\qquad

THE NORTHERA GME

\qquad
\qquad BRIDAE RIVER, B. C.

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Report by

ALFRED R. ALINN, P. Ene.
27...i., Novenber, 2956

\qquad

Congents

Page
工NRTODUCTION 1
LOCATIOX AND ACCDSSIBLIITY 2
CLATN AND OVAERSIMP 2
HISTORY 3
TOPCORAPEY 4
ORNERAL OEOLOOY 5
LOCAL OBOLOXY 5
Introchaction 5
Stratis.graphy 6.
Structure 8
Kineralogy 9
SURPACB SHONITOS 20
UADPROROUND WORKIMOS 21
THB 1956 PROCRAM 12
DLAMOND DRILITMG 4
SAMPLIMO AND ASSAYS 16
EEVELOPAENT POSSIBILITTES 17
METALLDRGY 19
ECONOMC CONSTDERATIOMS 20
TIMBER, HATER AND FOWER 20
SUMMARY AND CONCLUSIOHS 21
HECORENDATTONS 22
BIBLICORAPGIY
MAPS: 1. Location Map, Vanc ouver to Bridge River.-2. Location Map, Bridge River, showing clainas.3. Clalms Map.
4. Upper and Lower funnels and Assay Plan.
Dol Dianond irdil Holes 1 - 4
D-2 Diamond irill Holes 1-7, 9-12, 1-56, 4-56.
B.D-1 Isomotric Block Diagram.
11 Sheets, Plans and ections, D.D. Holes 2-7, 9-12,$1-56$ to $4-56$.

THE NORTHKRN GEM
 \therefore Co, in that Batidy RIU BRTDOR RIVER, B. C.

INTRODUCTION
th F 2 CO

The Worthern Oem cobalt-gold-uranium property was examined by the writer flrat in July 1955, and regulariy during 1956 while suparvising tho works prograng thereon.

The purpose of this report is to present a compilation of all available data along with results of the 1956 programe.

The general aspects of the property are desoribed briefly, and the bulx of the report contains information pertaining to the character and potential of the cobalt-gold-uranium ore deposits.

+ 36	682	2	?	Waz	. 0	-2\%	
**	2	is	at	\% 3	- ${ }^{\text {a }}$, 3	\%	
\#	P	5	\#	7088	(0, t_{8}	\%	
\%	*	3	*		S边 -		
2	9	3 2\%	*	172?	$43^{5} 57$	- 5 ¢ 43	
*	*	26	${ }^{11}$	7\%2\%	4.031	Aceres	
e	3	29	z	2-7\%	51. 63	"	
*	\%	28	\%	Th2	123-2is	\%	

LOCATION AND ACCESSIBILITTY

The property is located about 100 mliss north of Vancouver, B. C., in the Bridge River district, Lillooet Mining Divicion.

From Shalalth on the Pacific Oreat Bastern Railway, via the Bridge River Highway, it is 37 niles to the branch road mich leads to the property. This branch road off the Bridge Miver Highway is about 2 milem east of 脽nto, and leada 12 niles up Gun Croek to the Oun Creek bridge near the mouth of Roxey Creak. Fron the bridge a 3 mile switchback road leads to the Northern Cem cain on the east bank of Roxey Creek. The tumela are about $1 / 2$ mile easteriy from the camp, 700 feet highar, and ara reached part way by road and the ramainder by a trail.

From Vancouver to Minto is approximately a 10-hour drive by autorobile, a day by P.G. E., and bus, and a 1-hour flight to Oun Lake by Pacific Western Airlines during the sumser months only.

