Specch find

CONTENTS

## 1) Background

Tulameen Area BC

- history and labour

Platinum

- history, market today, future Tiffany
  - principals
  - company holdings
  - share capitalization

120N +

## 2) Discription of platinum properties

Loadstone Mountain Property
- Loadstone 1-3
Britton Creek Property
- D1-3, R1-3

3) Update

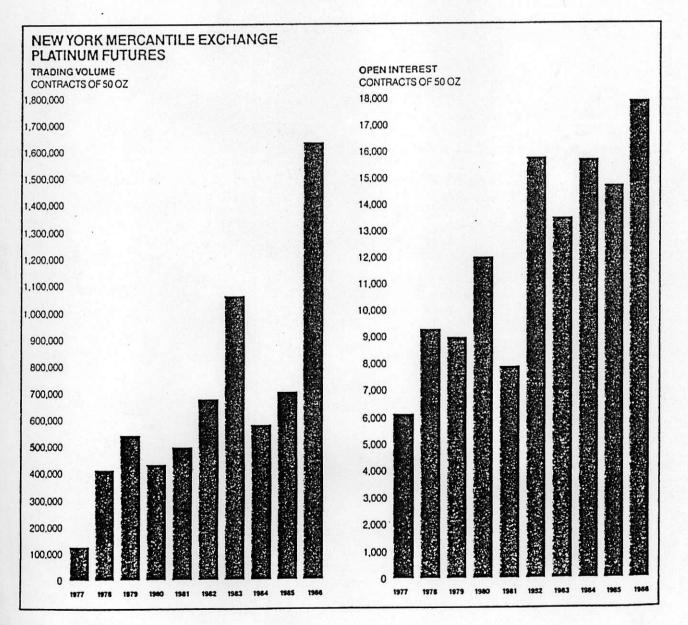
Promotion Current activity (UZD Lennin Canters.

Tulameen 92H/10

#### HISTORY OF THE TULAMEEN AREA AND THE SIMILKAMEEN MINING DISTRICT

Activity in the Tulameen first began in 1860 when placer gold was discovered in the Similkameen River by gold seekers arriving from California. Following these early pioneers was a steady stream of prospectors and labourers. The towns of Tulameen and Coalmont were quickly formed and developed. The gold rush was on.

Platinum was immediately recognized as occuring with the gold but had no real use and was therefore discarded or sold for less than \$0.40 per ounce. The first major strike was in 1885 when a rich gold placer deposit was found in the gravels of Granite Creek, a tributary of the Tulameen, 12 miles north of where it joins the Similkameen. High activity in the area continued in subsequent years. Interest in platinum began to grow as increased demand made it moderately profitable to mine. Platinum/gold ratios as high as 1:3 were found at Eagle Creek, 14 miles north of Granite Creek. More and more prospectors began to look and find platinum in all drainage areas of the Tulameen. By 1891 the Similkameen Mining District became known as the most significant platinum producing area in North America.


In the year 1900, Professor J.F. Kemp arrived to study the geology of platinum. His work published in a bulletin for the US Geological Survey (Bulletin number 193) is considered the most complete work on the subject. Professor Kemp's conclusion as to the source of the platinum of the placers is that it was derived from the belt of peridotite and pyroxenite which stretches across the district from Lodestone Mountain to Grasshopper Mountain.

John Marks found good values at the foot of Olivine Mountain in 1927 and continued to work the area successfully for six to seven years. Turning this claim into a large scale operation was badly hampered by shortage of water and thus was eventually abandoned completely. 1939 saw Fred Keeling of Quilchena working the same area with moderate success. He found flat, well worn flaky gold from 1/16 to 1/8 inch across.

Todate, platinum has been found in many areas of the Tulameen. The high demand and high price per ounce of platinum has fueled new searches and new mining efforts. Tiffany now owns the better part of Lodestone Mountain and six claims in the area where Britton Creek meets the Tulameen River. Both areas have extremely high potential for a successfull commercial project. Tiffany Resources is committed to installing the first major platinum mining operation in North America.

Platinum, at one time regarded by gold seekers as a nuisance, is today one of the most valuable and sought after of the precious metals. This was brought on by the twentieth century's unheard of advances in the fields of communication, transportation, and power. Industry was forced to turn to the platinum group metals for their ability to withstand high temperatures and disintegrating atmosphere, and to perform under conditions of great stress.

