#4524

TITLE

LENNAC LAKE DRILL PROGRAM, March-April, 1974

AUTHOR

DATE

COMMODITY

Cu

LOCATION-Area Babine Lake -Mining Division Omineca -Coordinates Latitude 54°45'N Longitude 126°19'W -NTS 93 L 9, 16

C.J. Hodgson

June, 1974

CLASS

Prospect Drilled

AMAX VANCOUVER OFFICE

TABLE OF CONTENTS

SUMMARYCONCLUSIONS AND RECOMMENDATIONS	A C
INTRODUCTION	1 1 2 3
RESULTS OF THE DRILL PROGRAM Assay Results Comparison of Percussion vs. Diamond Drill Assay Results Geological Aspects of the Deposit	4 4 5 6
DISCUSSION Ore Guides Potential	$\begin{array}{c}11\\11\\11\end{array}$

APPENDICES

APPENDIX	I		Statement of Expenditures
	II	-	Drill Hole Logs
	III	-	Assny Results
•	IV	-	Whin Section Descriptions

ILLUSTRATIONS

Figure	1	- Location MapAfter Page 1
	2	- Claim MapIn Pocket
	3	- Diamond Drill Holes, Generalized Geology and Assay Data(1"=200')In Pocket
	4	- Diamond Drill Hole Sections-(1"=50')In Pocket 4a - LL-74-1 4b - LL-74-2 4c - LL-74-3 4d - LL-74-4 4e - LL-74-5

SUMMARY

The Lennac Lake Copper Property, consisting of 132 claims (Thezar 1 - 132 inclusive) is located in Central British Columbia at latitude 54°45'N and longitude 126°19'. It is readily accessible via the Babine Lake Road and by 4-mile bush road constructed by AMAX in the fall of 1971.

The prospect was discovered by AMAX field crews in 1971, and was grid percussion drilled in 1973 under a joint venture agreement between Amax Potash Limited, Standard Oil Company of British Columbia, and the LUC Syndicate of Vancouver. The results of the percussion drilling were considered sufficiently encouraging to warrant a program of follow-up diamond drilling which is the basis of this report.

Between March 18 and April 7, 1974, a total of 3,017 feet were drilled in five holes utilizing a BQ wireline drill in the West Zone of the property. All holes were spotted within an area 1,000 feet in diameter which, on the basis of four 1973 percussion holes, grades +0.2% Cu. The aims of the drill program were (1) to test the +0.2% Cu zone to a depth of 600 feet, since several percussion holes showed improved copper grade towards the bottom at 300 feet; (2) to determine the reliability of percussion sample assays; and (3) to test the assumed westerly extension on the +0.2% Cu zone beneath Camp Lake.

Three vertical holes (LL-74-1, 2, 5) were drilled east of Camp Lake, and two inclined holes (LL-74-3, 4) were drilled beneath the lake from the east shore.

			•		
Hole	Interval	Length		Grade	
LL-74-1	14-60' 200-380' 450-480'	46' 180' 30'	0 0 0	0.25% Cu 0.35% Cu, 0.33% Cu,	0.003% Mo 0.013% Mo
LL-74-2	390-606' 570-606'	216' 36'	ල ල	0.25% Cu, 0.33% Cu,	0.01% Mo 0.01% Mo

Assay highlights from the drilling are as follows:

LL-74-3	98-127.5'	# 29.5'	Q	0.34% Cu,	0.003% Mo
	456 - 477 '	21'	Q	0.69% Cu,	0.005% Mo
	540-590'	50'	Q	0.31% Cu,	0.006% Mo
LL-74-4	No significant i	ntersections			
LL-74-5	310-390' 540-590'	80 ' 50'	ھ 9	0.28% Cu, 0.26% Cu	0.004% Mo

Molybdenite is associated with copper in amounts ranging from 0.003% Mo to 0.013% Mo over the total width of the best copper sections. Composite samples grading +0.3% Cu were re-assayed for silver and gold. These elements ran <0.01% oz./ton and trace respectively.

Comparison of assays from percussion holes LL-73-6 with those in the upper 300 feet of diamond drill hole LL-74-1 suggest that the 1973 percussion assays should be upgraded by 10% of their respective values.

Detailed core logging revealed three separate intrusive phases on the property: early biotite-quartz-feldspar porphyry (BFP), porphyritic quartz diorite, and late post-mineral amphibole-quartzfeldspar porphyry (PMP). The first two phases are mineralized with pyrite, chalcopyrite and minor molybdenite, occurring as disseminations, in quartz veins and on "dry" hairline fractures. Both phases show moderate K feldspar-biotite alteration together with the adjacent intruded Hazelton andesite flows and pyroclastics. Post-Mineral Porphyry post dates both alteration and mineralization although minor molybdenite and chalcopyrite-bearing quartz veins are present. This phase was most prominent in LL-74-3 east of Camp Lake.

В

CONCLUSIONS AND RECOMMENDATIONS

The program can be considered a limited success in that a narrow (150 feet wide) zone grading 0.35% Cu was intersected in three of the five holes drilled. This higher grade zone within the +0.2% Cu zone dips 35 to 40° to the northeast and is traceable for about 1,000 feet down dip. However, continuity along strike has not been demonstrated. Assuming dimensions of 1,000 x 150 x 400 feet, the zone contains a possible 4 x 10^{6} tons.

Cupriferous zones are preferentially located adjacent to intrusive contacts, although information is inadequate at present to say whether the main 0.35% Cu zone referred to above is localized by the Hazelton-BFP contact or by the BFP-PMP contact. On the basis of scant information from the 1973 percussion drilling it would appear that the northeastward dip of the main intrusive contact is due to tilting of the entire stock rather than to a quaquaversal doming of the stock.

Possible extensions of the 0.35% Cu zone exist north of LL-74-3 and west of LL-73-7, on the west side of the post-mineral porphyry phase beneath Camp Lake and at depth beneath LL-74-2 and further northeastward. It is conceivable that we are looking at the very top of a cylindrical porphyry system which shows topward thinning.

To test the above possibilities would require an additional three holes totalling about 2,000 feet; a westerly inclined hole spotted 400 feet north of LL-74-3, an extension of LL-74-2 to about 1,000 feet, and possibly a third hole inclined easterly from the western shore of Camp Lake.

INTRODUCTION

General Statement

This report presents the results of a diamond drilling program conducted on the Lennac Lake property in March and April, 1974, during which five holes were drilled for a total footage of 3,017 feet. The program was carried out under a joint venture agreement between Amax Potash Limited, Standard Oil Company of British Columbia, and the LUC Syndicate of Vancouver.

1

The Lennac Lake property is located in Central British Columbia at latitude 54°45'N, longitude 126°19'. It is readily accessible via the Babine Lake Road and by a four mile road constructed by AMAX in the fall of 1971 (Figure 1).

The prospect was discovered by AMAX prospecting crews in 1971. Detailed geological mapping, geochemical sampling and induced polarization surveys carried out in 1971 and 1972 indicated the presence of a porphyry copper-type target similar in gross aspects to the currently producing Granisle and Bell Copper Mines in the Babine Lake area. In 1973, 44 percussion holes totalling 11,360 feet were drilled on a grid basis in the West and East Zones. The main conclusions derived from this program were as follows:

1. The West (Main) Zone contains an area about 2,500 feet in diameter which grades +0.1% Cu.

2. Within the above area is a crescent-shaped area about 1,000 feet in diameter which contains +0.2% Cu. Four percussion holes in this area all graded between 0.20% and 0.22% Cu over their 300-foot length.

3. Two holes in the East Zone 400 feet apart averaged 0.17% Cu and 0.11% Cu respectively.

Background information to the current program is detailed in AMAX reports by Leary (1972), DePaoli (1972) and Silversides (January, 1973; December, 1973).

SCALE: 1/250,000.

1974 Program

Results of the 1973 percussion drilling in the West Zone were considered sufficiently encouraging to warrant additional testing in the form of BQ diamond drilling, the main purposes of which were: 1) To determine the reliability of percussion sample assays.

2) To test the +0.2% Cu zone to a depth of at least 600 feet, since several percussion holes within the zone showed improved grades at depth.

3) To test the assumed westerly extension of the +0.2%Cu zone beneath Camp Lake.

The drill contract was let to D.W. Coates Enterprises Ltd. of Vancouver, who utilized a BQ wireline drill capable of a depth penetration of 1500 feet.

Drill sites were located as follows:

- one vertical hole adjacent to LL-73-6 to determine the vertical extent of +0.0% Cu grades at the bottom of that hole, and to provide a comparison between assays of percussion and diamond drill samples
- one vertical hole in the triangle between LL-73-4, 5 and 21, all of which percussion holes average +0.2% Cu
- one vertical hole between LL-73-21 and 22 to determine the northeasterly extent of the +0.2% Cu zone, whose major axis trends in that direction, and to provide a check on the better-than-average Mo and Cu grades towards the bottom of LL-73-21
- two holes beneath Camp Lake to test (a) the assumed westerly extension of the +0.2% Cu zone beneath the lake, and (b) to test the central induced polarization chargeability low area in the south part of the lake. By analogy with other Babine Lake copper deposits, a central low-sulphide, bornite zone was considered to be a reasonable possibility in this area. Due to the soft

condition of the ice at the time of drilling, both of these holes were drilled as -45° inclined holes from the east shore of the lake, rather than as vertical holes through the ice.

Supervision was provided by the writer, assisted by N. Sworyk of Houston, B.C. Core was split, bagged, and shipped to Rossbacher Laboratory, Burnaby for Cu analysis. Samples with ≥0.3% Cu were subsequently assayed for Mo. Drill core from the project is currently in storage at the AMAX warehouse in Smithers. A total of 3,017 feet were drilled in five holes between March 18 and April 7, 1974. Core recovery was essentially 100 per cent in all holes except LL-74-2, where core loss in two shear zones between 108-120 and 150-209 feet reduced over all recovery to 96%.

Claim Status

The Lennac Lake property consists of 132 claims known as Thezar #1 - #132 inclusive. The claims were regrouped (Groups A, B, C, D) on July 18, 1973.

Cost of the March, 1974 drilling program was applied as three years' assessment to each of the 58 centrally located claims (see Table 1, Figure 2). Rental payments were made on the same claims to cover the three year period July 27, 1974 to July 27, 1977. One year's rental payment was made on each of the peripheral claims, together with one year's assessment on 29 of the 74 peripheral claims.

TABLE I

STATUS OF THEZAR CLAIMS AS OF JULY 19, 1974

Claim Number	Record Number	Anniversary Due	Rental	Group
		Date	Due	
Thezar 1-10	100129-100138	July 27,1975	July 27,1975	No. 2
11-22	100139-100150	July 27,1975	July 27,1975	No. 4
23- 25	100151 - 100153	July 27,1975	July 27,1975	No. 2
. 26	100154	July 27,1981	July 27,1977	No. 2
27	100155	July 27,1977	July 27,1975	No. 2
28	100156	July 27,1981	July 27,1977	No. 2
29	100157	July 27,1977	July 27,1975	No. 2
30	100158	July 27,1981	July 27,1975	No. 1
31	100159	July 27,1975	July 27,1975	No. 2
32	100160	July 27,1981	July 27,1977	No. 1
33	100161	July 27,1975	July 27,1975	No. 4
34	100162	July 27,1981	July 27,1977	No. 1
35	100163	July 27,1975	July 27,1975	No. 4
36	100164	July 27,1981	July 27,1977	No. 1
37	100165	July 27,1975	July 27,1975	No. 4
38	100166	July 27,1981	July 27,1977	No. 1
39	100167	July 27,1975	July 27,1975	No. 4
40	'.C 168	July 27,1981	July 27,1977	No. 1
41	100 169	July 27,1975	July 27,1975	No. 4
42	100170	July 27,1976	July 27,1975	No. 3
43	100171	July 27,1975	July 27,1975	No. 4
44	100172	July 27,1976	July 27,1975	No. 3
45	100173	July 27,1975	July 27,1975	No. 2
46	100174	July 27,197 5	July 27,1975	No. 2
47	100175	July 27,1981	July 27,1977	No. 2
48	100176	July 27,1981	July 27,1977	No. 2
49	100177	July 27,1983	July 27,1977	No. 1
50	100178	July 27,1983	July 27,1977	No. 2
51	100179	July 27,1983	July 27,1977	No. 1
52	100180	July 27,1983	July 27,1977	No. 2
53	100181	July 27,1983	July 27,1977	No. 1
54	100182	July 27,1984	July 27,1978	No. 1
55 - 62	100183-100190	July 27,1983	July 27,1977	No. 1
63-66	100191-100194	July 27,1976	July 27,1975	No. 3
67	100195	July 27,1975	July 27,1975	No. 2
68	100196	July 27,1975	July 27,1975	No. 2
69	100197	July 27,1981	July 27,1977	No. 2
70	100198	July 27,1981	July 27,1977	No. 2
71	100199	July 27,1983	July 27,1977	No. 2
72	100200	July 27,1983	July 27,1977	No. 3
73	100201	July 27,1983	July 27,1977	No. 2

.

•

.