OLAINS AND OWNERSIIP

The following Crown Grant and Located mineral clains comprise the Northern Gem property: Grown Orant 位neral Clains:

Lot 7566
$: 7567$
$: 7568$
$: 7727$
$: 7728$
$: 7730$
$: 7732$
34.90 Acres
34.49
46.99
51. (approx) Aores 49.67 Aores 49.57 Acres 51.63
… 2 :
\qquad

Located Kineral Claims:

```
\(\begin{array}{lcc}\text { Palang } & 1-8 & \text { Some being fractions } \\ \text { Paul } & 2-8 & n \\ n & n\end{array}\)
```

0 K

Some of the Palang and Peul claims overlie four claims previously held, thase baing the Fros 2, 2, 3 by E. Foward of ilnto, and the Littie dea 19 held by R.R. Taylor of Vancouver. The exact boundaries of the respeczive cleins will not be known until they are surveyed. The Northern Gem showings are well protected by the Crown Orant olaims issted above.

The claims are shown on the map accompanying this report, data for wich has been acquired from official surveys of the Crown Orant claims and the B.C. Department of Mines Mreral Reference Map 21T-269 for the looated claires.

HISTORY

The ninsral deposits were discovered and ataked by William Haylmore and W.H. Ball in 2934. Thair interests were bought by J.M. and R.R. Tayior in 2937. The United States Vanadium Corporation optioned the property in 1937 and drove the upper tunnel. All work in Carada was terninated in 1939 by the above named company and the exploratory program on the Northern Gem vas not completed. During the winter of 1939 the Lower tunnel was driven by contraotors for J.M. and R.R. Taylor. In 1940 the property was optioned for a short time by Bralorne Hines and the two short raises were driven from the lower tunnel. The lack of a treatment process, and indefinite marketing possibilities at that time, resulted

In the option being dropped by Bralorne Kinas. In 1952 Estalla Kinas optionad the property. A swithhback road was e ompleted from Clun Creek bridge to the camp and twalve holes were dianond drilled from the lower cunnel. Estella 1 fineg were forced to drop the option when they were unable to meet the due paymant in November 2953 and it was not passible to secure an extension from the omnerg. Northern Gem Mining Corporation was formed in Dec. 1955 for the purpose of ecquiring and developing the property. Work was comaenced on the road in June, on the camp in August and on the showings shortiy thereafter. Work was tersinatad for the WIntas Ootober $23 r d$ because of the unusually eariy arxival of winter snow et the property.

TOPOORAPETI

The property is located in the rugged mountainous terrain of the Bridge River region. Camp Lies on the east bank of Roxey Creek 5,500 feet abova san lavel. Hount Dixon towers 3,700 seet above the valley of Roxey Creek. The lower and upper tunnels, about $1 / 2$ inde easteriy from catrp; are on a staep rocky sidehil2 at elevation 6,192 and 6,250 foet above soa level respectively. The easterly trending feulted zone in which the govings occur extends up the precipitous sidehill and over the top of the ridge, 6,540 feet elevation, between Roxey and Jewel Creeks. Gun Creek bridge is at 3,440 feet, and kinto Is at approximately 2,400 feet above sea level.

The oreaks occupy narrow V-shaped valleys with steop gradients.

The Northern oem caxp is about 500 feet belou tiraber line． Snow slisies are numerous during the winter season on both sides of Roxey Creek．

Permian and Triassic sediments and volcenics of the Fergusson， Hoel，Pioneer and Kurlay formations have been intruded by Jurassio， Bralorna，Sumar，President and Bendor 1gneous rocks．Attendant meta－ morphism and subsequent deposition of rafneral bodies containing precious and base matals，now partialiy exposed by erosion，have resulted in the Bridge River mining camp，the center of which is Bralorne and Pioneer Gold Mines．

Introcuction．
The geology of the area has been mapped by the Cleological Survey of Canada on a $1 / 2 \mathrm{mile}$ per inch acale．This shows the Northern Oem property lying in Bendor quarta diorita and granodiorite near the eastern contact of the intrusive body where a large＂tongue＂ $1 / 2$ to $3 / 4$ miles side extends easterly 3 miles to Oun Lake．Fergusson sediments and serpontine one mile south and more than 1000 feet higher， and serpantine，Pioneer greenstone and metaworphosed Fosl sediments $3 / 4$ mile to the nerth at 6,000 reet elevation，suggest that the bathom lith has been only just de－roofed．

4 broad brom ateined zone of faulting extends fron the

Northorn dem tunnela up and over the ridge batween Roxey and Jewel creeks. Within this zone are irregular bodies of massive aulphides and alao disseminated sulphides in bleaohed granodiorite. Both the messive and diaseminated types of minaralization contain cobalt, gold, and uranium in commeroial quantities.