Reproduced (color)



#### WHY PLATINUM?

The search for precious metals and minerals has and will always have an important role in the history of mankind. No one can dispute that the search for the 'pot of gold' has lead to the exploration and development of a large portion of the world's surface. By far the majority of the effort has been spent on what had come to be known as the 'King and Queen' of the noble metals, gold and silver. Today there is a 'new royalty'. Today we search for Platinum

| Western World Total    | 1977         | 1978       | 1979       | 1980       | 1981      | 1982     | 1983  | 人以<br>数 1984 | 1985  | 198   |
|------------------------|--------------|------------|------------|------------|-----------|----------|-------|--------------|-------|-------|
|                        |              |            |            |            | - '000 oz |          | 7.505 |              |       |       |
|                        |              | -          | 000        |            | 640       | 645      | 615   | 795          | 910   | 1.05  |
| Autocatalyst           | . 455<br>380 | 630<br>340 | 900<br>345 | 680<br>260 | 250       | 260      | 245   | 260          | 225   | 199   |
|                        |              |            |            |            | 185       | 170      | 175   | 190          | 200   | 18    |
| Electrical             | 280          | 200        | 240        | 210        |           | : PKST   | 105   | 140          | 140   | 9     |
| Glass                  | 110          | 190        | 250        | 140        | 100       | 85<br>45 | 90    | 170          | 260   | 45    |
| nvestment              |              | -          | 705        | -          | 755       | 765      | 715   | 775          | 810   | 85    |
| Jewellery<br>Petroleum | 1,050        | 985<br>170 | 765<br>160 | 560<br>130 | 140       | 65       | 20    | 15           | 15    | 2     |
| Other                  | 120          |            |            | 350        | 360       | 285      | 215   | 285          | 270   | -     |
| TOTALS                 | 2.650        | 2,700      | 2,850      | 2,330      | 2,430     | 2,320    | 2,180 | 2,630        | 2,830 | 2,85  |
| -                      | 2,050        | 4/00       | 2,830      | 2,330      | 2,430     | 2,320    | 2,100 | 2,000        |       | 2,00  |
|                        |              |            |            |            |           |          |       |              |       |       |
| apan                   | der et e     |            |            |            |           |          |       |              |       |       |
| utocatalyst            | 80           | 180        | 200        | 210        | 190       | 170      | 170   | 170          | 210   | 25    |
| hemical                | 10           | 10         | 10         | 10         | -10       | 10       | 10    | 15           | 15    | 1     |
| lectrical .            | 15           | 15         | 15         | 15         | 15        | 20       | 20    | 30           | 40    | 4     |
| ilass                  | 30           | 40         | 40         | 40         | 50        | 45       | 60    | 75           | 60    | 3     |
| rvestment 2            | -            | _          | _          | _          | -         | _        | 5     | 15           | 35    | 3     |
| ewellery               | 840          | 835        | 590        | 440        | 625       | 620      | 560   | 625          | 675   | 74    |
| etroleum               | 20           | 15         | 10         | 15         | .15       | 15       | 15    | 20           | 15    | -     |
| Other                  | · 105        | 75         | 55         | 210        | 245       | 170      | 110   | 190          | 200   | (105  |
| OTALS                  | 1,100        | 1,170      | 920        | 940        | 1,150     | 1,050    | 950   | 1,140        | 1,250 | 1,01  |
|                        | 32           |            |            |            |           |          |       |              |       |       |
| lorth America          |              |            |            |            |           |          | 1,11  |              |       |       |
| utocatalyst            | 355          | 430        | 670        | 440        | 430       | 455      | 420   | 590          | 630   | 660   |
| hemical                | 90           | 140        | 130        | 115        | - 50      | 80       | 100   | 100          | 75    | . 65  |
|                        | . 95         | 100        | 135        | 145        | . 70      | 70       | 90    | 95           | 80    | 65    |
| lectrical F            | 65           | 100        | 100        | 50         | 20        | 10       | 15    | 30           | 40    | 25    |
| vestment               | _            | _          | _          | _          | _         | 40       | 40    | 30           | 130   | 300   |
| ewellery               | 15           | 20         | : 15       | 15         | 15        | 15       | 15    | 15           | 15    | 15    |
| etroleum .             | 80           | 105        | 195        | 140        | 55        | 20       | 15    | 15           | 10    | 10    |
| ther                   | - 90         | . 75       | 95         | 75         | 60        | 20       | 25    | 35           | 30    | 50    |
| OTALS                  | . 790        | 960        | 1,340      | 980        | 700       | 710      | 720   | . 910        | 1,010 | 1,190 |
|                        |              |            |            |            | . 5       |          |       |              |       |       |
| lest of Western World  |              |            |            | _          |           |          |       |              |       |       |
| ncluding Europe        |              |            |            |            |           |          |       |              |       |       |
| utocatalyst            | 20           | 20         | 30         | 30         | 20        | 20       | 25    | 35           | 70    | 140   |
| hemical                | 280          | 190        | 205        | 135        | 190       | 170      | 135   | 145          | 135   | 115   |
| ectrical               | 170          | 85         | 90         | 50         | 100       | 80       | 65    | 65           | 80    | 70    |
| lass                   | 15           | 50         | 110        | 50         | 30        | 30       | 30    | 35           | 40    | 35    |
| vestment               | _            | _          | _          | _          | _         | 5        | 45    | 125          | 95    | 115   |
| wellery                | 195          | 140        | 160        | 105        | 115       | 130      | 140   | 135          | 120   | 100   |
| etroleum               | 20           | 50         | (45)       | (25)       | 70        | 30       | (10)  | (20)         | (10)  | 15    |
| ther                   | 60           | 35         | 40         | 65         | 55        | 95       | 80    | 60           | 40    | 60    |
| OTALS                  | 760          | 570        | 590        | 410        | 580       | 560      | 510   | 580          | 570   | 650   |

