
Tasco Copper-Molybdenum-Gold Property Taseko Lakes Area British Columbia, Canada

Pre 1983 Technical Reports

R. W. PHENDLER, P. Eng., GEOLOGICAL CONSULTANT, EXPLORATION AND MINING 7360 DECOURCY CRES., RICHMOND, B.C. V7C 4E9 (604) 271-2588

JOHN A. CHAPRIAN

REPORT on

ASSESSMENT WORK (DIAMOND DRILLING)

on the

COPPER ZONE CLAIM (9 UNITS), TAY 4 CLAIM (20 UNITS),

TAY 5 CLAIM (20 UNITS) and GRANITE CLAIM (18 UNITS),

TASEKO LAKE AREA, CLINTON MINING DIVISION,

BRITISH COLUMBIA

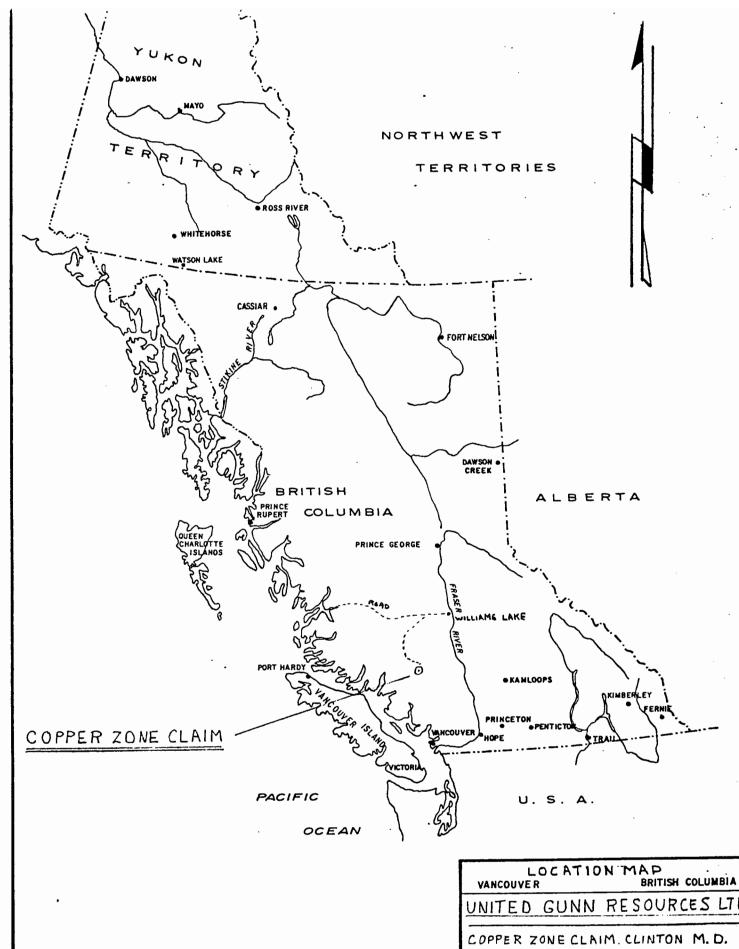
NTS MAP 920/3W, $51^{\circ}3$ 'N, $123^{\circ}25$ 'W

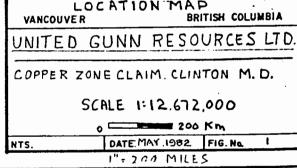
for

UNITED GUNN RESOURCES (OWNER OF COPPER ZONE CLAIM & OPERATOR OF PROGRAM)

and

REM RAY HOLDINGS INC. (OWNER OF TAY 4 and 5 and GRANITE CLAIMS)


by


R.W. PHENDLER, P. ENG. (CONSULTANT and AUTHOR)

Vancouver, B.C.

May 31, 1982

ASSESSMENT REPORT # 10455

TABLE OF CONTENTS

	Page
INTRODUCTION	1
PROPERTY	1
GEOLOGY AND MINERALIZATION	1
HISTORY	3
WORK CARRIED OUT (1981)	5
CONCLUSIONS	6
COSTS INCURRED	6
CERTIFICATION	8
ADDENDUM	
LOG SHEETS foll	owing page 9
INVOICES	
ILLUSTRATIONS	
Fig. 1 - Location Map - 1" = 200 miles - fro	ntispiece
Fig. 2 - Property Map - 1: 10,000 - page 9	
Fig. 3 - Geology and drill hole Map - 1: 5,000 - in envel	ope
Fig. 4 - Location Map of Claims -1: 50,000 - page 9A	

INTRODUCTION

The Copper Zone property is located at an elevation of 1800 meters about 100 kilometers northwest of Pemberton in southwestern British Columbia. Access is by helicopter from Pemberton or by four wheel drive vehicle from Williams Lake westward via route 20 to Hanceville, thence southerly to the Taseko Lakes (east side) and up Taseko River and Granite Creek to the property. Distance is about 270 kilometers.

The area of drilling is located within an open cirque on the east side of Granite Creek.

All sampling was done under the supervision of the writer and samples were assayed at Acme Analytical Laboratories, Vancouver. All drill core is stored at the warehouse of Buccaneer Diamond Drilling Ltd. in Williams Lake.

PROPERTY (as	follows)	

Claim	Units	Record No.	Record Date	Expiry Date
Copper Zone	9	48 (8)	Aug. 30, 1976	Aug. 30, 1982
Tay 4 & 5	40	1057,1058 (7)	July 6, 1981	July 6, 1984
Granite	18	1083 (7)	July 23, 1981	July 23, 1981

GEOLOGY AND MINERALIZATION

The area in which the Copper Zone claim is located lies on the east flank of the Coast Range Crystalline Belt - a complex series of granitic intrusives of post lower Cretaceous age which are intruded by later more acidic stocks and dyke swarms. Four miles northeast of the Copper Zone showings lies the northeast limit of the granitic rocks in contact with volcanic rocks of Cretaceous age.

The principal rock type on the Copper Zone claim is horn-blende quartz diorite intruded by numerous feldspar porphyry and quartz feldspar porphyry dykes, all generally striking either north 20° west or east - west.

An oval - shaped stock of quartz feldspar porphyry measuring 300 meters (EW) by 600 meters (NS) appears to be the locii of the more intense sulphide mineralization, which consists of chalcopyrite, molybdenite and heavy pyrite. This mineralization occurs as fracture fillings and disseminations in both the quartz diorite and the feldspar porphyry. Total sulphides of up to 10% (estimated) decrease away from the central porphyry stock.

The area of heavy total sulphides and more prominent gossan is an L-shaped zone centering on the porphyry stock. The stock and other later porphyry dykes are relatively massive, showing less leaching than the surrounding fractured quartz diorite. This leaching reaches a depth of about 15 meters but there is no apparent enriched zone immediately below the leached zone. Minor secondary chalcocite was observed in D.D.H. A-1 but no significant increase in copper values was noted.

No significant gold values were present (all trace) and only minor silver assays were returned (0.1 oz per ton). It is believed that tungsten assays would be desireable for selected high quartz samples as this metal has been observed in this geological environment in the past.

HISTORY

The east limit of the Coast Range granitic intrusive complex has received considerable attention and has long been known to contain numerous zones of widespread copper mineralization. During the 1960's and early 1970's numerous regional studies were made in the search for large low grade copper deposits throughout British Columbia and the area around the Taseko Lakes received a great deal of interest with moderate success. Programs were carried out by Cominco, Canex Placer, Phelps Dodge Corporation, Bethlehem Copper Corporation, Scurry Rainbow (Home Oil Ltd.) and Quintana.

The Copper Zone claims cover the old Rowbottom Creek prospect which was explored by Phelps Dodge Corporation in 1964. It is reported that one 57 meter diamond drill hole was put down about 500 meters from the gossan zone and intersected mineralization averaging 0.12% Cu over its length.

Between 1969 and 1972 the property was known as the NW & Bill prospect and was held by Victor Mining Corporation. During this time four diamond drill holes and four percussion holes were drilled, some by Victor and others by a syndicate involving Victor Mining Corporation, Granite Mountain Mines Ltd. and Galveston Mines Ltd. During this period the work was conducted by Western Geological Services Ltd. under the supervision of Mr. W. Meyers, P. Eng., presently employed by Teck Corporation, Vancouver.

In 1972 Mr. J. Bucholz supervised the drilling of drill holes 72-1 and 72-2 while he carried out geological mapping.

In 1975 the claims covering the widespread gossan zone lapsed and were staked as the Copper Zone mineral claim for United Gunn Resources Ltd.

Between August 13 and August 19th, 1980, two open cut trenches were drilled and blasted in outcrops where abundant malachite staining was observed. This work fulfilled assessment work requirements.

Between Aug.10 and Sept. 16th, 1981 five diamond drill holes totalling 3,205 feet were completed as follows:

D.H. No.	Bearing	<u>Angle</u>	Length	Recovery
81 - 1	due east	-45 ⁰	700 '	93.8%
81 - 2	-	vertical	997 '	98.0%
81 - 3		vertical	506'	97.6%
81 - 4		vertical	500 '	98.7%
81 - 5	- ,	vertical	502 '	96.7%

These holes were drilled in the area where seven holes had been drilled in the past and where interesting results existed.

The assay results of all holes drilled to date are as follows:

D.H. No.	Intersection	Depth	% Cu	% Mo
81 - 1	80' to 680'	600'	0.16	0.003
81 - 2	50' to 997'	947'	0.28	0.020
81 - 3	158' to 488'	330'	0.15	0.004
81 - 4	226' to 256'	30'	0.15	0.005
81 - 5	251' to 461'	210'	0.07	0.002
A - 1	50' to 380'	330'	0.23	0.007
A - 2	40' to 400'	360'	0.12	0.004
72 - 1	250' to 400'	150	0.22	0.005
72 - 2	180' to 300'	120'	0.284 (Eguiya	lent)
PH - 1	50' to 400'	340'	0.21	0.007
PH - 2	40' to 220'	180'	0.19	0.005
PH - 3	10' to 200'	190'	0.12	0.005
PH - 4	30' to 300'	270 '	0.10	0.007

With the limited amount of information available to date it appears that there is a north northwesterly trending zone of mineralized granodiorite that may average 0.28% Cu and 0.012% Mo. This is bounded on either side by material that may run in the 0.10 - 0.15% Cu and 0.005% Mo.

The quartz porphyry on the east side of the area is considered to be unfavourable.

CONCLUSIONS

The depth of the mineralization intersected in D.H. 81-2 is impressive, as the complete hole from top of bedrock at 50' to the bottom of the hole (997') averaged 0.276% Cu and 0 23% Mo. Significant zones within this depth are as follows:

Interval	Length	% Cu	% Mo
208' - 288'	80'	0.353	0.006
588' - 888'	300'	0.393	0.029
888' - 997'	109'	0.168	0.079

It is interesting to note that the Mo content increased significantly at the bottom of the hole. The next nearest holes are 500' to the south, west and northeast and 900' to the north. The mineral zone is untested to the northwest and warrants a significant amount of drilling in this area.

COSTS INCURRED

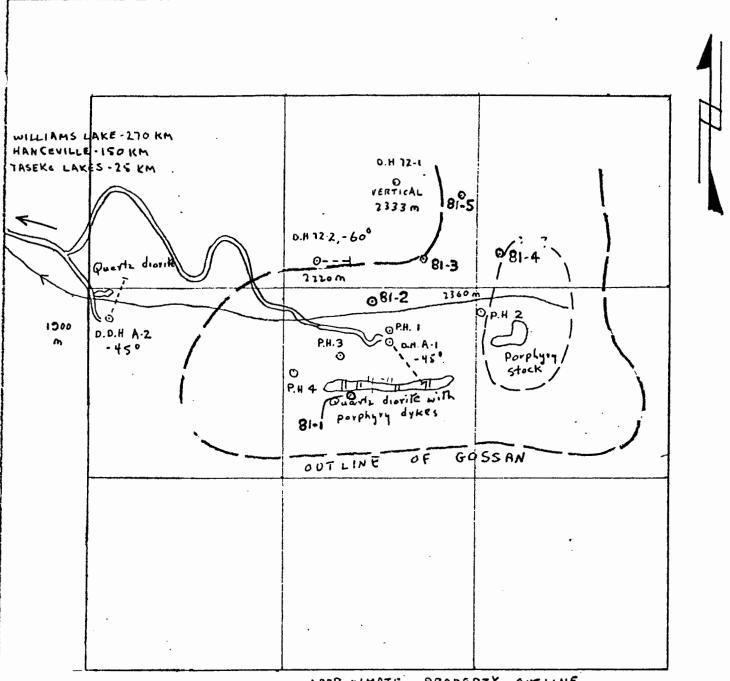
All costs relating to drilling, site preparation, road repairs (bulldozer rental), mobilization, demobilization, core transport, core splitting, crew accommodation and upkeep, pumping of water for drilling, truck servicing, etc., were borne by Buccaneer Drilling Ltd. and invoiced to United Gunn Resources Ltd. The drill crew lived in a rented outfitters' camp at the confluence of Granite Creek and Taseko River where a serviceable airstrip exists.

Costs incurred directly by United Gunn Resources Ltd. included helicopter costs, engineering costs (including most of the assaying costs) and a direct invoice from Acme Analytical Laboratories, Ltd.

As the anniversary date of the Copper Zone claim is August 30th only the drilling carried out after August 30, 1981 can be considered as assessment work in this report. This only includes D.H. 81-3 and D.H. 81-4 totalling 1006' (305 meters).

Costs pertaining to this portion of the drilling program are as follows:

<u>Details</u>	Amount
Acme Analytical Labs Ltd.	\$752.95
Buccaneer Drilling Ltd.	37,732.84
и и	12,298.00
Phendler Engineering Ltd. (logging)	1,390.90
Total (after August 30	, 1981) - \$53,422.47


Total cost of the entire program (971 meters) was \$170,302.05.

CERTIFICATION

- I, R.W. PHENDLER, of 7360 Decourcy Crescent, in the municipality of Richmond, in the Province of British Columbia, hereby certify as follows:
- 1) THAT I am a registered member of the Association of Professional Engineers of British Columbia No. 4421.
- 2) THAT I am a graduate of McGill University, Montreal, with a Bachelor of Science degree in Geology.
- 3) THAT I have practiced my profession continually as mine (11 years), exploration (6 years) and consultant (11 years) geologist for the past 28 years in all parts of Canada, the U.S.A., Mexico, Peru, Colombia and Chile.
- 4) THAT I have no interest in the Copper Zone property nor do I own, directly or indirectly, any shares of United Gunn Resources Ltd. or Rem Ray Holdings, Inc., nor do I expect to.
- 5) THAT the information contained in this report was compiled as a result of my examination of the Copper Zone property on August 13 16th, 1980, April 9 11th, July 9 and August 14, 1981.

W. PHENDER, P. ENG

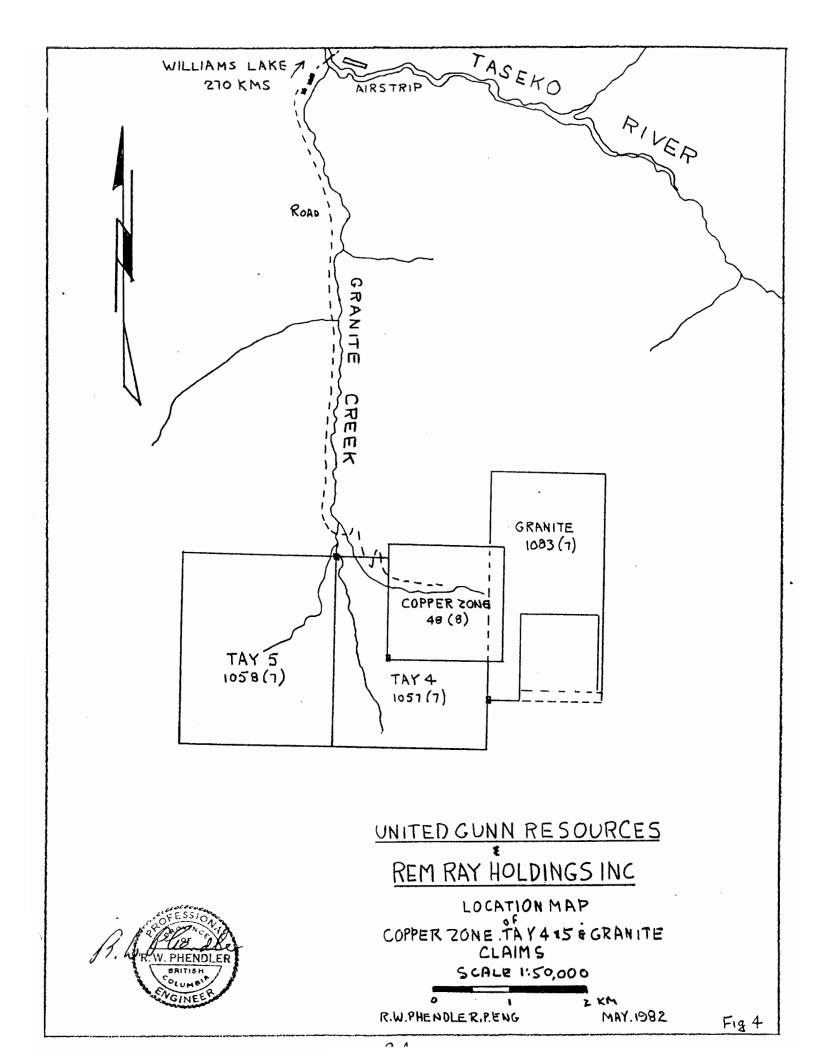
W. Pleaston

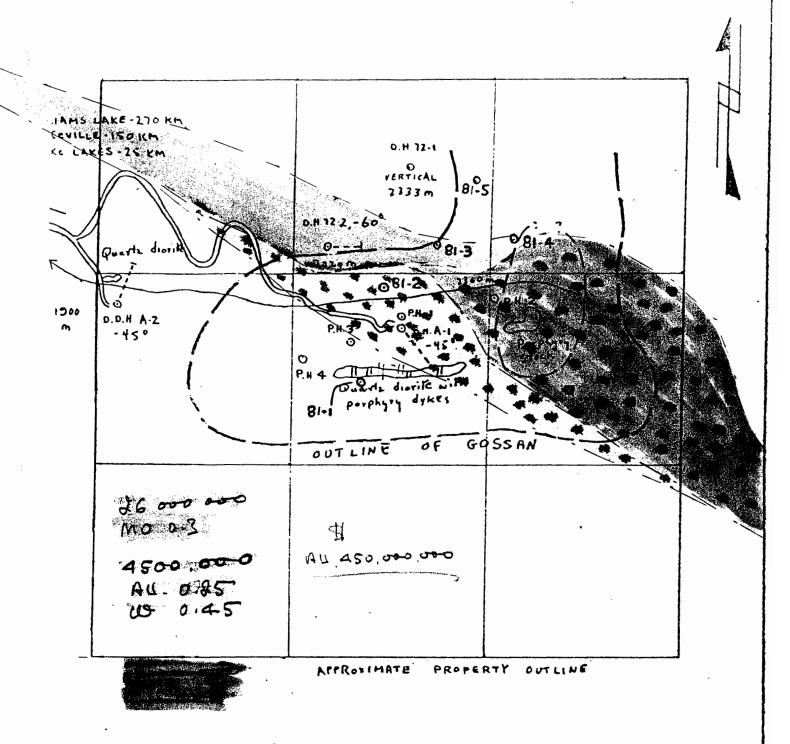
APPROXIMATE PROPERTY OUTLINE

OPH- PERCUSSION HOLES

- O.H DIAMOND DRILL HOLES

UNITED GUNN RESOURCES LTD.