Stratiferonhy.

The Northem Gear showings lie within a gone of faulting in granodiorite naar the east contact between the Bondor batholith and younger sedimontary and volcanio rocks. The granodiorite is light grey, modium grained, and ferronegnasian minerale are blotite and homblende. Noar the workings feldspar porphyry dykes have been intruded into tha granodiorita. One and ons-quarter miles southwest from the min workings a 2 male by $3 / 4$ mile body of gabbro breccia is included in the granodiorite.

The proparty lies at the junction of the main batholith and a "tomgue" which extends $2-1 / 2$ miles to the east. To the south one mile, and 1000 to 1200 feet higher in elevation sedimentary rocks of the Fergusson group overlie the granodiorite. Three-quarters of a mile to the north of the shouings rocks of the group, serpentine, Hool, and Pionser formations are in contact with the batholith. It is evident, therafore, that the Horthern Oem mineralization, as presently exposed, Lies only a short distance below what had been the eastariy sloping roof of the Bondor batholith.

In Gun Creek, at the nouth of Roxay Creek, a $2-\mathrm{mlle}$ length of Bralorne intrusive has been exposed.

Table of Forrantions.

Cenozoic and (?) Hesozuic	Post Iowar Cretaceous	Kersantite and basaltio dykes	
		Bendor intrubives	Fiornblende-biotits-quartz diorite (mainly); granite; granodiorita; diorite; (batholith and related stocks and dyices)
			Feldspar and hornblende porphyrite dykes and related, cioritic stocks; felsitic to aphanitic dykes; (may be post-Bendor)
			Quarta albitite, albitite, ad related, less sodic, dyites; greenstone dykes
Masoselo	Jurassic (\%)	Presidient Intrusives	Paridotite (rainily); dunite, pyroxenita; (may be partiy serpentinized)
			Serpentine (mainiy)
		Sumer gabbro	Diallage-oliving gabbro
		Bralorne 1ntrusívea; may be in part younger than the President intrusives	Soda granite (albite feldspar) Caboro, augite diorite and quarta diorite; metadiorite (mainly sodic plagioclase)

[^0]\qquad

Prble of Pormatione (Cont 'd)

Era Poriod Poritation	Lithology
Triassic \quad Hurley and (or) Jurassio	Banded, argillaceous and tupfaceous sediments with abundant 2swy types; Soasiliferous ifmostone: conglomeratic and eggloneratio bods; cherty halleflenta and trachyicic Llows; Intercalated undesitio (ereenstone) flows
of binamo mis.ana a Pmy Ploneer formation	Oreen, massive, anygdular to ininely crystalifine ancesites and meta-andegites; andesitic tuffs and brecoias; assooiated, int,ruaive, dioritice phases
Noel formation	Banded, argillaceous and tuffaceous sedixuents; thiniy banded chert and argillito associated with greenstone; conglomarate, tuffs, and breccias
Palaeozoio Permian(?)Pergusson Beries	Nainly green, but in part reddish, masbive to highly schistose, anygdaloidal, and in part ellipsoidal, andesitic to basaltic lavas; tueis and breecias; associated 21mestone pods
 	Kainiy thiniy interbedided chert and dark gruy to blask or zeddisin, blaty to sohistose, graphitic argililites massive chert; sone cryatalline 11 mastone

Structure.