·

Claim	Number	Record Number	Anniversary Due Date	Rental Due	Group
Thezar	74-76	100202-100204	July 27,1983	July 27,1977	No. 3
	77 - 84	100205-100212	July 27,1983	July 27,1977	No. 1
	85	100213	July 27,1980	July 27,1977	No. 1
	86	100214	July 27,1980	July 27,1977	No. 1
	87	100215	July 27,1976	July 27,1975	No. 3
	88	100216	July 27,1976	July 27,1975	No. 3
	89	100217	July 27,1975	July 27,1975	No. 2
	90	100218	July 27,1975	July 27,1975	No. 2
	91-9 4	100219-100222	July 27,1983	July 27,1977	No. 3
	95- 104	100223-100232	July 27,1983	July 27,1977	No. 1
•	105	100233	July 27,1981	July 27,1977	No. 1
	106	100234	July 27,1981	July 27,1977	No. 1
	107-110	100235-100238	July 27,1976	July 27,1975	No. 3
	111	100239	July 27,1975	July 27,1975	No. 2
	112	100240	July 27,1975	July 27,1975	No. 2
	113	100241	July 27,1976	July 27,1975	No. 3
	114	100242	July 27,1975	July 27,1975	No. 2
	115	100243	July 27,1976	July 27,1975	No. 3
	116	100244	July 27,1975	July 27,1975	No. 2
	117	100245	July 27,1976	July 27,1975	No. 3
	118	100246	July 27,1975	July 27,1975	No. 2
	119	100 247	July 27,1976	July 27,1975	No. 3
	120	100248	July 27,1975	July 27,1975	No. 2
	121	100249	July 27,1976	July 27,1975	No. 3
	122	100250	July 27,1975	July 27,1975	No. 2
	123-132	100251-100260	July 27,1976	July 27,1975	No. 3

•

.

.

. ۲

TABLE I - Continued

.

 $\langle \cdot \rangle$

•

•

RESULTS OF THE DRILL PROGRAM

Accov Reculte

540-590'

The following remarks are based on the drill hole logs and sections, assay data, and thin section descriptions which are reproduced as appendices to the report, and on Figure 3 which presents a compilation of the data in plan and profile.

	ay neourco									
Hole	Interval	Length		Grade						
LL-74-1	14-60' 200-380' 450-480'	46' 180' 30'	0 0	0.25% Cu 0.35% Cu, 0.003% Mo 0.33% Cu, 0.013% Mo						
LL-74-2	390-606' 570-606'	216' 36'	0 0	0.25% Cu, 0.01% Mo 0.33% Cu, 0.01% Mo						
LL-74-3	98-127.5' 456-477' 540-590'	129.5' 21' 50'	0 0 0	0.34% Cu, 0.003% Mo 0.69% Cu, 0.005% Mo 0.31% Cu, 0.006% Mo						
LL-74-4	No significant	t intersection	IS							
LL - 74 - 5	310-3901	80'	Q	0.28% Cu, 0.004% Mo						

The +0.3% Cu intersections in the middle portion of LL-74-1, in the upper portion of LL-74-3, and at the base of LL-74-2 outline a zone 100-150 feet thick which dips moderately $(35-40^{\circ})$ to the northeast and extends down dip for a distance of 1,000 feet. The zone is slightly transgressive to the main BFP-Hazelton contact, occurring entirely within BFP in LL-74-3, straddling the BFP-Hazelton contact in LL-74-1, and occurring largely (?) within Hazelton andesites in LL-74-2, which hole was terminated within the +0.3% Cu zone before the main BFP contact was reached (Figure 3).

50'

Ø

0.26% Cu

This zone was not intersected in either of the two diamond drill holes south of the above panel, although the bottom 50 feet of percussion hole LL-73-5 graded 0.31% Cu. North of the panel, only percussion hole LL-73-7 was drilled anywhere near the presumed strike extension of the zone. This hole was drilled entirely in Hazelton volcanics, and although grades are low throughout, there is an indication of increasing grade towards the bottom.

Thus a volume of rock measuring 100 feet thick by 1000 feet in down dip extent by, say, 400 feet (?) in strike length, equivalent to about 4×10^6 tons, grading 0.35% Cu and 0.005% Mo, has been indicated by the recent drilling.

Comparison of Percussion vs. Diamond Drill Assay Results

Drill hole LL-74-1 was spotted adjacent to LL-73-6 to test, among other things, the assay variance between percussion chip and split drill core samples. The mean assay value over 283 feet (17-300 feet depth) assayed in LL-73-6 was 0.21% Cu, whereas the mean assay value over 286 feet (14-300 feet depth) in LL-74-1 is 0.24% Cu. To determine whether these are statistically significant differences or whether they can be accounted for by a high assay variance between individual 10-foot veins, a Student's "t" test was performed on the two sets of assay data, according to the formula

$$t = \frac{X_{1} - X_{2}}{s_{P}\sqrt{(1/N_{1}) + (1/N_{2})}}$$
where $\overline{X}_{1} = 0.2075\%$ Cu
 $\overline{X}_{2} = 0.2428\%$ Cu
 $N_{1} = 28$ samples
 $N_{2} = 29$ samples
 $s_{P} = \sqrt{\frac{\left(\leq X_{11}^{2} - \frac{(\leq X_{11})^{2}}{N_{1}} \right) + \left(\leq X_{21}^{2} - \frac{(\leq X_{21})^{2}}{N_{2}} \right)}{N_{1} + N_{2} - 2}}$

Calculating, t = 1.096 for $N_1 + N_2 - 2 = 27$ degrees of freedom, (from Dixon and Massay, 1957, Table A-5), t .80 = 0.855, and t .90 = 1.314. 5

٧

Thus we can be reasonably certain (i.e. about 85% certain) that the two populations are different. However, since the two holes were drilled a full 25 feet apart, we cannot say whether the difference in population mean is due entirely to differences in the two drilling and sampling methods, or to real differences in copper content of the two holes, or to a combination of these factors.

Tentatively, I would conclude that it is fairly safe to upgrade the 1972 percussion assays by 10% of their value. Such a minimal increase, needless to say, has little effect on the economics of this situation.

Geological Aspects of the Deposit

Several modifications of the previous geological interpretation are required by the drill data. The intrusive stock is somewhat more complex than thought previously in that it is now known to consist of three phases: biotite-quartz-feldspar porphyry (BFP), porphyritic quartz diorite (PQD), and post-mineral amphibolequartz-feldspar porphyry (PMP), in sequence from oldest to youngest.

Biotite-quartz feldspar porphyry is the dominant phase, and may be the only phase exposed in outcrop. It consists of 20-30% euhedral plagioclase phenocrysts ($\stackrel{<}{-}$ 1 cm.), 2-10% euhedral quartz phenocrysts ($\stackrel{<}{-}$ 8 mm.), and 5% biotite (5 mm.). The latter consists of both single chestnut-coloured crystals, and flaky aggregates of green crystals. The latter appear to be pseudomorphs after amphibole, and display typical amphibole rhomb-shaped cross sections. The groundmass is a fine grained mosaic of K-feldspar (25-35%), plagioclase (5%), quartz (25%), with accessory green biotite and chlorite.

Porphyritic quartz diorite (PQD) occurs at depth in holes LL-74-4 and LL-74-5. It differs from BFP in having a slightly coarser groundmass, and smaller and fewer phenocrysts. It is much less uniform in texture, with irregularly alternating sections rich in, and almost devoid of phenocrysts. Mafics display a crude to well-defined foliation which is at high angles to the core axis in

LL-74-5. K-feldspar content of the matrix is low (<10%), and where present leaves the impression of being introduced from adjacent quartz-K feldspar veins. Porphyritic quartz diorite post-date BFP, since numerous BFP fragments were observed as inclusions in this phase in LL-74-5. However, no BFP inclusions were found in the PQD section in LL-74-4.

Post-mineral porphyry (PMP) occurs over a length of 290 feet in LL-74-3, and as a few narrow dykes in LL-74-1 and LL-74-5. It is very similar in appearance to BFP, but in contrast to the latter has an aphanitic to very fine-grained dull grey matrix and phenocrysts of plagioclase ($\leq 1 \text{ cm., } 25\%$), quartz ($\leq 8 \text{ mm., } 6\%$), hornblende (5%), biotite (3%), and apatite (<1%). The rock forms sharp contacts with BFP and truncates quartz-K feldspar-sulphide veins in the latter. BFP inclusions in PMP are common. The phase is very fresh and is the only one in which amphibole is completely unaltered. Large apatite phenocrysts are common in minor amounts in this phase, the were not noted in BFP.

All intrusive phases are texturally more akin to the Tahtsa Lake area porphyries than to the Babine Lake porphyries, and an age date of 77 m.y. on the Lennac Lake porphyry by N. Carter of the B.C. Department of Mines supports this observation. This date is identical to one obtained from the Ox Lake porphyry in the Tahtsa Lake area, and contrasts with the standard 50-55 m.y. dates obtained from other Babine Lake porphyries.

In terms of alteration all five holes were drilled within a moderately well-developed biotite-K feldspar (potassic) zone of alteration. Although the drill logs in a number of places refer to abundant chlorite within the Hazelton flows and fragmentals of andesitic composition, thin sections showed most of this to be fine grained green biotite, which together with plagioclase makes up the bulk of the rock. In BFP and PQD, secondary biotite occurs as fine grained clusters which are pseudomorphous after amphibole. In only

two thin sections (LL-74-4, 426.5', 524') was any primary amphibole found, the reason for this probably being that both sections are from the low-sulphide core zone of the deposit where potassic alteration is typically weaker (Carson and Jambor, CIM Bull. February, 1974). Biotite occurs rarely in veins; for example, at 142 feet in LL-74-3. Introduced K-feldspar is largely confined to veins (although where a good stockwork is developed may partially fill the intervening areas), forming selvages to quartz veins, occurring alone or with one or several of the minerals; pyrite, chalcopyrite, epidote, chlorite and carbonate.

Other widespread alteration products include sericite, clay, and epidote. Sericite alteration results in a distinctive apple green colouration of the plagioclase phenocrysts in the intrusive rocks. In places it is pervasive (e.g. LL-74-1), but more commonly it is localized over several feet adjacent to barren quartzankerite shear veins and adjacent to contacts (e.g. in PMP adjacent to BFP in LL-74-3, and in BFP adjacent to PQD in LL-74-4). Clay alteration is manifested by a chalky opaque appearance of the plagioclase, and is localized within and adjacent to late stage fractures. Epidote is largely restricted to disseminations and veinlets in andesite, where it is present up to 1/2% and co-exists with K-feldspar, chlorite, carbonate, pyrite and magnetite.

Mineralization consists of chalcopyrite, molybdenite, pyrite, magnetite and rare fluorite, occurring as disseminations, in quartz veins and in dry hairline fractures in BFP, PQD and Hazelton volcanics. The sulphide distribution on average is as follows: 25% in quartz veins, 50% on minor fractures, and 25% disseminated in the rock. Minor skarn development in Hazelton volcanics was noted in one 3.5 foot section between 458 and 461.5 feet in LL-74-3. Here, up to 10% chalcopyrite and 15% pyrite occur with abundant epidote and magnetite within an andesite lense in PMP.

Chalcopyrite is the only copper sulphide mineral present and occurs in roughly comparable amounts in all units except the PMP, where Cu assays never exceed 0.1%. Chalcopyrite generally tends to be concentrated near contacts: the BFP - andesite contact in LL-74-1 and 2, the PMP-BFP contact in LL-74-3, and PFP - PQD contacts in LL-74-4 and 5.

Pyrite distribution is outlined in fair detail by the induced polarization survey. Proceeding outwards from the central I.P. low, pyrite content in the center (LL-74-4) is about 0.5% with a pyrite/chalcopyrite ratio of 1:1-2. In the best copper sections (e.g. LL-74-1, 3), pyrite averages about 1% with pyrite/chalcopyrite $\sim 1/1$. In andesites, pyrite jumps to 3-6% with pyrite/chalcopyrite $\geq 5/1$.

Molybdenite occurs in widely-spaced quartz veins, generally without associated chalcopyrite. No particular distribution pattern is evident, except that molybdenite veins appear to be most abundant in LL-74-2, and this is reflected in the slightly higher assays there (average 0.010% Mo) compared to mineralized sections in LL-74-1 and 3 (average 0.003% Mo).

Minor 1 mm. wide quartz-magnetite veinlets occur locally in the drill core. These appear to be late-stage veinlets which cut cupriferous and pyritic veins. In the vertical holes they lie at low angles to the core axis. For the most part they are localized within andesite though a few occur in BFP in LL-73-3 and LL-73-4.

A number of major shear zones were intersected in the drill core, namely at:

LL-74-1 407-429' 507.5-534.5' LL-74-2 108-120' 150-209' 368-370' LL-74-3 69-90' 417-456' 472.5-488'

Only those measuring at least 1-foot wide are listed above, but there are probably twice as many zones of lesser width. The 1-2 foot zones listed above are for the most part entirely gouge, whereas the wider ones are composed of alternating gouge and blocky sections. No attempt has been made to portray these faults in Figure 3 since attitudes are unknown. Suffice it to say that the area has been subjected to a great deal of post intrusive faulting.

DISCUSSION

Ore Guides

Several features were noted in the core that bear a direct relationship to copper grades, notably the abundance of quartz veins and the degree of "pinking" (K-feldspar veining) in the rocks. These features were particularly noticeable in LL-74-1, where both pinking and quartz veining reached a maximum intensity in the best mineralized section and tapered off above and below.

