680901

SUMMARY REPORT

1995 DRILL PROGRAM

on

SADIM PROPERTY

NTS 92H/10

Lat 49° 44' N; Long 120° 32' W

Similkameen M.D., B.C.

for

HARLOW VENTURES INC. 430 - 580 Hornby Street Vancouver, BC V6C 3B6

by

J. J. McDOUGALL, P.ENG. J. J. McDOUGALL & ASSOCIATES LTD 7720 Sunnydene Road Richmond, BC V6Y 1H1

November 20, 1995

TABLE OF CONTENTS

P	'age
INTRODUCTION AND SUMMARY	3
LOCATION AND ACCESS	4
PROPERTY	
HISTORY AND DEVELOPMENT	5
REGIONAL GEOLOGY	7
LOCAL GEOLOGY	8
GEOTECHNICAL SURVEYS	8
PHYSICAL WORK	9
DRILL PROGRAM. (1995).	9
CONCLUSIONS	. 13
RECOMMENDATIONS	. 14
COST ESTIMATES	. 15
CERTIFICATE	. 16
LIST OF REFERENCES	. 17

LIST OF ILLUSTRATIONS

Following

	Page
Fig 1	Location Map
Fig 2	Claims and Access Map 4
Fig 3	1995 Drill Hole Location
Fig 4a	Modified Block Diagram, Section A-A', Through Drill Holes 95-3,4,5,614
Fig 4b	Modified Block Diagram, Section B-B', Through Drill Holes 95-7,8,9,10
•	11,12
Fig 5	Generalized Cross Section, Lode Quartz Area: East-West

APPENDICES

A .	Diamond Drill Logs, Holes 95-1 to 95-12
B .	Assay Certificates

2

INTRODUCTION AND SUMMARY

During the 1995 field season, Harlow Ventures Inc. completed an exploratory diamond drill program on the central, gold-bearing portion of the <u>Sadim Group</u> mineral claims near Aspen Grove, BC, more fully described in previous reports, including the latest by the writer dated November 15, 1994 and revised July 30, 1995.

The object of the 12-hole, 2,393-foot drill program was to extend easterly and to greater depth the centrally exposed cross fracture controlled section of the earlier discovered auriferous lode quartz zone whose ultimate areal extent within a favourable Triassic volcanic sequence remains unknown. Geological concepts beyond those proposed by earlier workers have not been expanded on, although may be required in the future as data accumulates to help predict a size increase in vein systems.

Unlike the earlier 1987 drill program which relied on a series of spaced vertical holes, the 1995 program employed north directed angle holes $(-45^{\circ} \text{ and } -60^{\circ})$ to more efficiently test the sizeable lode system consisting largely of relatively steep $(-60^{\circ} \text{ to } -70^{\circ})$ southerly dipping veins.

Several shallow gold-bearing intersections of the visually erratic "94-2 Trench" vein (dip not clearly evident on surface outcrop) was achieved in Holes #7 and #8 (3.5 ft @ 0.166 oz. gold/t and 1 ft @ 3.2 oz gold/t respectively) while in Hole #9 from a location approximately 50 feet west of Holes #7 and #8 the vein was intersected at a depth of 56 feet (1 foot @ 0.71 oz gold) while Hole #10 below #9 encountered only broken ground and only minor signs of the vein, which either pinched out locally or may have been ground in an area of recorded poor recovery. The intersections established that the vein dipped 60° to 70° southerly.

Hole #95-12, drilled due north as were all holes of the program, attempted to intersect the #2 Trench Vein with a -60° hole from a location about 85 feet to the south of the much faulted vein or about 56 feet south of the collar of Holes #9 and #10. It collared, after penetrating 15 feet of overburden, in a 1 foot wide remnant (?) of a "blind" quartz vein assaying 0.37 oz gold. A 1.5 foot intersection made at a vertical depth of 125 feet assaying 0.43 oz gold, 2.5 oz silver, appears to be the downward extension of the #2 Trench Vein, which was the target in Holes #7 to #10.

Several intersections in the range 0.21 oz gold/ton were recorded in the lower, westernmost ("Road Trench") earlier drilled zone, including a 131 foot intersection in Hole #95-3 which assayed 0.022 oz gold/ton, and a 62 foot intersection in Hole #6 which assayed 0.017 oz gold/ton. The latter are mainly of geological significance with respect to the anomalous gold tenor possible across appreciable widths in the system. ie a heap leach scenario. (Core "lengths" quoted in this report probably vary between 0 and 15% of true widths based on the angles of intersection recovered.)

Hole #95-11, several hundred feet east of the Road Trench zone, was designed to intersect the vein lode system at greater depth in an untested area. It succeeded in intersecting an increasingly gold-anomalous 33-foot-wide zone at vertical depth of 310 feet including values consisting of one 6.5 foot wide zone assaying 0.327 oz.gold/ton and 3.4 oz. silver/ton. Further testing in this easterly direction is recommended.

The loss of local drill water supplies during lower temperatures prevented further definition of the upper (eastern) quartz veins during the 1995 season.

No work was done on the copper, copper-gold (?) occurrences on the Rum claims near the north end of the property.

LOCATION AND ACCESS

The Sadim, Rum, and Stefan claims are situated four kilometres east of Highway 5A, 30 km north of Princeton and 45 km south of Merritt, within the Similkameen Mining Division, B.C. (Fig. 1). The centre of the Sadim property is at 49° 43'N, 120° 32' 30"W. The corresponding U.T.M. coordinates are 5509900 N and 677800 E. The Rum claims are located at 49° 44'N and 120° 32'W and the Stefan claims are at 49° 44'N and 120° 34'W. The NTS reference is 92 H/10 E.

Access to the Sadim and Rum claims from Highway 5A is by the Dillard-Ketchan Creek main logging roads which branch east from the highway about 12 km south of the village of Aspen Grove (Fig. 2). The Ketchan Creek road traverses the Sadim 1 and 3 claims in a southeasterly direction. Distance from Highway 5A to the property is approximately 16 km direct line, centering immediately east of the "18 km" mileage marker on the Ketchan access road. Although logging operations appear to be suspended in the area, the access road has been maintained although some side roads have been de-activated by logging interests apparently locally impervious to rights of other users.(ie. Taxpayers who have one way or another contributed to the costs of many of these roads).

An alternate access route is by gravel logging road from Highway 5A at a point 2.5 km north of Allison Lake, although the eastern extremity of this road may be blocked off on occasion.

Access to the Stefan claims is by an old logging road immediately east of Highway 5A at Allison Lake, approximately 26 km north of Princeton. A connecting road system serving pipe and powerline also leads to the Sadim claim area.

Within the property boundaries, logging, 'mining' and micro-wave station roads may provide good access to all parts of the claim group. The BC Hydro power line crosses the centre of the Sadim 1 and 3 claims.

The property occupies the summit area and the western flank of the broad, north trending ridge separating the deep fault valleys of Summers Creek to the east and Allison Creek to the west. Elevations on the property range from 1615 metres at the summit of Microwave Hill, on the common boundary between Sadim 1 and 2, to 920 metres approximately 200 metres east of Allison Lake, on the southwestern corner of the Stefan claim. The topography is typical of this part of the Thompson Plateau, reflecting the effects of a predominantly northerly structural trend, accentuated by glaciation. Heavily forested, relatively gentle upland

PROPERTY

The Sadim property consists of mineral claims containing 96 units, as follows:

Τ	able	1
-	***	

CLAIM NAME	NO. OF UNITS	ТҮРЕ	RECORD NO.	REGISTERED OWNER	RECORDING DATE	DUE ASSESS- MENT DATE
Sadim 1	20	MGS	2284	Vanco Explorations Ltd	10 Oct 84	10 Oct/99
Sadim 2	8	MGS	2285	Vanco Explorations Ltd	10 Oct 84	10 Oct/99
Sadim 3	20	MGS	2286	Vanco Explorations Ltd	10 Oct 84	10 Oct/99
Sadim 4	12	MGS	2287	Vanco Explorations Ltd	10 Oct 84	10 Oct/99
Sadim 5	8	MGS	2518	Vanco Explorations Ltd	30 Dec 85	30 Dec/01
Stefan	20	MGS	326681	Harlow Ventures Inc	22 Jun 94	22 Jun/95
Rum	1 - 4	2 Post	329990 to 329993 (incl)	Harlow Ventures Inc	18 Aug 94	18 Aug/98
Rum	5 - 8	2 Post	330691 to 330694 (incl)	Harlow Ventures Inc	31 Aug 94	31 Aug/98

Total acreage approximates 2400 hectares.

slopes are cut by deep, steep-sided, north trending valleys. Bedrock exposure varies and is largely a function of glacial action; generally outcrop is abundant on ridges and along the upper slopes of steep valleys but lower slopes and valley bottoms bear a thick mantle of glacial overburden. Despite challenges from "Forestry", their efforts in clearing sections of the land have led indirectly to the discovery of numerous mineral deposits - particularly 'Sadim' which has not yet expanded significantly beyond logged-off areas. The Sadim section has not yet been replanted although Harlow has contributed minimally to replanting grass, including areas of previous disturbance.

HISTORY AND DEVELOPMENT

The earliest record of work in the Sadim claim area dates back to the early 1960's—the beginning of the porphyry copper exploration boom which persisted until the early 1980's. Most of the work recorded within the Sadim property was concentrated over the Sadim 2 and 4 claims and the Rum 1 - 8 claims.

The following is a summary of past activity in the property area:

- 1962 The 40 claim KR group was staked as a copper prospect by Plateau Metals Ltd. Work consisted of a magnetometer survey, bulldozer trenching, and an undisclosed amount of diamond drilling. The claims occupied the area presently covered by the Sadim 2 claim, and the northern part of the Sadim 4 claim.
- 1966 Adera Mining Ltd. optioned the KR claims and carried out soil sampling and magnetometer surveys followed by diamond drilling. The claims were allowed to lapse.
- 1968 Blue Gulch Explorations Ltd staked the Pine, Reg and Dy claims. Work consisted of a geochemical survey, bulldozer trenching and a diamond drilling program consisting of 640 metres of NX sized core in 3 holes. The claims occupied the area presently covered by the Stefan claims.
- 1970 Amax Explorations Inc staked the Rum claims; the southern half of the property lay within the area now covered by the Sadim 2 and 4 claims. The northern half of the property lay within the area now covered by the newly staked Rum 1 - 8 claims. Work done by Amax consisted of geological mapping, soil sampling, and magnetometer and IP surveys, followed by a nine-hole, 573 metre percussion drilling programme.
- 1972 Kalco Valley Mines Ltd optioned the Rum claims, then relinquished the property after a programme of mapping and trench sampling.
- 1973-74 Bronson Mines Ltd staked the Cindy claims, covering ground now lying within the Sadim 1 claim. Mapping and prospecting programmes were carried out.

- 1974 Ruskin Developments Ltd acquired the Rum claims, and completed geological mapping and soil sampling surveys before allowing the ground to lapse.
- 1979-81 Cominco Ltd staked 55 claims (Rum 1 55), coincident with the main area of interest covered by the original Rum claims staked by Amax. Cominco refurbished and renumbered the old Amax grid and used it for control of geological, soil and rock geochemical and magnetometer surveys. Since then, Cominco allowed the claims to lapse. Most of the ground is now included in the Harlow holdings.
- 1984-86 Peter Peto staked the Coke 1 to 8, now covered by the Rum 1 8 claims. A programme of soil sampling and VLF-EM16 was conducted on the property. Since then Mr. Peto allowed the claims to lapse.
- 1984-91 The Sadim claims were staked in October 1984 by I. M. Watson and, following the discovery of gold-silver bearing quartz veins, were optioned to Laramide Resources in November 1985. Ownership was subsequently transferred to Vanco Explorations Ltd, a subsidiary of Laramide Resources. Between 1985 and 1987 the claims were explored by geological mapping, geochemical soil/rock sampling, excavator trenching, VLF-EM and magnetometer surveys, and by 15 diamond drill holes (mostly vertical) totalling 1,235 metres. Further trenching and sampling was carried out in 1991, the most recent work recorded.

In the same lithology immediately south of the Sadim group, drilling during earlier copper exploration resulted in a reported inventory of possible reserves on the Axe claims of 115 million tons of 0.36% copper, 0.012% Mo. (*Mining Review*, Summer 1994).

The only currently active mine nearby is that of "Fairfield Minerals" about 20 km to the northeast where small quartz veins averaging 1 to 1.5 oz/ton gold are being successfully exploited.

1994 The Sadim Claims were obtained pursuant to an option agreement from Vanco Explorations Ltd which was assigned to Harlow Ventures Inc from Richard Van Vloten. Additional claims were staked - the "Rum" and "Stefan" groups - and actively explored during 1994. The work included considerable additional geophysical coverage (Magnetics and Electro-Magnetics) which resulted in several well defined anomalies not previously known, some of which were investigated during a necessarily short trenching program late in the season. What appears to be a weakly mineralized northwestern extremity of a major shear zone was revealed near forest cover in the southeast quadrant and a second but distinctly auriferous shear was similarly detected and unearthed in a geochemically anomalous area 600 metres to the northwest of the "main" mineralized area discovered earlier. A large backhoe was used to widen an earlier (main zone) trench and to extend it westerly, proving continuity of the 1 metre (\pm) wide auriferous vein system beyond a series of short offset faults earlier believed to have terminated it. The partially oxidized vein was then panel sampled by Harlow.

In addition to the above, an earlier discovered but poorly exposed "ladder" or en echelon gold vein system 150 m in width was resampled with particular attention being directed to weakly mineralized small stringers, and gouge, which may not have been sampled earlier and which could help define a possible open pit mining scenario.

1995 Harlow Ventures conducted a Spontaneous Polarization (SP) survey over key areas of the Sadim #3 and #4 claims. Although some areas responded due to increased gossanous (limonitic) content, background readings caused by pyritic "country rock" negated any significant response from the low sulphide quartz vein system, although graphitic zones associated with a probable thrust fault (and possibly the mineralization?) may turn out to be of interest. The 1995 Drill Program data is attached.

REGIONAL GEOLOGY

(Summarized by I. M. Watson from V. A. Preto's "Geology of the Nicola Group between Missezula Lake and Allison Lake".)

The Upper Triassic Nicola Group rocks, the most important from an economic standpoint, extend from the 49th parallel north to Kamloops Lake, and continue beneath Tertiary cover to emerge in the Quesnel area as the Quesnel Belt (Preto, 1979).

The volcanics of the Quesnel and Nicola Belts form a mixed alkaline and calc-alkaline sequence of basalts and derived breccias, tuffs, and minor sediments.

The volcanic rocks are intruded by comagmatic alkaline plutons, ranging in composition from syenogabbro to alkali syenite. The intrusions appear to be structure related and occur in belts along major lineaments and faults. They vary in size from large to small stocks or batholiths, and have been emplaced into the volcanic centres which produced the abundance of volcanic material (Barr et al, 1976).

In the Allison Lake-Missezula area, Preto has delineated three assemblages—a Western Belt of easterly dipping calc-alkaline flows, pyroclastics and sediments; a Central Belt of alkaline and calc-alkaline volcanics and intrusions, and minor sediments; and an Eastern Belt of westerly dipping volcanic sediments, tuffs and alkaline flows associated with small monzonite porphyry stocks. The belts are separated by major north-striking faults.

Preto believes that the Central Belt of dominantly volcanic rocks originates from eruptive centres along the major fault system, and points out the greater concentrations of mineral deposits along this belt.

The Sadim property lies immediately west of the Summers Creek fault, which marks the eastern boundary of Preto's Central Belt.

The property is underlain by northerly striking intermediate to basic flows, green monolithic and polylithic volcanic breccias, tuffs, and less abundant argillites and limestones. These rocks have been intruded by irregular bodies of gabbroic to dioritic composition. Volcanics and sediments marginal to the intrusions have been variably propylitized (epidote-pyritechlorite-carbonate) and locally host erratically distributed copper-pyrite zones.

LOCAL GEOLOGY

The known geology of the Sadim Claims was adequately described in the writer's 1994 Report, but the presence of the gold system - at right angles to the bedding - has not.

Essentially the only geological units of interest to the 1995 Drill Program were intermixed tuffaceous volcanic sequences dominated locally by pyritic Triassic (Nicola Series) tuffaceous horizons which are calcareous in large part, and interbedded limestone lenses, all of which strike northerly and dip easterly at moderate angles.

Intrusive rock are not evident, but ultimately expected at depth and to the northeast.

A large northerly striking, easterly dipping thrust or detachment fault, probably with a significant oblique component, underlies a system of auriferous, tensionally derived east-west striking quartz veins which cross-cut the volcanic sediments nearly at right angles. This constitutes what is known of the structural control to date. The fault, probably a zone dipping easterly at a low (35°) angle (Fig.5), has not been sufficiently penetrated to define its position in space or its relation to the quartz vein swarm which it appears to have generated by allowing tension fractures to form on its overlying plate. Its extent is probably of vital interest to the continuity of the Sadim Vein System, but no such quartz lode or low angle fault system has been described locally or for some distance in any direction.

GEOTECHNICAL SURVEYS

Geotechnical work in 1995 consisted only of a local Spontaneous Polarization (Self Potential) survey. As reviewed under "History", background potential was greater than that generated by the quartz veins whose sulphide content is generally not much greater than that of the iron-rich (?) tuffaceous sediments which host them.

Given a huge quartz deposit, a <u>resistivity survey</u> would probably be of value, but the disconnected, relatively minor quartz veins present would hardly affect a resistivity response.

Of interest generated by Holes #95-1 and particularly #95-2 is the unusual amount of graphite present. This appears either to evolve from the underlying thrust (fault) and its intersection with calcareous tuffaceous beds or flows, or a cross-cutting fault zone now occupied by a creek with an associated east-west lineament. The EM16 (VLF) survey conducted in 1994

has to have been influenced by this carbon accumulation far more than any sulphide-rich quartz vein system later (?) generated, thus the VLF anomalies contain a major directional component generated by graphite, not gold quartz veins, unless graphite was not identified in other areas along strike of the mineralized system. Insufficient data is present to further discuss structural environment in this locality.

A geochemical survey is probably of more value as a geotechnical tool in this largely overburdened area but a diamond drill is far more reliable.

PHYSICAL WORK

No physical work was carried out in 1995, except that when a bulldozer was present for drilling moves, many of the numerous trenches left by the former operators were filled in, and locally compatible grass seed was planted prior to any request from the environmental authorities.

Permitting applications are reportedly still open with respect to work programs.¹

¹. C.Dyakowski (1995) - Verbal Communication

DRILL PROGRAM (1995)

(1) Field Implementation

Drilling of 12 NQ diamond drill holes totalling 2,393 feet began October 11 and was completed Nov 2. All holes were drilled due North and dipped @ -45° or -60° .

Light snow remained on the ground during the latter half of the project, and sufficient water was available locally (barely) to complete the program.

(2) Sampling and Assaying

Core was logged by J. Lucke and sections of interest split for assay by K. Christensen and R. McKamey. Core was stored in facilites at nearby Aspen Grove, B.C. including sludges collected in key areas. Core recovery was generally good, averaging at least 90% except within a few much shattered quartz veins. Accurate location co-ordinates are lacking in the Drill Logs as no accurate surveys have been carried out recently, and 1987 survey markers have been destroyed.

Assaying was carried out by Acme Laboratories of Vancouver, B.C. A total of approximately 250 samples were tested for gold and silver by fire fusion/ICP with those showing greater than 1000 ppb gold being re-assayed by fire methods. In addition, those samples containing suspected copper, lead, and zinc were analyzed chemically for those elements during the first half of the program, while the second half, involving 115 in number, were subjected to 30 element ICP analysis.

Based on total analyses alone, 60 samples showed in excess of 500 ppb gold (0.015 oz/t) while 21 showed in excess of 1000 ppb gold. Silver assays attained a maximum of 6.16 oz/t and lead 0.68%, both accompanying higher gold values. Earlier work (Watson 1988) suggested gold might be present as a lead and/or silver telluride but Acme ICP analysis did not include tellurium determinations.

(3) Program Objectives

The Drill Program was designed to, (a) test below a geophysically anomalous zone north of the present main grid area where a 1994 trench (#3) revealed up to 0.47 oz/t gold but did not reach competent bedrock and ; (b) to test by a series of inclined holes a wide zone (lode) containing numerous east-west striking, steep southerly dipping quartz veins within a north-south trending series of easterly dipping bedded tuffs. This was the original Sadim discovery and was subjected to numerous pits and trenches (ie #94-1). Drill testing in 1987 was by a series of vertical holes which apparently did not reach most of their planned depths due to an unusually impervious low angle thrust or detachment fault dipping easterly-possibly with an important oblique (or cross trending) competent. As the quartz veins, some of which carried a low but potentially important gold content, were relatively steep, it was felt that angle holes would sample the potentially heapleachable system more efficiently, particularly at depth; (c) to test the narrow but high grade gold vein (#94-2) down dip to the south to more accurately determine its true attitude and mineral tenor; and (d) to test in a lightly but extensively overburdened area further along strike to the east than had been drilled, the projected quartz lode system (3b).

