# MUTUAL RE`:"'SCES LIMITED 

# BONEP!ZA BASI!! PR-JECT Bultion r Trei, hining and <br> Campliaig Pro:amme 

July 1980

Graham H. Scott, B.Sc., M.A. Vancouver, B.C.

In July 1980, Mutual Resources Limited completed 4,550 metres of bulldozer trenching on the Bonanza Basin property in the Lillooet Mining Division. The trenching was carried out in order to determine the source of free gold which is readily panned from overburden in the south central part of the property, and its relationship to bedrock occurrences of low-grade gold mineralization which are reported in early reponts on the property. The present report summarizes the geology in the immediate vicinity of the bulldozer trenching, and the sampling of the trenches that took place concurrently. No attempt is made here to describe the regional and local geological setting, nor the explorations carried out before Mutual Resources Limited acquired the property, since that is done very adequately in a report titled "Geological Evaluation and Exploration Proposed, Bonanza Project Area, Southwestern British Columbia" dated May 26, 1979 by Michael St. C. Fox, P. Geol. to which the reader is referred.

Mutual Resources Limited in 1979 completed an access road to the property and also performed 4,800 metres of bulldozer trenching and sampling. The 1979 trenching programme was carried out in the metasedimentary succession in the vicinity of the Robson showing, a known gold occurrence.

## GEOLOGY

Figure 1 shows the geology of the area trenched in 1980, and its relationship to the 1979 trenches. The trenches for the current programme were located by the writer on the basis of local geology as seen in the field and gold occurrences as reported by Cooper Drabble around 1933.

Metasediments of the Hurley Group (Unit 1) are intruded by a biotite diorite (Unit 2) of probable Late Cretaceous or Early Tertiary age. The biotite diorite forms the prominent north-trending ridge in the centre of the claim block whereas the metasediments underlie a small cirque now occupied by Hughes Creek and Red Mountain to the northeast. The contact zone between the biotite diorite and the metasediments is the area which in the opinion of the writer has potential for low-grade gold mineralization. Unit 3 occurs in the northwestern part of the contact zone examined, and consists of a biotite
quartz diorite which exhibits variable degrees of alteration. In some areas it is reasonably fresh with only feldspar being altered to kaolinite and sericite, whereas in other areas the rock consists of quartz in a light grey matrix of kaolinite, sericite, carbonate and limonite. A characteristic feature is the orange-brown limonite which line the fractures in the rock. Unit 3 forms much ef the northwest trending ridge which forms the southern part of the Hughes Creek cirque.

Unit 4 is a leucocratic intrusive composed of quartz with white and grey feldspar which was given the field mapping name of leucogranite or alaskite. When fresh, the rock is light grey and hard and usually contains disseminated pyrite with occasional chalcopyrite, arsenopyrite and molybdenite. However one or more of the feldspars weather quite readily and large fragments of the rock show a fresh light grey core surrounded by two distinct stages of surface weathering which shaw as concentric bands around the core. It is likely that the third stage of weathering results in the physical disintegration of the rock to the red gravel which covers the west-facing slopes in the trenched area. Thus the rock which in its fresh state is massive and hard, weathers rapidly to become a recessive unit and is relatively rare in outcrop. Distinctive features of Unit 4 are the zones of sub-parallel chalcedony veins which commonly occur. The only place where these veins can be reliably measured is in the upper part of the Hughes Creek basin where they have a strike of 335 degrees and are vertical. This direction is parallel to a fault which is followed by the south fork of Hughes Creek. The veins are rarely over 1 cm . in width but over several metres can constitute as much as $50 \%$ of the rock total. Most of the veins are medium grey in colour and contain disseminated pyrite. In eddition, there are occasional milky quartz veins up to 5 cm . in thickness with rhomboid vugs after pyrite.

## MINERALIZATION

Sulphide mineralization of three types occurs on the property:
a. Pyrite-quartz-arsenopyrite-stibnite veins in the vicinity of the Robson workings.
b. Complex quartz-chalcedony veins of a white to pale yellow colour found mostly within Unit 4 and best exposed on the ridge immediately southeast of Hughes Creek where several prospect pits have been dug. Sparse pyrite occurs in the veins examined, but auriferous arsenopyrite has been reported from them.
c. Disseminated pyrite and occasional disseminated chalcopyrite, arsenopyrite and molybdenite in the alaskite, and pyrite in the chalcedony veins.

The third type of mineralization is that to which Cooper Drabble was referring when he described:
"... the mineralized and altered feldspar (porphyry) carries from a trace to 0.13 ounces in gold, the mineralization being in the form of sparse arsenopyrite grains throughout the porphyry."