#### SUMMARY OF MAIN EVENTS OF 1986

- \* Autocatalyst demand for platinum exceeded 1 million oz for the first time. Growth in demand was particlarly marked in Western Europe.
- \* Sales of small platinum bars, codins and medallions to private investors expanded by over 70 percent. The investment sector's contribution to total demand for platinum rose to 16 percent from 9 percent in 1985, Demand was expecially strong in North America.
- \* In Japan, consumption of platinum in the jewellery industry was at its highest since 1978, and accounted for 25 percent of total western world demand. A significant part of jewellery sector demand was satisfied from recycled metal.
- \* The markets for platinum and rhodium were very volatile in the latter part of the year. The average spot price for platinum was \$170 per oz higher than in 1985. The rhodium price reached an all-time high of over \$1400 per oz in September.
- \* Platinum futures trading in New York and Tokyo broke all records.

#### THE TIFFANY TEAM

#### William B. Warke - president

Born in Blaimore, Alberta in 1926, Mr. Warke went through the Commerce and Business Administration program at the University of British Columbia, after which he worked in the construction industry for over 8 years. He obtained his real estate license in 1963 and then went on to found his own real estate company which is still active today. For the last 20 years, Mr. Warke has been actively involved in the mining business. He became an investor first and later a participant. Upon purchasing Cima Resources Ltd., he brought two copper mines into profitable production in Chile, South America. He also brought into production the Mt. Hundere deposit in the Yukon, which is now undergoing further development by Canamax. In 1979, Bill funded and founded the Risby Tungsten Mine. In July 1984, he was appointed president of Tiffany Resources Inc. and continued his active and successful trend by accepting the presidency of Rampart Resources Ld. in February, 1985. Bill has been very successful in what has turned out to be his life profession and is the main guiding force behind Tiffany Resources Inc.

### Orval E. Gillespie - director

Born in Ontario, Orval has been actively involved in every aspect of the mining industry for all of his working life. He is President of David Minerals Ltd., Carolin Mines Ltd. and Lintex Mineral Ltd. Well known in the BC mining industry, Mr. Gillespie was instrumental in putting the Carolin Mines Ltd. deposit into production in July, 1982. Orval brings many years of diversified and valuable Mining industry experience to the Board of Directors.

#### David Petersen - director

David was born in Cape Town, South Africa in 1931. He graduated from Diocesan Collegiate in 1948. In 1958, he was awarded his B.Sc. in Mining Engineering and his B.Sc in Mining Geology in 1964. In 1963 after completing his studies at Witwatersrand University, he emigrated to Canada and received Canadian Citizenship. David has been registered with the Province of British Columbia as a Professional Engineer since 1965. David has worded with numerous companies, namely, Julian Mining Company, Placer Developments Ltd., Rio Algom Exploration Inc., Intermico Machinery Corp., and Daiwa Engineering Ltd. Presently, David is the Senior Geologist at Western Canadian Ltd. He has overseen producing mines and exploration teams of all sizes around the world. He was nominated to the Board of Directors of Tiffany Resources Inc. in May, 1985 and was duly elected in November by the shareholders. Mr. Petersen has proven to be a definite asset for the Company, bringing with him his many years of diversified experience.

