ROUNDUP 2001

A Dilemma for New Producers of PGE Concentrates – Downstream Processing to Saleable Metals

> John A. Chapman J.A. Chapman Mining Services

Platinum jewellery alloy

Finished PGE

Products

JM SX

Smelting & Refining

Producing PGE Rich Sulfide Concentrates

Today's Situation

- Oligopoly of vertically integrated major mining, smelting & refining companies
- Restricted access for new PGE rich sulfide concentrate producer(s) to smelting & refining facilities of majors
- Toll (custom) smelting and refining, if negotiated, is very expensive
- With very few facilities available concentrate transportation costs may be significant

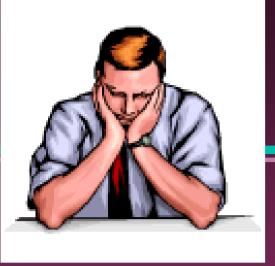
Integrated PGE Smelters and Refineries

		Principal		
		Purpose		PGE
Company	Location	of Smelter	BMR	Refinery
Outokumpu	Finland	Nickel	\checkmark	
Norilsk	Russia	Nickel	\checkmark	\checkmark
Anglo Platinum	South Africa	PGE's	\checkmark	\checkmark
Implats	South Africa	PGE's	\checkmark	\checkmark
Lonmin	South Africa	PGE's	\checkmark	\checkmark
Zimplats	Zimbabwe	PGE's	\checkmark	\checkmark
Union Miniere	Belgium	Cu-Pb	\checkmark	\checkmark
Inco	Sudbury	Nickel	\checkmark	\checkmark
Falconbridge	Sudbury	Nickel	\checkmark	\checkmark
Stillwater	Montana, USA	PGE's	\checkmark	

Smelter Terms Charges & Penalties

- Typical concentrate contains Ni, Cu, Co, PGE's, Au, Ag
- Moisture content 10% +/- 2%
- Approximate grade set on each payable metal in concentrate
- May be rejected due to deleterious elements or off-specification moisture or metals grades
- Treatment charge on dmt basis of feed

Smelter Terms Credits


- Smelter sets "accountable" metal recoveries (%) or a minimum deduction
 Credits based upon refined "accountable" base, precious and PGE metals with a deduction for refining charge
- Smelting and refining charges adjusted annually by various price indices

Smelter Terms Credits (cont.)

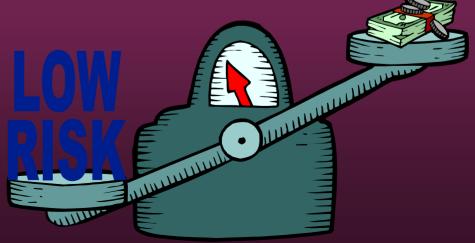
- Smelter price participation against base prices of metals (usually LME)
- Final payments may be spread over considerable time periods for different metals

Independent Refiners

- Johnson Matthey
- Union Miniere Precious Metals
- Heraeus Metal Processing
- Sabin Metal Corp
- Engelhard Corporation
- Degussa Corporation
- Handy & Harman Refining Group, Inc.
- See <u>www.ipmi.org</u> for complete list of Refiners

The Dilemma

You have a PGE property that appeared to be technically and economically viable until the feasibility study showed the X-Mine costs were so high that the project was rendered uneconomic (PROJECT NPV = NIL)


Possible Solutions To The Dilemma for Large Deposits

The Stillwater Mining Company "model"

- proven smelting & base metal refining technology that is cost sensitive to concentrate grade and economy-ofscale
- New technology, "PlatSol"
 - high risk but with potential high reward

The "Stillwater" Model

- Commenced production in 1987 at Nye, Montana and shipped concentrate to UM (~35K oz/yr PGE's)
- Added a smelter in 1990 and shipped granulated matte to UM (~250K oz/yr PGE's)

The Stillwater Model (cont.)

- Added a BMR in 1996 and shipped high grade PGE residue to JM and UM and copper and nickel solutions to Sherritt (~300K oz/yr PGE's)
- Expanded smelter and BMR in 2000, ship PGE residues to JM et al, and now produce cathode copper and nickel-cobalt crystallization at site (~400K oz/yr PGE's and increasing)

Stillwater BMR & Smelter (1998 Photo)

PGE's in Flotation Concentrate Upgraded From 50 opt to 60% Then Shipped to Off-Site PGE Refineries

Byproducts Include Cathode Copper And Nickel/Cobalt Xtals

PGE Smelter Process Description

• Electric 5 mW Furnace (EF)

- 100 tons concentrate per day processing design capacity
- Removes oxide materials (SiO2, FeO) from concentrate
- Upgrades PGE's from 50 opt to 200 opt
- Smelter PGE recovery is plus 99%

