66.3 kilometers of line miles with 2,652 station measurements. The instrument used initially was a Geonics EM-16 with eventually the Scintrex coupled unit supporting it. The electromagnetic data was recorded then placed on Fraser-filtered profiles from which the author transposed them onto plan maps. The quadrature has been given attention in the interpretation.

The cost of the survey (magnetic and electromagnetic) is based on labour charges and lease costs. The instruments were run by a geologist and two untrained helpers. The contractor does not bill himself as a geophysicist, only a geochemist.

REGIONAL GEOLOGY

The Manson Property of Diamond Hill is located along a major break within the area the Manson Creek Fault. The regional geology has been mapped by several prominent geologists of the Geological Survey of Canada and the B.C. Ministry of Energy, Mines and Petroleum.

The general geology of the area is that of a contact fault zone between the Intermontane and Omineca belts of the Canadian Cordillera. In addition, a thrust fault boundary separates the transported oceanic formations of the Slide Mountain Group (Intermontane) on the west from the sedimentary Archean formations and their altered derivatives to the east.

The fault zone separating the two Cordilleran terrains is of a normal fault with a strike slip. It is suggested that this fault obscures the overthrust movement that is obvious in other areas, such as the Rockies further to the east.

The Slide Mountain Group is a recent renaming of what was termed the Cache Creek Group in this particular locality. They are late Paleozic formations composed of delta or oceanic transported sediments.

The Omineca crystalline belt contains thick beds of quartz rich sedimentary formation with thin interbeds of limestone and basic volcanics. They have been designated as the Ingenika Group of Precambrian age. Later alteration accompanied by granitic intrusions have so deformed and hidden their original lithology that the altered beds have been assigned to the Wolverine complex, a metamorphosed subsection.

The formations trend generally northwest with variable degrees of dip normally to the west.

Within the area the major structural disruption is the Manson Creek fault. This structure, a zone of parallel fault situations, extends a recorded 70 kilometers along a

northwest strike. The zone is thought to extend westward from the base of the Wolverine Range for some 5 kilometers.

Mineralization within the area is both placer and lode with the former being more prevalent in production. Mineralized lode deposits are normally associated with fault structures.

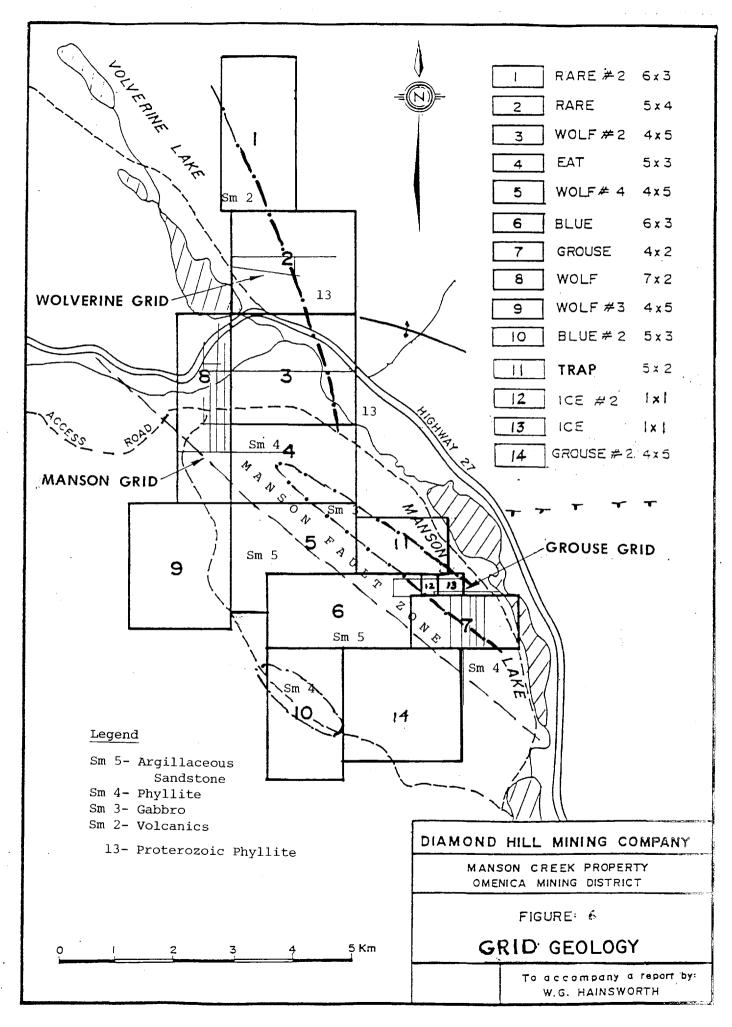
LOCAL GEOLOGY

Latest mapping of the Manson Creek area was done by F. Ferri and D. Melville in 1987 for the B.C. Ministry of Energy, Mines and Petroleum. The writer, unable to see the property due to winter snow conditions, makes ample usage of their descriptions and phraseologies as applied to the formations of the district and the property in particular. Geology, utilizing their terminology and location, is shown on the general area plan of Figure 3. The specific references to the geology of the various grids are shown in Figure 6.

The term "Slide Mountain Group" has been applied by the above authors to a southern extension of Paleozoic sequences as witnessed and mapped in the Omineca Mountains north of the present area. They are thought to be correlative with the Cache Creek Group as previously mapped by Armstrong in 1944 (Map #876A). The formation as seen by the various authors is composed of sedimentary phyllites and argillites, greywackes and cherts interbedded with volcanics, varying from felsic to mafic, coupled with volcanoclastic tuffs; mafic and ultramafic sills are also identified within the pile. It was a case of a finer division and the application of a new title to the Group by the later authors.

The bulk of Diamond Hill's claims lies within this latter Group with an alternating sequence of phyllites, argillites and volcanics extending in a northwest fashion across the claims. They are flanked in the south (Claim Blue #2) by granites of the Germansen batholith and in the north (Claims Rare and Rare #2) by older Precambrian sediments identified as the Ingenika Group. Armstrong had identified these formations as more metamorphosed sedimentary equivalents of the Wolverine Complex. (See figure 3)

Of strong importance is the structural aspects of the claims. Both sets of authors agree on the placement, location and importance of the Manson Creek Fault. This fault structure is a zone, or string of parallel faults, extending from Gaffney Creek, 40 miles northwest through the village of Manson Creek, to Nina Creek. From the Omineca River north (at Germansen Landing) it forms the contact between various


MANSON CREEK REC	
WOLF RIDGE SM2 13	W2 A
SM4	(A) CARMELLA Ool
SM4	
B SM 4	
CREEK	SM2 12 WI WI WI
QUATERNARY	
Og GLACIAL TILL and ALLUVIUM	3 QUARTZ- FOLDSPAR GNEISS
TERTIARY (?)	WOLVERINE COMPLEX
C INTERMEDIATE to FELSIC FLOWS and DYKES	SCHIST and QUARTZ-FELDSPAR GNEISS W2 INTRUDED by GRANODIORITE and RELATED PEGMATITE
UPPER CRETACEOUS GERMANSEN BATHOLITH: GRANITE and MINOR GRANODIORITE	AMPHIBOLITE and CALC SILICATE GNEISS WI ,SCHIST and QUARTZ-FELDSPAR GNEISS INTRUDED by GRANODIORITE and PEGMATITE
UPPER PALEOZOIC AND YOUNGER SLIDE MOUNTAIN GROUP	A FOLIATED GRANODIORITE and PEGMATITE
SM5 ARGILLACEOUS SANDSTONE	
SM3 GABBRO	
SM2 VOLCANICS	
SMI ULTRAMAFICS: SERPENTINE, TALC-SERPENTINE , and TALC-ANKERITE SCHIST	DIAMOND HILL MINING COMPANY
UPPER DEVONIAN/LOWER MISSISSIPPIAN	MANSON CREEK PROPERTY OMENICA MINING DISTRICT
	FIGURE: 3
PROTEROZOIC	GEOLOGY MAP
INGENIKA GROUP	
	To accompany a report by: W.G. HAINSWORTH

brecciated and silicified rock units belonging to the stratified Slide Mountain formation on the east and rocks of the Takla group on the west. Drag-folding of the beds along Manson River and Nina Creek indicates that the east wall of the fault zone moved north relative to the west wall. Wherever the fault zone is observed the wall rocks across an average width of 200 feet are partly to completely altered to a buff coloured aggregate of carbonate, quartz, chlorite and mariposite. Many of the branch faults along the main fault zone are also marked by carbonatized wall rock. The fault enters the southern part of the claim group through the Blue claim and passes through the extreme southwest corner of Wolf #4 and exists through the northwest corner of Wolf #3.

The presence of a fault structure, presumably part of the greater Manson Creek Fault Zone, which lies just north of the highway and Wolverine Lakes, is a matter of dispute between the two sets of authors. Armstrong locates this fault, albeit mostly inferred along the base of his Wolverine Complex. The fault location, according to Armstrong, passes through the northeast corner of Wolf #2, bisects the Rare claim and leaves close to the northwest corner of Rare #2. These latter rock formations consist of granitoid gneisses and feldspathized quartzites believed to be granitized equivalents of Proterozoic strata. Melville and Ferri place some of the lower grade metamorphic equivalents into the Ingenika Group, while the more intense metamorphic rocks, accompanied by strong deformation, have been assigned to the Wolverine Complex. They move this formation further up the mountain side. However, the B.C. writers do acknowledge the presence of a possible over thrust separating the Slide Mountain Group from the Ingenika suite of rocks. Their mapping shows this structure to be emplaced almost at the same location as Armstrong's northern fault zone.

A fault contained between the two previous mentioned structures arises out of Lower Manson Lake and strikes northwest through the Grouse claim but apparently dies out by the Eat claim's eastern boundary.

MINERAL OCCURRENCES

The property is not known to contain, at present, any economical mineralization. However, mapping of the area by previous writers, notably Armstrong of the Geological Survey of Canada and Melville-Ferri of the British Columbia Department of Mines, have shown numerous occurrences of base and precious metals to occur close by the Diamond Hill claim blocks. The latter authors have identified some 10 mineralization exposures in the vicinity (see figure 4). This is in addition to several placer plays presently in operation in the district.

Location #1. Lies along or close to the east boundary of claim Rare #2. Here pure carbonate and syenitic carbonatite rocks contain disseminated columbite, pyrochlore, zircon and ilmenorutile. The intrusions have penetrated metasediments of the Ingenika Group.

Location #2. This is a similar type showing to #1 lying at the north end of Granite Creek.

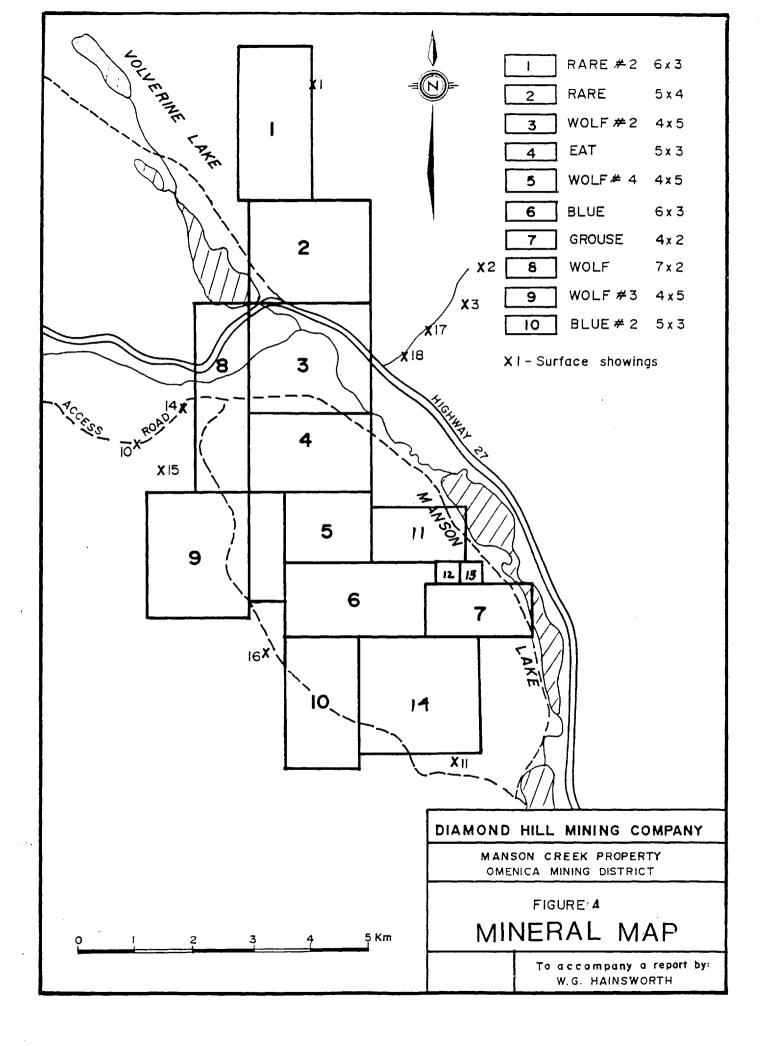
Location #3. Similar to #1 and #2 but located on a feeder creek into Granite Creek.

Location #10. Close to the access road leading into the Wolf claim. It is located west of this claim. Here hydrothermal mineralization has produced mineralized quartz veins and breccia zones along the Manson Creek Fault Zone. Vein structures are hosted by limestones, argillites and phyllites of the Slide Mountain Group. Minerals present include lead, silver, zinc and some gold.

Location #11. Located to the south of the claim group, this vein hosted precious and base metal occurrence lies to the south, or in the hanging wall, of the Manson Creek Fault. This location is not definite and it may well be within the Grouse #2 claims.

Location #14. Similar situation to #10 but located closer to the west border of the Wolf claim. Sulphide bearing quartz veins assay for lead, silver and gold. In the Manson Creek Fault Zone.

<u>Location #15</u>. Similar to the previous two occurrences only located more to the south along the Manson Creek Fault structure. Predominating metals are lead, silver and gold in quartz veins.


Location #16. Lying along the slope fo Blakjack Mountain close to the access road. Here the Slide Mountain group close to the intrusive Germansen Batholith hosts fracture intruded quartz veins in the Paleozoic formations. Lead is strong with gold and silver.

Location #17. Close to Granite Creek. Low grade precious metal mineralization in pyritiferous quartz veins located within the phyllites and sandstones of the Ingenika Group northeast of the Manson Fault Zone.