COPPER ZONE CLAIM (9 UNITS)
TASEKO LAKE AREA CLINTON MINING DIVISION, BRITISH COLUMBIA.


> SCALE 1:10000 SOD mirs

R.W. PHENDLER P. ENG

28CI, YAM

-9-

OPH- PERCUSSION HOLES

All Howard

UNITED GUNN RESOURCES LTD.

COPPER ZONE CLAIM (9 UNITS)
TASEKO LAKE AREA.CLINTON MINING DIVISION,
BRITISH COLUMBIA.

SCALE 1:10000

RWPHENDLER P. ENG

FEB 1983

-12-

F192

te	6 gum	COMPANY United Juny Resources Sta	PROPERTY COPP OF LONE	9	Se	Section No.		HOL	HOLE No. 8/-/	1-18
Started aug 24. 1981	- 1	Bearing Due East	Lat. Col	Collar El. 7720'	Log	Logged by R. Phendler	hena	ller	Date 9	18/08/6
Completed Quy 30, 1981		Angle from Horizon - 450	Dep. Bot	Bottom. El.	Ren	Remarks 93.8 070		Recovery	אהרו	
Driller Buccanear Drilling	. 37	, Length 700'	Location	/el	\dashv				•	
RECOVERY	≺1				0,0000				ASSAY	۲,
*	i		DESCRIPTION		No.	From-To	Interval	2% Cu	%%%	
	- 1	OVERBURTSEN			20237	10-30	01	80.	100,	
		PUARTL PORPHYRY.	- FINE TO		238	30-40	10	.05	200.	
	- 1	MEDIUM - GRAINED, GL	, GLASSY.	MALACHITE	239	40-50	01	.07	100.	
		DISSEMINATED PAPITE,	ITE, LIMDNITE	60, 65, 72	240	20-60	0/	40.	.002	
	į	510111116		13, 74, 94.	141	60-70	0/	.12	.801	
	i	QUARTE HORABLENDE DIORITE	E DIORITE - COARSE		242	20-80	0/	.12	.002	
		GRANGO - OXIDAZED TO 65.	10 65. SOME		243	06-08	0)	.37	100.	
		MALACHITE STAINING. LE	э. ЦЕЯСНЕД		244	90-100	0/	1#.	110.	
		AFTER 65.0 DISSEMINATED PYRITE	MARTED PYRITE, PARTIAL	CIAL	245	100-110	9	.33	.001	
	- 1	OXIDATION SOME KAOLINIZATION	POLINIZATION		246	021-011	9	.24	.003	
		FRESH AFTER 96!			247	120-130	0/	.25	.003	
		DACITE DYKE, CHER	DACITE DYKE, CHERTY, AMORPHOUS WITH	*	248	130-140	9	62.	1000	
		CHOSTY PHENOCRYSTS	CHOSTY PHENOCRYSTS; PYRITE STRINGERS TO	to 1/4"	543	051-041	0/	#1.	900.	
		60° CONTACT			250	150-160	10	.24	100.	
		QUARTE HORNBLENDE DIORITE	DE DIORITE - MEDIUH	7	152	160-170	10	52.	210.	
		TO COARSE GRAINED GRANDLAR	SRANULAR DISSEH-		252	170-180	10	.19	100.	
		INATED PYRITE 109	INATED PYRITE 10% LOCAL OXIDATION	CPIN SILICEOUS	253	180-190	0/	15	100.	
		PYRITE STRINGERS I	PYRITE STRINGERS WITH SILICEOUS ALTERED) DYKES-1"+	2) DYKES-1"+	t52	190-200	0/	17.	.002	
		LOCALLY BLEACHED, SHOHTLY FINER	BANDS SLICHTLY FINER	MO AT 194	255	200-740	9)	11.	100'	
		GRAINED BY 175!	,	230	252	210-220	10	.13	100.	

Started			Bearing	Lat.	Collar E1.	Log	LOGGED DY R. Pheudler	end	lur	Date 9/30/8/
Completed	R		Angle from Horizon	Dep.	Bottom, El.	Rem	Remarks 93.8 010		Recovery	ery
Driller			Length	Location	Level					
		RECOVERY	\ <u></u>							ASSAY
From	To Imparval	% Byre		DESCRIPTION		No.	From-To	Interval	Interval % Cu	90 Mo
			SULPHIDES DECREASING BY	ING BY 25D' THEN		257	220-230	0)	01.	100.
			OCCASIONAL PYRITE STRINGER IN	STRINGER IN		852	230-740	Q	6/.	/00.
			MASSIVE EQUIGRANULAR, FINE TO	LAR, FINE TO HEDIUM	F	159	240-250	0)		.002
			GRAINED DIORITE			260	250-260	6	.14	500.
			500 PURME 280'-316'	316'		192	260 - 270	01	.07	100.
329	332		QUARTZ PORPHYRY DYKE - 80°	YKE-80° CONTACTS		292	270-280	10	0/:	/00.
			FINE GR'D HATRIX - DK. GREY PYRITE	DK.GREY PYRITE ON	7	7263	280-290	9	so.	/00:
			SLIP FACES			264	290-300	0/	.22	1001
332 3	348		QUARTZ HORNBLENDE DIORTE	E DIORME - MEDIUM	7	265	300-310	9	2).	.003
			GRAINED, GREY-WHITE	JHITE		266	310-320	0)	so.	100.
348 355	355		QTZ. PORPHYRY DYKE - DISSEH.	E-DISSEH. PYRITE	. ,	797	320-330	0)	0/.	200.
355 4	486		QTZ. HORNBLENDE DIORITE	- 176	-	268	330-340	10	.11	100.
			GRAINED- 10 90 PYRITE THROUGHOUT	THE THROUGHOUT		269	340-350	10	. 11	200.
			FACILITY 20NE 376-378	378 HEAVY		270	350-360	10	.14	/00-
			PYRITE ON SLIPFACES			112	360-370	9/	06	/00.
			SILLCIFIED FAULT ZONE	ZONE 468' - 469'		272	370-380	0/	60.	600.
486	499		GUARATZ PORPHYRY DYKE - FINE GICHINED	IKE - FINE GRAINED		273	380-390	0)	90.	100.
			GHOSTY PHENOCRYS	GHOSTY PHENOCRYSTS, PYRITE STRINGERS	sw:	274	390-400	9	.,,	.003
			450 CONTACTS			275	400-410	9)	80.	100.
102 800	100		The the 121 call and the	SOUTH - MED. GARAINED	(i)	011	1612 Jan	(,	6,50

AdMOS	> 2	1.4.4	7	e.	COMPANY Hait of Girling Property of the	V TO TO VIOLENCE	,	·					, ,
	3	mer	3	Jun	W ICESUACES RIA	THOLERIT COMPORT LONG	ne		Section No.			HOLE NO. 01	/-
Started	-				Bearing	Lat.	Collar El.		Logged by R. Phendley	hendl	44	Date 9/30/81	1810
Completed	peted				Angle from Horizon	Dep.	Bottom. El.	æ	Remarks				
Driller					Length	Location	Levei						
			RECO	RECOVERY		MOITGEOGRA						ASSAY	
From	۵	Interval		86		DESCRIPTION		No.	Fram-To	Interval % Cu		% Ho	
507	510				QTZ. PORPHYRY DYKE	77		277	420-430	<i>1</i> ·		100.	
510	175				OTZ. HORNBLENDE	DIOR ITE		278	430-440	•	<i>""</i>	200.	
					SPECKLED PYRITE			279	440-450	2.	80.	100	
					1. PORPHYRY AT 515'-	15'- 516'		280	450-460	<i>''</i>	.10	100	
521	528				OTC. PORPHIRY DYICE - LIGHT MED. GREY	LIGHT MED. GREY		181	460-490	2.	90.	100.	
					FAULT 20NE 527-528	528		282	470-480	<i>/</i> ·	1.	100.	
228	929				HORNBLENDE DIORITE	ITE - WEAK		283	480-490	. 13	† • • • • • • • • • • • • • • • • • • •	900.	
					SPECKLED PYRITE TO STO	10 S40 THEN 590		487	490-500	2.	26	100.	
					AFTER 530' FRACTURED, GOUGY LONES	RED, GOUGY LONES	,	285	500-510	·	61.	100.	
					KAOLINIZED. PORPHYRY THE	1124 DAILE 568'-573'		286	510-520	·-	0/-	.003	
					FAULT 575-576'	60066		181	520-530	7.	80.	\$20.	
					FRACTURED TO SAC', THEN	THEN MASSIVE		288	530-540	7.	. 07	100.	
					WITH SOM PYRITE, CHALLO	CHALCO PYRITE SPECIES	57	583	940-550	;	.07	100.	
620	819				\$72. HORNBLENDE DIOBITE	10RITE - COARSE	CP-526'	062 ,	550-560	7.	. 80.	100.	
					GRAINED - 10 90 PHIL	PURITE, SOME 291	825 (216		560-510	υ.		400.	
					CHALCOPYRITE		•	292	570-580	61.		200.	
618	100				QUARTZ EYE PORPHYRY - FINE GRAINED	CY - FINE GRAINED		293	580-590	· ·	.17	200	
					GLASSY, SOO DISSEHINATE	HINATED PURITE		294	890-600	· ·	, 51.	200	
700		ans	0		HOLE			295	bov - 610	·	./2	120.	
								967	029 - 019		.22	100.	

COMPANY United Gunu Resources KTD	7 }	22														
Started					Bearing		Lat.		Collar E1.	-	Logo	Logged by R. Pheudler	und	Ler	Date 9/30/8/	
Completed	8			,	Angle from Horizon	n Horizon	Оер.		Bottom, El.	, E1.	Rem	Remarks				
Driller					Length		Location	uc	Level							
			RECOVERY	ВУ				i di do			1				ASSAY	
From	٥	Interval		*			DE	DESCRIPTION		,	Sample No.	From-To	Interval	90 Cm	90 110	
				7	FROM	10	LENGTH	1 80 Cm.	OPO MO	7	247	620-630	01	, 30	810.	
										2	867	630-640	0)	.20	900.	
					20 '	80'	,09	80.0	.002	2	562	640-650	0/	.17	200.	
					80	210	130	0.25	400.		300		0/	.29	210.	
					210	440	280	11.0	200.	3,	109.	31601 660-670	0)	127	400.	
				1	490	610	120	0.14	.005		209	602 610 -680	9	.22	700.	
				-	610	089	10	0.24	. 007		603	069-089	0/	.17	400.	
				7	089	700	20	0.14	.003	7	409	690-700	9		100.	
				8	80	089	009	0.16	.003							
	•															
						٠										

COMPA	ķ	Unil	éd 9	COMPANY United gum Resources Ltd	PROPERTY COPPEN LONE		Sect	Section No.		HOL	HOLE No. 81-2	7-1
Started	144	Started July 20 1981	1861	Bearing VERTICAL	Lat. Collar El.	El. 7475'	Logge	LOGGED BY R. Phudler	und	[t	Date 8/	18/41/8
Comple	ted 14	E4 25	Completed 1 uly 28. 1981	/ Angle from Horizon	Dep. Bottom, El.	n. El.	Remarks	rks				
Oriller	3vcA.	NEER	D. D.R	Oriller BUCHNEER D. DRILLING Length 997'	Location			98 of R.	Recovery.	ry.		
Feet	2		RECOVERY	٨٤				FEET			ASSAY	
From	۵	Interval	8	-0	DESCRIPTION	MINERALIZATION No.	No.	٥	interval % Cu		90 MG	
0.0	51.0			CASING				50-57	1, 1	01.0	510.	
21.0	213			GUARTZ HORNBLENDE DIORITE -	DIORITE - HED. GRAINED		2	57-67	0/	0.35	210.	
				PAIE - MED. GREY - WHITE; C	TE; CP THROUGHOUT.	210-217 6	W	11-11	0/	0.22	200.	
213	216			DACITE DYKE - FINE	DACITE DYKE - FINE GR'D, GREY - GALEN, PYRITE 29	290	+	17.83	9	0.25	. 007	
216 227	127			PUARTE HORNBLENDE 1	QUARTE HORNBLENDE DIORITE - MED. GRAINED		>	83-43	01	0.22	200.	
227	137			UACITE DYKE		5% D4/CP	9	93- 103	0/	0.14	.029	
237	342			HOLLINGE DIORITE - 500	PYRITE 237-247'	blebs on fractores	1	7 103- 113	. 01	0.20	410.	
9+2	348			DIORITE DYKE		and Slip faces	- 1	٠. I	"	91.0	.005	
248	452			HORNBLENDE DIORTE	HORNBLENDE DIORITE - 5% PYRITE DISSEM CP. CPAT 258'	CPAT 258'	9 /	9 124-136 12		81.0	700.	
			-	LOCAL CHLORITIZATION, SOME EPIDOTE	, SOME EPIDOTE	161- 269'	101	10 136-143	1	27.0	.001	
				6" DIORITE DYKE AT 236	17 276'	272, 281, 295	7	143-152	6	0.7	+000.	-
				GENERALLY MASSIVE	b)	298,306,313	12/	12 152-161	9	81.0	.003	
				LOCALLY FINER GRAINED 366-368"		316,321,363	13	13 161- 171	0)	91.0	.056	
452	503			QUARTZ PORPHYRY-LU	QUARTZ PORPHYRY-LIGHT GREY, FINE TO MED GRD 408-414-442	244-414-804	#1	171-171	2	0.25	.003	
				500 DISSEM PYRITE 14" PYRITE AT 463'	4" PYRITE AT 463'	503-507	15	131-171	0)	0.36	110.	
				PEGMATIC LONE 494'- 497'	1 497'	515, 517	/ 9/	16 187-192	10	11.0	100.	
503	563			QUARTE HORNBLENDE DIORITE	: DIORITE - MED GRID.	535-536	171	192-202	0)	0.13	900.	
			\dashv	FELDSPAR 20% 51	511-522'	755-24S	8/	18 202-208	9	0.17	200.	
563	221			DIORME DYKE		578,584.596	19	19 208- 218	2	88.0	10.	
577 651	159		\dashv	HORMBLENDE DIORITE	lite	600, 615	20	20 218 - 228 10		6.18	100.	