Drill footages and allowable costs were effectively rationed-ie no additional exploratory holes could be funded at this stage if expected conditions changed.

(4) Results condensed from Drill Logs (Appendix A). See Fig 3

<u>Hole #95-1, a 152 ft -45^o</u> hole to the north (Location on Fig. 3) under Trench 94-3, was drilled from a location about 70 feet to the south and 25 feet lower in elevation on the assumption that fragmental auriferous quartz present (to 0.47 oz/t gold) in the trench (not examined by the writer) represented an east-west, southerly dipping vein such as all others noted to date on the property. Although highly silicified tuffaceous volcanics were encountered, only minor quartz stringers were noted. Near the depth of expected intersection, siliceous material containing 1-2% pyrite was encountered but the best 5 foot sample assayed only 0.031 oz/t gold.

No attempt was made to extend the gridded area of investigation northerly into a wooded area beyond Trench 94-3, but a low self-potential anomaly detected near the trench in 1995 may be of interest. The latter anomaly may be negated by graphitic conductors as noted in nearby Hole #95-2. It is also possible that any vein (?) of interest may be paralleling, or at an intermediate angle to, the bedding rather than crossing it at a higher angle, in which case drilling to the north would not be expected to intersect it.

The zone was abandoned, awaiting better geological and geotechnical parameters not yet evident.

<u>Hole 95-2, 182 ft</u> in length, was directed north $@-45^{\circ}$ from a location about 160 feet SE of Hole 95-1. Its purpose was; (a) to test for any extension of the proposed "E-W" vein in Trench 94-3; (b) to test the discontinued north end of a 1994 VLF-EM anomaly ("E"); and (c) to test a weak SP anomaly detected in 1995. The hole, unlike #95-1, intersected no siliceous material and appeared, after coring in andesite and tuff for 20 feet after 28 feet of overburden, to follow a much faulted limey argillaceous bed interspersed with minor tuff and limestone. Black graphite and/or graphitic argillite was common. Only minor pyrite was noticed and assays show a maximum of 16 ppb gold present. The location of the hole is on an east-west creek valley (lineament) apparently near its intersection with a northwesterly trending fault crossing the Sadim 'gold vein system'. Core attitude variation suggests some drag folding possible to the north.

Drill Holes 94-3 and 4 (Fig.4a) were drilled due north from a location near the north end of the many E-W quartz veins exposed by numerous cuts and trenches (some since filled in by Harlow 1995) in the Lode Trench (Discovery) area. More paralleling veins may remain in trenches to the north but they are obscured by overburden although a few may have been filled in. The object was to test the relatively steeply southerly dipping quartz vein swarms by inclined rather than vertical holes previously employed by Laramide. It was hoped that open- pittable grades would suffice over sufficient widths that a limited tonnage heap leach scenario might be envisioned. It was also anticipated that Harlow's drills could penetrate the lode below the underlying (and possibly structurally controlling) low-angle fault which had blocked depth penetration by Laramide)(See Fig 5). This was supposedly attainable given more modern equipment but Harlow in its budget had not anticipated the inereased costs associated with penetration of this major structural impediment (?) thus Harlow's holes "bottomed out" prematurely as did Laramides.

Despite the above obstacles, Harlow's inetined drilling did intersect a much wider and more positive area than Laramides before stranding in the fault.

<u>Hole 95-3</u>, drilled due north 202 ft @ -45° (Figs. 3,4(a)), intersected a zone before entering the flattish fault of 131 feet grading 0.022 oz/t gold. No singularly 'High Grade' intersections above 0.088 oz gold/t were revealed

<u>Hole 95-4</u>, drilled @ -60° to 199 feet below #3, intersected <u>59 feet grading 0.021 oz/t</u> gold but also failed to penetrate the fault zone without severely depleting the liudget.

<u>Holes 95-5 and 6</u> (Fig.4a) were drilled from a location about 200 ft south of 95-3 (same elevation) repeating the latters configuration.

Hole 95-5, 244 feet @ -45° , appears to have intersected a lower grade zone. ie 24 feet at 0.020 oz/t gold (maximum 5 ft @ 0.032 oz/t) before becoming "stuck" in the underlying fault zone. <u>Hole 95-6, 178 ft @ -60⁰</u>, encountered a width of 62 ft assaying 0.017 oz/t gold before being abandoned in the fault zone.

Most assays in Holes 3 to 6 revealed anomalous gold contents, but these were below any possible economic concentrations. However, if concentrated by some configuration not yet evident, their equivalent elsewhere in the system could be important-ie a possible intrusive contact at depth, to the east, or below the underlying major fault zone, which may possess a more structurally favorable environment than that envisioned to date. Such might include a"transverse" thrust fault which may allow more tensional opening within a lower plate before reaching a buried intrusive such as is present further north.

DDH's 95-7.8,9,10,12 (Fig.4b)

The above holes were drilled in an attempt to establish the attitude and continuity at relatively shallow depth of the irregular and much faulted 94-2 vein which was trenched on surface returning high grade (to 11 oz gold) across narrow widths. The vein appears to be a survivor of the easterly extension of the low grade quartz lode (Trench 94-1) system but apparently dies out in a narrow limestone bed it crosses along strike to the east although it could well continue beyond to favorable tuff beds further east. Its southerly dip component appears steeper than estimated by Laramide (it's discoverer's) although deeper trenching by Harlow in 1994 suggested the dip to be about 70° southerly. A drill hole S13 by Laramide intersected a small auriferous vein at depth but did not equate it with the erratic surface-exposed vein.

Drilling of Holes 95-7 to 10 by Harlow did confirm that the vein dips southerly at 60 to 70° and that it was erratic although retaining an appreciable gold content as follows:

<u>Hole # 95-7</u>, a -45[°] northerly directed hole from 35 or 45 feet south of the vein, intersected 3.5 feet apparent width @ 0.166 oz/ton gold and <u>Hole # 95-8</u>, (@-60[°]) below #7, intersected 1 foot @ 0.32 oz/t gold down dip.

Hole 95-9 @ -45° (Fig.4b), from a collar about 50 feet west of #8, intersected 1 foot @ 0.714 oz/t gold.

Hole 95-10 @ -60° below #9, intersected a faulted zone which returned a 5 foot section assaying 0.063 oz/t gold.

<u>Hole 95-12</u>, 186 ft at -60°, collared about 50 feet south of #7, intersected one foot of a hidden vein immediately under overburden assaying 0.374 oz/t gold across 1 foot, and appears to have encountered the Trench 94-2 vein, (1.5 feet @ 0.43 oz/t gold) at a core length of 148 feet. The vein intersected probably dips southerly between -60 and -70°, as does the 94-2 vein.

The Hole #12 upper intersection is apparently a previously undiscovered vein paralleling #95-2.

It is of importance to note that all important gold bearing quartz veins of interest consist of opaque white quartz and contain 1 or 2% galena, or related tellurides, and are relatively easy to identify in the core. Assumedly they constitute a later system than the semi translucent less distinct veins noticed elsewhere-ie in the Road Trench zone- where gold content is considerably lower and the veins are so diffused as to apppear an integral part of the silicified tuffs.

<u>Drill Hole 95-11, 152 ft @ -45° (Fig.4b) was drilled north from a location about 650 feet</u> south of, and about the same elevation as, Hole #95-7.

Its purpose was to explore for the projection easterly of the Quartz Lode which can not be seen to outcrop in this area which has also been logged clear. A northerly trending line of vertical 1987 drill holes (whose collars or sites could not be found) including 87-#'s 14,12,11, and 10 are shown in the old records (Watson 1990) as being downhill (westerly) about 100 ft from the collar of 95-11. Intersections in the range 0.03 to 0.05 oz/t gold were common but the best grade occurred in Hole #87-11 with 7 feet assaying 0.14 oz/t gold.

<u>Hole #95-11</u> intersected 6 relatively evenly spaced low grade (0.03 - 0.10 oz/t gold) veins. However, it also encountered a one foot section at 452 ft assaying 0.70 oz/t gold, 6.16 oz/t silver followed at 466 feet by a composite 6.5 foot section assaying 0.327 oz/t gold, 3.4 oz/t silver. This latter intersection could be a continuation easterly of the earlier Hole 87-11 intersection (when proper surveys are completed) but with an apparent increase in gold tenor at depth as well as to the east.

As with all 1995 drill holes, core recovery was good and quartz vein intersections where preserved were at a high angle $(55-75^{\circ})$ to the core axis suggesting that most core widths quoted are within 15% of true widths.

CONCLUSIONS

The 1995 exploratory drill program conducted on the easilly accessible Sadim property, although limited in extent, has suggested that gold values-generally low in the most tested westerly area- increase easterly and with depth such that a follow - through drill program is warranted. An obvious failure of the program was the inability of the drill (a cost and time factor) to penetrate and explore below the low angle "Footwall" fault zone, as earlier proposed, for evidence of the continuation at depth of the large quartz vein system. Similar problems were encountered by Laramide. If the gold-bearing zone continues easterly, however, there is still ample room above the fault (Fig.5) in which to locate an economic gold deposit. Although still within a logged-off area, extensive soil and scree completely conceal continuation easterly of all gold-bearing quartz veins, evidenced in part by those "blind" intersections made during the 1995 program, Although far from being unique, the gold environment at Sadim, involving low angle faulting and numerous tension-derived veins, remains of unusual interest. The sulphide content of the quartz veins is insufficient to allow successful geophysical search methods, and the value of geochemical surveys is questionable

except in rare areas of very thin soil cover. Only a significant diamond drill program guided by geological principles should be considered.

RECOMMENDATIONS

ł

It is recommended that drill investigation continue easterly. Those 1995 intersections of interest should be 'bracketed' to establish continuity. This would involve holes above and below such intersections, as well as to the east. Given that there are other small but relatively high grade veins in the prospective area, drill holes designed to test the larger indicated targets could be positioned so as to intersect any downward continuation of the small veins as well ie the 94-2 and the Hole #95-12 intersections.

Before any drilling is started, the property must be properly mapped by a qualified surveyor, including the locations of past and present trenches, drill holes, and roads.

* Logged Area V V DDH SZ SWAMP Elev 4675' quartz veln zone Overburden 2-131 ft 0.0227 02 t Au 62 ft 0.017 0z/t A SElev 4580' 59 ft 0.021 02/t Au - Inferred Major Fault Zona-Bedded Tuffs A A' Looking West at Section A-A' HARLOW VENTURES INC. SADIM PROJECT MODIFIED BLOCK DIAGRAM All drill hole locations approximate only; prior SECTION A-A' Meters survey stations obliterated THROUGH DRILL HOLES 95-3,4,5,6 25 50 100 75 by recent logging. FIGURE SCALE DATE BY N.T.S. 300 100 200 92H/10E Feet AS SHOWN Nov1995 4a

COST ESTIMATES

1996 Cost Estimates should be quite accurate to predict given guidance from the 1995 expenses.

Definitive and exploratory diamond drilling (contract) Fill-in and deeper drilling, 5000 ft @ \$21/ft (NQ, all inclusive)	\$105,000
Surveying	2,500
Assaying and metallurgical testing	10,000
Wages 150 man days @ \$250/day	37,500
Transportation	6,000
Lodging 150 man days @ \$50/day	7,500
Field supplies	4,000
Supervision	12,000
<u>Overhead</u> Office, communication, environmental, etc.	7,000
Property Maintenance Permitting and possible \$5000 bond	6,000
SUB TOTAL	197,500
Contingency	25,000
TOTAL	\$ <u>225.599</u>

Given indications of good grade and continuity at this stage, particularly at depth, a much larger follow-up drill program is required, possibly supplemented by a west-east adit or decline from road level.

CERTIFICATE

I, James J. McDougall, Do Hereby Certify:

- 1. That I am a consulting geologist with a business office at 7720 Sunnydene Road, Richmond, BC, V6Y 1H1 and President of J.J. McDougall & Associates Ltd., Consulting Geologists.
- 2. That I am a graduate in geology of the University of British Columbia (M.Sc. 1954).
- 3. That I am a Registered Professional Engineer (Geological) in good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- That I have practised my profession as a geologist for the past forty three years. 4.
- 5. That the information, opinions and recommendations in the attached report are based on studies of the available literature on the area occupied by the Harlow Ventures Inc. mineral claims, and on numerous ground observations during 1994 and during the 1995 Drill Program.
- 6. That I own no interest in the securities or property holdings of Harlow Ventures Inc., nor do I expect to obtain any such interest.
- 7. This report may be used for any prospectus or similar document pertaining to the current exploration program of Harlow Ventures Inc.

Dated at Vancouver, BC, this <u>3077</u> day of <u>Movember</u>, 1995. Domes <u>IMDoceyood</u> PECY James J. McDougall, P.Eng.

REFERENCES

Barr, D. A., Fox, P. E., Northcote, K. E., and Preto, V. A., 1976. "The Alkaline Porphyry Deposits-A Summary"; in CIMM Special Vol. No. 15.

McDougall, J.J. "Report on the Sadim Property, November 1994 (Revised July 1995)." Report submitted for Listing Requirements SOB, VSE, 1995.

- Preto, V.A., (1975). "Notes to Accompany Preliminary Map No. 17. Geology of the Allison Lake Missezula Lake Area". BC MEMPR.
- Preto, V.A.,(1979). "Geology of the Nicola Group between Merritt and Princeton". Bull. 69, BC MEMPR.

"Prospecting, Exploration & Mine Development". Mining Review, Summer 1994.

- Watson, I. M., (1985). "Reconnaissance Geological and Geochemical Surveys of the Sadim Group", for Laramide Resources Ltd.
- Watson, I. M., (1994). "Summary Review of the Sadim Property" unpublished company report.

Assessment Reports-BC MEMPR

#517 - 1963	Report on the K.R. Group of Plateau Metals Ltd. by Asarco Smelting
	and Renning Co. (geology, magnetometer survey).
#985 - 1967	Ltd.
#1857 - 1969	Geochemical Report on the Allison Lake Claims by A. C. Skerl for Blue Gulch Exploration Ltd.
#3363 - 1971	Geological, Geochemical and Geophysical Report on the Ketchan Creek Property by J. Christofferson, G. De Paoli, and C. Hodgson for Amax Exploration Inc.
#4464 - 1973	Report on Geochemical and Geological Surveys by John R. Poloni for Blue Gulch Explorations Ltd.
#5044 - 1973	Geological and Prospecting Reports on the Cindy Group by D. C. Malcolm and E. Sleeman.
#5034 - 1974	Report on Geochemistry and Geology of Pine Claims by J. R. Poloni for Pacific Resources Development Ltd.
#6036 - 1976	Geochemical Report on Rum Claim Group by D. G. Mark for Ruskin Developments Ltd.
#8352 - 1980	Ground Magnetic and Soil Geochemical Survey over Part of the Rum Property by D. T. Mehner for Cominco Ltd.
#9407 - 198 1	Soil Geochemical Survey over Part of the Rum Property by D.T. Mehner for Cominco Ltd.
#14304 - 1985	Geochemical Report on the Coke 1 - 8 Claims by P. Peto.
#15007 - 1986	Geophysical Survey on the Coke 1 - 8 Claims by P. Peto.
#15969 - 1987	Trenching, Geological Mapping and Sampling and Diamond Drilling Programmes on the Sadim Property Sadim 1 - 6 Claims by I. M. Watson & Associates Ltd. for Laramide Resources Ltd.
#16206 - 1987	Report on the 1987 Geochemical Sampling on the Coke Property by E. W. Yarrow for P. Peto.
#16889 - 1988	Reconnaissance Geochemical Rock Sampling, VLF-EM Magnetometer Surveys, Trenching, Geological Mapping and Sampling and Diamond

Drilling Programmes by I. M. Watson & Associates Ltd. for Laramide Resources Ltd.

.

-

١

APPENDIX A

DIA	MOI	ND DR		HOLE # 95-1		PAGE # 1						
COMPANY Harlow Ventures Inc. PROPERTY Sadim Date Commenced Oct 11/95 Date Logged Oct 13/95 Bearing O LOCATION Ketchan Rd Km 17.5 ± * Date Finished Oct 12/95 Logged by J. R. Lucke Elev.Collar 4 Lower Road (See Location Map) Description Description Description Description Description						00 ar 4,9	0°/-45° 520 ft **	Total Depth 152 ft Core Size NQ (WL)				
DEPT	H (ft)	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	T0 (ft)	WIDTH OF SAMPLE (ft)	Au (ppb)	Au (oz/ton) (F)=Fire	Ag (ppm)	Cu (ppm)	РЪ (ppm)
			and the state of t						Assay			
0	8	0	Overburden—no core	399621	8	<u>`</u> 12	4	10		<.3		
8	23	35	White siliceous tuff; fractured, brecciated, silicified; ~35%									
			recovery									
23	25	90+	Purple schistose (partially) tuff; quartz fracture filling	399622	23	25	2	6		< .3		
25	27	90+	Broken limonitic zone, apparently altered tuff; contacts 55-	399623	25	27	2	< 2		< .3		
			60° to core axis, with quartz veins also ~55°; approx 20%									
			limonite (altered sulphiides?)									
			- contacts white tuff @ 27', also ~60°									
27	28	90+	Pale green to white tuff—f.g.; quartz eye/feldspar gneissic	399624	27	30	3	3		< .3		
			texture									
28	30	90+	Purple tuff, fractured & silicified at various angles									
30	62	90	White to pale green tuff, siliceous, locally brecciated &	399625	30	32	2	2		<.3		
			recemented (23-32: 90+% rec.)									
			32-34 - significant (2%?) py & grey sulphides disseminated	399626	32	34	2	21		< .3		
			@ 45° to core axis									
			34-54 - consistent diss py (1%) - 5% SiO ₂	399627	34	39	5	910	(F) 0.029	7.6		
			~40 - gouge zone & badly broken core	399628	39	44	5	190		2.3		
t t			56-60 - red brecciated/recemented zone	399629	44	49	5	208		1.2		
			61-62 - gouge - contact; 52-62: 70% rec.	399630	49	54	5	140		.9		
62	101	90	Reddish bedded tuff/meta-volcanic sediment - locally	399631	54	59	5	88		.9		
			schistose, bedding variable as indicated -possib. drag folding									

* See map location. Laps & Deps not calculated.