On a larger scale, results of the recent drill program would suggest that intrusive contacts are an important guide to cupriferous zones. Holes LL-74-1 and 2 (Figure 4) would suggest that perhaps the BFP-Hazelton contact is the most important, whereas LL-74-3 points to the importance of the BFP-PMP contact, and holes LL-74-4 and LL-74-5 indicate slightly increased copper content at the outer contacts of the PQD phase. It is quite conceivable that sulphide introduction was associated with each intrusive pulse; this is suggested by the duplication of cupriferous zones in LL-73-6 and LL-74-1, one of which may be related to the BFP, the other to the PMP.

Potential

Ĺ

The recent drilling has considerably reduced the probable size of the +0.2% Cu zone east of Camp Lake, although the results of LL-74-3 suggest that the zone might be more extensive under the lake than previously assumed.

The only indication of higher grade material within this zone consists of sections grading 0.35% Cu in holes LL-74-1, 2 and 3. Figure 3 portrays these assay sections as samples of a continuous zone which dips moderately $(35 - 40^{\circ})$ eastward; however no lateral continuity north and south of this east-west section has been demonstrated.

If the zone extends south to the vicinity of LL-74-4 and 5; it must be either considerably narrower or dip more steeply. The zone may continue to the northwest of LL-73-7 (beneath Camp Lake) where information is lacking.

Other possible extensions of the zone are even more hypothetical. These include (a) wrapping around the upper contact of the main PMP plug beneath Camp Lake, and extending as a narrow limb down the west side of the plug, and (b) thickening of the eastern limb at depth, since the zone was not completely penetrated by LL-74-2. These possibilities are suggested in Figure 3. What I would like to suggest is that we are looking at the very top of a cylindrical porphyry stem which shows thinning of the ore zone towards the top, analogous to the San Manuel deposit.

To test this possibility would require an additional inclined hole beneath Camp Lake spotted say, 400 feet north of LL-74-3, an extension of LL-74-2 to 800 - 1,000 feet, and possibly a third hole in lined easterly from the western shore of Camp Lake. Total additional footage would be about 2,000 feet.

June, 1974 AMAX Vancouver Office

(

C.J. Hodgson

APPENDIX I

1

STATEMENT OF EXPENDITURES

•

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

•

Expenditures to July 18, 1974

Staff salaries	\$2,350.55
Fringe costs on above	383.14
Wages - temporary field personnel	2,000.00
Fringe costs on above	134.00
Telephone/Radio telephone	166.25
Reproduction of maps	181.02
Hauling of tractor, shipping	520,10
Diamond drilling	31,977.05
Contractors - non technical	1,754.50
Field materials and supplies	148.03
Maintenance, rental and operation of equipment	1,372.18
Assays	1,220.80
Project travel	672,55
Operator's area office overhead	4,343.00
Claim rental fee and application for assessment work	2,622.00

TOTAL

\$49,845.17

========

.

7..... 1

APPENDIX II

•

•

DRILL HOLE LOGS

File scanned, courtesy of New Cantech Ventures Ltd. / Don MacIntyre

•

.

ł

.

,

LL-74-1

Company AMAX Potash Limited								d Pı	roje	ect	#515	5	Bearing -	Sheetl of 5 Hole No.		
Mining								Pı	cope	ertÿ	' Lenn	ac La	ke Inclination -90	Coordinaces		
D	ivisi	on Or	mine	ca				St	tart	ed:	Marc	h 25,	1974			
G	eogra	nhic.	54°4	5'N	Lat	t.		Co	om p 1	lete	dMarc	h 26,	1974	76+25E		
G C	oordi	nates	126	°19'	W I	Lon	g.	Lo	ogge	ed b	yC.J.	Hodgs	on Depth 603'	Altitude 40' above '		
C	oorur													lake		
Fo		ICoro	9	T					_				Pomeral			
rU	orage	Dee				<u>т</u>			<u> </u>	1	Tot		Kemark	.5		
	1	Kee	Rec								<u> % Cu</u>	<u>4 % Mo</u>				
0	14					1	+	-			<u> </u>		Casing			
									1			1				
													14-206.5			
14	20										.21	-	Dull grey-green, andesite, fin	e grained,		
20	30										.20	-	- local plagioclase phenocryst	s (2mm. 5-15%)		
30	40										.24	-	- locally subtle breccia textu	re apparent (flow brecci		
40	50										.29	-	- chloritized throughout. Mino	r epidote in disseminate		
50	60		L								.33	.001	spots and quartz veins			
60	70	1									.11	-	- quartz vein stockwork throug	hout. Veins 1 mm. to 4 c		
70	80									ļ	.17	-	wide (av. 5 mm.)., 10-15 per	foot, predominantly		
80	90								· ·		.26	-	at 45° and 0-10° to core axi	s. Veins contain py,		
_90	100	ļ	e -			ļ	ļ	<u> </u>	ļ	ļ	.23	-	cpy, mag, moly, Quartz-magn	etite veins, 1-2 mm.,		
100	110										.14	-	parallel to core axis are la	te-stage, cutting		
110	120	L					ļ	<u> </u>	1	L	.12	-	all other veins. Vein quart	z comprises 2-4%		
120	130						ļ				.16	-	of rock between 14 and 182'	and 5% of rock between		
130	140					ļ	ļ	ļ			.17	-	182 and 206.5'. Some veins	have drusy cavities		
140	150	ļ					ļ	L			.15	-	- sulphides total about 3%, wi	th py/cpy approx. 5/1.		
150	160						ļ			L	.17	-	occur on 1 mm. fractures, in	quartz veins and		
160	170						ļ	ļ			.17	-	disseminations			
170	180						ļ				.15	-				
180	190						ļ	ļ			.11	-				
190	200										.15	-	<u>30-40' minor magnetite-cpy-p</u>	y veins at low angles		
200	210										.41	.001	(< 10°) to CA	<u>S</u>		
											ļ		40' trace moly in quartz	vein		
	<u> </u>	I									ļ		<u>56-61' weak shearing and cal</u>	cite veins		
											ļ					
											ļ			し 		
1	Destation and a second second				1 4 -1 /	D /	1 1 - 4				•					

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

Footage Core %					Tot	al	Remarks								
		Rec	Rec						% Cu	% Mo					
210	220								.19	.003	145.5' Bleached andesite adjacent to quartz-				
											ankerite vein				
220	230								.14	.001	158-168' Magnetite veinlets				
											173-174' Bleached andesite				
											206.5-219 Biotite-Feldspar Porphyry (BFP)				
											- Upper contact at 20° to CA. Rock consists of				
									1		35% plagioclase phenocrysts to 1 cm. (av. 5 mm.),				
									1		5% biotite phenocrysts (5 mm.)				
									1		1% amphibole phenocrysts (8 mm.)				
											2% guartz phenocrysts				
											57% fine grained groundmass				
									1						
				1							- Predominant alteration is weak-moderate intensity,				
									1		apple green sericitization of plagioclase, with				
											cloudy clay (?) alteration of plagioclase in patche				
								_		1	and adjacent to fractures				
											- Vein guartz is 5% of rock. Sulphides total approx.				
											3%. Pv/cpy = 1-2/1. Rare moly (e.g. 215.5').				
											Sulphides occur in guartz veins (25%), on micro				
									1		fractures (50%) and as disseminations (25%)				
											219-224.5				
				-	_			_							
									1		- Post-mineral biotite feldspar porphyry. Sharp upp				
											contact at 45°. Similar to main porphyry, but plag				
					_				1		ioclase phenocrysts only 15-20%. Matrix 75-80%,				
											darker grey, finer grained, much less altered than				
						+					206.5 - 219.				
						+			1						
						┼──┤					No quartz veins. Traces disseminated pv. cpv.				
		+				+-+									
						╉╼╍┨									
						1			ł						

LL- ·1

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

- --- z -z

`. .

Footage		Core	%		total						tal	Remarks		
	****	Rec	Rec							% Cu	% Mo			
		l	ļ											
230	240	ļ	ļ					_		.21	.002	224.5 - 242.5 As 206.5-219, but grn. sericite		
			ļ				_					alteration is more intense, with relict patches of		
240	250							_	<u> </u>	.44	.002	white clay alteration of plagioclase		
							-					· · ·		
250	260			_						.45	.004	-quartz veins 5-7%, many at 0° to CA		
260	070			·										
260	270									.63	.003	-vinor barren quartz-carbonate (ankerite?) veins		
0.7.0	0.0.0						<u> </u>					Jecur in this section and at 206.5-219, at 070° to	CA	
270	280								ļ	.30	.002	These cut other quartz veins and are up to 1" wide.	,	
200	000													
280	290									.42	.003	234' - K-feldspar-quartz-moly vein		
200	200										007			
290	300									.32	.007	242.5-269.5 Andesite		
200	21.0									26	000	Upper contact (45) to CA, lower at 30 to CA		
300	310									.30	.002	Quartz veinsvery abundant, about 10%. Py/cpy appro	X	
21.0	220									20	001	1-2/1. lotal 3% sulphides. Kare late mag-quartz		
310	320									• 29	.001	veins.		
220	220						+			26	002	247 51 - 4" guarta wain with abundant numita		
320	330							$\left - \right $		• 20	.002	247.5° 4 quartz vern with abundant pyrite		
220	240									28	001	2(0 E 22(DED		
330										• 50	.001	<u>Alternation loss than 20/ 5 2/2 5 Mainlandite ale</u>		
							+	┼──┤				Alteration less than 224.J-242.J. Mainly white clay	r	
							1.					$\frac{1}{1-2}$ Total approx $\frac{3}{1}$ sulphides		
												1000000000000000000000000000000000000		
							<u> </u>					$\frac{1}{2} \frac{1}{2} \frac{1}$		
												$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{4} \right) \right)$		
						+						327-336' - Schistose towards contact	<u></u>	
					_			 				<u>J27-J30 - Schizlose Lowards Contact</u>		
						+						330' - 2" quartz wein with abundant py no cpy		
						1						vilgov	100	
						<u> </u>		<u>├</u>				• • • • • • • • • • • • • • • • • • • •	he	
						<u> </u>		<u>├</u>					lei	
						1							15	
						1						·	0	
					b	-	A	L						

File scanned courtesy of New Cantech Ventures Ltd: / bon Macintyle

LL-74-1

LL-74-1

Foot	tage	Core	%								Tc	otal		Remarks
		Rec	Rec								% C1	1 %	Mo	
					<u> </u>									226 276
					<u> </u>	-	ļ	1						336-376 Andesite
340	350			L			ļ		ļ		.52	0	02	Upper contact at 45° to CA, lower at 35° to CA, 5%
50	360			ļ	 				<u> </u>	4	.35	.0	02	quartz veins
60	370			ļ	 	ļ	<u> </u>	ļ	ļ	<u> </u>	.35	0	04	Sulphides 3-4%, py/cpy approx. 1/1
370	380			ļ	 		<u> </u>				.23	0	03	
880	390			ļ	 		<u> </u>	- <u> </u>	<u> </u>		.06	0	02	<u>376-603 BFP</u>
890	400				ļ						.09			-Weak to moderate clay-sericite alteration of feldspa
100	410							<u> </u>	<u> </u>	-	.15			local pinking adjacent to quartz veins @ 386', 397-8
10	420				ļ			ļ			1.13			403' is hematite.
20	430			L	<u> </u>	<u> </u>				ļ	.32		02	
30	440				ļ	<u> </u>	<u> </u>		<u> </u>		.16			-1% sulphides, py/cpy approx. 1/1
40	450					ļ	ļ				.16			
+50	460					ļ	·	ļ		<u> </u>	.43	.0	05	-quartz veins 3% to 467, then about 1% between 467'
					ļ	1	ļ	ļ	I	1				and 603'
					<u> </u>	ļ	ļ		<u> </u>	ļ				<u>380-385' Finer grained lenses at 45° to CA</u>
						ļ		ļ	L	ļ				(1-4" thick). Inclusions?
							ļ	ļ	ļ	ļ				
						<u> </u>	ļ	ļ	ļ	1				<u>395-407' White clay alteration increases towards</u>
						<u> </u>	ļ				_	_		fault zone
											_			
						<u> </u>	ļ		·					407-422' Rock is gouged, sheared, rubbly
						ļ	 	ļ						
														422-426' 5% quartz veins, with 2% cpy
<u> </u>						ļ	ļ	ļ	ļ	ļ				
										ļ				426-429' clay gouge
							ļ			ļ				
						ļ				1		_		422-575' predominant alteration is weak-intense
								L		ļ				apple green sericitization of plagioclas
										 				445' 6" clay gouge
										<u> </u>				450-455' Quartz-carbonte veins to 1" in
ł														sericitized BFP (healed fault zone?)
						the second s	the state of the s			_			the second s	

File scanned courtesy of New Cantech Ventures Ltd. / Dbn MacIntyre

LL-74-1

Footag	e Core	%								To	tal	Remarks	
-	Rec	Rec	T		Τ	Τ	T		T	1% Cu	% Mo		·
					1		1	1	1	1	1	456.5' Minor moly disseminated in 3" quartz	vein
460 470										.32	.018		
470 480										.25	.017	467-603' Quartz veins decrease to approx. 1%.	
480 490						1				.12	-	sulphides 1/2-1% (cpy > py). Green se	ricit
490 500								1	1	.08	-	alteration continues strong to 575'.	
500 510										.11	-	weakens thereafter	
510 520					T	Τ			1	.23	-		
520 530									1	.17	-	476-476.5' sericite-clay gouge	
530 540					1					.08	-		
540 550					1		1			.08	-	507.5-508' Sericitized shear zones @ approx. 4	5
550 560								1		1.10	-	513-514' to CA "	
560 570										.07	-	518-519' "	
570 580										.19	-	523-527' "	
580 590										.20	-	528-531' "	
590 603										.12		533-534,5' "	
									 			543.5-545' clay and sericite shear	
												566.5 4" andesite inclusion with 5% quartz	veins
							1	1	1		1	most of which terminate at edges of	
				· · · · · ·	1		1	1	1	1	<u> </u>	inclusion	
					1	1		1		1			
							1		1	1		584-603' Last box of core. Generally fresher-	
							1	1				looking, fewer sulphides and quartz v	eins.
		+					1	1	1	1	1		
												603 END OF HOLE	
											1		
									1				
													St
													le
													3
													0.