Specifically, in the area of upper Hughes Creek underlain by Unit 4 Drabble described:
"... an area of mineralization 300 feet wide which appears to be a contact replacement of the dyke by quartz and arsenical solution, with values running from a trace up to 0.16 ounces in gold across 5 and 10 foot widths of the zones of mineralized quartz, the top of which were exposed by the ground sluicing."

TRENCHING AND SAMPLING

A D6C Caterpillar bulldozer of Artomas Contracting Limited was used for the trenching which took place between July 19-24. Bedrock was easily reached in most of trench T1, but at lower elevations, in T2 and especially T4, bedrock was difficult to reach due to increasing depths of overburden.

Two hundred and twelve samples were collected during the programme.
Approximately 200 of these were 3 kg . samples taken over a sampling interval of ten metres. Occasional grab samples were taken where warranted, both of bedrock, and of the decomposed alaskite.

The results of the trenching sampling are shown in the tables below.

TRENCH 1

| SAMPLE NUMBER | DISTANCE (METRES) | AU oz./ton | AG oz./ton |
| :---: | :---: | :---: | :---: |
| 16241 | 220-230 | . 001 | . 01 |
| 16242 | 230-240 | . 001 | . 01 |
| 16243 | 240-250 | . 001 | . 01 |
| 16244 | 260-270 | . 001 | . 02 |
| 16245 | 270-280 | . 001 | . 01 |
| 16246 | 280-290 | . 001 | . 01 |
| 16247 | 350-360 | . 001 | . 01 |
| 16248 | 360-370 | . 001 | . 02 |
| 16249 | 370-380 | . 001 | . 01 |
| 16250 | 380-390 | . 001 | . 02 |
| 16251 | 390-400 | . 001 | . 01 |
| 16252 | 400-410 | . 001 | . 01 |
| 16253 | 410-420 | . 001 | . 01 |
| 16254 | 420-430 | . 001 | . 01 |
| 16255 | 430-440 | . 001 | . 01 |
| 16256 | 440-450 | . 001 | . 01 |
| 16257 | 450-460 | . 001 | . 01 |
| 16600 | 460-470 | . 001 | . 01 |
| 16599 | 470-480 | . 001 | . 01 |
| 16598 | 480-490 | . 001 | . 01 |
| 16597 | 490-500 | . 001 | . 01 |
| 16596 | 500-510 | . 001 | . 01 |
| 16595 | 510-520 | . 001 | . 01 |
| 16594 | 520-530 | . 001 | . 01 |
| 16593 | 530-540 | . 001 | . 01 |
| 16592 | 540-550 | . 001 | . 01 |
| 16591 | 550-560 | . 001 | . 01 |
| 16574 | 770-780 | . 001 | . 02 |
| 16573 | 780-790 | . 001 | . 01 |
| 16572 | 790-800 | . 001 | . 01 |
| 16571 | 800-810 | . 002 | . 01 |
| 16570 | 810-820 | -- | -- |
| 16569 | 820-830 | . 001 | . 01 |
| 16568 | 830-840 | . 001 | . 03 |
| 16567 | 840-850 | . 001 | . 01 |
| 16566 | 850-860 | . 001 | . 02 |
| 16565 | 860-870 | . 001 | . 01 |
| 16564 | 870-880 | . 001 | . 01 |
| 16563 i | 880-890 | . 001 | . 01 |
| 16562 | 890-900 | . 001 | . 01 |
| 16561 | 900-910 | . 001 | . 01 |
| 16560 | 910-920 | . 001 | . 01 |
| 16558 | 920-930 | . 001 | . 01 |
| 16559 | 940-950 | . 001 | . 02 |
| 16557 | 960-970 | . 001 | . 01 |
| 16556 | 970-980 | . 001 | . 01 |
| 16555 | 980-990 | . 001 | . 01 |
| 16554 | 990-1000 | . 001 | . 01 |
| 16553 | 1000-1010 | . 001 | . 01 |

TRENCH 1, Cont.