** Elevations determined from topographic maps and aneroid barometer-all holes.

								L						
COMPANY PROPERTY LOCATION	Harlow Venture Sadim Ketchan Rd Km	es Inc. 17.5 ±	Date Commenced Date Finished	Oct 11/95 Oct 12/95	Date Logg Logged by	edi Octili J.R.L	3/95 .ucke	Bearing Elev.Col	0 l ar 4	00°/-45° ,520 ft	T C	otal Depth ore Size	152 ft NQ (WL))
DEPTH (ft)							Front		WIDTH OF					
	RECOVERY		DESCRIPTI	ON		SAMPLE #	FROM	то	SAMPLE	Au	Au	Ag	Cu	

DEPT FROM	TH (ft) TO	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	WIDTH OF SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)
62	101	90	(cont'd)			, , , , , , , , , , , , , , , , ,						
			64 - gouge w/qtz pebbles	399632	63	65	2	3		< .3		
			66 - bedding parallel to core axis									
			68 - bedding 20° to core axis									
			70 - badly broken, chloritized									
			72-82 - bedding from 0° to 20° to core axis;	399633	75	80	5	3		< .3		
			heavily banded purple to white - schistose									
			(84-86); 85 - drag fold - siliceous banding									
			84 - cross fractures show small scale offset faulting									
			88-92 - broken, gouge zone	399634	88	92	4	125		.9		
			92-95 - broken zone continues, but not so gougy	399635	92	95	3	128		.6		
			95-98 - purple-grey; qtz/feldspar gneissic texture	399636	95	98	3	26		< .3		
			. 30° to axis									
101	112	70	Pale green to white tuff; highly fractured and broken, talc									
			alteration along fractures; brecciated and healed									
112	119	90+	Purple to green bedded tuff, schistose bedding 0° to 20° to	399637	115	119	4	10		< .3		
			axis; hematitic bands alt. with choritized bands									
							_					

DIAMOND DRILL RECORD **COMPANY** Harlow Ventures Inc. Oct 11/95 Date Logged Oct 13/95 000°/-45° **PROPERTY** Sadim **Date Commenced** Bearing LOCATION Ketchan Rd **Date Finished** Oct 12/95 Logged by J. R. Lucke Elev.Collar 4,520 ft

DEPT	H (ft)	BECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF	A	A	A	Cu	
FROM	то	(%)	DESCRIPTION	SAME A	(ft)	(ft)	(ft)	Au (ppb)	AU (oz/ton)	~g (ppm)	(ppm)	го (ppm)
119	122	90	Pale green tuff; silicified (20%), chloritized on fractures;	399638	119	122	3	136		.7		
			gouge @ 122									
122	135	80	Purplish tuff; fractured, brecciated, recemented;	399639	122	126	4	23		< .3		
			silica veinlets at random throughout; some more									
			distinct lineation ~30° to axis									
			127-129 - high degree of fracturing, some gouge @ 128									
135	152	90	Siliceous tuff (20%+ SiO ₂), minor hematite banding	399640	135	139	4	58		.3		
			~20° to axis	399641	139	143	4	73		.4		
			141 - fractures @ 30° to axis	399642	143	145	2	5		< .3		
			144 - highly fractured zone; gouge	399643	145	150	5	5		< .3		
			152 - end of hole									
								-				
			_									

HOLE # 95-1 PAGE # 3

Core Size

Total Depth 152 ft

NQ (WL)

HOLE # 95-2 PAGE#1 DIAMOND DRILL RECORD COMPANY Harlow Ventures Inc. Date Commenced Oct 12/95 Date Logged Oct 14/95 Total Depth 182 ft **PROPERTY** Sadim Bearing 000°/-45° **Date Finished** Core Size LOCATION Ketchan Rd Km 17.5± Oct 13/95 Logged by J. R. Lucke Elev.Collar 4,520 ft NQ (WL) Lower Road SE of 95-1 DEPTH (ft) WIDTH OF RECOVERY DESCRIPTION SAMPLE # FROM SAMPLE TO Au Au Ag Cu TO FROM (ppb) (%) (ft) (ft) (ft) (oz/ton) (ppm) (ppm) 0 0 28 Overburden - no core 24 20 ~ I -----

РЬ

(ppm)

20		30+	F.g. dark green andesite, minor carole venning at 50 to abis							
			plus second stage of calcite veining at odd angles; very							
			finely diss. py minpr							
			At 34: 1" gouge							
34	47	90	Light green tuff - f.g.; calcite veining @ 70°; gradual increase	399644	37	42	5	6	< .3	
			In fracturing and change to							
			limonite coloration beginning ~40'; prominent 42-46	399645	42	46	4	5	.3	
46	67	90	Bedded limey argillaceous n; calcite veining & bedding							
			@ 45°in general; abundant graphite	399646	46	51	5	14	.3	
			47-50: highly contorted banding, It-dk green							
			Numerous offset microfaults throughout section							
			60-63: blocky & quite broken compared to rest of	•						
			section						-	
			Very finely disseminated pyrite throughout section; < 1%							
67	81	90	Grey to green bedded tuff; little calcite in parent rock but	399647	70	75	5	9	< .3	
			thin veining intermittently							
_			- Numerous healed offset faults and fractures			_				
			- Bedding ~80° to core axis							
			- Very minor py							
81	84	90	Contact zone; highly limonitic and limey; broken ground	399648	81	84	3	7	< .3	
·										

HOLE # 95-2 P/

-2 PAGE # 2

COMP PROPI LOCAT	COMPANY Harlow Ventures Inc. PROPERTY Sadim Date Commenced Oct 11/95 Date Logged Oct 13/95 Bearing 000°/-45° Total Depth 182 ft LOCATION Ketchan Rd Km 17.5 ± Date Finished Oct 12/95 Logged by J. R. Lucke Elev.Collar 4,520 ft Core Size NQ (WL)											
DEPT	DEPTH (ft)						WIDTH OF					
FROM	то	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)
84	102	70±	Black graphitic argillite; very limey throughout; thin calcite	399649	89	94	5	< 2		< .3		
			veining 70° - 90° to axis									
			- quite vuggy with small calcite xtais									
			- very minor finely diss. py. throughout									
			- friable									
			98-102 - extremely broken & brecciated without much	399650	98	102	4	<2		< .3		
			recementing; gouge									
			102 - contact			·						
102	105	50	(part of contact 98-105) - very broken limey & limonitic rx	HV 9501	102	105	3	16		.3		
105	153		Limestone - extremely fractured & vuggy;									
			small calcite xtals in cavities	HV 9502	115	120	5	7		< .3		
			Limonite staining on fractures; no visible sulphides									
			136-138 - broken ground; limonite in fractures	HV 9503	136	138	2	4		<.3		
			142-143 - broken ground; massive calcite; limonite	HV 9504	138	142	4	3		< .3		
			145-148 - gougy argillaceous zone	HV 9505	142	143	1	8		< .3		
				HV 9506	145	148	3	7		< .3		
153	172	80	Limestone continues but now more argillaceous									
			- fractures and calcite veining 70° - 90° to axis									
			- somewhat vuggy, but much less than previous sec.									

	HOLE # 95-2
--	-------------

PROP	ERTY ION	Sadim Ketchan Rd	Date Commenced Oct 12/95 Date Logg Date Finished Oct 13/95 Logged by	ged Octla y J.R.L	4/95 .ucke	Bearing Elev.Col	00 I ar 4,1	0°/-45° 520 ft	T C	otal Depti ore Size	1 182 ft NQ (WL))
DEPTH (ft)							WIDTH OF					
FROM	то	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	РЬ (ррт)
153	172	80	153-154 - brecciated zone; poorly recemented	HV 9507	152	155	3	6		< .3		
			162-164 - badly broken but individual pieces competent	HV 9508	160	165	5	5		< .3		
			167-170 - broken zone; gouge	HV9509	165	170	5	7		< .3		
172	182		Limestone with limonite on fracture surfaces, grading to									
			limey wacke; calcite veining 45° to axis									
			172-173 - broken ground		_							
			177-178 - broken, argillaceous/graphitic	HV9510	177	182	5	2		<.3		
			182 - end of hole	<u> </u>								
				[
	ļ											

COMPANY F PROPERTY S LOCATION F		Harlow Venture Sadim Ketchan Rd ~ Ki Road Trench Zoi	s Inc. Date Commenced Oct 14/95 Date Logg m 18 Date Finished Oct 14/95 Logged by ne	ed Oct 15/95 J. R. Lucke		Bearing Elev.Collar		000°/-45° 4,620 ft	Total Depth 202 fr Core Size NQ (†			: VL)	
DEPTH (ft)		(ft) RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF	Au (ppb)	Au	Ag	Cu	РЬ	
FROM	TO	(%)			(it)	(ft)	SAMPLE (ft)	(F)=Fire Assay	(oz/ton)	(ppm)	(ppm)	(ppm)	
0	44	0	Overburden - no core										
44	62	90±	Wacke - quartz rich; blebs & veinlets	HV 9511	44	47	3	172		.9			
			- little calcite except short sections locally noted	HV 9512	47	52	5	27		< .3			
			- feldspar & quartz in f.g. matrix predominant	HV 9513	52	62	10	223		1.5			
			- significant pyrite; > 1% some zones	HV 9514	62	67	5	(F) 1,040	0.033	8.4			
			44-62 - dark grey to pale green; mottled sections of	HV 9515	67	72	5	(F) 780	0.024	5.5			
			Fe oxide intermittent; gouge at 56° mark	27210	72	82	10	712		7.0			
			4" quartz vein @ 46' with 1% py										
			55.5 - gouge - rusty										
			60 - gouge & broken quartz										
62	160	> 90%	Siliceous wacke, mostly quartz & feldspar in f.g.										
			grey matrix; numerous quartz veins; significant py										
			content in blebs & stringers to 5%										
			62 - 6" qtz vein - little sulphides									i.	
	-		63 - 2" qtz vein - minor py								-		
			71 - 3" qtz vein - minor py										
			62-72 - veining & healed fractures ~50° to axis										
			- up to 3% diss. py.										
			72-78 - broken ground - recovery probably ~75%										
							1					1	

HOLE # 95-3

PAGE # 1

DIA	MO	ND DR	RILL RECORD					HOLE # 9	5-3	PAGE #	‡2		
COMP PROP LOCAT	PANY ERTY TION	Harlow Venture Sadim Ketchan Rd ~K	ns Inc. Date Commenced Oct 14/95 Date Logg m 18 Date Finished Oct 14/95 Logged by	;ged Oct 15/95 by J. R. Lucke		Bearing Elev.Collar		0°/-45° 520 ft	Total Depth 202 ft Core Size NQ (WL)				
DEP1 FROM	TH (ft) TO	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	T0 (ft)	WIDTH OF SAMPLE (ft)	Au (ppb)	Au (oz/ton) (F)=Fire	Ag (ppm)	Cu (ppm)	Pb (ppm)	
62	160	> 90%	(cont'd)						Assay				
		<u> </u>	88-93 - intermittent quartz veins to 6" width, generally -60°	HV 9516	82	87	5	760	(F) 0.024	6.1	·		
			to axis	HV 9517	87	92	5	700	(F) 0.022	6.0			
			82-92 - sulphides dissem. In matrix ~2% overall	27211	92	102	10	570		4.8			
			95 - bedding @ 90° to axis, fractures @ 30°	27212	102	108	6	650		5.6			
			104 - broken ground, 5% diss. py.	27002	108	112	4	781	0.025	5.7			
			105 - quartz - appears barren	27213	112	116	4	248		2.2			
			117, 126, 137, 141; also 94 - visible galena in qtz at all	27003.	116	118	2	2,340	(F) 0.074	16.5			
			these locations; also 149	27214	118	125	7	271		1.6			
			157-159 quartz	27004	125	129	4	345	0.011	2.4			
160	177	75	Pale grey siliceous tuff, primarily qtz & feldspar clasts;	27215	129	135	6	630		3.5			
			little calcite; minor quartz veining 30 45° to axis:.	27216	135	140	5	795		6.4			
			very minor py.	27005	140	142	2	2,480	(F) 0.079	19.4			
			166-167 - matrix with purple hue	27217	142	152	10	957		7.4			
			169-172 - badly fractured; gouge & pebbled material	27006	152	160	8	2,140	(F) 0.068	15.7			
177	185	80	Purple mottled tuff/wacke; network of quartz veinlets at	27218	160	170	10	71		1.3			
			various angles, but frequently 30 - 40° to core axis	27219	170	180	10	15		0		<u> </u>	
												<u> </u>	
												ļ	
												ļ	
									L			<u> </u>	

HOLE # 95-3

COMPANY Harlow Ventures Inc. PROPERTY Sadim Date Commenced Oct 14/95 Date Logged Oct 15/95 Bearing 000°/-45° Total Depth 202 ft LOCATION Ketchan Rd ~ Km 18 Date Finished Oct 14/95 Logged by J. R. Lucke Elev.Collar 4,620 ft Core Size NQ (WL))		
DEPTH (ft)		RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	Au	Au (oz/ton) (E) = Eire	Ae	Cu	Рь
FROM	TO	(%)			(11)	(11)	(π)	(ppo)	(r)= rire Assay	(ppm)	(ppm)	(ppm)
185	193	70%	Light grey siliceous wacke, some chloritization on fracture	27220	180	189	9	81		0.6		
			surfaces; little sulphides except ~2% py 192-193	27008	189	193	-4	695	(F) 0.022	3.2		
			185-186)									
			187-188 [}] broken ground									
			189-191 J									
193	202	50%	Siliceous wacke; significant fault zone and rock badly broken	27009	193	197	4	92		0.7		
			throughout section									
			193 - several inches of broken quartz									
			202 - gougy								I	
			202 - end of hole									
			· · · · · · · · · · · · · · · · · · ·									

DIA	DIAMOND DRILL RECORD										PAGE # 1				
COMP PROP LOCA	ERTY FION	Harlow Venture Sadim Ketchan Rd ~ K As 95-3	ns Inc. Date Commenced Oct 15/95 Date Log m 18 Date Finished Oct 16/95 Logged b	ed Oct 16/95 Bearing 000°/-60° 7 J. R. Lucke Elev.Collar 4,620 ft					Total Depth 199 ft Core Size NQ (WL)						
DEP1 FROM	TH (ft)	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	WIDTH OF SAMPLE (ft)	Au (ppb)	Au (oz/ton) (F)=Fire	Ag (ppm)	Cu (ppm)	РЬ (ppm)			
	26		Overhunden - no core		· · ·	· · · · · · · · · · · · · · · · · · ·	·····		Assay						
26	46	90	Motified arey to areen to brown quartz/feldspar wacke	27010	26	31	5	185		1.1					
			- near surface weathering provides Fe oxide browns,												
			esp. in & near fractures; approx 30% in this section	27011	41	46	5	17		<.3	<u> </u>	<u> </u>			
		1	- semi healed fracturing at 45 - 60° to axis, with					· · · ·			<u></u>	1			
			secondary stress fracture patterns at right angles	1							1	1			
		[to primary fractures												
			- very little calcite, minor sulphides												
		1	33-34 - broken ground, very oxidized - Fe and Mn staining												
			41-43 - brecciated & repaired												
			44-46 - breccia, recemented, Fe, Mn												
46	65	90	Light grey siliceous tuff	27012	46	51	5	268		1.7					
			- fractured & sillcified at 45° to axis	27013	51	56	5	290		2.0					
			- pyrite throughout section - 1 to 5% dissem.	27014	56	61	5	294		1.8					
			- cpy noted at 51'	27015	61	66	5	143		1.0					
65	84	75	Light grey siliceous tuff; very broken/fragmented	27016	76	81	5	1,010	(F) 0.032	11.0					
			- minor pyrite												
			77-84 - very gougy; poor recovery (60%?)								ļ				
				<u> </u>											
		ļ			 							<u> </u>			
										1		1			
COMP PROP LOCA	ANY ERTY FION	Harlow Venture Sadim Ketchan Rd ~ Ki	s Inc. m 18	Date Commenced Date Finished	Oct 15/95 Oct 16/95	Date Logg Logged by	ed Octi J.R.I	8/95 .ucke	Bearing Elev.Col	0 iar 4,	00°/-60° ,620 ft	Tot Cor	tal Depti re Size	n 199 ft NQ (WL)
----------------------	---------------------	--	----------------	---------------------------------	------------------------	------------------------	------------------	---------------	---------------------	--------------------	---------------------	-------------------	----------------------	--------------------	-------
DEPI	[H (ft)	RECOVERY		DESCRIPT	ON		SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au	Au (oz/top)		Cu	РЬ
FROM	то	(%)			•••			(ft)	(ft)	(ft)	(ppb)	(F)=Fire Assay	(ppm)	(ppm)	(ppm)
	1	1													

									A334		
84	130	90+	Grey feldspar/quartz wacke; silicified matrix; little calcite;								
			diss py. throughout 0% to 5%								
			84-85 - broken ground, becoming suddenly competent								
			88 - fracture filling (quartz) 🙋 45° to axis	27017	85	90	5	658		4.9	
			90-91 - broken ground						•		
			99-100 - 8" quartz vein	27018	9 5	100	5	433		3.6	
			101 - minor cpy	27019	100	105	5	294		2.3	
			107 - 2" quartz vein - minor sulphides								
			110 - fracturing -60-70° to axis	27020	110	115	5	486		3.1	
			113 - 116 - several quartz veins to 2"; minor py. & gal.								
			122 - quartz	27021	120	125	5	646		4.5	
			125-129 - coarsely diss py to 5%	27022	125	130	5	572		5.3	
			130 - 2" quartz with galena (?)								
130	145	70	Similar composition to above, but much more fractured								
			& incompetent; py minor except specific subsections								
			noted.								
			131 - minor cpy								
			130 - 135 - 2-5% ру	27023	130	135	5	890	(F) 0.028	8.4	
			132 - gouge								
			135 - very fine mud gouge								
			137 - veinlets ~45% to axis - typical this section								
	-							-			

HOLE # 95-4 PAGE # 2

DIA	MO	ND DR							HOLE #	95-4	PAGE #	3
COMP PROP LOCA	ERTY	Harlow Venture Sadim Ketchan Rd ~ K	is Inc. Date Commenced Oct 15/95 Date Logg m 18 Date Finished Oct 16/95 Logged by	ged Oct II y J. R. L	8/95 .ucke	Bearing Elev.Coll	00 I ar 4,0	0°/-60° 520 ft	T C	otal Dept ore Size	h 199 ft NQ (WL))
DEPT	∏H (ft) I	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au	Au	Ag	Cu	РЬ
FROM	TO	(%)			(ft)	(ft)	(ft)	(ppb)	(oz/ton)	(ppm)	(ppm)	(ррт)
130	145	70	(cont'd)					-			ļ	
	[143 - broken ground						<u> </u>		ļ	L
145	177	85	Light grey wacke, quartz/feldspar in siliceous matrix								Į	
			- frequent quartz veining 45-60° to axis									
			150 - healed fault showing 1" offset									
			165-177 - locally highly brecciated and recemented showing	27025	160	165	5	261		1.7		
			complex fracture patterns									
			163 - сру									
			- hematite veinlets 167, 172	27026	170	175	5	17		<.3		
177	199		Into fault zone, at first broken, becoming severely fractured									
			with muddy gouge zones; squeezing rods severely &									
			hole terminated									
			184 - gouge	27027	180	185	5	274		1.9		
			189-191 - muddy gouge			-						
			193-195 - gouge	27028	190	195	5	546		3.6		
ï			193 - 2% ру									
			197-199 - gougy					~				
			199 - end of hole					<u> </u>				
		· · · · · · · · · · · · · · · · · · ·										
				1	·				1		†	
				1					1			

HOLE # 95-5 PAGE #1 DIAMOND DRILL RECORD COMPANY Harlow Ventures Inc. Total Depth 244 ft PROPERTY Sadim Date Commenced Oct 17/95 Date Logged Oct 20/95 Bearing 000°/-45° I OCATION Logged by I. R. Lucke Elev.Collar 4,620 ft Core Size NQ (WL) Ketchan Rd ~ Km 18 **Date Finished** Oct 19/95 Road Trench DEPTH (ft) WIDTH OF RECOVERY SAMPLE # SAMPLE РЬ DESCRIPTION FROM то Au Âu Az Cu FROM то (ppb) (mqq) (%) (ft) (ft) (ft) (oz/ton) (ppm) (ppm) 0 7 n Overburden - no core 7 44 80 Tuffaceous wacke; locally siliceous, very limey, significant Fe oxidation 7 5 .7 7-14 - highly brecciated and recemented in pebble-sized 27029 12 131 5 27030 12 17 105 .6 fragments; variable limonitic zones and up to 2% pv. 27031 17 22 5 291 1.6 minor cpy 5 13 - 1" quartz 27032 22 27 16 <.3 - veining (calcite) at erratic angles 20-22 - broken guartz 14-20 - brown tuff 14-23 - broken ground 22-27 - brown, shattered tuff; little sulphide 27-32 - brecciated, recemented tuff; fractures & calcite veinlets 45° to axis; calcite clasts to 10 mm; same orientation interspersed with hematitic & quartz rich material; little sulphide 32-35 - rusty tuffaceous material, quite shattered 35-40 - brown to grey tuff, more competent; 27033 37 42 5 6 <.3 main fracture pattern still ~45° 40-44 - iron oxidation becaming less frequent

-

HOLE # 95-5

PAGE # 2

COMP PROP LOCAT	XOMPANY Harlow Ventures Inc. YROPERTY Sadim Date Commenced Oct 17/95 Date Logged Oct 20/95 Bearing 000°/-45° Total Depth 244 ft .OCATION Ketchan Rd ~ Km 18 Date Finished Oct 19/95 Logged by J. R. Lucke Elev.Collar 4,620 ft Core Size NQ (WL)													
DEPT	FH (ft)						WIDTH OF							
FROM	то	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)		
44	58	70%	Purple to grey altered tuff; mainly quartz & feldspar in f.g.	27034	52	57	5	10		.3				
			matrix; hematite & chlorite alteration throughout											
			- Fe oxide present on fracture surfaces											
			- ground blocky through whole section											
			- chlorite alteration significant											
			- little sulphides											
58	65	80	Grey to purple to green mottled wacke; fracturing & quartz	27035	62	67	5	22		.3				
·			veinlets 60-70° to axis; little calcite or sulphides;											
			chlorite alteration on fractures											
65	76	80	Pale grey to green wacke; substantial unrepaired fractures	27036	67	72	5	108		.7				
			0° to 60° to axis, with orange/brown iron staining;											
			quite limey											
_			69-74 - 1.2% dissem. py											
76	138	85	Tuffaceous, brecciated wacke continues; very little Fe	27037	72	80	8	387		2.6				
			oxidation as of 76'; limey & calcite veinlets											
			77 - gouge											
			78 - quartz with galena & py (~1%)											
			80-81 - hematite alteration											
			82 - quartz											