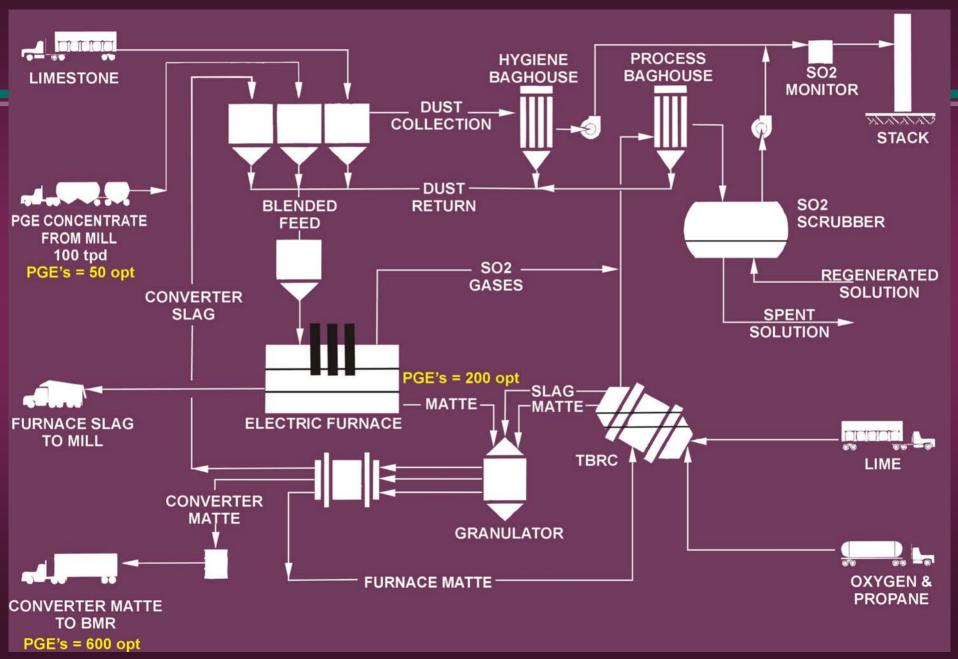
New Stillwater Electric Furnace

PGE Smelter Process Description (cont.)

• Top Blown Rotary Converter (TBRC)

- Processing capacity equivalent to 50-60 tons concentrate/day
- Removes iron (FeO) and sulfur (SO2) from EF matte
- Upgrade PGE's from 200 opt to 600 opt

New Stillwater TBRC

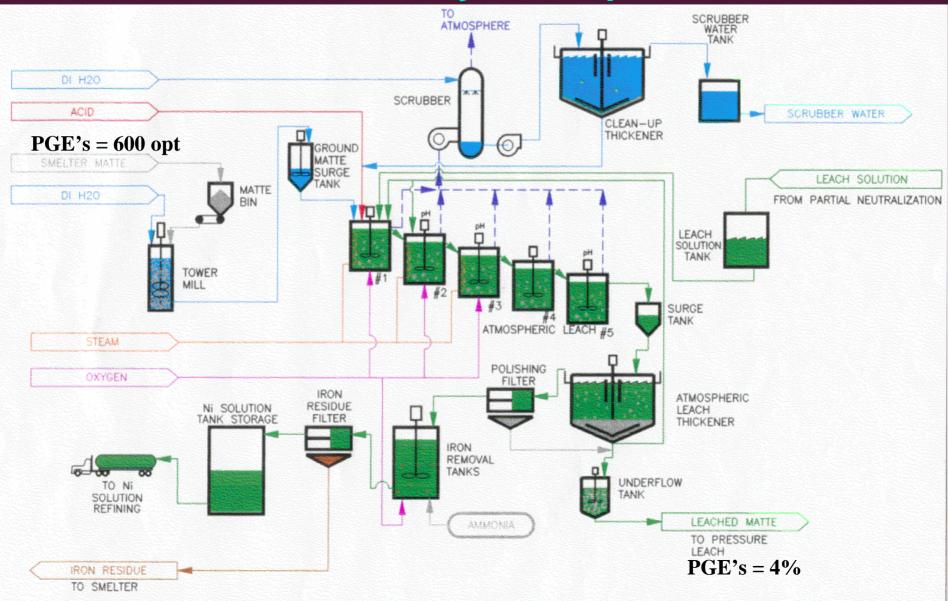


PGE Smelter Process Description (cont.)

Granulation/Regeneration

- Water jets cool EF and TBRC matter
- High efficiency scrubbing captures plus 99.5% SO2
- Regeneration product is gypsum, used locally as a soil amendment
- No discharge of process solutions

