

```
Mr. J.P. Heron,
Eresident,
Swim Lake Mines Ltd.,
685 - /2 Bentall Centre,
Vancouver, 1, B.C.
Dear Mr. Heron:
```

We submit herewt th a short sumary and description of the results of our recent geological investigations, together with maps, concerning your optioned mineral claims covering the Imperial and Eneline workings north of and close to Rock Creek, B.C.

This geological work was completed subsequent to a survey of the underground vorkings of the Imperial Mine.

It should be noted little or no work has been conducted on the adjoining clatns to the north, northeast and east to date but that this is currantly in progress.

The Impertal Mine workings are located in orange
rhyolitic rocks containing numerous stringers of quartz and calcite, underlain by fine-grained cherty banded gray 1 imestones. The rhyoLites exhibit flow structure with a general N to NW trend.

The mineralization, I' $^{\prime}$ to 6^{\prime} in thickness, occurs in the limestones close to the rhyolite contact, adjacent to and below a narrow fault striking $540^{\circ} \mathrm{B}$ and dipptng $N 35^{\circ} \mathrm{E}$. The thickest section
of the ore zone occurs near the surface, pinching and tightening to $2^{\text {" }}$ to $1^{\prime \prime}$ before being terminated by a NE-SW fault at a point where three finger-like drifts branch from the southeast end of the workIngs. (See "Imperial Property" map attached).

The mineralization varies from massive to disseminated In the shear zone, with gelena, sphalertte, pyrite and arsenopyrite observed. Ruby silver has been noted in old reports, but was not seen.

In the southeast portion of the workings, minor internal
faults have evidently caused upvard displacenent to the southeast. The possible continuation of the mineralizad zone could therefore be above the drift in this direction. Likewlse, a strong Nesh fault 30 feet from the main portal could have caused the lnotm mineralized zone to be the continuation of a section located in an area lower down to the northwest.

A sertes of samples have been taken from the mineralized zones, both on tho Imperial and Buolino clafme and the netghbouring Riverside property, for comparison. Results are show on maps attached to this report.

The Riverside workings are in a different geological enviroment with the mineralization occurring within grean andesitic rocks. Narrow shear zones can be observed with a strike of N65 ${ }^{\circ}$ and a dip of $25^{\circ}-30^{\circ}$ SE, Quartz and calcite have been injected along these shear zones with concentrations of mineralization occurring in blobs and patches with the quartz.

Like the Imperial, the mineralize zone is widest near the surface and weakens to the northonst along strike. There are two mineralized zones (north and south) witch could be two parallel structures en echelon, or the south zone might be the faulted extension of the down dip continuation of the north vein.

Diamond drilling has been initiated to test the Imperial zone of mineralization about 40^{\prime} below the lowest level. Geological mapping and preliminary experimental geochemistry are continuing.

Respectfully subutted,
BACON \& CROMTHRST LTD.

ayers
CHEMISTS GEOCHEMISTS

SAMPLE(S) FROM e/Bacon \& Crowhurst J.W. Murton

SAMPLE(S) OF

SWIM LAKE MINES

CERTIFICATE OF ANALYSIS

$$
\begin{aligned}
& \text { REPORT NO. } \\
& \text { V-6180 }
\end{aligned}
$$

SEMIQUANTITATIVE ESTIMATES

	Sample	$\frac{\text { Wiblit }}{\text { No. }}$	Gold (Au)oz:ton	Silver (Ag)oz:ton	Lead $(\mathrm{Pb}) \%$	$\begin{aligned} & \text { Zinc } \\ & \left(Z_{n}\right) \% \end{aligned}$
\therefore inc	1802	4.3	0.2	5.3	2.0	2.6
	1803	5.0	0.1	6.5	2.3	2.8
	1804	4.0	0.1	4.0	0.5	1.3
	1805	3.5	trace	1.8	----	----
	1806	6.0	0.1	9.8	2.2	2.7
	1807	3.8	trace	0.5	----	-
	1808	0.1	0.1	2.5	0.3	0.7
	1809	1.3	trace	1.6	0.6	0.7
	1810	2.5	0.3	8.6	0.3	1.1
	1811	3.0	0.2	6.3	0.4	1.3
	1812	3.0	0.1	5.0	7.0	1.6
	1813	1.0	0.2	19.9	1. 9.9	3.8
V	1814	Dúsp	0.2	14.0	2.5	2.7
E	1815	WINZE Dump	0.1	2.0	0.6	4.3
	1816	cump	trace	1.0	0.3	0.4
SIDE	1817	0.9	trace	4.3	---	----
	1818	1.6 6^{\prime}	0.1	3.1.	0.3	2.10
	1819	3.3	trace	$5 \cdot 5$	0.6	0.9
	1820	0.7	0.1	2.8	0.4	0.7
	1821	3.0	0.1	15.0	0.9	1.6

DATE July 28, 1969. oz:ton -- Troy ounces per 2,000 1bs.

SAMPLES) FROM

SAMPLE (S) OF

325 HOWE STREET - VANCOUVER 1, B.C.
TELEPHONE 688-3504

CERTIFICATE OF ANALYSIS

SWIM LAKE MINES
REPORT NO.
V-6181

ROCK Submitted on July 23, 1969.

SEMTOUANTTTATIVE ESTIMATES

oz: tun - Troy ounces per 2,000 lbs.

DATE \qquad July 28, 14, 09.

SIGNED \qquad * 33 butane