| SAMPLE NUMBER | DISTANCE (METRES) | AU oz./ton | AG 0z./ton |
| :---: | :---: | :---: | :---: |
| 16552 | 1010-1020 | . 001 | . 04 |
| 16551 | 1020-1030 | . 001 | . 01 |
| 16550 | 1030-1040 | . 001 | . 01 |
| 16549 | 1040-1050 | . 001 | . 01 |
| 16548 | 1050-1060 | . 001 | . 01 |
| 16547 | 1060-1070 | . 001 | . 01 |
| 16546 | 1070-1080 | . 001 | . 01 |
| 16545 | 1080-1090 | . 001 | . 01 |
| 16544 | 1090-1100 | . 001 | . 01 |
| 16543 | 1180-1190 | . 001 | . 01 |
| 16542 | 1190-1200 | . 001 | . 01 |
| 16541 | 1225-1230 | . 001 | . 01 |
| 16540 | 1230-1240 | . 001 | . 01 |
| 16539 | 1240-1250 | . 001 | . 04 |
| 16538 | 1250-1260 | , | . |
| 16537 | 1260-1270 | . 001 | . 02 |
| 16536 | 1270-1280 | . 001 | . 01 |
| 16535 | 1280-1290 | . 001 | . 02 |
| 16534 | 1290-1300 | . 001 | . 05 |
| 20386 | 1320-1330 | . 001 | . 01 |
| 20385 | 1330-1340 | . 001 | . 01 |
| 20384 | 1340-1350 | . 002 | . 01 |
| 20383 | 1350-1360 | . 002 | . 01 |
| 20382 | 1360-1370 | . 001 | . 01 |
| 20381 | 1370-1380 | . 001 | . 01 |
| 20380 | 1380-1390 | . 001 | . 01 |
| 20379 | 1390-1400 | . 003 | . 01 |
| 20378 | 1430 Grab | . 001 | . 01 |
| 20377 | 1400-1410 | . 001 | . 01 |
| 20376 | 1410-1420 | . 001 | . 01 |
| 20375 | 1420-1430 | . 002 | . 05 |
| 20374 | 1430-1440 | . 001 | . 03 |
| 20373 | 1440-1450 | . 001 | . 01 |
| 20372 | 1450-1460 | . 001 | . 01 |
| 20371 | 1460-1470 | . 001 | . 02 |
| 20370 | 1470-1480 | . 001 | . 01 |
| 20369 | 1480-1490 | . 001 | . 02 |
| 20368 | 1500-1510 | . 001 | . 01 |
| 20367 | 1510-1520 | . 001 | . 01 |
| 20366 | 1520-1530 | . 001 | . 02 |
| 20365 | 1490-1500 | . 002 | . 01 |
| 20364 | 1530-1540 | . 002 | . 01 |
| 20363 | 1540-1550 | . 001 | . 02 |
| 20362 | 1550-1560 | . 002 | . 02 |
| 20361 | 1560-1570 | . 004 | . 02 |
| 20360 | 1570-1580 | . 003 | . 01 |
| 20359 | 1580-1590 | . 002 | . 01 |
| 20358 | 1590-1600 | . 009 | . 03 |
| 20357 | 1600-1610 | . 001 | . 01 |
| 20356 | 1610-1620 | . 001 | . 02 |

TRENCH 1, Cont.

| SAMPLE NUMBER | DISTANCE (METRES) | AU oz./ton | AG oz./ton |
| :--- | :---: | :---: | :---: |
| 16533 | $1665-1670$ | .001 | .01 |
| 16532 | $1670-1680$ | .003 | .01 |
| 16531 | $1680-1685$ | .001 | .01 |
| 16530 | $1720-1730$ | .001 | .01 |
| 16529 | $1730-1740$ | .001 | .01 |
| 16528 | $1740-1745$ | .001 | .01 |
| 16527 | $1750-1760$ | .001 | .01 |
| 16526 | $1760-1770$ | .001 | .01 |
| 16525 | $1875-1880$ | .001 | .01 |
| 16524 | $1880-1890$ | .001 | .01 |
| 16523 | $1960-1970$ | .008 | .01 |
| 16522 | $1970-1980$ | .026 | .01 |
| 20400 | $1980-1990$ | .006 | .01 |
| 20399 | $1990-2000$ | .007 | .03 |
| 20397 | $2100-2110$ | .001 | .01 |
| 20396 | $2110-2120$ | .001 | .01 |
| 20395 | $2120-2130$ | .001 | .01 |
| 20394 | $2130-2140$ | .001 | .01 |
| 20393 | $1580-1620$ | .001 | .01 |
| 20392 | $1540-1580$ | .001 | .01 |
| 20391 | $1500-1540$ | .001 | .01 |
| 20390 | $1460-1500$ | .001 | .01 |
| 20389 | $1420-1460$ | .001 | .01 |
| 20388 | $1380-1420$ | .008 | .01 |
| 20387 | $1340-1380$ |  | .02 |