,

٠.,

LL-74-2

Company AMAX Potash Limited	Project #515	Bearing	Sheet ¹ of ⁴ Hole No.
Mining	Property Lennac Lake	Inclination -90°	Coordinates
Division Omineca	Started March 27,1974		114+00N
Geographic	Completed March 31,1974		80+00E
Coordinates	Logged by C.J.Hodgson	Depth606'	Altitude 15' above
			lake

Footage (Core	%				Tot	al	Remarks		
		Rec	Rec				% Cu	% Mo		
									0-26 Casing	
		ļ								
26	40		-				.13	.004	<u>26-298</u> Dull grey andesite, variable texture from	
50	60						.10	.005	fine grained equigranular to porphyritic. For	
70	80						.09	.004	the most part fragmental (flow breccia - no	
90	100						.21	.003	foreign fragments).	
	-						 		- Well fractured, with quartz veins (+ py, ep,	
<u>110</u>	120						.07	-	trace mag, trace cpy) and pyrite veinlets.	
·									Pyrite and epidote also occurs in disseminated	
<u>130</u>	140						.08		grains and clots,	
									- Quartz veins 1%, 1 mm - 2 cm.average 1-3 mm.	
150	160						.07	-	Commonly drusy. Commonly low angles to CA.	
									<u>Py 3-5%, Py/cpy ² 5/1, epidote 2%</u>	
170	180						.11			
									Rock is reasonably competent to 150'	
190	200						.09	-		
	+								<u>28' looks like K-feldspar associated with</u>	
210	220						.13		py-ep_vein	
								···· ··· · · · · · · · · · · · · · · ·		
230	240						.07	-	<u>32.5' traces moly in 1/2" quartz vein</u>	
250	260						.27	.005	<u>38.5-39' chloritized plagioclase porphyry</u>	
······································									fragments (dyke?) at 75° to CA	
270	280						.15			
									43-48 Blocky. Calcite veins on fractures.	
290	300				-++		.11	-		
	+									
	dagurtagu	of Now C	ntooh	sturde I to Dep Mar	1041/10				K	

Total Footage Core % Remarks Rec Rec % Cu % Mo 59.5' Quartz vein with K-feldspar 66.5' Quartz vein with cpy, trace moly, 3 mm. K-feldspar selvage 73.5-97' Light to dark green fragmental structure 108-120' Shear zone, blocky 108-112' 2.5' ground (1.5' recovered) 112-118' 5.5' ground (0.5' recovered) 150-209' Major shear zone at 20°(?) to CA Core very blocky throughout. Gouge intermittently 172-198'. Core recovery between 160-168 (5'); 168-172 (2'); 172-174 (1'); 174-178 (6"); 178-185.5 (7.5'); 185.5-190 (4.5'); 190-194 (1'); 194-198 (4'); 198-200 (1') 198-202' BFP dyke 310 320 298-323 BFP, grey chloritized, 1/2% disseminated epidote .13 _ Upper contact at 30° to CA 1-2% guartz veins 2% sulphides, pyrite >> chalcopyrite Numerous andesite inclusions towards base. Hole Shee t ~ No . 0. the s

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

-- ----

LL-74-2

<u>330</u> 340 <u>350</u> 360	Rec	Rec				01 0		
<u>330</u> 340 <u>350</u> 360						<u> % Cu</u>	% Mo	
<u>330</u> 340 <u>350</u> 360								
350 360						.20		323-370 Andesite, with BFP dykes
	1		 _			.09	.010	Blocky and chloritized, with minor shears at
			 _					324.5', 328-330', 342.5'.
			 				 	
			 				ļ	$\frac{\text{BFP dykes at 325.5 (6"); 332-333 (lower contact})}{100000000000000000000000000000000000$
			 					<u>45 to CA); 342.5-34/; 351.5-353;355.5-359.</u>
			 		┦			1% quartz veins with epidote, pyrite, minor
	_		 					magnetite. Pyrite 1-3%
			 		<u> </u>			
			 					<u>354'</u> <u>2'' quartz-K-feldspar-epidote-pyrite vein</u>
					┼╍╍┼╼			80 to CA
			 				 	
			 					368-370° Gouge zone at lower contact
370 380			 			12	025	270 284 BEP dark grow weakly chloritized
			 				.025	570-304 DFF, dalk gley, weakly chloticized
			 	<u> </u>	+			19 quartz veins
			 					$\frac{1}{2} - \frac{1}{2}$ submides purite >> chalcopyrite
			 					374' 3/8" quartz vein 20° to CA, with selvage
								of moly, minor chalcopyrite
390 400						.20	.010	384-408 Andesite
								$\frac{3\%}{3\%}$ sulphides (py/cpy = 5/1), 1% quartz veim, 1/2%
								epidote, 396-401'- Cpy, py in 1/2" quartz vein at
								0° to CA. $403' - 1/2''$ guartz vein with moly.
								•
400 415.5	5			·		. 24	.010	408-415.5 BFP, fresh
								1% sulphides (pyrite >> chalcopyrite)
								Upper contact 35° to CA
_								he
								ס ס ד
								ు ర
								0 • m

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

LL-74-2

n en el ser el ser el ser el contrater el la region de la constate de la constate de la constate de la constate

www. cu

LL-74-2

· Foc	tage	Core	%							 Tot	al	Remarks
		Rec	Rec	:						% Cu	% Mo	
415.5	430									.21	.011	415.5-521 Andesite breccia. med-dark grey mottled.
430	440									. 39	.007	1-3% quartz veins with pyr, cpy, epidote, some
440	450									.32	.009	with minor moly (e.g. 429',483',489'). Many of
4 <u>50</u>	460									.32	.004	the larger quartz veins (> $1/4"$) are 0-20° to CA.
460	470									. 38	.008	Sulphides approx. 3% (py/cpy approx. 3/1)
470	480								_	.22	.011	440' - 1/4" cpy seam 10° to CA.
480	490									.23	.028	
490	500									.16	.015	521-534 - BFP
												Pale green clay-sericite alteration of feldspar
5 <u>00</u>	510									.18	.007	Rare quartz veins
510	520						_			.18	.008	528' 1/2" vuggy quartz vein with moly.
5 <u>20</u>	530				1	_				.37	.009	
5 <u>30</u>	540									.32	.007	534-606 - Andesite tuff breccia, greywacke, dull grey-
5 <u>40</u>	550					\bot	_			.12	.010	green
5 <u>50</u>	560					<u> </u>			1	.15	.013	1-2% quartz veins, 2-3% sulphides, pyrite >> cpy
5 <u>60</u>	570									.25	.007	
5 <u>70</u>	580									.35	.006	538-547' Fine grained, volcanic greywacke,
5 <u>80</u>	590									.30	.007	locally banded at 80° to CA
5 <u>90</u>	600									.32	.005	
											_	547-590' Andesite breccia (flow breccia?) same as
									L			415.5-521'
						1						
600	606								·	.34	.023	590-606' Andesitic tuff-breccia with greywacke
												matrix. Some banding at 75° to CA
												1/2% disseminated epidote throughout.
												Chloritized throughout. Black chlorite
												especially apparent adjacent to hairline
							1					quartz seams.
												606 END OF HOLE
					L							S n
							L		L			ອີອີ
		T				1			1			0 *

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

.

: · · ·

Form#DL 1

DATE! 5-1-59

...

د-14-

,

Company AMAX Potash Limited	Project #515	Bearing 303°	Sheet lof & Hole No.
Mining	Property Lennac Lake	Inclination -46°	Coordinates
Division Omineca	Started March 31,1974		112+00N
Geographic	Completed April 2,1974		74+64E
Coordinates	Logged by C.J.Hodgson	Depth 613'	Altitude Lake elevation

Foc	tage	Core	%	Total Remarks	Total							
	· · · · · · · · · · · · · · · · · · ·	Rec	Rec	% Cu % Mo								
	ļ			Casing								
0	60											
	- 70											
60				.15 .006 60-82 BFP								
				-Fairly fresh - plagioclase is translucent to pa		pale						
70	82			25 .002 green, in brownish-grey very fine grained to								
	ļ			aphanitic matrix								
82	98			.07 .001 -Quartz veins about 3-4%, up to 1" wide, some								
				drusy. Stockwork with numerous attitudes								
98	110			-Sulphides approx. 3%, py/cpy approx. 1/1. Minor		nor						
				magnetite (<1%), associated with sulphides in		1						
110	120			.46 .004 narrower guartz veins								
				Sulphides in guartz veins (75%) and disseminated		ted						
120	130			.31 .004 (25).								
				-Rare K-feldspar veins (e.g. 74')								
130	140			.39 .001								
				60-90' Quite blocky with several clay gouge								
140	150					re-						
				after, down to at least 345', very								
150	160			.34 .002 competent.								
160	170			PM	_	PMP)						
100	1/0			Controto et oneres (5° to CA								
170	190			$\frac{1}{18} \frac{1}{002} \frac{1}{18} \frac{1}{002} \frac{1}{1000} \frac{1}$								
1/0	100					She						
180	190			.94 .001								
						-						
scannel	d courtesv	of New Ca	ntech [®] V	Ttd / Don Macliptyre	clntvre	,						

Form #DL 1 A

LL-74-3

Footage	Core	%							Remarks
-	Rec	Rec		1	T	T	Ι		
				1			1	<u> </u>	98-116 BFP, as 60-82
						1	1	1	Quartz veins up to 5-7%: pyrite 2 cpy. About
						1			0.5% Cu ?
					1	1	1		100.5-102.5' Andesite inclusion
	1			1		1			116-133.5 Andesite. Contacts at 45-60° to CA
				—					Vein quartz up to approx. 10%
					1				Sulfides 3% (py ~ cpy). Cpy locally in coarse
				1	1				splashes (e.g. 132')
									K-feldspar locally in guartz veins
									Magnetite 1/2% 1 mm. veins
					1				
									133.5-226.5 BFP
									-Quartz veins approx. 10%, mainly subparallel at
									approx. 60° to CA. Py/cpy approx. 1/1, total 3%,
									at least half the sulphides are on hairline
									fractures at 60-70° to CA, which appear to cut
									quartz veinsor move out from them. Minor mag.
									(1/4%), trace moly. Veins are $(1/4'')$ wide, 20/ft,
									rarely 2-3" wide with green sericitized plagioclase
									-Alteration generally is minor-weak local bleaching
									of plagioclase and weak K-feldspar adjacent to
									quartz veins
									142' 1/2" bleached (kaolinized)vein with
									 sulphides, sooty secondary biotite
									 Minor moly in quartz veins at 159,162,170
									172-175' Green sericite alteration on either side
						·			 of qtzankerite vein at 174'
									177 Trace purple fluorite on joint ගු
									 Opaque white clay alteration gradually
]	 increases in intensity below 150'
									 لك لك
									183-185 Quartz vein at 10° to CA, approx, 4" wide.
File scanned courte	sy of New	Canted	h Vent	ures L	d. / D	on Ma	Intyre		

•

LL-74-3

· Foc	Footage	Core	1%						Тс	otal	Remarks		
		Rec	Rec						% Gu	1% Mo			
									1		182-191' Moderately sericitized		
.90	200								.43	.002	187-191' Andesite inclusion. Fine grained		
	L										secondary biotite, 10% quartz veins		
00	210								36	_005	226-227.5 Biotitized breccia with BFP andesite		
.10	220								.13	.002	fragments. Felted biotite, py, cpy disseminated		
. <u>20</u>	227.5					_			.21	.005	in matrix. Intrusive breccia, marginal to late-		
						_					stage porphyry dyke		
									<u> </u>	ļ			
27.5	240								.09	.003	<u>227.5-456</u> Post-mineral porphyry (PMP)		
										<u> </u>			
							-}}-				227.5-234' Intense green sericite alteration of		
<u> </u>											plagioclase		
										├			
·											234-235 BFP inclusion with quartz veins		
									+		DMD is trainelly unaltered dealers		
50									05	002	PMP is typically unaltered, darker grey		
<u> </u>	_200_					+	┼──┼─		.05	.005			
•							+				in 65% dull grow appanitic matrix		
<u></u>							+				Alteration is minor white kaolinization		
<u></u>							+				of plagioclase adjacent to fractures and		
							<u>├</u>				green sericitized zones adjacent to		
											shear zones Minor quartz-K-feldspar veins		
						1			1		are present.		
						1							
-						1		_			Rare inclusions of BFP andesite		
	1										< 1/2% sulphides, py = cpy. Disseminated		
											and on fractures		
											335' 2" quartz vein with K-feldspar, minor		
											moly		
											he		
											370,5-372.5' Weak shear zone - kaolinized		
			T								0		