					Drill Hole Log	Log						
COMPANY	uni	ted Gus	nn	COMPANY United Gunn RESOURCES KTC.	PROPERTY COPPEL ZONE		Sec	Section No.		HOL	HOLE No. 81-2	1-5
Started				Bearing	Lat.	Collar El.	Log	Logged by R. Phandler	hond	10	Date 8/	Date 8/14/81
Completed				Angle from Horizon	Dep.	Bottom, El.	Ren	Remarks				
Driller				Length	Location	Level						
		RECOVERY	<u>۳</u>		NOITHEADS		Sample				ASSAY	>
From T	To Interval		86		DESCRIPTION		No.	From-To	interval	interval % Cu	To Mo am. Au	m.fu.
	-		12	PEGMATTE 623-628'	,8,	CPAT 658'	12	228-238 10	- 1	0.05	100.	
			4)	5-10% PYRITE, DISSEH.)155E A.	,869	22	22 238- 248	10	0.30	010.	
657 6	169		2	GRAN DDIORITE - FINE	INE GRID	NO AT	23	23 248-258	0/	0.22	.003	
			Ī	PEUMATITE 664 - 665'	665'	664-672'	14	24 258-268 10		82.0	900.	
1631	205		7	HORNBLENDE DIORITE - CSE	TE - CSE GRID	680 722-5	25	268-278	0/	0.19	100.	
105 710	0		7	DIORITE DYKE . FINE CRIND	ie crib	723, 723-5	22	26 278 - 288	0/	0.75	.oos	
710 71	222		7	HORNBLENDE DIORITE - CSE CRIND	HE-CSE GRIM	860'910'	27	288-298	0/	0.27	900.	
122 75	725		7	IABASE DYICG - LIG	DIABASE DYKG - LICHT OREY, FINE GRID	6 895-892.92		28 298 - 308	9	0.32	500.	
			2	CONTACT AT 20° TO CORE	CORE	CP-145	29	308 - 318	0)	6.13	.003	
125 89	958		4	HOLN BLENDE DIORITE - CSE	re - cse grido	762,770,772	30	318-328	0/	61.0	200.	
			-	MASSIVE - 590 PY.	1	782,740.800'	3/	328-338	0)	0.21	200.	
198 881	25		2	DACITE DYKE - FINE GRID, MO. IN QTE	GRIM, MO. IN QTZ	817,825,837	32	32 338-348	0/	2.0	.005	
	-		1	STRUS WITH CP.		842,848,857	33	348-358	9	0.29	400'	
861 890	٥		h	HORNBLENDE DIORITE - CSE GRIND	re-cse GRiD	865-878-880		34 358-368	9	0.40	. 013	
890 968	80		0	GRANDDIORITE - MED FINE	FINE GR'ND	168 - 588		35 368-318	01	62.0	210.	
	-		12	DACITE (40°) DYKE 891-896 MASSIVE	41-896 MASSIVE 14"	913,917,929	36	378-388	0)	81.0	200.	
-	-		=	MO VEIN- 70° AT 892	. 768	846	37	37 358 - 396	9	02.0	900.	
			3	CP SPKS THROUGHOUT	UT	110. 942	38	348-408	9	0.25	800.	
918 918	8,		7	DIORITE DYKE - MED GREY, FINE GR'ND	GREY, FINE GRIND	946,956,962	39	408-418	10	0.21	. 800.	10.
			7	80° CONTACT		493, 994		40 418-428	Ø	0.10	. 003	10

COMPAN	7	inili	id 9m	COMPANY United Gumm Kesonrces Rtal	1	PROPERTY C	Copper Lone	ن	Š	Section No.		FOL	HOLE No. 81-2	2-18	
Started				Bearing	7	Lat.	Coller El.	·EI.	Log	Logged by R. Phen dlar	th d	ter	Date 4	9/30/81	
Completed	8			Angle from Horizon		Dep.	Botto	Bottom. El.	Ren	Remarks					
Driller				Length	د	Location	Level								
			RECOVERY										ASSAY	>	
From	- د	Interval	*			DESCRIPTION			No.	From-To	Interval % Cu	1 1	90 HO 6	gm Au	
826	166			GRANDOLLITE FINE CRUB-	TE FINE GR		MED. GRAINED		#1	428-438	10,	0.38	110.	, 01	
				DISSER! P4	DISSEN PYRITE, CP SPKS	~ 71			42	438 - 448	01	42.0	.002	10.	
				110 IN OTZ	2 517265	893, 894			43	448, 458	0/	0.16	800.	10.	
166			END	DOF HOLE					44	458-418	7 01	0.13		10.	
									45	468-478	0/	0.10	100.	10.	
					•				46	478-488	10 (0.07	400.	10.	
									47	488-498	. 0/		100.	10.	
									8#	805-8bh	9	61.0	400,	10.	
				INTERVAL	LENGTH	% Cu.	To Mo		49	808-518	0/	0,35	140.	10.	
				50- 208'	1881	0.204	0.016		50	825-815	9		400.	10.	
			-	108- 288'	80'	0.353	0.006		21	858-828	0/	67.0	10.	10.	
				188-4481	160'	0.250	0.006		25	538-548	0/	22.0	800.	10.	
				1885-844	140,	691.0	0.009		53	848-84S	101	0,20	910.	10.	
				588-888'	300'	0.393	0.029		24	828-855	0/	0.13	120.	. 02	
				, 668 - 888	,601	891.0	6.00		53	818 - 898	9	20.0	100.	10.	
									52	885 -845	0/	62.0	.007	.02	
	7			50 - 888'	838'	0.290	0.017		57	865-885	10	0.32	+60.	10.	
				166 - 888	, 601	871.0	0.019		85	809 - 865	0	0.49	910.	/0.	
	\dashv			, 166 - 05	, 146	0.276	0.023		65	817-809	0)	17.0	.023	10.	
									60	829 - 819	10	0.21	120.	10.	

OMPAN	i t	nili	29	Sun	COMPANY United Sunn Resources Att	PROPERTY COSPON Lone	Tone	Š	Section No.		HOL	HOLE No.	81-2	
							n		000			3		
Started					Bearing	Lat.	Collar E1.	8	LOGGED OY K. Phendler	end	er	Date		
Completed	8				Angle from Horizon	Dep.	Bottom, El.	Ren	Remarks					
Driller					Length	Location	Level							
			RECOVERY	/ERY					FEET			ASSAY	\	
From	10	Interval		8		DESCRIPTION		No.	From-To	Intanai % Cu		90 Ho gan Au	m Au	
					•			61	628-638	-	92,0	870.	,0,	
								62	849 -859	7	0.39	.022	10'	
								63	859-879	,	0.40	820.	101	
								64	899 - 859		0.14	. 001	10.	
								65	819-819		81.0		10.	
								77	889 -819		91.0	610.	101	
								67	869 - 887		0.36	910.	10.	
								89	801 - 869	,	0.49	010.	. 01	
								69	811 -801		0.28	520.	10.	
								10	821 -811		0.12	tro.	10.	
				-			,	11		7	0.36	110.	10.	
								12	738 - 740		65.0	910.	80.	
								B	85L-8th		82.0	150.	/0.	
								74	158-168		0.27	800.	.03	
								75	168-718		0.26	810.	10.	
				_			•	16	281-84	7	0.32	+20.	101	
								11	862-886	7	62.0	,032	10.	
								19	808-866	9	12.0	150.	10.	
		·						80	818-808		0.22	.032	.03	

MPAN	'Kn	reed	Gun	COMPANY United Junn Rosources Ald	PROPERTY COTYDER LONE	me .	Se	Section No.		HOL	HOLE No.	81-2	
Started				Bearing	Lat.	Collar E1,	- L8	Logged by R. Phendler	lend	ler	Date		
Completed	,			Angle from Horizon	Dep.	Bottom, El.	Ren	Remarks					
Driller	:			Length	Location	Level							
	Н	H.	RECOVERY								ASSAY	*	
From	To Interval	2	88		DESCRIPTION		Sample No.	From-To	Interval	% Cu	Sp.70	Potto am. Au.	
	\dashv			•			18	818-828	10'	0.34	+10.	101	
							28	828-838	10	0.34	.026	.03	
		_					83	838 - 848	10	0.35	.039	10'	
	_	_					84	848-858	10	44.0	210.	10.	
							58	878 - 858	01	04.0	.023	20.	
							86		01	0.39	.021	.03	
							18	888-818	0/		226	10.	ļ
							88	868 - 888	0/		.338	10.	
							89	898 - 868	91	41.0	110.		
		-	_				90	816-806	10	0.20	290.		
	_						16	876-816	10	51.0	160.		
	\dashv	_	_				26	928-938	0/	0.17	810.		
							93	938-948	0/	81.0	101.	/0 ·	
		-					44	856-846	0/	2.17	840.	10.	
							95	896-856	0/	61.0	810.	10.	
	\dashv	_	\dashv				46	816-896	10	6.13	100.	10.	
	-	\dashv	-				41	886-866	10		.035	10.	
	-		_				86002	166-386	10	41.0	220.	10.	
	_		_	977 - END.									
												-	

COMPAN	" Uni	tid 5	Jun	COMPANY United Gunn Resources Atd	РКОРЕНТУ СОРРИ	Lone	Sec	Section No.		HOL	HOLE No. 81-3	~
Started	1	Aug 2, 1981	25	Bearing	Lat.	Collar El. 7560'	Log	Logged by R. Phendles	mdl	19	Date 9/30/8	7.1
Complet	BE ALLO	Completed Aug 7, 1981	3/	Angle from Horizon 90 °	Dep.	Bottom, El.	Ren	Remarks 97.6 %	96	Recodery	r(a ·	
Driller 💈	Succont	Driller Bucconeer Dilling	illing	Length 506'	Location	Level						
Feet	1	RECOVERY	VERY				1000				ASSAY	
From	To Interval	785	%		DESCRIPTION		Sample No.	From-To	Interval of Cu		J. 170	
0.0	28			OVEILBURDEN			20146	28-38	,01	.07	100.	
82	145			QUARTE HORNBLENDE DIORITE	DIORITE		141	38-48	0/	.06	.003	
				MEDIVE GRAINED TO COARSE GRAINED	OARSE GRAINED		841	85-84	0/	80.	010.	
				5% DISSEH. PURITE. LIMONITE	. LIMONITE		641	89 - 85	01	81.	200	
				STAINED - POSSIBLE LEACHING	LEACHING		150	82-39	0/	1//	200.	
				90-100' 10% PYR	10% PYRITE - SPECKLED		151	18-88	10	.07	100.	
					, 1		152	86-88	01	80	2002	-
				HEAVY PYRITE ON SUP FACES	UP FACES		153	801-86	0/	60.	100.	
142	/1/			PUBRIZ PORPHYRY - ALASKITE	ALASKITE (2)		<i>ts1</i>	811-801	0/	.08	100.	
				PALE GREY, AMORPHOUS, FINE	10US. FINE		155	821-811	0/	90.	100.	
				SPECKLED PYRITE, 80° CONTACT	80° CONTACT		15%	128-138	0/	80.	. 001	
191	178			HORNBLENDE DIORITE - COARSE GRAINED	E - COARSE GRAINE	ZD.	157	138-148	0/	70.	.00-	
				590 PYRITE, DIABASE DYKE 171-173	, צנו-ונו אואס		158	85/-8#1	0/	01.	.002	
178	502			QUARTE EVE PORPHYRY - GHOSTY	RY - GHOSTY		65/	891-851	0/	the	800.	الم
				PHEND CRYSTS, MEDIUM GREY.	IM GREY, FINE		160	811-891	0/	121	700.	
				GRAINED 1096 PYRITE, SOME	ITE, SOME CO.		161	881-861	0/	02.	-012-	
				WO CONTACT (2ND)	(4		79/	861 - 881	9/	.30	010.	
607	227			QUARTZ HORNBLENDE DIORITE	E DIORITE		163	198. 208	01	5/.	110.	
				10% PYRITE, COARSE GRAINED	SE GRAINED		191	812-802	10	th.	/00.	
				SOME DXIDATION			165	248-228	10	>/ ,	010.	

COMPAN	<i>₹</i>	wit	id G.	mn	COMPANY United Gumu Resources KTd	PROPERTY CODDES LONE	6	Š	Section No.		HOL	HOLE No. 8/	81-3
Started					Bearing	Lat.	Collar E1.	Log	LOGGED DY R. Phudler	ndle	7	Date 9/30 /8/	/8/
Completed	8				Angle from Horizon	Dep.	Bottom. El.	R.	Remarks				
Oriller					Length	Location	Level						
			RECOVERY	ЯY								ASSAY	
From	유	Bvam	8	8		DESCRIPTION	Mineralization	Sample No.	From-To In	Brval of	Interval % Cu	% 170	
127	122			7	QUARTL PORPHYRY - HEDIUM GREY	HEDIUM GREY	1	166	228 - 238	0/	40.	100.	
				-	FINE GRAINED		WEAK Py	167	238-248	,	40.	/00:	
					10" HORNBLENDE DIORITE	10RITE 266-267		891	1 852 -842	0/	10.	100.	
112	312			-	QUARTZ HORNBLENDE DIORITE	E DIORITE		169	1258- 268 1		20.	100.	
					MEDIUM TO COARSE GRAINED	CAINED, LIGHT		170	182-872	10	17	. 003 €	
					GREY- WHITE GRANDLAR. MASSIVE	ULAR, MASSIVE		121	118-188	, 01	60.	100.	
							5% Py	172	1 862 -882	. 01	61.	.00/	
					296 - 307' 1590 PYRITE	YRITE		173	298-308 1	0/	81.	200.	
312	349				QUHRTL PORPHYRY (CHOSTY)	(GHOSTY)		174	308-318		60.	100.	
					PHENOCRYSTS AM	AMORPHOUS	SPK'D PY	175	318-328	,0	,ο,	.00/	
				\dashv	1	SSIVE		176	328-338	. 0/	50.	100.	
	\dashv				LAST TWO FEET BLEACHED &	еяснер в ѕненкер		177	338-348 1	,	10.	100 .	
349 506	506				QUARTZ HORNBLENDE DIORITE	E DIORITE		118	348 - 358 1	10	80'	100.	
				-	COARSE GRANED, MASSIVE. FEW	75SIVE. FEW	1090 PYRITE	179	328-328	0/	07.	900	
					LONGITUDINAL JOINTS AND	AND CROSS	10360, THEN	180	368 - 378	0)	60.	.003	
					QUARTE VEINS TO 1/4 11	111	59, AS VENAS	181	378-388	10	22.	500.	
506	4	and	of Hole	16				182	388-398 1		٠,٨	100.	·
								183	80h-8bc		112	200.	
				1				184	408-418	. 0/	47.	100.	-
								185	118-428 1	. 0/	60.	100.	

COMPA	7 17	uile.	4 71	unn	COMPANY Uniled Youn Resources Ltd	4 РЯОРЕЯТУ		Copper Lone		Sect	Section No.		HOL	HOLE No. 81-3	60
Started					Bearing	Lat.		Collar El.		L099	Logged by R. Phudler	udl	4	Date 9/30/8/	18
Completed	18				Angle from Horizon	Dep.		Bottom, El.	. El.	Remarks	arks				
Driller					Length	Location	on	Level							
		^	RECOVERY	VERY		6								ASSAY	
F O	ا د	Imbaval		%		- A	DESCHIPTION		2	No.	From-To	Interval 90 Cu	1 1	90170	
					•				3/	186	428- 438	0/	".	190.	
								·	8/	, 181	438-448	0/	+11	100.	
		1							8)	881	854-844	10	32	100-	330
									7/			. 01	. 20	100.	
					FROM TO	HENGLH	90 Cu	0/0 MO	11	190	468-478	0/	12.	200,	
					28' 158'	130'	60.0	100.	61	161	478-488	0/	.35	100.	
					158 228	10	0.21	800.	16	192	488-498	10	80.	100.	
					378 378	150	0.08	700.	1	193 4	498-506	8	. 12	100.	
					378 488	01/	0.70	.003			-				
					488 506	18	01.0	/00:							
	`														
i					158' 488'	330	0.15	400.0							
								•				-			
		,													
									-						
				ì											
- -															