HOLE # 95-5

PAGE # 3

COMP PROP LOCA	PANY ERTY TION	Harlow Venture Sadim Ketchan Rd ~ K	is Inc. Date Commenced Oct 17/95 Date Logg m 18 Date Finished Oct 19/95 Logged by	gedi Oct 2 y J.R.I	0/95 Lucke	Bearing Elev.Coll	0(iar 4,	00°/-45° 620 ft	Tot Cor	al Depti 'e Size	n 244 ft NQ (WL)	1
DEP	TH (ft)	RECOVERY	DESCRIPTION	SAMPLE #	FROM (ft)	TO (#)	WIDTH OF SAMPLE	Au (ngh)	Au (oz/ton) (F)=Fire	Ag	Cu (com)	Pb (nom)
FROM	TO	(///			(14)	(*)	()	(PP=)	Assay		(ppmy	(Pp)
76	138	85	(cont'd) 86 - severe sand threatened rods									
			82-85 - dissem. py, -2%	27038	80	85	5	287		1.5		
			90-95 - hematite alteration -> purple	27039	vic. 86		sand	143		1.0		
			94 - bedding 40° to core axis									
			97 - gouge	27040	97	102	5	890	(F) 0.028	6.8		
			100 - quartz with py & galena - minor									
			101-103 - hematite alteration	27041	102	106	4	504		2.8		
			105 - 1' quartz vein; minor galena	27042	106	107	1	575		3.3		
			107 - gouge (3.5% py 6" either side)									
			107-138 - predominantly purple - hematite alt.								I	
			112 - to 3% py; lineations @ 45°									
			119 - quartz, py, galena									
			120-135 very coarse (to 5mm) pebbly recemented breccia;	27043	122	127	5	371		1.7		
			fractures at various angles; little py.									
138	147	80	Pale green grit/wacke	27044	142	147	5	339		1.5		
			145-147 - fault - broken & gouged									
147	151	90	Brecciated, mottled wacke									
			149-151 - drilled parallel to fault; slickensided, highly									
			chloritized									
				1								
	<u> </u>							1				
				1								

HOLE # 95-5		HOLE # 95-5
-------------	--	-------------

COMP/ PROPI LOCAT	ANY Erty ! 'Ion	Harlow Venture Sadim Ketchan Rd ~ Ki	s Inc. Date Commenced Oct 17/95 Date Log m 18 Date Finished Oct 19/95 Logged b	ged Oct 2 y J.R.L	0/95 .ucke	Bearing Elev.Coll	00 I ar 4,	0°/-45° 520 ft	T	otal Depti ore Size	1 244 ft NQ (WL))
DEPT	H (ft)	PECOVERY			EROM	T0	WIDTH OF		A		6	Ph.
FROM	TO	(%)	DESCRIFIKM	SAUTEL #	(ft)	(ft)	(ft)	(ppb)	(oz/ton)	~8 (ppm)	(ppm)	(ppm)
151	170	90	Greenstone: dark green, altered volcanic tuff/wacke	27045	155	160	5	267		1.3		
			- highly fractured, often at ~70° to axis, and highly									
			recemented as calcite veinlets	27046	165	170	5	379		2.7		
			- high degree of chlorite alteration									
			167-169 - 2% ру									
170	217	90	Light grey tuff/volcanic grit	27047	175	180	5	122		.8		
			- dissem py several locations to 2%									
			-> 177, 180, 184, 187, 194, 207									
			185 - parallel fractures @ 45° to axis	27048	185	190	5	384		2.6		
			189 - quartz									
			190-191 - badly fractured fault gouge									
			194 - complex micro folds - quartz									
217	244	40	Suddenly into severe faulting for remainder of hole; rods	27050	217	222	5	92		.9		
			nearly struck, cementing attempted to no avail, quit									
			at 244	27051	234	239	5	20		1.9		
			- poorly recemented material @ 236 shows lineation									
			~ parallel to axis									
			244 - end of hole									
										T		

DIAMOND DR	ILL R	LECO	RD
-------------------	-------	-------------	----

considerable chlorite alteration 51 - several inches pebbled material - fault

COMP PROPI LOCAT	ANY ERTY FION	Harlow Venture Sadim Ketchan Rd ~ Ki As 95-5	s Inc. Date Commenced Oct 20/95 Date Logg m 18 Date Finished Oct 21/95 Logged by	ged Oct 2 y J. R. L	2/95 ucke	Bearing Elev.Coli	00 Iar 4,0	0°/-60° 520 ft	Tr C	otal Depti ore Size	n 178 ft NQ (WL)	
DEPT	W (ft)	BECONTRY			EBOM	m	WIDTH OF					
FROM	то	(%)	DESCRIPTION	SAME #	(ft)	(ft)	(ft)	AU (ppb)	oz/ton)	Ag (ppm)	си (ррт)	ro (ppm)
0	8	0	Overburden - no core									
8	45	60	Highly altered calcareous, siliceous, limonitic tuff/quartz-	27052	8	18	10	78		.5		
			jasper breccia; Fe oxidation throughout, probably	27053	18	28	10	84		.6		
			weathered from pyrite; minor pyrite in short (< 6")	27054	28	38	10	32		.5		
			Relatively unweathered sections; mainly quartz, jasper,	27055	38	45	7	11		.3	37	5
			feldspar particles - angular to subangular; calcite both	27056	45	50	5	28		.3		
			in matrix and as later veinlets; generally incompetent									
			rock throughout									
			8-12 - relatively coarse (to 5 mm) particles									
			12-45 - much finer (generally < 1mm)									
			20-22 - broken ground									
			28 - 2" quartz vein; Fe oxide material.									
			36-38 - badly broken ground									
			45 - oxidated material colour suggestive of Pb (reddish									
			orange)									
45	162	60	Similar composition to above - variable.particle size									
			tuff/wacke to coarser breccia/agglomerate; out of									
			surface alteration zone of little Fe oxide									
		45-53: 60%	45-46 - fault zone, rx broken									
			46-51 - green wacke, elongated particles 45° to axis,									

HOLE # 95-6 PAGE # 1

PAGE #2

COMP PROP LOCA	ERTY FION	Harlow Venture Sadim Ketchan Rd ~K	is inc. Date Commenced Oct 20/95 Date Log m 18 Date Finished Oct 21/95 Logged b	ged Oct 2 by J. R. 1	22/95 Lucke	Bearing Elev.Col	00 Iar 4,	00°/-60° 620 ft	Ta Ca	tal Depti re Size	n 178 ft NQ (WL))
DEPI	TH (ft)	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	T0 (ft)	WIDTH OF SAMPLE (ft)	Au (ppb)	Au (oz/ton) (F)=fire	Ag (ppm)	Cu (ppm)	Pb (ppm)
FROM	10								Assay			
45	162	ļ	51-58 - purple, coarser (to 7 mm) wacke/agglomerate;	27057	55	60	5	28		.3		
			little sulphide mineralization apparent									
		52-80: 60%	58-60 - fault zone; material broken up									
			60 - 1" quartz vein; minor py									
			60-65 - pale green wacke; dissem py to 5%	27064	60	60½	6"	3,140	(F) 0.102	20.5	69	47
			65-70 - purple wacke; calcite veinlets @ 30° to axis offset									
			faulted @ 45° to axis, opp direction (see 67')	27066	69	74	5	155		1.1	21	11
			70-74 - pale green wacke, all badly broken, up to 5% py	27067	74	79	5	262		2.0	20	9
				27068	79	84	5	573	1	3.4	57	43
			74-78 - mostly quartz; broken; minor py	27221	84	89	10	289	1	1.9		
		80-162: 90%	78-83 - pale green - purple wacke (to 2 mm)									
			83 - 2" quartz vein; py, galena	27063	83	831/4	3"	19,780	(F) 0.632	162.6	1,012	1,779
			83-162 - variations on same theme continue; pale fine green									
			tuff to coarser jasperized agglomerate	27069	89	94	5	531		3.3	19	39
			85 - 2" quartz; py, galena	27222	94	103	9	833		5.9		
			86-88 - 3% dissem py	27223	103	110	7	106		0.5		
			93 - 6" quartz; py, galena; quartz is later of 2 stages of	27062	93	931⁄2	6"	6,790	(F) 0.217	82	329	1,609
			silification									
			94 - 4" quartz - little mineralization									
			110-116 - 2-5% dissem py	27070	110	115	5	536		3.2	15	8
			111 - 2" hungry quartz	27224	114	122	8	476		1.4		

DIA	MO	ND DR	ILL RECORD						HOLE #	95-6	PAGE #	3
COMP PROP LOCAT	ANY ERTY ION	Harlow Venture Sadim Ketchan Rd ~K	s Inc. Date Commenced Oct 20/95 Date Logg m 18 Date Finished Oct 21/95 Logged by	Logged Oct 22/95 Bearing 000°/-60° ed by J. R. Lucke Elev.Collar 4,620 ft					Total Depth 178 ft Core Size NQ (WL))
DEPT	Ή (#) TO	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	WIDTH OF SAMPLE (ft)	Au (ppb)	Au (oz/ton) (F)=Fire	Ag (ppm)	Cu (ppm)	Pb (ppm)
									Assay		<u> </u>	
45	162		129 - multitude of healed fractures (quartz & calcite)	07050	400	1.10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
			showing at least 3 stages of tracturing, tautung, nearing, all angles to core axis: rock narticles mile coarse (to	27065	139	143	4	3 070	(F) 0 098	.3 235	443	36
			2 mm) and annear oriented - 45° to avie	27059	143	148	specimen	177	(,)	11		
				27060	148	153	5	225		1.7	 	
			137 - particles to 10 mm	27061	153	158	5	445	<u> </u>	2.5	<u> </u>	
			142 - 2 - ½" guartz veins: pv. cpy, gal								i	
		·	155 - quartz - cpy	1								
			160-162 - 1 to 5% dissem py; in bedding @ 45° to axis	27071	160	162	2	792	ļ	5.2	55	18
162	178	30	162-178 - bad fault - broken ground, severe gouge;	27072	162	170	8	559	1	6.6	136	161
			great difficulty with drilling; cementing didn't help; stop	27073	170	178	8	93		5.3	58	229
			178 - end of hole									
			27062 Zn (262), Sb (48) 27063 Zn (3,558), As (79), Cd (209), Sb (417)									
			27072 Sb (48) 27073 Zn (226)									
		_	· · · · · ·									

COMP PROPI LOCAT	ANY H ERTY S TION H S	Harlow Venture Sadim Ketchan Rd ~ Ki South of Trench	s Inc. Date Commenced Oct 22/95 Date Logg m 18 Date Finished Oct 23/95 Logged by 94-2	y ed Oct 2. v J. R. L	3/95 .ucke	Bearing Elev.Coll	00 ar 4,7	0°/-45° 180 ft	To Ca	tal Depth re Size	142 ft NQ (WL)	1
DEPT	H (ft)	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	Au	Au (oz/ton)	Ag	Cu	РЬ
FROM	TO	(%)			(ft)	(ft)	(it)	(ррь)	(F)=Fire Assay	(ppm)	(ppm)	(ppm)
0	36	0	Overburden - no core									
36	49	80	Green to purple hematitic volcanic grit/wacke; quartz,									
			feldspar, jasper (?) fragments in f.g. matrix; very									
			siliceous, little calcite									
			43 - material bedded @ 50° to core axis; quartz veinlets	27079	44	49	5	11		.3	33	4
			cutting opp. direction @ 40° to axis									
49	50½	90	Light grey, fine grained wacke; up to 5% py diss. at 50°	27080	49	50½	1½	281		2.2	191	5
			to axis									
501⁄2	54	90	Quartz vein, 5% py/cpy; minor malachite	27061	50½	54	3½	5,860	(F) 0.187	43.5	855	11
			50½ - sharp contact @ 50° to axis									
54	55	70?	faulted wacke gouge	27082	54	55	1	ļ14		.7	12	3
			Purple to green wacke; quartz, feldspar, jasper; minor	27074	55	60	5	41		.4	87	5
55	142	80+	quartz veinlets throughout with little sulphide; very									
			little calcite until ~106', then frequent veinlets									
			59-61 - short section light grey wacke; py 2%									
			65 - quartz veinlets 80° to axis									
			75 - particles to 5 mm									
			84-87 - section light grey/green wacke; 5% py at 50° to axis	27075	84	87	3	178		.4	87	5
			89-90 - fractured, slickensides									

HOLE # 95-7 PAGE # 1

HOLE # 95-7

COMP PROP LOCA	ANY ERTY TION	Harlow Venture Sadim Ketchan Rd Km	s Inc. Date Commenced Oct 22/95 Date Logg ~18 Date Finished Oct 23/95 Logged by	j ed Oct 2 y J. R. L	3/95 .ucke	Bearing Elev.Coli	00 1 ar 4 ,1	0°/-45° 180 ft	T C	otal Depti ore Size	n 142 ft NQ (WL))
DEPT	ïH (ft)						WIDTH OF					
FROM	то	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	SAMPLE (ft)	Аи (ррb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	РЬ (ррт)
55	142	80+	(cont'd)									
		overall	96 - 3% dissem, py	27076	94	98	4	147		.9	137	3
			97 - badly broken; chloritized									
			105-106 - broken ground									
			115 - 3% dissem py; light green wacke									
			124 - quartz & calcite veinlets generally ~30° & 80°	27077	125	130	5	14		.3	92	.3
			117-142 - very mottled purple/green									
			128 - fractured parallel to axis									
			134 - broken ground	27078	137	142	5	17		.3	108	.3
			Core recovery generally good and rock mostly quite									
			competent									
			142 - end of hole									
				•								

DIA	MO	ND DR	RILL RECORD						HOLE #	95-8	PAGE #	1
COMP PROP LOCA	PANY ERTY TION	Harlow Venture Sadim Ketchan Rd ~ K As 95-7	es Inc. Date Commenced Oct 23/95 Date Log m 18 Date Finished Oct 23/95 Logged b	ged Oct 2 y J. R. I	4/95 .ucke	Bearing Elev.Coll	0 ar 4	00°/-60° 1,780 ft	-60° Total Depth I t Core Size N		h 104 ft NQ (WL)
DEP1 FROM	TH (ft) TO	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	WIDTH OF SAMPLE	Au (ppb)	Au (oz/ton) (F)=Fire	Ag (ppm)	Cu (ppm)	Pb (ppm)
	20		Overburden - no core				(11)		Assay		 	
20	104	80										
- 20	104	overali	little subhides interspersed with short sections (noted	+								
		overair	separately) of pale green/grey wacke containing									
 			dissem. pv								 	
	†	50	23-29 - broken ground; rock pebbled & rounided in core									
			barrel	1					 		<u> </u>	
	1		(25-26) - Fe oxides on fractures, plus substantial malachite	27085	23	27	4	106		.5	266	5
	·		23, 32 - fractures @ 20° to axis									
		1	20 - 75 - numerous quartz veinlets, little calcite									
			75 - 104 - approx 75' mark calcite begins to show and				-					
			present in veinlets & matrix consistently									
		60	42-47 - fault zone; fragmented & altered to Fe oxide	27086	42	47	5	321		1.9	68	31
			53 - 1⁄4" quartz vein at 40° to axis cut by later 1⁄4" quartz vein									
			25° to axis in opp. direction									
			55-56 - pale green wacke; 2% dissem. py									
			58-63 - pale grey to green wacke, up to 5% py	27087	58	63	5	220		1.2	48	5
		40?	63-64 - above becoming very gougy to contact with quartz	27088	63	64	1	432		3.1	126	6
			64-65 - quartz vein; 10-15% sulphides - py, cpy, galena,	27083	64	65	1	103,960	(F) 3.32	200.7	3,469	11,607
			plus malachite	27225	65	70	5	20		0.2		

COMPANY	Harlow Ventures Inc.								
PROPERTY	Sadim	Date Commenced	Oct 23/95	Date Logged	Oct 24/95	Bearing	000°/-60°	Total Depth	104 ft
LOCATION	Ketchan Rd ~ Km 18	Date Finished	Oct 23/95	Logged by	J. R. Lucke	Elev.Collar	4,780 ft	Core Size	NQ (WL)

DEPT	ïH (ft)	DECONTEN			5000	70	WIDTH OF				6.	D.
FROM	то	RECOVERT (%)	DESCRIPTION	SAMIFLE #	(ft)	10 (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	^g (ppm)	Cu (ppm)	ro (ppm)
20	104	80	(cont'd)									
		overall	68-70 - pale green wacke, 3% py									
			75 - approx. location of commencement of calcite; veinlets									
			& matrix from here on									
			- also broken ground - fault?									
		50	78-82 - badly broken ground									
		70	84 - fragmented									
		70	88-90 - fragmented									
			93 - 8" pale grey/green wacke; to 5% py	27089	91	94	3	93		.8	178	7
			94 & 95 - 3 - ¼ to ½" quartz veins 60° to axis; 2									
			& 97 - stages of SiO ₂ mineralization, plus calcite									
			103 - 3" pale grey/green wacke; 3% py									
		75	94-104 - intermittently fragmented	27090	98	104	4	45		< .3	42	4
			104 - end of hole									
			27063 Zn (2,841), Cd (250.1) 27086 Ba (916)									

DIA	MOI	ND DR	RILL RECORD						HOLE #	\$ 95-9	PAGE #	1
COMP PROP LOCA	ANY ERTY TION 50'	Harlow Venture Sadim Ketchan Rd ~ K West of 95-7	m 18 Date Commenced Oct 24/95 Date Log m 18 Date Finished Oct 24/95 Logged by	ged Oct 2 y J. R. 1	26/95 Lucke	Bearing Elev.Col	00 Iar 4,1	0°/-45° /80 ft	1	ot al De pt Core Size	h 132 ft NQ (WL)
DEPT	[H (ft)						WIDTH OF					
FROM	то	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)
0	28	0	Overburden - no core									
28	46	75	Mottled purple to green wacke; highly brecciated and	27091	28	33	5	14		< .3	72	7
			recemented (siliceous); frequent fractures @ 30° to	27092	38	41	3	58		.5	382	5
		•	axis and often clusters of small tension fracture									
			perpendicular to these; Fe oxide alteration on fractures									
			throughout section, but little visible sulphide; malachite									
			vic. 30' & 39'; section fragmented 28' - 40' ±.		ļ							
46	471/2	80	Light grey, siliceous wacke; 2% py; contact (?) 45°	27093	46	47½	1½	288		4.3	739	4
47½	48½	70	Quartz vein; minor sulphides	27094	47½	48½	1	451		3.0	113	4
48½	50	80	light grey, siliceous wacke; 3% py	27095	48½	50	11/2	233		1.0	65	5
50	78	75	Purple wacke; mainly siliceous matrix with some calcite;								ļ	
			quartz veinlets at all directions						ļ			
			52-54 - broken ground									
		×	57-72 - broken ground; chloritized; 65% recovery									

COMP PROP LOCAT	ANY ERTY TION	Harlow Venture Sadim Ketchan Rd ~ Ki	s Inc. Date Commenced Oct 24/95 Date Log m 18 Date Finished Oct 24/95 Logged b	ged Oct 2 y J. R. L	6/95 .ucke	Bearing Elev.Col	00 Iar 4,i	0°/-45° 780 ft	Ta Ca	tal Depth re Size	ı 132 ft NQ (WL))
DEPT	H (ft)	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au	Au (oz/ton)	As	Cu	Pb
FROM	TO	(%)			(ft)	(ft)	(ft)	(ррб)	(F)=Fire Assay	(ppm)	(ppm)	(ppm)
78	80	90	Light green/grey siliceous wacke; 2% dissem py	27096	78	80	2	626	(F) 0.020	4.7	711	3
80	81	70	Quartz vein; 5% sulphides - py, cpy, gal.	27097	80	81	1	22,334	(F) 0.714	. 184.3	1,681 .	1,15
81	83	70	Light green siliceous wacke; 2% dissem py; broken	27098	81	83	2	258	(F) 0.008	2.4	265	2'
			fragmented ground									
83	122	80	Purple mottled wacke; bedding 45° to axis; quartz &									
	-		calcite veining & matrix									
			98-100 - broken ground								-	
			102-110 - severely fragmented; gougy 105-106	27099	100	105	5	58		.7	54	1
			- chlorite alteration on fracture surfaces									
122	127	90	Similar composition to previous section, but often									
			approaching dioritic texture; in addition to network of									
			veinlets, several quartz veins 1/4" to 1/4" perpendicular to									
			core axis									
127	129	80	Pale green siliceous wacke; 2% py									
129	132	80	Purple, mottled wacke; dioritic texture	27100	127	132	5	459		2.6	101	2
			132 - end of hole									
												-
			Anomalous ICP Values Not Tabled									
			Sample # Elements (ppm)									
			27097 Zn (1,148), Cd (90.3)		· · · · · · · · · · · · · · · · · · ·							
			27099 Ba (1,584)									

HOLE # 95-9 PAGE # 2

DIA	MOI	ND DR	ILL RECORD						HOLE #	95-10	PAGE #	1
COMP/ PROPE LOCAT	ANY RTY ION	Harlow Venture Sadim Ketchan Rd ~ Ki As 95-9	s Inc. Date Commenced Oct 25/95 Date Logg m 18 Date Finished Oct 25/95 Logged by	ed Oct 20 J. R. L	6/95 ucke	Bearing Elev.Coll	00 ar 4,1	0°/-60° /80 ft	Ta Ca	tal Dept re Size	h 120 ft NQ (WL))
DEPT FROM	H (ft) TO	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	WIDTH OF SAMPLE (ft)	Ац (ррb)	Au (oz/ton) (F)=Fire	Ag (ppm)	Cu (ppm)	Pb (ppm)
0	20	0	Overburden - no core									·····
20	45	80	Purple wacke; bedding at 45° to axis; fracturing & healing									
			at various angles - quartz veinlets and minor calcite;									
			Fe oxide alteration on fractures									
			22 - malachite	27151	20	24	4	24		<.3	43	6
			28-34 - badly faulted, broken ground									
			29-30 - extreme atteration, limonite pseudomorphs after	27152	29	30	1	12		< .3	47	7
			pyrite	27153	30	34	4	24		<.3	74	8
			42-43 - 2 - 1/4" quartz veins - at least 2 stage									
			43 - badły broken, gougy	<u>.</u>								
45	49	80	Light grey/green siliceous wacke with interspersed quartz	27154	45	49	4	889	(F) 0.024	5.5	88	13
			veins to 2" containing minor py & poseibly galena;	27226	49	54	5	81		.4	ļ	
			dissem. py to 2% in wacke									
49	54		Purple wacke, little sulphide, numerous quartz veinlets									
			@ 80° to axis									
54	58		Light green siliceous wacke with diss. py to 5%; bedding	27155	54	58	4	839	(F) 0.026	4.8	61	10
			@ 45°; quartz veins to 2" with minor py						 			
									 	 	 	
