467

SUMMARY REPORT ON THE SILVER CUP

PROPERTY

680222

82K

BEK/IIW

Livgard Consultants Ltd. E. Livgard, B.Sc., P.Eng., Vancouver. B.C. September, 13th, 1976.

INTRODUCTION

This report summarizes the work carried out on the Silver Cup property during the summer of 1976. The background information will not be given as it was well covered in the writers previous report on the property dated March 2nd, 1976.

The work carried out to date was designed to collect as much information as possible without going to major expenditures in rehabilitation or development. The program was very successful in that important information was gained which will allow future exploration and development at an accelerated rate. The recommendations of the previous report will be extensively changed, not so much in general procedure as in priorities, based on the findings herein described.

The writer is very appreciative to the President and Board of Directors of C.T. Exploranda Ltd., for allowing him the luxury of a detailed and careful approach to the work on the property.

SUMMARY AND CONCLUSIONS

2.

The Silver Cup Structure has been shown to be a very strong and continuous structure while subsidiary veins are far more numerous and comple, than previously understood. The ore possibilities are therefore more numerous and better than previously thought. The Silver Cup Structure and associated veins is a complex unsolved structural relationship with numerous indications of ore. Work to date has not given a full understanding of ore location or ore control. The large majority of the property has not been explored although the old timers no doubt prospected it well and found ore bodies mainly at higher elevations and in the Creek bottoms where overburden cover was relatively thin. Long stretches of covered structure between these points remain to be explored. The north western 2/3 of the property has had little work and geological mapping and soil surveying should be carried out.

The southeastern 1/3 of the property is better known through mining in the past, and several ore grade occurrances and specific and favourable exploration targets have been pin pointed.

None of the mines were worked down to the bottom of the ore shoots. The ore near the portal of #7 level was mined from the adit level and up while the downward extention was not picked up. Beside the main Silver Cup vein there are 5 other veins in this area, all of which could be relatively easily explored from the #8 level adit. There is no doubt that a significant amount of ore could be outlined by development from this level.

The Towser mine also has an undeveloped ore block below the adit level and it is proposed to drive a 1200 foot adit level 300 feet lower to reach its downward projection. This adit level will start on ore grade material in the Yuill vein and may outline an ore block here. It will open up a second favourable target at the junction of the Towser and Yuill veins and will continue following the Towser vein to below the Towaer Mine.

Three ore blocks may be encountered in this work.

Extensive measuring and sampling has given what is thought to be quite accurate figures on tonnage and grade of the dumps. The best grade is found on #3, #4, #6, #7 sorting dump and the dump at the tailings ponds. These dumps have a total of 21,300 tons grading 11.44 oz. Ag, 1.62% Pb, 1.13% Zn, and .05 oz. Au per ton. The main #7 dump contains 26,000 tons grading 4.05oz. Ag, 0.86% Pb, 0.96% Zn, and .03 oz. Au per ton. The above dumps total 47,300 tons with an average grade of 7.37 oz. Ag, 1.20% Fb, 1.07% Zn, and .04 oz. Au per ton. In addition there are 6700 tons on three dumps off the claim ground and another 7000 tons of low grade on #7 Dump. 25,700 tons of low-grade are found on various other dumps on the property.

The total amount of dump material from all mine workings on the property totals 86,700 tons.

The best grade material 47,300 tons with 7.37 oz. Ag, 1.20% Pb, 1.07% Zn, and .04 oz. Au per ton can probably be moved and treated at a considerable profit providing the capital cost of will installation can, to a

3. :

large extent, be carried by additional ore from an underground mining operation.

The confirmation of tonnages and good grades on the mine dumps is an important step toward establishing a viable mining operation on the property.

The objective of the recommended program is to indicate good grade ore in addition to the dump tonnages, which will, following a program of underground development, lead the property to the point of production feasibility study.

Gontinuation of the Grid system to the northeast to

The recommended drifting will undoubtedly encounter ore, the quality and quantity of such ore can not, however, be estimated at this time. The secondary objective of this drift is also important. It is designed with a view to becoming the main haulage drift for ore encountered on the downward projection of all the ore bodies mined in the past. It is much premature to speculate about such development, but it should nevertheless be kept in mind that the large majority of known ore shoots lie ahead of, and above this drift.

Stage 1.

1. Cat Work - Portal preparation and road maintenance.

2. Drifting: Starting on the Yuill vein near Cup Creek -

following the vein to its junction with the Towser vein - following the Towser vein to the downward projection of the Towser ore-

body.

The total drifting recommended amounts to 1200 feet.

3. Mapping and sampling of the drift.

Stage 2.

1. Continuation of the Grid system to the northwest to

allow systematic geological mapping and soil surveying

from Jup Greek to Lardeau Greek and on Black Eagle and

Sunset claims.

- 2. Geological mapping and soil surveying following the above Grid System.
- Rehabilitation of #4, #7 and #8 levels and #7 to #4
 raise.
 - 4. Diamond drilling mainly on #8 level.

5. Underground mapping and sampling of back fill and veins.

6. Cat work:

A. Roadwork - mainly ditching and culverts.

B. Trenching to check known veins, particularly The Silver Cup vein where it crosses the road between Cup Creek and #7 level.

7. Metallurgical Testing of the Dump Material.

1 14

Including: Crushing Tests Jig Tests Flotation Tests

Stage 2. is not dependent on favourable results in Stage 1. but becomes more important if Stage 1 meets with limited success. With favourable results in Stage 1. as is considered probable, stage 2. should be expanded by further underground development.

ESTIMATED COSTS OF RECOMMENDATIONS

Stage 1.

1.	Cat work - Road maintenance - 50hrs. 4 \$60/hr.	3000.
	Portal preparation	2000.
2.	Drifting - 1200 feet 9 \$90/ft (Contract	108000.
3.	Mapping, Sampling and Supervision	ų(Χ)Ο.
4.	Administration	3000.
	Contingencies	10000.
		\$ 130000.

Stage 2.

1.	Grid System	
	20 line miles # 2100/mile	2000.
2.	Geological mapping	
	20 days - 100/day	2000.
	Soil Survey	
	15 days100./day	1500.
	Analysis	1500.
3.	Rehabilitation of #4, #7, #8 and	
	#7 to $\#_1$ level raise	
	3 men - 3 wonths	15000.
	Tools and Supplies	7000.
4.	Diamond Drilling	
	1000 feet 🥪 15/ft.	15000.

- 7- .

		3
5.	Underground Mapping and sampling	
	olus supervision	
	60 days - 100/day	6000.
6.	Cat work - D8	
	Road work - 30hrs. 9 \$60/hr.	1800.
	Trenching - 20hrs	1200.
7.	metallurgical Testing - preliminary	5000.
Trai	ler Camp at the Towser Mine	12000.
Cate	ring and Supplies	
	700 Man Daya : 220/day	14000.
Vehi	cles: Purchase 4 x 4 Pick-Up - Used	6000.
	Repair "	1000.
admi	nistration and Travel	12000.
	Contingencies 15%	15000.
o hor	here Greek and up the other valley side to the	
	now of allout 15000 feet. Within this distant	s further dista
	offe Systems	v minimum-dirusi

1

This last 13.00 feet of the structure has not been more the

Several potentially anomalous and highly interesting features may

VEIN SYSTEM

Geological mapping this past summer was concentrated on the vein systems rather than the Rock Types.

The Silver Cup structure consists of Graphitic Schist, and Quartz lenses and veins, about 50 feet wide, in which there has been an undetermined amount of movement. The movement has usually followed the footwall or the hangingwall of the zone and this is where ore bodies are located at points where the zone shows slight flexures, where there are junctions with other veins or junctions with crossing zones of barren quartz veins.

The Silver Cup structure was traced from the southern border of the claims at an elevation of 7000 feet to Sharon Greek a horizontal distance of about 8000 feet. The zone was further tentatively identified into Lordeau Greek and up the other valley side to the end of the Sunset Grown Grant and the northern boundary of the claim group, a further distance of about 15000 feet. Within this distance a part of the structure on both sides of Lardeau Greek is covered by claims not part of the company's claim group.