Fo	otage	Core	%	 		Tot	tal	Remarks			
		Rec	Rec			% Cu	% Mo				
				 	_]]						
<u></u>				 				375° 6° BFP inclusion			
				 				395' 8" Andesite inclusion			
								388-407' Calcite filled fractures about 1 per			
	_			 				foot			
430	440					.03	-	408-456' Variably sericitized, with several major			
4 <u>40</u>	456					.05	-	gouge zones at 417-418,428-437,441-443, 455-456.			
456	461			_		1.88	.008	456-477 Andesite			
4 <u>61</u>	469					. 30	.004	Upper contact is shear zone			
4 <u>69</u>	477					.34	.003				
				 			L	458-461.5' -			
				 				Skarn-type mineralization with abundant ep,			
				 				mag, py, cpy, tapering off at depth towards 461.5.			
				 				Sulphides are particularly abundant between 458.5-			
<u></u>								-459.5' (10% cpy, 15% py).			
								Section is very blocky. Gouge at 472.5-473.5'.			
								Good quartz vein stockwork, 5-8% quartz;sulphides			
								approx. 2% outside skarn section (py/cpy approx.			
				 	_			2-3/1.			
				 				Section is quite bleached			
4,77	490					.07	-	477-506 PMP, as above. Minor BFP inclusions.			
· ***								Minor quartz veins. \$1/2% sulphides (py ~ cpy), in			
490	500			 _		07	-	quartz veins, hairline seams, disseminated			
				 				476.5-482' Gouge			
								482-488' Moderately sericitized			
								4.			
	1		1		1		1 1				

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

LL-74-3

~ ~
· Footage Core % Remarks Total Rec Rec % Cu % Mo 506-509 BFP 500 510 5% quartz veins, 2% sulphides (py ~ cpy) .16 -510 520 .15 509-519.5 PMP, as above -BFP inclusions at 515.5', 517.5' 519.5-523 Andesite, porphyritic, blocky, 5% quartz veins 520 530 .14 .002 503-534 BFP 5% guartz veins to 1/2", mainly 70-80° to CA commonly with K-feldspar selvages 524-524.5'Sericitized shear zone 1-2% sulphides py - cpy 534-585.5 Andesite, dark grey 530 540 .18 534-542' Veryfine grained (greywacke?) -540 550 .29 .005 542-585.5' More normal fine grained subporphyritic 550 560 .31 .008 andesite 560 570 Quartz veins 2-3%; sulphides, 3% (py/cpy 35 .008 570 580 .34 .004 approx. 5/1) Epidote up to 5%. Irregularly distributed in patches, guartz veins, and with pyrite along seams. 571-571.5' PMP dyke 25° to CA, 1-2% disseminated epidote 585.5-608.5 BFP, moderate clay-sericite alteration 580 590 .25 .006 throughout. Upper contact 30° to CA. 590 600 .11 Ouartz veins 2-3%, K-feldspar selvages common. Sheet 5 Sulphides 1-2%, py ~ cpy, trace moly. 597-598' Sericitized skarn.

LL-74-3

0.

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

Foo	tage	Core	%		Total								Remarks		
		Rec	Rec								% Cu	% Mo			
		1									ļ				
<u>600</u>	613		l	ļ	<u> </u>			1		<u> </u>	.20	.004	608.5-613 Andesite, dark grey, quartz veins 2%, minor		
													K-feldspar selvages, sulphides approx. 3%, py/		
													cpy approx. 2-3/1.		
											<u> </u>				
													613 END OF HOLE		
										T					
											1				
											1				
								1			1				
						T				1	1				
					1	1				1	1	1			
					1	1	1	1		1	1				
					1	1	1	1	1	+	1	1			
						1		1	1	1	1				
					1	1	1	1	1						
					1	1			1	+		<u> </u>			
					1			<u> </u>							
				,	1	+	+	†	†			<u>├</u>			
									<u>.</u>		<u> </u>				
								<u> </u>							
						 					<u> </u>				
					 		<u> </u>				<u> </u>				
					<u> </u>						<u> </u>				
					<u> </u>										
					<u> </u>										
					 		<u> </u>	<u> </u>			 				
					ļ										
					ļ		<u> </u>					ļ	<u></u>		
					ļ								le l		
					L		ļ	i	ļ				t		
								L					<u>م</u>		
													0 F5		

LL-74-3

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

.

.

٠

·~.

.

Form#DL 1

,

LL-74	-4
-------	----

Cc M Cc	ompany ining ivisi eograp pordi	on phic nates	X Pc	nec	h Li	imi	<u>ted</u>	Pr Pr Si Co Lo	roje rope tart omp] ogge	ect erty ced lete ed b	#515 Lenna April d_Apr y_C.J	c Lak 2, 1 i1 4, .Hodg	LL-74-4Bearing 300° Sheet l of 4 Hole No.Inclination -46.5° atCoordinates974collar, -48° at 597' $108+00N$,1974Depth597'Altitude LakegsonDepth597'Altitude Lake
For	tage	Core	%	1							Tot	al	Remarks
	·····	Rec	Rec								% Cu	% Mo	
<u> </u>		ļ	 					 		<u> </u>	·		
					<u> </u>					 -	<u> </u>		D-46 CASING
				+	+	<u>†</u>	+			<u> </u>			46-504 BFP
	1	1	1	1			1		1	<u>†</u>	1	<u> </u>	
46	60							1			.13	-	46-100' Alteration: K-feldspar veins 5-6/ft, 1 mm.
60	70										.10	-	Local sericitized plagioclase at 65',
70	80	ļ	ļ	1	ļ	ļ			ļ	L	.13	-	79', 90', 92', 96' adjacent to quartz-
80	90	ļ		ļ	ļ		<u> </u>		ļ		.15	-	calcite, pyrite veins, 20° to CA.
90	100	ļ		ļ	ļ		ļ		 	ļ	.12		Quartz veins rare (<1%), <1/ft average.
	ļ				ļ		4		 	 	ļ		Sulphides approx. 1%, cpy-py, mainly
<u></u>		}	 		ļ	<u> </u>			 	ļ	ļ		disseminated. Rare hairline magnetite
	<u> </u>								<u> </u>		<u> </u>	<u> </u>	seams, some with cpy.
100	110	<u> </u>							<u> </u>	<u> </u>	1.2		100 2001 Buchter much the same of shows with same
$\frac{100}{110}$	120			<u>+</u>					¦		.10	-	100-200 Pretty much the same as above, with some
120	1 30	<u> </u>			<u> </u>		<u> </u>	· ·	<u> </u>		11	.002	mare abundant soricite alteration
130	140			1		1			1	t	.03	_	Traces disseminated epidote less
	<u> </u>			1		1			1				K-feldspar veining.
	1										1		110-115' - 4' recovered in 2' quartz-
													calcite-pyrite shear vein 112-114',
													at 30° to CA, with peripheral sericitized
													BFP. Sericite alteration continues to
			L	ļ	ļ								<u>ាកក្តាក្តាក្តាក្តាក្តាក្តាក្តាក្តាក្តាក្</u>
	 			 									
							┨──┤						Main sericitized pyrite veins at 123,
						<u> </u>							125'.
ile scanne	d courtesv	of New C	antech	Ventur	s I td	/ Don	Macin	turo					μ

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

LL-74-4

Foc	otage	Core	%			To	tal	Remarks				
		Rec	Rec			% Cu	% Mo					
		<u> </u>										
<u>140</u>	150					.09	-	143-145' Quartz-pyrite shear veins 05° to CA,				
150	160					.12		BFP is sericitized l' either side				
1.0	170			·				16/ 17/ Lance guests wein on cilicitied sone				
160	170					.07		with corricitized PFP inclusions with				
								secondary biotite Minor pyrite in				
							<u> </u>	this zone				
	+							Moderate-intense sericitization extends				
÷								down to about 203				
6	1											
170	180					.16	-	179-180' Bleached feldspars adjacent to pyrite-				
180	190					.12	-	quartz-calcite veins @ 20° to CA				
190	200					.13	_					
								200-300' Same as 100-200				
								Sulphides uniform, at approx. 1/2%				
								(cpy > py) dissem and fractures				
								Minor quartz veins, quartz & K-feldspar				
								veins,K-feldspar veins (total <1%),				
								averaging may be 1/ft (1/4-1/2" wide)				
	0.00											
210_	220					.09	-	220.5*3* PMP dyke - 70 to CA				
230	240					.05	-	221.5' Sericitized guartz-pyrite-hematite				
								shear vein 1" at 20°. Same at 213'				
250	260					.08	-					
								263' 6" PMP dyke				
270	200											
270	280					.11	-	264 6 sericitized pyritic snear zone				
290	300					.02		200 (001 Combinuing group and K follog an and				
310	320					<u> </u>	-	300-400 Continuing Very weak K-feldspar and				
								$\frac{\text{quartz verning, } < 1/26 \text{ supplies.}}{\text{Sougral shoar gapes with paripharel}}$				
								several shear zones with peripheral o				
								Sericitized brr				
								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-								m				

LL-74-4

.

Foo	tage	Core	%		 		To	tal	Remarks			
		Rec	Rec				% Cu	% Mo				
									319.5-320' Sericitized shear			
330	340						.05	-	339-341' Sericitized shear gouge			
350	360						.09	-	348-348.5' Sericitized shear gouge			
370	380						.17	-	372-373' Sericitized shear gouge			
									374' 3" Sericitized shear gouge			
390	400						.08	-	389' 2" pyrite shear zone at 40° to CA			
									The section 372-404 is throughout quite blocky, with			
									numerous shears in addition to the larger ones mentione			
									Green sericite alteration throughout.			
410	420						.14	-	400-504' Continuing fresh looking BFP with			
				 <u> </u>					minor quartz and quartz-K-feldspar			
<u>430</u>	440			 L			.12	-	veins $1/4$ " (up to $3/ft$ , but total <1%)			
									Sulphides $1/2 - 1\%$ , cpy $\ge$ py			
4 <u>50</u>	460			 			.10	-	458-466.5' Sericitized zone			
<u>470</u>	480						.12					
490	500			 			.07		493-504' Increasing sericite alteration towards			
				 	 				contact, with minor pyritic fractures			
				 					at 502.5'			
				 					504-505 Dark grey, fine grained, andesite			
					 <i>.</i>							
510	520			 			.26	.001	505-584 Medium to dark grey chloritized BFP or PMP (?)			
	FIO				 	<u> </u>			Tone is non-uniform, with alternating medium and			
530	540				 		•14		dark grey sections. Unit is not as convincingly			
				 					PMP as in LL-14-3. This is more of a tonal than			
<u>550  </u>	560				 		.08	-	<u>a textural difference. Quartz veins plus quartz -</u>			
					 				K-feldspar veins are just as numerous than above			
					 				if not more so (1-4/ft, 1-2%). Sulphides appear			
					 				to be about equally abundant to above unit at			
					 				approx. $1/2\%$ (cpy $\ge$ py).			
				 	 	<u> </u>			Carbonate veins are common at 10-60° to CA			
					 				ن ا			

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

.

<u>ر</u> -

LL-74-4

Foot	age	Core	%	 	 			To	tal		Remarks	
		Rec	Rec					% Cu	1 %	Mo		•••
570	580							.06	, -		571-572' Shear zone, bleached and sericitized.	
				 	 		ļ					
				 	 		ļ	ļ			505-552 Biotite phenocrysts are not present.	
				 	 		<u> </u>	ļ			Apparently completely gone to chlorite	·
				 	 		ļ					
				 	 			ļ			552-577 Much less altered, almost same as above	
				 	 		ļ				504'. Biotite phenocrysts unchloritized	
	- <b>.</b>			 	 							
				 	 		ļ	ļ			577-584 Intensely chloritized, with 30% green	
				 	 			<u> </u>			sericitized plagioclases in a black chloritic	
				 	 						matrix	
				 	 		<u> </u>				584-589 Blocky highly chloritized fine argined	
			+	 	 	+					andocito with quarta voince 2% py minor opy	
				 	 		<u> </u>				andesite with quartz veins, 2% py, minor cpy.	
500 1	507			 	 			13			589-597 Breccia with BFP andesite fragments Some	
190 .	///			 	 +			•15			interstitial carbonate minor disseminated	
				 	 					· · · · · ·	sulphides $(< 1/2^{\circ})$ cpy $=$ py) along with traces	
				 	 						dissominated opidate	·
				 	 						disseminated epidote.	
				 	 +						Can not tell whether intrusive or diatreme breccia	
					 	1			1		May herald approach of PMP as in LL-74-3. Last	· •
				 	 +-	1			1		8" appears to be non brecciated BFP	
					 1	+			-			
											597 END OF HOLE	
												S :
												100
												10 ( 11
												7
Ī												). m

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

- --- . . ...

`.**`** 

DATE!	5-1-59	011
-------	--------	-----

14

• ".

LL-74-5

.