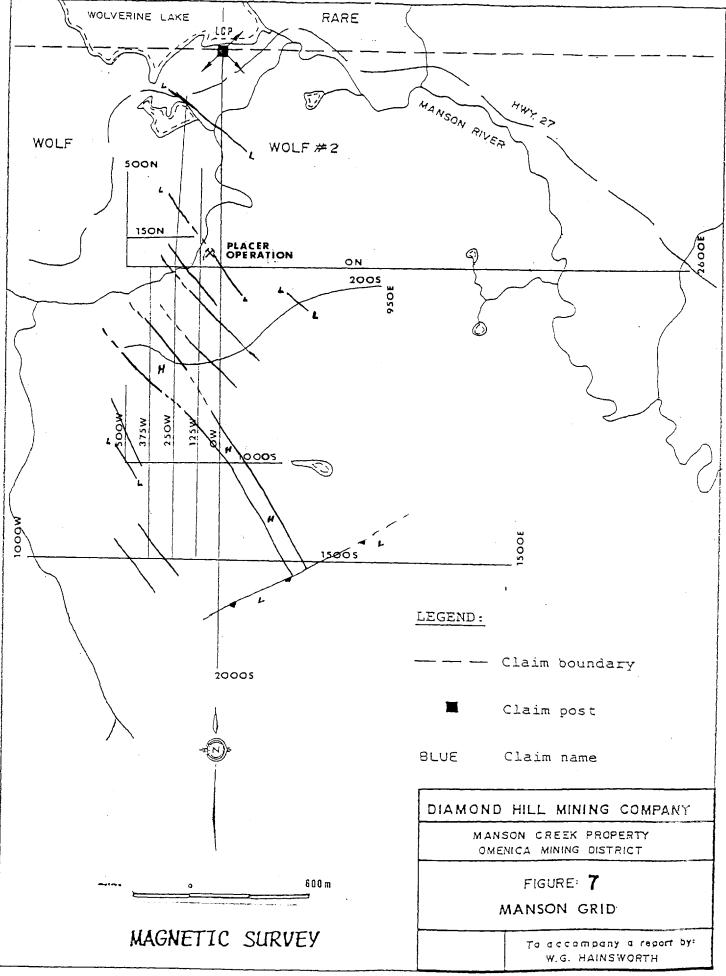
Location #18. Similar to #17 in origin but located further downstream on Granite Creek.

Ferri and Melville in their report state..."The last type (vein hosted precious and base metals) is of widespread occurrence along the Manson Fault Zone, which appears to have localized mineralization in the area, and is presently of interest". Further along they reiterate "Gold, in association with sulphide mineralization, is found in significant concentrations along the Manson Fault Zone which extends northwest of the study area". Of prime importance to Diamond Hill Mining Corporation is the length of Manson Creek Fault which trends through their claim block.

In the Phase I program just concluded, no visible mineralization became apparent, primarily due to the heavy snow cover. The presence of metals, precious or base, is still an unknown factor.

GEOPHYSICAL SURVEYS

Approach


Due to a winter time program, it was decided to investigate certain portions of the Diamond Hill claims. These areas were chosen on the basis of geology and in particular the location of the Manson Creek Fault Zone. The airborne magnetics of these particular sections served as an initial investigative point. As an aside, the airborne magnetic high or low areas were confirmed as to their general location with some lateral deviation in distance. The grids were tied into a distinctive land point, generally an LCP post. Unfortunately the three grids - Grouse, at the lower east end; Manson, at the central west end; and the Wolverine at the north end - were not tied into one another.

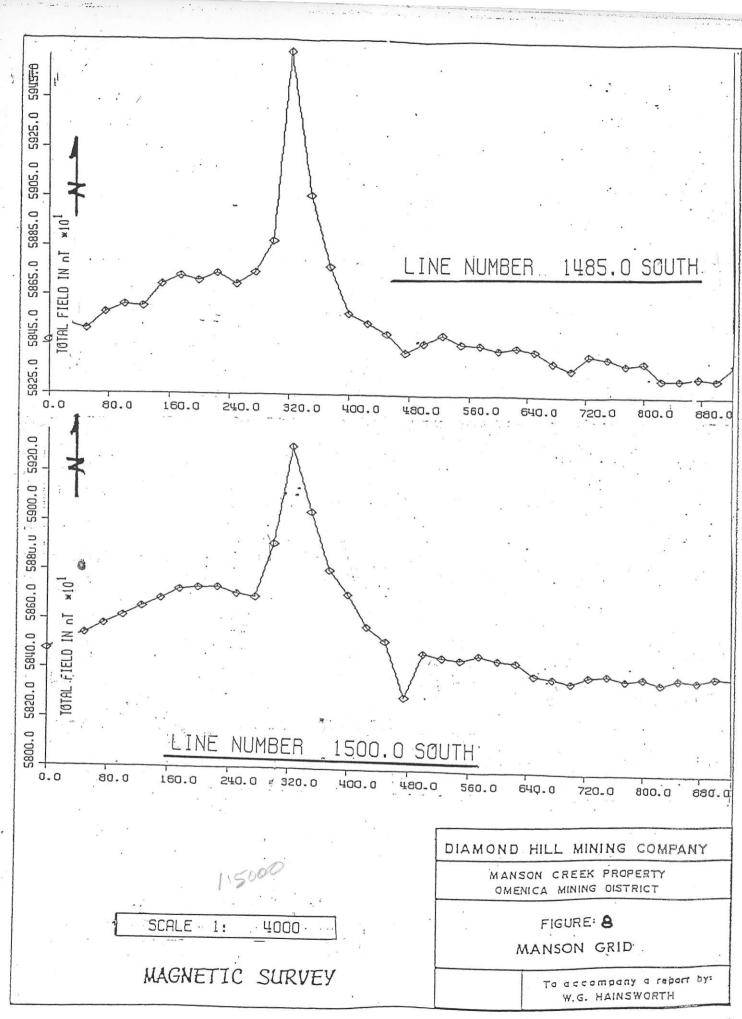
At each station located 25 meters along the grid lines, readings for the magnetic and electromagnetic conditions were taken and recorded either manually or electronically. The parallel stations - those on either side of the line - were taken as a complete line, not as offsets to the main line stations. Daily duirnal corrections were recorded and applied to the magnetic readings.

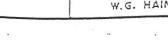
Concerning the EM-16 readings, at each line station two VLF transmitters were recorded of the four available. In the main, the Seattle and Hawaii stations were the primary transmitters. The stations available:

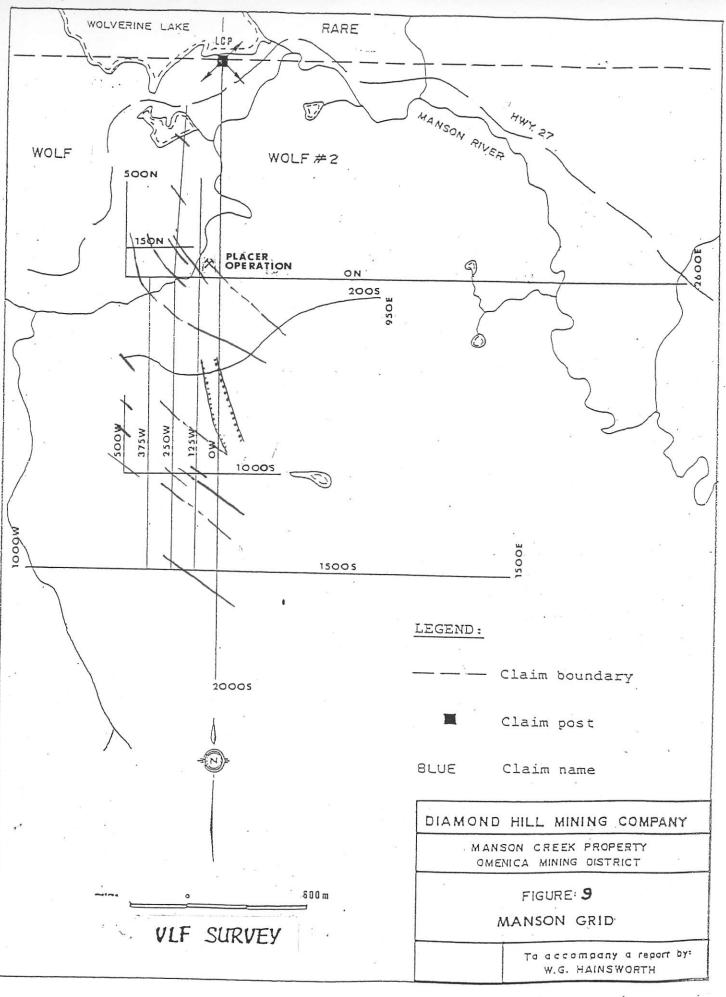
Seattle, Washington (NLK) with output of 125Kw at 24.8 KHz. Lualualei, Hawaii (NPM) with an output of 600 Kw at 23.4 KHz. Cutter, Main (NAA) with an output of 1000 Kw at 24.0 KHz. Moscow, U.S.S.R. (UMS) with an output of 1000 Kw at 17.1 KHz.

In Vancouver, the material was printed out with further data processing and filtering being done by a 386 DPE - multiterm microprocessor. The data was presented to the writer in table form and profiles. The data base is very weighty.

.


,


Manson Grid


Primarily chosen because of the presumed exit of the Manson Creek Fault Zone from the Diamond Hill Property. (See Figure 6.)

The magnetic survey plan (Figure 7) shows a strong consistent high magnetic zone apparently originating south of line 1500S, close to the low magnetics, and striking northwest across the grid. Figure 8 shows the startling conditions on two adjacent lines 15 meters apart. This condition could identify, with an extension of the gabbro (Sm 3) formation which has been mapped by government geologist, as lying just south of this grid. The number of magnetic zones (or conductors) lying north of this gabbro extension exceeds that to the south with the magnetic zones downgrading from 'highs' to 'lows' as they progress further north. This would indicate a tapering off or gradual dying out of the gabbro formation to the northeast south of the zone. The magnetics indicate several magnetic linears but in all cases continuity is normally confined to a single line and possibly its parallel relation(s).

Figure 9 shows the VLF survey over the grid. A strong response zone appears to follow line 0 + 00 West. It is substantiated on line 2 + 00 South and displays a strong affiliation with the quadrature reading over the healthy width. Its relationship with the strong magnetic zone is baffling as it appears to head off trend towards the north. Another strong conductor appears related to the southwest margin of the magnetic high. In the southern part of the grid the conductors have relatively long strike lengths, all trending northwest. These conductors exhibit relatively consisting profile character, although they tend to grow weaker towards the south. In-phase response on profiles varies from weak to strong, although most conductors exhibit moderate to strong response. Where quadrature response was evident, it was weak and opposed the in-phase profile (negative quadrature). Positive quadrature indicates weaker, usually structural, conductors while reverse quadrature may indicate higher conductance features such as moraine sulphides. The latter can be applied to those conductors below the magnetic high zone.