The rinaral showings on the Northern Gem property ara located
wi.thin a broad zone of faulting. This zone passas under talus belon the
lower tannel and is covered by averburden at the top of the ridge batwaen

Hoxey and Jewel oreeks. Between these two locations, 700 feet on plan and 400 feet in vertical section, it is strongly evidont extending from the tunnels north 80 degress east up the precipitous sidehill and on the top of the ridge. Rather than a well defined fault with a wide gouge zone, it is a series of shears from hangingwall to footwall. It is up to 60 feet wide ini dips 60 to 80 degrees southerly. Kumarous ninnor shears, characterized by relatively wide zones of brownweathering carbonate, intorsect this fault zone at many angles. The nost comson of these sots of shears strikes a few degrees east of north and dips 30 degrees easterly. Within the falt zone occur irregular and lense shaped masses of camost solid suiphices surrounded by granodiorite highly bleached and sericitized. Within those bleached zones also occur irregular zones of dieseminatod suiphides. In general the sulphide sones and bleached granodiorito ile parailol to the confining hangingwail and footwall of the faulted zone.

Siructural control may have been exerted on the deposition of the ore by the cross shears. This is most evident on the lower level. On the upper levol and in an opencut near the top of the ridge, however, the shears appear to cut the sulphide mineralization. Additional evidence will be required to deteraine the influence, if any, that the subsidiary sharing may have exerted on the ore deposition.

Mineralogy.

Both the massive and disseminated sulphide zones are composed of arsenopyrite, danaite (arsenopyrite with up to 12% cobalt) and

ver! gtrinut ads
Ta दूरी 9ils

- Mreas endion

QBEet5 , "xsoriz ̧as axcast 20 2toc
-VINetaen
tioz deocesis
7nctes?
5tankators ib 2o

20056a之 anf

अंद
it xy axo ont Tacren orfs rio
ch ansoria ent
Kapers od rifu

- Vgotaxanir
loellingite-safflorita. Loellingite is an iron diarsenide which may contain cobalt, and safflorite is a cobalt-iron diarsenide. the gangue mincrals with the massive sulphides are, in order of abundance, allenite, apatito, orthoclase feldspar, quarts, chlorite, sericite, calcite, roolybdendto, and uraninite.

The gangue winerela in thebleached eranodiorite are sericite, residual quartz, feldspar and kaolinized feldspar, grading into normal granodiorite. John S. Stevenson, in his report to the B.C. Hinister of Minss, 2948 , classed the reassive sulphide zones as pegmatite, largely because of the contained allanite and uraninite. The writer suggests that the pesmatitic nature of these sones is doubtful, since they have practically all the characteristica of high tempersture vein-replacements, and since allanito is also known to be a gangue minoral in replacemant deposits and uraninite likewise isknosn to occur with veined sulphide jydrotherral deposits. Brythrita stain occurs on the sulphide outcrops.

The gold is believed to be finely disseminated throughout the sulpharsinides and gangue. Uraninite is associated with the gangue minorsis in irregular swamm of crystals about ho0 mesh in sise.

SURPAGE SHONTMAS

Hassive and disseminated bodies of aulphides carrying cobalt, gold, and uranium are exposed on the Worthem Gem property within a broad faulted and fractured zone extending from the prospect tunnal.s up and over the Fteep sidehill, a diatance of 700 feat latarally and 350 feet vertically. Both uppar and lower enda of the zone pass under aurface
talus and gravel.
About 150 feet southwest of the lowar tunnel portel, just below the trail, there is a sone of disseminated sulphides in bleached granodiorite. A sample across 30 feet of this assayed 0.27% oobalt. Imadiately above the uppor tunnel portal is a zone of massive sulphides 30 feet long and 2 to 8 feet wide. About 20 faet north of the east and of this is a 50 foot ano of massive, sulphides a few inches wide, at the west end, to 10 faet wida at the aast ond where an open cut bas been excavated on it 58 feet above the upper tunnel. About 60 feet north of the uppar end of this last described zone there is a narrou shear along the contact of a feldspar porphyry dyke in whit occur sulphide maceralEzation and strong radioactivity. About 60 feet below the top of the ridge, on the precipitous aidehill, a small lense of massive sulphides cocurs within the faulted zone. Iamediately beloa the ridge tep two small open cuts have exposed narrow but extremely high grade zones of cobalt, gold, ureniusa, and in one narrow band molybdenum. A series of open pits extending several hundreds of feet easterly down the gently eloping sidehill into dewel Creek are now caved.