Company AMAX Potsh Limited	Project #515	Bearing	Sheet 1 of 3 Hole No.
Mining	Property Lennac Lake	Inclination -90°	Coordinates
Division Omineca	Started April 5,1974		108+00N
Geographic	Completed April 7, 1974		78+00E
Coordinates	Logged by C.J. Hodgson	<b>Depth</b> 598'	Altitude 12' above '
coordinates			Lake

Foc	Footage	Core	%			Tot	al	Remarks		
		Rec	Rec			% Cu	% Mo			
•						<b> </b>				
						ļ		0-40 CASING		
							ļ			
_40_	50					.12	<u> -</u>	40-295 Grey andesite breccia, chlorite-carbonate		
·····								alteration. Calcite mainly on stringers.		
_60_	70					.23	-	Quartz veins approx. 1-2%, about 3/ft.		
								Sulphides approx. 3%, Py/cpy - 3-5/1, 1/2% epidote,		
80	90					.10		mainly on fractures with pyrite. Rare moly in		
100	110					17		quartz veins at 99',146',156', generally in quartz		
100	110					•1/		veins wider than 1/4", commonly with drusy quartz.		
100	1.20					12		Rare magnetite veinlets.		
120	130					.13				
140	150				-+	26	013	40-43' Sheared, with calcite and chlorite		
140_	170					• 20	.015	1/1-203' Very blocky about 29' of core recovered		
160	170					26	003	219-230' Splash of cpy with py, magnetite		
100	170					• 20	••••	228 6 cave		
180	190					.18		233 6 chloritized shear		
100	170							282.5-285.5° chloritized shear zone		
200	210			<del>,</del>	+	19		288 4" chloritized shear		
$\frac{200}{220}$	230					21	-	291.5° 4° chloritized shear		
2/10	250				+-+	10	_	The section 200 2051 is be suited and		
$\frac{240}{260}$	270					$+ \cdot \frac{1}{22}$	_	The section 280-295 is neavily chioritized and		
200	270					10	-	sneared throughout		
280_	210					$\frac{10}{17}$		205 206 BFP dyke		
<u>. vv</u>						· · · /		$\frac{1}{1000} = \frac{1}{1000} = 1$		
·····						t		Wookly chlaritized guarta voing opprovide 19		
					++	<u> </u>		Sulphides approx 1.2% pu > approx. 16, 0.		
File scar	ned court	esv of Nev	v Canted	h Ventures Ltd. / Don Macin	vne	<b> </b>		Surplifues approx. 1-2% py > cpy.		

		LL-74-5

Foo	Footage	Core	%								То	tal	Remarks	
	-	Rec	Rec	1		1				T	% Cu	% Mc		
	1				هرها هالنظيريه	1	1		1			1		
						1						1	306-365 Andesite breccia	
						1	1						Same as 40-295'	
	1					1					1		1	
													< 1% quartz veins, approx, 3% sulphides, pv/	
310	320										.28	.003	$c_{\rm DV}$ approx. $3/1$	
													1/2% disseminated epidote	
320	330										.34	.002	318-326' Blocky, chlorite slips, esp. 6" at 322'.	
													365-494.5 Fine-grained foliated quartz diorite, unlike	
330	340										.28	.004	any phases seen in other holes.	
													3% subparallel biotite phenocrysts to 5 mm. 70-90°	
340	350										.19	-	to CA.	
													10-25% plagioclase phenocrysts to 8 mm.	
350	360										.30	.005		
													Texturally this unit is very in-homogeneous.	
<u>360</u>	370								<u> </u>		.33	.004	Locally it resembles BFP, but grades from that	
													to a very fine-grained porphyry with no sharp	
<u>370</u>	380										.30	.006	contact between the two. Included fragments of	
								<u> </u>		1			pinkish BFP are common. On the other hand, this	
<u>380</u>	390								ļ	_	.20	-	unit is unlike the PMP in that it is quartz-veined	
390	400										.16	-	and has a low but constant sulphide content.	
400	410							1	· ·		.14			
<u>420</u>	430								l		.21	-	Unit is fairly fresh, but shows kaolinite alteration	
								ļ	<u> </u>		_		of plagioclase where more coarsely porphyritic.	
440	450							ļ		ļ	.19		Quartz veins 1% with sericite selvages, possibly	
460	470							ļ			.15		some K-feldspar.	
480	490							<u> </u>	[		.10		Sulphides ≤ 1/2% py ≏/cpy	
								<u> </u>				ļ		
								ļ					365-369'looks like pretty good BFP	
													Q	
												<u> </u>	384' 2" quartz veins and moly 30 to CA	
										ļ		ļ	395' 2" quartz veins and moly 30° to CA	
								L		<u> </u>			λ δ	
								L		<u> </u>		1	0 • fr.	
ile scan	ned court	asy of New	v Canter	h Ventu	ires I		on M	l		1	1	1	· · · · · · · · · · · · · · · · · · ·	

٠,

LL-74-5

Footage	Core	%	Total								Remarks		
	Rec	Rec							% Cu	% Mo			
									1		396.5' - 494.5' Good fine grained phase		
											with BFP inclusions		
<u> </u>											457-458' Clay-sericite gouge zone		
											482-488' Good PMP. Cuts off quartz veins in adjacent'		
											fine grained phase		
					_		<u> </u>				*		
				_					1				
500 510		·					<u> </u>		.06	-	494.5-536 BFP, grey with pinkish tones		
											Very rare quartz veins, traces sulphides except in		
520 530									.07		major shear zone		
							1		<u> </u>		Traces disseminated epidote		
						I							
						ļ	ļ				510-528' shear zone, blocky, local gouge, green		
				_	1	L	<u> </u>				sericite alteration throughout. Pyritic shear		
											vein 0° to CA @ 510-513'. Gouge at 522-524'		
530 540									.11	-	536-598 Fine-grained quartz diorite with 15-20% BFP		
			_						l		inclusions: essentially an intrusive breccia.		
540 550				_					.24	-	Foliation very variable - mainly at approx. 45° to		
											CA. Quartz veins 1%, to 1" wide, some with		
550 560					_				.16	-	K-feldspar rims.		
						L	[ 				Sulphides $<1/2\%$ (py/cpy $> 1/1$ ).		
560 570					<u> </u>	İ			.27	.001	Traces disseminated epidote		
											Minor calcite veins		
<u>570 580 </u>									.25	-			
580 590									.38	.001	590.5-596' Sericitized shear zone		
590 598									.13	-			
											598 END OF HOLE		
					1								
				1							n S		
											he h		
											0 0 CT		
											U, NO		
				1									

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

- --

APPENDIX III

ASSAY RESULTS

•

•

(

AMAX 225 S. SPRINGER AVE., Rossbacher BURNABY, B.C. poratory APR 16 1974 CANADA UNID TELEPHONE: 299-6910 AREA CODE: 604 **GEOCHEMICAL ANALYSTS & ASSAYERS** 

VANCOUVER OFFICE

# CERTIFICATE OF ANALYSIS

TO: AMAX EXPLORATION INC. 601-535 Thurlow Street Vancouver, B.C. VOE-312

AMAX order # 1846

CERTIFICATE NO.4008 INVOICE NO.4008 DATE RECEIVED April 8, 1974

DATE ANALYSED April 10, 1974

ATTN: Mr. C. Hodgson.

(

LENNAC LK. DDH. LL-74-1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLE NO.:	% tot. Cu	tot. Mo	Footage	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51651	.21	Υ	14 - 20	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51652	.20	-	20 - 30	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51653	24	-	30 - 40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51651	29		<b>40 -</b> 50	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51655	.33	.001	50 - 60	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51656	•]]		60 - 70	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51657	.17	-	<b>70 -</b> 80	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51658	.26	-	80 - 90	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51659	- 23	-	90 - 100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51660	.14		100 - 110	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51661	.12	-	110 - 120	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51662	.16	-	120 - 130	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51663	.17	-	<b>130 - 14</b> 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 5166/	15		140 - 150	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51665	,17	-	150 - 160	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51666	<b>1</b> 7		160 - 170	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51667	.15	-	170 - 180	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51668	.11	-	<b>180 - 1</b> 90	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51669	.15	-	190 - 200	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51670	.41	.001	200 - 210	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51671	.19	.003	210 - 220	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51672	14	.001	220 - 230	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51673	.21	.002	230 - 240	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51674	.44	.002	<b>240 - 2</b> 50 .	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51675	1,5	00/1	250 - 260	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51676	.63	•003	260 - 270	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51677	.30	•002	270 - 280	
51679   .32   .007   290 - 300   .300   .310   .310   .320   .310   .320   .310   .320   .330   .330   .330   .330   .330   .340   .350   .351683   .38   .001   .330 - 340   .350   .51684   .52   .002   .340 - 350   .51686   .35   .002   .350 - 360   .51686   .35   .004   .360 - 370   .51686   .35   .004   .360 - 370   .51687   .23   .003   .370 - 380   .51688   .06   .002   .380 - 390   .390 - 400	51678	• 42	.003	280 - 290	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51679	• 32	.007	290 - 300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51680	.36	002	300 - 310	·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51681	•29	.001	310 - 320	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51682	• 36	.002	320 - 330	
51684   .52   .002   340 - 350   .50   .51685   .35   .002   .350 - 360   .51686   .35   .004   .360 - 370   .51687   .23   .003   .370 - 380   .51688   .06   .002   .380 - 390   .51689   .09   -   .390 - 400	51683	• 38	001	330 - 340	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51684	•52	•002	340 - 350	
51686   .35   .004   360 - 370   .51687   .23   .003   .370 - 380   .51688   .06   .002   .380 - 390   .51689   .09 -   .390 - 400 $10.220$				350 - 360	
51687   .23   .003   370 - 380   .51688   .06   .002   .380 - 390   .51689   .09   -   .390 - 400   .09   .09   .09   .09   .09   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .002   .00	51686	• 35	.004	360 - 370	
51688 .06 .002 $380 - 39051689$ .09 - $390 - 400$	51687	•23	•003	370 - 380	
51689 .09 - $390 - 400$	51688	•06	•002	380 - 390	
nn polin	51689	•09		390 - 400	
In 2000					nn p lim
	L				10220000

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

_____

11

. /

Rossbacher Laboratory

2225 S. SPRINGER AVE., BURNABY, B. C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

CERTIFICATE OF	ANALYSIS
----------------	----------

CERTIFICATE NO.	4008	
INVOICE NO.	4008	
DATE RECEIVED	april	8,1974
DATE ANALYSED	april	10,1974

TO: AMAX EXPLORATION INC. 601-535 Thurlow Street Vancouver, B.C.

ATTN: Mr. C. Hodgson.

LENNAC LK. DDH. LL-74-1

AMAX order # 1846.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLE NO.:	tot. Cu.	tot. Mo	Footage		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51690	.15	<b>F</b>	400 - 410		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51691	•13	-	410 - 420		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51692	• 32	.002	420 - 430		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	51693	•16	-	430 - 440		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51694	.16		440 - 450		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51695	•43	•005	450 - 460		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51696	• 32	.018	460 - 470		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51697	.25	.017	470 - 480		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51698	.12	-	480 - 490		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51699			490 - 500	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51700	.11		500 - 510		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51701	-23	-	510 - 520		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51702	.17	_	520 - 520		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51702	08	-	520 - 530		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-00	-	530 - 540		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51704 F1705	<u></u>		540 - 550		
51703 51707 51707 51708 51708 51709 12 - 590 - 603 - - - - - - - -	51105	•10	-	550 - 560		
$51708$ $\cdot 20$ $ 580$ $ 590$ $51708$ $\cdot 20$ $ 580 - 590$ $51709$ $\cdot 12$ $ 590 - 603$	51/00	.07	<b></b> .	560 - 570		
$51709$ $\cdot 12$ $ 580 - 590$ $51709$ $\cdot 12$ $ 590 - 603$	51/0/	•19	-	570 - 580		
	51708	<b>.</b> 20	-	.580 <b>-</b> 590		
<u> </u>	51709	.12	<b>640</b>	<u> 590 - 603</u>		
			•			
nn Hailit						- <u>-</u>
n n n n n n n n n n n n n n n n n n n						
$n_{n}$						
					20	
		•				
					1 11 5.1	

Rossbacher Laboratory

2225 S. SPRINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

CERTIFICATE OF ANALYSIS

9

TO: AMAX EXPLORATION INC. 601-535 Thurlow Street Vancouver, B.C. AMAX order # 1846

ų.

CERTIFICATE NO.4011

DATE RECEIVED April22, 1974

DATE ANALYSED April 24, 1974

ATTN: Mr. C. Hodgeon

Ĺ

Lennac Lk. DDH. LL-74-2

SAMPLE NO.:	tot. Cu	tot. Mo	Footage		
51736 51737 51738 51739 51740	.13 .10 .09 .21 .21	-004 -005 -004 -003 -011	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
51741 51742 51743 51744 51745	• 32 • 38 • 23 • 18 • 37	.009 .008 .028 .007 .009	440 - 450 460 - 470 480 - 490 500 - 510 520 - 530		
51749 51748 51749	•12 •25 •30 •34	-010 -007 -007 -023	540 - 550 560 - 570 580 - 590 600 - 606		
	÷			,	
· · · · · · · · · · · · · · · · · · ·					
			-		
	•			<u> </u>	1 . neli
				ilan	2.000

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

Certified by _____

Rossbacher Laboratory

2225 S. SPRINGER AVE., BURNABY, B.C. CANADA **TELEPHONE: 299-6910** AREA CODE: 604

**GEOCHEMICAL ANALYSTS & ASSAYERS** 

# CERTIFICATE OF ANALYSIS

TO: AMAX EXPLORATION INC. 601-535 Thurlow Street Vancouver, B.C.