#### Grant Herrington - director

Grant was born in Saskatchewan and graduated from the Vaughan Road Collegiate in 1943. He attended the University of Toronto, majoring in French, and the University of Waterloo where he took Marketing. Grant has been the manager of Sales and Promotion for Rothmans of Pall Mall since 1957. He was elected to the Board of Directors in July, 1985. Mr. Herrington brings with him, many years of Public Relations experience.

#### TIFFANY HOLDINGS

#### 1) Oil and Gas Interests

## Name Location Interest (%)

Church #1 Kingfisher County, Oklahoma 6.25 Vail #1 Kingfisher County, Oklahoma 6.25 Parker #1 Garfield County, Oklahoma 6.25 Mitchel "A" #1 Kingfisher County, Oklahoma 25.00 Cat #2 Baine County, Oklahoma 1.56

### 2) Mineral Properties

Name Location Claims Status

Snow Property Reindeer Mining District S103110 owned La Ronge, Saskatchewan

Texada Isl. Nanaimo Mining Division MEL #1 owned

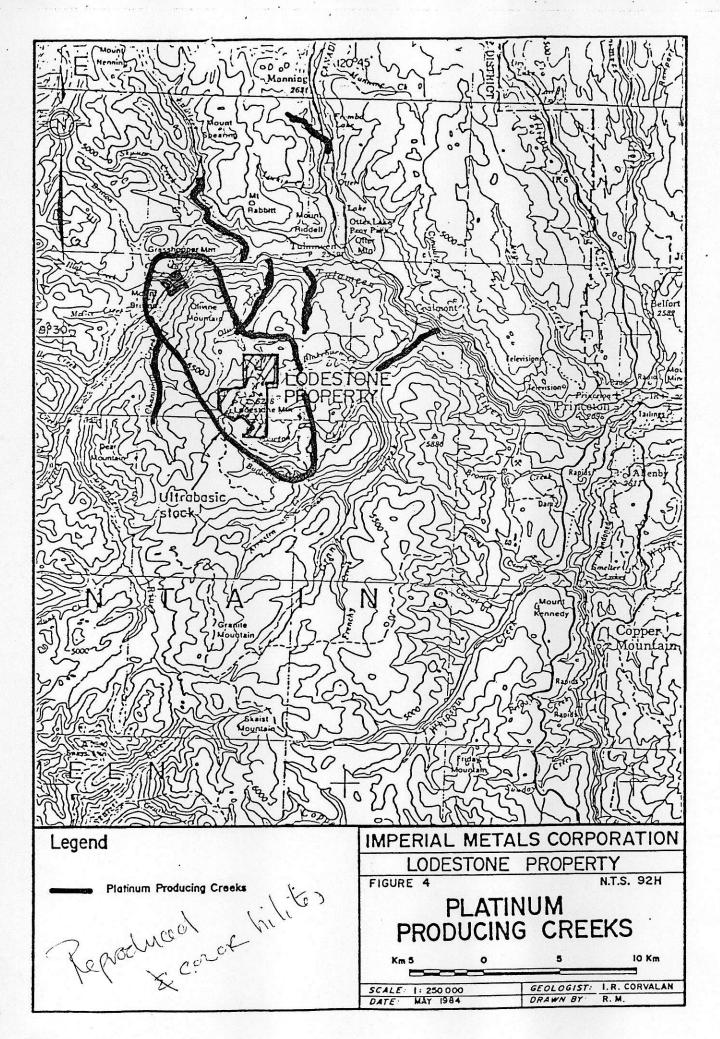
MEL #2 owned MEL #3 owned MEL #4 owned MEL #6 owned