State Aug 9,1997 Description Descr	СОМР	J ANA	Lnie	d Gunn	COMPANY United Gum Resources Ltd.	РЯОРЕЯТУ СОРРИ ТОПИ	74		Š	Section No.		HOL	HOLE No. 81-4	
Seconder Diffing Lingth Soo Location Level Sample	Starte		Aug	1861'6	Bearing	Lat.	Collar El.		L Lo	99ed by 2. Py	rend	ur	Date 8/14/8/	
Summole Drietting Lungth SDO' Location Lund Lund Summole S	Compl	leted A	349	14,1981	Angle from Horizon VERT	Оер.	Bottom.	E1.	Re	marks 98.1	%	Recove	ħ.	
The prover The property The pr	Driller	Bucca	neer	Drilling		Location	Level							
10 100	Š	et	ļ.,	RECOVERY					-				ASSAY	[]
SS QUARTZ PRECRYEY - FINE TO HED. GRID Cp 5pts 100 46-5t 10 0.05	From								No.	_	Interval		2 to	
SS	0	36			CASIMC				1007	36-46	,0,	0.05	.003	1
THRSILVE - LIHOMITE - STAINED 42' 213 101 56-66 10 0.05	36	85			QUARTE PORPHYRY - FIN	IE TO MED. GRID	7	Spks	100	46-56	9)	10.0	700.	1
1715 DIORLITE DYKE 30° CENTRGT 1231 309 102 164-712 10 0-06 1715 QUARTZ PORPHYRY - LICHT CREY 103 76-86 10 0-07 1700 HED-FINE GREY ILHONITE STANDED 104 84-96 10 0-07 1701 GRANTTC 106 106-116 10 106-116 10 0-07 1701 QUARTZ PORPHYRY - FINE GREY TINOR 107 116-176 10 0-07 1701 1701 1701 1701 1701 10 0-07 1701 1701 1701 1701 10 0-07 1701 1701 1701 10 0-07 1701 1701 1701 1701 10 0-07 1701 1701 1701 1701 10 0-07 1701 1701 1701 1701 1701 1701 1701 1701 1701 1701 1701 1701 1701 1701 1701 1701 1701 1					MASSIVE - LIMONITE	- STAINED		42, 213	101	56-66	10	0.03	.005	i
1215 QUARATE POLEDHYEY - LIGHT CREY 103 14-86 10 0.07 130 LATHOROPHYGE DYKE - DK. GREY TO BLACK 105 94-106 10 0.03 130 LATHOROPHYGE DYKE - DK. GREY TO BLACK 105 94-106 10 0.04 140 - FINE CREW LINOUR 106 106-116 10 0.04 161 161 161 161 161 161 161 161 161 161 161 162 163 164	85	16			PIORITE DYKE 30°	CONTACT		j	701	72 - 29	10	90.0	. 002	
150 160-6	16	127.5			QUARTE PORPHYRY -	LICHT GREY			103	76-86	10	70.0	100.	
130 LATH ROPHYRE DAKE - DK. GREY TO BLACK 105 104-106 10 0.04 126					MED - FINE GRIPD LIF	IONITE STRINED			104	96-98	0)	0.03	700.	i
ACT ACT	5.721				LAMPRODHYRE DYKE	· DK. GREY TO BLACI	¥		105	701-76	10	40.0	800.	
261 QUARTZ PORPHYRY - FINE GRÍMO MINOR 107 III-116 10 0.03 TO 155EM PYRITE, LIMONITE STAINED 108 124-146 10 0.01 TO 148' QTZ EYES THROVEHOUT 100 110 110 11-136 10 0.01 FIRM, MASSIVE PRRTLY 110 110 11-156 10 0.01 THALACHITE 230-235' 240-251' 111 154-146 10 0.01 THALACHITE 230-235' 240-251' 112 146-176 10 0.01 THACHITE 230-235' 240-251' 112 146-176 10 0.01 THALACHITE 230-235' 240-251' 112 146-176 10 0.01 THALACHITE 230-235' 240-251' 112 146-176 10 0.01 THALACHITE 230-235' 240-251' 114 156-176 10 0.01 THALACHITE 241-LAMPROPHYRE DYRE WEAR DISSEM PYRITE, OXIDIZED 337:350' 116 206-216 10 0.06 SOUNDED QUARTZ PHENOCRYSTS 117 246-226 10 0.06 364 DIORITE DYRE, DARK GREY, FINE GRAINED 118 226-236 10 0.074					APHANITIC				106	106-116	10	0.00	200.	ł
108 76-136 10 0.11 10 148' QTZ EYES THROVEHOUT 10 148' QTZ EYES THROVEHOUT 10 148' QTZ EYES THROVEHOUT 10 148-176 10 0.05 11 18-176 10 0.05 12 14-176 10 0.07 12 14-176 10 0.07 13 17-176 10 0.07 13 17-176 10 0.07 14 18-176 10 0.07 15 17-281-LAMPROPHYRE DYKE 115 17-206 10 0.08 116 10-226 10 0.06 117 24-226 10 0.08 119 10-226 10 0.06 110 10-226 10 0.06 111 111 111 111-126 10 0.06 112 112-126-110 0.06 113 113 114-206 10 0.06 114 18-226 10 0.08 115 115 115 115 116-226 10 0.06 116 117 24-226 10 0.06	130	192			QUARTZ PORPHURY -	FINE GRIND MINOR			107	116-126	9	0.03	400.	
76 148' QTZ EYES THROVEHOUT M0-235 109 136-146 10 0.06 FIRCH. MASSIVE PARTLY OXIDIZED 225-235' 240-251' 111 156-166 10 0.01 THE ACHITE 230'-235', 240-251' 112 166-176 10 0.01 265 OVARITE DYKE - PALE GRAINED 113 176-186 10 0.01 219-281 - LAMPROPHYRE DYKE 115 116 206-216 10 0.06 ROUNDED QUARTZ PHENOCRYSTS 118 226-236 10 0.06 364 DIORITE DYKE, DARK GRAINED 118 226-236 10 0.06					DISSEM PYRITE, LI	MONITE STAINED			801	126-136	10	0.11	100.	ł
PARTLY 110 146-156 10 0.03					TO 148' OTZ EYES 7	(HROVGHOUT		- 23	601	136-146	0/		. 002	1
265 THE ROLLED 225-235' 240-25' III IST-176 10 0.01 265 ORGITE DYKE - PALE GRAINED, PALE GRAINED 276 QUARTZ PORPHYRY - FINE GRAINED, PALE GRA-WHITE - 114 186-196 10 0.01 277 - 281 - LAMPROPHYRE DYKE WEAK DISSEM PYRITE, OXIDIZED 337':350' III6 206-226 10 0.06 264 DIORITE DYKE, DARK GREY, FINE GRAINED 117 216-226 10 0.06 118 226-236 10 0.07						PARTLY			110	146-156	0)	0.03	100.	1
765 765 765 765 765 765 765 765					OXIDIZED 225-235	,,			""	156-166	0/	10.0	100.	1
265 DACITE DYKE - PALE GREY, FINE GRAINED, PALE GREY-WHITE, 114 186-196 10 0.01 - 279 281 - LAMPROPHYRE 115 196-206 10 0.06 - MEAK DISSEM PYRITE, OXIDIZED 337:350' 116 206-216 10 0.06 - ROUNDED QUARTZ PHENOCRYSTS 118 226-226 10 0.06 - 364 DIORITE DYKE, DARK GREY, FINE GRAINED 118 226-236 10 0.04					MALACHITE 230'- 7	- 1			7/1	166-176	9	10.0	700.	ļ
359 QUARTL PORPHYRY - FINE GRAINED, PALE GRAY-WHITE. 114 186-196 10 0.01 . 219-281 - LAMPROPHYRE DYKE WEAK DISSEM PYRITE, OXIDIZED 337:350' 116 206-216 10 0.06 . ROUNDED QUARTL PHENOCRYSTS 117 216-226 10 0.06 . 364 DIORITE DYKE, DARK GREY, FINE GRAINED 118 226-236 10 0.14	197				DACITE DYKE - PALE	GREY, FINE GRAIN	(ep		113	981-921	9/	0.01	/00:	
364 DIORITE DYKE, DYKE 115 196-206 10 0.06 116 206-216 10 0.08 117 216-226 10 0.06 119 206-216 10 0.06 110 0.06	592	-+			QUARTZ PORPHYRY-	FINE GRAINED, PALE	E 6RB4	-wHITE.	114	186-196	9	0.01	100.	1
364 WEAK DISSEM PYRITE, OXIDIZED 337:350' 116 206-216 10 0.08					279-281-LAMPRO	PHYRE DYKE			118	196-206	10	0.00	100.	1
364 ROUNDED QUARTZ PHENOCRYSTS 117 246-226 10 0.06 364 DIORITE DYKE, DARK GREY, FINE GRAINED 118 226-236 10 0.14					WEAK DISSEN PYRITE	- 1	,20,		116	206-216	10	80.0	+00.	1
364 DIORITE DYKE, DARK GREY, FINE GRAINED 118 226-236 10 0.14					ROUNDED QUARTZ !	PHENOCRYSTS			117	216-226	10	0.06	100.	ļ
	389				DIORITE DYKE, DAIL	CK GREY, FINE GRAI	INED		811	226-236		0.14	500.	1

Date 8/14/8/ HOLE No. 81-4 Interval % Cu. 90 16. .003 200. 20119 236-246 10 0.16 .006 100. -002 500. 100. 100. 100. 121 256-266 10 0.01 .002 100. 100. 100. . 001 0.01 10.03 100. 100. 100 -100. 0.15 10.0 346 -356 10 0.02 426-436 10 0.01 122 266-276 10 0.02 326-336 10 0.01 0.03 366-376 10 0.01 336-346 10 0.01 416-426 10 0.02 0.01 0.01 10.0 10.0 10.0 10.0 10.0 LOGGED BY R. Phendler 376-386 10 10 125 296-306 10 286-296 10 10 386-396 10 9 શ 406-416 10 9 9 316-326 356-366 246-256 306-316 276-286 396-406 From-To FEET Section No. Remarks Sample No. 120 133 132 131 15% 130 136 123 67) 134 126 128 138 138 131 121 Bottom, El. Collar El. Level PROPERTY Copper Zone DIORITE DYKE - DARK GREY, FINE GRAINED 90 MO .003 500. 200. BUFF WHITE, FINE TO MEDIUM GRAINED 100. .002 .007 70 Cu 90. DESCRIPTION 10. Lo. 80, 10. Location GUARTE EYE PORPHYRY QUARTE EXE PORPHYRY Dep. Lat. LENGTH 011 20 210 30 30 34 Angle from Horizon VERT COMPANY United Gunn ROSOWICES KId 500' 500 466 146' 70 256 226 196 BARREN Bearing Length FROM 146 256 226 466 196 RECOVERY HOLE yo man END 364 4855 8 185.5 487 မှ Completed Started From 487 Driller 500

4-1		Date 8/14/8/	!																		
HOLE No. 81-4		Date 8/			ASSAY	Potto	200.	200.	.001	,006	200.	110.	100.								
HOLE		ler					0.01	0.01	0.01												
		rend				Interval % Cu	, 0/	0	0)	0)	0/		4		 						
Section No.		LOGGED Y. Phindler	ks		FEET	From-To I	438-446	75H-9hH	124-466	466-476	984-914	486-496									
Secti		Годде	Remarks		-	Sample No.			- 1	142 4	143 4										
					_ '	e Z	139	140	141	//	1,4	14	145	 	 	 					
			::																		
ne		Collar E1.	Bottom, El.	Level										 	 						
Copper Lone		3	8																		
abbe						_															
						DESCRIPTION															
PROPERTY		Lat.	Dep.	Location		DESC															
				٦																	
7 8			uc																		
arce.	Ì		m Horizo																		
COMPANY United Gum Resources Ltd.		Bearing	Angle from Horizon	Length																	
3					<u></u>				_												
gu Ju					RECOVERY	*			-												
led				:	RE	75							_								
En.						o immerval			-												
APANY		Started	Completed	Driller		From To								 	 					-	
5		Sta	3	ŏ		ű.			\perp								L	L			

Date 9/30/81 HOLE No. 81-5 ASSAY Interval % Cu 90 Ho 100. 10. 100. 100. 100. 213 | 161-271 | 10 | 10 | 001 .00 100. 100. Remarks 96.7 % RECOVERY 100. 100. 100 100. 100. 100-100. 100. 100. 100 9 Logged by R. PHENDLER 10. ò 10. .03 20. .02 .07 10. 10. 10. 10. 10. 10. 10. 10. 10 10 9 10 9 10 9 0) 10 0 ,0 0 9 9 9 10 9 10 0 209 221 - 231 251-261 111-101 141-151 171 -111 861 211-221 231-241 131-141 181-181 201 - 211 241-251 From-To 101-16 121-131 191-151 181-161 102-161 161-121 18-11 16-18 Section No. 76102 197 Sample No. 196 102 204 205 QUARTZ HORNBLENDE DIORITE MEDIUM GRAINED. CHALLOPIRITE 195 203 200 202 206 207 208 212 199 117 LICTONITE STAINING, SOME PYRITE STRINGERS AT 269, 290' Collar El. 7776' 319 Bottom, El. COBRSE GRAINED. DISSETIINATED PYRITE, FRESH LOW IN FERROSILICATES, ROUNDED QUARTZ EYES PORPHYRYTIC, FRESH CALCITE STRINGER AT 160 Level OTE. PORPHYRY, FINE GRAINED, HEDIUM GREY PROPERTY COPPER LONC QUART HORNBLENDE DIORITE - MED. GRAINED 265-241. DISSEMINATED PYRITE & CHALCO. DIORITE DYKE, DARK GREY, FINE CRAINED DIORITE DYKE DARK GREY, FINE GRAINED QUARTZ HORNBLENDE DIORITE MEDIUM TO GRAINED, MED-LIGHT GREY, KAOLINIZED QUARTZ HORN BLENDE DIORITE, COARSE QUARTL EYE PORPHYRY - BARREN DESCRIPTION FRESH MASSIVE, LIGHT GREY Location Dep. Lat. KADLINIZED 238 - 240' DISSEMINATED PYRITE PARALLEL TO CORE Angle from Horizon 90° COMPANY United Gunn Resources Ltd. OVERBURDEN 502 PYRITE Bearing Driller BUCCANEER DRILLING. Length RECOVERY Completed Aug. 20. 1981 Started Aug. 16. 1981 Interval 204 00 11.0 11.0 114.0 253 196 22 722 046 852 From To 193 104 227 250 661 1 1961

HOLE No. 81-5 ASSAY 500. 010. 100. .002 Interval % Cu 90 76 .003 .002 100. .002 100. 100. .003 100. 100. 100. 100-Date 100. 100. . o4 80. 40. 20. *to.* .05 .05 80. 80. .05 . ot 90. 60. 90. -10 60. 01. 1 0 9 10 291-301 10 228 | 411- 421 10 233 461-471 10 10 232 451-461 10 224 371-381 10 0 9 9 9 331-341 10 421-431 10 9 9 221 341-351 10 381-391 10 361-371 391-401 181-181 117 401-411 431-441 301-311 128-128 154-144 351-361 311- 321 271- 281 From-To Section No. Logged by Remarks 223 Sample No. 218 219 222 214 217 Bottom, El. QUARTL HORN BLENDE DIORITE, DISSEMINATED (1090) Collar EI. DIORITE DYKE, DARK-MED. GREY, PORPHYRY-Level EXTREMELY COMPETENT FRESH, SILICEOUS QUARTE HORNBLENDE DIDRITE, LIGHT CREY DISSEMINATED, PURITE, SOME LHALCOPURITE L590 MAFICS, BARREN (Q12 PORPHYRY?) DIORITE DYKE, FINE GRAINED, MEDIUM GREY PROPERTY COPPER LONG LAMPROPHURE DYKE, FINE- GRAINED, DARK LOCAL FINER GRAINED ZONES GRADUAL GREY, IST CONTACT PARALLEL TO CORE, FINE GRAINED ALASKITE - PALE GREY CHANGES, FEW PYRITE THREAD VEINS 10 20 PYRITE. FEW QUARTZ STRINGERS DESCRIPTION MEDIUM TO COARSE GRAINED Location Dep. Lat. 2 ND CONTACT AT 800 COMPANY UNITED Gunn Resources Ltd. Angle from Horizon TIC, MASSIVE Bearing Length RECOVERY HOLE Ó HENSE EN 373 205 468 473 340 343 376 ů Completed Started From 473 376 205 343 468 Driller

COMPAI	7 >x	Luil	éd	Gun	w Rest	COMPANY United Gunu Resouves Lta.	ŀ	РКОРЕЯТУ Соррок Голь	Lone		ŭ	Section No.		HO	HOLE No. 81-5.	81-5
Started					Bearing	6	Lat.		Collar El.	:1.	Lo	LOGGED BY R. Phendler	hund	ller	Date 9	Date 9/30/81
Completed	18				Angle 1	Angle from Horizon	Оер.		Bottom, El.	. El.	Re	Remarks				
Oriller					Length		Location	uc	Level							
			RECOVERY	VERY											ASSAY	*
From	٩	Interval		*			e o	DESCRIPTION			Sample No.	From-To	interval	interval % Cu. 90 110.	90 110.	
											134	184-11+	01	10.	100.	
											235	01 154 - 184	10	. 01	100.	
					FROM	10	LENGTH	% Cu.	90 Ho.		236	491-502	"	. 01	100.	
					11,	, 152	180'	20.	100.							
					151,	331'	,0%	80.	100 .							
					, 168	,19+	130	90.	200.							
					.194	. 205	1#	20.	100 .							
					151	461	210	. 07	200.							
						•										

R. W. PHENDLER, P.Eng., GEOLOGICAL CONSULTANT, EXPLORATION AND MINING 360 DECOURCY CRES., RICHMOND, B.C. V7C 4E9 (604) 271-2588

November 2, 1981

United Gunn Resources Ltd. 1015 - 470 Granville St. Vancouver, B.C.

Attention: Mr. R. Nosalek

Re: Summary of Results of 1981 Diamond
Drill Program - Copper Zone
Property, British Columbia.

Dear Mr. Nosalek:

Between July 20 and August 30, 1981 five diamond drill holes totalling 3,205 feet were completed as follows:

D.H. No.	Bearing	Angle	Length	Recovery
81 - 1	due east	-45 ⁰	700'	93.8%
81 - 2	-	vertical	997'	98.0%
81 - 3	-	vertical	506'	97.6%
81 - 4	· -	vertical	500'	98.78
81 - 5	_	vertical	502'	96.78.

These holes were drilled in the area where seven holes had been drilled in the past and where interesting results existed.

The assay results of all holes drilled to date are as follows:

D.H. No.	Intersection	Depth	୫ Cu	% Mo
81 - 1	80' to 680'	600'	0.16	0.003
81 - 2	50' to 997'	947'	0.28	0.020
81 - 3	158' to 488'	330'	0.15	0.004
81 - 4	226' to 256'	30'	0.15	0.005
81 - 5	251' to 461'	210'	0.07	0.002
A - 1	50' to 380'	330	0.23	0.007
A - 2	40' to 400'	360'	0.12	0.004
72 - 1	250' to 400'	150'	0.22	0.005
72 - 2	180' to 300'	120'	0.284 (Equival	L

D.H. No.	Intersection	Depth	8 Cu	8 Mo
PH - 1	50' to 400'	340'	0.21	0.007
PH - 2	40' to 220'	180'	0.19	0.005
PH - 3	10' to 200'	190'	0.12	0.005
PH - 4	30' to 300'	270'	0.10	0.007

With the limited amount of information available to date it appears that there is a north northwesterly trending zone of mineralized granodiorite that may average 0.28% Cu and 0.012% Mo. This is bounded on either side by material that may run in the 0.10 - 0.15% Cu and 0.005% Mo.