Order # 1846

LENNAC LAKE

CERTIFICATE NO. 4014 INVOICE NO. 4015 DATE RECEIVED May 17, 1974 DATE ANALYSED May 20, 1974

ATTN: Mr. C.J.Hodgson	d	DDH # LL. 74-2	
SAMPLE NO.:	totCu	tot Mo	Footage
51707 51708 51789 51790 51791	.07 .08 .07 .11 .09	Fr	110-120 130-140 150-160 170-180 190-200
51792 51793 51794 51795 51796	.13 .07 .27 .15 .11	- .005 -	210-220 230-240 250-260 270-280 290-300
51797 51798 51799 1800 51801	.13 .20 .09 .13 .20	-010 -025 -010	310-320 330-340 350-360 370-380 390-400
51802 51803 51804 51805 51806	•24 •39 •32 •22 •16	.010 .007 .004 .011 .015	400=415.5 430-440 450-460 470-480 490-500
51807 51808 51809 51610 51611	•18 •32 •15 •35 •32	.008 .007 .013 .006 .005	510-520 530-540 550-560 570-580 590-600
			,
			11 n D
		Certifie	d by // or about of

Certified by

Rossbacher Laboratory

# CERTIFICATE OF ANALYSIS

%

TO: AMAX EXPLORATION INC. 601-535 Thurlow Street Vancouver, B.C.

Amax order # 1846

C/P

LENNAC LK. DDH. LL 74-3

CANADA TELEPHONE: 299-6910 AREA CODE: 604

2225 S. SPRINGER AVE.,

BURNABY, B.C.

CERTIFICATE NO. 4010 INVOICE NO. 4010 DATE RECEIVED April 11;1974 DATE ANALYSED April 17,1974

726000

ATTN: Mr. C. Hodgson.

ĺ

SAMPLE NO.:	tot. Cu	tot. Mo	Footage	
51710	.15	<b>~</b> 006	60 - 70	
51711	•25	<b>-</b> 002	70 - 82	
51712	•07	_001	82 <b>-</b> 98	
51713	•26	-002	98 <b>-</b> 110	
51714	.46	<b>-</b> 004	110 - 120	
51715	• 31	•004	120 - 130	
51716	• 39	.001	130 - 140	
51717	• 30	.001	140 - 150	
51718	- • 34	•002	150 - 160	
<u>51719</u>	.13	_016	160 - 170	
51720	•18	-002	170 - 180	
51721	•94	.001	180 - 190	· ····
51722	•43	•002	190 - 200	
51723	• 36	•005	200 - 210	
51724	.13	.002	210 - 220	
51725	<u>_</u> 21	<b>-</b> 005	220 - 227.5	
51726	•09	<b>.</b> 003	227.5 - 240	•
51727	•05	• 003	250 <b>-</b> 260	
51728	<b>1.</b> 88	•008	456 - 461	
51729	30	<u>_001</u>	461 - 469	
51730	•34	•003	469 - 477	
51731	•14	<b></b> 002	520 - 530	
51732	e29	- 005	540 - 550	
51733	• 35	•008	560 - 570	
51734		- 006	<u> 580 – 590</u>	
51735	<b>•</b> 20	-004	600 - 613	
	-			
				·

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

Rossbacher Caboratory

2225 S. SPRINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

CERTIFICATE OF ANALYSIS

TO: AMAX EXPLORATION INC. 601-535 Thurlow Street Vancouver, B.C. Order # 1846

CERTIFICATE NO.	4018	
INVOICE NO.	4015	
DATE RECEIVED	May 20,	1974
DATE ANALYSED	May 23,	<b>197</b> 4

ATTN: Mr. C.J. Hodgson

(

LENNAC LAKE DDH # LL. 74-3

SAMPLE NO.:	tot	» Cu	tot	% Mo	Footage
51812		.03		-	430-440
51813		.05		-	440-456
51814		•07		-	477-490
51815		•07		-	490-500
51816		.16			500-510
51817		.15		-	510-520
51818		.18		-	530-540
51819		• 31		•008	550-560
51820 -		• 34		•004	570-580
51821		.11			590-600

Certified by

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

Rossbacher Laboratory

2225 S. SPRINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

# CERTIFICATE OF ANALYSIS

C,

TO: AMAX EXPLORATION INC. 601-535 Thurlow Street Vancouver, B.C. AMAX order # 1846

CERTIFICATE NO. 4011 INVOICE NO. 4001 DATE RECEIVED April 22, 1974 DATE ANALYSED April 24, 1974

ATTN: Mr. C. Hodgson

ĺ

E

Lennac Lk. DDH. LL 74-4

SAMPLE NO .:		tot. Cu	tot. Mo	Footage		
51750 51751 51752		•13 •10 •13		46 - 60 60 - 70 70 - 80		
51753		•15 •12	-	80 - 90 90 - 100		
51755 51756 51757 51758	-	•10 •30 •11 •03	•002	$100 - 110 \\ 110 - 120 \\ 120 - 130 \\ 130 - 140$		
51759 51760 51761 51762		•09 •12 •07 16	-	140 - 150  150 - 160  160 - 170  170 - 180		
51763 51764		.10 .12 .13		180 - 190 190 - 200		
			<del>- <u>1</u></del>			•
		<u>-</u>				
	· · ·				~	
e scanneḍ courtesy of N	ew Cantech Ventures Lto	I. / Don MacIntyre	(	Certified by	1. 12	phine -

Rossbacher Laboratory

2225 S. SPRINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

Jui-

CERTIFICATE OF ANALYSIS

TO: AMAX EXPLORATION INC 601-535 Thurlow Street Vancouver, B.C.

LENNAC LAKE DDH # LL. 74-4

Order # 1846

CERTIFICATE NO. 4018 4015 DATE RECEIVED May 20, 1974 DATE ANALYSED May 23, 1974

ATTN: Mr. C.J. Hodgson

SAMPLE NO .:		%		
	tot Uu	tot Mo	Footage	
51822	•09	-	210-220	
51823	•05	-	230-240	
51824	•08	-	250-260	
51825	.11	-	<b>27</b> 0-280	
51826	02		290-300	
5102 (	•1]	-	310-320	
51829	•05	-	330-340	
51830	•0) 17	-	350-360	
51831	08	· -	370-380	
	<u></u>		390-400	
51832	•14	-	410-420	
51833	.12	-	430-440	
51834	.10	-	450-460	
51835	.12		470-480	
51.836		·····	490-500	
51837	•26	.001	510-520	
51838	•14	-	530-540	
51832	.08	-	550-560	
51040	•06	-	570-580	
	•13		590-597	
				`
	,			
				*******
		<u></u>		
				-
	•		$\frown$	$\alpha$

Rossbacher Laboratory

CERTIFICATE OF ANALYSIS

TO: AMAX EXPLORATION INC. 601-535 Thurlow Street Vancouver, B.C.

File scanned courtesy of New Cantech Ventures Ltd. / Don MacIntyre

AMAX order # 1846

2225 S. SPRINGER AVE., BURNABY, B. C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

CERTIFICATE NO. 4011 INVOICE NO. 4011 DATE RECEIVED DATE ANALYSED April 22, 1974 April 24, 1974

ATTN: Mr. C. Hodgson

(

Lennac Lk. DDH. LL 74-5

SAMPLE NO.:	tot. Cu	≁ tot. Mo	Footage		
51765	.12	-	40 - 50		
51766	.23	⊷	60 - 70		
51767	16	-	80 - 90		
1 27,768	•17	-	100 - 110		
51770	•.L3 26	•013	120 - 150 140 - 150		
51771	•20 •26	<b>1</b> 003	160 - 170		
51772	.18	-	180 - 190		
51773	•19	-	200 - 210		
51774	.21	-	220 - 230		
51775	•19	-	240 - 250		
51776	•22		260 - 270		
· ~1////	.18	-	<b>280 -</b> 290		
⊥//0   51779	•1/	-002	300 - 310		
51780	• 24	<u> </u>	320 - 330		
51781	ور ه ۱۱	•004	300 - 370		·
51782	19	•	440 - 450		·
51783	.10	-	480 - 490		
51784	•07	-	520 - 530		
51785	•27	_001	560 - 570		4
51786	• 38	<b>_0</b> 01	580 - 590		
			•	•	
		•			
	·····				
				~ A	11
	•				- li-
				Hala	
			Certified by		

Rossbacher Laboratory

OF GLOT G

2225 S. SPRINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 299-6910 AREA CODE: 604

GEOCHEMICAL ANALYSTS & ASSAYERS

# CERTIFICATE OF ANALYSIS

TO: AMAX EXPLORATION INC. 601-535 Thurlow Street Vancouver, B.C.

LENNAC LAKE DDH # LL. 74-5

Order # 1846

CERTIFICATE NO. 4018 INVOICE NO. 4015 DATE RECEIVED May 20, 1974 DATE ANALYSED May 23, 1974

ATTN: Mr. C.J. Hodgson

SAMPLE NO.:	tot Cu	tot Mo	Footage	
51842		.003	310-320	
51843	•28	•004	330-340	
51811	•19		340-350	
51815	• 30	.005	350-360	
51816	• 30	.006	370-380	•
51847	20		380-390	
5181.8	.16		- 390-400	
C181.0	.21	<b>H</b> .	2 390=400	
	• ະ <u>-</u> ຳ ແ	_	420-430	
51050		-	460-470	
51051	•00		500-510	
51052		-	530-540	
1 51853	•24	-	540-550	
51854	•10	-	550-560	
51855	•25	-	<b>570-</b> 580	
51856	•13	-	590-598	
			<u>.</u>	
scanned, courtesy of New Cantec	h Ventures Ltd. / Don MacIr	ntyre	Certified by	Lon buc

Rossbacher Laboratory 2225 S. SPRINGER AVE., BURNABY, B.C. CANADA TELEPHONE: 299-6910 AREA' CODE: 604 **GEOCHEMICAL ANALYSTS & ASSAYERS** JUN 14 1374 CERTIFICATE OF ANALYSIS CERTIFICATE NO: 4022 VAL INVOICE NO. 4023E TO: AMAX EXPLORATION INC. . Order # 1846 601-535 THURLOW STREET DATE RECEIVED June, 1974 VANCOUVER, B.C. LENNAC LAKE DATE ANALYSED June 7, 1974 Au/Ag composites ATTN: Mr. C. Hodgson oz/t Au oz/t Ag SAMPLE NO .: Sample Nos. Drill Hole Footage Composite #1 tr_*) 0.09 51670-51674 LL 74-1 200-250 #2 tr. 0.07 .. 51675-51679 250-300 tro #3 0.07 .. 51680-51684 300-350 #Ц tr. 0.05 ... 51685-51687 350-380 #5 tr. 0.07 51741,42, 51803,04LL 74 - 2430-470 #6 tr. 0.07 51748,49,51810,11 LL 74-2 570-606 #7 tr. 0.09 51713-51716 LL 74-3 98-145 #8) tr. 0.05 51717-51720 LL 74-3 140-180 #9 tr. 0.05 51721-51725 LL 74-3 180-227.5 *) tr. = gold value less than 0.001 oz per ton. 2260.0

ĺ

# APPENDIX IV

# THIN SECTION DESCRIPTIONS

.

•

.

٠

(

(

ĺ

## PETROGRAPHIC REPORT LL-74-1 283 feet

Collected and Examined by C.J. Hodgson April 16, 1974

<u>Macroscopic Description</u> - Typical Biotite-Feldspar Porphyry (BFP) cut by quartz vein stockwork.

## Phenocrysts

Plagioclase phenocrysts (20%) - euhedral laths to 7 mm.

Quartz phenocrysts (8%) - euhedral grains to 7 mm.

Mafic phenocrysts (5%) - originally biotite ? now composed of variously oriented biotite flakes in chlorite, with opaques and rutile.

## Groundmass

Matrix is essentially K-feldspar (40%) and quartz (25%) with accessory biotite and chlorite (2%). Biotite has pale-dark greeny brown pleochroism.

#### Veins

(

(

Quartz veins in the BFP contain pyrite, calcite and chlorite.

General Remarks

Biotite alteration, with weak retrograde chloritization.

# PETROGRAPHIC REPORT LL-74-1 598 feet

Collected and Examined by C.J. Hodgson April 17, 1974

#### Macroscopic Description - Fresh BFP

#### Phenocrysts

(

(

(

Plagioclase (25%) - very fresh, replicate zoning, up to 1 cm. Quartz (10%) - to 8 mm. Biotite (3%) - reddish brown pleochroism. Amphibole (14%) - completely pseudomorphed by secondary green biotite.

#### Groundmass

K-feldspar (25%) Plagioclase (10%) Quartz (25%) Mica (2%)

# Veins

One quartz vein

One hairline K-feldspar-biotite-chlorite veinlets.

PETROGRAPHIC REPORT LL-74-2 37 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description - Andesite breccia

Phenocrysts

(

(

(

Plagioclase (10%)phenocrysts

# Groundmass

Plagioclase (55%)
Biotite (20%) - greeny brown. Fine grained in matrix and coarser
 grained amphibole pseudomorphs
Chlorite (5%)
Carbonate (3%)
Sphene (1%)
Epidote (2%)
Apatite (1%)
Sulphides (3%) (pyrite mainly)

#### Veins

- (1) quartz veine
- (2) pyrite-epidote-chlorite-K-feldspar-carbonate

# PETROGRAPHIC REPORT LL-74-2 380.5 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description - BFP

Phenocrysts

(

Ć

Ĺ

Plagioclase (30%) - weak clouding
Quartz (5%)
Biotite (2%) - some primary chestnut brown biotite, most shows
varying degrees of alteration to secondary green biotite flakes.

GROUNDMASS

K-feldspar, plagioclase, quartz, green biotite.

### VEINS

Quartz-sulphide veins with K-feldspar selvages.