Loadstone Similkameen Mining Division LOADSTONE #1 optioned

LOADSTONE #2 optioned LOADSTONE #3 optioned

Britton Creek Similkameen Mining Division D1-3 owned

R1-3 owned PML LEASE owned

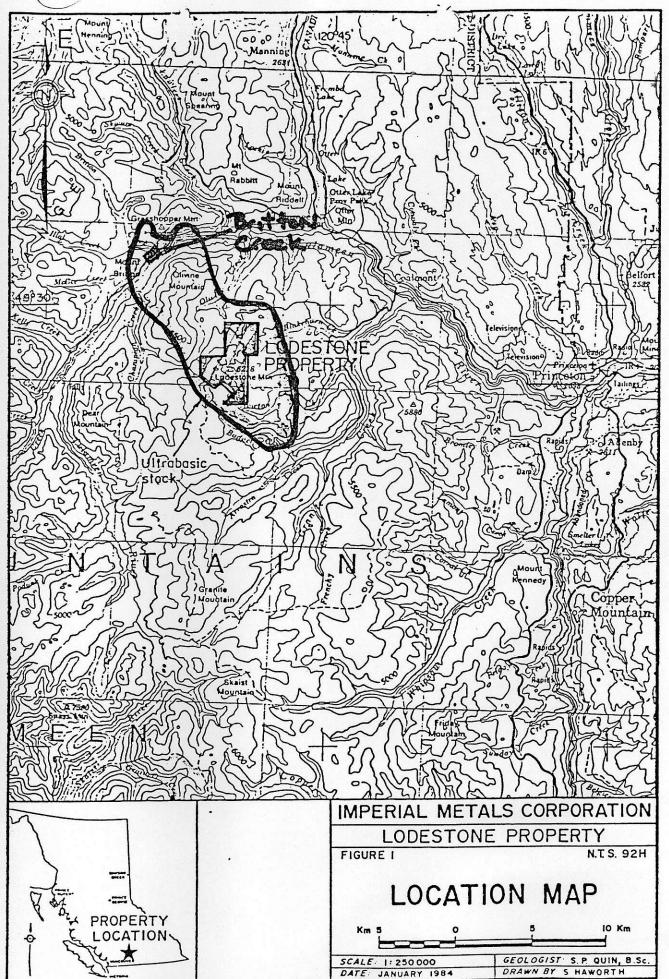

1

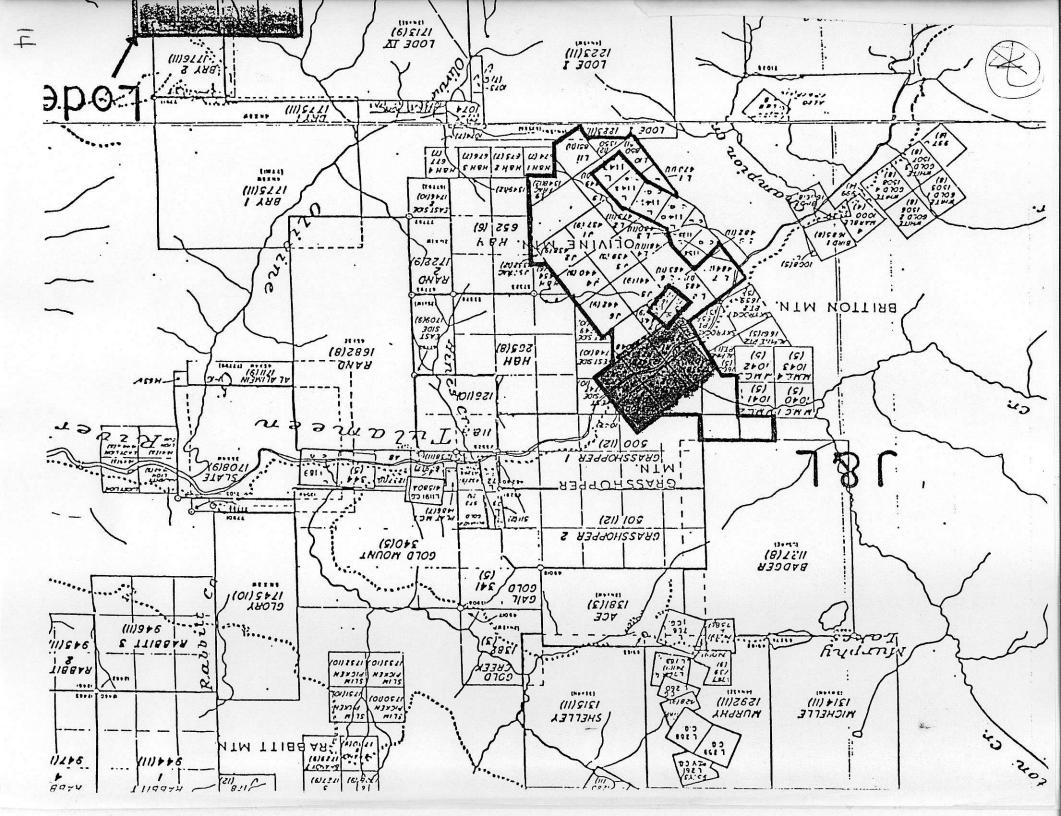
#### SHARE CAPITALIZATION

# a) Authorized 22,000,000 common voting shares without par value 3,000,000 Class B non-voting convertible shares without par value