									 			
									 			

	HOLE #	95-10	PAGE #	2
--	--------	-------	--------	---

COMP PROP LOCA	ERTY ION	Harlow Venture Sadim Ketchan Rd ~ Ki	ns Inc. Date Commenced Oct 25/95 Date Logg m 18 Date Finished Oct 25/95 Logged by	ged Oct 2 y J. R. I	16/95 Lucke	Bearing Elev.Col	00 I ar 4,7	0°/-60° 780 ft	T	otal Depti ore Size	1 120 ft NQ (WL))
DEPT	(ft)			Ī			WIDTH OF					
FROM	то	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	T0 (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)
58	86	80	Mottled purple - green siliceous wacke, particles to 5mm;									
			chloritized along fractures; both siliceous & calcareous									
			matrix; little sulphide; severely fractured but mainly									
			recemented to fairly competent material; bedding									
			generally 45°									
			66 - broken ground									
			67 - brecciated zone recemented with network of quartz									
			veining in 2 stages									
			70-74 - fracturing ~ parallel to axis; chloritized	27156	72	76	4	21		< .3	129	8
			83 - ½" quartz & minor py									
			85 - 2" siliceous & 15% sulphide	27157	@ 85		3"	580	0.018	2.3	423	11
87	92	90	Zone of light grey/green wacke mixed with quartz veining,									
			as follows:								İ İ	
			87-88 - mainly quartz; minor py	27158	87	88	1	1,200	0.038	9.6	28	57
			88-89 - 75% wacke with 2-3% py; 25% quartz with minor py	27159	88	89	1	1,905	0.061	16.8	126	56
			89-90 - quartz with minor py & galena	27160	89	90	1	3,826	0.122	29.3	42	381
			90-92 - wacke; 2-5% py	27161	90	92	2	815	0.026	4.9	56	42
92	96	90	Purple wacke; quartz matrix; little calcite								ľ	
96	98	95	Light green wacke; 3% py; quartz veining to %"	27162	96	98	2	360		1.3	72	8
						1	ł	1	1	1 7	, ,	

COMP PROPI LOCAT	ANY ERTY TON	Harlow Venture Sadim Ketchan Rd ~Ki	Inc. Date Commenced Oct 25/95 Date Logg 18 Date Finished Oct 25/95 Logged by	g ed Oct 2 y J. R. L	6/95 .ucke	Bearing Elev.Coll	00 ar 4,	0°/-60° 780 ft	T C	otal Depti ore Size	1 120 ft NQ (WL))
DEPT	H (ft)	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF	A 11	Âu	Ar	Cu	РЬ
ROM	TO	(%)			(ft)	(ft)	(ft)	(ppb)	(oz/ton)	(ppm)	(ppm)	(ppm
98	120	75	Purple grit/wacke; several stages of fracturing and									
	-		recementing with both quartz and calcite in matrix									
			and veinlet network									
			106 - 1" brecciated quartz vein 50° to axis									
			111 - 2" light green siliceous wacke with 2% py and 1/4"									
			quartz vein through middle; cuts axis @ 80°									
	_		116-117 - broken ground; chlorite alteration	27163	116	120	4	40		< .3	87	
			120 - end of hole									
			Anomalous ICP Values Not Tabled									
			Sample # Elements (ppm)									
			27151 Ba (1,038)									
			27152 Ba (1,064)									
	-											
Ì												
	-	++		1		·			t		·	t

HOLE # 95-10 PAGE # 3

. ...

HOLE # 95-11 PAGE # 1

COMP/ PROPI LOCAT	IPANY Harlow Yentures Inc. IPERTY Sadim Date Commenced Date Logged Oct 30/95 Bearing 000°/-45° Total Depth 552 ft ATION Ketchan Rd ~ Km 18 Date Finished Logged by J. R. Lucke Elev.Collar 4,780 ft Core Size NQ (WL) 650 South of 95-9 South of 95-9 South of 95-9 South of 95-9 South of 95-9											
DEPT	H (ft)						WIDTH OF					
FROM	TO	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	10 (ft)	SAMPLE (%)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)
0	36	0	Overburden - no core									
36	188	90+	Green grit/wacke; quartz, feldspar (mainly) particles in									
			siliceous/calcareous matrix									
		•	36-45 - Fe oxide alteration on fracture surfaces; manganese	27164	36	42	6	19		< .3	100	7
			dendrite patterning frequent; e.g., 50, 63, 75, 100,									
			many other locations (q.v. 86)									
			62-65 - fracturing parallel to axis; Fe oxide alt.	27165	63	68	5	11		< .3	242	3
			72 - mottled purple/green; brecciated appearance									
			84 - texture almost dioritic	27166	82	86	4	11		< .3	238	3
			Vic 90 - epidote veinlets									
			98-103 - significant Fe alteration; rusty brown throughout;	27167	96	101	5	28		< .3	155	6
			minor py visible; good melachite at 102	27168	101	106	5	8		< .3	503	3
			- bedding (?) 60° to axis	27184	96	101	5	419		3.3	104	67
			116-123 - intricate fracture patterns calcite-filled and									
			numerous blebs/inclusions of calcite to 40 mm									
			125-132 - broken ground; Fe oxide on surfaces	27169	128	132	4	12				
			137½-139 - all rusty brown; highly altered; brecciated &	27170	137	138	1	4		.7	68	< .3
			recemented; vuggy									

	HOLE # 95-11	PAGE # 2
--	--------------	----------

COMP PROP LOCAT	ANY I ERTY S FION I	Harlow Venture Sadim Ketchan Rd ~ K	s Inc. Date Commenced Date Log m 18 Date Finished Logged b	ged Oct 30 y J. R. L	0/95 .ucke	Bearing Elev.Coll	00 I ar 4,	10°/-45° 780 ft	T	otal Depti fore Size	h 552 ft NQ (WL))
DEPI	TH (ft)						WIDTH OF					
FROM	то	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)
36	188	90+	140-162 - very competent siliceous, grey-green, fine	27171	138	139	1	904	0.028	4.5	141	11
			grained wacke; very little sulphides	27172	139	140	1	23		.3	43	4
				27173	157	162	5	9		.6	78	4
			162-166 - broken ground	-								
			171 - chlorite alteration on fracture surfaces	27174	171	181	10	21		.9	210	< 3
			173 - epidote veinlets @ 70°									
			- dioritic texture continues						_			
			180 1' gougy material									
			182-184 - broken; slickensided at 184									
			184 - note offset faulting of quartz veinlet									
			- veinlet 60° to axis; fault 45° opposite direction									
188	198	90+	Predominantly purple colour - hematite alteration interstitially									
			192-198 - highly developed volcanic agglomerate; clasts	27175	192	197	5	<1		.4	44	3
			to 12 mm; epidote veining @ 70° to axis									
198	229	90	Return to predominantly green colour; volcanic grit; very									
			limey, incl. veinlets & clasts as well as matrix									
			220 - calcite veinlets @ 70°									
			224-226 - broken material	27176	222	226	4	13		.8	113	< 3

COMPANY	Harlow Ventures Inc.								
PROPERTY	Sadim	Date Commenced		Date Logged	Nov 1/95	Bearing	000°/-45°	Total Depth	552 ft
LOCATION	Ketchan Rd ~ Km 18	Date Finished	Oct 31/95	Logged by	J. R. Lucke	Elev.Collar	4,780 ft	Core Size	NQ (WL)

DEPT	ſH (ft)						WIDTH OF		_			
FROM	то	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	РЬ (ppm)
229	232	70	Pale green volcanic grit; badly broken with Fe oxide									
			alteration on fracture surfaces									
232	246	70	Badly broken purple agglomerate/grit; particles to 5 mm;									
			calcite now very minor									
246	249	75	Siliceous, pale green wacke; badly broken; pyrite 2-5%									
			dissem. and as cubes to 0.5 mm									
249	349	80	Mottled purple to green volcanic grit/wacke; locally fractured,									
			brecciated, etc. as follows:									
			250-253 - broken with Fe oxidation on fractures									
			254-257 - aggiomerate; clasts to 10 mm									
			Vic 260-270 - andesitic texture	27177	266	270	4	4		1.1	46	< 3
			- calcite & quartz veinlets 45° - 90°									
			272 - 1' badly shattered ground									
			276 - calcite veinlets 45° to axis									
		70	277-281 - very bad ground; gouge; unconsolidated breccia									
			281-283 - poorly consolidated; fault planes parallel to axis									
		70	284-291 - shattered; chlorite alteration	27178	286	290	4	4		.5	30	3

HOLE #	95-11	PAGE # 4

COMP PROP LOCAT	ANY ERTY FION	Harlow Venture Sadim Ketchan Rd ~ K	s Inc. Date Commenced Date Logg m 18 Date Finished Oct 31/95 Logged by	ged Novi y j. R. l	/95 .ucke	Bearing Elev.Coli	00 lar 4,1	0°/-45° 780 ft	T C	otal Dept ore Size	h 552 ft NQ (WL))
DEPT	ſH (ft)				F1 011		WIDTH OF				<u> </u>	
FROM	то	(%)	DESCRIPTION	SAMPLE #	fit)	10 (ft)	SAMPLE (ft)	Ач (ррb)	Au (oz/ton)	^g (ppm)	Cu (ppm)	ррт)
249	349	80	(cont'd)									
		overall	295-300 - excellent bedded agglomerate aligned 60° to									
			axis; elongated clasts to 2 cm; abundant quartz (to									
			50%) and little calcite; remainder mix of dark green									
			(30%) and red (20%); some particles previously									
			broken and recemented with silica; no visible sulphides									
			300-302 - faulted & broken; slickensides									
			303 - calcite veining 60° perpendicular to axis									
			304-310 - banded agglomerate									
			310-317 - highly siliceous, fine grained wacke; dissem. py	27179	310	313	3	76		< .3	20	
			317-327 - bedded agglomerate; 60° to axis; purple									
			hematitic alteration	27227	332	337	5	8		0.1		
			334-337 - badly fractured with some gouge	27180	337	339	2	773	0.024	3.5	29	50
			340-342 - fine dissem. py; highly siliceous									
			346-349 - section of green & white bedded tuff; sharp									
			contact with purple at 364; bedding 55° to axis;									
			approx. 40% interspersed silica bands									
							1	1	l .	I		Ĩ

COMP PROP LOCAT	ANY I ERTY 9 TON I	Harlow Venture Sadim Ketchan Rd ~Ki	s Inc. Date Commenced Date Logg m 18 Date Finished Oct 31/95 Logged by	g ed N ov 2 y J. R. L	/95 .ucke	Bearing Elev.Col	00 I ar 4,1	0°/-45° 780 ft	Te C	otal Depti ore Size	1 552 ft NQ (WL)	•
DEPT	Ή (ft)						WIDTH OF					
FROM	TO	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)
349	377	95	Banded/bedded purple tuff; highly siliceous with only minor									
			calcite; variable from coarse elastic material (to several									
			cm) to fine, mud-sized grains									
			349-358 - coarse, bedded @ 45° to axis; mostly very	27181	340	342	2	20		< .3	6	< 3
			competent with intact core to 3'									
			358-377 - mostly much finer material; fractures 60 - 80° to	27182	365	370	5	1,084	0.034	4.6	45	10
			axis with chloritization									
377	412	80	Predominantly green grit/wacke; much less competent									
			than previous section; calcite in matrix as well as									
			veinlets	Î								
			379-380 - broken ground	1								
			383 - cross-fracture patterns evident	27183	383	388	5	26		.8	28	< 3
			384-389 - broken ground; slickensides at 385, e.g.									
			392-394 - broken									
			396-399 - broken									
			Vic 406 - large (to 3 cm), round clasts previously fractured									
			and recemented in agglomerated material, itself									
			fractured and recemented									
			407 - ½" 2-stage quartz vein 70° to axis									
			410-412 - broken ground									
				1								
			h,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									

COMPANY	Harlow Ventures Inc.								
PROPERTY	Sadim	Date Commenced		Date Logged	Nov 2/95	Bearing	000°/-45°	Total Depth	552 ft
LOCATION	Ketchan Rd ~ Km 18	Date Finished	Oct 31/95	Logged by	J. R. Lucke	Elev.Collar	4,780 ft	Core Size	NQ (WL)

DEP	FH (ft)	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au	Au (oz/ton)	M	Cu	РЬ
FROM	то	(%)			(ft)	(ft)	(ft)	(ррв)	(F)=Fire Assay	(ppm)	(рртт)	(ppm)
412	418	90	Grey to green grit; particles to 10 mm in fine grained									
			siliceous & limey matrix; quartz veins to ½" at 80°									
			to axis									
418	420	95	Purple waçke/grit									
420	423	85	Fine grained pale green to near-white siliceous wacke;	27185	420	423	3	600	(F) 0.014	6.3	56	229
			fine dissem. py ~ 2%			_						
423	428	90	Purple wacke; quartz veinlets 50° to axis; dissem py in									
			pale green wacke at 425'									
428	432	70	Fragmented, gougy material	27186	428	432	4	200	0.027	7.3	23	89
				27187	436	438	2	200	0.004	1.6	25	26
432	452	90	Purple to green grit; fragments at feldspar generally < 2 mm	27188	439	442	3	500	0.001	0.8	22	29
			but up to 10 mm in siliceous matrix	27228	442	447	5	5		0.1		
			435-436 - badly broken, chloritized	27229	447	· 452	5	55		0.2		
			437-439 - pale green wacke; dissem. py									
452	453	95	6" quartz vein flanked by pale green wacke with 2% py;	27189	452	453	1	25,600	(F) 0.698	192.7 (6 16 cr)	2,432	4,473
			quartz has 15% sulphides: py, cpy, gal.	27230	453	457	4	189		1.3		

.

HOLE # 95-11 PAGE # 6

DIA	MO	ND DR	ILL RECORD						HOLE #	95-11	PAGE #	⊧7
COMP PROP LOCA	ERTY TION	Harlow Venture Sadim Ketchan Rd ~ K	s Inc. Date Commenced Date Log m 18 Date Finished Oct 31/95 Logged b	ged N ov 2 D y J . R. 1	2/95 Lucke	Bearing Elev.Col	00 lar 4 ,	10°/-45° 780 ft	Ta Ca	otal Dept ore Size	h 552 ft NQ (WL	.)
DEPT	TH (ft)	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	WIDTH OF SAMPLE (ft)	Au (ppb)	Au (oz/ton) (F)≈Fire	Ag (ppm)	Cu (ppm)	Pb (ppm)
				1					Assay		<u> </u>	
453	457	95	Green feldspar grit; siliceous, limey matrix									
457	458	95+	3" quartz vein, very little sulphides; flanked by pale green	27190	457	458	1	200	0.013	3.9	50	66
450	404		grit with dissem py to 5%	27231	458	462	4	. 34	<u> </u>	0	┠────	
458	401	90	Green grit/wacke			-					<u> </u>	
401	402	40		27404	460	466						
402	4/17	80	Siliceous green grit/wacke - andesilic /	2/191	402	400	4	15 500	(5) 0.444	3.1	717	6 917
				27192	400	409.5	3.5	15,500	(F) 0.444	134.9		0,017
47114	4724		Querta voire: 2004 eutobidee mu emu ent	27103	409.5	4/1.3	2	22 700	(5) 0 505	196.0	1.490	2 770
4724	4727	80	Siliopous groop andositio uncho: little sulphide: guite	27104	472.5	472.3	15	100	0.010	5.2	1,409	221
472/1	433		fragmented throughout section: chlorite attention	21134	412.5		1.5		0.013	5.2		
. <u></u>			throughout and hematite staining on fracture surfaces						<u> </u>			+
			474 - quartz veinlets 90° to axis						f	<u>†</u>		
			480 - veinlets 30° to axis				·		<u> </u>	<u> </u>		
			489 - veinlets 20° to axis			*						1
			494 - quartz-healed fracture parallel to axis with offset									
			veinlets 30° to axis					1	1	<u> </u>		1
			497 - veinlet swarm at 20°							1		1
				-	·				<u> </u>		1	1
									1			1
									1	t		1
			<u> </u>							1		1

Pale green wacke, dissem py; 2" SiO₂ at 533 with gal.;

Elements (ppm)

Ba (413) Zn (796), Cd (64.5)

Zn (2,641), Cd (202) Zn (2,612), Cd (208)

Ba (646)

537-539 - quartz vein, minor sulphides

Anomalous ICP Values Not Tabled

552 - end of hole

Sample #

Andesitic wacke, chlorite alt; broken ground

									· · · · · · · · · · · · · · · · · · ·			
COMP PROP LOCAT	ANY ERTY TION	Harlow Venture Sadim Ketchan Rd ~ K	s inc. Date Commenced Date Lo m 18 Date Finished Oct 31/95 Logged	gged N ov by J. R.	3/95 Lucke	Bearing Elev.Coll	00 lar 4,1	0°/-45° 780 ft	To Co	otal Depth ore Size	n 552 ft NQ (WL)	I
DEPT	îH (ft)	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au	Au (oz/ton)	As	Cu	РЬ
FROM	то	(%)			(ft)	(ft)	(ft)	(ppb)	(F)=Fire Assay	(ppm)	(ppm)	(ppm)
499	504	80	Siliceous pale green wacke; 2% py; 2" quartz vein at 500	27195	499	504	5		(F) 0.007	2.1		
_			with minor sulphides; several other quartz veins to									
			1/2" with minor py in section									
504	513	90	Green siliceous wacke; relatively competent; quartz									
			veinlets at 45°									
513	530	75	Siliceous pale green wacke with dissem py to 5%; sections	27196	513	518	5	200	0.007	1.5	50	31
		overall	of quartz interspersed as follows:	27197	518	523	5	200	0.017	4.9	109	216
			514 - 6" of gouged quartz pebbles in quartz	27196	523	528	5	300	0.005	1.2	81	19
			519-520 - quartz pebbles to 5 mm in poorly consolidated									
			quartz matrix; little sulphide but significant graphite									
			524 - solid 6" quartz vein; minor sulphide									
		60	Also - badly broken ground 514-521									
530	533	80	Andesitic wacke; chlorite alt; fractured parallel axis									

HOLE # 95-11

3.3

5.2

.4

0.011

(F) 0.019

(F) 0.001

PAGE#8

DIA	MO	ND DR	RILL RECORD						HOLE #	95-12	PAGE #	1
COMF PROP LOCA	PANY ERTY TION	Harlow Venture Sadim Ketchan Rd ~ K 50' South of 95	ns Inc. Date Commenced Nov 1/95 Date Logg m 18 Date Finished Nov 2/95 Logged by -10	ged Nov 2 y J. R. L	2/95 .ucke	Bearing Elev.Col	00 lar 4,7	0°/-60° 780 ft	To Co	otal Dept ore Size	h 186 ft NQ (WL)
DEP FROM	TH (ft) TO	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	TO (ft)	WIDTH OF SAMPLE (ft)	Au (ppb)	Au (oz/ton) (F)=Fire	Ag (ppm)	Cu (ppm)	Pb (ppm)
0	20	0	Overburden - no core					· · ·				
20	21	60	Quartz vein commencing at bedrock surface; possibly thicker	27202	20	21	1	14,300	(F) 0.374	82.1	213	42
			than shown if drill hit part way through it; ~5% sulphides					_				
			(py, cpy, gal, & gal)									
21	24	80	Grey-green grit/wacke; Fe oxide alteration; dissem py &	27203	21	24	3	500	(F) 0.008	2.1	204	19
			cubes to 0.5 mm, up to 3%									
24	80	80	Mottled purple/green siliceous wacke; quartz & calcite									
			veinlets at variable angles; chlorite alt.									
			38-39 - fault zone - broken & gouged									
			42-43 - fault zone - broken									
			44-61 - intermittently broken ground, ~ 50%; chlorite &									
			slickensides on fractures								<u> </u>	
			-> at least 2 stages of fracturing & recementing;	ļ								
			evidence of calcite/quartz veinlets healing, then								L	
			being fractured and offset later (e.g., 52', 65')								ļ	
			75 - dioritic textured inclusion; 2 cm ø								ļ	
			76 - complex healed fracture pattern in agglomerated								ļ	
			material						ļ			
80	81	100	Light green wacke; 3 - ¼" quartz veins; to 5% dissem. py						ļ		ļ	ļ
									ļ			
											ļ	
									ł		1	