North-western Vein System:

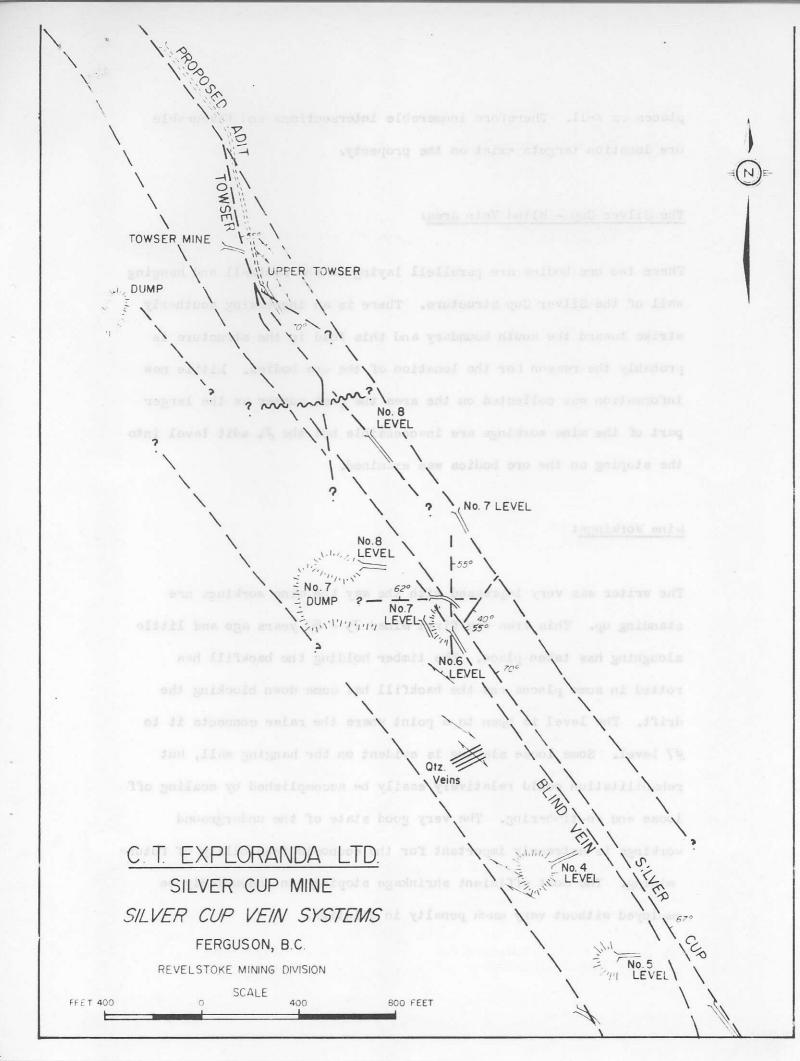
This last 15000 feet of the structure has not been mapped .

Several potentially anomalous and highly interesting features may occur within these 15000 feet of strike distance and it is considered

very important that the surface work of mapping and sampling be continued over this portion of the claims.

The features of particular interest are first, that as the rocks change strike from $N_{40}ON$ to $N60^{OW}$ the Silver Gup structure cuts at increasing angles across the rocks and will move from the siliceous argillite into massive grey quartzite (Rock Type 6 to 7) and will traverse about 1000 feet of quartzite, if the strike remains the same. All ore control features on the property are those which increase the potential for open space where minerals may collect and <u>where the structure crosses quartzite such potential will be</u> high, and it is therefore a very favourable exploration target.

In extending the structure further it will move from quartzite into silicieous argillite (Rock Type 7 to 8). This contact zone is mineralized in places and the intersection point is another favourable exploration target.


If the strike remains the same the Silver Cup Structure will intersect the Silver Cup fault on the northside of Lardeau Creek, and this will then constitute a third favourable target. It is not known, however, whether the Silver Cup Structure changes to a more westerly strike (N60⁰%) and runs parallel to the Silver Cup fault or whether the two join. The Silver Cup Fault has been mapped on B.C. Dept. of Mines Geology Maps while the Silver Cup Structure has not. The Fault is well mineralized and is shown extending Northwesterly across the Black Bagle and Sunset Crown Grants, and forming part of the Ajax and Nettie L mines vein systems.

The Silver Cup Structure lies at or near the crest of the Silver Cup anticline on the southeastern part of the property. It gradually cuts across the rocks and leaves the centre of the anticline as the anticline gradually changes strike to N60°W. It is possible that another zone or zones may continue following the anticline on a more westerly strike. The writer obtained the highest values in a spot soil sample near such possible structure at a point about 1000 feet south of the confluence of Lardeau and Finkle Creek. The soil sample gave 0.8 PEM. Ag, 259 PEM. Pb and 1500 PEM. Zn. The surface program of mapping, sampling and soil sampling should extend over the area.

Southeastern Vein System:

Work the past summer has established the Silver Cup Structure as an exceptionally continuous one. The structure has been traced from the southern border of the claims to Sharon Creek, a distance of 8000 feet. The Structure has been exposed intermittently by old mine workings and

by trenches and road cuts. These exposures are so similar and line up so well that there is little doubt about the continuity, although unexposed portions may contain minor breaks possibly caused by intersecting structures. The details of the vein system any however, far more complex than expected and far more interesting than indicated in old reports. Its' complexity holds promise of more ore possibilities than hoped for. The complexity is well shown on the accompanying diagram. The complex vein system is found in two areas, on the Sunshine and the Towser, where good exposures allow detail mapping. There is little doubt that this complexity will exist other

places as well. Therefore inumerable intersections and favourable ore location targets exist on the property.

The Silver Cup - Blind Vein Area:

These two ore bodies are parallell laying on the footwell and banging wall of the Silver Cup Structure. There is an increasing southerly strike toward the south boundary and this fold in the structure is probably the reason for the location of the ore bodies. Little new information was collected on the area the past summer as the larger part of the mine workings are inaccessible but the #4 adit level into the stoping on the ore bodies was examined.

Mine Workings:

The writer was very impressed with the way the mine workings are standing up. This area was first mined 75 - 80 years ago and little sloughing has taken place. The timber holding the backfill has rotted in some places and the backfill has come down blocking the drift. The level is open to a point where the raise connects it to #7 level. Some loose slabing is evident on the hanging wall, but rehabilitation could relatively easily be accomplished by scaling off loose and re-timbering. The very good state of the underground workings is extremely important for the economic feasibility of future mining. The most efficient shrinkage stoping can undoubtedly be employed without very much penalty in dilution.

The Sunshine Area:

Four intersecting veins are found not far from the portal in #7Sunshine Cross-cut, in addition the Yuill vein lies parallel 300 feet east and another unknown vein has been drifted on 50° to the west as shown by the dump numbered #6. Some good grade material has come out of this adit (300 tons of 13.29 oz. Ag, 2.27% Pb, and .86% Zn), but the portal is sloughed and it cannot be examined.

The Silver Cup Vein has been stoped for a length of about 110 feet from near its junction with one of the cross-veins. Pillars have been left about 30 - 40 feet up the dip of the vein but more mining has been carried out an unknown distance above the rillars. The stope does not appear to have broken through to surface. The crossvein has also been stoped a short distance up - dip.

The Silver Cup vein in the north end of the Sunshine stope is well mineralized and assayes:

9.12 oz. Ag, 1.87, Pb, 5.22, 2n, and .064 oz. nu over 5'.

97.14 UZ. Ag. 13.99, 20, 7.92, 2n, and .104 UZ. au over 12

96.22 oz. dj, 13.08, Pb 13.90% Zn, and .103 oz. Au over 1' It appears that good grade material remains in this stope and no stoping has been done below the level. The #8 level 250 feet lower down has, according to the writers projection, missed the downward extention of the ore and bypassed it about 50 feet in the foot wall.

The #8 level should therefore have a high priority for rehabilitation as a considerable block of ore may easily be outlined by short Diamond Drill holes.

The potential ore amounts to:

 $\frac{250 \times 110 \times 6.0}{10} = 16,500 \text{ Tons}$

The other 5 veins also are potentially ore bearing. One carries 50 oz. Az material over narrow widths, 4 - 6'', on surface and some stoping is reported to have taken place underground, another has been mined to a minor extent. The two parellel veins both have adit levels and well mineralized material shows on the dump but the portals are now sloughed. These 5 veins should be explored on the #8 level.

in eren the new ent to dro on

The Towser:

The Towser Mine lies on a cross-vein between the Silver Cup and the Yuill veins. It is a strong structure attaining a width of up to 15 feet. An ore body has been mined from the adit level to surface. The ore body extends below the level and judging by ore bodies in the Silver Cup Mine depth extention should be excellent.

The south end of the Towser vein appears to turn into a vein which lies parallel to the Silver Cup vein, this is the Upper Towser adit. Scanty outcrops indicate that the structure again turns to intersect the Silver Cup vein. There are no out-crops to give any information in this potentially favourable area. To the North the Towser vein should intersect the Yuill vein about 400 feet from the Towser Mine.