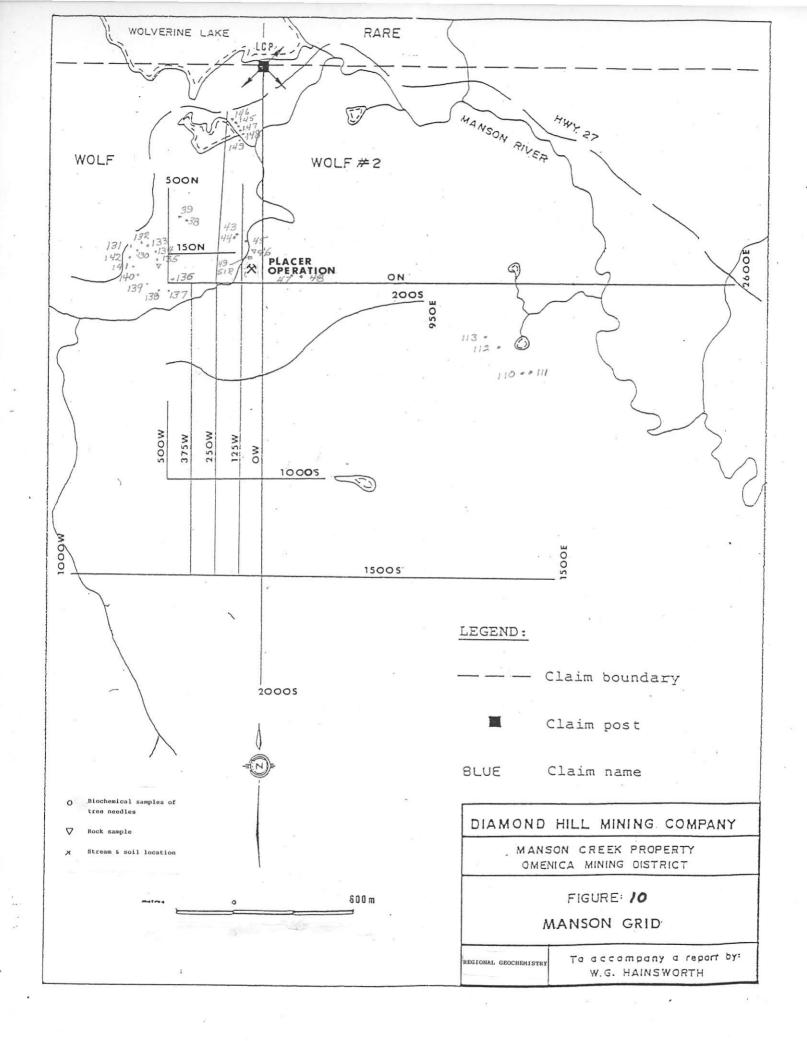
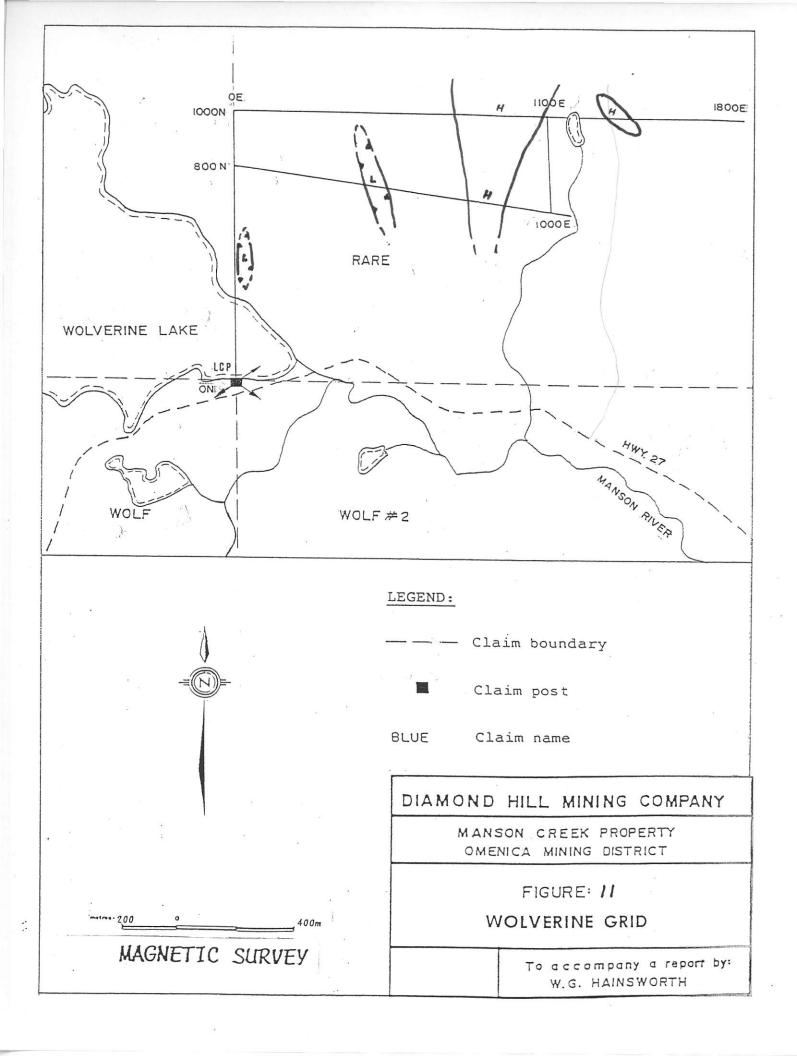
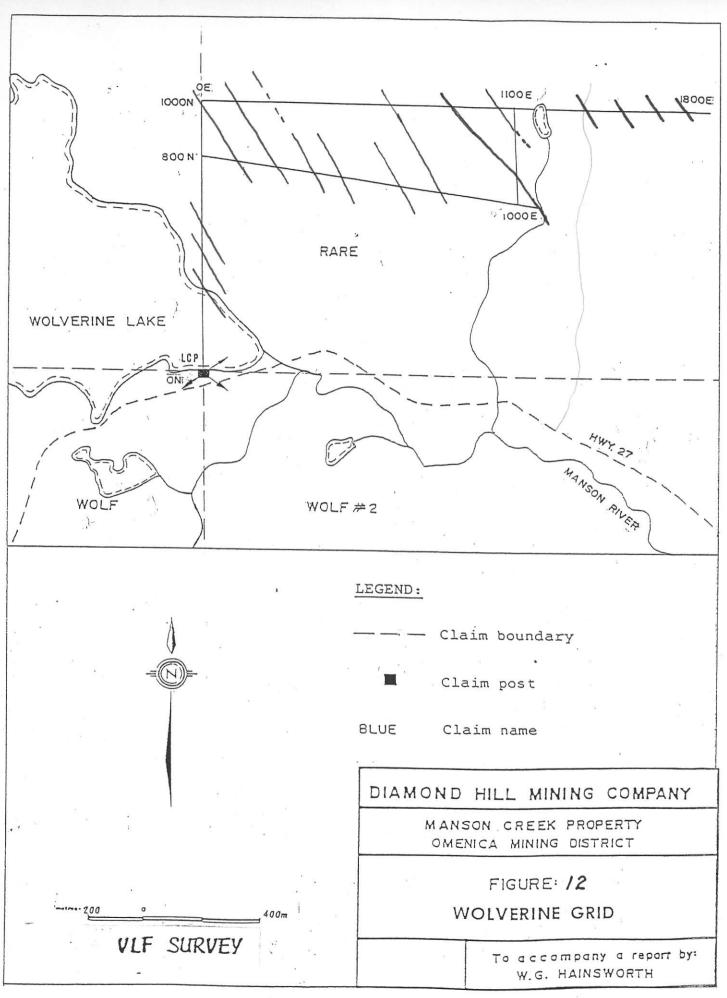
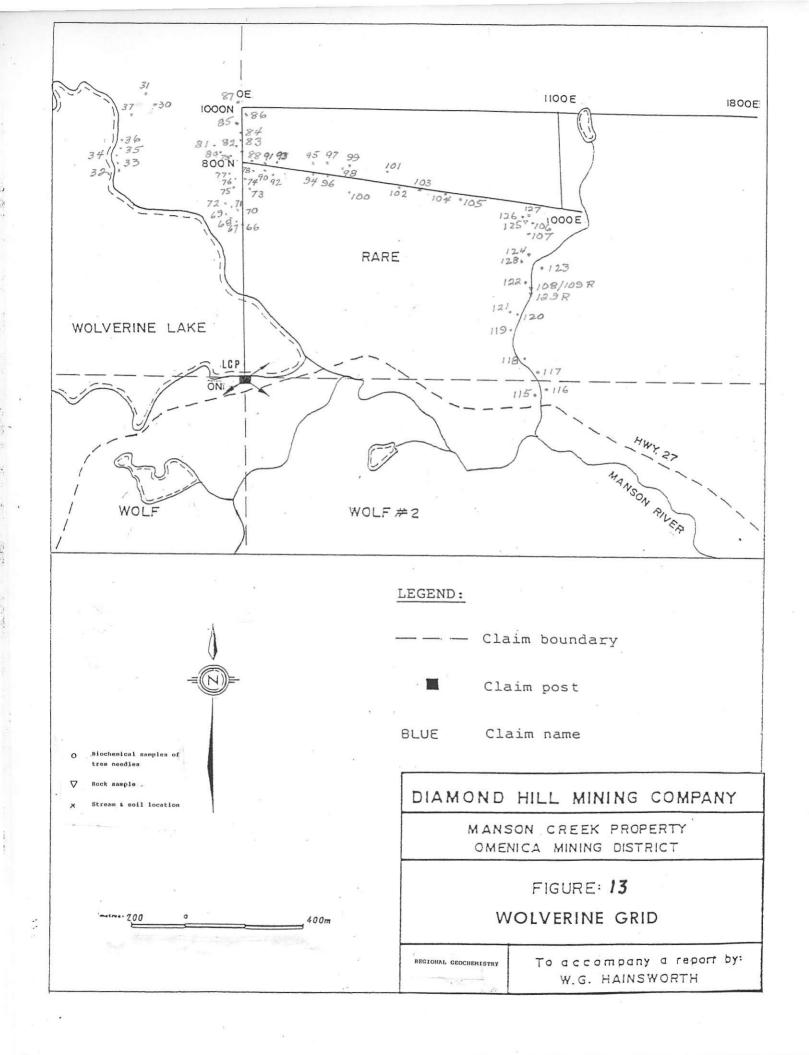


Figure 10 shows the locations of the vegetation sampling from the grid. None of the resulting assays showed anything of exceptional value in this grid. From Figure 4, the base metal occurrence of 10, 14 and 15 are surface related to the Manson Creek Fault Zone. Their proximity to the Diamond Hill claims is encouraging for further exploration of this anomalous Fault Zone.


Wolverine Grid

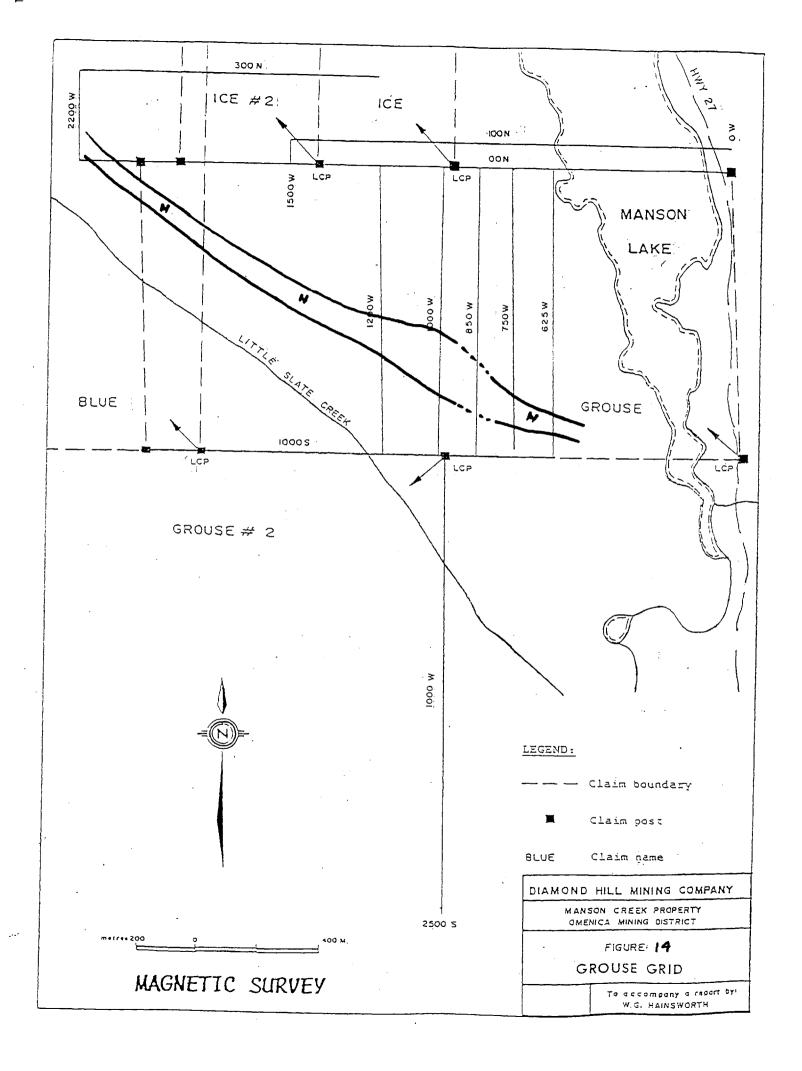

The purpose of this grid in the northern portions of the claims was to investigate the supposed over-thrust resultants of the area and the possibility of other mineralization within the area.

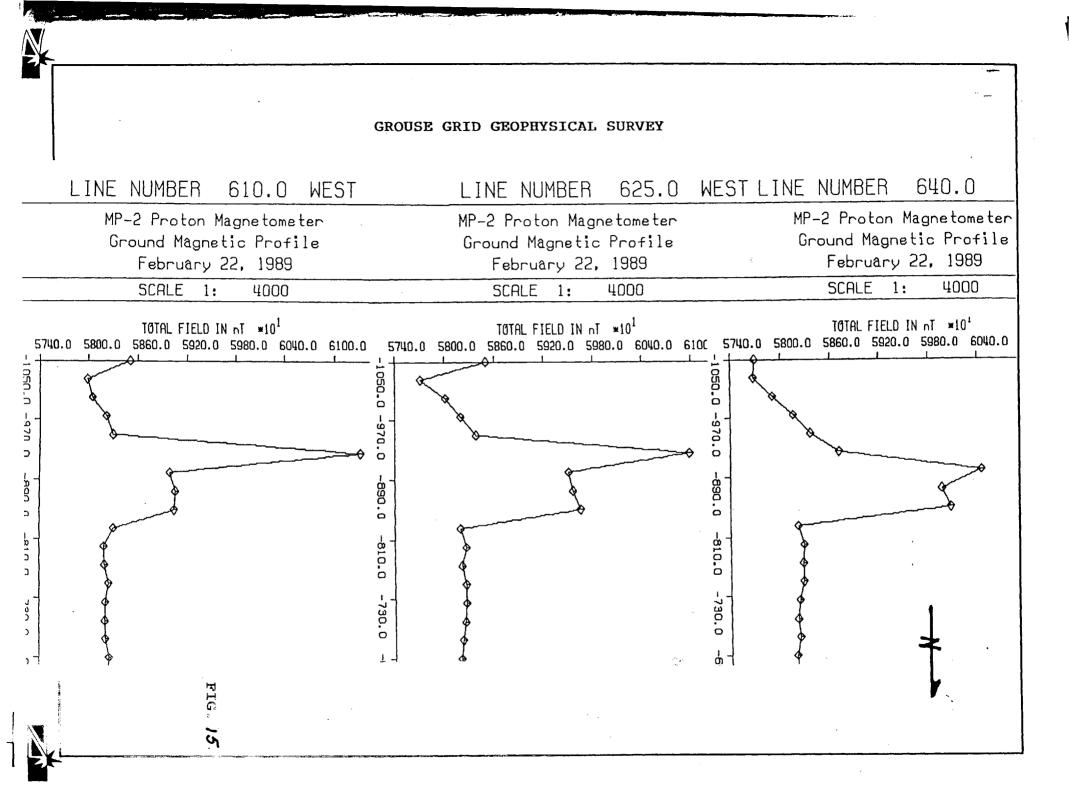
The magnetic plan, Figure 11, shows a strong north-south trending magnetic high identified strongly on line 8 + 00 North and distinctly present on line 10 + 00 North. Line 0 + 00 East shows a plateau performance on its three lines with a distinct low feature breaking the trend over a short distance east of the line. Another low is featured midway down line 8 + 00 North but it has no corresponding feature on the more northern line. A weaker high is visualized lying east of the strong structure.

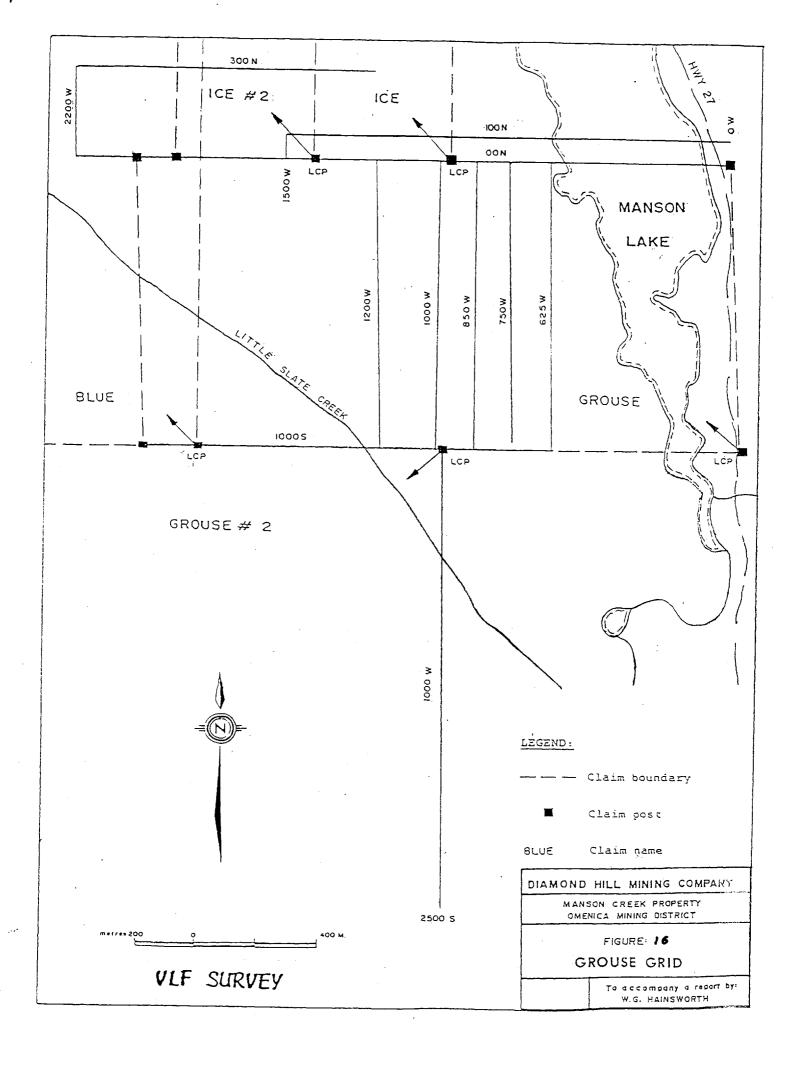

The VLF Survey, Figure 12, exhibits numerous northwest trending lineaments. In general, those grouped east and west of the small lake on line 0 + 00 East have positive quadratures correlating with the in-phase profile (ie., the quadrature anomaly curve follows the in-phase anomaly curve). Positive quadrature is usually indicative of relatively low conductance. This type of signature, along with the extended strike lengths, suggest structural sources such as faults, shear zones or lithological contacts. Further west of the above grouping the lineaments display a mixed bag of quadrature readings. This could be the result of some conducting mineralization such as pyrite enclosed within a shear structure. Close to Wolverine Lake a set of lineaments display numerous reverse quadratures, a sign of a conducting medium such as disseminated students.