The quartz porphyry on the east side of the area is considered to be unfavourable.

An attempt was made to calculate reserves only including information from drill holes that have intersections that average greater than 0.20% Cu. Projections from drill holes are a maximum of 200 feet. A summary of these reserves are as follows:

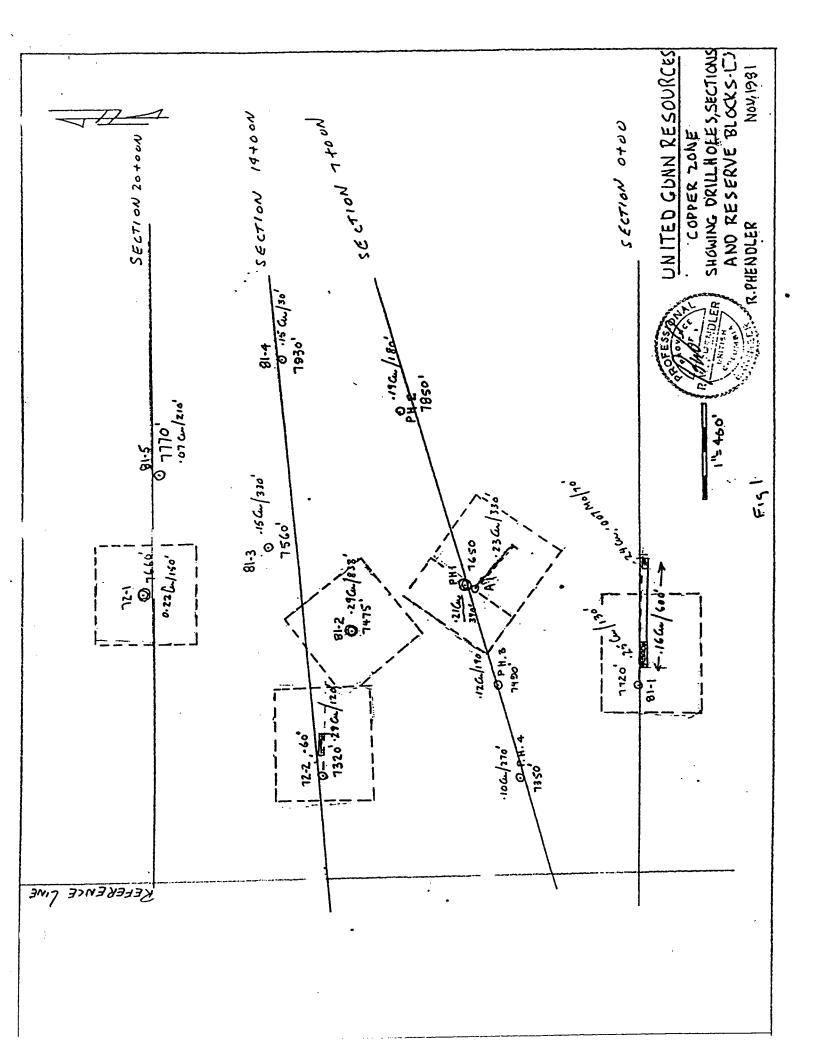
D.H. NO.	Tons	% Cu	% Mo
81 - 1	1,300,000	0.25	.004
PH - 1	2,800,000	0.21	.007
A - 1	2,200,000	0.23	.007
81 - 2	11,100,000	0.29	.017
72 - 2	1,300,000	0.284	-
72 - 1	2,000,000	0.22	.005
	20,700,000	0.28	0.012

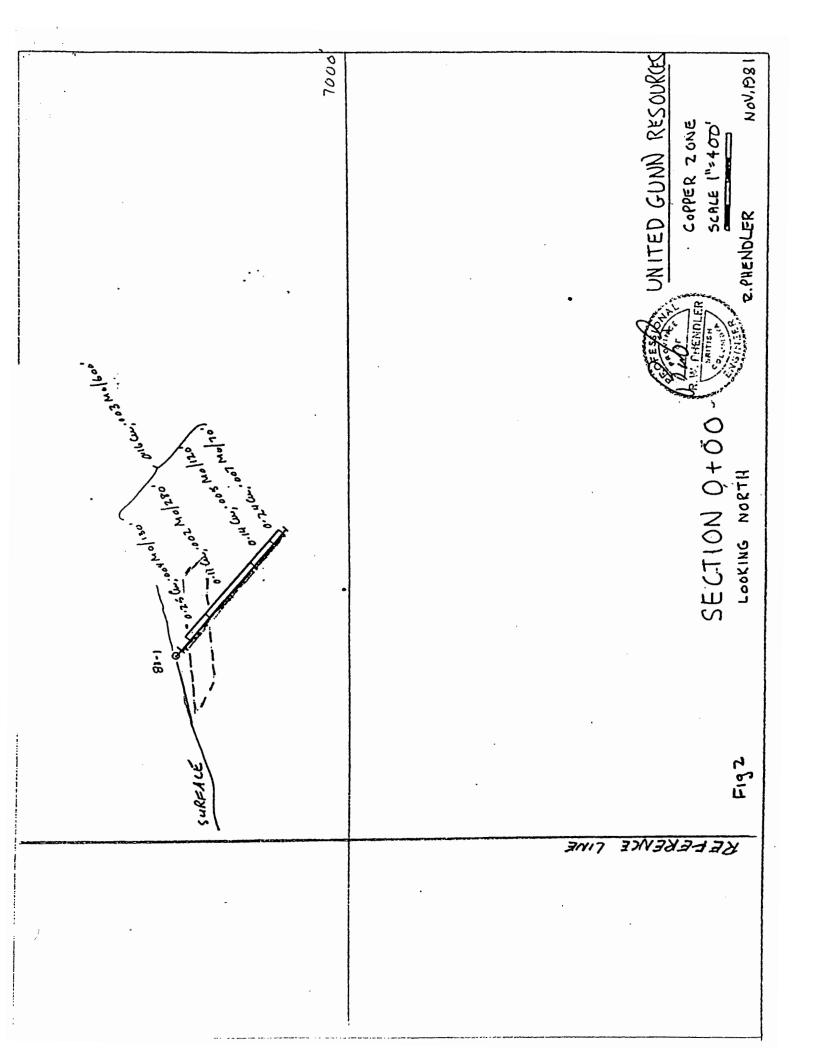
These blocks are shown on the accompanying plan and vertical sections.

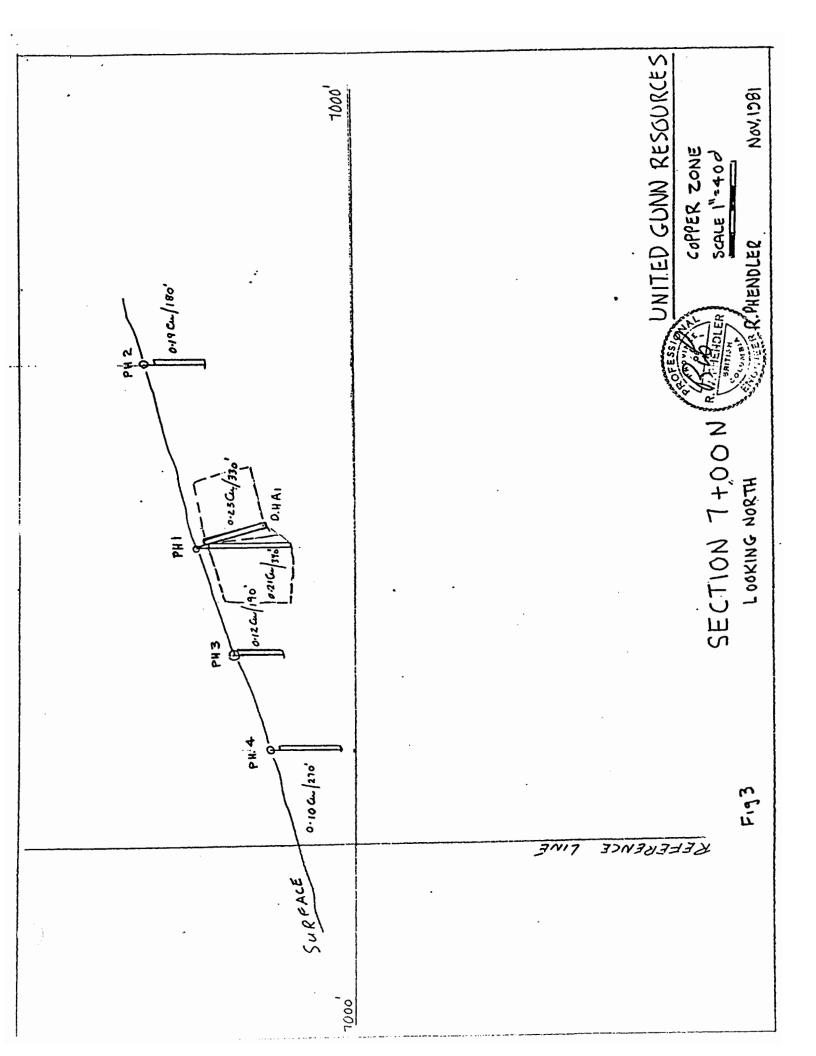
It is interesting to note that the deepest hole (81 - 2) has the best grade material throughout with the best inter-section from 588' to 888' averaging 0.393% Cu and 0.029% Mo.

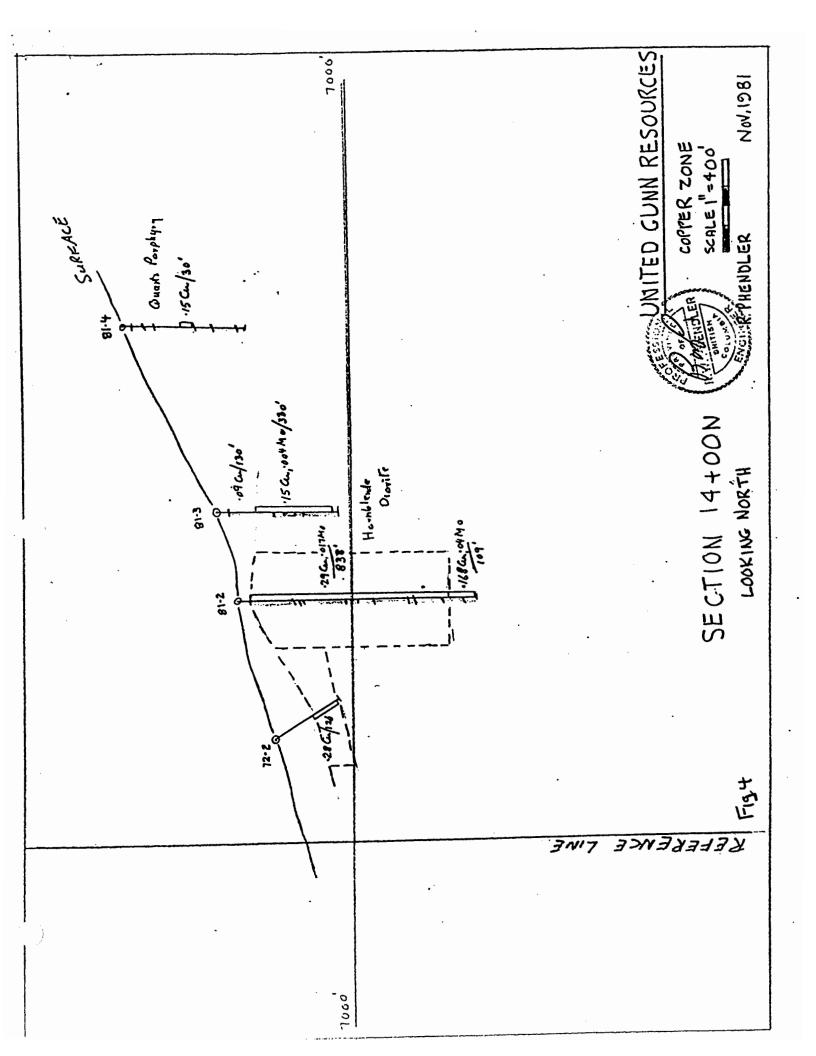
COMMENT

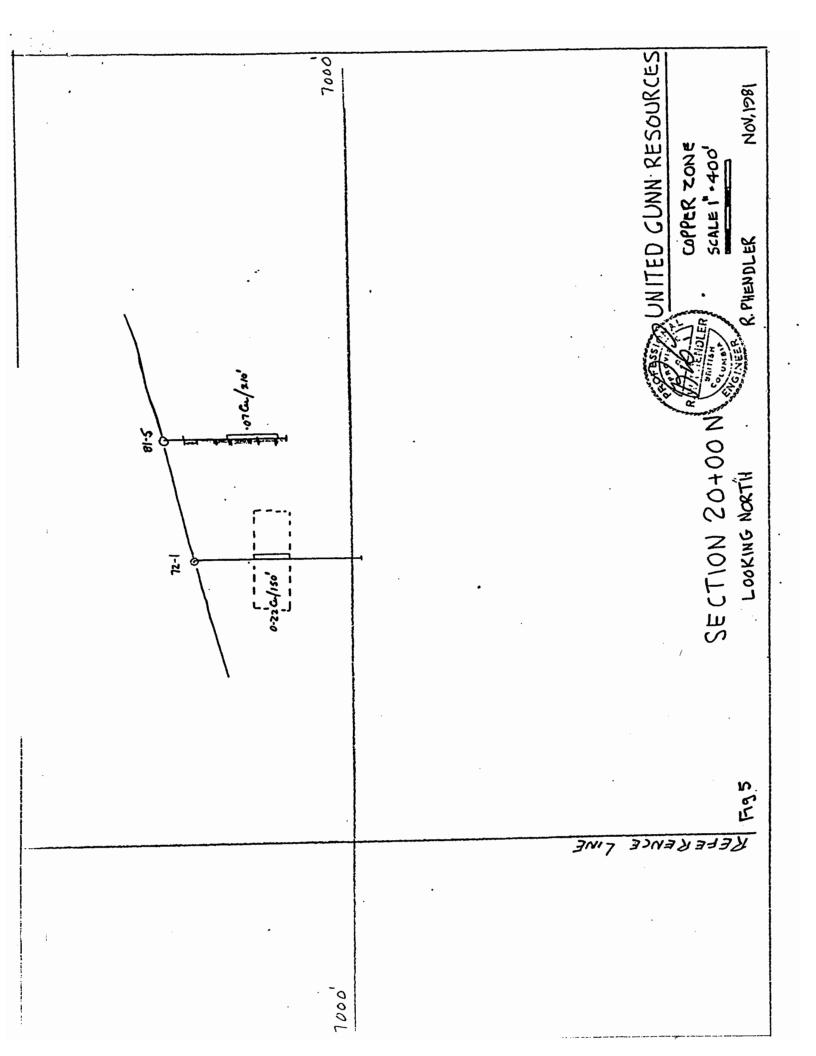
Additional drilling is warranted along strike from the northerly striking higher grade zone. It is suggested that holes should be a minimum depth of 1,000 feet.


Yours truly,


R.W. Phendler P.


Eng.


ILLUSTRATIONS


Fig.	1	-	Plan of	dri	11 1	noles	1"	= 400'
Fig.	2	-	Section	0 +	00			**
Fig.	3	-	Section	7 +	00	N	Ħ	**
Fig.	4	-	Section	14+	00	N	11	. "
Fia	5	_	Section	20+	00	N	**	•

R. W. PHENDLER, P.Eng., GEOLOGICAL CONSULTANT, EXPLORATION AND MINING \$360 DECOURCY CRES., RICHMOND, B.C. V7C 4E9 (604) 271-2588

REFORT
on the

COPPER ZONE CLAIM (9 units)
TASEMO LAME AREA

CLINION MINING DIVISION, BRITISH COLUMBIA

for

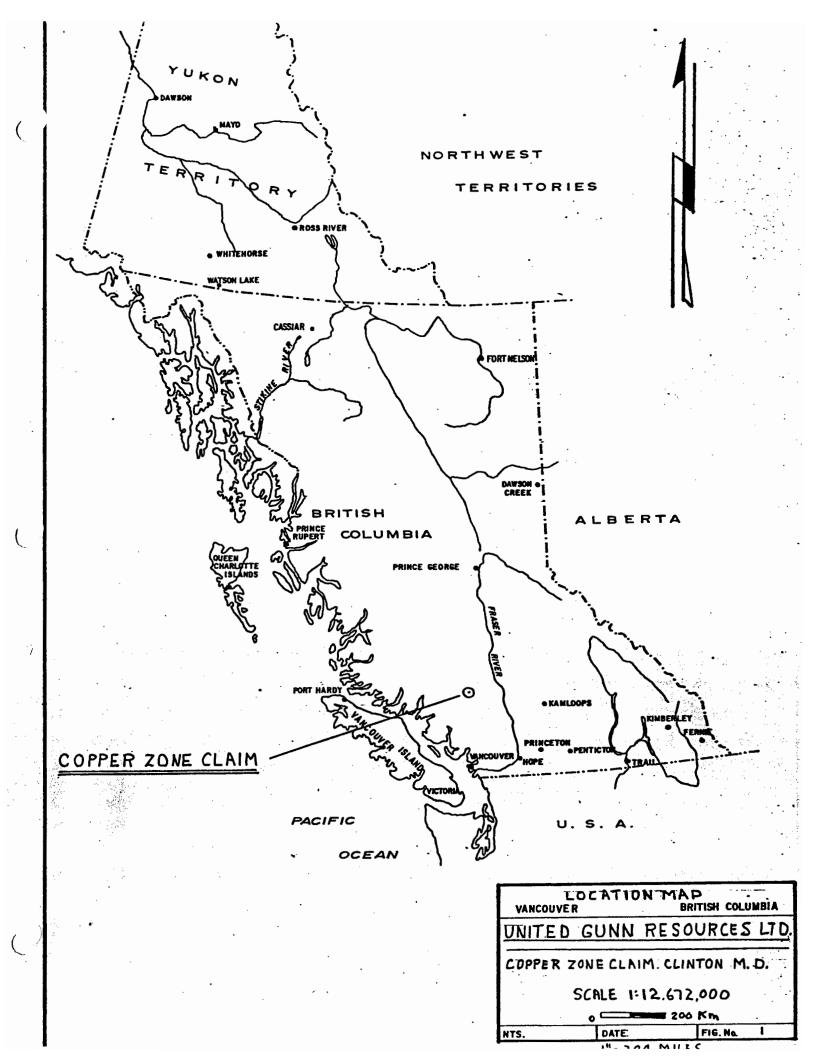
UNITED GUNN RESCURCES LTD.