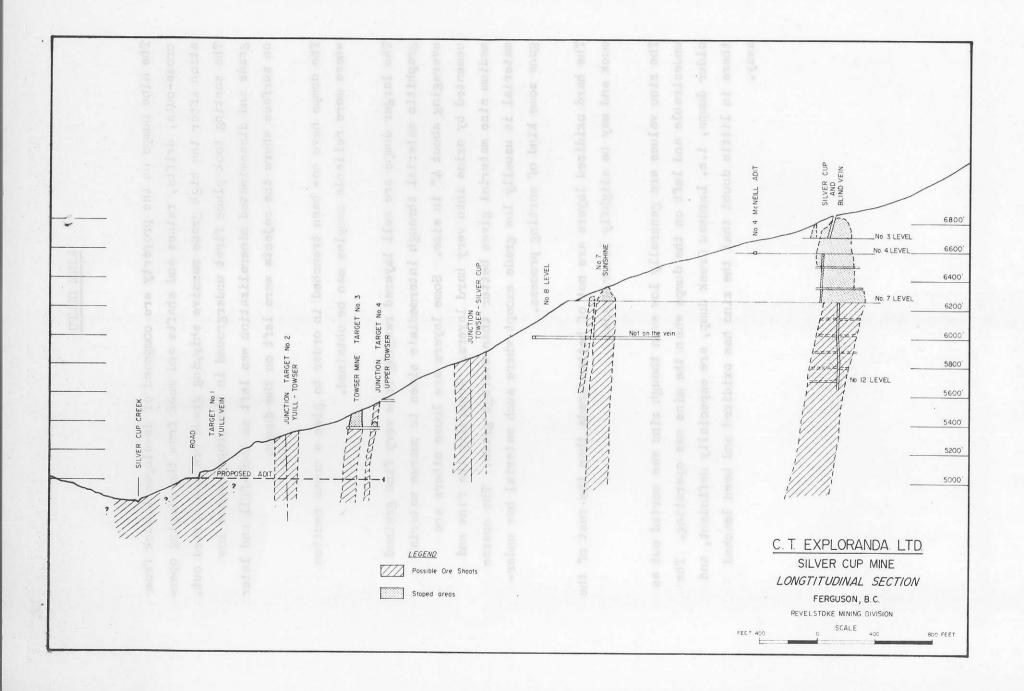
The Yuill sorp and all a barn algonoos to ylassic at and niev and bas

The Yuill vein was formerly, but is not now, exposed in Cup Creek. It has been reported variously as 4 to 14 inches of massive galena and 2 to 4 feet of "concentrating" ore. This vein was exposed last summer near a switch back in the road 500 feet from the outcrops in the Creek. Two feet of well mineralized vein was exposed. The vein is heavily oxidized and the samples taken are undoubtedly lower grade than fresh material, nevertheless good assayes were obtained. 1. 6.62 Jz.ng, 2.43, Pb, 0.18, 2n, and 0.148 oz. Au 2. 31.71 " 18.20" 0.67" " 0.168 " 3. 30.62 " 22.51" 0.32" " 0.242 " 4. 76.85 " 57.44" 1.16" " 0.236 "

36.85 " " 25.15 " " 0.58 " " " 0.20 " " Disseminated mineralization lies on the hanging wall of the well mineralized vein. This was not well exposed and not sampled. A diamond drill hole was drilled below this showing 2 or 3 years ago cutting the vein at a 60 foot.depth. The core was sampled by the writer and assayed.

	8"	of	7.66	02	· AE,	0.15,6	гЪ,	0.314.6	Ξn	and	.02 0%	. ни
	16"	n	11.24	u		9,99,0	18	14.52,5	17	"	.018 "	. 11
	24."	"	8.90	n	"	U. U8, n	H	0.23/6	н	"	.012 "	I
Total	4' c	of	9.47	n	11	3.40,0	11	5.01%	ŧŧ	17	.015 "	н

The Surface samples give a gross metal value of over \$250.-/per ton and the vein here is clearly of economic grade while the gross metal values in the diamond drill hole are about \$75.-/per ton and probably of economic grade.


The Yuill vein has a potential economic grade ore body which should be explored. Underground drifting will be recommended.

300' east of the Yuill vein the Silver Cup Vein outcrops near Cup Creek. The zone is 40 feet wide consisting of Graphite Schiat and about 50% (uartz in lenses and stringers which contain about 5% Pyrite. No economic minerals are visible but some oxide occurs and the writer got a suprisingly good assay over good width.

5' of 11.34 oz. a., .04% Pb, 0.04% 2n and .144 oz.Au. This is at, or very near, an economic grade and fresh material in this zone may very well be of economic grade.

> mineralized winerstriketion lies on the monging wall of the well mineralized wein. This was not well exposed and not sampled. A dismond drill hole was drilled below this showing 2 or 3 years ago cutting the vein at a 61 foot.depth. The core was congiled by

8" of 7.66 on.48, 0.156 cb, 0.316 26 and .02 on. 40 16" " 11.24 " " 9.99." 14.52.4 " " .014 " " 24" " 8.90 " " 0.066 " 0.236 " " .012 " " Total 4" of 9.47" " 3.40. " 5.01." " .019 " "

MINE DUATS

The Mine Dumps on the property are composed of development muck from cross-cuts, drifts, raises and shafts and muck from the stoping operation after the high grade massive shipping grade ore was sorted out. The sorting took place first underground in the stopes where low grade and disseminated mineralization was left as back-fill and later on surface where the rejects were left on the dumps.

The dumps have now been trenched in order to give a cross section where more reliable samples can be obtained.

The larger dumps are well layered ranging from very fine grained graphitic material through intermediate sizes to coarse material averaging about 4" in size. Some layers are loose others are cemented by oxide into very hard layers. Generally the fine and medium size material gives better than average grade. The coarse material is usually low grade except where such material has undergone some kind of sorting process.

The hard oxidized layers are not of better grade than the rest of the muck and may be slightly lower grade.

The zinc values are generally low even though zinc was sorted out as undesirable and left on the dumps when the mine was operating. The older dumps, i.e. Lardeau Creek dump, are especially deficient, and there is little doubt that the zinc has oxidized and been leached away.

#3	D	u	.)

. 19.

Representing	170x100x5x1	/18			4700
of a coordanie	I TONICON JA				4100
Comple No.			of /cc.	TX.CVX.GPT	Sutatesedan
Sample No.	oz. Ag	/aPb	yozin	oz.nu	
939	3.10	• 37	2.37	.024	
940	23.93	2.48	3.66	.082	
941	0.94	3.60	1.10	.004	
942	10.05	0.83	.78	.048	
943	26.31	1+.00	3.62	.072	
Average Grade	12.87	2.26	2.31	.05	Avenue Große
∉4 Dump Penresenting	1257100730	/2~1/18	1ວບບວ ຫ		annu relenerT
Representing	125x100x30/		: 10000 T		Transfor Dum
Representing	125x100x30/ 100x65x20/2		art ru	\$\@£x 184x 189	<u>13600</u>
Representing			: 3600 T	jo∑n	<u>13600</u> oz.Au
Representing	100x65x20/2	2x1/18 =	: 3600 T 3 joPb	There is shared the set	
Representing	100x65x20/2 Thickness	2x1/18 = oz.Ag	: 3600 T g joPb + .2	.21	oz.Au
Representing Sample No. 401	100x65x20/2 Thickness 2'	2x1/18 = oz.Ag 1.74	: 3600 T g joPb + .21 3 .01	.21 7.12	oz.Au .016
Representing Sample No. 401 2	100x65x20/2 Thickness 2' 2'	2x1/18 = oz.Ag 1.74 .48	: 3600 T g joPb 2: 3 .0	.21 7 .12 + .15	oz.Au .016 .010
Representing Sample No. 401 2 3	100x65x20/2 Thickness 2' 2' 3'	2x1/18 = oz.Ag 1.74 .48 11.57	: 3600 T g joPb + .21 3 .01 7 1.31	.21 7 .12 + .15 7 .25	oz.Au .016 .010 .056
Representing Sample No. 401 2 3 4	100x65x20/2 Thickness 2' 2' 3' 2'	2x1/18 = oz.Ag 1.74 .48 11.57 Tr	: 3600 T g joPb 2 3 .0 7 1.3 .0 .0	.21 7 .12 + .15 7 .25 2 .20	oz.Au .016 .010 .056 .006
Representing Sample No. 401 2 3 4 5	100x65x20/2 Thickness 2' 2' 3' 2' 3'	2x1/18 = oz.Ag 1.74 .48 11.57 Tr Tr	3500 T 3 , Pb 2 3 .0 7 1.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.21 7 .12 4 .15 7 .25 2 .20 8 .92	oz.Au .016 .010 .056 .006 .004

Average Grade

9

10

12

13

14

11

2'

21

3'

31

2'

4

19.95

4.91

7.11

6.90

2.98

25.68

10.30

1.38

.22

.41 .88

.75

1.06

1.23

. 24

.36

.30

. 88

2.92

.67

.16

.026

.020

.008

.021+

.022

.368

.05

Representing	106'x28'x	12'x1/18			200	OU Ton
Sample No.	oz. ng	/oPb	%Zn	oz.Au	·	
543	32.96	1.77	. 60	.038		
544	3.08	. 59	• 34	.010		
545	10.80	4.63	.35	.018		
546	6.62	.90	• 34	.096		
Average Grade	13.37	1.97	.41	•0 <u>1</u>		
Transfer Dump						
Representing	98'x48'x16	/2x1/18			200	DO Ton
Sample No.	Thickness	oz.Ag	joPo	104n. c	oz.Au	
0295	61	3.17	.66	.16	.037	
96000	5'	3.09	.51	.10	.02!+	
97	4	2.43		.20	.02!	
98	4"	2.49	3.98	. 56	.040	1.
99	054"	2.95	.96	. 22	.026	
300	504"	80.3 Tr	1.88	.61	.014	
				10		
Average Grade		2.44	1.37	.29	.03	
.026						
Sill Dump				· -21		
Representing	45x12x55/	2x1/18			80	0 Tons
,020	86.	88.				12
Sample No.	Thickness	oz.Ag	88.5 /2Pb	/2n	oz.Au	
0289	\$2.51	30.1 3.73	88.25 3.15	1.41	.010	
90	6'	1.77			.004	
91 20	- 10 4 *	1.31	.56	.93	.020	
92	4*	3.20	. 78	• 7½	.010	

Lardeau Creek Dump

.