The assay results from the vegetation locations on Figure 13 show a general weak product. The highest (6 parts per billion) reading in the gold analysis came from this area (S86) and may be related to an electromagnetic linear.

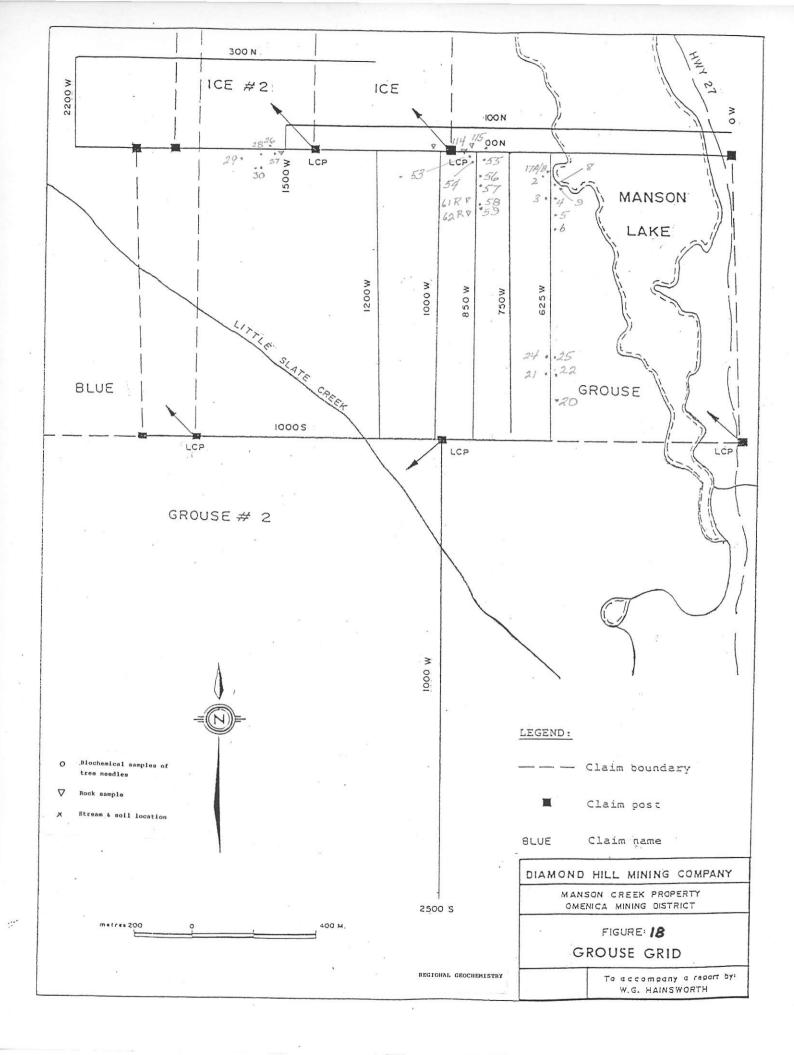
:


Grouse Grid


This location was picked as was the Manson, because of the possibilities of the Manson Creek Fault Zone entering the claims through this particular area. Figure 6 shows the geological thinking upon which the Grouse Grid was located.


The magnetic environment throughout most of this grid area is relatively constant and quiet save for one strong magnetic structure trending northwest across the claims and ideally picked up on all the lines investigated. This resultant is displayed graphically in Figure 15 on the most easterly of the lines. It is presumed to be the extension of the gabbro body identified as lying within or adjacent to the northern contact of the Manson Creek Fault Zone.


The electromagnetic survey, Figure 16, gives little information due to the inadequate number of lines investigated. The writer has data on only 8 of a possible 30 lines and therefore hesitates to make predictions. One of the adjoining lines, 9 + 85 West, is profiled in Figure 17. This line adjoins 15 meters east of line 10 + 00 West. The unusual agreements of quadrature and in-phase although small in amplitude, is featured on this line. This might suggest a shear structure, or fault zone, throughout the grid indicating a post Proterozoic disruption resulting in the creation of the Manson Creek Fault Zone and emplacement within it of the gabbro complex.


Figure 18 shows the location of sample points within the grid. The other high gold analysis, 4 parts per billion, resulted from tree needles at location 54. There is no other association within the immediate locale.

DISCUSSION

One of the priorities of the program as stated in the writer's report of January 30, 1989 was to obtain sufficient data while reporting within an assessment target date. This requirement was to be carried out over a heavy snow cover within a property that contained many hectares of land. Consideration was given to the most interesting geological stsructure cutting the claims - the Manson Creek Fault Zone. This structure cutting through the centre of the claims, has been identified in government reports as being associated with mineralization. Grids were to be laid out over two areas where the stress zone was thought to enter and exit the property. To compensate for the lack of more relevant results that would likely have been attained from a soil sampling program, vegetation in the form of leaves and stems from coniferous trees were collected. As expected, the results were disappointing. The light number (19) of rock and stream samples gathered is but a teaser considering the number that could be collected below the snow mantle.

The geophysical surveys seem to be the most defining of the property's possibilities. The Manson Creek Fault Zone has been strongly identified in the two grids (Manson, Grouse) oriented to pick it up. The zone which primarily lies in the hanging wall side of the strong gabbro intrusion is associated with conductors identified as being both structural and mineral related. Both the Manson and the Grouse grids show northwestward trends of the electromagnetic linear groups which in many instances are closeby the magnetic characteristic.

Review of an Assessment Report written in 1982 for Esso Resources shows the present Grouse grid to have been constructed slightly to the east of the location of the Esso grid of that year. From the Esso grid they reached south into the newly staked Diamond Hill claim (Grouse #2) and established several anomalous conditions. A lead soil anomaly extending 700 meters northwest (and open to the northwest) showed a width of 75 to 100 meters running from 150 ppm to generally less than 300 ppm. This anomaly lay close to little Slate Creek. It was speculated in the report that the source of this anomaly might well be beyond the headwaters of little Slate Creek. In addition, a lead showing was found on Boulder Creek on the present Grouse #2 claim. Quoting from the report concerning this showing, "The Boulder Creek showing was trenched, geologially mapped and sampled. Sulphide mineralization in the form of molybdenite, galena and minor sphalerite occurs as thin wisps in a well bedded quartzite beneath an ultrahosic sill. One sample ran 0.286% molybdenum, 4.35% lead, 1.3% zinc and 3.72 ounces per ton silver over a 1.1 meter width." A later reference states, "A short vein segment of high grade molybdenum - lead-silver could not be traced over any appreciable strike length".

The late acquisition of this claim, Grouse #2, plus the other 3 claims with their attendant anomalies and showings means attention should be directed to these new conditions as one segment of the next phase. Trenching should be mandatory on this Grouse #2 claim to open the above showings.

In summary, the results can be acknowledged that the biogeochemical survey was of little gain but that the geophysical surveys zeroed in and identified and pin-pointed a structure relevant to possible mineral distribution.

CONCLUSIONS AND RECOMMENDATIONS

The initial program on the Diamond Hill Property has located the major structural lineament - the Manson Creek Fault Zone - at its points of entry and exit from the property. The two grids have added emphasis by the close relationships of the VLF conductors with the magnetic zones. In a fault zone as complex as the Manson, great widths would be sheared and later healed by escaping mineral volatiles or solutions. Some of the shears would become mineralized quartz veins or end up as voids containing circulating ground or acquiferous waters.

The recently staked Grouse #2 claim was investigated by Esso in the early 1980s. A lengthy lead soil anomaly and modest silver values from galena stringers were discovered by field crews but there was no apparent follow-up. These structures are closeby surface showing #11 (see Figure 4).

The net result of the initial program has been the location of the Fault Zone and, with the addition of Grouse #2, some anomalous metal conditions to further investigate. These are the targets for the Phase II operation.

It is recommended that Diamond Hill Mining Corporation advance into the second phase as recommended in the writer's January 30, 1989 report.

It is recommended that several I.P. Survey lines be run over select lines on the Grouse and Manson grids. No more than two lines, at this point in time, need be done on each grid. The lines should be closely related for continuity purposes. Magnetometer and VLF lines can be added to the present three grids to further clarify, again, the structural continuity. In addition, several lines should be extended to the south west to run over the Grouse #2 galena stringer area and lead soil anomalies. These surveys should be confined to the recommended 150 kilometer limit. It is also suggested that if labour is available that a modified soil collection should be made on select lines of all three grids or the extensions thereof.

The successful results of Phase I augers well for the follow-up Phase II operation.

The following line locations are recommended for the above recommendations:

I.P. Lines

Manson Grid -	Line 3 + 75 W and Line 2 + 50 W from 3 + 100 S to 7 + 50 S.
Grouse Grid -	Line $12 + 00$ W and Line $10 + 00$ W from $5 + 00$ S to $8 + 00$ S.

Magnetometer Lines

Manson Grid -	Extend line 0 + 00 N, west an additional 500 meters and survey. Run new line 17 + 00 S, east for 700 meters and survey.
Grouse Grid -	Extend line 15 + 00 W, south below 0 + 00 N line for 700 meters and survey.
	Extend line 10 + 00 S, east from LCP (9 + 50 W) across lake to
	LCP beside Highway 27.
VLF Lines	

- Manson Grid Run line 3 + 75 W which had no survey in initial operation.
- Grouse Grid Run line 8 + 50 W and 7 + 50 W which had no survey in initial operation.
- Wolverine Grid Run new line 9 + 00 N from 0 + 00 E to 11 + 00 E and survey.

Trenching

Grouse #2 - Mineral locations.

The writer recommended success contingent staged operations for testing the structural areas on the Diamond Hill property. A recommended Phsae II surface operation is estimated to cost \$103,000. A contingent Phase III trenching – limited drilling program is estimated to cost \$135,000. Contingent on the success of the Phase III program, a Phase IV reverse circulation and diamond drill program is estimated to cost \$347,000.

COST ESTIMATES

Phase II - Detailed Surface Investigation

Further Line Cutting - 50 Km @ \$100/Km		\$	5,000
I.P. Survey over selected areas			38,000
Magnetometer Survey over additional lines			11,750
Electromagnetic Survey over additional lines			11,750
Soil sampling and assaying			6,000
Field and geophysical equipment rentals			3,500
Trenching			5,000
Data processing			1,500
Consultation, report		_	5,000
		\$	93,500
	Contingency 10%	_	9,500

\$103,000

Phase III - Surface and Sub-Surface Examination

Trenching - 160 hours @ \$80/hr.		\$ 12,800
Limited reverse circulation drilling		
4,000 feet @ \$18/ft. (all incl.)		72,000
Geochemical and fire assay costs		
850 samples @ \$22 each		18,700
Supervision, consultation, report		12,000
Food, lodging, misc.		4,000
Transportation		3,500
		\$123,000
	Contingency 10%	12,000
		\$135,000

Phase IV - Reverse Circulation Drilling (Contingent)

.....

\$ 10,000
170,000
80,000
45,000
10,000
\$315,000
32,000

\$347,000

EXPENDITURES TO DATE

Operation Expenses

.

-

I i

,

Line Cutting	\$ 8,250
Line Surveying	14,400
EM Surveys	12,781
Mag Surveys	15,151
Survey Equipment Rentals	9,243
Camp Costs	18,300
Equipment Rentals	6,425
Laboratory Assaying	3,950
Engineering	1,500
	\$ 90,000
Miscellaneous Expenses	
Travel and Accommodation	\$ 1,743
Field Services	4,400
Engineering	3,000
Report	7,498
	\$ 16,641
TOTAL	\$106,641

BIBLIOGRAPHY

! ,

Armstrong, J.E., Fort St. James Map Area, B.C., G.S.C. Memoir 252, 1949.

- Assessment Report #10702 Geological Geochemical and Trenching Report on Bold Claims for Esso Resources Canada Ltd., October, 1982.
- Ferri, F. & Melville, D.M., Manson Creek Mapping Project, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1988-1, 1988.
- Hajek, J.H., Geological and Geochemical Prospecting for Diamond Hill Mining Corporation, 1989, plus Appendices.
- Mansy, J.L. & Gabrielse, H., Strategraphy, Terminology and Correlation of Upper Proterozoics Rocks in Omineco and Cassiar Mountains, B.C., G.S.C. Paper 77-19, 1978.

CERTIFICATE

- I, W.G. Hainsworth, P.Eng., of Vancouver, B.C. do hereby certify:
- I. That I am a Consulting Geologist residing at 836 13th Avenue, Vancouver, B.C.
- that I am a graduate of the University of Western Ontario, London, Ontario, Bachelor of Science Degree, Honours Geology.
- 3. That I have practiced my profession for some 30 years.
- 4. That I have been a continuous member of the Association of Professional Engineers of British Columbia since 1965 and am a Professional Geologist registered with eh Association of Professional. Engineers, Geologists and Geophysicists of Alberta since 1979.
- 5. That I have no financial interest, direct or indirect, in Diamond Hill Mining Corporation and do not expect to obtain any such interest.
- 6. That the information contained in this report is based on visit to the Manson Creek property on December 28-30, 1988 and perusal of all pertinent information available.
- 7. That consent is herewith given to Diamond Hill Mining Corporation to use any or all material from this report in information circulars, offerings or shareholders' brochures, provided no attempt is made to misrepresent the stated facts of the report.

12th Jan

W.G. Hainsworth, Bring (A.C.)