## b) Issued and fully paid -

|                                                     | Number    | Amount (\$) |
|-----------------------------------------------------|-----------|-------------|
|                                                     |           |             |
| Common voting shares                                |           |             |
| Balance, January 31, 1986<br>Issued during the year | 2,633,993 | 849,485     |
| For cash                                            | 999,999.  | 150,000     |
| In settlement of debt                               | 788,242   | 118,086     |
| Balance, January 31, 1987                           | 4,422,234 | 1,117,571   |
| Class B non-voting shares                           |           |             |
| Balance, January 31 1986 & 1987                     | 11,600    | 11,600      |
|                                                     | 4,433,834 | 1,129,171   |
|                                                     |           |             |





5 et contres LODESTONE 3 5 4 2 CP LODESTONE MT. PROVEN IRON ORE RESERVES LODESTONE & 2 3W×45 6 IMPERIAL METALS
BASE LINES LODESTONE 1 6 65×3E 5

, color נון עוונט בננו HEN! HOHE HOL 7 A 4 677 (7) AM (7) 675 (7) 6761. 1223(11. Ma. 60-10710M ודילווו) בינט בינו LODE I BRY 2 1223(11) 3 LODE IN 16 1713(9) .12 Blabeburn 34 11.5 . m. LODESTONE LODE III 1712 (9) LODE I 458 110 30% 1240(11) 3lurit 17 5 -ret. Ladeston LODESTONE GORDY 457 (10) LODESTONE ! 458110 891(12) #135 #15# 723(# CT Newt BADGER 2 ISON 1693(8) 1158 1157(9) ~ NEWTON Badger 1159(9) 1160 1692(8) IMPERIAL METALS CORPORATION LEGEND LODESTONE PROPERTY N.T.S. 92H/ 7W FIGURE 2 IMPERIAL METALS CLAIM BLOCK CLAIM MAP 2 Km Km I