рy

R.W. PHENDLER, P. EMG.

Vancouver, Canada

August 19, 1980


CONTENTS

		Page
PART	пДп	
	Summary and Conclusions	1
	Recommendations	1
	Cost Estimate	2
PART	nBu	
	Introduction	3
	Location and Access	3
	Property and Ownership	3
	History	4
	Geology and Mineralization	5
	Drilling Results	6
	Comment	6
	Certification	8
	Bibliography	9

ILLUSTRATIONS

Fig.	l	Location Map	l'' = 200 Miles
Fig.	2 -	Property Map	1:10,000
Fig.	3 -	Vertical Section -	D.H. Al and PH1 - $1" = 50$
		Vertical Section -	
Fig.	5 -	Vertical Section -	D.H. A2 - $1" = 50$
Fig.	6 -	Vertical Section -	PH3 - 1" = 50
Fig.	7 -	Vertical Section -	PH4 - 1" = 50

(Figures 3 to 7 were compiled by Western Geological Services.)

SUMMARY AND CONCLUSIONS

Lying near the east limit of the Goastal Granitic Intrusive Complex in southwestern British Columbia, the Copper Zone prospect is one of many prominent copper - bearing gossan zones in the area.

Mineralization consists of disseminated and fracture - fillings of chalcopyrite and molybdenite within quartz diorite. A later stock of feldspar porphyry that measures 300 meters by 600 meters appears to be the centre of the strongest concentration of sulphides. The L-shaped mineral zone is 1200 meters by 500 meters and within this area are two sets of prominent fractures, one generally north - south and one east - west.

The four diamond drill holes and four percussion holes drilled to date suggest that large tonnages of mineralized material may be present that averages 0.20% Cu and 0.10% Mo S_2 .

RECOMMENDATIONS

It is recommended that:

- 1) The 25 kilometers of road from the property to the Taseko Lakes be upgraded and drill access roads be constructed on the property.
- 2) A series of vertical percussion holes be drilled to a depth of 400 feet (121 meters) on 250 meter centres over the gossan zone.
- 3) An induced polarization survey and a magnetometer survey be conducted over the gossan zone.
- 4) A competent field engineer be made available to supervise the program.

COST ESTIMATE

Phase I

1)	Road rehabilitation & construction	-		\$20,000
2)	Induced polarization & EM survey	-		10,000
3)	Percussion Drilling - 2800 9 \$10/foot	-		28,000
4)	Engineering & Geology	-		5,000
5)	Assaying of samples	-		2,200
		Total	-	\$65,200
		15% Contingencies	-	9,780
		Total - Phase I	-	\$74,980
Pha	se II - depending on favourable results	from Phase I		
1)	Percussion Drilling - 8,000 @ \$10/foot	-		80,000
2)	Assaying of samples	-		5,000
3)	Engineering & Geology	- .		10,000
		Total	-	\$95,000
		15% Contingencies	· -	14,250

The sum of \$75,000 should be made available to carry out Phase I of the above program.

Respectfully submitted,

P. Eng.

FART "E"

INTRODUCTION

At the request of Mr. R. Mcsalek of United Gunn Resources Ltd., the writer has compiled the following report on the Copper Zone claims. All pertinent data was provided the writer who also had lengthy discussions with Mr. W. Meyer, P. Eng., who supervised much of the work carried out on the claims. The writer examined the claims on August 13, 1980.

Previous work on the claims included prospecting, trenching, percussion and diamond drilling and geological mapping.

LOCATION AND ACCESS

The property is located at an elevation of 1800 to 2400 meters about 225 kilometers due north of Vancouver in southwestern British Columbia. The easiest access is by helicopter from Pemberton (about one hour) but the property is also accessible by four wheel drive vehicle from Williams Lake westerly on the Bella Coola road to Hanceville. Thence southwesterly for 150 kilometers past the Taseko Lakes and up the Taseko and Granite Rivers to the property. Road distance from Williams Lake is 270 kilometers and time required is seven hours.

The area in the vicinity of the showings is above the tree line and consequently is barren and often very windy. Ample water is available locally to supply a mining operation.

PROPERTY AND CHNERSHIP

The property consists of the Copper Zone mineral claim of 9 units.

Record no. is 48(8) and the claim is believed to be in the name of United Gunn

Resources Ltd.

HISTORY

The east limit of the Coast Range granitic intrusive complex has received considerable attention and has long been known to contain numerous zones of widespread copper mineralization. During the 1960's and early 1970's numerous regional studies were made in the search for large low grade copper deposits throughout British Columbia and the area around the Taseko Lakes received a great deal of interest with moderate success. Programs were carried out by Cominco, Canex Placer, Phelps Dodge Corporation, Bethlehem Copper Corporation, Scurry Rainbow (Home Oil Ltd.) and Quintana.

The Copper Zone claims cover the old Rowbottom Creek prospect which was explored by Phelps Dodge Corporation in 1964. It is reported that one 57 meter diamond drill hole was put down about 500 meters from the gossan zone and intersected mineralization averaging 0.12% Cu over its length.

Between 1969 and 1972 the property was known as the NW & Bill prospect and was held by Victor Mining Corporation. During this time four diamond drill holes and four percussion holes were drilled, some by Victor and others by a syndicate involving Victor Mining Corporation, Granite Mountain Mines Ltd. and Galveston Mines Ltd. During this period the work was conducted by Western Geological Services Ltd. under the supervision of Mr. W. Meyers, P. Eng. presently employed by Teck Corporation, Vancouver.

In 1972 Mr. J. Buchholz supervised the drilling of drill holes 72-1 and 72-2 while he carried out geological mapping.

In 1975 the claims covering the widespread gossan zone lapsed and were staked as the Copper Zone mineral claim for United Gunn Resources Ltd.

GEOLOGY AND MINERALIZATION

The area in which the Copper Zone claim is located lies on the east flank of the Coast Range Crystalline Belt - a complex series of granitic intrusives of post lower Cretaceous age which are intruded by later more acidic stocks and dyke swarms. Four miles northeast of the Copper Zone showings lies the northeast limit of the granitic rocks in contact with volcanic rocks of Cretaceous age.

The principal rock type on the Copper Zone claim is hornblende quartz diorite intruded by numerous feldspar porphyry and quartz feldspar porphyry dykes, all generally striking either north 20° west or east - west.

An oval - shaped stock of quartz feldspar porphyry measuring 300 meters (EW) by 600 meters (NS) appears to be the locii of the more intense sulphide mineralization, which consists of chalcopyrite, molybdenite and heavy pyrite. This mineralization occurs as fracture fillings and disseminations in both the quartz diorite and the feldspar porphyry. Total sulphides of up to 10% (estimated) decrease away from the central porphyry stock.

The area of heavy total sulphides and more prominent gossan is an L-shaped zone centering on the porphyry stock. The stock and other later porphyry dykes are relatively massive, showing less leaching than the surrounding fractured quartz diorite. This leaching reaches a depth of about 15 meters but there is no apparent enriched zone immediately below the leached zone. Minor secondary chalcocite was observed in D.D.H. A-1 but no significant increase in copper values was noted.

No significant gold values were present (all trace) and only minor silver assays were returned (0.1 oz per ton). It is believed that tungsten assays would be desireable for selected high quartz samples as this metal has been observed in this geological environment in the past.

DRILLING RESULTS

Diamond and percussion drilling was carried out between 1969 and 1972 under the direction of Mr. W. Meyer, P. Eng. Although sample by sample assay certificates are not available at present the results are believed to be reliable. The most significant observation is the increase in values (copper) in the percussion holes as distance towards the central porphyry stock decreases. Percussion hole PH4 averaged 0.10% Cu while PH1 and 2 near the stock average 0.21% Cu and 0.19% Cu respectively. However, D.D.H. 72-1 whichis reported to be located outside the gossan - high sulphide area averaged 0.22% Cu over a vertical distance of 150 (45.5 meters).

Complete results are as follows:

	Hole No.	<u>Depth</u>	<u>Interval</u>	Length	% Cu	% MoS2
	D.H. A-1	121.2 mtrs	15.2- 115.2 mtrs	100 mtrs	0.23	0.11
ı	`.H. A-2	125.8 "	12.1- 121.2 "	109.1 "	0.12	0.007
ĺ	D.H. 72-1	211.5 "	75.8- 121.2 "	45.5 "	0.22	0.008
	D.H. 72-2	92.1 "	54.5- 92.1 "	37.6 "	0.284% Cu	equivalent
	P.H. 1	121.2 "	18.2- 121.2 "	103.0 "	0.21	0.011
	P.H. 2	72.7 "	12.1- 66.7 "	54.5 "	0.19	0.008
	P.H. 3	60.6 "	3.0- 60.6 "	18.4 "	0.12	0.009
	P.H. 4	90.9 "	9.1- 90.9 "	81.8 "	0.10	0.011

COMMENT

No average grades or tonnages can be calculated at this time but it is evident that the possibility exists for the presence of significant tonnages of mineralized material that may average 0.20% Cu and 0.10% MoS₂.

It is felt that better grade material may exist in selected areas and a systematic drilling program is recommended.

The copper equivalent grade shown for D.H. 72-2 was probably calculated on a 4 No to 1 Cu ratio, as was the practice in 1972. A ratio of 9:1 would be more in order at 1980 metal prices.

It was reported by J. Buchholz in his 1972 summary report that short intervals in drill core assayed as high as 0.45% Cu and 0.110% MoS₂ and that molybdenite values appear to increase with lower copper values, with the converse also being true. Pyrite appears to decrease with depth while copper content increases.

The holes that have been drilled are too few to permit a sensible interpretation of zoning, control of mineralization, etc. but sufficient encouragement has been received to warrant additional work.

Respectfully submitted,

- 7'-

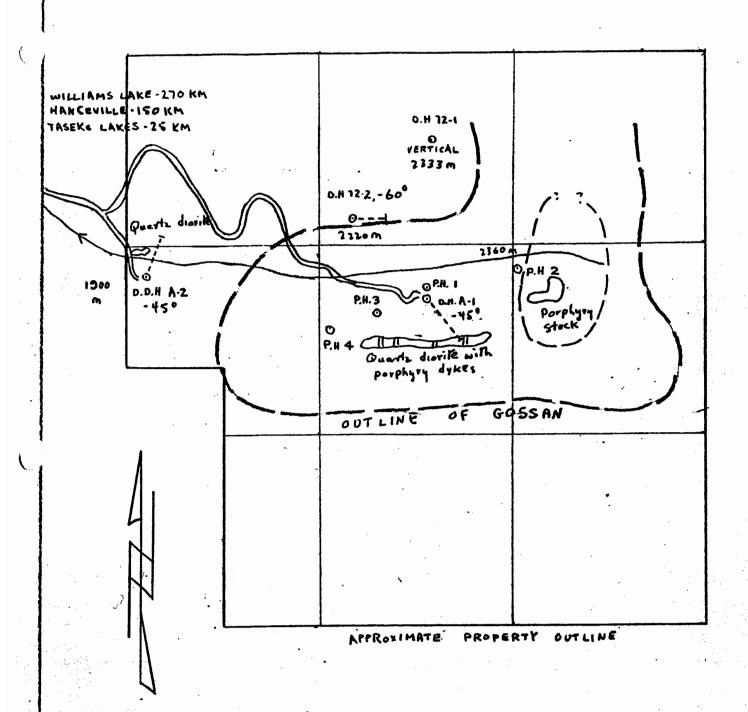
CERTIFICATION

- I, R.W. Fhendler, of 7360 Decourcy Crescent, Richmond, B.C. hereby certify as follows:
- 1) THAT I am a registered member of the Association of Professional Engineers of British Columbia No. 4421 1963.
- 2) THAT I am a graduate of McGill University, Montreal, with a Bachelor of Science degree in geology.
- 3) THAT I have practiced my profession continually as mine, exploration and consultant geologist for the past 27 years in all parts of Ganada, the U.S.A., Mexico, Peru, Colombia and Chile.
- 4) THAT I have no interest directly or indirectly in the Copper Zone claim.

 nor do I own directly or indirectly, any shares of United Gunn

 Resources Ltd., nor do I expect to.
- 5) THAT the information contained in this report was compiled as a result of
 my examination of all available data, covering work carried out on
 the Copper Zone property and my examination of the claims on August 13, 1980
- 6) THAT I hereby consent to the publication of my report entitled "Report on the Copper Zone claim, Clinton Mining Division, British Columbia", dated March 19, 1980 in a prospectus or a statement of material facts.

RIW PHENDLER


PRINTER

COLUMBIT

COL

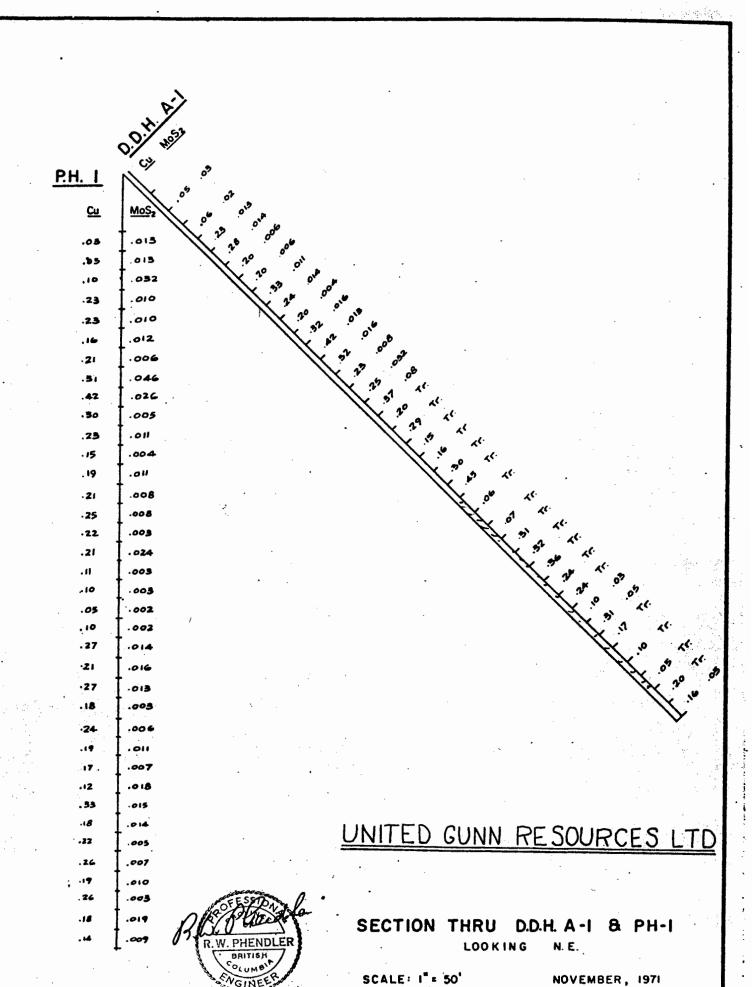
BIBLIOGRAPHY

- 1) MEYER, W. "Report on the Bill and NW claims, Taseko Lake area, B.C." November 29, 1971.
- 2) BUCHHOLZ, J "Summary Report NW Bill Mineral Claims" November 27, 1972.
- 3) MEYER, W. "Report on the Copper Zone claim, Taseko Lake area, B.C." February 21, 1977.

OPH- PERCHSSION HOLES

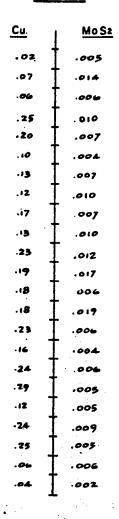
UNITED GUNN RESOURCES LTD.

COPPER ZONE CLAIM (9 UNITS)
TASEKO LAKE AREA.CLINTON MINING DIVISION,
BRITISH COLUMBIA


SCALE 1:10000

SOP mtrs

R.W. PHENDLER P. ENG


MARCH.1980

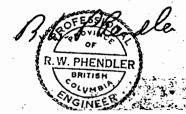
F192

W. G. S.

P. H. 2

UNITED GUNN RESOURCES LTD.