To Accompany:

Progress Report on the Manson Creek Property, Omineca Mining Division, British Columbia, Canada For Diamond Hill Mining Corporation

August 31, 1989

h, Bring Solfs.c.) Prosol VI (Atla) W. G. HAINSTOOTA BRITH CLUM

<u>APPENDIX A</u> Geochemical Data Sheets

DATE: March 9210/89 PROJECT: MANSON CREEK . NTS: 93N/9W SAMPLER: 7. U T ° C DEPTH ORIG. COLOR TEXT SAMPLE NO. TYPE NOTES pН HOR. Wolverine 2m MA-30V 7 2 1000 N 500W Spruce 2 31 V 2 2 4 11 Same 1 2 7 2 MA-32V 11 Lake shore 4 2 2 HA-33V 2 11 4 11 2 2 2 MA - 34V 11 11 11 2 MA-35V 2 7 11 " 11 MA-36V 7 2 2 11 11 k MA-37V 7 2 2 4 11 11 ` -. and the fact of the second GEOCHEMICAL DATA SHEET PROJECT: MANSON DATE: Kach 11/199

1100.0	13 N/ 4			11		•			SAME	PLER: 7.14. A. H.
SAMPLE NO.	TYPE	рН	T°C	DEPTH	ORIG.	COLOR	TEXT	HOR.		NOTES
MA-38V	7	Man	m	2m	2	Ryer	Ford	Spr	uce	193E+25ms:
MA-39V	2	,	·	2	2		17	11		1938+00
MA-40V	7	. 1	r	2	2		11	11		325E+155
- 41V	7	1.	,	2	2		1,	11		325E+25N
MA - 42V	7	11	2	2	2		11	11		340E+00
MA - 43V	7	1,		2	2		<i>,</i>	1,		ASOF
MA- AAV	7	4		2	2	"		"		450 E + 15N
MA - 45V	7	¥		2	2	Edge	of place	er.	Spr	~ 725m E
MA - 46V	ל	1,		2	2		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11	Youm E
MA - 47V	7	11		2	2				11	goomE
MA-48V	7	<i>L</i> 1	.	2	2				11	

GEOCHEMICAL DATA	SCOUREM.	CAL	DATA	SHEET
------------------	----------	-----	------	-------

PROTECT: MANSON CREEK NTS: 93N/97M ISKUTLE NO. TYPE ISKUTLE NO. Status ISKUTLE NO. Status ISKUTLE NO. Status ISKUTLE NO. Status ISKUTLE NO. TO C DEPTH					GEUCH	HEMICAL	DATA S	SHEET				
SERVICE NO. TYPE PH T ° C DEPTH ORIG. COLOR TEXT HOR. NOTES IMA - Mg 6 Ange tau 1.5 m 6 3-3 Shale Place Hanson River Bank - 50 6 Ange tau 1.7 m 6 3-3 Shale Place Hanson River Bank - 50 6 Ange tau 1.7 m 6 1-1 Shale Place Hanson River Bank - 50 6 Ange tau 1.7 m 6 1-1 Shale Place Hanson River Bank - 50 6 Ange tau 1.7 m 6 1-1 Shale Place Hanson River Bank - 61 6 Win 5 10 Shale 1 1 1 1 1 - 62 R 6 Win 5 11 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>^)</td> <td></td> <td></td> <td></td> <td></td> <td></td>						•	^)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a second	T	1	1-00			İ.			T	1	
$\frac{1}{14} - \frac{50}{50} = \frac{6}{6} - \frac{1}{15} + \frac{1}{15} $	SAMPLE NO.	TYPE	рн	TOC	DEPTH	ORIG.	COLOR	TEXT	HOR.			NOTES
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ma . 49	6	Ange	Lan	1.5m	6	3-3	Shale	PLace	l.	Manson	River Bank
HAR-GI G Usin S IoSsw Grow c. alternal recks -62A G Mining S H Nam BL Shale and the -62B G Sharrad Guiss S H Nam BL Shale and the -62C G Sharrad Guiss S H Nam BL Shale and the -62C G Alternal Guiss S H Growsa Idoewsa MA - 116 R G U Sample Sample Sample Sample Sample PROJECT: MANSON GEOCHEMICAL DATA SHEET DATE: March II / S / PS Sampler: J. Alth. SAMPLE NO. TYPE pH T ° C DEPTH ORIG. COLOR TEXT HOR. NOTES 103 R I Sco S on Trail Wolkney we Grid - Molecular Trap Trail IA Stream b.d. Wolkney we Grid - Molecular Trap Trail IA Stream b.d. Wolkney we Grid - Molecular Trap Trail IA Stream b.d. Wolkney we Grid - Molecular Trap Trail IA Stream b.d. Wolkney we Grid - Molecular -<	- 50	6	Angi	Lar	1.8 m.	6	1-1	Shake	11		-11	
$FROJECT = \frac{MANS=N}{MA - 126B} I Son S an Trail I SANDER I SON SANDE$	- 51	6-1	Sedi	ment	1.9m.	6	4-1	3-h			. n	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MA - 61	6	Vein			5	10	5.5 20	Grow!			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 62A	6	Veinin	9	-	5		ij		- - -		
MA - 11A R Generation Generation Generation MA - 115 R Generation	- 62 B	6	Shear	e ol Gnes	s	5	i. 	11			6	
MA - 115 R G II III IIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-62 C	6	alter	real Gu	er'ss	5		. 4				
MA - 115 R G II III IIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				9	4							
MA - 115 R G II III IIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	MA - 114 R	.6	outo	Vops	-				(7R)	2N	Grouse	13000-00
MA-11GR I <thi< th=""> <thi< th=""> <thi< td="" th<=""><td>HA - 115 R</td><td>6</td><td></td><td></td><td></td><td>-</td><td>·</td><td></td><td></td><td></td><td></td><td></td></thi<></thi<></thi<>	HA - 115 R	6				-	·					
GEOCHEMICAL DATA SHEET DATE: Manch 18/3/P3 DATE: Manch 18/3/P3 SAMPLER: 7. AL.AL. SAMPLE NO. TYPE PH T°C DEPTH ORIG. COLOR TEXT HOR. NOTES NOTES 108 R Joo Son Trail Wuller: 7. AL.AL. NOTES 108 R Joo Son Trail Wuller: Trap Trail MULLER: 7. AL.AL. NOTES JOR A Sampler. 7. AL.AL. NOTES 108 R 1 Soo Son Trail Wuller, we Grid. Image: Colspan="2">NOTES 109 R 1 Stream b.ed. Wuller, we Grid. Image: Colspan="2">Image: Trap Trail IA - 126A 1 (-35 +80) 10cm 1 2 7-a. Moss II. PASN. HA - 127A 1 (-35 +80) 15m 1 2 2-b. echine steelement. PASN. - 127R 1 (-30) 15m. 1 2 2-b. echine steelement. Trail HA - 129R.	MA-116 R	6	4				8		λ.		1	
PROJECT: <u>MANSON</u> NTS: <u>33M/9w</u> SAMPLE NO. <u>TYPE</u> <u>pH</u> T°C <u>DEPTH</u> ORIG. COLOR TEXT HOR. <u>NOTES</u> 108 R <u>1</u> 500 S on Trail <u>Wolverive Grid</u> . 103 R <u>1</u> Stream b.d. <u>Wolverive Grid</u> . 103 R <u>1</u> Stream b.d. <u>Wolverive Jup Trail</u> <u>MA - 126B</u> <u>1</u> (-35 +80) 10cn <u>1</u> <u>2</u> 7-a <u>woortmoss</u> <u>11</u> <u>P45N</u> . <u>MA - 126B</u> <u>1</u> (-35 +80) 10cn <u>1</u> <u>2</u> 7-a. <u>moss</u> <u>11</u> <u>P45N</u> . <u>MA - 127A</u> <u>1</u> (-35 +80) 15cn <u>1</u> <u>2</u> 2-b cohir scolument. <u>845N</u> . <u>- 127R</u> <u>1</u> (-80) 15cn <u>1</u> <u>2</u> 2-b. cohir scolument. <u>845N</u> . <u>MA - 129R</u> <u>6</u> <u>1</u> <u>1</u> <u>2</u> <u>2-b</u> cohir scolument. <u>845N</u> . <u>MA - 129R</u> <u>6</u> <u>1</u> <u>1</u> <u>22-2</u> <u>2-b</u> cohir scolument. <u>845N</u> .		5 - 14 -	12		-		-	-				
NTS: $33N/9N$ SAMPLE NO. TYPE PH T°C DEPTH ORIG. COLOR TEXT HOR. SAMPLER: $7.41.41.$ SAMPLE NO. TYPE PH T°C DEPTH ORIG. COLOR TEXT HOR. NOTES 108 R 1 500 S on Trail Wolverine Gril. 109 R 1 Stream bed. Wolverine Gril. 109 R 1 Stream bed. Wolverine Gril. MA - 126R 1 (-35 +80) 10cm, 1 2 7-a. Woermoss II / PA5N. MA - 127A 1 (-35 +80) 10cm, 1 2 7-a. Moss II PA5N. MA - 127A 1 (-35 +80) 15cm, 1 2 2-b. achire Scolement. 8945N. - 127R 1 (-80) 15cm, 1 2 2-b. achire Scolement. 8945N. - 127R 1 (-80) 15cm, 1 2 2-b. achire Scolement. Trap Trail MA - 129R. 6 1 2-2 2-b. achire Scolement. 425N.					GEOCH	EMICAL	DATA S	HEET				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PROJECT : MA	NSON	,	đ			: 1.4 18090			er er Henr	ATTE. Han	1 18/2/82
SAMPLE NO.TYPEpHT°CDEPTHORIG. COLORTEXTHOR.NOTES $108 R$ 1Soo S an Trail $103 R$ 1Stream b.d $103 R$ 1Stream b.d<	228.11.1			U.		an and	Mik .		in Des L	SAMP	LER:	7. Al. H.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SAMPLE NO.	TYPE	PH	TOC	DEPTH	ORIG.	COLOR	TEXT	HOR.			
$\frac{HA - 126A}{HA - 126B} \left[\begin{array}{c c} (-35 + 80 \end{array} \right] 10 \text{ min}}{12} \left[\begin{array}{c} 7 - a \end{array} \right] \frac{1}{2} \left[2 - 7 - a \end{array} \right] \frac{1}{2} \left[\frac{1}{2} - 80 \right] \frac{1}{2} \left[\frac{1}{2} - 80 \right] \frac{1}{2} \left[\frac{1}{2} - 2 - 5 \right] \frac{1}{2} \left[\frac{1}{2} - 5 \right] $	108 R	1	500	Sat	Trail	· .		2			Wolverin	re Grid -
$\frac{HA - 126A}{HA - 126B} \left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$	109 R	1	Stree	im b.	- ol .						wo Lucu;	We Thep ThaiL
<u>MA-127A I (-35 +80) ISm I 2 2-b advise scolement. 845N.</u> <u>-127B I (-80) ISm. I 2 2-b. active deal Wollverine Trap Trail</u> <u>MA-129R. 6</u> <u>I 2-2 2-b active scol. Wollverine. 425N.</u>	MA - 126A	1	(-35	+80)	100	1	2	7-a	UNDER	moss	'n /	845N.
<u>MA-127A I (-35 +80) ISm I 2 2-b advise scolement. 845N.</u> <u>-127B I (-80) ISm. I 2 2-b. active deal Wollverine Trap Trail</u> <u>MA-129R. 6</u> <u>I 2-2 2-b active scol. Wollverine. 425N.</u>	MA-126B.	1	(-8	0)	10 cm	l i	2	7-a.		hoss	17	845N.
MA-129R. 6 1 2-2 2-6 achine scol. We Lucenine. 425 N.	MA-127A		[35	+80)	15cm	· 1	. 2	2-5	cohine	Jeuli	ment. J	845N.
MA-129R. 6 1 2-2 2-6 active scol. We Lucenine. 425W.	- 127B	1	(-8	0)	isa.		2	2-5.	active	deal	Wolveri	ive Trap Trail
										• •		
MA-144R. 6 1 2-2 A-C Rocks. 11 425N.	MA-129R.	6					2-2	2-6	achin	Scol.	Wo Lucin	ve. 425W.
	MA- 144R.	6				1	2-2	A-C	Rock	Ks.	1,	425N.
												-

S.1.

					1.1.1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					a second a s
PROJECT: MAL	NSON C	REEK			10	a secola]	DATE: March 13/89
	93N/9W				دي :				SAM	PLER: T.H. A.H.
SAMPLE NO.	TYPE	рH	т°с	DEPTH	ORIG.	COLOR	TEXT	HOR.		NOTES
MA-52V	2	Gro	use	2m	2			Spru	ie	1000 Los Line
HA-53V	7	11		11	2	She	ms_	11		1050 W
MA-SAV	2	. ()		4	2	• •		"	a 33 a	1075w+125
MA-55V	7	"		2	2		8	1,		1050 W + 155
MA-SGV	2	4		2	2			Pine	٤	1050 w + 355
MA= 57V	7	4		2	2		2	Spra	ce_	1050W+355
MA-58V	2	11		2	2			"		1050m + 2505
MA-59V	.7.	11		2	2			11	1	1050w + 2255
MA-60V	7	4		2	2		1000 1000	11		1050 w + 2005
HA-63V	2	#		2	2	as 6	oR.	11		1025w + 2005
MA-GAV	7	"		2	2	anc	IR	11	-	1025 + 175S
				GEOCH	EMICAL	DATA S	HEET	er a son el		
	NSON 13N/		,	ana ing ang ang ang ang ang ang ang ang ang a	114	195	anti wa watani kawa	etarres sectors a com		ATE: March 13/89 DLER: 7.H. A.H.

NTS:	13N/	gu.	а						SAME	PLER:	7.H. A.H
SAMPLE NO.	TYPE	рН	TOC	DEPTH	ORIG.	COLOR	TEXT	HUR.			NOTES
MA-65V	2	Grou	ese	2m	2	1,25	c. Ne	edly	Spr	VER	1025-+1505
						ESP			- 1		
									-		
			16 - 1 - 1		•			(m) (m) (
2	~						24 -			8	
				· · · · · ·			· · · · · ·				
151				a .*			i.			2.1	

1

.