TRENCH 2

| 16575 | $0-10$ | .001 | .03 |
| :--- | ---: | ---: | ---: |
| 16576 | $10-20$ | .001 | .01 |
| 16577 | $20-30$ | .001 | .01 |
| 16578 | $30-40$ | .001 | .01 |
| 16579 | $40-50$ | .001 | .01 |
| 16580 | $50-60$ | .001 | .01 |
| 16581 | $60-70$ | .001 | .01 |
| 16582 | $70-80$ | .001 | .01 |
| 16583 | $80-90$ | .001 | .01 |
| 16584 | $90-100$ | .001 | .01 |
| 16585 | $100-110$ | .001 | .01 |
| 16586 | $110-120$ | .001 | .01 |
| 16587 | $120-130$ | .001 | .01 |
| 16588 | $130-140$ | .001 | .01 |
| 16589 | $160-170$ | .001 | .01 |
| 16590 | $170-180$ | .001 | .01 |
| 16201 | $190-200$ | .001 | .01 |
| 16202 | $370-380$ | .001 | .01 |
| 16203 | $430-440$ | .001 | .01 |
| 16204 | $440-450$ | .001 | .01 |
| 16205 | $450-460$ | .001 | .01 |
| 16206 | $460-470$ | .001 | .01 |
| 16207 | $470-480$ | .001 | .01 |
| 16208 | $480-490$ | .001 | .01 |
| 16209 | $490-500$ | .01 |  |

TRENCH 2, Cont.

| SAMPLE NUMBER | DISTANCE (METRES) | AU 0z./ton | AG oz./ton |
| :---: | :---: | :---: | :---: |
| 16210 | 500-510 | . 001 | . 01 |
| 16211 | 510-520 | . 001 | . 01 |
| 16212 | 520-530 | . 001 | . 01 |
| 16213 | 530-540 | . 001 | . 01 |
| 16214 | 540-550 | . 001 | . 01 |
| 16215 | 550-560 | . 001 | . 01 |
| 16216 | 560-570 | . 001 | . 01 |
| 16217 | 570-580 | . 001 | . 01 |
| 16218 | 580-590 | . 001 | . 01 |
| 16219 | 590-600 | . 001 | . 01 |
| 16220 | 600-610 | . 001 | . 01 |
| 16221 | 610-620 | . 001 | . 01 |
| 16222 | 620-630 | . 001 | . 01 |
| 16223 | 630-640 | . 001 | . 01 |
| 16224 | 640-650 | . 001 | . 01 |
| 16225 | 650-660 | . 001 | . 01 |
| 16226 | 660-670 | . 001 | . 01 |
| 16227 | 670-680 | . 001 | . 01 |
| 16228 | 680-690 | . 001 | . 01 |
| 16229 | 690-700 | . 001 | . 01 |
| 16230 | 720-730 | . 001 | . 01 |
| 16231 | 730-740 | . 001 | . 01 |
| 16232 | 740-750 | . 001 | . 01 |
| 16233 | 750-760 | . 001 | . 01 |
| 16234 | 760-770 | . 001 | . 01 |
| 16235 | 770-780 | . 001 | . 01 |
| 16236 | 780-790 | . 001 | . 01 |
| 16237 | 790-800 | . 001 | . 01 |
| 16238 | 800-810 | . 001 | . 01 |
| 16239 | 980-990 | . 001 | . 01 |
| 16240 | 1080-1090 | . 001 | . 01 |
| TRENCH 3 |  |  |  |
| 16258 | 118-120 | . 001 | . 01 |
| 16259 | 290-300 | . 037 | . 01 |
| 16260 | 300-305 | 1.54 r | . 01 * |

TRENCH 4

| 16261 | $84-90$ | .001 | .02 |
| :--- | ---: | ---: | :--- |
| 16262 | $90-100$ | .001 | .01 |
| 16263 | $100-110$ | .001 | .01 |
| 16264 | $110-120$ | .001 | .01 |
| 16265 | $120-130$ | .001 | .01 |
| 16266 | $130-140$ | .001 | .02 |
| 16267 | $140-150$ | .001 | .01 |
| 16268 | $225-230$ | .001 | .02 |
| 16269 | $230-240$ | .001 | .02 |
| 16270 | $240-250$ | .001 | .02 |
| 16271 | $250-260$ | .009 | .01 |
| 16272 | $304-310$ | .001 | .09 |
| 16273 | $310-320$ | .023 | .01 |
| 16274 | $320-330$ | .007 | .02 |

TRENCH 4, Cont.

| SAMPLE NUMBER | DISTANCE (METRES) | AU oz./ton | AG 02./ton |
| :---: | :---: | :---: | :---: |
| 16275 | 340-350 | . 005 | . 01 |
| 16276 | 350-360 | . 008 | . 01 |
| 16277 | 360-370 | . 004 | . 01 |
| 16278 | 370-380 | . 003 | . 01 |
| 16279 | 380-390 | . 003 | . 01 |
| 16280 | 390-400 | . 003 | . 01 |