Representing	<u>1+3+25</u> x	140 x 82+3	12 x 1/1	8		
	2	2				3500 Ton
	40 x 18 x	10 x 1/18				400 Tons
Sample No.	Thickness	oz. Ag	joFb	join n	05.Au	
0276	ī ⁴ .	1.98	8A . 55	.08	.018	
77010.	<u>1</u> + *	.16	SS .27	.23	.001	
78	4.10	.10	.06	.11	.010	
79	1+ 1	5.39	2.35	.16	.032	
EU	!⊢ *	1.74	• 42	.06	.036	
81	24.1	6.81	81.44	.12	.028	
82) _F *	1.59	.41	.06	.010	
83	<u>1</u> 4. *	1.98	• 42	.08	.016	
84	<u>1</u> + *	2.75	6.4.5	.08	·U!+2	
Average Grade	ab	2.50	.72	.11	.02	
#6 Dunp - Has	t Side					

Representing 110x20x3x1/18

300 Tons

Sample No.		02.45	; Pb	,oun	oz.Au	
9:+++		3.85	1.61	.17	.018	
45		18.88	2.72	1.00	.108	
46 010.		16.52	2.58	1.0!+	.071	
47		13.91	2.18	1.26	.058	
Average Grade	85.4	13.29	2.27	.87	.06	
	43.	0. 14	10.2			

6.74 . 1.35 2.31

eberl system

#7 Dump

Samples from upper cut in the dump. Representing 90x10x200x1/18 10000 Tons Samples arranged by layers. A - 2500 Tons. Sample No. Thickness Ph SZn. oz.Au oz.Ag 901 21 1.22 .57 .25 .010 03 2' 1.28 .004 .81 2.10 06 STO. 2' 2.70 1.23 .082 .32 .030 1.73 Average Grade .87 .89 B - 2500 Tons .004 902 .21 2.45 1.02 . 34 03 21 1.28 .81 2.10 .004 .048 07 2' 3.45 1.18 .26 .020 Average Grade 2.39 1.00 .90 C - 2500 Tons 904 1.09 .60 .22 .004 80 2.58 1.95 .010 .24 Average Grade 1.84 1.09 . 42 .010 D - 2500 Tons 905 11.40 1.96 4.38 .108 09 2.07 0.74 .24 .038 average Grade 6.74 1.35 2.31 .070 1.08 Average Gr. for Total 3.18 1.13

21.

#7 Dump

Samples from 1	lower cut :	in the dum	np.	108-63	918
Representing 9	5x10x310x3	1/18		.83.6	16000 Tons
Samples arrang	ged by laye	ers.			
A - 3200 Tons	Av. Thick	ness 2'.			
Sample No.	oz.Ag	pb	in	oz. Áu	
917	122	.41	1.44	.032	
37	16.86	• 34	1.14	.090	
38	1.41	• 35	3.75	.014	
				Later a	
Average Grade	6.50	•37	2.11	.05	
B - 4000 Tons	Av. Thick	ness 211			
Sample No.	*				
926	3.08	1.02	. 26	.026	Same Ho.
27	1.11	.81	• 54	.070	912
32	1.81	. 78	. 56	.038	12
				CORE	
Average Grade	2.00	.87	•45	.040	
C - 4000 Tons	Av. Thick	ness $2\frac{1}{2}$			
Sample No.					
921	1.78	. 52	.85	.064	and a construction of the later of
22	2.54	•49	.76	.014	
28	2.49	•42	.19	.021+	
29	3.24	.38	• 34	.010	
30	3.39	1.32	.23	.012	
33	1.04	.18	.21	.010	
34	3.01	•47	.73	•0 <u>1</u> +1+	952
Average Grade	2.50	• 54	•47	.03	

D - 4800 Tons Av. Thickness 3'

Sample No.	UZ.is	joP b	journ	oz.Au	
918	2.50	• 64	•53	.021/4	
19	5.68	2.08	.17	.13	
23	15.25	• 79	1.12	.024	
21+	8.27	2.62	• 21/+	•0 <u>1</u> 2	
25	10.71	.28	•34	.052	
35	.94	.27	.10	.014	
Average Grade	7.23	1.11	.42	.05	
Average Gr. for	· Total				,
	4.59	.72	.86	•04	

Upper Cut - 7' Lower coarse layer (From initial 2000' cross-cut)

952	19.25	4.14	16.19	.270
Sample No.				30.1
Representing 55	x 20 x 2	x 1/10		2.39
		/- 0		
7 Small Sortin	na Duron			
	. 430.	01.0.		42.00
Average Grade	1.1.0	.19	1.25	.02
16	.08	•04	. 32	.004
15	.91	. 29	•48	.010
1.1+	2.68	• 37	.60	• U <u>1</u> 1
13	• 79	. 22	• 37	.004
12	1.29	.15	2.85	.016
911	.83	.05	2.90	.010
Sample No.		35.		
Representing 90				

7000 Tons

100 Tons

#7 Large Sorting Dump Representing 52 x 22 x 10 x 1/18 600 Tons ;ian Sample No. in Po OZ.AS OZ.AU 953 32.75 3.83 4.20 .034 54 8.39 3.92 1.24 .134 55 24.27 1+.70 13.43 .028 56 3.75 1.28 . 50 .006 Average Grade 1+. 81+ 17.29 05 3.43 Dump 400' East of #7 (Adit on paralell vein) Representing 250 x 40 x 4 x 1/18 2200 Tons Sample No. .46 951 .10 .16 .018 Not well sempled - Low Grade The of #7 Dump (Material scattered downhill) Representing 300 x 200 x 3.5 x 1/18 11600 Tons Not sampled - Low Grade East side of $\frac{27}{6}$ Dump (Coarse material scattered) Representing 50 x 510 x 4 x 1/185600 Tons anog USsample No. jour . 'aPb OZ.AU OZ. AK anoT 008 936 0.73 .43 .014 .30 Not well sampled - Low Grade #8 Adit - Cross-cut Dump 5000 Tons Not sampled - Low Grade #6 Dump - West side Representing 110 x 40 x 5.5 x 1/18

Not sampled - Low Grade

1300 Tons

Group 1.

OZ	AS	} ∂ ₽b	∕₀ Zn	oz. Au		
#3 Dump 12	2.87	2.26	2.31	.05	4700	Tons
#4 Dump 10	0.30	1.23	0.67	.05	13600	Tons
Dump at					54	
Tailings Ponds	13.37	1.97	0.41	•01+	2000	Tons
#6 Dump	13.29	2.27	,87	.06	300	Tons
#7 Small						
Sorting Dum	9 19.25	1 14.	16.19	.27	100	Tons
#7 Large						
Sorting Dum	p 17.29	3.43	4.84	.05	600	Tons
Group 1 Total -	- 11.44	1.62	1.13	.05	21300	Tons
Group 2.						
#7 Dump- Upper	3.18	1.08	1.13	.03	10000	Ton
#7 Dunp- Lower	159	• 72	.86	•0 ¹ / ₊	16000	Ton
Group 2 Total	- 4.05	.86	•96	.03	26000	Ton
Group 1 œ 2		3				
Total	7.37	1.20	1.07	.04	- bel 1.7300	Ton
Group 3.						
560						
Transfer Dump	2.44	1.37	.29	.03	2000	Tons
Lardeau Cr. "	2.50	•72	.11	.02	3900	Ton
Mill Dump	2.49	1.28	.85	.01	800	Ton
Total -	2.48	.98	.25	.02	6700	Ton
0 107						
Group 1,2 03	(50	1 17	07		- helques jos) (7)
Total	6.52	1.1/	.97	.04	5400	0 10

GREA 1990 - dunn 4-8

#7 Dump - Lower coarse layer

Group 4

. 55.

	Oz.Ag	Pb	jac n	OZ.AU	water 14
88.48	1.10	.19	1.25	.02	7000 Tons
Total 1,2,5	i & 4- 5.89	1.06	1.00	• 0½	61000 Tons
81.1	-31. C . L		20200.1	(@mo_/#	wowy ca

TODAY LARMAN BE.] 1-000 T Z AG

Group 5

Dump 400' Hest of #7	2200 Tons
Toe of #7 Dump	11600 Tons
East Side of #7	5600 Tons
#8 Dump	5000 Tons
#6 Dump - West side	1300 Tons
Total of Dumps not adequately sampled	- thought alon () cance as
to be low grade.	25700 Tons
	Toilings Ponis) 6

Total tonnage on Dumps

86700 Tons

COMPARATIVE RESULTS

Previous Engineering Reports:

			oz.Ag	%Ph	,52n	oz, Au	
#1 (Now #3 Dump)	3000	T	10.98	1.78	2.28	.075	
#2 (Now #4 Dump)	3000	Т	12.61	2.15	1.03	.055	
#3 (Now #7 Dump)	20000.	Т	4.51	1.36	1.18	.05	
#4 (Now Lardeau Cr.)	15000	T	7.00	2.06	1.6	.09	

Summarizing present Tonnages and Grades of the same dumps:

#7 Dump

Lardeau Creek

#3 Dump (Including what has been moved to Tailings Ponds) 67000 T 13.02 2.17 1.74 .05 #4 Dump 13600 T 10.30 1.23 0.67 .05

4.05

2.50

.86

. 72

.96

.11

.04

.02

The tonnages show significant differences.