12

(X) color





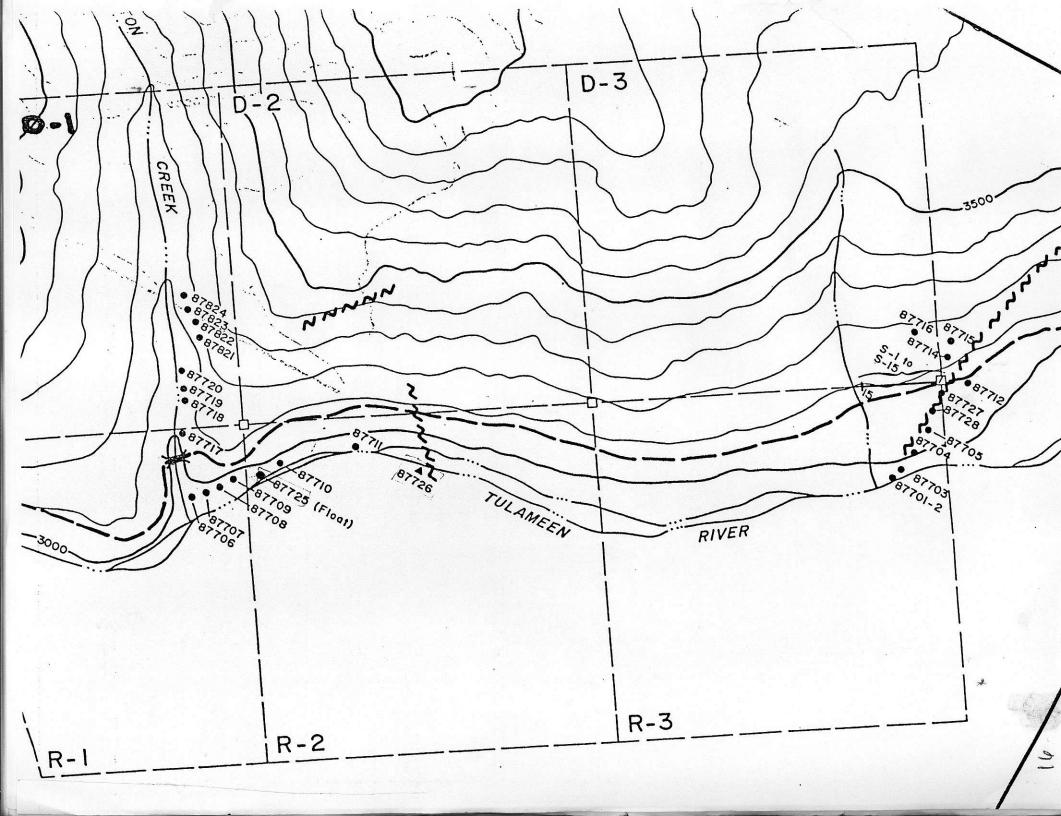
photocopie

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 TELEX 04-53124

DATE RECEIVED: APR 2 1984

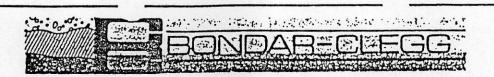
DATE REPORT MAILED:

#### GEOCHEMICAL ICP ANALYSIS


A .500 GRAM OF SAMPLE DIGESTED WITH 3ML OF 3-1-3 OF HCL-HNO3-H2O AT 95 DEG. OF WATENR BATH FOR ONE HOUR. DILUTED TO 10 ML WITH WATER.PARTIAL LEACHED FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA AU DETECTION LIMIT 3 PPM SAMPLE TYPE: ROCK CHIPS

MDEAN TOYE. CERTIFIED B.C. ASSAYER ASSAYER: .A

IMPERIAL METALS FILE # 84-0465


PAGE 1

| SAMPLE#       | CU   | AG      | CR.  |      |        |   |
|---------------|------|---------|------|------|--------|---|
|               | PPM  | PPM     | FPM  | PPB  | PPB    |   |
| 87701         | 6748 | 11.8    | 12   | 23   | 2      |   |
| 87702         | 874  | 1.3     | 58   | 6    | 2      |   |
| 87703         | 1821 | 3.2     | 7    | 18   | 2      |   |
| 87704         | 57   | . 9     | 6    | 5    | 2      |   |
| 87705         | 15   | . 1     | 49   | 1    | 145    |   |
| 87706         | 276  | 3       | 72   | 1    | 18     |   |
| 87707         | 89   | .2      | 109  | 2    | 160    |   |
| 87708         | 237  | . 1     | 119  | 1    | 43     |   |
| 87709         | 84   | .2      | 99   | 1    | 17     |   |
| 87710         | 11   | . 1     | 45   | 1    | 68     |   |
| 87711         | 5    | . 1     | 69   | 1    | 150    |   |
| 87712         | 101  | 6.2     | 22   | 78   | 2      |   |
| 87713         | 27   | .7      | 3    | 18   | 12     |   |
| 87715         | 126  | .2      | 1    | 13   | 2      |   |
| 87716         | 71   | . 1     | 63   | 4    | 2      |   |
| 87717         | 569  | .8      | 223  | 6    | 120    |   |
| 87718         | 16   | . 1     | 35   | 2    | 340    |   |
| 87719         | 49   | . 1     | 254  | 2    | 110    |   |
| 87720         | 6    | . 1     | 32   | 1    | 2      |   |
| 87721         | 70   | .3      | 138  | 2    | 55     |   |
| 87722         | 20   | . 1     | 188  | 1    | 2      |   |
| 87723         | 4    | .2      | 28   | 1    | 2      |   |
| 87724         | 5    | . 1     | 341  | 1    | 2      |   |
| 87725         | 13   | . 1     | 213  | 4    | 62000  |   |
| 87726         | 19   | .6      | 491  | 4100 | 31000  |   |
| 87727         | 10   | .6      | 78   | 28   | 2      |   |
| 87728         | 20   | 2.6     | 271  | 52   | 2      |   |
| STD A-1/FA-AU | 31.  | .3      | 74   | . 53 | -      |   |
|               | S    | Juggest | (°,1 | N; V | Analys | × |
|               |      | ,,      |      |      |        |   |

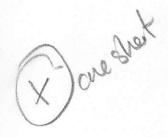


Bonder-Cheg & Company Ltd.