				GEOCH	EMICAL	DATA S	SHEET			
DECT: MAI						2				DATE: March 14th 1989
NTS:	93N/91	ď		r					SAME	PLER: <u>J. H. H. / A. H.</u>
SAPLE NO.	TYPE	PH	T°C	DEPTH	ORIG.	COLOR	TEXT	HOR.		NOTES
HA-66V	7	Wolve	vine	2m	2	1,27	ear Nied	61	Pine	550 N +00
FIA-67-V	7	u	2 20		2		stems -		Pine	-565 N+20W
HA=G8V	7	"		анан 11 ст. с.	2		ir -	i e este	Spra	cc 575 N + 35W
HA-63V	7	11	•. (*	ų	2			in the same	Spine	590N + 35W
MA-70V	7			11	2		11		Pine	610N + 25W
MA-71V	7	4		11	2		11		Pine	625N + 35W
MA-72V	7	14		ц	2		11		Pine	650N+ 45W
HA-73V	7	11		ч	2		11	, e - 18	Pine	725N
MA- 74V	7	1.		Lę.	2		4		Pine	750N
MA-75V	2	"		ų	2		4	ан атыса ал	Spri	cc 760N + 35W
MA-76V	7	4		La	2	1	11			775N+25W
·				GEOCH	EMICAL	DATA S	HEET			
PROJECT : NTS :		· · · · · ·			1000-		a 12 - 1			DATE: March 19/83 DLER: T.H.H / A.H.
SAMPLE NO.	TYPE	рН	TOC	DEPTH	ORIG.	COLOR	TEXT	HOR.		NOTES
MA-77V	7	Walves	ine	2m	2	1,2 y	an Nee	ely E	Same	785N +45W
MA-78 V	7		3	9	2		stems		Pim	
MA-79V	2	11		2	2				Pine	· · · · · · · · · · · · · · · · · · ·
MA-80V	7	4		4	2		"	-	Pire	
MA-PIV		11		.17	2		4		Pine	
MA-82V		11		4	2		₩ 1		Pine	
MA-83 V		4		1(é				Sprue	· · · · · · · · · · · · · · · · · · ·
HA-84V	7	4			2	5	4	64 - 12	Pine	
HA-85V		"		11	٢	\$	10		Spr	
MA - 86V		11	ж П	11	2		11			975N
MA-874		6		11	2		H		Pine	1 1

	1 e					GLUCE	EMICAL	DATA S	SHEET			· ·
ł	PROJECT :		ISON 3N/9	the second s						*:		DATE: Much 16/89 DLER: 7.H.H. A.H.
	SAMPLE NO	-	TYPE	pH	T°C	DEPTH	ORIG.	COLOR	TEXT	HOR.		NOTES
	MA - 88	v	2	Wolv	crime	2 m.	2	1,2 >	un Nic	illes' E	Pin	800 N 25E
	MA-89	IV	2	tr		11	2	S	trang		Pine	800N 50E
	-MA- 30	υV	7	4		11	2		11		Pine	800N + 75E+
	MA- 91V	\sim	2	4	9	4	2		1,		Pine	800N+75E
	MA- 52	v	2	4		"	2		k.		Pine	800N+100E+15
	MA-93	V	2	11	25	4	2		11	9 2	Sprie	c 785N+ 100 E
	MA-94	v	2	"		Le .	2		11 .		Pine	800N+150E
	HA- 95	v	2	"	3	11	2		11		Pine	830N+ 150E
	MA-96	v	7 .	17		11	2		"		Pine	800N + 200 E
	MA-97	MA-96V 7 " MA-97V 7 "					2		11		Pine	830 N + 200E
	MA- 98	v	2	11		"	2	×.	"		Pine	810 N + 225E
			٢	~~ 長		ан айлан 1997 - Талан 1997 - Талан	t a st	and aver				
	C.					GEOCH	EMICAL	DATA S	HEET			
	PROJECT :NTS :						Side La		а (с. 1916) 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 -		D. SAMPI	ATE: March 16/89 LER: 7 H.H. A.H.
	SAMPLE NO.	. .	TYPE	рH	тос	DEPTH	ORIG.	COLOR	TEXT	HOR.		NOTES
	HA-99	v	2	11 JU	olverer	e ,,	2		11 Les 2 St		Pine	820N+ 240E
×	MA-100	V	2	11		"	2	15	11		Pine	760 N + 275E
	MA- IUI	v	7	,, ·		11	2		11	Bil	am	830N+ 350E
	MA- 102	2V	2	"	l		2		11	Bil	Sam	800 N +575E
л	MA- 103	r	2	H		11	2		,,	Spr	vee	820N+625E
	MA-102	4	2	11 -		10	2		11	Spr	vee	780N+7752
	MA-105	TV	2	"		. 11	2		1,	Spr	ice	800 N + 800 E
•	MA- 10 6	v	7	"		"	2			Spre	164	100 S + 1150 E
	MA-107	v	7	"			2		"	Spre	cc	1005+ 1130E
		ļ	ſ	1	ł					•]	I	

Steller

. . . .

PROJECT: MA	NSON 93N/9	CREEK W						9	i Sami	DATE: March 17/89 PLER: 7. 46 4
SAMPLE NO.	TYPE	рН	т°с	DEPTH	ORIG.	COLOR	TEXT	HOR.		NOTES
MA - 110 V	7	MANS	ON	2m	2	1,2%	any Need	s s	proce	above Cabine
MA-111V	7	h		2m	2	EJF	can s	5	Aruce	11 11+25m E
MA-111V MA-112V	2		1. AN 1.	-	2		11	· '	Druce	· · · · · · · · · · · · · · · · · · ·
MA-113 V	17	11	14	4	2	- 	11	'		1400 E + 155.
					i en tra		· · · ·		FUCE	11002 1102
			21:					ñ x		×
				-1 -						
						9				
1. 1. 1.			<u>t</u>	· · · · · · · · · · · · · · · · · · ·					1 - 14 	
the second s	<u> </u>		4				Ň			
MA- 128V	7	WJLV	rine	2m GEOCH	2	2	R I V	us. s	OVULC	650N +25W
PROJECT :	7	WJLV	VINE		EMICAL	2	R I V	us. 5		
PROJECT : NTS :	7 TYPE		TOC		EMICAL	DATA S	HEET	HOR.		ATE: March 18/89 LER: <u>7.H. H. A.H.</u> NOTES
PROJECT: NTS:	7 TYPE 7	рн	Τ°C	GEOCH	EMICAL	DATA S	HEET	HOR.		ATE: <u>March 18/89</u> LER: <u>J.H. H. A.H</u> NOTES
PROJECT:		рН W=Z	Τ°C	GEOCH	EMICAL	DATA S	TEXT	HOR.	D SAMP	ATE: <u>March 18/89</u> LER: <u>J.H. H. A.H</u> NOTES
PROJECT: NTS: SAMPLE NO. <u>MA-115V</u> MA-116V	7	рН W=Z	T°C Verie	GEOCH DEPTH	emical Orig. 2	DATA S COLOR	TEXT	HOR.	D SAMP	ATE: <u>March 19/99</u> LER: <u>J.H. H. A.H.</u> NOTES 160m N. Truil
PROJECT: NTS: SAMPLE NO. MA-115V MA-116V MA-117V	7	рН W=Z	T°C Veria	GEOCH DEPTH 2 2 m	emical orig. 2 2	DATA S COLOR	TEXT	HOR.	D SAMP Nuce Nuce	ATE: <u>March 18/89</u> LER: <u>7.H. H. A.H</u> NOTES <u>160m N. Tirail</u> 225 N
PROJECT: NTS: SAMPLE NO. MA-115V	2 2 2	рН W=Z	T°C Veria II	GEOCH DEPTH 2 2 11	emical orig. 2 2 2	DATA S COLOR	TEXT	HOR.	D SAMP Pruce	ATE: <u>March 19/99</u> LER: <u>J.H. H. A.H</u> NOTES <u>160 M. Trail</u> <u>225 N</u> <u>390 N</u>
PROJECT: NTS: SAMPLE NO. MA-115V MA-115V MA-115V MA-117V MA-117V	7 7 7 7	рН W=Z	T °C Verie II II	GEOCH DEPTH 	emical orig. 2 2 2 2	DATA S COLOR	TEXT	HOR.	D SAMP Aruce Aruce	ATE: <u>March 18/89</u> LER: <u>J.H. H. A.H</u> NOTES 160m N. TFuil 225 N 390 N 410 N
PROJECT: NTS: SAMPLE NO. <u>MA-115V</u> <u>MA-115V</u> <u>MA-117V</u> <u>MA-117V</u> <u>MA-117V</u>	7 7 7 7 7	pH WeZ	T ° C V < Via 11 11 11 11	GEOCH	emical orig. 2 2 2 2 2 2	DATA S COLOR	TEXT TEXT Med 11 11 11	HOR. K S S S S S S S S S S	D SAMP Nruce Nruce Nruce	ATE: <u>March 19/99</u> LER: <u>J.H. H. A.H</u> NOTES <u>160 M. TFail</u> <u>225 N</u> <u>390 N</u> <u>410 N</u> <u>475 N</u>
PROJECT: NTS: SAMPLE NO. MA-115V MA-115V MA-115V MA-117V MA-117V MA-117V MA-117V MA-120V MA-121V MA-121V	7 7 7 7 7 7	pH Well	T ° C Ve rie 11 11 11 11 11 11 11	GEOCH DEPTH 2 2 m 11 11 11 11	emical orig. 2 2 2 2 2 2 2	DATA S	TEXT TEXT Mentod Me	HOR. S S S S S S S S S S S S S S S S S S S	D SAMP Aruce Aruce Aruce Vuce	ATE: <u>March 19/99</u> LER: <u>J.H. H. A.H</u> NOTES <u>160m N. Truil</u> <u>225 N</u> <u>390 N</u> <u>410 N</u> <u>475 N</u> <u>500 N</u>
PROJECT: NTS: SAMPLE NO. MA-115V MA-115V MA-115V MA-117V MA-117V MA-117V MA-119V MA-120V	7 7 7 7 7 7 7 7	рн we2	T ° C V < V i × II II II II II II II II II II II II II	GEOCH	emical orig. 2 2 2 2 2 2 2 2 2 2 2	DATA S	TEXT TEXT	HOR. K S S S S S S S S S S S S S	D SAMP Nruce Nruce Nruce Vruce	ATE: <u>March 19/99</u> LER: <u>7.H. H. A.H</u> NOTES <u>160m N. TFail</u> <u>225 N</u> <u>390 N</u> <u>410 N</u> <u>475 N</u> <u>500 N</u> + 25W
PROJECT: NTS: SAMPLE NO. <u>MA-115V</u> <u>MA-115V</u> <u>MA-115V</u> <u>MA-117V</u> <u>MA-117V</u> <u>MA-117V</u> <u>MA-117V</u> <u>MA-120V</u> <u>MA-122V</u> <u>MA-122V</u>	7 7 7 7 7 7 7 7	pH WeZ	T ° C V < V i × 11 11 11 11 11 11 11 11 11 11 11 11 11	GEOCH DEPTH 22 2 m 11 11 11 11 11 11 11 11 11 11 11 11 11	EMICAL ORIG. 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DATA S	TEXT TEXT Meet 11 11 11 11 11 11 11 11 11 1	HOR. K S S S S S S S S S S S S S	D SAMP NUCC NUCC NUCC NUCC	ATE: <u>March 19/99</u> LER: <u>J.H. H. A.H</u> NOTES <u>160m N. Trail</u> <u>225 N</u> <u>390 N</u> <u>390 N</u> <u>410 N</u> <u>475 N</u> <u>500 N + 25 W</u> <u>575 N</u>

PROJECT: MA	NSON 93N/9				··· ()	• - 1				DATE: March 21/89 PLER: 7. H. H. A. H.
SAMPLE NO.	TYPE	pН	T°C	DEPTH	ORIG.	COLOR	TEXT	HOR.		NOTES
MA-130V	. 7	MA	rson	2m	2	1,2 %	an Weed	les &	SAro	+ Som ce Ryer Hill Su
MA-131V	2		11	4	Z		tuns			+ 75m from road
MA=132 V	7		.11	"	2	9 P	11		Aruca	
MA=133 V	2	·	"		2	, 1 a f		5	prvec	+100m
MA-134V	2	8	"	"	2		"	1	ine	+125m
MA-135V	2		u .	"	2		11	(ine	+ 137m
MA-136V	2		11	4	2		n	S	Arvee	+ 225m.
MA - 137V	2		4	4	2		"	Sp	ruce	oTher side + loom
MA- 138V	7		"	4	2		11		ruec	
MA- 139V	7		"	4	2		4	S	pruce	1, + 100 m.
MA-140V	7		H	11	2	ц. н.	1,	5	nrue.	11 + 75m.

GEOCHEMICAL DATA SHEET

PROJECT:	2			ŝ	200				D SAMP	ATE: March 21/89 LER: 7.1.H. A.H.
SAMPLE NO.	TYPE	рН	T°C	DEPTH	ORIG.	COLOR	TEXT	HOR.		NOTES
MA-141V	7		1.	11	2		1,	Sp	ruce	other side + 50m
MA- 142 V	2		4	+	2		11	5	nrue	· · · + 25m.
MA- 145V	7	MA	rson	2 m	2	1,2y	any Me	1		er Lake 1020N+50
MA-14CV	7		11	4	2		emg		Druce	
MA-147V	2		1,	11	2		1.		some	
MA-148V	7		4	11	2		4	P	inc	10101 +00
MA-149V	2		11	"	2		11	. 5	me	1000 N+ 250W

<u>APPENDIX B</u> Certificates of Analysis

-

1

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2

A8915074

Comments: ATTN: ALLAN YOUNG CC: J HAJEK

CERTIFICATE A8915074

ANALYTICAL PROCEDURES

CHEMEX NUM	BER		DETECTION	UPPE
CODE SAME	LES DESCRIPTION	METHOD	LIMIT	LIMI
189 132	Au pb; trace. vegetation	NAA	2	10000
196 132	As ppm: Trace vegetation	NAA	1	1000
1 3 9 1 3 2	Ba ppm: Trace rock. soil	NAA	50	1000
154 132	Br ppm: Trace rock, soil	NAA	1	1000
168 132	Ce ppm: Environmental	NAA	1	1000
158 132	Cs ppm: Trace rock, soil	NAA	2	1000
173 132	La ppm: Trace vegetation	NAA	2	100
149 132	Rb ppm: Trace rock, soil	NAA	10	1000
198 132	Sb ppm: Trace vegetation	NAA	1	1000
103 132	Sc ppm: Trace rock. soil	NAA	1	1000
151 132	Ta ppm: Trace rock, soil	NAA	2	1000
150 132	Th ppm: Trace rock, soil	NAA	0.1	1000
131 132	U ppm: Gamma counting	NAA	1	1000
153 132	W ppm: Trace rock, soil	NAA	2	1000
1 3 4 1 3 2	Sm ppm: Trace rock, soil	NAA	0.1	50
1 3 7 1 3 2	Eu ppm: Trace rock, soil	NAA	0.5	100.

DIAMOND	HILL MINING CORPORATION
PROJECT	:
P O #	: NONE

Samples submitted to our lab in Vancouver. BC. This report was printed on 25-JUL-89.