## PETROGRAPHIC REPORT LL-74-3 142 feet

Collected and Examined by C.J. Hodgson April 16, 1974

<u>Macroscopic Description</u> - BFP cut by a quartz vein with secondary biotite. Staining indicates abundant K-feldspar in matrix.

## Phenocrysts

Plagioclase phenocrysts (20%) - weak kaolinized Biotite phenocrysts (5%) - chestnut brown pleochroism Quartz phenocrysts (3%) - up to 5 mm. diameter

## Groundmass

Is very fine grained K-feldspar, quartz, (plagioclase ?) biotite. The latter is in ragged aggregates, has greenish brown pleochroism, and is presumed secondary.

General Remarks

(

(

Biotite alteration

# PETROGRAPHIC REPORT LL-74-3 202 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description - BFP

Phenocrysts

Plagioclase (25%) Quartz (2%) Biotite (5%) - fresh chestnut brown

Groundmass

K-feldspar (25%) Quartz (30%) Plagioclase (10%) Biotite - green secondary

#### Veins

Quartz-sulphide veins with K-feldspar selvages; K-feldspar veinlets

General Remarks

K-feldspar - biotite alteration

PETROGRAPHIC REPORT LL-74-3 552 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description Plagioclase porphyry andesite

Groundmass

(

(

Plagioclase - 55% Biotite (25%) - brown Amphibole - 4% Quartz - 15% Clinozoisite - 1% Opaques - <1% Sphene - <1%

Veins

Minor quartz veins and pyrite veins

#### General Remarks

Porphyritic nature is not obvious under the microscope. Rather, patches with greater and lesser amounts of biotite. The rock is uniformly fine grained and recrystallized.

# PETROGRAPHIC REPORT LL-74-3 263 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description Post-Mineral Porphyry (PMP)

# Phenocrysts

Ć

Plagioclase (25%) - replicate zoning, absolutely fresh, to 1 cm. Quartz (6%) - to 3 cm. Amphibole (5%) pale green, poikilitic, with plagioclase biotite Biotite (3%) - chestnut brown Apatite (<1%) Opaques (<1%)</pre>

#### Groundmass

Very fine grained mixture of K-feldspar, plagioclase, quartz

#### General Remarks

Rock is distinguishable from BFP by (a) unaltered state of plagioclase and presence of primary amphibole (altered to secondary biotite in BFP); (b) finer grained texture of matrix; and (c) absence of quartz or other veins.

# PETROGRAPHIC REPORT LL-74-4 52.5 feet

Collected and Examined by C.J. Hodgson April 17, 1974

# Macroscopic Description BFP

## Phenocrysts

## Groundmass

Very fine grained mixture of quartz (25%) + K-feldspar (35%)

### Veins

Minor quartz, quartz-K-feldspar, and K-feldspar-pyrite veinlets

#### General Remarks

Biotite alteration zone. Matrix in this sample is finer grained than average BFP.

# PETROGRAPHIC REPORT LL-74-4 426.5 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description Darker grey BFP or PMP

Phenocrysts

(

(

(

Plagioclase (25%) - very fresh, to 8 mm. Quartz (10%) - to 15 mm. Biotite (3%) Amphibole (5%) Apatite (1%)

Groundmass (55%)

Very fine grained mixture of K-feldspar (25%), quartz (25%), and plagioclase (5 ?).

Veins

Quartz - K-feldspar veins.

General Remarks

Abundance of amphibole plus presence of apatite phenocrysts and very fine grained matrix suggest PMP. But veining suggests weak potassic alteration of BFP.

# PETROGRAPHIC REPORT LL-74-4 524 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description BFP or Porphyritic Quartz Diorite

## Phenoerysts

Quartz (5%) Plagioclase (35%)

## Groundmass

Plagioclase (25%) Quartz (25%) Biotite (3%) - greenish brown Amphibole (3%) - almost colourless Opaques, apatite (1%)

#### Veins

Quartz - K-feldspar veins are numerous. Rare biotite veins.

#### General Remark :

This rock is quartz diorite porphyry, distinguished from BFP by absence of K-feldspar in matrix. Biotite is commonly in clusters - could be after amphibole.

PETROGRAPHIC REPORT LL-74-5 332 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description Andesite

Groundmass

Plagioclase (70%) - subporphyritic Opaques (1%) Biotite (25%) - greeny brown

Veins

(

(

(

Quartz veins with carbonate cores and K-feldspar selvages. Also quartz-sulphide veins.

# PETROGRAPHIC REPORT LL-74-5 442 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description Fine grained porphyritic quartz diorite

Phenocrysts

Plagioclase (25%) - ragged, moderately altered to carbonate
Biotite (2%) - brownish green
Quartz (5%)
Apatite (<1%)</pre>

Groundmass

Plagioclase (25%)
Quartz (25%)
K-feldspar (10%) (much of it may be introduced)
Biotite (3%)

## Veins

Quartz - K-feldspar - carbonate K-feldspar

PETROGRAPHIC REPORT LL-74-5 447 feet

Collected and Examined by C.J. Hodgson April 17, 1974

Macroscopic Description Fine grained porphyritic quartz diorite

### Phenocrysts

Ć

C

(

Plagioclase (25%) - weak to moderate clouding
Quartz (5%)
Biotite (3%) - chestnut brown
Apatite (<1%)</pre>

#### Groundmass

Plagioclase (25%) Quartz (25%) Biotite (5%) green-brown Chlorite (2%) K-feldspar (10% ?)

#### Veins

Quartz - K-feldspar K-feldspar <u>+</u> pyri e

# General Remarks

BFP inclusion on one end of section




### ANNIVERSARY DATES

t Marin

July	27,	1975.
July	27,	1976.
July	27,	1977.
July	27,	1978.
July	27,	1980.
July	27,	1981.
July	27,	1983.
July	27,	1984.

AMAX POTASH LIMITED LENNAC LAKE COPPER PROPERTY OMINECA MINING DIVISION-BRITISH COLUMBIA

## CLAIM MAP THEZAR CLAIMS

1"= 1600'

To accompany report "LENNAC LAKE DRILL PROGRAM -1974" by: C. J. Hodgson

# 4524 June, 1974 N.T.S. Ref. 93 L 9, 16 FIG. 2

.



Ν		<u>LEGEND</u>
TIO DES		이 같은 것은 것은 것은 것은 것은 것을 하는 것을 수 있는 것을 것을 수 있는 것을 수 있 않는 것을 수 있는 것을 수 있다. 않은 것 않은 것 않은 것 않는 것 않는 것 않는 것 않는 것 않는 것
PY RA SULPHI VEIN Q	o Santa S	5 Post mineral porphyry.
· · · · · · · · · · · · · · · · · · ·	<b>2</b> % %	4 Porphyritic quartz diorite
	0.21 6' 0.20 0.24	Biotite feldspar quartz porphyry.
	0.29 0.33 0.001 0.11	Hazelton Group - Siltstone and greywacke.
Approx. Datum Elevation	0.17 0.26 0.23	3,000' Hazelton Group — Andesitic flows and pyroclastics.
	0.14 0.12	
	0.16 0.17	Shear zone .
	0.17 0.17	- Intusive breccia.
	0.15 0.11 0.15 0.41 0.001 0.19 0.003	$ \begin{array}{cccc} & < 1 \\ \hline & 1 - 3 \\ \hline & 4 - 6 \\ \hline & 7 - 12 \end{array} \end{array} \begin{array}{c} \% \ Vein \ quartz \end{array} $
	0.14 0.001 0.21 0.002 0.44 0.002 0.45 0.004 0.63 0.003	$\begin{array}{cccc} & < 1 \\ & & & \\ \hline \end{array} \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \end{array}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{55/1}{4/1 - 2/1} = \frac{4/1 - 2/1}{1/1 - 1/2} Py/Cpy Ratio$
	0.52 0.002 0.35 0.002 0.35 0.004 0.23 0.003	CO-ORDINATES 114 + 00 N
	0.06 0.002	76 + 25 E
	0.15 0.13	AZIMUTH AT COLLAR
	0.32 0.002 0.16	INCLINATION - 90 AT COLLAR
	0.43 0.005 0.32 0.018	TOTAL DEPTH 603'
	0.25 0.017 m 0.12	
	0.08 0.11	AMAX POTASH LIMITED
	0.17	LENNAC LAKE COPPER PROPERTY OMINECA MINING DIVISION - BRITISH COLUMBIA
	0.08 0.10 0.07 0.19 0.20 0.12 13'	DIAMOND DRILL HOLE SECTION LL-74-1 50 0 50
		SCALE FEET
		To accompany report " LENNAC LAKE DRILL PROGRAM - 1974" by: C.J. Hodgson

N. T. S. Ref 93 L.9, 16 7740ay FIG. 4a



L E	<u>GEND</u>
5	Post mineral porphyry.
4	Porphyritic quartz diorite
3	Biotite feldspar quartz porphyry.
2 .	Hazelton Group — Siltstone and greywacke.
	Hazelton Group — Andesitic flows and pyroclastics.
~~	
	Shear zone .
-;-	Intusive breccia.
	)</th
	1 - 3 4 - 6 7 - 12
· · · · ·	/ - 3   4 - 6   > 6
	> 5/1 4/1 - 2/1 1/1 - 1/2 Py/Cpy Ratio
	CO-ORDINATES 114 + 00 N
	BO + 00 E
	AZIMUTH - AT COLLAR
	INCLINATION -90° AT COLLAR
	TOTAL DEPTH 606'
	AMAX POTASH LIMITED
DMINECA MINING DIVISION - BRITISH COLUMBIA	
DIAM	OND DRILL HOLE SECTION LL-74-2
	SCALE 50 0 50 FEET I: 600
То ассотра	ny report " LENNAC LAKE DRILL PROGRAM - 1974" by: C. J. Hodgson #4524

N. T. S. Ref 93 1.9, 16 FIG. 4b



<u>L E</u>	<u>GEND</u>
5	Post mineral porphyry.
4	Porphyritic quartz diorite
3	Biotite feldspar quartz porphyry.
2	Hazelton Group — Siltstone and greywacke.
	Hazelton Group — Andesitic flows and pyroclastics.
~~	Shear zone .
-;-	Intusive breccia.
·····	< 1 1 - 3 4 - 6 7 - 12 % Vein quartz
· · · · ·	< 1 1 - 3 4 - 6 > 6 % Sulphides
	> 5/1 4/1 - 2/1 1/1 - 1/2 Py/Cpy Ratio

CO-ORDINATES 112+00 N 74+64 E COLLAR ELEVATION 3,050' AZIMUTH 303° AT COLLAR INCLINATION -46° AT COLLAR

TOTAL DEPTH 613'

### AMAX POTASH LIMITED

LENNAC LAKE COPPER PROPERTY MINING DIVISION - BRITISH COLUMBIA

# DIAMOND DRILL HOLE SECTION LL-74-3

50 0 50 SCALE FEET I : 600

To accompany report " LENNAC LAKE DRILL PROGRAM - 1974" by: C. J. Hodgson



<u>l e g</u>	<u>END</u>	
5 F	Post mineral porphyry.	
4 P	Porphyritic quartz diorite	
<u> </u>	Riotite feldspar quartz porphyry.	
2 H	lazelton Group — Siltstone and greywacke.	
h	azelton Group — Andesitic flows and pyroclastics.	
~~ 5	Shear zone	
-:- /	ntusive breccia.	
· · · · · · · · · · · · · · · · · · ·	$ \begin{cases} < 1 \\ -3 \\ -6 \\ -12 \end{cases} $ % Vein quartz	
· · · · · · /		
4. 1.	> 5/1 1 - 2/1 1 - 1/2 Py/Cpy Ratio	
	CO-ORDINATES 108+00 N	
	73 + 93 E	
	COLLAR ELEVATION 3,050'	
	INCLINATION - 46° 30' AT COLLAR - 48° at 597'	
	TOTAL DEPTH 597'	
	AMAX POTASH LIMITED	
LENNAC LAKE COPPER PROPERTY OMINECA MINING DIVISION - BRITISH COLUMBIA		
DIAMOND DRILL HOLE SECTION		
	SCALE FEET	
To accompany	report " LENNAC LAKE DRILL PROGRAM - 1974" by: C. J. Hodgson #4524	
	N. T. S. Ref 93 L.9, 16 FIG. 4d	



<u>L E</u>	<u>GEND</u>
5	Post mineral porphyry.
4	Porphyritic quartz diorite
3	Biotite feldspar quartz porphyry.
2	Hazelton Group — Siltstone and greywacke.
	Hazelton Group — Andesitic flows and pyroclastics.
~~	Shear zone .
•;•	Intusive breccia.
	</td
	4 - 6 7 - 12
	)</td
	1 - 3 4 - 6 % Sulphides
	> 6
······	> 5/1 4/1 - 2/1 1/1 - 1/2 Py/Cpy Ratio
	CO-ORDINATES 108+00 N
	78+00 E
	COLLAR ELEVATION 3,062'
	INCLINATION - 90° AT COLLAR
	TOTAL DEPTH 598'
	AMAX POTASH LIMITED
LENNAC LAKE COPPER PROPERTY MINING DIVISION - BRITISH COLUMBIA	
DIAMOND DRILL HOLE SECTION	
SCALE FEET	
To accompa	ny report " LENNAC LAKE DRILL PROGRAM - 1974" by: C. J. Hodgson
	N. T. S. Ref 93 L.9, 16 FIG. 4e