26000 T

5900 T

The #3 and #4 Duops were undoubtedly estimated too low and are now given considerably higher tonnages. The writer beleives that this is probably due to previous reports giving insufficient depth to the dump. This is very easily done as the shape of the topography is deceptively irregular. The depth has now been much better exposed by Cat Trenching, and the present tonnages are beleived to be relatively accurate. The tonnage of the Lardeau Creek dump was given in previous reports as larger and better grade than what can be seen to-day. The writer is somewhat at a loss to explain this difference. It is possible that Lardeau Creek has since carried away part of this dump. 28.

Un the whole the grades are remarkably and gratifyingly close.

VALUE OF THE DULTS

UIDDRGROUID BROKEN ORE

The writer estimated in his last report that anywhere from 40,000 tons to 90,000 tons remain in the stopes as back-fill. No work are done underground to establish these figures better. The main raise between #7 and #4 Levels was located on #4 Level. It is in good shape, although loose material prevents safe access at the present time. The raise should be scaled and re-timbered and ladders put in. This work is considered to be very important as it will give access to measuring and sampling of part of the back fill as well or giving access to #5 and #6 levels, where disseminated mineralization which was not of interest to the old miners may be found on the extentions of the vein.

SOIL SURVEYING

Limited soil surveying was carried out last summer to find out if this could be a useful exploration tool. The hill-sides of both sides of Cup Creek are very steep, up to 42°, and it was thought that soil development would be extremely poor. This turned out not to be the case. Almost invariably there was easily discernible soil horizons. The organic layer was usually 1 to 4 inches thick, the A horizon about 4 to 6 inches, and the B horizon from 2 to 6 inches thick.

The main mine area south of Cup Creek is not suitable for soil testing due to contamination from mined material, but the area from Cup Creek and north is very well suited to soil testing and should give reliable results. It will be recommended that systematic soil testing be carried out.

.29.

Soil testing carried out east of the mine area gave rather low values, although 4 samples gave 2 FR4. or better in Silver. These values may be anomalous and a more detailed survey should be carried out.

1 an a graduate of the University of British Columbia,
3.80., 1960. Geological Sciences.
1 an a sember of the Association of Professional Engineer of the Province of British Golombia.
Prom 1960 to 1962 I was employed as Geologist with United Remo Hill mines, Else. Fukon Territories.
From 1962 to 1963 I was employed as geologist with the

Respectfully submitted,

EGIL LIVGARD, B.Sc., P.Eng.

to receive, any interest, directly received, nor an 1 expect to receive, any interest, directly or indirectly in the properties here described, or in any company that has an interest in these properties, or in any affiliate, and I do not beneficially own, directly or indirectly, any securities in any cuch company.

DaTaD at Coguitizen, Brittish Columbia, this / 2 day of - - - - 1976.

LIVGARD CONSULTANTS LTD.

COQUITLAN. B.C.

CERTIFICATE

I, EGIL LIVGARD, of 1990 King Albert Avenue, Coquitlam, British Columbia. DO HEREBY CERTIFY:-

- 1. I am a Consulting Geological Engineer.
- I am a graduate of the University of British Columbia, B.Sc., 1960. Geological Sciences.
- 3. I am a Member of the Association of Professional Engineers of the Province of British Columbia.
- 4. From 1960 to 1962 I was employed as Geologist with United Keno Hill mines, Elsa. Yukon Territories. From 1962 to 1963 I was employed as geologist with the Geologic Survey of Norway. From 1963 to 1966 I was employed as Mine Geologist and Engineer at the Portage Mine, Chibougamau. Quebec. From 1966 to 1968 I was employed as Chief Geologist and Engineer at Utica Mines, Keremeos. B.C.

From 1968 to 1970 I was employed by S & N Mine Management, Consultants, Vancouver. B.C.

From 1970 to the present I have been self-employed as a Consultant in Vancouver. B.C.

5. I have not, directly or indirectly received, nor do I expect to receive, any interest, directly or indirectly in the properties here described, or in any company that has an interest in these properties, or in any affiliate, and I do not beneficially own, directly or indirectly, any securities in any such company.

DATED at Coquitlam, British Columbia, this 12 day of Ser 1976

Egil Livgard, B.Sc., P.Eng. Coquitlam. B.C.

UNDERGROUND WORK ON THE SILVER CUP PROPERTY OCT. - NOV. 1976

> Livgard Consultants Ltd., E. Livgard, B.Sc., P.Eng., Coquitlam. B.C.

December 9th, 1976.

INDEX

· · · · · · ·

Page

INTRODUCTION	1
SUMMARY AND CONCLUSIONS	2
RECOMMENDATIONS	3
ESTIMATED COST OF RECOMMENDATIONS	5
WORK PROGRAM	6
SUMMARY OF ASSAYS AND EVALUATION	8
SECOND HANGING WALL MINERALIZED ZONE	9
FIRST HANGING WALL MINERALIZED ZONE	10
FIRST FOOT WALL MINERALIZED ZONE	11
7 LEVEL HANGING WALL FRACTURE ZONE	12

Certificate of Assay	No. 7611-2250
	7611-2351
	7611-2960
	7612-0350

CERTIFICATE.

INTRODUCTION

The writer, having supervised a Drifting Program on the Silver Cup property, was asked by Mr. R.F.J. Newson, President of C.T. Exploranda Ltd., to prepare an evaluation of the program to date and to make recommendations as to the company's next course of action.

The program is not yet complete and full survey maps, assay maps and geology maps will not be available until the program is completed.

As can be seen from the Assay tabulations, the spacing between sample points (length) is irregular and occassionally quite large. This was caused because of the rapid advance of the drift, reaching six 6 foot rounds in 24 hours. It is the writers intention to fill in these gaps in the samples and in some cases to re-sample some sections when the program is completed. The writer does not believe that the results will change materially. In the cases where the mineralization has been extended some distance without available samples, this has been done based on visual examination and geology.

The mineralized areas so far discovered are very encouraging for future development. They cannot, however, be called ore as ore is that material which can be extracted at a profit. This will only be determined by a feasibility study. The geologic terminology is deficient in this regard and fails to supply terms with which to evaluate mineralized zones.

SUMMARY AND CONCLUSIONS

The work on the Silver Cup property over the past $l_2^{\frac{1}{2}}$ months has consisted of 935 feet of drifting and cross-cutting largely on the Yuill vein. Well mineralized vein has been opened up over 165 feet. The vein over this distance graded 12.00 oz.Ag., 0.054 oz.Au., 2.96% Pb, and 3.17 % Zn over 3 feet. This constitutes 25% of the total vein drifting and the writer considers this result to be above expectations and potentially very important for the future of the property.

Little work had previously been done on the Yuill vein and the results are gratifying.

The recommended program in this report will advance the drift to near the Towser - Silver Cup Vein and this is in the writers opinion one of the most favourable targets on the property.

The work recommended here may disclose several mineralized zones and is of substantial importance to the property.

RECOMMENDATIONS

Underground Diamond Drilling should now be carried out from the Y1500 level, which is the drifting on the Yuill vein soon to be completed. All mineralized zones can be reached from the hanging or foot wall drifts and grade and outline of mineralization can be checked both $up \leftarrow dip$ and down - dip.

Hanging wall to foot wa	ll drift	•		,
Yuill to Towser vein	3 holes	۷	100'	∑ 300 1
•				
Foot wall to hanging wa	ll drift			
Down - and up-holes	6 holes	۵	100'	600 *
Yuill 1500 L to Silver	Cup vein			
	4 holes	ω	3501	1400'
Yuill 1500 L Hanging wa	ll to Foot	; wa	11	•
	4 holes	•	1001	400"
			Total	2700'

Following the Diamond drilling the drift should be extended following the Towser vein, which is a cross-vein between the Yuill and Silver Cup veins, to a point past the downward projection of the mineralization in the old Towser Mine.

The Towser vein is a strong structure and the possibility of the mineralization extending down are considered good. This will require 800 feet of drifting.

From the position of the drift following the above drifting program several very good targets can be reached by Diamond Drilling. The drifting and follow-up drilling should not be seperated, but treated as <u>one</u> program, as the drifting alone checks only one of several available targets.