SAMPLE PREPARATION

CHEM	IEX NUME E Sampi		DI	ESCRIPTI	ON	
2 1	0 132	Vegetatio	n: Dry. n	nill -20	mesh	
		:				

hemex Labs Ltd. 300

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604 - 984-0221

To DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2 Project : Comments: ATTN: ALLAN YOUNG CC: J HAJEK * Page No. : 1 Tot. Pages: 4 Date : 25-JUL-89 Invoice # : I-8915074 P.O. # : NONE

SAMPLE DESCRIPTION	PREP CODE	Au NAA A ppb	s NAA H	Ba NAA B ppm	r NAA Co ppm	e NAA Co ppm	s NAA L ppm	a NAA R ppm	ab NAA S ppm	Sb NAA S ppm	Sc NAA T ppm	a NAA ppm	Th NAA U ppm	NAA W ppm	NAA ppm	Sm NAA ppm	Eu NAA ppm	
MA-01	210 -	< 2	< 1	73	9	< 1	< 2	< 1	< 5	< 1	< 1			< 1	< 1			
MA-02 MA-03	210 - 210	< 2 < 2	< 1 < 1	< 50 73	2	< 1 < 1	< 2 < 2	< ! < !	< 5 < 5	< 1 < 1	< 1	< 2 < 2	< 0.5 < 0.5	< 1 < 1	< 1	< 0.1	< 0.1	
MA-04	210 -	$< \frac{2}{2}$	< 1	52	< 1	< 1	$< \frac{2}{2}$	< 1	< 5	< 1	< 1	$< \frac{2}{2}$	< 0.5	< 1	<1	< 0.1	-	
MA-OS	210 —	< 2	< i	117	< i	< i	< 2	< 1	< 5	< 1	< i	< 2	< 0.5	< 1		< 0.1		
MA-06	210 -	< 2	< 1	51	< 1	< 1	< 2	< 1	11	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	• ••• •
MA-7A	210	< 2	< 1	< 50	< 1	< 1	< 2	< 1	9	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-7B	210 —	< 2	< 1	56	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-8-1	210 -	< 2	< 1	< 50	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1 < 1		< 0.1		
MA-8-2	210 —	< 2	< 1	< 50	1	< 1	< 2	< 1	7	< 1	< 1	< 2	< 0.5	< 1 	<u> </u>	< 0.1	< 0.1	
MA-203'	210	< 2	< 1	120	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-21	210	< 2	< 1	69	3	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-22	210 - 210	< 2	< 1	< 50	2	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1 < 1	< 1	< 0.1	< 0.1	
MA-23 MA-24	210 - 210	< 2 < 2	< 1 < 1	52 69	4 1	< 1 < 1	< 2 < 2	< 1 < 1	5 <.5	< 1 < 1	< 1 < 1	< 2 < 2	< 0.5 < 0.5	< 1		< 0.1		
MA-25	210 —	< 2	< 1	< 50		< 1	< 2	< 1	< 5	< 1	< 1	$< \overline{2}$	< 0.5	< 1	< 1	< 0.1	< 0.1	• · · ·
MA-26	$\frac{210}{210}$ —	$\langle 2 \rangle$	< 1	< 50	1	< 1	< 2	< 1	< 5	< 1	$\langle 1 \rangle$	$\stackrel{>}{<}$ $\stackrel{2}{2}$	< 0.5	$\overline{\langle 1 \rangle}$	<1		< 0.1	
MA-27	210 -	< 2	< 1	< 50	< 1	< 1	< 2	< 1	6	< 1	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-28	210 —	< 2	< 1	< 50	1	< i	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-29	210 -	< 2	< 1	83	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-30	210 -	$\overline{<2}$	< 1	51	< 1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		• • • • • • • • • • •
MA-30V	210	< 2	< 1	83	< 1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-31 MA-31V	210 - 210	< 2 < 2	< 1 < 1	< 50	1	< 1 < 1	< 2 < 2	< 1 < 1	< 5 7	< 1 < 1	< 1 < 1	< 2 < 2	< 0.5 < 0.5	< 1 < 1	< 1 < 1	< 0.1	< 0.1	
MA-32V	210 -	< 2	< 1	68 < 50	< 1 < 1	< 1	$< \frac{2}{2}$	< 1	7	< 1	< 1	$< \frac{1}{2}$	< 0.5	< 1	$\langle 1 \rangle$	< 0.1		
				~ 50	- ·													
MA-33V	210 —	< 2	< 1	184	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-34V MA-35B	210 -	< 2	< 1	124	1	< 1	< 2	< 1	7	< 1	< 1	< 2	< 0.5	< 1 < 1	< 1	< 0.1		
MA-35V-1	210 - 210	< 2 < 2	< 1 < 1	< 50 < 50	2 4	< 1 < 1	< 2 < 2	< 1 < 1	< 5 < 5	< 1 < 1	< 1 < 1	< 2 < 2	< 0.5 < 0.5	< 1		< 0.1	< 0.1	
MA-35V-2	210 -	$< \frac{2}{2}$	< 1	< 50 < 50	1	< 1	$< \frac{1}{2}$	< 1	< 5	< 1	< 1	$< \frac{1}{2}$	< 0.5	< i	< 1	< 0.1		
MA-36	210 —	< 2	< 1	< 50	ï	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	· · · · · · · · · · · · · · · · · · ·
MA-37	210 -	< 2	< 1	< 50	1	< 1	< 2	< 1	9	< 1	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-38	210 —	< 2	< 1	119	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-39	210 —	< 2	< 1	76	< 1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-40	210 —	< 2	< 1	< 50	11	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-41	210 -	< 2	< 1	< 50	10	< 1	< 2	< 1	7	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-42	$\frac{210}{-}$	< 2	< 1	< 50	7	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-43 MA-44	210 - 210	< 2	< 1	115	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-45	$\frac{210}{210}$ -	< 2 < 2	< 1 < 1	73 51	4	< 1 < 1	< 2 < 2	< 1	< 5 < 5	< 1 < 1	< 1 < 1	< 2	< 0.5 < 0.5	< 1 < 1	< 1	< 0.1	< 0.1	
					1	<u> </u>		<u> </u>				~ 1	~ 0. 7		~ 1	<u> </u>	<u> </u>	

Chemex Labs

Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE ... NORTH VANCOUVER. BRITISH COLUMBIA. CANADA V7J-2C1

To DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2 Project :

Comments: ATTN: ALLAN YOUNG CC: J. HAJEK

* Page No. :2 Tot. Pages:4 Date : 2 5-JUL-89 Invoice # : I-8915074 P.O. # NONE

SAMPLE DESCRIPTION	PREP CODE	Au NAA A ppb	s NAA ppm	BaNAA B ppm	r NAA C ppm	e NAA C ppm	os NAA L ppm	a NAA F ppm	th NAA S	Sb NAA S ppm	Sc NAA T ppm	Fa NAA ppm	Th NAA U ppm	NAA W ppm	NAA ppm	Sm NAA ppm	Eu NAA ppm	
MA-4 6	210	< 2	< 1	82	< 1	< 1	< 2	< 1	< 6	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-49	210 —	< 2	< 1	76	4	< 1	< 2	< 1	6	< 1	< 1	< 2	< 0.5 < 0.5	< 1 < 1	< 1	< 0.1 < 0.1	< 0.1 < 0.1	
MA-53 MA-54	210 -	< 2	< 1 < 1	50 < 50	1	< 1	< 2 < 2	< 1 < 1	12 < 5	< 1	< 1 < 1	< 2 < 2	< 0.5	< 1	< 1	< 0.1		
MA-55	210 -	< 2	< 1	< 50	2	< 1 < 1	$\stackrel{>}{<}$ $\stackrel{2}{2}$	< 1	10	1	< 1	$< \frac{1}{2}$	< 0.5	< 1	< 1		< 0.1	
MA-56	210 -	< 2	< 1	< 50	2	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	- ī	< 0.1	< 0.1	
MA-57-1	210 -	< 2	< 1	< 50	5	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-57-2	210 -	< 2	< 1	< 50	1	< 1	< 2	< 1	< 5	2	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-59	210 —	< 2	< 1	< 50	1	< 1	< 2	< 1	< 5	2	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-60	210	< 2	< 1	< 50	1	< 1	< 2	< 1	< 5	1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-63	210 —	< 2	< 1	64	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-64	210 -	< 2	< 1	54	< 1	< 1	< 2	< 1	9	2	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-65	210 - 210	< 2	< 1	51	< 1	< 1	< 2 < 2	< 1	10 < 5	2	< 1 < 1	< 2 < 2	< 0.5 < 0.5	< 1 < 1	< 1 < 1	< 0.1	< 0.1 < 0.1	
MA6 6 MA6 7	210 -	< 2 < 2	< 1 < 1	< 50 < 50	3 2	< 1 < 1	$< \frac{2}{2}$	< 1 < 1	< 5	2	< 1	$< \frac{2}{2}$	< 0.5	< 1	< 1	< 0.1		
MA-69	210 -	< 2	ī	72	2	< 1	$\overline{<2}$	< 1	·	12	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-70	210	< 2	3	< 50	2	< 1	< 2	< 1	< 5	43	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-71	210	< 2	< 1	< 50	1	< 1	< 2	< 1	< 5	3	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-72	210	< 2	< 1	2 5 2	1	< 1	< 2	< 1	< 5	4	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-73	210 —	< 2	< 1	< 50	2	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-74	210 —	< 2	< 1	< 50	ī	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	· · · · · · · · · · · · ·
MA-75	210	< 2	1	163	< 1	< 1	< 2	< 1	6	17	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-7 6	210 -	< 2	< 1	< 50	2	< 1	< 2	< 1	< 5	3	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-77	210 —	< 2	< 1	238	2	< 1	< 2	< 1	7	1	< 1	< 2	< 0.5	< 1	< 1		< 0.1	
MA-78	210	< 2	< 1	< 50	I	< 1	< 2	< 1	< 5	11	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
M-79	210 -	< 2	2	< 50	1	< 1	< 2	< 1	< 5	18	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-80	210 —	< 2	< 1	127	< 1	< 1	< 2	< 1	6	1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-81	210 —	< 2	< 1	< 50	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-82	210 -	< 2	< 1	< 50	2	< 1	< 2	< 1	< 5	2	< 1		< 0.5	< 1	< 1		< 0.1	
MA-83	210 —	< 2	< 1	277	4	< 1	< 2	< 1	< 5	7	< 1	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-84	210 —	< 2	< 1	< 50	1	< 1	< 2	< 1	< 5	< 1	< 1	< 2		< 1	< 1	< 0.1		
MA-85	210 -	< 2	< 1	148	< 1	< 1	< 2	< 1	8	< 1	< 1	< 2	< 0.5	< 1	< 1	< 0.1		
MA-86-1	210 -	6	< 1	2080	31	< 3	< 2	< 1	36	17	< 1	< 2	< 0.5	< 1	< 1		< 0.2	
MA-8 6-2 MA-8 7	210 -	< 2 < 2	< 1 < 1	197 90	10 2	< ! < !	< 2 < 2	< 1 < 1	9 7	7 2	< 1 < 1	< 2 < 2	< 0.5 < 0.5	< 1 < 1	< 1 < 1	< 0.1	< 0.1 < 0.1	
M-88	210 -		···	< 10		<u> </u>	< >	<u> </u>	/ :		<u> </u>	< 2	< 0.5	< 1	< 1	< 0.1	< 0.1	
MA-89	210 -	< 2 < 2	< 1 < 1	< 50	3	< 1	< 2 < 2	< 1	< 5 < 5	1	< 1 < 1	$< \frac{2}{2}$	< 0.5	< 1	<1	< 0.1		
MA-90	210 -	$ $ $< \frac{2}{2}$	< 1	< 50 < 50	1	< 1	< 2	< 1 < 1	< 5	2	< 1	< 2	< 0.5	$\langle 1 \rangle$	< 1	< 0.1		
MA-91	210 -		< 1	< 50	1	< 1 < 1	$< \frac{2}{2}$	< 1	< 5	2	< 1		< 0.5	$\langle 1 \rangle$			< 0.1	1
MA-92	210 -	$ $ $< \frac{2}{2}$	< 1	< 50	1	< 1	$< \frac{2}{2}$	< 1	< 5	4			< 0.5	< 1	-	< 0.1		
<u> </u>	1.10	<u>```</u>		~		~ ·	~ 4						~ 0.7			~ ~ . 1	~ ~ ~ 1	

CERTIFICATION : Anald D. Lugaro

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7.1-2C1

PHONE (604) 984-0221

TO DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2 Project : Comments: ATTN: ALLAN YOUNG CC: J HAJEK * Page No. : 3 Tot. Pages: 4 Date : 25-JUL-89 Invoice #: 1-8915074 P.O. # : NONE

SAMPLE DESCRIPTION	PREP CODE	Au NAA / ppb	As NAA ppm	Ba NAA I ppin	Br NAA Coppm	e NAA C ppm	s NAA L ppm	a NAA R ppm	ab NAA S ppin	b NAA S ppm	Sc NAA T ppm	fa NAA ' ppin	Th NAA U ppm	NAA W ppm	NAA : ppm	Sm NAA ppm	Eu NAA ppm	
MA-93 MA-94 MA-95	210 - 210	< 2 < 2 < 2 < 2	< 1 < 1 < 1	80 < 50 < 50	< 1 1 2	< 1 < 1 < 1	< 2 < 2 < 2 < 2	< 1 < 1 < 1	< 5 < 5 < 5	< 1 1 < 1	< 1 < 1 < 1	< 2 < 2 < 2 < 2	< 0.5 < 0.5 < 0.5	< 1 < 1 < 1	< 1 < 1 < 1	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	
M-9 6 M-9 7	210	< 2 < 2	< 1 < 1	< 50 < 50	1 1	< 1 < 1	< 2 < 2	< ! < 1	< 5 < 5	< 1 2	< 1 < 1	< 2 < 2	< 0.5 < 0.5	< 1 < 1	< 1 < 1	< 0.1 < 0.1	< 0.1 < 0.1	
M-98 M-99 M-100 M-101 M-102	$\begin{array}{c} 210 \\ -21$	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 50 < 50 < 50 93 313	1 1 2 1 1	< 1 < 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 5 < 5 < 5 < 5 < 5	$< 1 \\ 1 \\ < 1 \\ 2 \\ < 1$	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1	
MA-103 MA-104 MA-105 MA-106 MA-107	$ \begin{array}{c} 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ - \end{array} $	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	6 < 1 < 1 < 1 < 1	< 50 67 96 < 50 69	$< \frac{1}{6} < \frac{1}{8}$	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 5 7 < 5 < 5 < 5	< 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	<	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		
MA-110 MA-111 MA-112 MA-113 MA-115	$\begin{array}{c} 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ -2$	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1 < 1	111 174 59 70 < 50	1 1 1 6 1	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 5 < 5 < 5 < 5 < 5	< 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1		
MA-117 MA-118 MA-119 MA-120 MA-121	$ \begin{array}{c} 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ - \end{array} $	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1 < 1	89 < 50 57 < 50 83	4 8 1 1 35	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 5 < 5 < 5 < 5 < 5	< 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1	
Ma-122-1 Ma-122-2 Ma-123 Ma-125 Ma-126	$\begin{array}{c} 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ -2$	<pre>< 2 < 2</pre>	 < 1 < 1 < 1 < 1 < 1 	< 50 < 50 51 109 109	10 8 1 1 1	< 1 < 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 5 < 5 < 5 < 5 < 5	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	< 0.1	< 0.1 < 0.1 < 0.1	
MA-128 MA-130 MA-131 MA-132 MA-133	$ \begin{array}{c} 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ - \\ 210 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	<pre>< 2 < 2</pre>	< 1 < 1 < 1 < 1 < 1	61 110 < 50 245 179	5 5 1 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 5 < 5 < 5 < 5 6	< 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	< 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	• • • • • • • • • • • • • • • • • • •
MA-135 MA-136 MA-138 MA-139 MA-140	$ \begin{array}{c} 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ \end{array} $	< 2	<pre>< 1 < 1</pre>	< 50 < 50 < 50 < 50 < 50	2 1 1 3 1	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1 < 1	< 5 < 5 < 5 < 5 < 5	< 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	<pre>< 2 < 2</pre>	$ \frac{-}{<0.5} \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.5 $	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	

CERTIFICATION Sound S. burgers'

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2 Project : Comments: ATTN: ALLAN YOUNG CC: J HAJEK * Page No. :4 Tot. Pages:4 Date :25-JUL-89 Invoice #:I-8915074 P.O. # :NONE