SECTION THRU P.H. 2


SCALE: 1"= 50"

NOVEMBER, 1971

W. G. S.

D.D.H. A-2 -45° a.N.30°E

UNITED GUNN RESOURCES LTD.

SECTION THRU D.D.H. A-2

LOOKING S.E.

SCALE: 1" = 50"

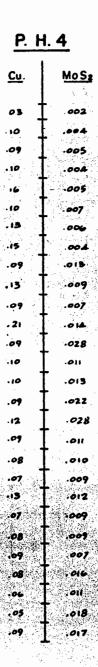
NOVEMBER, 1971

·W. G. S.

P. H. 3

Cu.	I	MoS ₂
.07	Ī	.004
.06	Ι	.024
.09	I	.010
.22	I	. 011
· 37	Ţ	.018
. 24	I	.021
.09	Ι.	.011
07	ŀ	.010
.08	Ι	.007
.16	Ι	012
. 16	Ι	013
.09	Ι	.006
.10	Ι	.007
.08	1	.005
.04	I	.002
.09	Ι	.004
. 10	I	.004
.08	1	.004
.09	1	-004
.09	1	.004

UNITED GUNN RESOURCES LTD



SECTION THRU P.H. 3

SCALE: 1" = 50"

NOVEMBER, 1971

W. G. S.

UNITED GUNN RESOURCES LITE

SECTION THRU P.H.4

SCALE I = 50

NOVEMBER, 197

W . G . S.

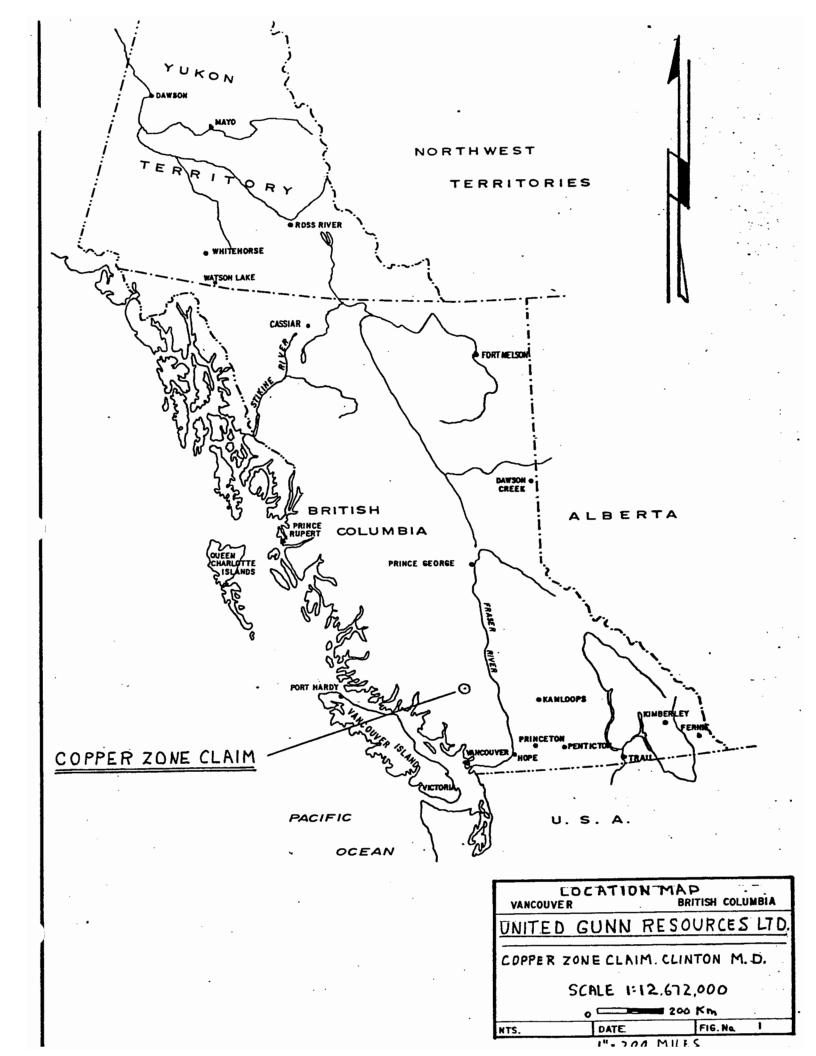
R. W. PHENDLER, P. Eng., GEOLOGICAL CONSULTANT, EXPLORATION AND MINING 7360 DECOURCY CRES., RICHMOND, B.C. V7C 4E9 (604) 271-2588

REPORT

on the

COPPER ZONE CLAIM (9 units)

TASEKO LAKE AREA


CLINTON MINING DIVISION, BRITISH COLUMBIA

for

UNITED GUNN RESOURCES LTD.

by

R.W. PHENDLER, P. ENG.

CONTENTS

	Page
PART "A"	
Summary and Conclusions	1
Recommendations	1
Cost Estimate	2
PART "B"	
Introduction	3
Location and Access	3
Property and Ownership	3
History	4
Geology and Mineralization	5
Drilling Results	6
Comment	6
Certification	8
Bibliography	9
ILLUSTRATIONS	
Fig. 1 - Location Map " = 200 Miles	
(Figures 3 to 7 were compiled by Western Geological Services.)	

SUMMARY AND CONCLUSIONS

Lying near the east limit of the Goastal Granitic Intrusive Complex in southwestern British Columbia, the Copper Zone prospect is one of many prominent copper - bearing gossan zones in the area.

Mineralization consists of disseminated and fracture - fillings of chalcopyrite and molybdenite within quartz diorite. A later stock of feldspar porphyry that measures 300 meters by 600 meters appears to be the centre of the strongest concentration of sulphides. The L-shaped mineral zone is 1200 meters by 500 meters and within this area are two sets of prominent fractures, one generally north - south and one east - west.

The four diamond drill holes and four percussion holes drilled to date suggest that large tonnages of mineralized material may be present that averages 0.20% Cu and 0.10% No S_2 .

RECOMMENDATIONS

It is recommended that:

- 1) The 25 kilometers of road from the property to the Taseko Lakes be upgraded and drill access roads be constructed on the property.
- A series of vertical percussion holes be drilled to a depth of 400 feet
 (121 meters) on 250 meter centres over the gossan zone.
- 3) An induced polarization survey and a magnetometer survey be conducted over the gossan zone.
- 4) A competent field engineer be made available to supervise the program.

COST ESTIMATE

1)	Road rehabilitation and construction	\$25,000
2)	Percussion drilling - 12,000' (3636 mtrs. @ \$10/ft.	120,000
3)	Induced polarization and magnetometer survey	5,000
4)	Assaying	5,000
5)	Travel and Accommodations	15,000
6)	Engineering and geology	10,000
	Total -	\$180,000
	10% Contingencies -	_18,000
	Grand Total -	\$198,000

The sum of \$200,000 should be made available to carry out the above program.

Respectfully submitted,

PART "B"

INTRODUCTION

At the request of Mr. R. Nosalek of United Gunn Resources Ltd., the writer has compiled the following report on the Copper Zone claims. All pertinent data was provided the writer who also had lengthy discussions with Mr. W. Meyer, P. Eng., who supervised much of the work carried out on the claims.

Previous work on the claims included prospecting, trenching, percussion and diamond drilling and geological mapping.

LOCATION AND ACCESS

The property is located at an elevation of 1800 to 2400 meters about 225 kilometers due north of Vancouver in southwestern British Columbia. The easiest access is by helicopter from Pemberton (about one hour) but the property is also accessible by four wheel drive vehicle from Williams Lake westerly on the Bella Coola road to Hanceville. Thence southwesterly for 150 kilometers past the Taseko Lakes and up the Taseko and Granite Rivers to the property. Road distance from Williams Lake is 270 kilometers and time required is seven hours.

The area in the vicinity of the showings is above the tree line and consequently is barren and often very windy. Ample water is available locally to supply a mining operation.

PROPERTY AND OWNERSHIP

The property consists of the Copper Zone mineral claim of 9 units.

Record no. is 48(8) and the claim is believed to be in the name of United Gunn

Resources Ltd.

HISTORY

The east limit of the Coast Range granitic intrusive complex has received considerable attention and has long been known to contain numerous zones of widespread copper mineralization. During the 1960's and early 1970's numerous regional studies were made in the search for large low grade copper deposits throughout British Columbia and the area around the Taseko Lakes received a great deal of interest with moderate success. Programs were carried out by Cominco, Canex Placer, Phelps Dodge Corporation, Bethlehem Copper Corporation, Scurry Rainbow (Home Oil Ltd.) and Quintana.

The Copper Zone claims cover the old Rowbottom Creek prospect which was explored by Phelps Dodge Corporation in 1964. It is reported that one 57 meter diamond drill hole was put down about 500 meters from the gossan zone and intersected mineralization averaging 0.12% Cu over its length.

Between 1969 and 1972 the property was known as the NW & Bill prospect and was held by Victor Mining Corporation. During this time four diamond drill holes and four percussion holes were drilled, some by Victor and others by a syndicate involving Victor Mining Corporation, Granite Mountain Mines Ltd. and Galveston Mines Ltd. During this period the work was conducted by Western Geological Services Ltd. under the supervision of Mr. W. Meyers, P. Eng. presently employed by Teck Corporation, Vancouver.

In 1972 Mr. J. Buchholz supervised the drilling of drill holes 72-1 and 72-2 while he carried out geological mapping.

In 1975 the claims covering the widespread gossan zone lapsed and were staked as the Copper Zone mineral claim for United Gunn Resources Ltd.

GEOLOGY AND MINERALIZATION

The area in which the Copper Zone claim is located lies on the east flank of the Coast Range Crystalline Belt - a complex series of granitic intrusives of post lower Cretaceous age which are intruded by later more acidic stocks and dyke swarms. Four miles northeast of the Copper Zone showings lies the northeast limit of the granitic rocks in contact with volcanic rocks of Cretaceous age.

The principal rock type on the Copper Zone claim is hornblende quartz diorite intruded by numerous feldspar porphyry and quartz feldspar porphyry dykes, all generally striking either north 20° west or east - west.

An oval - shaped stock of quartz feldspar porphyry measuring 300 meters (EW) by 600 meters (NS) appears to be the locii of the more intense sulphide mineralization, which consists of chalcopyrite, molybdenite and heavy pyrite. This mineralization occurs as fracture fillings and disseminations in both the quartz diorite and the feldspar porphyry. Total sulphides of up to 10% (estimated) decrease away from the central porphyry stock.

The area of heavy total sulphides and more prominent gossan is an Lshaped zone centering on the porphyry stock. The stock and other later

porphyry dykes are relatively massive, showing less leaching than the surrounding fractured quartz diorite. This leaching reaches a depth of about 15

meters but there is no apparent enriched zone immediately below the leached

zone. Minor secondary chalcocite was observed in D.D.H. A-1 but no significant
increase in copper values was noted.

No significant gold values were present (all trace) and only minor silver assays were returned (0.1 oz per ton). It is believed that tungsten assays would be desireable for selected high quartz samples as this metal has been observed in this geological environment in the past.

DRILLING RESULTS

Diamond and percussion drilling was carried out between 1969 and 1972 under the direction of Mr. W. Meyer, P. Eng. Although sample by sample assay certificates are not available at present the results are believed to be reliable. The most significant observation is the increase in values (copper) in the percussion holes as distance towards the central porphyry stock decreases. Percussion hole PH4 averaged 0.10% Cu while PH1 and 2 near the stock average 0.21% Cu and 0.19% Cu respectively. However, D.D.H. 72-1 whichis reported to be located outside the gossan - high sulphide area averaged 0.22% Cu over a vertical distance of 150 (45.5 meters).

Complete results are as follows:

Hole No.	Depth	Interval	Length	% Cu	% KoS2
D.H. A-1	121.2 mtrs	15.2- 115.2 mtrs	100 ∮ mtrs	0.23	0.11
D.H. A-2	125.8 "	12.1- 121.2 "	109.1 "	0.12	0.007
D.H. 72-1	211.5 "	75.8- 121.2 "	45.5 "	0.22	0.008
D.H. 72-2	92.1 "	54.5- 92.1 "	37.6 "	0.284% Ci	a equivalent
P.H. 1	121.2 "	18.2- 121.2 "	103.0 "	0.21	0.011
P.H. 2	72.7 "	12.1- 66.7 "	54.5 "	0.19	0.008
P.H. 3	60.6 "	3.0- 60.6 "	18.4 "	0.12	0.009
P.H. 4	90.9 "	9.1- 90.9 "	81.8 "	0.10	0.011
	896.0	Tata	549,9		
	COMENT				

No average grades or tonnages can be calculated at this time but it is evident that the possibility exists for the presence of significant tonnages of mineralized material that may average 0.20% Cu and 0.10% MoS₂.

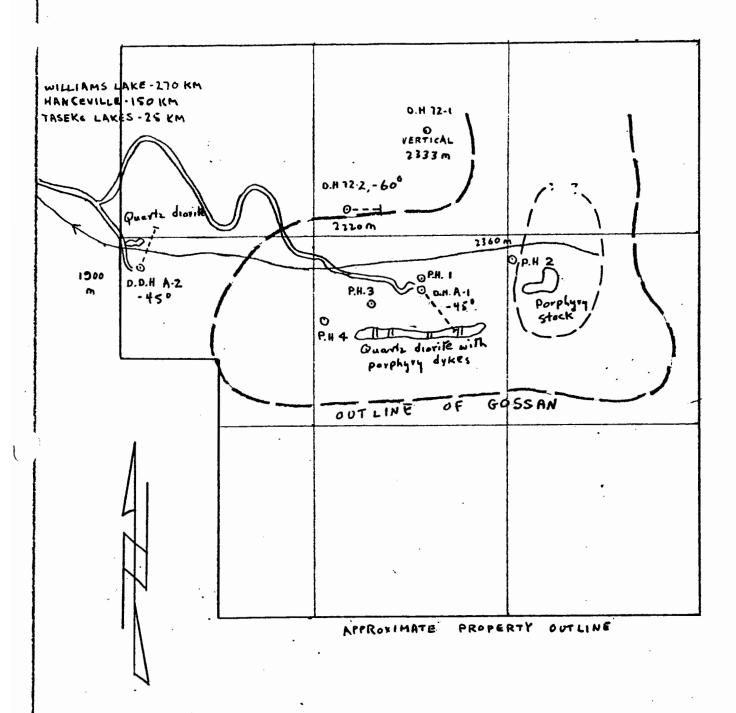
It is felt that better grade material may exist in selected areas and a systematic drilling program is recommended.

The copper equivalent grade shown for D.H. 72-2 was probably calculated on a 4 No to 1 Cu ratio, as was the practice in 1972. A ratio of 9:1 would be more in order at 1980 metal prices.

It was reported by J. Buchholz in his 1972 summary report that short intervals in drill core assayed as high as 0.45% Cu and 0.110% MoS₂ and that molybdenite values appear to increase with lower copper values, with the converse also being true. Pyrite appears to decrease with depth while copper content increases.

The holes that have been drilled are too few to permit a sensible interpretation of zoning, control of mineralization, etc. but sufficient encouragement has been received to warrant additional work.

Respectfully submitted,


CERTIFICATION

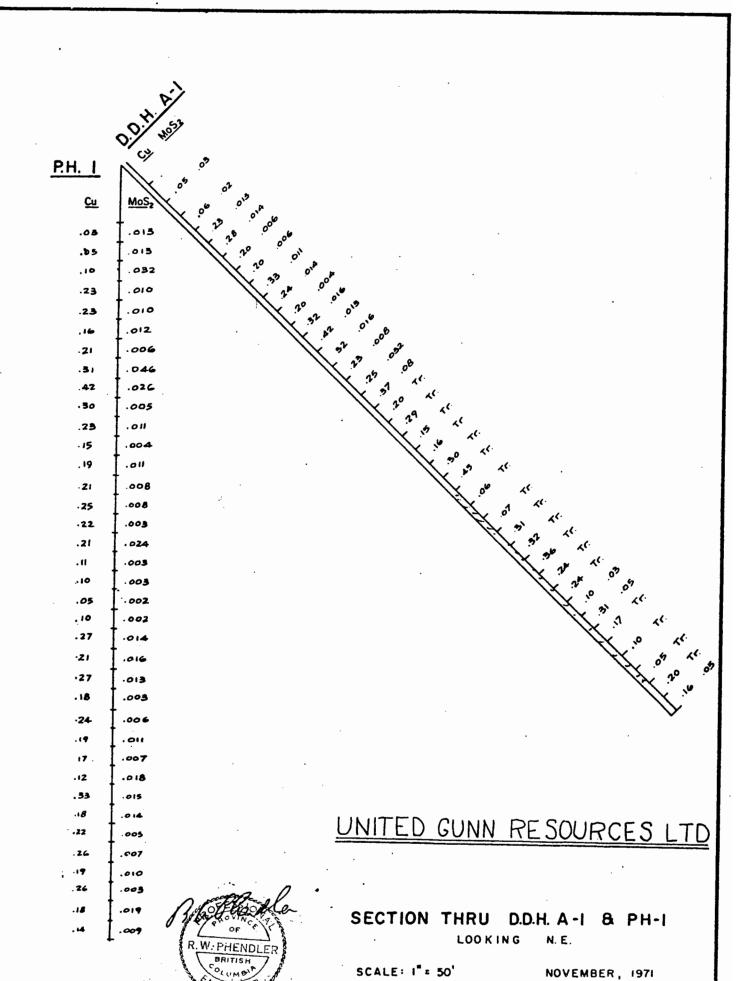
- I, R.W. Phendler, of 7360 Decourcy Crescent, Richmond, B.C. hereby certify as follows:
- 1) THAT I am a registered member of the Association of Professional Engineers of British Columbia No. 4421 1963.
- 2) THAT I am a graduate of McGill University, Montreal, with a Bachelor of Science degree in geology.
- 3) THAT I have practiced my profession continually as mine, exploration and consultant geologist for the past 27 years in all parts of Canada, the U.S.A., Mexico, Peru, Colombia and Chile.
- 4) THAT I have no interest directly or indirectly in the Copper Zone claim nor do I own directly or indirectly, any shares of United Gunn Resources Ltd., nor do I expect to.
- 5) THAT the information contained in this report was compiled as a result of my examination of all available data, covering work carried out on the Copper Zone property.
- 6) THAT I hereby consent to the publication of my report entitled "Report on the Copper Zone claim, Clinton Mining Division, British Columbia", dated March 19, 1980 in a prospectus or a statement of material facts.

R.W. Phendler, P. Eng.

BIBLIOGRAPHY

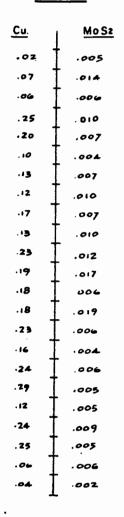
- 1) MEYER, W. "Report on the Bill and NW claims, Taseko Lake area, B.C." November 29, 1971.
- 2) BUCHHOLZ, J "Summary Report NW Bill Mineral Claims" November 27, 1972.
- 3) MEYER, W. "Report on the Copper Zone claim, Taseko Lake area, B.C." February 21, 1977.

OPH- PERCHSSION HOLES


UNITED GUNN RESOURCES LTD.

COPPER ZONE CLAIM (9 UNITS)
TASEKO LAKE AREA.CLINTON MINING DIVISION,
BRITISH COLUMBIA

SCALE 1:10000


R.W. PHENDLER P. ENG

MARCH. 1980

W. G. S.

P. H. 2

UNITED GUNN RESOURCES LTD.

SECTION THRU P.H. 2

SCALE: 1"= 50"

NOVEMBER, 1971

W. G. S.

Fia 4

D.D.H. A-2 -45° a.N.30°E

UNITED GUNN RESOURCES LTD.

R.W. PHENDLER

BRITISH

COLUMNIES

SECTION THRU D.D.H. A-2

LOOKING S.E.

SCALE: 1" = 50"

NOVEMBER, 1971

W. G. S.

G. <

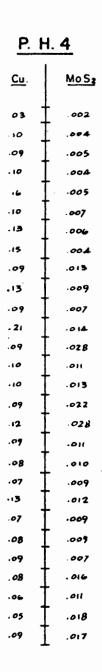
P. H. 3

<u>Cu</u>	Ţ	Mo\$₂
.07	Ī	.004
.04	I	.oz4
.09	I	.010
.22	I	. 011
. 37	Ī	.018
. 24	Ī	.021
.09	1	.011
07	I	.010
08	I	.007
.16	1	.012
. 16	I	.013
.09	T	.006
10	Ī	.007
.08		.005
.04	Ι	.002
.09	Ι	.004
. 10	I	.004
.08	I	.004
.09	Ι	.004
. 09	I	.004

UNITED GUNN RESOURCES LTD

R.W. PHENDLER

BRITISH


OLUMBIA

SECTION THRU PH. 3

SCALE: 1 = 50

NOVEMBER, 1971

w. G. <u>\$</u>.

UNITED GUNN RESOURCES LTD.

SECTION THRU P.H.4

SCALE I = 50

NOVEMBER, 1971

W. G. S.

REPORT ON THE COPPER ZONE CLAIM TASEKO LAKES AREA

Prepared for UNITED GUNN RESOURCES LTD.

By W. MEYER, P. ENG.

February 21, 1977

Vancouver, B.C.

TABLE OF CONTENTS

	Page
CONCLUSIONS & RECOMMENDATIONS	
INTRODUCTION	1
LOCATION & ACCESS	
CLAIMS	2
HISTORY	2
GEOLOGY	4
MINERALIZATION	5
CERTIFICATE	APPENDIX
<u>ILLUSTRATIONS</u>	
LOCATION MAP	[after page 1]
CLAIM MAP	[after page 2]
REGIONAL ĠEOLOGY	•
GEOLOGY & BRILL HOLE LOCATIONS	[in pocket]

CONCLUSIONS & RECOMMENDATIONS

The Copper Zone claim covers an extensive area of low grade copper-molybdenite mineralization with some evidence that higher grade zones may occur. Sampling of these zones on surface is not possible due to deep weathering. Limited drilling in the 1970 and 1971 field seasons indicates that potentially significant amounts of copper-molybdenum mineralization occurs with heavy pyrite mineralization in quartz-diorite rocks of the Coast Crystalline Belt where they are intruded by a porphyry dyke swarm. The potential area of mineralization is expressed on surface in the form of a large "L" shaped gossan measuring 1,000 feet by 2,000 feet in the small dimension and 2,000 feet by 4,000 feet in the large dimension. Intermittent copper mineralization is exposed in a creek bottom for a distance of approximately 2,000 feet to the west of the gossan.

Emphasis in further exploration of the property should be on sampling the potential area initially by percussion drilling on an 800 foot grid to outline the higher grade areas. The proposed holes for the initial drilling are shown on the accompanying plan map. [Fig. 3]

The percussion programme should be followed up by diamond drilling on a closer spaced grid [400 feet] in selected areas. Provision is made for two deep holes and two holes drilled along percussion holes to determine the accuracy of this sampling.

The estimated cost for this programme is shown below:

Stage 1

20 percussion holes to 400' on 800' grid
Direct drilling costs \$3.50/ft.
Assaying .80/ft.
Bulldozer 2.00/ft.
Camp, cookery, vehicles, etc. 1.00/ft.
Supervision .50/ft.

 $$7.80 \times 8,000 \text{ ft.} = $62,400$

Consulting 3,000

Engineering, drafting, report preparation 2,500 Fixed wing support - 2 trips/week @ \$300/trip 3,000

· \$75,900

Say \$85,000

Stage 2

Diamond drilling @ \$25/ft. [direct & indirect]

8 holes [fill in to 500 ft.] 4,000 ft.

2 1,000 ft. holes 2,000 ft.

2 check holes along percussion holes

1,000 ft.

7,000 ft.

\$175,000

Total Stages 1 & 2

\$260,000

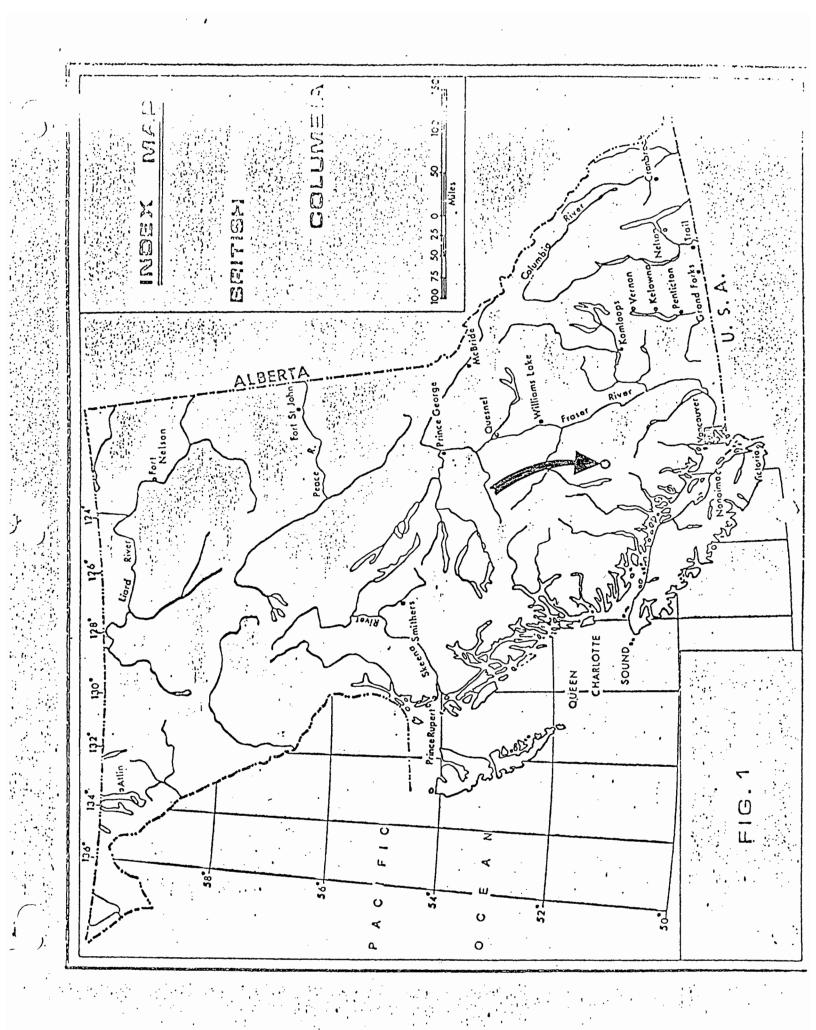
Respectfully submitted,

W. Meyers, P. Eng.

INTRODUCTION

The following report is prepared at the request of United Gunn Resources Ltd. The Copper Zone claims comprise 9 units located at the headwaters of Granite Creek, a tributary of the Taseko River located in the Clinton Mining Division. Widespread, consistent low grade coppermolybdenite mineralization occurs over a large area on the central claims.

Previous work on the claims includes prospecting, trenching, percussion, and diamond drilling starting in 1964 by Phelps Dodge Corporation of Canada, Victor Mining Corporation & Granite Mountain-Galveston Joint Venture. Approximately \$125,000.00 has been spent on the claims in the past.


The writer has been familiar with the property since 1964 and personally carried out or supervised much of the previous work on the claim area.

A two-stage programme of technical and physical work is recommended for the property. This program is estimated to cost \$260,000.00.

LOCATION & ACCESS

The claims are situated on Granite Creek, a tributary of the Taseko River, 140 miles north of Vancouver, B.C. [See Fig. 1]

Road access by four-wheel drive is via Williams Lake, Hanceville [on the Williams Lake-Bella Coola road] and the Taseko Lakes, a distance of approximately 170 miles [7 hours driving] from Williams Lake to the property campsite.

The main showings lie in a large cirque shaped basin on the eastern side of Granite Creek near its head-waters.

The more pertinent points on the geography of the area may be summarized as follows:

Physiographic Region - Coast Range
Altitude [campsite] - 6,000 feet
Relief - 2,500 feet
Climate - Coal, moderate precipitation
Snow-free period - 4 - 5 months

CLAIMS

The Copper Zone claim consists of 9 units located in the Clinton Mining Division.

The claims relative to the local drainage are shown on Fig. 2 and the pertinent data is summarized below:

Claim	Units	Tag No.	Record No.	Expiry Date
Copper Zone	9	_	48[8]	August 30, 1977

HISTORY

Copper mineralization in the intrusive rocks in the Taseko Lakes area has been known since the turn of the century and has been the centre for numerous regional and local exploration projects. The most intense and wide ranging programmes were in the 1960's and early 1970's when there was much interest in large bodies of low grade copper mineralization.

Significant programmes in the general area included prospecting and underground development work on lower Granite Creek by Cominco in the 1930's. exploration by Canex Placer in the 1950's included diamond drilling of the "Spokane" and "Empress" showings on lower Granite Creek. Phelps Dodge Corporation of Canada during the 1960's acquired many of the prospects in the area and "grass-roots" prospecting located others. Properties advanced to the drilling stage by Phelps Dodge included "Fish Lake" [later acquired by Taseko Mines and explored by various optionors], "Limonite Mountain" near Chita Creek [later acquired and explored by Bethlehem Copper], the "Spokane", "Syndicate Mountain", "Empress" and "Buzzer" [later acquired by Scurry Rainbow and explored by Sumatoma, Quintana and others] and "Rowbottom Creek", the showing presently covered by the Copper Zone claim.

Many of the showings were either relatively high grade copper-molybdenite <u>+</u> gold, silver occurrences in breccia zones of limited extent [e.g. "Syndicate Mountain"] or 10's of millions of tons of relatively low grade mineralization [e.g. Buzzer, Fish Lake].

The headwaters of Granite Creek and a small tributary, Rowbottom Creek, was staked by Phelps Dodge in 1964 following the discovery of widespread copper and/or molybdenite mineralization associated with a large prominent gossan in that area.

One 190 foot hole was drilled the same year approximately $\frac{1}{4}$ mile from the gossan zone, encountering uniform low grade copper mineralization averaging 0.12% Cu over its length.

Victor Mining Corporation Ltd. [NPL] acquired the property in 1969 and to 1972 completed four diamond drill holes and four rotary percussion holes on its own behalf or through joint ventures with Granite Mountain Mines Ltd. and Galveston Mines Ltd.

The claims lapsed in 1975 and were re-staked as the present "Copper Zone" claim.

GEOLOGY

Regional Reference: Dolmage, V., Gunn Creek Map Area, GSC Summary Report 1928 - Part A.

Jeletzky, J.A., Tipper, H.W., Upper Jurassic and Cretaceous Rocks of the Taseko Lakes Map Area. GSC Paper 67-54, 1967

The property lies on the east flank of the Coast Crystalline Belt, characterized by massive batholithic granitic intrusions of post lower Cretaceous age which are in turn intruded by post upper Cretaceous acid stocks and dykes. A major contact with upper Cretaceous volcanics lies four miles NE of the showings. The property is mainly underlain by hornblende quartz diorite intruded by a swarm of feldspar porphyry and quartz feldspar porphyry dykes parallel to the major fracture systems [N 20°W and E-W]. There is some field evidence to indicate that the dyke swarm may be peripheral to a small porphyry stock near the area of the better grade mineralization [see attached plan].

Outcrop in the 'key' area is sparse, occurring primarily on the ridge tops and creek bottoms. Scree, varying from a few feet to 30 or more feet in thickness, covers the high slopes and cirques while a thin mantle of soil and timber line scrub brush cover the lower slope.

The geology of the area was mapped in 1972 by J. Buchholz briefly described in a November 27, 1972 report. His map is reproduced here as Figure 3 with some minor additional data.

MINERALIZATION

Chalcopyrite and molybdenite associated with heavy pyrite mineralization occur as fracture fillings and fine disseminations replacing mafics in both the quartz diorite and porphyry dykes. Total sulphides of up to 10% decrease away from the central area and porphyry stock to approximately 2% at DDH A-2, some 3,700 feet to the west.

The area of heavier total sulphides is expressed on the surface as a large prominent "L" shaped gossan whose long dimensions are 4,000 feet x 2,000 feet. Leaching of sulphides in the gossan zone varies from complete leaching of sulphides to a depth of 50 feet in the quartz diorite to 50% leaching of the sulphides in the porphyry dykes. The reason for the variation in the extent of leachings is that the intruded quartz diorite is intensely fractured and sheared throughout the gossan area whereas the later dyke material is more massive and less porous. Similarly, most of the large fragments in the scree slopes consist of dyke material, with the quartz diorite decomposing to sand and pebble sized fragments.

Limited drill hole data indicates that copper mineralization is related to the total density of sulphides
and weak chlorite and biotite alteration in the quartz diorite. The alteration, however, has not been a useful guide
in surface prospecting or mapping due to the weathering of
surface rocks. Copper minerals for the most part are com-

pletely leached out of the surface rocks. Minor secondary chalcocite after pyrite was noted in DDH A-1 and some of the cuttings in the percussion holes, but appears to make only a minor contribution to the values in the area tested.

Past programmes included 1,817 feet of diamond drilling in four holes and 1,140 feet of percussion drilling in four holes. The hole locations are shown on Fig. 3 and the assay data summarized below:

Hole	Depth	From	To	<u>Intersection</u>	% Cu	% Mo52
DDH A-1	400 '	50'	380'	330'	0.23	0.011
DDH A-2	415	40	400	360	0.12	0.007
DDH 72-1	698	250	4 0.0	150	0.22	0.008
DDH 72-2	304	180	300	120		
PH-1	400	60	400	340	0.21	0.011
PH-2	240	40	220	180	0.19	0.008
PH-3	200	10	200	190	0.12	0.009
PH-4	300	30	300	270	0.10	0.011

The previous programmes on the property were plagued with many problems including difficult access, equipment breakdowns, weather problems late in the season and inadequately equipped contractors and as a result much of the drilling was carried out in areas peripheral to the main zone of interest.

Respectfully submitted,

W. Meyer, P.Eng. February 21, 1977

CERTIFICATE

- 1. I am a geologist with residence at 911 Jarvis Street, Coquitlam, B.C.
- 2. I am a graduate of the University of British Columbia, [B.Sc., 1962].
- 3. I am a registered member of the Association of Professional Engineers of the Province of British Columbia.
- 4. I have worked as an exploration geologist for fourteen years for the following companies: Phelps Dodge Corporation of Canada Ltd.; Gibraltar Mines; Associated Geological Services Ltd.; Western Geological Services Ltd. [senior partner].

I am presently a senior partner in W. Meyer & Associates Ltd.

5. I have no interest, direct or indirect, nor do I anticipate receiving any, in the properties or securities of United Gunn Resources Ltd.

W. Meyer, P. Eng

February 21, 1977 Vancouver, B.C.