UNDERGROUND WOREINOS.

as The upper and lower adit tunnels, diracted easterly into the faulted and fracturod aone below high-grade mxposures of sulphide mineraliatation haw both encounterad rich cobalt-cold-uranium mineralization and nefther has delimited same.

The upper tunisl, at an elevation of 6250 feet above sea lovel,

Is an adit drift to the east under ingh-grade auxface showings. Extramely rich zones of nasaive sulphides and lower arade dissomanated sulphides ha have been encountered over a length of 120 feet. There is 5 to 6 feet of ore In the face and the averege width is estiasted to be 3 feet.

The lowar tunnel 59 feat below the upper, is an adit crosscut. Considerable wasted work was done, but a 50 -foot zone of highmerade suiphide mineralisation, up to 25 feet wide was oncountered, winch has not been delimited. Ono hundred and twenty ifve feet in from the portal a raise was driven 34 feet at ebout 45 degrees slope in which sparsely disseminated sulphides were encountered. Also at the southest end of the tunnel a raise was driven 155 feet et a slope of 30 degreeg, the floor being a shwar zone with wideh reassive sulpilide ainerailzation is associatod in the tunnedy Whttle or no ore was encountered in the raise.

In suamary, the two prospect tunnels have encountered ore at elevation 6192 feet, and 6250 feet sisilar in grade and occurrence to that exposed on the surface in the open cut direotly above at elevation 6310 feet above sea Level.

THE 1950 PROORAM

Wh $\because 6$, Work was commenced in early june and carried through unti.l October 27 th, 1956.

Repairs to the road and several guall bridges were made on the Gun Creek road and the road from Gun Creek to tha mine camp was cleaned out and re-built in plavea.

Camp was set up on the east barik of Roxoy Craak. It comprised
vionsist sul bugd 2.al so

4 tents with wood floors and walls and a cookhouse of wooden frame construction. Powder house, blacksmith shop, end corgressor house were conatructed near the lower terminus of the tramine about $2 / 4 \mathrm{sel}$ pe east of camp.

From the portal of the upper tunnel a aingle cable tramine vas sot up to service underground operations srom a location on the road ebout 2300 feet down the steep slope from the tunnels.

Pour holes were dianond drijled from 2 locations in the lower tunnel. The holes were directed below the lower tunnel. Massive sulphides were ancountered in holes $1-56$ and $4-56,75$ and 60 fent respectively below the lower tunnel, and disserdinated sulphicies in holes 2-56 and 3-56, 120 and 40 feet respectively bclow the tunnel level. The logs of the holes with sulphide intersections are described under the heading "diamond drilifng", and plans and sections of all holes included with the maps in the pocket of this report.

All the equipnont and supplies necessary for mining were placed on the property and are available for coianncement of work naxt spring.

The uppar tunnel wes enlarged, straightened out, ditched, and track and pipos installed, so that it is complately ready for mining.

DIAMOND DRILLIMO

A-X core size was used, and a total of 667 feet drilled in

1956:

Ho. Length Location	Direction	Angle	e From		$\begin{gathered} A u \\ 0 \sim / I \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{Ag} \\ & 0 z / T \end{aligned}$	$\begin{gathered} C O \\ \$ \end{gathered}$	$\begin{array}{r} 008 \\ 0 \end{array}$
2-56 50 ft. in	S 55 E	-30	133	135	0.22	-	0.21	-
167 Pt Lower Tunnel	\# 8 - x		138	139	0.54	-	0.54	Nil
			239	24.5	3.26	0.20	2.152	"
540			41.5	2462	2.10	0.20	0.25	"
$\begin{aligned} & 2 \sin \\ & \text { ing } 2 \times 8 . \end{aligned}$			246\%	1512	Los	t Core		
	13. 28 8		151]	1522	1.52	-	0.20	"
2-56 50 ft. in								
225 ft Lower Tunnel	S 55 E	-40	177	185\%	0.04	-	0.13	-
			185 ${ }^{\text {a }}$	192	0.02	-	0.02	-
3-56 $100 \mathrm{ft}$. in	S 722	-30	83	88今	0.04	-	0.08	-
225 ft Lower Tunnel			883 ${ }_{\text {a }}$	97	0.04	-	0.11	-
$4-56 \quad 100 \mathrm{ft}$. in	S 72 E	-40	186	192	Hessiv	ve Sul	phide	
180 ft Lower Tunnel					Not y	yot sar	mpled	