HOLE #	95-12	PAGE # 2

COMP PROP LOCA	PANY ERTY TION	Harlow Venture Sadim Ketchan Rd ~ K	ns Inc. Date Commenced Nov 1/95 Date Log m 18 Date Finished Nov 2/95 Logged by	ged N ov 2 y J. R. I	2/95 .ucke	Bearing Elev.Col	00 lar 4 ,	10°/-60° 780 ft	T	otal Dept ore Size	h 186 ft NQ (WL)
DEPT	FH (ft)	1		1			WIDTH OF				[
FROM	то	RECOVERY (%)	DESCRIPTION	SAMPLE #	FROM (ft)	T0 (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)
81	85	95	Mottled purple to green wacke; occasional 1/4" SiO ₂ veins									
			@ 70° to axis									
85	87	95	Light green wacke/grit; 2% py; included in section are:	27204	85	87	2	400	0.006	2.4	68	21
			2", 1⁄4", and 1" quartz veins ~70° to axis									
87	103%	90	Purple agglomerate/tuff; subangular clasts to 10 mm in									
			siliceous matrix; calcite & quartz veinlets									
103%	108	95	Mix of short sections (6" to 1') of light green wacke with	27205	103	107	4	400	0.013	2.5	135	54
			dissem, py and internal quartz veins with py, cpy, gal,									
			alternating with mottled purple agglomerate/wacke								1	
108	143%	80 overall	Mottled green to purple grit/wacke									
		50	120-126 - broken ground; chlorite alt.									
		50	127-129 - broken ground									_
			135 - bedding (?) 70° to core axis									
			141-142 - pale green wacke, minor py									
			·									

COMP PROPI LOCAT	ANY ERTY ION	Harlow Venture Sadim Ketchan Rd ~Ki	s Inc. Date Commenced Nov 1/95 Date Logg m 18 Date Finished Nov 2/95 Logged by	ged N ov 3 y J. R. L	l/95 Lucke	Bearing Elev.Col	00 lar 4 ,i	10°/-60° 780 ft	T C	otal Depti ore Size	n 186 ft NQ (WL))
DEPT	H (ft)						WIDTH OF					
FROM	то	RECOVERY (%)	DESCRIFTION	SAMPLE #	FROM (ft)	TO (ft)	SAMPLE (ft)	Au (ppb)	Au (oz/ton)	Ag (ppm)	Cu (ppm)	Pb (ppm)
143%	151	95	Pale green siliceous wacke, up to 10% py in places;	27206	143½	145	1.5	200	0.019	4.9	1,172	16
			cut by several quartz veins as follows;	27207	145	148	3	100	0.008	1.9	335	75
			144 - 2" quartz; minor sulphides	27208	148	149½	1.5	15,000	0.431	111.2	630	1.630
			145 - ½" quartz	27209	149½	151	1.5	300	.0.020	3.8	72	39
			145½ - ½" quartz									
			146 - 1" quartz									
			148-149½ - 1½ feet of quartz; py, cpy, gal.									
151	186		Dark green (75%) to purple (25%) grit/wacke;									
			siliceous matrix of veinlets; minor calcite									
			161 - quartz veining @ 60° to axis									
_			Vic. 164-169 - epidote alteration in clasts and veins									
			171 - quartz veinlets 40° to axis									
			180 - 6" pale green wacke flanking 1" quartz in middle; 2% py									
			186 - end of hole			· · · · · · · · · · · ·						
			Anomalous ICP Value Not Tabled									
			Sample # Element (ppm)									
			27208 Zn (442)					, 	1			
•												

HOLE # 95-12 | PAGE # 3

APPENDIX B

PHONE (604) 253-3158 FAX (604) 253-1716 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. CROCHENICAL ANALYS & CERTURA GAVE Harlow Ventures Inc. File # 95-4106 Page 1 3750 V. 49th Ave, Vancouver BC V6N 318 SAMPLE# Aq Au** ppm ppb 399621 H <.3 10 399622 H <.3 6 399623 H <Ž <.3 3 399624 H <.3 Ž 399625 H <.3 <.3 21 399626 H 7.6 399627 H 976 2.3 399628 H 190 1.2 399629 H 208 399630 H 1.0 126 RE 399630 H 1.0 142 RRE 399630 H 140 .9 399631 H .9 88 <.3 3 399632 H ž 399633 H <.3 .9 125 399634 H 399635 H .6 128 <.3 26 399636 H <.3 10 399637 H 399638 H 136 23 <.3 399639 H 399640 H 58 . 3 .5 RE 399640 H 98 RRE 399640 H .4 90 399641 H 73 .4 5 399642 H <.3

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. SIGNED BY.

399643 H

399644 H

399645 H

399646 H

399647 H

399648 H 399649 H

399650 H

STANDARD C/AU-R

56

Š

9 7

<2 <2

486

14

<.3

<.3

<.3

<.3

<.3

<.3

6.4

.3

DATE RECEIVED: OCT 16 1995 DATE REPORT MAILED:

.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Page 2

		ليس
SAMPLE#	Ag Au** ppm ppb	
HV 9501 HV 9502 HV 9503 HV 9504 HV 9505	.3 16 <.3 7 <.3 4 <.3 3 <.3 8	
HV 9506 HV 9507 HV 9508 HV 9509 HV 9510	<.3 7 <.3 6 <.3 5 <.3 7 <.3 2	
RE HV 9510 RRE HV 9510 HV 9511 HV 9512 HV 9513	<.3 4 <.3 2 .9 172 <.3 27 1.5 223	
HV 9514 HV 9515 HV 9516 HV 9517 STANDARD C/AU-R	8.4 1141 5.5 872 6.1 848 6.0 888 6.0 433	
ning 'RE' are Reru	ns and 'RRE' are Reject Reruns.	
	SAMPLE# HV 9501 HV 9502 HV 9503 HV 9504 HV 9506 HV 9506 HV 9507 HV 9508 HV 9509 HV 9510 RE HV 9510 RRE HV 9510 HV 9511 HV 9512 HV 9513 HV 9514 HV 9515 HV 9516 HV 9517 STANDARD C/AU-R	SAMPLE# Ag Au** ppm ppb HV 9501 .3 16 HV 9502 .3 7 HV 9503 <.3

A Harlov Ve	ntures Inc. File	▲ # 95-4249 Page 1
L	3750 V. 49th Ave, Vancou	River BC VON 3TB
	SAMPLE#	Ag Au** ppm ppb
	C 27001 C 27002 C 27003 C 27004 C 27005	5.0 749 5.7 781 16.5 2585 2.4 345 19.4 2775
	C 27006 C 27007 C 27008 C 27009 C 27010	15.7 2289 4.1 591 3.2 695 .7 92 1.1 185
	RE C 27010 RRE C 27010 C 27011 C 27012 C 27013	1.2 178 1.2 190 <.3 17 1.7 268 2.0 290
	C 27014 C 27015 C 27016 C 27017 C 27018	1.8 294 1.0 143 11.0 972 4.9 658 3.6 433
•	C 27019 C 27020 C 27021 C 27022 C 27023	2.3 294 3.1 486 4.5 646 5.3 572 8.4 979
	C 27024 C 27025 C 27026 C 27027 C 27028	2.5 301 1.7 261 <.3 17 1.9 274 3.6 546
	RE C 27028 RRE C 27028 C 27029 C 27030 C 27031	3.6 493 3.6 476 .7 131 .6 105 1.6 291
	C 27032 C 27033 STANDARD C/AU-R	<.3 16 <.3 6 6.0 445
ICP500 GRAN SAMPLE IS DIGESTED WITH THIS LEACH IS PARTIAL FOR MN FE SR CA P ASSAY RECOMMENDED FOR ROCK AND CORE SAMP - SAMPLE TYPE: P1 TO P2 CORE P3 SOIL Samples beginning 'RE' are Reruns and 'R ATE RECEIVED: OCT 23 1995 DATE REPORT MAIL	SML 3-1-2 HCL-HNO3-H2O AT 95 LA CR MG BA TI B W AND LIMITH LES IF CU PB ZN AS > 1%, AG : AU** ANALYSIS BY FA/ICP FROM <u>RE' are Reject Reruns.</u> ED:	DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. FED FOR NA K AND AL. > 30 PPM & AU > 1000 PPB M 30 GM SAMPLE. STGNEED BY.

-

Harlow Ventures Inc. FILE # 95-4249

NONE ANALITICA

• .

• •

	SAMPLE#	Ag Au** ppm ppb	·····
	C 27034 C 27035 C 27036 C 27037 C 27038	.3 10 .3 22 .7 108 2.6 387 1.5 287	
	C 27039 C 27040 C 27041 RE C 27041 RRE C 27041	1.0 143 6.8 1029 3.0 555 2.9 507 2.8 504	
	C 27042 C 27043 C 27044 C 27045 C 27046	3.3 575 1.7 371 1.5 339 1.3 267 2.7 379	
	C 27047 C 27048 C 27050 C 27051 C 27052	.8 122 2.6 384 .9 92 1.9 20 .5 78	
	C 27053 C 27054 C 27056 C 27057 RE C 27057	.6 84 .5 32 <.3 27 <.3 26 <.3 26	
•	RRE C 27057 C 27058 C 27059 C 27060 C 27061	<.3 28 .3 28 1.1 177 1.7 225 2.5 445	
	STANDARD C/AU-R	6.5 452	

· · · · ·

we change of the second of the

.