3-

Diamond Drilling:

Towser to Silver Cup vein

		4	holes	.	300 '	1200'
Towser	to Yuill vein				· · · · · ·	
	•	4	holes	·	2501	1000'
Towser	to Hanging Wall	Split			_ ·	
	• •	÷ 4	holes	ω	100'	4001
				To	otal	26001

, ,

ESTIMATED COST OF RECOMMENDATIONS

5

Y 1500 Drift - Diamond Drillin	NG
2700' 😀 \$1:	2/ft. 32,400
Supervision, E	agineering 3,000
Assays, Supplie	es, Travel 5,000
	\$10,100
Towser Vein - Drifting	
800! 🖬 🛊120	96,000
Diamond Drilling	
26001 👜 💲 1.2	2/ft. 31,200
Supervision, Eng	ineering 9,000
Cat Work	
50 hrs.	\$60/hr. 3,000
Assays, supplies	, travel <u>6,000</u>
	\$145,200
	\$185,600
· · · · ·	Contingencies - 10% 18,600
	Total \$204,200

WORK PROGRAM

The Drifting Program has in the period Oct. 20th, to Dec. 4th, put in a total of 275 feet in adit cross-cut, hanging wall and foot wall cross-cuts and slashes. 660 feet have been drifted on the vein. Of the drifting 25% has been in well mineralized vein. Further cross-cutting and drifting is being done on the level. The level is named Y1500 - the Y designates the Yuill vein and 1500 is metres above sea level. Another level is being established 50 metres lower and is named Y1450. The majority of the drifting is on the Yuill vein. The junction of the Yuill and Towser veins has been reached and it seems probable that all the mineralization encountered is in some way associated with this junction.

The Silver Cup vein lies parallel to the Yuill vein 300' distant. Three Cat trenches and surface blasting has been done on vein. Minor mineralization was encountered.

The road to 7 and 8 levels was improved. The 8 level portal was opened up and the entire level (1000') proved in good condition. The 7 level had previously been made accessible for about 250 feet and was now opened up to the end - a distance of about 2000 feet.

Examination of these two levels showed that three stopes had previously been worked about 200 feet inside the portal on 7 level. Assays last summer and this Fall show some very good grades. In projecting this mineralization down to 8 level it seems likely that the 8 level may have been on the wrong structure and no mineralization was encountered on the level. A re-survey of the levels was carried out to confirm their position. Diamond drilling would be required to locate the down-dip of the mineralization.

The 7 level was examined to the end. No sampling or mapping has as yet been done in the Old Silver Cup and Blind Vein stoping areas. Further re-habilitation must be carried out before the workings are safe. A large amount of backfill should be sampled. Remaining visible mineralization on the veins should also be sampled. The geology should be mapped and may lead to further exploration targets.

SUBLARY OF ASSAYS AND EVALUATION

Length Width %РЪ % Zn Uz.Ag Oz.Au 301 First H.W. Zone 31 20.69 .054 1.66 2.14 Gross Metal Value per Ton \$116. Second H.W. Zone 55' 3' 10.94 .031 2.01 5.36 Gross Metal Value per Ton \$ 87. 801 F.W. Zone 3' 9.48 .069 4.11 2:05 Gross Metal Value per Ton \$ 76. (H.W. Zone in addition 60' 3' .018 1.00 1.53) 5.92 Total 165' 31 12,00 .054 2.96 3.17 Gross Metal Value per Ton \$ 87.

(Silver - #4.50/oz., Gold - #100.-/oz., Lead-20¢/lb., Zinc - 25¢/lb.)

The Silver (oz.Ag) to Lead (%) ratio in the H.W. Zone is 8.88 while in the F.W. Zone it is 2.3. This only confirms what can be seen visually that the H.W. Zone has a larger % of "Grey Copper" which is argentiferrous.

The Cadmium to Zinc Ratio is 0.0152 lbs Cd/% Zn.

The total drifting on the vein - foot wall or hanging wall - is 660 feet, of this 165 feet is well mineralizes. <u>This is 25% of the total vein</u> <u>drifting</u> and the writer considers this result to be above expectations and potentially very important for the future of the property.

\$

SECOND HANGING WALL MINERALIZED ZONE

Length	Sample No.	Width	Uz.Ag	Oz.Au	Pb/6	211/0
25'						
-7	876	1.15'	6.23	.032	1.59	12.18
		3.0	2.39	.012	0.61	4.67
2.51						
	875	2.3'	28.36	.081	6.44	17.77
		3.0'	21.74	.062	4.94	13.62
2.5'				,		
	874	•5'	11.04	•024	8.10	5.06
		3.0'	1.84	•004	1.35	• 8 <u>1</u>
5.01	•	·				
	873	2.6'	24.61	•064	•27	10.45
		3.0'	21.33	•055	•23	9.06
10'	871	1,15	36.16	.112	7.81	7.91
	•	3.0'	13.48	.043	2.99	3.03
7'	872	1.15	9.35	.038	3.90	1.90
		3.0'	3.50	.015	1.50	•73
Re-Sample	877	.8'	23.41	.052	8.68	4.09
		3.01	6.24	.014	2.31	1.09
3'	Average	3.0'	4.91	.014	1.91	.91
55' Averag	ge Width	3.0'	10.94	.031	2.01	5.36

FIRST HANGING WALL MINERALIZED ZONE

Length	Sample No.	<u>Width</u>	<u>Oz.Ag</u>	<u>Oz.Au</u>	Pb%	Zno	Cd⁄ø
5'			•		•		
	855	0.2	282.82	• 299	14.94	17.0	.14
	856	0.8'	30.41	.064	5.45	8.24	.07
F 1		3.0'	26.96	.037	2.45	3.33	
5'	857	0.5'	143.18	.181	5.50	6.13	.05
		3.0'	23.86	.030	•92	1.02	
15'	Qr Q	0.91	· 1 0 7	· (0)	2.0	70	
	858	0.81	1.03	.004	.18	.10	
	859	0.35	93.95	.109	13.33	17.43	<u>.14</u>
5'	•	3.0'	11.24	•014	1.60	2.06	
301 Ave:	rage Width	3.0'	20.69	•054	1.66	2.14	
10'							
10.	860	0.8	•93	.01	• 33	.27	
	861	0.2	16.14	.156	2.79	27.53	.23
14'		3.0'	1.32	.013	.27	1.91	
* #	864	1.5'	27.16	•068	3.75	. 5.66	<u></u>
3'		3.0'	13.58	.034	1.86	2.83	
).	862	1.5'	1.52	•016	• 34	1.16	
	863	1.5'	9.23	.040	2.18	1.49	.02
81		3.01	5.38	.028	1.26	1.33	
Ŭ	865	3.01	.65	.004	.27	.23	·····
		3.01	. 65	•004	•27	• 23	
18'	866	.15'	53.21	•095	27.21	8.45	
	867	1.0	6.67	.024	.84	3.12	
	•	3.0'	4.88	.013	1.64	1.46	
Re - Sample	e <u>868</u>	•8• /	46.50	•044	3.91	4.78	
		3.0'	12.40	.012	1.04	1.27	
7'	Average	3.0'	8.67	.012	1.34	1.37	
	age Width	3.0'	5.92	.018	1.00	1.53	

· 10.g

	FIRST FOOT	WALL MINER	LIZED ZONE			
		× 2	•			
Length	Sample No.	Width	Oz.Ag	Oz.Au	<u>Pb/6</u>	Zne
10'	818	7	07	01(0.75
		3.5'	•97	.016	0.42	0.35
	-	2.6') 3.0'	1.76	•026	0.89	0.83
	820	0.4'	106.51	.108	66.22	3.07
81		3.0'	15.73	•037	9.60	1.13
0.	832	0.91	12.66	.06	7.7	9.09
		3.0	.3.80	.078	2.31	2.73
5' ·		0.01	50.50	·		
	831	0.81	50.59	•236	18.63	14.73
C I		3.0'	13.49	•063	4•97	3.93
5'	830	1.0'	59.56	.176	13.88	15.81
		3.0'	19.85	.059	4.63	5.77
5'		· .	_			
	833	0.5'	35.76	.208	21.02	4.42
		3.0'	5.96	•035	3.50.	• 74
5'	810	2.0'	3.62	.016	.19	. 28
	811	2.5'	1.17	•06	.69	1.44
	834	0.5'	4.49	•044	2.79	1.14
	<u></u>	3.0!	1.72	.057	1.04	1.39
5'						-
•	835	0,5'	6.71	.148	5.53	2.23
		3.01	1.12	.025	•92	0.37
18'	804	2.0'	9.79	• 388	8.46	1.44
		<u> </u>	6.53	•259	5.64	.96
10'	. •	200	,,,			
	805	0.4	123.66	• 400	31.10	13.13
	806 (2.61) 5.0'	•77	.014	. 30	.16
	807	3.0'	1.25	.03	1.34	1.32
		3.0'	17.16	.065	4.41	. 1.89
<u>7'</u>						
	rage Width	3.0'	9.48	o69.	4.11	2.05
Of this a	25' averaged	3.0'	13.22	•044	5.38	3.27

	<u>7 LEV.</u>	EL HANGING W	ALL FRACTURE	ZONE	•
Sample No.	Width	Oz.Ag	Oz.Au	Pb/o	Zn%
822	•5'	8.66	•098	6.51	3.22
823	• 33'	49.25	.004	19.42	32.47
824	.17'	11.38	.092	5.02	6.80
825	•33'	33.73	.164	9.77	35.09
886	2.0"	2.18	.008	1.32	2.66
887	4.0'	1.27	.066	•36	13.20
888	2.01	1.80	.048	.22	17.3
829 Interm.	rock 21,0'	1.20	.002	.27	•48
Total wi	dth of the fr	acture zone :	is:		
	30.01	2.37	.016	• 79	4.22

Respectfully submitted,

ΛΛ 5

Egil Livgard, B.Sc., P.Eng.