SAMPLE DESCRIPTION	PREP CODE	Au NAA ppb	As NAA E ppm	Ba NAA B ppm	n NAA Co ppm	e NAA Ca ppm	s NAA L ppm	a NAA R ppm	b NAA S ppm	Sb NAA S ppm	Se NAA T ppm	a NAA ' ppm	Th NAA U ppm	U NAA W	'NAA ppm	Sm NAA ppm	Eu NAA ppm	
MA-142 MA-145 MA-146 MA-147	$\begin{array}{c} 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ 210 \\ - \end{array}$	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1 < 1	1 3 5 68 72 82 1 5 5	1 1 1 1 1 1	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 5 < 5 < 5 < 5 < 5	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1	< 0.1	< 0.1 < 0.1 < 0.1	
MA-149 MA-150 ST-162	$\begin{array}{c} 210 \\ - \\ 210 \\ - \\ 210 \\ - \\ 210 \\ - \\ 210 \\ - \end{array}$	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 50 129 < 50 < 50 < 50 < 50	1 4 1 2 1	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 5 < 5 < 5 < 5 < 5	< 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1	< 2 < 2 < 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1	< 1 < 1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1	
ST-204	210 <u>-</u> 210 <u>-</u>	< 2 < 2	< 1	< 50 < 50	6	< 1 < 1	$< \frac{1}{2}$ < 2	< 1< 1	8 < 5	< 1 < 1	< 1 < 1	< 2 < 2	< 0.5 < 0.5	< 1 < 1	< 1< 1	< 0.1 < 0.1		
	4 																	
	: :																	
	:																	
	ł																	

CERTIFICATION : Sound D. Lungons

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE . NORTH VANCOUVER. BRITISH COLUMBIA. CANADA V7J-2C1

PHONE (604) 984-0221

To: DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2

Comments:

CERTIFICATE A8921094

D I AMON	D HILL MINING CORPORATION		CHEN
PROJEC	т :		COD
P 0 #	: NONE		
C			98
	s submitted to our lab in Vancouver. BC		92
Inis r	eport was printed on 31-JUL-89.		92
			92
			92
			92
		-	92
	SAMPLE PREPARATION		92
		i.	92
CHEMEX	X NUMBER		92
CODE	SAMPLES DESCRIPTION		93
	DEDCKTI HON		93
-			93
205	13 Rock Geochem: Crush.split.ring	i	93
238	1 3 ICP: Aqua regia digestion		95
			93
			93
			93
1			93
1			93
			93
			94
			94

* NOTE 1:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al. Ba. Be. Ca. Cr. Ga. K. La. Mg. Na. Sr. Ti. Tl. W.

ANALYTICAL PROCEDURES

CHEMEX	NUMBER			DETECTION	UPPER
CODE	SAMPLES	DESCRIPTION	METHOD	LIMIT	LIMIT
	-		• · · · ·		
983	13	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
921	13	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
922	13	Ag ppm: 32 element. soil & rock	ICP-AES	0.2	200
923	13	As ppm: 32 element. soil & rock	ICP-AES	5	10000
924	1 3	Ba ppm: 32 element, soil & rock	ICP-AES	1 0	10000
925	1 3	Be ppm: 32 element, soil & rock	ICP-AES	O.5	100.0
926	13	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	13	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	13	Cd ppm: 32 element, soil & rock	ICP-AES	O.5	100.0
929	13	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
930	13	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
931	13	Cu ppm: 32 element. soil & rock	ICP-AES	1	10000
932	13	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
933	13	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	13	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
934	1 3	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
935	13	La ppm: 32 element, soil & rock	ICP-AES	10	10000
936	1 3	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
937	13	Mn ppm: 32 element. soil & rock	ICP-AES	5	10000
938	13	Mo ppm: 32 element. soil & rock	ICP-AES	1	10000
939	13	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
940	13	Ni ppm: 32 element, soil & rock	ICP-AES	I	10000
941	13	P ppm: 32 element, soil & rock	ICP-AES	10	10000
942	13	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
943	13	Sb ppm: 32 element. soil & rock	ICP-AES	5	10000
958	13	Sc ppm: 32 elements. soil & rock	ICP-AES	1	100000
944	13	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
945	13	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
946	13	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
947	13	U ppm: 32 element, soil & rock	ICP-AES	10	10000
948	13	V ppm: 32 element, soil & rock	ICP-AES	1	10000
949	13	W ppm: 32 element, soil & rock	ICP-AES	10	10000
950	13	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

A8921094

- k

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7.I-2C1

PHONE (604) 984-0221

To DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2 Project : Comments: * Page No. : 1-A Tot. Pages: 1 Date : 31-JUL-89 Invoice # : 1-8921094 P.O. # : NONE

B. Carglin

CERTIFICATE OF ANALYSIS A8921094

CERTIFICATION :

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA IA A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Min ppm
MA 62A MA 62B	205 238 205 238 205 238 205 238 205 238 205 238	<pre>< 5 < 5</pre>	2.90 2.81 2.95 2.48 2.61	0.4 0.2 0.2 0.2 0.2 0.2	< 5 5 < 5 < 5 < 5 < 5	10 430 30 20 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.79 1.80 1.96 0.90 2.18	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	60 25 22 29 28	38 26 22 102 82	1 54 34 1 1 7 2 30 1 8 6	7.11 6.75 7.05 7.53 7.42	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	< 0.01 0.05 0.08 0.07 0.11	< 10 < 10 < 10 < 10 < 10 < 10	1.96 1.40 1.36 1.18 1.13	505 870 730 670 655
MA 103R MA 109R MA 144R MA 161R	205 238 205 238 205 238 205 238 205 238 205 238	< 5 < 5 < 5 < 5 < 5 < 5	2.46 0.46 0.81 0.38 3.64	1.0 0.6 0.4 0.6 0.2	60 15 < 5 30 15	460 160 510 740 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.58 0.80 1.40 0.54 2.43	$ \begin{array}{r} 1 . 5 \\ 0 . 5 \\ < 0 . 5 \\ < 0 . 5 \\ < 0 . 5 \\ < 0 . 5 \end{array} $	82 8 6 6 31	197 136 165 114 47	96 41 20 69 5	10.60 3.79 2.12 2.06 5.40	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.18 0.18 0.17 0.16 < 0.01	30 10 20 10 < 10	1.14 0.16 0.41 0.33 3.46	28 50 168 5 520 24 5 940
	205 238 205 238 205 238	< 5 < 5 < 5	2.97 2.18 0.34	0.2 0.2 0.4	5 5 5	380 170 180	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	1.08 0.69 1.01	$0.5 < 0.5 \\ 0.5 \\ 0.5 $	28 28 5	356 129 111	33 32 34	4.97 4.59 3.49	< 10 < 10 < 10	< 1 < 1 < 1	0.29 0.15 0.14	20 20 10	1.09 0.86 0.12	720 655 2230
																	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			



# Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2 Project : Comments:

* Page No. :1-B Tot. Pages:1 Date : 31-JUL-89 Invoice # : I-8921094 P.O. # :NONE

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	w ppm	Zn ppm			
JH7R MA17R MA 61R MA 62A MA 62B MA 62C	205       238         205       238         205       238         205       238         205       238         205       238         205       238	1 1 1 2 1	0.02 0.05 0.06 0.02 0.04	65 2 1 2 < 1	10 3 3 6 0 3 6 2 0 1 0 3 0 2 6 3 0	10 6 4 4 2	5 5 5 5 5 5	5 8 7 3 7	17 50 46 30 51	0.31 0.30 0.33 0.19 0.38	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	394 95 14 8 10	< 10 < 10 < 10 < 10 < 10 < 10	64 100 66 62 58			
102R         103R         103R         109R         14109R         144R         161R	205       238         205       238         205       238         205       238         205       238         205       238	14 5 1 1 1	0.01 0.02 0.01 0.01 0.12	353 60 15 25 55	6460 590 650 650 60	6 8 2 10 < 2	5 < 5 < 5 < 5 5 5	14 3 2 3 8	32 122 33	$ \begin{array}{r} 0.03 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.20 \end{array} $	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	83 8 13 8 182	< 10 < 10 < 10 < 10 < 10 < 10	284 98 30 94 74	 		
MA 162 MA 163 103R	205 238 205 238 205 238	2 2 5	0.12 0.05 0.01	48 46 56	670 660 530	8 6 12	5 5 < 5	8 6 3	52 33 28	0.19 0.15 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	155 129 5	< 10 < 10 < 10	82 80 100	, 1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999) (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (199	na i L	

CERTIFICATION : ___



#### Chemex labs

a see see a see a see a

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE .. NORTH VANCOUVER . BRITISH COLUMBIA. CANADA V7J-2C1 PHONE (604) 984-0221

To: DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER. BC V6C 1H2

Tl ppm: 32 element. soil & rock

U ppm: 32 element, soil & rock

V ppm: 32 element, soil & rock

W ppm: 32 element, soil & rock

Zn ppm: 32 element, soil & rock ICP-AES

Comments: .....

## CERTIFICATE A8921095

ANALYTICAL PROCEDURES

DIAMOND HILL MINING CORPORATION	CHEMEX NUMBER CODE SAMPLES	DESCRIPTION
PROJECT :		
PO# : NONE	983 6 Au DD	
Samples submitted to our lab in Vancouver. BC.		b: Fuse 30 g sample 32 element, soil & rock
This report was printed on 31-JUL-89.		
• • • • • • • • • • • • • • • • • • • •	U FF	m: 32 element. soil & rock
		n: 32 element, soil & rock
	••	m: 32 element. soil & rock
	••	m: 32 element. soil & rock
CAMPLE DEEDADATION		n: 32 element, soil & rock
SAMPLE PREPARATION		32 element, soil & rock
	••	m: 32 element. soil & rock
CHEMEX NUMBER	••	m: 32 element, soil & rock
CODE SAMPLES DESCRIPTION		m: 32 element. soil & rock
		m: 32 element, soil & rock
	932 6 Fe %:	32 element, soil & rock
2 1 7 6 Geochem:Ring only.no crush/split	933 6 Gapp	m: 32 element. soil & rock
238 6 ICP: Aqua regia digestion	951 6 Hg pp	m: 32 element. soil & rock
i	934 6 K %:	32 element, soil & rock
	935 6 La pp	m: 32 element, soil & rock
	936 6 Mg %:	32 element, soil & rock
	937 6 Mn pp	m: 32 element, soil & rock
	938 6 Mopp	m: 32 element, soil & rock
la construction de la construction	939 6 Na %:	32 element, soil & rock
	940 6 Nipp	n: 32 element. soil & rock
	941 6 Pppm	: 32 element, soil & rock
* NOTE 1	942 6 Pb pp	m: 32 element. soil & rock
* NOTE 1:	943 6 Sb pp	n: 32 element, soil & rock
The 32 element ICP package is suitable for	958 6 Sc pp	n: 32 elements. soil & rock

944

945

946

947

948

949

950

6

6

6

6

6

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al. Ba. Be. Ca. Cr. Ga. K. La. Mg. Na. Sr. Ti. T1, W.

------DETECTION UPPER METHOD LIMIT LIMIT FA-AAS 5 10000 ICP-AES 0.01 15.00 ICP-AES 0.2 200 ICP-AES 5 10000 ICP-AES 10 10000 ICP-AES 0.5 100.0 ICP-AES 2 10000 ICP-AES 0.01 15.00 ICP-AES 0.5 100.0 ICP-AES 1 10000 ICP-AES 1 10000 ICP-AES 1 10000 ICP-AES 0.01 15.00 ICP-AES 10 10000 ICP-AES 1 10000 0.01 ICP-AES 10.00 ICP-AES 10 10000 ICP-AES 0.01 15.00 ICP-AES 5 10000 ICP-AES 1 10000 ICP-AES 0.01 5.00 ICP-AES 1 10000 ICP-AES 10 10000 ICP-AES 2 10000 ICP-AES 5 10000 Sc ppm: 32 elements. soil & rock ICP-AES 1 100000 6 Sr ppm: 32 element. soil & rock ICP-AES 6 1 10000 6 Ti %: 32 element, soil & rock ICP-AES 0.01 5.00

ICP-AES

ICP-AES

ICP-AES

ICP-AES

10

10

1

10

2

10000

10000

10000

10000

10000

A8921095





212 BROOKSBANK AVE .. NORTH VANCOUVER. BRITISH COLUMBIA. CANADA V7J-2C1

PHONE (604) 984-0221

To : DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2 Project :

* Page No. 1-B Tot. Pages: 1 Date 31-JUL-89 Invoice # : I-8921095 P.O. # : NONE

### CERTIFICATE OF ANALYSIS A8921095

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Za ppm	
Ma 101A -35+80 Ma 101B -80 Ma 126A -35+80 Ma 126B -80 Ma 127A -35+80	217 238 217 238 217 238	2 5 1 2 3	0.08 0.03 0.03 0.04 0.06	58 71 40 43 58	870 1150 770 990 700	6 22 18 12 18	< 5 < 5 5 < 5 5 5	7 9 4 4 6	66 59 106 127 75	0.15 0.13 0.06 0.07 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	100 105 37 39 68	< 10 < 10 < 10 < 10 < 10 < 10	92 136 74 74 144	
MA 127B -80	217 238	3	0.07	67	980	18	5	7	107	0.09	< 10	< 10	68	< 10	174	
													CERT	IFICATIO	)N :	_B.Co.d.

Comments:



# Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE . NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To DIAMOND HILL MINING CORPORATION

300 - 789 W. PENDER ST. VANCOUVER, BC V6C 1H2 Project : Comments:

* Page No. : 1-A Tot. Pages: 1 Date : 31-JUL-c Invoice # : I-8921095 P.O. # : NONE

MA. 101A -35460         217         238         5         1.78         <0.2	SAMPLE DESCRIPTION	PREP CODE	Au ppb FA <del>+A</del> A	Al %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	<b>К</b> %	La ppm	Mg %	Min ppm
$MA 127B - 80 \qquad 217 238 \qquad < 10 \qquad 2.08 \qquad 0.2 \qquad 5 \qquad 340 < 0.5 \qquad < 2 \qquad 2.07 \qquad 0.5 \qquad 17 \qquad 534 \qquad 41 \qquad 3.49 < 10 \qquad < 1 \qquad 0.41 \qquad 30 \qquad 0.84$	MA 101B -80 MA 126A -35+80 MA 126B -80	217 238 217 238 217 238	75 < 5 < 5	1.30 1.51 1.62	0.6 0.2 0.2	55 < 5 < 5	1 30 1 20 1 30	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	1.01 2.05 2.40	0.5 < 0.5 0.5	2 2 1 3 1 2	99 258 348	117 28 31	6.54 2.85 2.88	< 10 < 10 < 10	< 1 < 1 < 1	0.09 0.24 0.28	10 10 20	0.86 0.76 0.73	620 630 895 1055 710
	Ma 127B -80		< 10	2.08	0.2	5	340	< 0.5	< 2	2.07	0.5	17	534	41	3.49	< 10	< 1	0.41	30	0.84	725