Harlow Ventures Inc. FILE # 95-4249

SAMPLE#	Ag Au** ppm ppb	
56515 56516 RE 56515	.3 <2 <.3 6 <.3 2	

-

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE# No Cu Pb Zn Ag Ni Co Nn Fe As U Th Sr Cold Sb Bit V As P Ppm P	A							ня	GE Tìc	IOCE	IEM: 7en1		ll .es	ANZ Ti	ALY	818 F	CE ile	RT	IF] 99	CAT	e 99										A
SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bit V Ca P La Cr Mg Ba AI Na X X P C 27052 1 37 5 104 .3 12 19 1014 4.16 5 5 2 2 13 2.3 2.2 2.6 6.72 0.60 6 4.90 432 .01 3.45 .02 17 3.45 .02 17 .01 .22 12 2.5 .02 100 .22 12 .02 10 .02 12 .02 .03 .03 2 101 0.5 .02 .01 .03 .03 .21 101 .05 .03 .22 .01 .03 .03 .03 .03 .03 .03 .02 .01 .03 .03	L										3750	ч.	49th	Ave	, Ya	ncouv	er B	: 76	I 3TE												
$ \begin{array}{c} c \ 27055 \\ c \ 27062 \\ c \ 27072 \\ c \ 27062 \\ c \ 27072 $	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba T ppm	i l Xippr	B A	L Na C 9	K K	W ppm	Au** ppb
$ \begin{array}{c} 27062 \\ c 27064 \\ c 2706 \\ c 2706 \\ c 2706 \\ c 2706 \\ c 2706 \\ c 2706 \\ c 2706 \\ c 2706 \\ c 2706 \\ c 2707 \\ c 2708 \\ c 2707 \\ c 2708 \\ c 2707 \\ c 2708 \\ c 2707 \\ c 2708 \\ c 2707 \\ c 2708 \\ c 2707 \\ c 2708 \\ c $	C 27055	1	37	5	104	.3	12	19	1014	4.16	5	<5	<2	Z	134	2.3	<2	~2	26	6.72	.080	6	4	1.90	432<.0	1 3	3.4	5 .02	. 17	<2	11
$ \begin{array}{c} c \ 27063 \\ c \ 27064 \\ c \ 27065 \\ c \ 27064 \\ c \ 27065 \\ c \ 27064 \\ c \ 27065 \\ c \ 27065 \\ c \ 27065 \\ c \ 27065 \\ c \ 27065 \\ c \ 27065 \\ c \ 27065 \\ c \ 27065 \\ c \ 27065 \\ c \ 27065 \\ c \ 27066 \\ c \ 27066 \\ c \ 27066 \\ c \ 27066 \\ c \ 27067 \\ c \ 2706 \\ c \ 2706 \\ c \ 27067 \\ c \ 2706 \\ c \ 2707 \\ $	C 27062	6	329	1609	262	82.0	10	3	328	1.15	13	<5	9	<2	44	17.9	48	<2	4	2.23	.022	1	10	.22	123<.0	1 3	3.1	5 .0'	.08	<2	9706
$ \begin{array}{c} c \ 27064 \\ c \ 27065 \\ c \ 27066 \\ c \ 27066 \\ c \ 27066 \\ c \ 27066 \\ c \ 27066 \\ c \ 27066 \\ c \ 27066 \\ c \ 2706 \\ c \ 2706 \\ c \ 2707 \\ c \ 2$	C 27063	4	1012	1779	3558	162.6	12	3	210	1.01	79	<5	21	<2	56	209.3	417	2	3	2.91	.010	<1	12	.10	120<.0	1 3	3.1	0. 0	.05	<2	20576
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C 27064	3	69	47	53	20.5	11	5	576	1.41	6	<5	3	<2	131	2.0	16	0	6	5.93	.038	4	11	.32	113<.0	1 3	3 .3	5 .0'	_21	<2	3459
$ \begin{array}{c} 27066 \\ c 27067 \\ c 27067 \\ c 27067 \\ c 27067 \\ c 27067 \\ c 27067 \\ c 27068 \\ c 27067 \\ c 27068 \\ c 27070 \\ c 27068 \\ c 27070 \\ c 27068 \\ c 27070 \\ c 27068 \\ c 27070 \\ c 27068 \\ c 27070 \\ c 27068 \\ c 27070 \\ c 27068 \\ c 27070 \\ c 27070 \\ c 2708 \\ c 27070 \\ c 27070 \\ c 2707 \\ c 2708 \\ c 2707 \\ c 2708 $	27065	3	443	36	46	23.5	ö	7	1005	2.80	Ä	<5	3	2	137	3.0	3	<2	10	10.50	.042	Ś	14	.67	51<.0	1 <	5.3	3 .03	.20	<2	3502
$ \begin{array}{c} c \ 27066 \\ c \ 27067 \\ c \ 27067 \\ c \ 27067 \\ c \ 27067 \\ c \ 27067 \\ c \ 27068 \\ c \ 27067 \\ c \ 27068 \\ c \ 27068 \\ c \ 27068 \\ c \ 27070 \\ c \ 2707 \\ c \ 2708 \\ c \ 2707 \\ c \ 2708 \\ c \ 2708 \\ c \ 2708 \\ c \ 2708 \\ c \ 2708 \\ c \ 2708 \\ c \ 2708 \\ c \ 2708 $								•		2.00			-	-			-			10127		-	••		21.40						
$ \begin{array}{c} 27067 \\ 27076 \\ 2 \\ 1 \\ 5 \\ 7 \\ 1 \\ 1 \\ 5 \\ 7 \\ 5 \\ 2 \\ 7 \\ 5 \\ 2 \\ 7 \\ 5 \\ 2 \\ 7 \\ 5 \\ 2 \\ 7 \\ 5 \\ 2 \\ 7 \\ 5 \\ 2 \\ 7 \\ 5 \\ 5 \\ 5 \\ 7 \\ 7 \\ 5 \\ 2 \\ 7 \\ 5 \\ 5 \\ 5 \\ 5 \\ 7 \\ 7 \\ 5 \\ 5 \\ 5$	C 27066	1 1	21	11	40	1.1	5	8	673	2.03	4	<5	0	2	117	1.1	<7	<7	6	5.98	070	6	3	.77	76<_0	1 6	3.3	7.02	. 18	2	155
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	27067	1 2	20		26	20	10	ž	427	1 77	Ž	~5	~ ~ ~	~2	60	7	~2	~ ~ ~	š	2 48	051	2	R	51	32< 0	1	3 .2	5 0	17	0	262
$ \begin{array}{c} 27063 \\ c 27070 \\ 1 \\ 15 \\ 8 \\ 27 \\ 11 \\ 15 \\ 8 \\ 27 \\ 11 \\ 15 \\ 8 \\ 27 \\ 11 \\ 15 \\ 8 \\ 27 \\ 12 \\ 27 \\ 11 \\ 15 \\ 8 \\ 27 \\ 12 \\ 27 \\ 11 \\ 15 \\ 11 \\ 15 \\ 8 \\ 27 \\ 12 \\ 27 \\ 11 \\ 15 \\ 11 \\ 11 \\ 15 \\ 11 \\ 11 \\ 15 \\ 11$	C 27068	1	57	7	<u> </u>	2.0	7	7	715	1 01	- 2	25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	167	25	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	í	0.25	061	Ē	ž		52< 0	1 2	ייר ז ז	5 n	17	0	573
$ \begin{array}{c} 2 \ 2 \ 2 \ 2 \ 2 \ 1 \ 3 \ 3 \ 4 \ 3 \ 5 \ 4 \ 5 \ 4 \ 5 \ 4 \ 5 \ 4 \ 5 \ 4 \ 5 \ 4 \ 5 \ 4 \ 5 \ 4 \ 5 \ 4 \ 5 \ 4 \ 5 \ 4 \ 5 \ 5$	C 27000		10	70	/7	7.7	2	'	771	1 92	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~2	170	4 1	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 2	20.0	.001	5	- 2	.00	118/ 0	4	· · · · · · · · · · · · · · · · · · ·	5 0	9 15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	531
C 27070 1 15 8 27 5.2 6 6 606 2.14 5 4 9,94 1005 5 4 19 7(1,01) C 1.6 0.2 1.6 $\sqrt{2}$ 2 4 9,94 1.063 5 4 1.6 7(1,01) C 1.6 0.2 1.6 0.66 5 4 1.6 7(1,01) C 1.6 0.2 1.6 1.6 0.66 5 4 1.6 1.6 1.6 2.2 2.2 1.6 2.2	C 27007		15	7	43	3.3	0 4		909	2 1/	2	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	107	1.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	9.05	.033	2	2	./ 1	71 - 0		 		14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	574
RE C 270701158293.5678442.254 < 5 < 2 2 2 < 4 < 2 < 2 < 4 < 0.40 $.068$ 64 $.51$ $71<\cdot01$ < 3 $.27$ $.02$ $.17$ RRE C 270701197292.9678582.274 < 5 < 2 2 2 < 5 < 2 < 2 < 2 < 5 < 2 < 2 < 5 < 2 < 5 < 2 < 2 < 5 < 2 < 2 < 5 < 6 < 5 < 2 < 2 < 5 < 2 < 2 < 5 < 2 < 2 < 5 < 6 < 5 < 2 < 2 < 5 < 6 < 5 < 6 < 5 < 6 < 6 < 5 < 2 < 2 < 2 < 2 < 5 < 6 < 6 < 6 < 6 < 6 < 5 < 2 < 2 < 2 < 6 < 6 < 5 < 2 < 2 < 6 < 6 < 6 < 5 < 2 < 2 < 6 < 6 < 6 < 7 < 6 < 6 < 6 < 2 < 2 < 2 < 3 < 6 < 5 < 2 < 2 < 2 < 2 < 6 < 6 < 6 < 2 < 2 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 6 < 7 < 6 < 6 < 6 < 7 < 6 < 6 <td></td> <td>1</td> <td>12</td> <td>o</td> <td>21</td> <td>3.2</td> <td>0</td> <td>0</td> <td>avo</td> <td>2.14</td> <td>2</td> <td>\$</td> <td>~2</td> <td>3</td> <td>193</td> <td>.0</td> <td>~2</td> <td>~2</td> <td>- 4</td> <td>y.94</td> <td>.005</td> <td>2</td> <td></td> <td>. 47</td> <td>/15.0</td> <td>· `</td> <td>5.2</td> <td>5 .04</td> <td> 10</td> <td>~~</td> <td>530</td>		1	12	o	21	3.2	0	0	avo	2.14	2	\$	~2	3	193	.0	~2	~2	- 4	y.94	.005	2		. 47	/15.0	· `	5.2	5 .04	10	~~	530
RE C = 27070 1 19 7 29 2.9 6 7 85 2.2 2 2 2 10.40 .000 6 4 1.1 <td>DE C 27070</td> <td>1.</td> <td>15</td> <td>9</td> <td>20</td> <td>75</td> <td>14</td> <td>7</td> <td>8/./.</td> <td>2 28</td> <td>1</td> <td>~5</td> <td>-2</td> <td>2</td> <td>202</td> <td></td> <td>17</td> <td>-2</td> <td>L</td> <td>10 40</td> <td>048</td> <td>4</td> <td>L</td> <td>51</td> <td>714 0</td> <td>1 2</td> <td>τ 🤉</td> <td>7 03</td> <td>> 17</td> <td>~2</td> <td>565</td>	DE C 27070	1.	15	9	20	75	14	7	8/./.	2 28	1	~5	-2	2	202		17	-2	L	10 40	048	4	L	51	714 0	1 2	τ 🤉	7 03	> 17	~2	565
$x_{RC} \in 27071$ 15529670.162.17x0.172.101.01	DDE C 27070		10	7	20	2.0	ž	'	959	2 27	7	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	202		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 2	10.40	.000	š	7	52	70~ 0	12	z . z		10	~2	107
$ \begin{array}{c} 27072 \\ c 27073 \\ \hline \\ 7 \\ 58 \\ 229 \\ 226 \\ 5.3 \\ 7 \\ 7 \\ 58 \\ 229 \\ 226 \\ 5.3 \\ 7 \\ 7 \\ 7 \\ 58 \\ 229 \\ 226 \\ 5.3 \\ 7 \\ 7 \\ 7 \\ 58 \\ 229 \\ 226 \\ 5.3 \\ 7 \\ 7 \\ 7 \\ 58 \\ 229 \\ 226 \\ 5.3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 58 \\ 229 \\ 226 \\ 5.3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 58 \\ 229 \\ 226 \\ 5.3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 58 \\ 229 \\ 226 \\ 5.3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 58 \\ 229 \\ 226 \\ 5.3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $	RRE C 21010		55	40	27	5.7	0		010	2.61	3	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	203	4 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷.	10.01	.000	1	2		75 - 0	: 2	2.2 ZZ	n n	1 15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	702
$ \begin{array}{c} 27072 \\ (27073 \\ (7 58 229 226 5.3 7 7 1056 2.42 16 <5 <2 <2 79 5.0 18 <2 4 3.34 .029 <1 5 1.16 26<.01 3 .31 .01 .15 \\ (27074 \\ 1 87 5 55 .4 4 16 1031 3.51 3 <5 <2 <2 79 5.0 18 <2 4 3.34 .029 <1 5 1.16 26<.01 3 .48 .01 .26 \\ (27075 \\ 1 163 6 45 1.1 4 15 1144 3.56 5 <5 <2 <2 179 .5 <2 <2 36 4.72 .117 6 3 2.17 328 .01 3 .48 .01 .26 \\ (27076 \\ 1 137 3 47 .9 4 14 1063 3.37 6 <5 <2 <2 148 .7 <2 <2 0 4.89 .118 4 3 1.83 82 .01 3 .43 .01 .26 \\ (27077 \\ 1 92 <3 68 <.3 6 20 1034 3.50 13 <5 <2 <2 164 .5 <2 <2 25 5.16 .107 6 3 1.97 200 .01 3 .40 .02 .25 \\ (27077 \\ 1 92 <3 68 <.3 6 20 1034 3.50 13 <5 <2 <2 157 <.2 <2 <2 61 3.96 .118 11 4 2.56 743 .03 3 2.02 .02 .25 \\ (27078 \\ 1 108 <3 66 <.3 6 17 908 3.40 14 <5 <2 <2 136 <.2 <2 <2 84 3.46 .122 10 4 2.41 217 .07 3 1.93 .03 .18 \\ (27079 \\ (27080 \\ 1 179 3 108 1.9 4 16 1092 4.08 5 <5 <2 <2 166 .6 <2 <2 49 4.59 .114 10 2 2.06 537 .02 3 .46 .02 .22 \\ (27080 \\ 1 179 3 108 1.9 4 16 1092 4.08 5 <5 <2 <2 160 1.7 <2 <2 16 4.93 .123 4 2 1.81 66<.01 3 .49 .01 .27 \\ (27080 \\ 1 191 5 117 2.2 5 17 1129 4.21 5 <5 <2 <2 160 1.7 <2 <2 16 4.93 .123 4 2 1.81 66<.01 3 .49 .01 .27 \\ (27081 \\ 3 855 11 51 43.5 8 5 343 1.67 2 <5 6 <2 <2 17 .2 <2 <2 16 5.03 .124 4 2 1.81 67<.01 3 .46 .01 .27 \\ (27081 \\ 3 855 11 51 43.5 8 5 343 1.67 2 <5 6 <2 <2 17 .2 <2 <2 38 4.55 .116 13 3 2.14 260 .02 3 .64 .01 .27 \\ (27082 \\ (27083 \\ 1 91 5 117 2.2 5 17 1129 4.21 5 <5 <2 <2 17 .2 <2 <2 38 4.55 .116 13 3 2.14 260 .02 3 .64 .01 .27 \\ (27084 \\ 1 290 29 86 1.8 3 15 1126 3.46 5 <5 <2 <2 17 .2 <2 <2 38 4.55 .116 13 3 2.14 260 .02 3 .61 .01 .26 \\ (27084 \\ 1 290 29 86 1.8 3 15 1126 3.46 5 <5 <2 <2 125 <.2 <2 125 <.2 <2 16 5 .13 .118 7 2 2.02 71 .01 3 .42 .01 .25 \\ (27085 \\ 1 266 5 66 5 .5 5 17 1027 3.61 5 <5 <2 <2 125 <.2 <2 <2 56 5.13 .118 7 2 2.02 71 .01 3 .42 .01 .25 \\ (27085 \\ 1 266 5 66 5 .5 5 17 1027 3.61 5 <5 <2 <2 125 <.2 <2 <2 38 4.55 .116 13 3 2.14 260 .02 3 .61 .01 .26 \\ (27085 \\ 1 266 5 66 5 .5 5 17 1027 3.61 5 <5 <2 <2 125 <.2 <2 <2 38 5.5 .116 13 3 3 2.14 260 .02 3 .61 .01 .25 \\ (27086 \\ 1 290 29 86$	C 21011	25	174	10	42	2.6	40	10	910	2.72	24		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-1	222	1.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	7 47	.037		~	4 37	15.0		, 7 7	0.0	45	1	550
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			120	101	139	0.0	10	10	0/0	2.00	20	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	4.1	40	~~~	2	3.02	.039	S	- 4 E	+ 4/	405.0	4).C 777	· · ·	1 . 13	-	227
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27073	1 '	20	209	220	5.5			1020	2.42	10	<2	~2	~2	19	5.0	10	~2	4	3.34	.029	51	2	1.10	201.0	I	J.J	1.0	.13	ſ	73
$ \begin{array}{c} 27074 \\ (27075 \\ (27075 \\ (1) 37 \\ (3) 47 \\ (1) 37 \\ (3) 47 \\ (27076 \\ (27077 \\ (1) 92 \\ (3) 48 \\ (3) 47 \\ (3) 47 \\ (3) 9 \\ (4) 14 \\ (1063 \\ (3) 37 \\ (5) 5 \\ (2) 27078 \\ (1) 137 \\ (3) 47 \\ (3) 9 \\ (4) 14 \\ (1063 \\ (3) 37 \\ (5) 5 \\ (2) 27078 \\ (1) 137 \\ (3) 47 \\ (3) 9 \\ (4) 14 \\ (1063 \\ (3) 37 \\ (5) 5 \\ (2) 22 \\ (2) 1034 \\ (3, 5) 13 \\ (5) 5 \\ (2) 22 \\ (2) 1034 \\ (3, 5) 13 \\ (5) 5 \\ (2) 22 \\ (2) 1034 \\ (3, 5) 13 \\ (5) 5 \\ (2) 22 \\ (2) 1034 \\ (3, 5) 13 \\ (5) 5 \\ (2) 22 \\ (2) 1034 \\ (3, 5) 13 \\ (5) 5 \\ (2) 22 \\ (2) 1034 \\ (3, 5) 13 \\ (5) 5 \\ (2) 22 \\ (2) 1034 \\ (3, 5) 13 \\ (5) 5 \\ (2) 22 \\ (2) 1034 \\ (3, 5) 13 \\ (5) 5 \\ (2) 22 \\ (2) 1034 \\ (3, 5) 13 \\ (5) 5 \\ (2) 22 \\ (2) 166 \\ (3) 2 \\ (2) 108 \\ (3) 46 \\ (3) 12 \\ (3) 46 \\ (3) 12 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 109 \\ (2) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 109 \\ (2) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 109 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 109 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 109 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 109 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 109 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 109 \\ (3) 108 \\ (3) 109 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 108 \\ (3) 109 \\ (3) 108 \\ ($	r 2707/		97	E	55		1	14	1021	7 51	7	~5	-2	~2	170	E	~2	~2	74	1 73	117	4	z	2 17	728 0	4	z 4	R 0'	1 74	~2	41
$ \begin{array}{c} 27073 \\ (27076 \\ (27076 \\ (27076 \\ (27077 \\ (1)92 \\ (3)68 \\ (3)66 \\ (3)$	C 27074		147	5	27	. 4	7	45	1031	7 54		1	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4/0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	4.72	110		7	4 97	920 .0	4	J	z	1 24	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	179
$ \begin{array}{c} 27076 \\ (27077 \\ (1 \ 92 \ 4 \ 4 \ 16 \ 5 \ 5 \ 4 \ 7 \ 1 \ 9 \ 4 \ 16 \ 105 \ 5 \ 5 \ 7 \ 6 \ 5 \ 7 \ 2 \ 2 \ 157 \ 1 \ 2 \ 2 \ 2 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1$	L 21013		105	2	45	1.1	4	12	1144	3.30	2	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	140		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~	20	4.07	. 110		3	1.00	200 0		J.4 7/7	.	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1/0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			157	2	41		4	14	1003	3.31		0	~2	<2	104		~~~	<2	22	3.10	. 107		2	1.91	200 .0		3.4	0.0	2.23	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	147
C 27078 1 108 <3			92	0	00	<.3	ò	20	1034	3.70	15	<>	<2	<2	12/	<.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	01	3.90	.110	11	4	2.30	745 .0		3 2.0	2.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14
C 27079<133456<.3214951 2.97 3<5<2<2166.6<2<2494.59.1141022.06537.023.46.02.22c 27080117931081.941610924.085<5	C 2/0/8	1	108	<3	66	د.>	6	17	908	5.40	14	<>	<2	<2	156	<.2	<2	<2	84	5.46	.124	10	4	2.41	217.0	·	5 1.9	5.0	.18	<2	17
1 35 4 35 16 95 12 16 95 12 16	- 27079	1 <1	37		54	~ 7	2	14	051	2 07	٦	-5	~2	~2	166	4	~2	c?	40	6 50	114	10	2	2 04	537 0	2	٦ ـ ٨	6.0	2 72	<2	11
c 27080 1 176 4 107 1.8 5 16 1085 4.05 3 $< < < < < < < < < < < < < < < < < < < $	5 27090		170		109	1.0	2	14	1002	6.7/	2	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	141	.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	47	4.37	107		2	1 21	460	ан - 14	2.4 2./	0.0	26 1 27	22	220
RE C 27080 1 107 1.0 5 10 105 4.05 5 5 5 2 2 100 1.7 < 2 < 2 10 1.27 < 4 5 1.00 65 65 11 17 2.2 5 17 1129 4.15 5 5 < 2 < 2 15 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	L 21000		174	3 /	100	1.9	4	10	1092	4.00	7	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	101	4 7	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	4.73	123	7	2	1.01	45- 4	4 .	3.4 1.1	7 .U 0 0	יבריי ידריי	22	567 371
KRE C 27080 1 1 1 2.2 5 1 5 1 1 2.2 5 1 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 2 2 2 1 5 1 1 2 2 2 2 2 2 2 1 1 3 2 4 2 1.81 6/<.01 3 4 01 .01 .25 2 2 2 2 2 2 2 2 2 2 3 1.24 4 2 1.81 6/<.01 3 1.40 01 .09 2 2 2 2 2 2 3 1.24 4 2 1.81 6/<.01 3 1.40 01 .09 2 2 2 2 2 3 3 2.14 260 .02 3 .14 01 .01 .01 .01 .02 .01 .01 .01	RE 6 27000	1 !	1/0	4	107	1.0	2	10	1000	4.00	2	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	1.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	10	4.00	. 122		2	1.00	47.4		4.4 7 /	7.U 4 A	1.21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	230
c 27081 5 655 11 51 43.5 8 5 343 1.67 2 <5	KKE U 27080	1	171	2	117	2.2	2	17	1129	4.21	2	\$	<2	<2	124	2.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	5.05	.124	4	2	1.01	0/5.0		3.4 74	0.U	1.27	~~	201
C 27082 <1	27081	5	822	11	51	43.5	8	2	545	1.67	2	<>	6	<2	41	2.5	2	2	6	1.59	.051	2	8	.54	28<.0	. .	ו. כ	4.0	1.09	2	2141
C 27083 4 3469 11607 2841 200.7 11 5 332 3.17 <2 <5 102 <2 39 250.1 4 14 6 1.26 .020 <1 10 .51 23<.01 <3 .15 .01 .09	. 27082	<1	12	a	<u>ጸ</u> ጸ	7	2	12	857	3.10	5	<5	<2	0	217	2	~?	~?	7.8	4 55	.116	13	7	2.14	260 0	2	3 .4	1.0	1.26	0	114
C 27084 1 290 29 86 1.8 3 15 1126 3.46 5 <5	27083	4	7440	11607	2861	200 7	11	5	332	3 17	ó	-5	102	2	70	250 1		14	~	1 24	020	1	10	51	23<	1 2	τ.1	5 0	1 .00	<2	00000
C 27085 1 266 5 5 17 1027 3.61 5 <5	2708/		2907	2007	94	1 0	7	15	1124	2.11	2	~	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10/	20.1	~~~	- 14	24	5 17	110	7	2	וע. כח כו	71 0			, .U 2 0	· ···// 1 · ?Z	22	775
C 27086 1 68 31 86 1.9 5 15 1041 3.47 4 <5 <2 <2 157 1.8 <2 2 39 5.32 .109 5 3 1.84 916 .01 4 .56 .02 .18	0 27095		270	27 F	00 4/	1.0	2	17	1027	J.40	5	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	174	2.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	1.12	448		2	2.06	202	1000 - 1000 1720 - 1000		5.U 7 0	1 .CJ	2	404
دا. 20. 35. 4 ال. 10 4 1.5 5 2 × 10. 2. 2× 3. 12 × 2× 2× 2× 10. 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	L 21003		200	24	00		2	17	1027	3.01	,	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	127	<.2	S S	્યૂ	74	4.11	. 112	<u>_</u>	2	4 01	J0J .L		4 .Y / E	7.U	5 .17 3 40	2	771
	L 21000	"	00	51	00	1.9	2	15	1041	3.4/	4	<>	<2	<2	157	1.8	<2	2	28	5.52	.109	2	5	1.04	A10 'f		4.7	0.0		~2	261
STANDARD F/ALI-R 22 60 36 137 6 7 68 34 1013 4 11 41 15 6 38 53 18 5 18 22 60 53 004 40 60 94 100 00 28 1 04 06 15	STANDARD C/AU-P	22	60	36	137	67	68	34	1013	4 11	41	15	4	78	57	18 5	18	22	60	57	004	40	60	Q 4	190 0	0 7	8 1 9	<u>م</u>	5 12	10	489

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FROM 30 GN SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 25 1995 DATE REPORT MAILED:

/....D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS
AA	GEOCHEMICAL ANALYSI	8 CERTIFICATE	A A
11	Harlow Ventures Inc. 1 3750 W. 49th Ave, Vancou	File 🖋 95-4689 Ner BC Ván 318	TT
	SAMPLE#	Ag Au** ppm ppb	
	C 27210 C 27211 C 27212 C 27213 C 27214	7.0 712 4.8 570 5.6 650 2.2 248 1.6 271	
	C 27215 C 27216 C 27217 RE C 27217 RRE C 27217	3.5 630 6.4 795 8.5 952 8.0 1057 7.4 957	
	C 27218 C 27219 C 27220 C 27221 C 27222	.3 71 <.3 15 .6 81 1.9 289 5.9 833	
	C 27223 C 27224 C 27225 C 27226 C 27227	.5 106 1.4 200 <.3 20 .4 81 <.3 14	
	RE C 27227 RRE C 27227 C 27228 C 27229 C 27230	<.3 12 <.3 8 <.3 5 <.3 55 1.3 189	
· ·	C 27231 C 27232 STANDARD C/AU-R	<.3 34 <.3 14 6.3 464	

ACME ANALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST. VANCOUVER BC. V6A 186 PHONE (604) 253-3158 PAX/604) 253-1716

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FRON 30 GM SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 20 1995 DATE REPORT MAILED: //OU 21/9

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

PHONE (604) 253-3158 FAX (604) 253-1716

.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Harlow Ventures Inc. File # 95-4400 3750 W. 49th Ave, Vancouver BC V6W 318 Page 1