12.

SUPERVISE

, GENERAL TESTING LABORATORIES

DIVISION SUPERINTENDENCE COMPANY (CANADA) LTD.

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA. V6A 1W2 PHONE (604) 254-1647 TELEX 04-507514 CABLE SUPERVISE

CERTIFICATE OF ASSAY

No.: 7611-2250

DATE: Nov. 30/76

We hereby certify that the following are the results of assays on:

TO:

C. T. EXPLORANDA

Vancouver, B.C.

440 - 890 West Pender Street

Ore	

MARKED	GOLD OZ /ST	SILVER OZ/ST	Lead	Zinc	xxxx	XXXX	xxx	xxxx
		CX2007495CX	Pb (%)	Zn (%)				
904 D		(1)	r 01		•			
801 - D 802	0.004	6.43	5.94	6.06				1
803	0.002	0.32 0.10	0.23 0.08	1.77		•		
80l	0.388	9.79	8.46	0.11 1.44	• •			
805	0.400	123.66	31.10	13.13		1		
806	0.014	0.77	0.30	0.16				
807	0.030	1.25	1.34	1.32				
808	0.070	0.99	0.81	0.24				
809	0.002	0.02	0.09	0.14				
810	0.016	.3.62	0.19	0.28				
811	0.060	1.17	0,69	1.44				
812	0.006	0.34	0.23	0.21				
813	0.004	0.07	0.08	0.12		• •		
814	0.004	0.35	0.07	0.03				
815	0.004	0.89	0.06	0.02				
816	0.004	0.18	0.05	0.02				
817	0.004	0.19	0.07	0.04				
818 819	0.016	0.97	0.42	0.55		•		1
820	0.026 0.108	1.76 106.51	0.89 66.22	0.83				
. 821	0.008	1.55	0.99	3.07				
822	0.098	8.66	6 . 51	1.33 3.22				
/ 823	0.004	49.25	19.42	32.47				•
824	0.092	11.38	5.02	6.80				
825	0.164	33.73	9.77	35.09				
826	0.228	72.28	5.88	27.39				
827	0.086	16.33	0.40	25.13				
828	0.042	0.86	0.33	3.74		•		
829 - D	0.002	1.20	0.27	0.48				
886 – E	0.008	2.18	1.32	2.66				
887	0.000	1.27	0.36	13.20				
888	0.048	1.80	0.22	17.30			· .	
889 - E	0.094	10.18	1.78	16.93				
	}							
•								
						. ·		
TE: REJECTS RETAINED ONE MO	NTH PULPS RE	TAINED THREE	MONTHS ON F	REQUEST		;;,;		
PULPS AND REJECTS WILL	BE STORED FO	R A MAXIMUM	OF ONE YEAR.					• •
L REPORTS ARE THE CONFIDEN ENTS, CONCLUSION OR EXTRACT	S FROM OR RE	GARDING OUP	REPORTS IS N	OT PER-		and a	• * * * * * * * * * * * * * * * * * * *	4
TTED WITHOUT OUR WRITTEN	APPROVAL. AN	IY LIABILITY	ATTACHED THE	RETO IS			PRO	· · · · · · · · · · · · · · · · · · ·

Analytical and Consulting Chemists, Bulk Cargo Specialists, Surveyors, Inspectors, Samplers, Weighers

MEMBER: American Society For Testing Materials + The American Oil Chemists' Society + Canadian Testing Association REFEREE AND: OR OFFICIAL CHEMISTS FOR: Vancouver Merchants Exchange + National Institute OI Oilseed Products + The American Oil Chemists' Society OFFICIAL WEIGHMASTERS FOR: Vancouver Board Of Trade + Vancouver Merchants Exchange **GENERAL TESTING LABORATORIES** DIVISION SUPERINTENDENCE COMPANY (CANADA) LTD.

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1W2

PHONE (604) 254-1647 TELEX 04-507514 CABLE SUPERVISE

C. T. EXPLORANDA 440 - 890 West Pender Street Vancouver, B.C. V6C 1J9

CERTIFICATE OF ASSAY

No.: 7611-2351

DATE: Dec. 1/76

We hereby certify that the following are the results of assays on: Ore

TO:

MARKED	GOLD OZ /ST	SILVER OZ/ST	Lead	Zinc	Cadmium	Copper	XXX	xxx
MANNED		xx95/MX	Pb (%)	Zn (%)	Cd (%)	Cu (%)		
· · · · · · · · · · · · · · · · · · ·				·				
830 - D	0.176	59.56	13.88	15.81	0.11	-		
831	0.236	50.59	18.63	14.73	0.11-	-	1. A	
832	0.060	12.66	7.70	9.09	0.07	 '		•.
833	0.208	35.76	21.02	4.42	0.13	-		
834	0.044	4.49	2.79	1.14	0.01	- .		
835	0.148	6.71	5.53	2.23	0.03	-		
836	0.148	30.52	12.55	17.53	0.13	-		
837	0.064	12.28	3.12	39.11	0.30	-		
838	0.080	13.03	0.18	44.94	0.35	-	}	
839	0.212	17.94	0,22	38.95	0.29	-		
840	0.044	24.91	2.09	32.00	0.23	-		
841	0.052	13.61	1.19	43.27	0.34			
842	0.220	14.63	11.99	9.67	0.07	-	L.	
843	0.128	6.79	0.31	21.04	.0,16	-	•	
851	0.048	16.89	4.56	3.83		_		
852	0.092	40.27	6.69	7.70	-	-		
853	0.120	89.82	8.70	21.79	_	· · · ·		
854 - D	0.238	61.44	12.26	33.36	0.25	0.65		
0)4 - 0		••••	12420	50,00		,		
			· .					
	1							
				Ī				
		-	4					
						•		
							· .	
							•	
			i i i i i i i i i i i i i i i i i i i				1	
		``	1					
OTE: REJECTS RETAINED ONE				EQUEST		·····	I	<u>I</u>
PULPS AND REJECTS WIL								
L REPORTS ARE THE CONFID ENTS, CONCLUSION OR EXTRA	CTS FROM OR RE	GARDING OUP	A REPORTS IS NO	DT PER-	R	. Л.		
TTED WITHOUT OUR WRITTE	N APPROVAL. AN	Y LIABILITY	ATTACHED THER	ETO IS	r	- vui	\sim	

Analytical and Consulting Chemists, Bulk Cargo Specialists, Surveyors, Inspectors, Samplers, Weighers

MEMBER American Society For Testing Materials - The American Oil Chemists' Society - Canadian Testing Association REFEREE AND OR OFFICIAL CHEMISTS FOR Vancouver Merchants Exchange + National Institute Of Oilseed Products + The American Oil Chemists Society OFFICIAL WEIGHMASTERS FOR Vancouver Board Of Trade + Vancouver Merchants Exchange GENERAL TESTING LABORATORIES

DIVISION SUPERINTENDENCE COMPANY (CANADA) LTD.

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1W2 PHONE (604) 254-1647 TELEX 04-507514 CABLE SUPERVISE

C. T. EXPLORANDA 440 - 890 West Pender Street Vancousr. B.C. V60 1J9 2ť 1

CERTIFICATE OF ASSAY

No.: 7611-2960

Ore

DATE: Dec. 2/76

We hereby certify that the following are the results of assays on:

MARKED	GOLD OZ/ST	SILVER OZ/ST	Lead	Zino	Cadmium	XXX	XXX	XXXX
		THE BOARD	Pb (%)	Zn (%)	ca (%)			
				•		4 40		· · · · · ·
	0.40	107	in Sal		53,21 13	10.935	1.46	a (1880) - Al
855 - D	0.299	282.82	14.94	17.00	0.14	0.020		
856	0.064	30.41	5.45	8.24	0.07	Stt.0	*.e	871
857	0.181	143.18	5.50	6.13	0.05	0,038		672
858	0.004	1.03	0.18	0.10	- 18.19	0.060		873
859	0.109	93.95	13.33	17.43	0.14	0,021	200	
860	0.010	0.93	. 0.33	0.27	-			278
861	0.156	16.14	2.79	27.53	0.23	0.022		876
862	0.016	1.52	0.34	1.16	-			- 778
863	0.040	9.27	2.18	1.49	0.02	0.059	•	No Ta
864	0.068	27.16	3.75	5.66	-			
865	0.004	0.65	.0.27	0.23	-			
868	0.044	46.50	3.91	4.78				and page
869	0.034	4.61	0.87	2.66				
870 - D	0.024	12.52	3.91	1.31	-			
						1. S.	··· x	
					*			
						1.0		
4								
			- 1					
and the second second	•** Y •	1.1.1		tiday, sea the sea and the	2011 - 14 A.C.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	····.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
OTE: REJECTS RETAINED ONE MC PULPS AND REJECTS WILL						· · · · ·	Sec. 15. Contraction	P
L REPORTS ARE THE CONFIDEN	ITIAL PROPERTY	Y OF CLIENTS	. PUBLICATION O	F STATE-	0		1	ADSAU CHIONAR
AENTS, CONCLUSION OR EXTRACT AITTED WITHOUT OUR WRITTEN IMITED TO THE FEE CHARGED.					- P	. Aleran	PRO	VINCIAL ASSAYER
0.00	Success Income	and sele	Iting Chemist	hemusis Bulk		IVEN	A	WON

MEMBER American Society For Testing Materials . The American Oil Chemists' Society . Canadian Testing Association REFEREE AND OR OFFICIAL CHEMISTS FOR: Vancouver Merchants Exchange

National Institute Of Oilseed Products

The American Oil Chemists' Society

OFFICIAL WEIGHMASTERS FOR

Vancouver Board Of Trade

Vancouver Merchants Exchange

GENERAL TESTING LABORATORIES DIVISION SUPERINTENDENCE COMPANY (CANADA) LTD.