130 Pemberant'Ave, North Vancous at, B.C. Canade VTP 2R3 Phone: (604) 983-0881 Telex: 04-352667



Geochemical Lab Report


| REPORT: 126-1126                      |            |            |               | PROJECT: 120 PAGE 1           | •• |
|---------------------------------------|------------|------------|---------------|-------------------------------|----|
| SAMPLE ELEMENT Cr<br>NUMBER UNITS PPM |            | Pt<br>PPB  | Pd<br>PPB     | SAMPLE TYPE                   |    |
| R2 R 01328                            | 3950       | <b>(50</b> | C5            | 3.0m chip                     |    |
| R2 R 01329                            | 3200       | 50         | <b>&lt;5</b>  | 3.0m chip                     |    |
| #2 R 01330                            | 5300       | 150        | <5            | 1.0m chip .                   |    |
| R2 R 01331 7                          | 2% >20,000 | 430 .0     | 1202 (5       | selected grab of trench       |    |
| R2 R 01332                            | 6700       | 75         | ₹5            | selected grab                 |    |
| R2 R 07631                            | 4600       | 100        | ে ত           | 4.0m chip                     |    |
| R2 R 07632                            | 3900       | 50         | . (5          | 5.0m chip                     |    |
| R2 R 07633                            | 4500       | 90         | (5            | 2.0m chip                     |    |
| R2 R 07634                            | >20000     | 320 .00    | 902 (5        | 2.0m chip                     | 1  |
| R2 R 07635                            | 6300       | 160        | <b>(5</b> ·   | 2.5m chip                     | 1  |
| R2 R 07636                            | 3750       | <50        | C5            | 1.5m chip                     |    |
| R2 R 07637                            | 6700       | 110        | <5            | selected grab of trench       |    |
| R2 R 07638                            | >20000     | 60         | C             | selected grab of trench       |    |
| R2 R 07639                            | >20000     | 2150 -0    |               | grab of float boulder         |    |
| R2 R 07640                            | 4600       | 50         | <b>(</b> 5    | 1.8m chip                     |    |
| R2 R 07641                            | 1460       | (50        | <b>(5</b>     | grab in shear zone            |    |
| R2 R 07642                            | >20000     | 100        | <b>&lt;</b> 5 | selected grab of trench       |    |
|                                       |            |            |               |                               |    |
| R2 R 10570                            | 5200       | 175        | <b>(</b> 5    | 0.5m chip                     |    |
| R2 R 10571                            | 3800       | 210        | <b>&lt;</b> 5 | 1.0m chip                     |    |
| R2 R 10572                            | 3600       | 100        | (5            | selected grab                 | -  |
| R2 R 10573                            | >20000     | .4400 -12  | 18 ° 15       | 0.5m chip                     |    |
| R2 R 10574                            | 6700       | 530        | <2            | selected grab                 |    |
| R2 R 10575                            | 8600       | 150        | <b>(5</b>     | selected grab                 |    |
| R2 R 10576                            | 3100       | <50        | <2            | selected grab of breccia zone |    |

#### TIFFANY TODAY

At present, both the Lodestone and Britton Creek properties are seeing high activity as sampling, mapping and line cutting are underway. Initial results have been excellent and Tiffany Resources expects continued good fortune. The properties will continue to be worked on with stage 1 drill targets to be the next step.

Tiffany Resources has appointed Mr. Steven Schwartz as director of Public Relations. Mr. Schwartz intends to see that the available information and assay results are quickly passed on to the investors. In addition, company information will be made available to the general public and large corporate investors through the Public Relations office. A new full set of promotional materials will be available shortly.

All inquires should be directed to Mr. Steven Schwartz at Tiffany's head office. (604) 682-7407



#### REFERENCES CITED SECTION

Metal and Mineral Markets, E & MJ, PLATINUM GROUP Market Guide June 27, 1966

Steiner, Robert REPORT ON THE RABBITT MINE LAWLESS CREEK-TULAMEEN
RIVER AREA SIMILKAMEEN MINING DIVISION BC
March 21, 1979

Corvalan, F.R. REPORT ON GEOCHEMICAL AND GEOPHYSICAL SURVEYS April 8, 1984

Wright R.L. ASSESSMENT REPORT ON GEOLOGICAL MAPPING, PROSPECTING AND GEOCHEMICAL SAMPLING OF THE TULAMEEN ULTRAMAFIC COMPLEX AND THE LOADSTONE PROPERTY SIMILKAMEEN MINING DISTRICT BC
October 15, 1986

Robson, G.G. PLATINUM 1987 Johnson Matthey May 1987