From the lower level 12 holes had been diamond drilled by Estella Xines. The cores have been logged by the uriter and are shown on the accompanying plans and sections. The split core is stored at the property. Mamond drill hole Number 8-location not known.

The holes having core which was sumpled，are as follows：
$32 \mathrm{Q}, \mathrm{I}$
.07
oI Styal
OC $d \vec{d}-I$
101% rot

or à 2 เ！さ2 2ç
or $\dot{\text { on }}$
卦 63
siliouts
B eff 20
なै20qug

The 22 holes drilled totaled 737 feet in length．

SAMPLTMO AND AS3AYS

The aurface and underground showings were sampled by J. L. Stevenson, B.C. Department of Mines, and are listed in Minister of Mines Annual Report 1948, pp. All2-119. Most of these are also shown on the map accompanying this report, and will not be repeated herein. The owners and several reputable engineers known to the writer have sampled the property with resulte aimilar to the above named, and these are available but will not be listed here.

The writer conours with C. Kutheriord, Po Enge, 1952, in his suramation of average values based upon J.L. Stevenson's sampling as follows:-

The most inportant stouings of ore are seen in the Upper Adit where ore occurs almost continuously for 120^{\prime} in length. Total nork done at this horizon being 160'. Values in uranium are cquite erratic, the better ones showing in the pegratite lonses while the cobalt and gold values continue more like a definite vein in the zone of pegratite lenses. While uranium values are low in the fast face of the tunnel, gold and cobalt falues are still good and the sone shows about 5' wide. Systematic sampling on this horizon gives the following averages,-

No. of Leneth
$\frac{\text { Samples }}{20} \frac{\text { of ore }}{120^{\circ}} \frac{\text { Width }}{36^{\mathrm{n}}} \frac{\text { Oold(oz) }}{.765} \frac{\text { Uranium (8) }}{.388} \quad \frac{\text { Cobalt \% }}{3.068}$
The outcrops directiy above this tunnel in 8 samples gave
averages, -
averages, $\frac{\text { Width }}{51^{\prime \prime}} \frac{\text { Gold(oz) }}{.5136} \frac{\text { Uranium \& }}{.01} \frac{\text { Cobalt \% }}{2.836}$

Average of surface and Upper Tunnel ore,
$\frac{\text { Width }}{40^{n}} \frac{\text { Cold (os) }}{.672} \quad \frac{\text { Uransung }}{.2499} \quad \frac{\text { Cobale \% }}{2.974}$

In addition to the assays takan into the averages of surface sarapling the upper surface woricings previously mentioned as being 450^{\prime} above and 600^{\prime} East of Upper Adit show some really apectuoular assays, these were not taken into averages but as a mattor of interest were as follows, -

Width	Cold (oa)	Uranium \%	Cobalt I
$3^{\prime \prime}$	4.56	. 27	2.8
Picked	23.34	. 375	4.6
Preked	7.04	. 75	4.5
$15^{\prime \prime}$	$\begin{aligned} & 45.92 \\ & (1607.2 \end{aligned}$	2.60	5.7

The lower afdit vas not as successful in opening ore as the Upper and only three aamples have been taken averaging as follows,-
$\frac{\text { Width }}{72^{n}} \frac{\text { Gold (os) }}{1.60} \frac{\text { Uransum \& }}{.335} \quad \frac{\text { Cobelt \& }}{3.23}$

While it would appear that these lower workings should have penetrated ore, further testing would need to be done.