GUPY

C.T. EXPLORANDA 440 - 890 West Pender Street Vancouver, B.C. ¥60 1J9

PHONE (604) 254-1647 TELEX 04-507514 CABLE SUPERVISE

XXX

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1W2

CERTIFICATE OF ASSAY

No.: 7612-0350

DATE: Dac. 8/76

XXXX

We hereby certify that the following are the results of assays on:

TO:

MARKED	GOLD OZ /ST	OZ/ST	Lead	Zino	Cadmium	Copper
MARKED	GR/MI	XXERAMIXX	Pb (%)	Zn(%)	Cd (%) C1	Cu (%)
			· · · · · · · · · · · · · · · · · · ·			
866 - D	0.095	53.21	27.71	8.45	0.07	0.40

		1 2 4 1	1 1 1 1 1 1 1		and a start			the second
866 - D	0.095	53.21	27.71	8.45	0.07	0.40	1-11	
- 867	0.024	.6.67		2.2.3.1	C	i	C.	in the mater
871	0.112	35.16	7.81	7.91	0.07	120.0		858
872	0.038	9.35	3.90	1.90	31.20	1 101.0		857
873	0.064	24.61	0.27	10.45	20.1	100.0		858
874	0.024	11.04	8.10	5.06	1. 28.60	0.100		. ese
875	0.081	28.36	6.44	17.77	0.13	0.00		. 088
876	0.032	6.23		12.18		227.0		188
		23.41	8.68	4.09	1.52	210.0		\$58 552
877 - D	0.052				9.27	0.0.0		863
No Tag	0.059	5.31	1.27	5.54	35.5	820.0		864
					0.65	J0010		
en ja seneral senara kanan Kanan senara kanan	and the second				02.8	6.058		- 200 - 44. 1000 - 1000 - 1
					18.4	.20.0		- 600 L
				8 4 18.0		0.021		- 678
			- 12.	18.8	2,52			
				· •				
							-	
				1.20			and the second	1 × 1 1.5
NOTE: REJECTS RETAINED ONE M PULPS AND REJECTS WILL	ONTH. PULPS RE	TAINED THRE	E MONTHS. ON	REQUEST	THE HOLE	0º	Ĵ	TE REJECTS RETAIN
REPORTS ARE THE CONFIDE	NTIAL PROPERTY	OF CLIENTS	PUBLICATION C	F STATE-			-	
MENTS, CONCLUSION OR EXTRAC MITTED WITHOUT OUR WRITTEN IMITED TO THE FEE CHARGED.	APPROVAL. AN	Y LIABILITY	ATTACHED THE	RETO IS		0	PRO	INCIAL ASSAYER
0 DM					Lie	WONG		nplers, Weigher

MEMBER: American Society For Testing Materials + The American Oil Chemists Society + Canadian Testing Association REFEREE AND OR OFFICIAL CHEMISTS FOR: Vancouver Merchanis Exchange • National Institute Of Oilseed Products • The American Oil Chemists' Society OFFICIAL WEIGHMASTERS FOR: Vancouver Board Of Trade • Vancouver Merchanis Exchange

LIVGARD CONSULTANTS LTD.

VANCOUVER. B.C.

CERTIFICATE

I, EGIL LIVGARD, of 1990 King Albert Avenue, Coquitlam. British Columbia:

- 1. I am a consulting geological engineer.
- I am a graduate of the University of British Columbia, B.Sc., 1960. Geological Scineces.
- 3. I am a Member of the Association of Professional Engineers of the Province of British Columbia.
- 4. From 1960 to 1970 I was engaged in mining and exploration geology in Canada and Norway for various companies, and since that time I have been a consultant to the Mining Industry in B.C.
- 5. My report is based on the personal examination of the property by myself, and on information compiled on the area and other material as referred to in the report.
- 6. I have not directly or indirectly received or expect to receive any interest, direct or indirect, in the properties of C.T. Exploranda Ltd. or any affiliate, and I do not beneficially own, directly or indirectly, any securities of C.T. Exploranda Ltd., or any affiliate

DATED at Vancouver, British Columbia, this 9th day of December, 1976.

EGIL LIVGARD, B.Sc., P.Eng. Vancouver. B.C.

C.T. EXPLORANDA LTD. (formerly Junex Resources Ltd.)

FINANCIAL STATEMENTS

FOR THE YEAR ENDED

FEBRUARY 28, 1976

۵

GIVE THE FULL NAME, HOME ADDRESS AND CHIEF OCCUPATION, THE NUMBER OF SHARES OF THE ISSUER BENEFICIALLY OWNED, DIRECTLY OR INDIRECTLY, BY EACH SENIOR OFFICER OR DIRECTOR OF THE ISSUER AND IF EMPLOYED DURING THE PAST FIVE YEARS, THE NAME OF EACH EMPLOYEE

NAME and ADDRESS	CHIEF OCCUPATION	NUMBER OF SHARES OF ISSUER BENEFICIALLY OWNED		
RICHARD F. J. NEWSOM 440 - 890 West Pender Street, Vancouver, B. C. PRESIDENT/DIRECTOR	Rancher/Businessman	339,500		
BRIAN J. HAGAN 1003 - East Toledo Street Bellingham, Washington DIRECTOR	Chemical Engineer	18,000		
RON W. BREGOLISS Box 620, Kamloops, B. C. DIRECTOR	Secretary-Bregoliss Construction Ltd.	20,000		
THOMAS A. DERBYSHIRE, 479 Wintergreen Richmond, B. C. DIRECTOR/SECRETARY	Airline Pilot	333,900		
DONALD WINES Bellingham,Washington	Chemical Engineer	12,000		

Bellingham, Washing DIRECTOR

an.

6. PARTICULARS OF THE CORPORATE STANDING OF THE ISSUER

The Issuer was incorporated in British Columbia on July 15, 1969.

The last annual report was filed with the Registrar of Companies for the Province of British Columbia on August 9, 1976.

The latest audited financial statements of the Issuer were dated February 28, 1976 and were placed before the members of the Issuer at its Annual General Meeting held on June 18, 1976.

There is no business which the Issuer is restricted from carrying

THE AUTHORIZED AND ISSUED SHARE CAPITAL OF THE ISSUER

The authorized capital of the Issuer consists of 5,000,000 shares without par value, of which 1,534,456 shares have been issued as fully paid.

5

8.

THE PRICES AT WHICH SECURITIES OF THE ISSUER HAVE BEEN ISSUED DURING THE PAST YEAR.

In February 1976, 56,500 shares were issued at 25¢ and 8,000 shares were issued at 26¢ each. These shares were issued prior to the consolidation of the company's shares on a one for four basis. In June of 1976 200,000 shares were issued at 85¢ each and in October 1976 200,000 shares were issued at 95¢ each.

30,000 shares were issued to Susan Hillier, 63 Wellesley Street East, Toronto, Ontario, pursuant to an Agreement dated December 10, 1975 whereby the Company acquired an Option to acquire nineteen (19) located mineral claims situate in the Mayo Mining Division, Yukon Territories. See items 10 and 11 hereof.

750,000 Escrowed shares were issued in consideration of the Company acquiring a group of mineral claims being the "Cindy Fraction 1 and 2" and "Sandy 6 - 9" and "Cindy 7 and 8", situate in the Revelstoke Mining Division, in the Province of British Columbia. The Escrowed shares were issued to the following individuals:

NAME OF SHAREHOLDER	NUMBER OF SHARES
Sea to Sea Investments Ltd. 202 - 900 West Pender Street, Vancouver, B. C.	332,500
Ron Bregoliss Box 620 Kamloops, B. C.	15,000
Thomas A. Derbyshire 479 Wintergreen Avenue Richmond, B. C.	332,500
Scotchvest Holdings, 2063 Lakeshore Blvd. West, Toronto, Ontario.	10,000
Brian Hagan 1003 East Toledo Street, Bellingham, Washington	15,000
Ivan Thompson 302 - 3420 Aeuchinachie, Duncan, B. C.	15,000