				<u></u>		<u></u>	<u></u>			<u></u>	*****	<u></u>	+L	<u> </u>	<u></u>	OL.		<u>, 144 ; 51 ; 5</u>		ans an s			H.(192)(<u></u>		<u></u>		<u></u>	<u></u>		A	
SAMPLE#		000	00	20	Ag DOM	ni	nomi		re Y	AS DOM	000			57 000	DDM	50	000	N N N	ເສ 	ר די ע	La	СГ 2000	ng Y	68 000	11 X	ы Полла	AL Y	na Y	K Y	N DOM	nob	
	P-P-III	Phil	ppii	- ppm	ppm	ppm	PPril		~	PPm	b dout	Phan	Ppm	ppin	-	PPaul	P.P.	P.P.a.		~	PPm.	ppm		Phu	~	ppin			~	pp		
C 27087	1	48	5	59	1.2	5	17	1327	4.22	4	6	<2	<2	172	.8	7	<2	15	5.01	.101	3	6 2	.31	86<	.01	<3	.44	.01	.23	<2	220	
C 27088	3	126	6	74	3.1	6	16	1457	4.41	3	6	<2	<2	155	3.3	8	<2	13	5.55	.105	3	8 2	2.06	58<	.01	<3	.44	.01	.28	<2	432	
C 27089	1	178	7	40	8	Ā	16	1305	3.87	7	7	<2	ā	137	3	6	ō	34	5 34	110	5	7 2	13	85	02	Ī	47	02	.28	<2	70	
c 27090	-1	42	÷	52		- 2	17	1142	6 00	ż	ė	~2	~2	111	12	č	~	45	5 07	110	ó	5 4	70	45		ž	07	04	17	~	45	
C 27090		72	7	50		7	17	1170	4.07	ž	~5	~	22	07		4	25	40	7.00	4 1 0	10	0.2	. FO	107	.02		4 20	07	- 14	~	47	
C 27091	2	12	(20	<.3	'	17	1120	4.13	0	< 2	~2	<2	သ	۲.2	0	~2	00	3.99	. 1 10	10	У <u>2</u>		197	.05	9	1.20	.05	. 10	~~	14	
C 27092	1	382	5	41	.5	5	13	962	4.36	7	5	<2	<2	88	<.2	6	<2	83	4.53	.126	10	71	.55	98	.04	<3	.70	.05	.11	<2	58	
C 27093	1	739	4	55	4.3	4	17	1246	3.91	4	<5	<2	<2	137	.8	6	<2	18	5.35	.111	3	1 2	2.00	71<	.01	3	.35	.01	.20	<2	288	
C 27094	5	113	4	23	3.0	9	8	613	1.95	3	<5	<2	<2	60	.5	5	<2	7	2.10	041	2	13	.86	27<	.01	3	.20	.01	.12	3	451	
c 27095	<1	65	Ś	30	1 0	Ĺ	15	1141	3 57	8	<5	ō	ō	151	5	6	~	24	4 82	112		<u> </u>	05	07	<u>01</u>	3	38	01	10	-2	233	
C 27096	4	711	70	80	47	Å	16	1214	6 62	13	~5	2	0	144	21	7	2	16	4 58	174	ž	3 1	81	460	01	à		01	26	2	626	
0 21075			37		4.7	0	10	16.14	4.46		~	~6	~6	144	3.1	•	~6	10	4.30	. 124	5	5	.01	40 \	.01	~	. 46	.01	.20	~~	020	
C 27097	3	1681	1157	1148	184.3	7	3	236	1.24	12	<5	26	<2	23	90:.3	13	2	2	.78	.011	1	12	.33	102<	.01	3	.07	.01	.04	<2 ;	22334	
C 27098	1	265	21	83	2.4	6	20	1345	4.10	24	7	<2	<2	208	2.3	9	<2	18	5.49	.118	4	32	.38	106<	.01	ও	.47	.01	.22	<2	258	
C 27099	1	54	11	64	.7	6	18	1144	3.50	9	5	<2	<2	170	.5	5	<2	63	5.42	.126	12	39 2	.13	1584	.03	3	1.54	.02	.15	<2	58	
C 27100	2	101	25	61	2.6	5	15	1234	3.56	4	6	<2	<2	194	2.1	5	<2	19	5.14	.121	5	7 2	. 12	76	.01	3	.51	.01	.31	2	487	
RF C 27100	1	00	26	50	27	÷.	15	1230	3 55	4	~	2	~2	103	21.0	~	0	10	5 14	120	ŝ	52	12	70	01	~	52	01	31	2	450	
	•	.,	LU			2		1230	5.33	-	Ŭ	-	~	.,,	2,0	Ŭ	-	.,	2.14					10						-		
RRE C 27100	1	99	25	46	2.9	3	15	1247	3.44	5	5	<2	<2	185	1.8	6	<2	17	5.10	.119	5	1 2	.09	79	.01	3	.46	.01	.27	<2	135	
C 27151	2	43	6	47	<.3	4	15	1166	3.67	6	7	<2	<2	123	.8	5	<2	48	5.05	.128	10	26 2	.09	1038	.02	<3	.45	.02	.24	<2	24	
C 27152	Ĩ	47	7	63	<.3	Ĺ	14	1081	3.63	5	7	<2	$\overline{2}$	08	1.5	ŝ	<2	40	5.48	.115	9	28 1	.38	1064	.01	Ā	.46	.02	.21	<2	12	
C 27153	1	74	R	53	~ 3	5	15	1130	3 00	ŝ	ġ	~2	2	101	3	~	2	~	4 45	128	11	15 2	02	438	03	ž	54	03	10	-2	24	
c 2715/	ż	00	17	10	5.5	7	17	4/.04	1.70		5		~	101		ě		47	7.44	444	7	44 4		30	.05			.05	- 17	-2	600	
6 27134	3	00	13	40	2.5	'	.,	1401	4.21	o	5	~2	~2	123	.0	0	~2	15	4.00		3		.07	201	.01	5	.55	.01	.21	~2	007	
C 27155	3	61	10	48	4.8	6	16	1251	4.39	8	<5	<2	<2	128	.3	5	<2	13	4.24	.131	4	61	.63	46<	.01	<3	.37	.01	.24	<2	839	
C 27156	<1	129	8	51	<.3	4	15	1300	4.03	8	7	<2	3	119	<.2	6	<2	68	4.04	.159	15	14 1	.81	471	.03	5	.63	.03	.25	<2	21	
C 27157	2	423	11	52	2.3	5	21	1640	4.90	7	<5	$\overline{\mathbf{Q}}$	õ	157	.8	7	<2	18	5.07	130	5	4 1	.89	39<	.01	å	-44	.03	.27	~	580	
C 27158	<1	28	57	52	0 6	~	4	540	1 36	ż	-5	~	0	43	2.8		2		1 35	026	1	ò	54	1364	01	a	12	01	07	7	1200	
c 27150	2	124	54	07	14 9	ň	18	1347	4 48	7	~5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~	100	1.7	- 2	~2	10	2 29	120	ż	7 1	77	242	01	1	75	-01	.07	~2	1005	
C 27137	2	120	0	75	10.0	U	10	1341	4.40	'	5	~2	~2	107	4.7	0	12	10	5.20	. 150	2	, ,		747	.01	4		.01	.23	~2	1903	
C 27160	4	42	381	193	29.3	9	6	447	1.51	7	<5	4	<2	32	13.2	5	<2	5	1.07	.028	2	16	.44	94<	.01	4	. 14	.01	.09	3	3826	
C 27161	1	56	42	42	4.9	7	19	1548	4.65	9	<5	<2	<2	161	1.2	6	<2	13	4.80	. 123	3	2 1	.97	32<	.01	<3	.37	.01	.27	<2	815	
C 27162	1	72	8	40	1.3	4	17	1411	4.03	6	6	<2	<2	141	.5	6	<2	20	4.90	.144	5	5 1	.93	52	.01	3	.44	.01	.32	<2	360	
RF C 27162	1	71	7	39	1.4	Ĺ	17	1366	3.94	6	<5	$\overline{2}$	$\overline{2}$	136	.6	7	<2	20	4.75	140	5	2 1	.87	66	.01	3	.45	.01	.32	~	365	
PPE C 27162	-1	71	10	40	1.8	Ē	18	1403	6 00	Ă	~	~2	~2	1/0		Å	~2	10	6 97	175	í	2 1	07	55	01	~	.45	.01	30	~~	619	
	-1				1.0	2	.0	1403	4.07	U	•2	-1	~2	147	.0	v	~6	.,	4.00		-		. , , ,			5	.76			~6	410	
C 27163	<1	87	. 4	51	<.3	4	15	1201	3.33	3	<5	<2	2	135	<.2	4	<2	52	4.88	.141	10	17 1	.53	500	.03	<3	.01	.02	.24	<2	40	
C 27164	1	100	7	75	<.3	9	22	1180	8.04	8	7	<2	<2	143	<.2	6	<2	213	6.39	.119	5	25 2	. 28	66	.11	3	1.94	.02	.09	<2	19	
C 27165	<1	242	3	57	<.3	7	14	1140	4.06	ž	5	$\overline{2}$	<2	213	.2	6	<2	71	7.18	100	7	14 2	16	65	01	3	2.03	02	.17	<2	11	
C 27144	4	278	ž	A4	~ 7	7	18	1005	5 82	17	ś	~2	~	185	< 2	š	~ 2	15A	5 55	120	ż	18 2	0.02	187	1.9	z	1 87	04	11	2	11	
C 27147	1	166		49	~	'7	17	857	1.02 6 1F	7	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44	<u>``</u>	20	~2	10	2.22	005	7	10 2	20	76/~	. 10	.7	74	.04	20	~2	29	
L 21 101	~ 1	122	D	00	۰.>	'	13	007	4.17	1	У	~4	~2	04	.0	20	~2	32	0.10	.093	0	12	. 30	224<	.01	~>	. /0	.01	. 20	~2	20	
C 27168	1	503	3	35	.9	9	9	671	2.63	8	<5	<2	<2	273	.5	17	<2	46	17.99	.077	4	64 1	.03	253<	.01	<3	1.07	.01	.08	<2	8	
C 27169	1	75	6	44	<.3	17	12	687	3.50	8	5	<2	<2	245	<.2	5	<2	72	12.46	.092	5	84 2	.11	387	.06	<3	1.77	.03	.09	<2	12	
STANDARD C/ALI-R	20	59	36	128	6.2	64	33	1142	4.12	44	18	8	36	51	18.0	17	17	56	.52	.095	39	61	.95	187	.08	23	1.94	.06	.15	10	493	
										••																						
11	ъ.	500	GPAM	SAMPI	E 19 D	IGES	TED	UTTH	3.00 7	1-1-2	HCL		3-82	n at	05 h	FC	C EO				TC D	JI UTE	D TO	10 1	i ut	TH U	ATED					

SIGNED BY ... 4

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB 2N AS > 1%, AG > 30 PPH & AU > 1000 PPB

- SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 31 1995 DATE REPORT MAILED: ////

ACRE MALIVICAL

Harlow Ventures Inc. FILE # 95-4400

Page 2

ACHE ANALYTICAL																														INC. INCOME.	- ICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	B	AL	Na	K	W	Au**
	phii	ppii	ppii	ppii	- phii	phin	Рри	ppii		ppm	Phil	- ppm	- Phan	Phi	ppm	- Phil	Phil	Рри		~~~~~	- PPm	hhu		Phu		ма		~	~	hhu	Pho
C 27170	1	68	<3	45	.7	17	10	976	3.53	<2	<5	<2	<2	242	<.2	<2	<2	104	10.87	.093	6	87	1.57	202	.01	51	.03	.03	.08	<2	4
C 27171	1	141	11	72	4.5	16	14	1010	5.56	9	<>	<2	<2	122	2.1	20	<2	19	15.17	.082	4	24	1.16	646	<.01	4	.37	.01	.20	<2	904
C 27172	<1	43	- 4	39	.3	11	9	825	2.83	<2	<5	<2	<2	279	<.2	<2	<2	65	15.15	.080	5	52	1.57	217 -	<.01	- 3	.49	.02	.07	<2	23
C 27173	1	78	4	48	.6	18	13	678	3.21	- 4	6	<2	<2	140	.4	<2	<2	80	8.14	.102	- 4	72	2.55	88	.16	32	.00	.04	.06	<2	9
C 27174	1	210	<3	67	.9	16	15	928	3.91	<2	<5	<2	<2	163	.3	<2	<2	92	6.13	.080.	7	36	2.31	27	.05	32	.16	.02	.10	<2	21
C 27175	1	44	3	61	.4	10	7	541	2.57	5	5	<2	2	123	.3	<2	<2	54	9.52	.066	9	23	.90	19	.15	4	.82	.03	.04	<2	<1
C 27176	1	113	<3	55	.8	- 14	11	833 3	3.53	<2	<5	<2	<2	145	<.2	<2	<2	103	786	.086	5	55	1.76	33	.18	31	.59	.04	.05	<2	13
C 27177	1	54	<3	55	1.0	15	12	844 3	3.54	5	<5	<2	<2	156	.3	2	<2	109	8.95	.072	7	41	1.69	22	.16	31	.43	.03	.04	<2	7
RE C 27177	1	56	<3	59	1.1	16	12	888 3	3.77	2	<5	<2	<2	167	.3	<2	<2	117	9.37	.074	6	43	1.77	23	.17	31	.53	.03	.05	<2	4
RRE C 27177	<1	46	<3	56	1.1	16	12	877 3	3.76	4	<5	<2	<2	163	.3	<2	<2	116	9.20	.073	7	44	1.76	28	.16	4 1	.50	.03	.05	<2	4
C 27178	1	30	3	55	.5	11	12	1030	3.48	<2	<5	<2	<2	182	.4	<2	<2	61	9.48	.077	8	18	2.04	304	.02	3	.69	.02	.21	<2	4
C 27179	1	20	3	32	<.3	12	14	838 1	3.19	<2	<5	<2	<2	269	<.2	<2	<2	28	9.68	.109	4	26	2.60	266	.01	<3	.39	.01	.27	<2	76
C 27180	- 4	29	50	- 41	3.5	7	8	635 2	2.18	<2	8	<2	<2	162	.6	2	<2	9	9.26	.081	4	6	1.08	41	<.01	3	.33	.01	.26	<2	773
C 27181	<1	6	<3	70	<.3	15	9	566 2	2.54	3	<5	<2	<2	223	<.2	<2	<2	27	12.09	.090	8	22	1.19	122	.02	31	.03	.01	.17	<2	20
C 27182	1	45	10	31	4.6	6	8	669	2.05	<2	5	<2	<2	230	.5	3	<2	11	11.78	.078	4	5	.93	173	<.01	<3	.32	.01	.22	<2	1084
C 27183	1	28	<3	57	.8	14	13	897	3.31	<2	<5	<2	<2	145	.2	<2	<2	90	6.85	.090	6	35	2.36	25	. 14	<3 2	.01	.02	.15	<2	26
STANDARD C/AU-R	20	56	36	126	5.9	63	30	1058	5.85	42	.17	8	37	50	17.1	18	16	59		.092	42	58	89	186	.08	28 1	.81	-06	. 15	10	460

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACKE ANA	LYTI	CAL	LAB	ORAT	ORIE	5 LT	D.		852	B. 1	last:	ING8	BT.	. VA	NCOUN	/ER	BC	V6 A	. lr(5	PH	one (604) 253	3-31	5 8 :	FAX (604	253	-1716
				t source for La de la de La de la de					<u>्</u> ।	GEO	CHER	(IC)	L/1	18 5)	AY C	ERT	IFI	Cat												
								H	arl	<u>ow</u>	7en 1 3750	U. 4	9 8 9th A	Ve, V	• F lancouv	lle er BC	Vón :	95- 378	•450)4										
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	Al X	Na X	K X	V Au** ppm oz/t
C 27184 C 27185 C 27186 C 27186 C 27187 C 27188	<1 1 3 2 1	103 56 23 24 22	67 229 89 26 29	178 228 95 79 76	3.3 6.3 7.3 1.6 .8	6 9 9 10 6	12 10 7 7 6	945 1030 851 857 744	3.71 2.80 2.20 2.51 2.22	2 3 2 2 3	7 7 5 7	~? ~? ~? ~?	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	123 157 149 157 256	.8 7.3 1.1 .6 .6	9 3 2 2 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	46 6 9 11	9.22 7.20 6.68 6.68 8.84	.076 .066 .057 .065 .080	4 2 4 5 8	6 5 6 5 5	.88 1.05 .67 .67 .63	419 75 35 113 58	<.01 <.01 <.01 <.01 <.01	3 3 3 3 3 3 3 3	.95 .34 .27 .30 .24	.03 .02 .02 .03 .03	.28 .24 .17 .19 .15	<2<.001 <2 .014 <2 .027 <2 .004 <2 .001
C 27189 C 27190 C 27191 RE C 27191 RRE C 27191	4 3 <1 <1 <1	2408 50 95 89 90	4473 66 49 58 52	796 69 70 69 74	192.7 3.9 3.1 4.3 2.5	13 10 8 8 8	6 8 12 12 13	638 894 1317 1324 1337	2.74 2.43 3.47 3.49 3.49	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	11 <5 9 5 <5	26 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	103 127 120 121 122	58.1 1.7 .9 1.2 1.3	8 8 8 8 8 8 8 8 8 8	2225 2225 2225 2225 2225 2225 2225 222	7 7 8 8 8	3.71 4.86 4.65 4.67 4.58	.038 .054 .077 .078 .077	2 4 2 2 2	11 7 2 2 2	.61 .93 1.57 1.58 1.58	31 42 36 36 37	<.01 <.01 <.01 <.01 <.01	ওওওও ওওওও ও	.21 .26 .34 .34 .35	.03 .02 .01 .02 .01	.13 .16 .15 .15 .15	<2 .698 <2 .013 <2 .012 <2 .013 <2 .013 <2 .013
C 27192 C 27193 C 27194 C 27195 C 27196	2 8 1 2 2	709 1474 95 80 50	6817 3779 221 68 31	2641 2612 148 112 73	134.9 186.9 5.2 2.1 1.5	15 11 12 11 12	12 2 14 13 13	1073 320 1091 1421 1228	3.84 2.04 4.15 3.88 3.63	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 <5 8 <5	16 23 <2 <2 <2	~~~~~ ~~~~~~	85 15 101 84 115	182.0 187.3 4.7 1.8 1.1	2 3 2 2 2 2 2 2 2 2 2	2 3 3 ~2	26 3 69 28 16	3.73 .75 3.51 4.48 4.58	.067 .010 .088 .084 .084	2 <1 6 4 3	14 13 11 6 5	1.51 .30 1.72 1.65 1.56	75 26 227 170 115	<.01 <.01 <.01 <.01 <.01	33433 3	.82 .08 1.74 .85 .48	.03 .01 .05 .04 .02	.17 .04 .14 .23 .17	<2 .444 <2 .595 <2 .019 <2 .007 <2 .007
C 27197 C 27198 C 27199 C 27200 C 27201	4 1 2 <1	107 80 88 58 100	216 19 45 69 13	181 85 93 89 88	4.9 1.2 3.3 5.2 .4	10 11 10 12 9	13 13 13 12 12	1115 1241 1329 1119 1271	3.56 3.90 3.88 3.66 3.91	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<5 <5 9 <5 5	~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	94 99 98 80 98	3.8 1.3 2.6 1.1 1.1	<2 <2 <2 <2 <2 <2 <2	5 ~2 ~2 ~2 ~5	13 21 12 19 24	3.96 4.32 4.62 3.65 4.76	.076 .082 .083 .077 .092	1 2 2 1 4	3 4 4 3 5	1.34 1.55 1.56 1.32 1.64	64 185 53 48 321	<.01 <.01 <.01 <.01 <.01	5555 5555	.44 .43 .40 .47 .59	.02 .04 .03 .03 .04	.19 .20 .24 .19 .22	<2 .017 <2 .005 <2 .011 <2 .019 <2 .001
C 27202 C 27203 RE C 27203 RRE C 27203 C 27204	4 <1 <1 1	211 203 206 194 87	42 19 21 21 54	20 75 79 82 146	82.1 2.1 1.6 1.6 2.4	10 4 5 3	1 14 14 14 13	121 1384 1406 1345 1398	.68 3.48 3.50 3.35 3.40	3 5 4 3 5	ৎ 7 ৩ ৩ ৩ ৩	14 <2 <2 <2 <2	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 212 215 205 185	.6 1.8 2.1 1.3 1.0	3 <2 <2 <2 <2 2	3 <2 <2 3 <2	2 17 17 16 20	.17 5.46 5.51 5.27 5.00	.004 .104 .105 .099 .114	<1 3 4 3 4	12 1 1 2 1	.66 1.72 1.74 1.66 1.91	25 131 131 125 87	<.01 <.01 <.01 <.01 <.01	3 4 3 3 3 3 3	.06 .51 .51 .49 .43	.01 .01 .01 .01 .02	.04 .34 .34 .32 .29	<2 .374 <2 .007 <2 .007 <2 .008 <2 .008
C 27205 C 27206 C 27207 C 27208 C 27208 C 27209	1 1 1 9 1	133 1160 331 624 71	11 16 26 1630 39	60 60 75 442 74	2.5 4.9 1.9 116.2 3.8	9 6 5 10 8	18 12 13 3 17	1358 1141 1298 252 1390	3.82 3.49 3.71 1.23 3.98	< < < < < < < < < < < < <> <> <> <><><><><><><><><><><><><><><><><><><><>	<5 <5 5 <5 <5	<2 <2 15 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	189 126 148 15 193	.3 .9 1.0 31.2 1.1	<2 <2 <2 <2 <2 <2 <2	3 4 6 7	30 19 18 3 38	5.72 4.24 4.76 .57 5.87	.103 .092 .110 .006 .101	4 3 4 <1 4	5 3 2 11 5	2.46 1.53 1.66 .23 2.41	96 50 74 26 145	<.01 <.01 <.01 <.01 .01	3 3 3 3 3 3	.41 .34 .38 .07 .48	.01 .02 .02 .01 .01	.30 .23 .25 .04 .34	<2 .013 <2 .019 <2 .008 <2 .431 <2 .020
STANDARD C/AU-R	23	63	42	138	6.6	72	32	1128	4.14	45	23	9	40	52	1 8 5	18	18	60	.50	.090	41	58	.95	186	.08	25	1.90	.07	. 16	12 .097
DATE REG	CEIVI	IC TH As - Sa ED :	CP IIS LE SAY F SAMPL SAMPLes	500 C ACH I RECOMM E TYF 5 begi 4 199	GRAM SA IS PART HENDED PE: COR Inning 25 DJ	MPLE IAL F FOR R E <u>'RE'</u>	IS DI OR MN OCK A AU** <u>are R</u> REPC	GESTE FE S ND CO BY F <u>eruns</u>	D WIT R CA RE SA IRE A and MAIL	H 3ML P LA MPLES (SSAY <u>'RRE'</u>	3-1- CR MG IF CI FROM <u>are 1</u>	2 HCL 8A T U PB ∷ 1 A.T <u>Rejec</u>	-HNO3 I B W ZN AS . SAM <u>t Rer</u> 4/9	- H20 AND > 12 IPLE. <u>UNS.</u>	AT 95 LIMITE (, AG > SIG	DEG.C D FOR 30 P NTED	FOR (NA K PM & BY . (HOUR AL- 1000	AND IS	: DILU D.TOYI	TED T E, C.	O 10 LEONG	ML W	ITH WA	NTER.	FIED 1	3.C. /	ASSAYI	ERS

ACME ANALYTICAL LABORATORIES LTD. 852 E.	HASTINGS ST. VANC	DUVER BC V6A 1R6	PHONE (604) 253-3158 FAX (604) 25	3-1716
AA Harlow	ASSAY CERTII	File / 95-4249R		AA
	3750 V. 49th Ave, Vance	xwer BC V6N 318		
	SAMP LL.	gm/t		
	C 27003 C 27005 C 27006 C 27016 C 27023	2.34 2.48 2.14 1.01 .92		
	C 27040 RE C 27040	.83 .89		
	AU** BY FIRE ASSAY FROM ' - SAMPLE TYPE: CORE PULP Samples beginning 'RE' an	1 A.T. SAMPLE. re Reruns and 'RRE'/Jare Rejec	t Reruns.	
		C		
DATE RECEIVED: NOV 7 1995 DATE REPORT MAILED	Nov 17/95 8	IGNED BY.	TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSA	YERS

ABSAY CERTI	
Harlow Ventures Inc. 3750 W. 49th Ave, Ven	File # 95-4299R
SAMPLE#	Au** gm/t
C 27062 C 27063 C 27064 C 27065 C 27081	6.79 19.78 3.19 3.07 5.86
C 27083	103.96
AU** BY FIRE ASSAY FROM - SAMPLE TYPE: CORE PUL DATE RECEIVED: NOV 7 1995 DATE REPORT MAILED: NOV 7 1995 A	SIGNED BY
	,
·	

ACME ANALYTICAL	LABORATORIES LTD. 852 B. H	LASTINGS ST. VANC	COUVER BC V6A 1R6 PHONE(604)253-3158 PAX(604)253-1716
		ASSAY CERTI	IFICATE	
	<u>Harlow Y</u>	Ventures Inc. 3750 W. 49th Ave, Van	File # 95-4106R ncouver BC V6N 318	
		SAMPLE#	Au** gm/t	
		399627 H HN 9514 HN 9515 HN 9516 HN 9517	.91 1.04 .78 .76 .70	
	Ai	UNT BY FIRE ASSAY FROM	M 1 A.T. SAMPLE.	
		shiple tipe: cure put		
DATE RECEIVED:	NOV 7 1995 DATE REPORT MAILED:	NOV 11/95 1	SIGNED BY	ISSAYERS
		·	I	
		· · ·		
	······································			