DEVELOPIGAT POSSIBILITIES

The Northern Gem property has "hard2y been scratched".
Two prospect tunnels have been driven beneath surface showings at the lower end of the zone and high grade ore exists in the faces of both tunnels. The favorable zone in which the ore occurs extends a known

700 feet and both ends puss under aurface overburden and talus. The highest grade mineralization found on the property lies 300 feet above the tunnels within the favorable zone. The limited anount of diamond drilising completed to date roves continuance of the mineralization 120 fest bolow the lowest tunnel. Hence over a horizontal renge of at least 700 feot and a vertical range of more than 450 feet, bodies of massive and disseminated suipharsenides carrying cobalt, gold, and uranius are known to occur. Sut the favorable zone is a complex of faults and fractures and should extend considarable distances laterally under the aurface cover and to depth.

Tonnage and grade calculations made on the ore presentily indicated do not represent the worth of the property. It is, however, in this case important to estimate these in order to indicate the potential of the property, and on this basis the foliowing are herewith presented:

Tonnage indicated by upper adit tunnel, is as follows:-
2. Length of shoot, 235 feet.
2. Height of shoot, 85 feet, being to aurface and 25 feet belou tunnel level.
3. Average width of anoot 40 inches.

4. Average weight, 1 ton being 20 eubic feet in place. 235(L.0) (05) (0.1) - 3025 tons.
4. Tonnage indicated by lower adit tunnel, is as follows:-

2. Hieight of shoot, Lo feat, being 20 feet above and 20 feet

z_{3} teminda
feanut ais
$3 n d j 5625$
J60. OSL

is onfesse

223 655UE3
2xi* Wablutat
bayaodrex
10 とKi* $\pi \underline{2}+$

METALUOROY

Natalurgy was the chief problem conneoted with the Northern Gen property ten years ago. IXtenaive work by the University of British Columbia and British Colurobia Researoh Council resulted in the developmant in the 2940^{\prime} 's of a flow sheet involving medium-to-high temperature and pressure leaching which would result in an indicated recovery of 90% cobalt and 98% gold. Results of recently completed ressearch by 3heritt Gordon Nines and others have, however, so improved these methods that the Horthern Oen IAning Corporation has baen advised that treatm went by leaching at nornal pressure and tergerature sufficientiy low that no extarnal heating is required, is applicable to the ore and recoveries as good or better than previousiy anticipated are assured. It is the intention of the company, therefore, to process the ore at the wine site, the i inal products being cobalt matal, gold and uraniua oxide.

The value per ton of the ore now Indicated on the Northern Gen property is umusually high. Geologic conditions are favorable for the occurrence of additional ore on the property. All possible efforts should, therefore, be made to explore the property thoroughly with the object of proving up as much ore as possible. The property ray be developed into a high-grade amall tonnage producer in the 25 to 100 ton-per-day class. It is powsible, however, that sufficient tonnage of both massive and disseminated types of ore may be found to varrant a medifum grade, modiun tonnage producer in the 200 to 400 ton per day class. An unusual feature of the property is now evident, and that is the fact that the ore presentiy found can be mined, treated and marketed at an excellent profit, after all capital and othar costs have been paid. As evidenced by the following pages euch is not recomanded, but should the expenditure harein recomzended be made, and no more ore found, it is important to know that these and all other previous expenditures by this company along with an excellent profit could be taken from the presently known ore.

TIMBRR, VATER AND POWER.

There is a limited supply of timber in the vicinity of the property for caup and mine use. For extensive construction and longtera mining, however, timber will have to be acquired from lumber mille operating elong the P.G.E. Railway.

Axple water is available undereround and in Roxey Creek for mining and domestic use.

The falls on foxey Greek, Just below camp, are, the writer is inforrsed, capable of developing tbout L, $\mathrm{H} . \mathrm{P}$.