Stillwater PGE Smelter



BMR Process Description

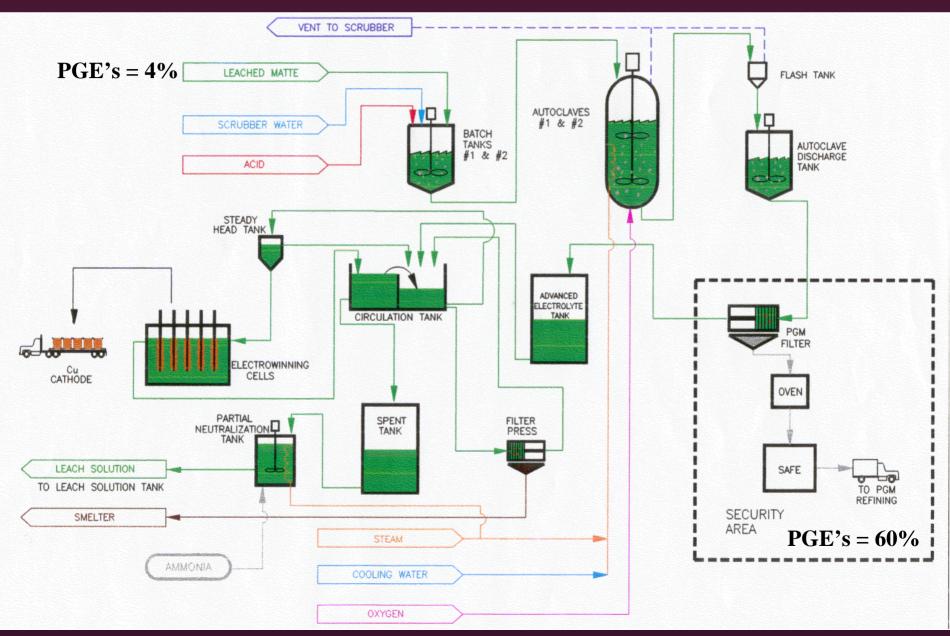
• Grinding – Batch Process

- Tower mill grinds smelter matte to 85% passing 200 mesh
- Atmospheric Leach
 - Leaches nickel, iron, cobalt and some copper
 - Precipitates out any PGE's from solution
 - Upgrades PGE's from 2% to 4%

Stillwater Mining Company Base Metals Refinery Atmospheric Leach

BMR Process Description (cont.)

Pressure Leach


- Autoclaves operate on a batch basis
- Leaches nickel, copper and iron from the atmospheric leach residue
- Upgrades the PGE's from 4% to 60-65%
- Iron Removal
 - Precipitates iron (Goethite) from solution (recycled to smelter)

BMR Process Description (cont.)

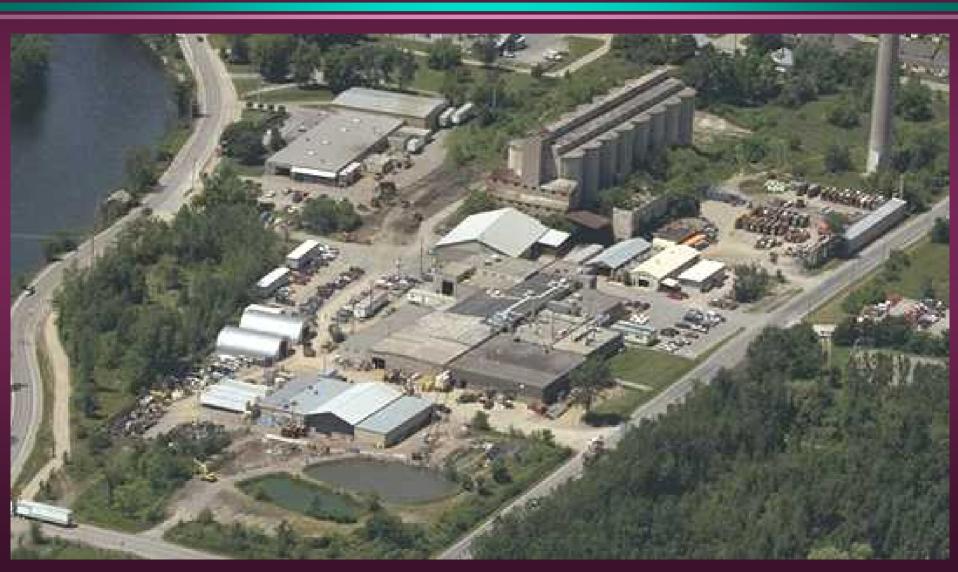
The nickel/copper/cobalt sulfate solution

- Nickel/cobalt crystallized and shipped offsite
- Copper electrowinning on site
- PGE Residue Processing
 - Filtered and shipped offsite for refining

Stillwater Mining Company Base Metals Refinery Pressure Leach



The PlatSol Process


- Patented process by International PGM Technologies Ltd.
- First pilot testing done in 2000 at Lakefield Research in Ontario for PolyMet Mining Corporation on a bulk sample from the NorthMet deposit

The PlatSol Process (cont.)

 Process uses an innovative combination of concentrate pressure leaching followed by precipitation (gold & PGE's), SX-EW (copper) and crystallization (nickel & cobalt)

Lakefield Research Facilities Lakefield, Ontario

Pilot Plant Crushing

Pilot Plant Concentration

Pilot Plant Pressure Leaching & Metals Recovery

Conclusions

Very restricted access to PGE smelters

 Deposits of +2.5 million ounces PGE's have a chance of processing to finished metals at or near the mine-site, and could yield a viable NPV for development

 Smaller deposits will have great difficulty in achieving a viable NPV for project development because of the smelter situation

1 400000