SUMOARY AND COMCLISIORS

The Northern Gem property, located in the Bridge zaver region of Southern British Columbia, is accessible by road.

High-grade cobalt-gold-uranium mineralization has been found In a geologically favorable zone upon which only a small amount of exploratory work has been done. The possibilities of developing eufficient ore to warrant an operation producing cobalt, gold and uranium oxide at an unusually high profit are excellent.

The metallurgioal problews connected with the econoraic recovery of the cobalt, gold, and uranium are solved. As soon as mine developsent has been carried to the stage where a definite daily operating capacity can be decided upon, a flow eheet can be designed, and plans for placing the property into production finalized.

The following is recommended as a minimum works program and
capital outloy May list to hugust 31st, 1957:

1. Road re-location and repairs, $612,000.00$
2. Camp accommodations $6,000.00$
3. Foad and wdining equipment:Turn in 2 old trucks for 2 naw ones" " old bulldozer for lareer onePurchase additional compressor $\quad 20,000.00$
4. Mining on upper level:Drift 500 feetCrosscut 200 feet $\quad \mathbf{2 5 , 0 0 0 . 0 0}$
5. Establish a new edit tunnel 125 feet below lower tunnel 25,000.00
6. Join by raises the 3 tunnels, 8,000.00
7. Underground diamond drilling: Lipper level 3,000 feet Lover level 2,000 New loval 2,000 $\mathrm{n} \quad 35,000.00$
8. Ore storage, $2,000.00$
9. Continued matallurgical work, 5,000.00
10. Geological and Goophysical Surveys of property
2,000.00
11. Office, mpervision, management, contingencies $20,000.00$ Total Eatimated Minimum Cost - $\quad 24,0,000.00$
Datailed plans for continued exploration of the property will be contingent upon results obtained by August 31st, 1957. The following winter program is, therefore, herewith reoormended with the provision that, although the scopo of the work should be adhered to

BIBLIONRAPGY

C. B. Cairns:	Ceological Survey, Canada, Paper $43-15 \mathrm{pp} 20,21$
B. T. O'Grady:	Kinister of Mines, Annual Report, 2936 pp F16, 17.
H. V. Warren:	Leokie-Twing and Adains, Mineralogy of Gold Cobalt Occurrences in B.C., The thiner, Vol. 12, No. 8, Aug. 1939, pp 34, 35.
H. V. Warren:	R.M. Thompaon, Mineralogy of Two Cobalt occurencus in B.C., Western linner, Vol. 10, Ho. 5, Kay 2945, pp 34-42.
J.L. Stevensont	Minister of Mines, Annual Roport, 294, pp A212A119.
R.R. Taylor:	An investigation of Freatment Nethods, of Cobalt Ore from the Littie Gev Mine, Bridge River, April 19ll. Private Report.
B.R. NeIntoshs	Recovery of Cobalt from Taylor Gem Ore, by Aqueous Solutions April 1950. Private leport.
Farmer ${ }^{\text {a Pell: }}$	Investigation Data Cold and Cobalt Recoveries, From the Little Gea Kine Ore, April 19 L 2. Private lieport.
James Stonehouse:	Hurd Oxddation of Sulphides, Decenber 2919. Private Report.
U.K.A. Congreve;	The Use of High Pressure Oxygen in Extraction Hetallurgy, liovember 1919. Private Report.
P. LeckiewEwing and P. Adams:	Experimental Roduction and Electrolysis of Cobalt Ore from ilitile Gem inne, Hay, 1939.
R.B. McIntosh and B.S. Corrigan:	Taydor Gen Ore Treatment, Progress Report No. 1, December 1949.
R.R. Taylor:	Numarous Personal Commanications.
C. Putherford, P.Eng.	Report on Little Cem Property, Kay 2l, 1952.
C.C. Starr, P.Eng. ${ }^{\text {a }}$	Roport on Preliminary Examination of Little Gem Oroup, 1940.

[^0]:

