on the

672586

GOLDEN ZONE PROPERTY

located in the

OSOYOOS MINING DIVISION

N.T.S. 82E/5W

49⁶27'N LATITUDE & 119⁰29'W LONGITUDE

owned by:

AGUR LOGGING COMPANY, BOX 930, SUMMERLAND, B.C. VOH 1ZO

operated by:

MIDLAND ENERGY COPRORATION, #463-1155 WEST GEORGIA STREET, VANCOUVER, B.C. VOE 3H4

report written by:

PETER PETO, Ph.D., F.G.S.C., #207-669 MARTIN ST., PENTICTON, B.C. V2A 5L5

10 September 1983

SUMMARY

An exploration program consisting of grid preparation, soil sampling, detailed IP measurements, bulldozer trenching, rock chip sampling and diamond drilling on the "Golden Zone" precious metal property was carried out between 24 July and 31 August, 1983 by MIDLAND ENERGY CORPORATION. The property is underlain by hornfelsed felsites, limestone and granite which host an east trending, mineralized zone, up to 60 metres wide and at least 500 metres long. An area of anomalous Zn, Ag and As concentrations in soils, measuring 240 by 60 metres, was delineated. Induced polarization measurements indicate that the mineralized structure can be traced 180 metres east of the underground workings. Bulldozer trenching has exposed a mineralized fault, up to 1 metre wide, which yielded assays as high as 0.55 Au and 1.33 Ag (oz/T). Exploratory diamond drilling of 193 metres of BQ core in 6 holes resulted in the following intersections: DDH#2-0.133Au & 3.74 Ag over 26 feet, DDH#3-0.131 Au & 0.33 Ag over 5 feet, DDH#4-0.032 Au & 0.04 Ag over 4.5 feet, DDH#5-0.139 Au & 1.2 Ag over 9 feet (oz/T). Grades of 0.141 Au & 5.37 Ag over 5 feet and 0.028 Au & 10.32 Ag over 6 feet were attained in DDH#2. Further, grades of 0.312 Au &4.10 over 1 foot and 0.237 Au & 2.46 Ag over 1.5 feet were recovered in DDH#5. In the writer's estimation, the results are sufficiently encouraging to recommend an additional 3000 feet of diamond drilling to further test the mineralized zone along strike and at greater depths.

TABLE OF CONTENTS

TEXT

Summary	
Introduction	1
Property location, access, title and history	1
Property Geology	2
Geochemical soil survey	3
Induced polarization survey	4
Bulldozer trenching and sampling	5
Diamond drilling program	7
Conclusions	10
Recommendation	11
References cited	1 2.
Itemized cost statement	1.1
Authors' qualifications	13
ILLUSTRATIONS	
Figure 1: Location Map (1:50,000)	1 4
Figure 2: Claim Map (1:50,000)	15
Figure 3: Geochemical soil survey map (1:2,000)	in pocket
Figure 4: I.P. survey map	in pocket
Figure 5: Sketch map of trench, rock sample and drill hole locations (1:1,000)	20
Figure 6: Diamond drill log and assay profiles	21
APPENDICIES	
Appendix 1: Assay certificates	
Appendix 2: Soil ICP geochemical reports	
Appendix 3: I.P. survey readings (P. Walcott)	
Annondia 4. Diamond dmill hole lorg and aggare	

INTRODUCTION

A mineral exploration program consisting of grid preparation, systematic collection of 65 soil samples, 1.17 line km. of detailed induced polarization measurements, bulldozing of 7 trenches, collection of 10 rock chip channel samples and the drilling of 6 BQ diamond drill holes totalling 635 feet (193.5 metres), was carried out between 24 July and 31 August, 1983, on behalf of MIDLAND ENERGY CORPORATION. The above program was undertaken to follow-up an earlier surface evaluation program consisting of geological mapping, rock chip and soil sampling and VLF-EM16 surveying between 22 to 27 July, 1983.

PROPERTY LOCATION, ACCESS, TITLE AND HISTORY

The Golden Zone property is located west of Penticton and north of Hedley, in the Okanagan highlands, at elevations between 5700-6100 feet above sea level (Figure 1). The claims are accessed by road from Penticton, via the road to Apex Village, a distance of some 45 km. The property consists of three crown grants, namely the Silver Bell (L.905), Golden Zone (L.904) and B.C. (L903), comprising some 120 acres (Figure 2). The showings were originally claimed in 1900, underground exploration was carried out between 1905 to 1909, subsequently abandoned, reactivated between 1930-1932 and 1936-1937, resulting in the construction of some 1292 feet of underground workings. No further work was recorded on the property until Agur Logging initiated a program of road construction, bulldozer trenching and percussion drilling (415 metres) in 1980.

The property was subsequently optioned to MIDLAND ENERGY CORP-ORATION in 1982 which commissioned the present investigations.

PROPERTY GEOLOGY

According to Bostock (1940) the property is situated along the contact between a roof pendent of Triassic cover rocks belonging to the Hedley Formation and granodioritic to granitic intrusions belonging to the Middle Jurassic Okanagan batholith. The Golden Zone was initially mapped by Camsell (1908) and he showed a persistent, east trending quartz vein, 2 to 4 feet wide, carrying pyrite, arsenopyrite, sphalerite and chalcopyrite which extended 1200 feet through granite into siliceous, hornfelsed sediments. A zone of fine grained biotite granite separates coarse grained granite from hornfelsed tuffs and limestones and both are intruded by lucocratic quartz porphyry intrusion to the south of the claims. Mineral values are mainly in precious metals with gold and silver assays reported as high as 1.8 and 10.00z./ton respectively.

According to Hedley (1937), the character of mineralization changes from arsenopyrite with depth, quartz occurs as fissure fillings and replacement bodies with widths of up to 12 feet.

Nearby rock is shattered due to fault zones which host clay gouge and stringers, smears and pockets of pyrite. In general, the sediments dip 30 to 60 degrees westerly and are cut by postmineral granite and dolerite dykes. Mineralized widths, attitudes and values are irregular but higher gold values (0.7-1.8 oz./ton) occur in narrow, 1 to 10 inch, east trending fault strands.

The character of the mineralization also changes laterally inasmuch as quartz replacements bearing pyrite-arsenopyrite in hornfelsed sediments give way to narrow, drusy, cox-comb milky quartz veins carrying sphalerite in granite.

The present investigation has largely corroborated the findings of previous investigators but in addition it has also delineated mineralized fault zones to the immediate south of the main system of mineralized quartz veins and replacements, which are further elaborated in this report.

GEOCHEMICAL SOIL SURVEY

A total of 65 soil samples were collected to augment the 62 samples previously reported and the combined results are shown in Figure 3 and in appendix 2. Soil samples were collected from the "B" horizon by means of a mattock, placed in kraft paper bags, dried, seived to -80 mesh, and analyzed for Cu, Pb, Zn, Ag and As by induced coupled plasma spectrometry (ICP) at Acme Analytical Laboratories. The analytical procedure used consisted of taking a 0.5 gram sample split, digesting it in 3 ml. of 3:1:3 hydrochloric acid to nitric acid to water at 90°C for one hour and subsequent dilution to 10 mls with water before analysis.

Anomalous concentrations of Zn (100-732ppm), Ag (0.5-184ppm) and As (20-3936ppm) in soils originate in an area measuring 120x250 metres which is coincident with an area hosting precious metal mineralization. The 100ppm As contour defines an

L-shaped anomaly with extreme co-ordinates situated at 120W-605. 120E-120S and 60W-330N. The conspicuous tongue or apron of high As concentration situated along lines 0 and 60 west is thought to be due to secondary, hydromorphic, downslope dispersion of surface mineralization leached from ore dumps and stripped areas. Supergene sulphide cementing unconsolidated soil fines, observed to occur immediately north of the ore dumps, would support this interpretation. However, another tongue also defined by the 100ppm As contour projecting uphill to 120E-120S is more indicative of mineralized bedrock. Areas underlain by limestone and granite to the NB and W of the workings respectively, are characterized by much lower metal concentrations, but areas to the NW, underlain by volcanic hornfels still carry relatively high metal concentrations.

INDUCED POLARIZATION SURVEY

An induced polarization survey, over the mineralized area, was undertaken by Peter Walcott and four assistants from 26 to 29 July. 1983 and the results are shown in Figure 4 and Appendix 3. A Huntec 7.5 Mark 2 transmitter and Crone Mark 4 receiver was used to make time domain IP measurements every 15 metres, in a pole-dipole electrode configuration, for two separations per station. A total of 1.17 line kilometres were completed in which apparent chargeability and apparent restivity were measured in milliseconds and ohmetres respectively. Chargeability profiles and restivity for n=1 are shown in Figure 4. A very well defined IP anomaly characterized by relatively high chargeability and

low resistivity was observed to coincide with the mineralized zone. The IP anomaly characterized by relatively high charge-ability and low resistivity was observed to coincide with the mineralized zone. The IP anomaly is at least 180 metres long and 60 metres wide with maxima situated at 60W-15S, 0W-30S, 60E-15S and 120E-15S. The amplitude of the anomaly diminishes gradually eastward but is open and untested to the west of line 60W.

Another lesser, partially defined, IP anomaly also occurs to the south with maxima at about 60W-105S, 0W-150S and 120E-105S. An abrupt contrast in resistivity occurs at 60E-45S and 120E-45S and is thought to coincide with a pyritic volcanic hornfels to limestone contact zone. Another abrupt change at 120E-195S coincides with the hornfels to quartz porphyry intrusive contact. These resistivity contrasts are broadly coincident with previously reported VLF-EM16 anomalies and are now believed to be their underlying cause. It should be noted that IP maxima do not coincide with the surface trace of the mineralized quartz vein system but rather occur, about 15 to 30 metres to the south, along the trace of previously inferred, east trending, fault zone.

BULLDOZER TRENCHING & SAMPLING

Several bulldozer trenches were dug to better expose and sample the mineralized fault zone at surface and to uncover areas with anomalous metal concentrations in soils. The locations and rock chip samples collected from these trenches are shown in Figure 5 and listed as follows:

SAMPLE NO.	TYPE	LOCATION	WIDTH(M)	Au(oz/ton)	Ag(oz/ton)
51142	gouge	48W-10S	0.7	0.113	0.32
51143	gouge	46W-9S	1.1	0.551	1.33
51144	gouge	50W-25S	2.4	0.013	0.08
51145	gouge	100W-10S	2.1	0.067	0.11
51146	gouge	95W-10S	1.4	0.031	0.18
51147	gouge	95W-10S	2.0	0.036	0.08
51175	gouge	100W-10S	grabs	0.285	0.56
51180	hornfels	60W-150N	grabs	tr	0.02
51181	hornfels	60W-210N	grabs	tr	0.02
51182	hornfels	OW-240N	grabs	tr	0.02

Gouge samples previously reported yielded the following assays, #51034: 0.262 Au & 0.39 Ag, #51040: 0.391 Au & 0.86 Ag and 51041: 0.147 Au (ounces per ton). The mineralized fault zones consist of highly fractured, rusty rock which carry seams of clay + chlorite + epidote + pyrite gouge up to a metre in width with 5 to 10mm wide quartz veinlets and irregularly distributed pods of quartz, pyrite and arsenopyrite up to 0.5 metres wide, which carry the best gold values. The fault zone trends easterly, dips steeply, and is 30 to 60 metres in width and coincident with the IP anomaly previously discribed. It is thought that this broad fault zone hosts much narrower mineralized quarty vein fissure fillings, quartzsulphide replacement bodies and propylitic-sulphide gouge zones in which prepious metal values are concentrated. tenor of these variously mineralized zones has been estimated in my previous report and is now further refined using the assays given above.

MINERAL TYPE	TYPICAL WIDTHS(M)	GOLD(oz/t)	SILVER(oz/t)
quartz fissure fillings	0.3-1.3	0.008	3.22
quartz-sulphide replacements	1.0-4.0	0.235	2.19
propylitic-sulphide gouge	0.1-1.0	0.291	0.69
aggregate	2.0	0.03	0.8
volcanic hornfels		0.001	0.01

DIAMOND DRILL PROGRAM

A program of exploratory diamond drilling, totalling 635 feet (193.5 metres) of BQ core in six inclined holes, were completed between 14 to 24 August, 1983 by Beaupre Drilling of Princeton, B.C., using a skid mounted E-15 Boyles Bros. rig. The purpose of the program was: (1) to test the persistence and grade of precious metal values with depth in quartz sulphide replacements and mineralized fault zones, (2) to determine the nature of the IP anomaly, and (3) to extend further and comapre assays with percussion drill holes reported by Holt (1980). The location of the drill holes are shown in Figure 6, assay results are shown in Appendix 1 and core logs are given in Appendix 4. The core recovered is held in storage by Mr. John Kucherhan at 197 Granby Avenue, Penticton, B.C. A brief account of each hole and an interpretation of the drilling results is presented below.

Drill hole #1 was intended to intersect a 12 foot quartz-sulphide pod at shallow depths (figure 6C) but the hole had to be abandoned for lack of core recovery in highly shattered regolith. Another attempt was made at -660 and hole #2 en-

countered highly fractured granite and felsite hosting arsenopyrite and pyrite as fracture fills, disseminations and in
quartz veinlets in the hanging wall at 30-32.5 and 44-50
feet that yielded 0.126 and 0.153 oz/T gold respectively.
The main vein was intersected between 50 and 76 feet; it
consisted of milky quartz carrying up to 25% sulphide in
fractures and pockets, became richer in sphalerite from
70-76 feet, until it broke into the old workings. The average grade over a true thickness of 13 feet was 0.133 gold
and 3.74 silver associated with 1.1 to 3.9 percent arsenic.

Drill hole #3 was intended to test an IP anomaly which was three times background and to intersect a fault zone which yielded a surface assay of 0.391 oz/T gold (figure 6C). The hole encountered highly fractured, oxidized felsite which would collapse around the drill rods. At 32 to 37 feet it intersected a zone of sulphide-rich gouge which yielded 0.131 oz. Au, 0.33 oz. Ag and 3.94% As. The felsite carried 5-15% very finely disseminated pyrite, very low Au-Ag values, which in conjunction with the fault zone, could account for the IP anomaly.

Drill hole #4 was intended to intersect the down-dip extension of a 12 foot quartz-sulphide pod which yielded 0.244 oz. Au and 1.96 oz. Ag at surface and 0.053 to 0.06 oz. Au and 1.61 to 3.37 oz. Ag in percussion drill hole intersections (figure 6B). The hole was collared in granite, intersected a a post-mineral dolerite dyke, penetrated highly fractured fel-

sites, water circulation was lost 95 feet down and it eventually encountered the quartz pod at 131.4 to 135.8 feet before entering another dolerite dyke. Unfortunately the hole had to be abandoned after an unsuccessful attempt to cement the collapsing bore hole. The first 4.4 feet of quartz yielded 0.042 oz. Au and 1.05 oz. Ag.

Drill hole #5 was aimed to intersect the same fault zone as in hole #3, to broadly test the IP anomaly between lines 60 and 0 West and to sample the down dip extension of the main quartz-sulphide vein below the underground workings (figure 6a). The hole encountered a 1 foot pod of sulphide in fractured felsite at 90 feet and a mineralized gouge zone from 99.5 to 104 feet. Grey to pale green fractured felsites with disseminated pyrite (5-10%), quartz-sulphide veinlets, sulphide stringers and pockets were cored from 165 to 186.5 feet in the hanging wall but resulted in modest Au and Ag values in both core and sludge assays. Milky quartz, with arsenopyrite, pyrite and sphalerite stringers, was cut between 186.5 to 194 feet and it yielded 0.139 oz. Au and 1.2 oz. Ag over a true thickness of 6.2 feet, a sludge assay between 185 to 191 feet yielded 0.118 oz. Au and 1.30 oz. Ag. The foot wall consisted of highly fractured felsite and fault gouge between 194-197 feet after which the hole had to be abandoned.

Drill hole #6 was intended to test at depth a zone of mineralized gouge zones which at surface yielded encouraging assays of 0.285 to 0.147 oz. Au (figure 6d). The hole was

collared near mineralized gouge in fine grained granite which was locally altered to pyrite-epidote-chlorite bearing zones but these carried low values. Felsite was cut after 86 feet and at 110 and 115 feet quartz veins were cut; these also yielded low assays. In general, the drilling program has resulted in the following conclusions: (1) quartz-sulphide veins dip steeply to the south, persist to depths of at least 130 feet below surface, possibly taper down and have slightly lower grades than at surface. (2) The IP anomaly, is probably due to a broad, highly fractured zone of pyritio felsite which carries local concentrations of mineralized gouge, quartzsulphide veins, veinlets and sulphide fracture fillings with erratic Au values of 0.55 to 0.1 oz/T, over 1 to 5 foot intervales. (3) A narrow zone of well mineralized gouge trending N70E-vertical situated 20 to 30 metres south of the main quartzsulphide fissure system can be traced from 105% to 45% and is open to the east. (4) Hanging wall felsites are mineralized at least 10 feet away from quartz fissure fillings and may carry from 3 to 0.4 percent arsenic.

CONCLUSIONS

On the basis of the foregoing investigation I have concluded the following:

- (1) An area measuring 120 x 250 metres carries anomalous concentrations of Zn, Ag and As in soils and overlies an area of precious metal mineralization.
- (2) An induced polarization anomaly, measuring at least 240×260 metres, is coincident with the mineralized area, but diminishes in intensity eastward from the main workings.

- (3) Trenching has exposed a mineralized fault zone from 105 to 45 west which carry values of 0.55 to 0.03 Au and 1.33 to 0.08 Ag (oz/T) over widths of 0.7 to 2.4 metres.
- (4) Diamond drilling indicated the quartz-sulphide veins extend at least 130 feet below surface and where tested over a 200 foot strike length, it typically grades 0.081 oz. Au and 1.71 oz. Ag over 11 foot intervals.

RECOMMENDATIONS

Clearly mineralized quartz-sulphide veins and mineralized fault zoneshave been tested over a limited strike length of some 200 feet and to shallow depths of 130 feet below surface. The present investigation has indicated that precious metal mineralization occurs over minable widths (in excess of 5 feet), in at least two separate structures, and that economic grades are attained locally. In my estimation, there is sufficient encouragement to warrant 3000 feet of diamond drilling to further test the mineralized structure at greater depth and along strike to the east. I therefore recommend that further drilling be carried out on the Golden Zone at a cost estimated below:

COST ESTIMATE

(1)	3000 feet of diamond drilling (NQ) @ \$30/ft	\$90,000
(2)	Assaying 300 samples @ \$12.50/sample	3,750
(3)	Travel & accommodation 90 mandays @ \$50/day	4,500
(4)	Geological supervision 30 days @ \$200/day	6,000
(5)	Freight	500
(6)	Supplies etc	1,000
(7)	Report preparation 6 days @ \$200/day	1,200
	TOTAL \$	106,950

ITEMIZED COST STATEMENT, GOLDEN ZONE

Field Salaries

Peter Peto: 16 days @ \$200/day \$ 3,200.00 Carl Polhman: 2 days @ \$60/day 120.00 Brian Holmes: 3 days @ \$70/day 210.00 A. Kucherhan: 2 days @ \$100/day 200.00	
J. Kucherhan: 2 days @ \$100/day 200.00	\$ 3,930.00
Accommodation & Food (19 man days @ \$50/day) 950.00 Gasoline	1,000.82
Induced Polarization Survey Costs (as per invoice)	2,618.36
Road Repair (Frontend loader & labour)	175.00
Truck Rentals (as per invoice)	707.31
Analytical Services (rock & soil assays) (as per invoices) - Acme Analytical Laboratories Ltd	1,278.81
Diamond Drilling Costs (as per invoice) Beaupre Diamond Drilling Ltd	13,827.00
Report Preparation (as per invoice)	800.00
TOTAL	\$24,337.30

The sum of \$107,000 should be made available for the above program.

Respectfully submitted,

Peter Peto, Ph. D., F.G.S.C.

REFERENCES CITED

Bostock, H.S. (1940) G.S.C. Map 628A, Olalla (1"=1mi.)

Camsell, C. (1908) Hedley Mining Districk, G.S.C. Memoir #2, Map 4A, p.204-206

Hedley, N.S. (1937) Golden Zone Mines Ltd., B.C. Department of Mines Annual Report, p. D14-17

Holt, E.S. (1980) Report of Examination & percussion Results, Golden Zone Mineral Claims, private report, (D. Agur) 21p.

Peto, P. (1983) Geological, Geochemical and Geophysical Report on the Golden Zone Property, assessment report, 11p.

SURVEY SPECIFICATIONS.

The induced polarization (I.P.) survey was carried out using a pulse type system, the principal components of which are manufactured by Crone Geophysics Ltd. and Huntec Limited of Metropolitan Toronto, Ontario.

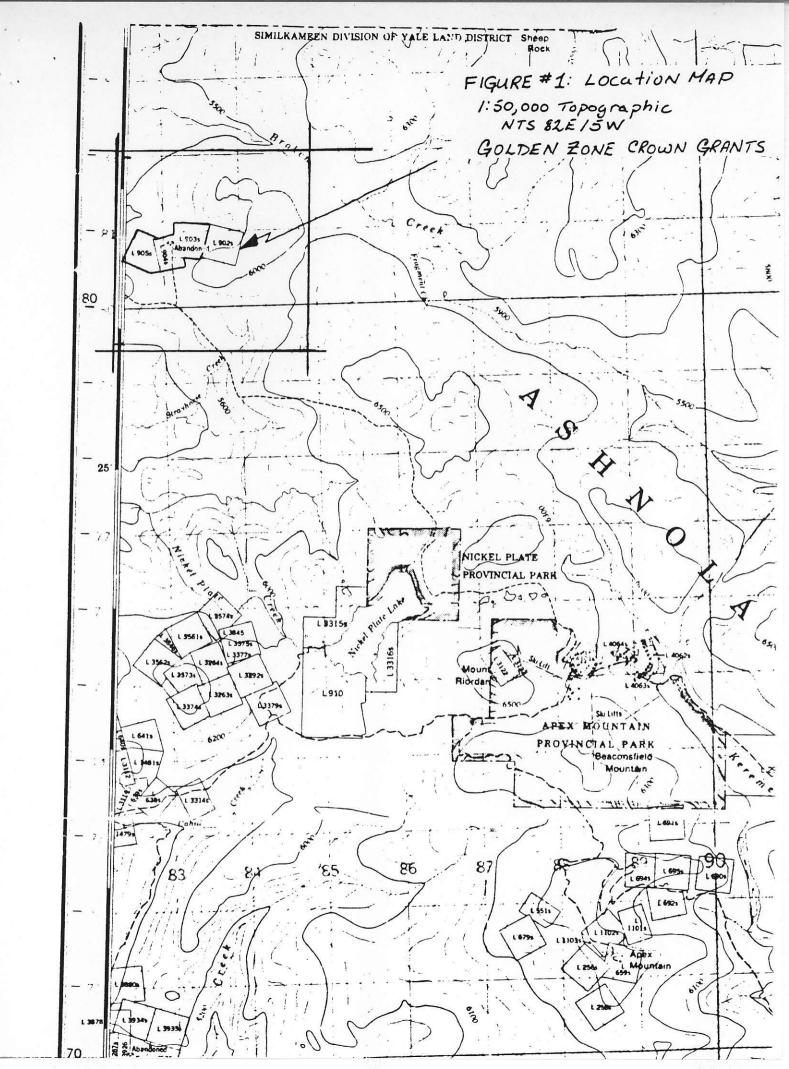
The system consists basically of three units; e receiver (Crone), a transmitter and a motor generator (Huntec). The transmitter, which provides a maximum of 7.5 kw d.c. to the ground, obtains its power from a 7.5 400 c.p.s. three phase alternator driven by a gasoline engine. The cycling rate of the transmitter is 2 seconds "current-on" and 2 seconds "current-off" with the pulses reversing continuously in polarity. The data recorded in the field consists of careful measurements of the current (I) in amperes flowing through electrodes C1 and C2, the primary voltage (V) appearing between the two potential electrodes, P1 and P2, during the "current-on" part of the cycle, and the apparent chargeability (Na) presented as a direct readout using a 450 millisecond delay and a 450 millisecond sample window by the Crone receiver.

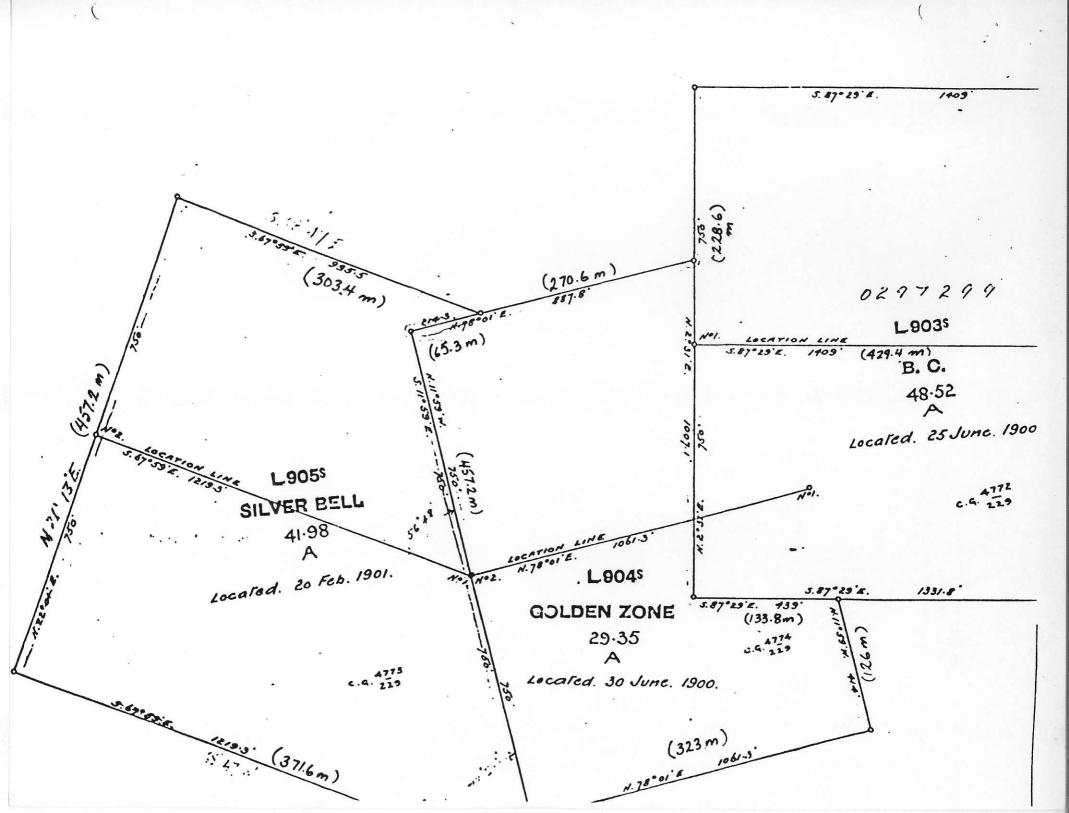
The apparent resistivity (P_a) is ohm metres is proportional to the ratio of the primary voltage and the measured current, the proportionality factor depending on the geometry of the array used. The chargeebility and resistivity ere called apparent as they are values which that portion of the earth sampled would have if it were homogeneous. As the earth sampled is usually inhomogeneous the calculated apparent chargeability and resistivity are functions of the actual chargeability and resistivity of the rocks.

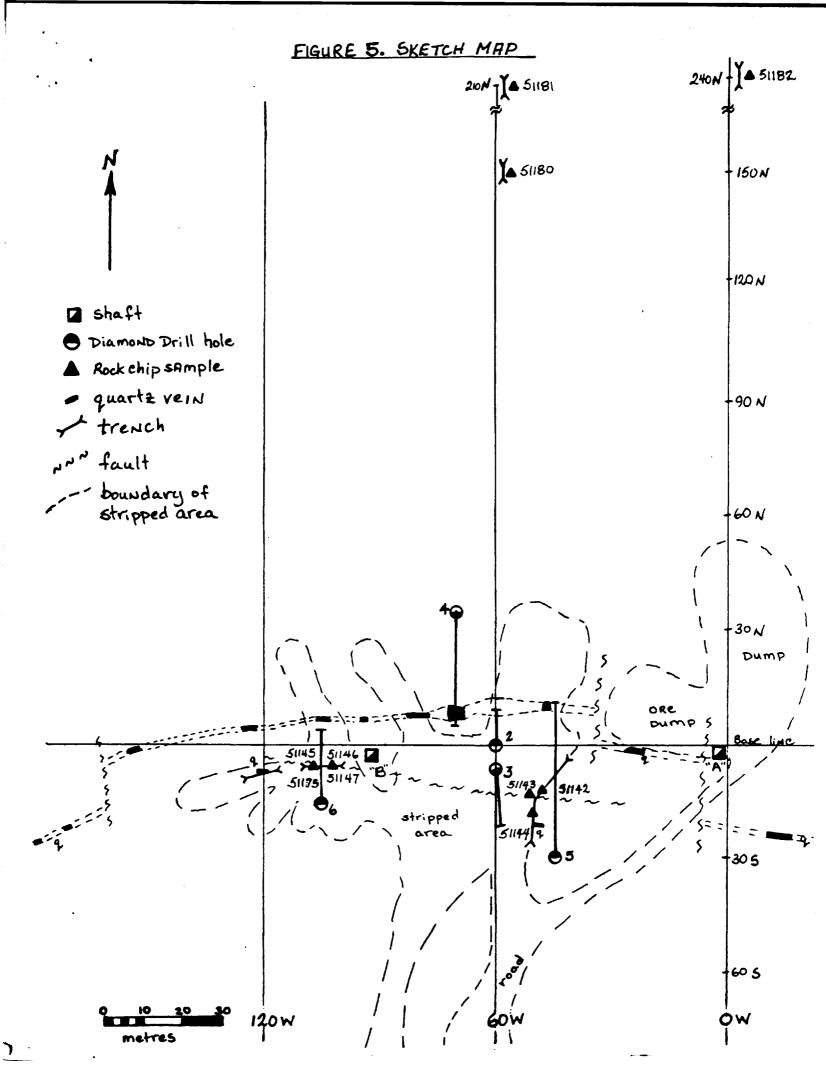
The survey was carried out using the "pole-dipole" method of surveying. In this method the current electrode, C1, and the two potential electrodes, P1 and P2, are moved in unison along the survey lines. The spacing "na" (n an integer) between C1 and P1 is kept constant for each traverse at a distance roughly equal to the depth to be explored by that traverse, while that of P1 and P2 (the dipole) is kept constant at "a". The second current electrode C2 is kept constant at "infinity".

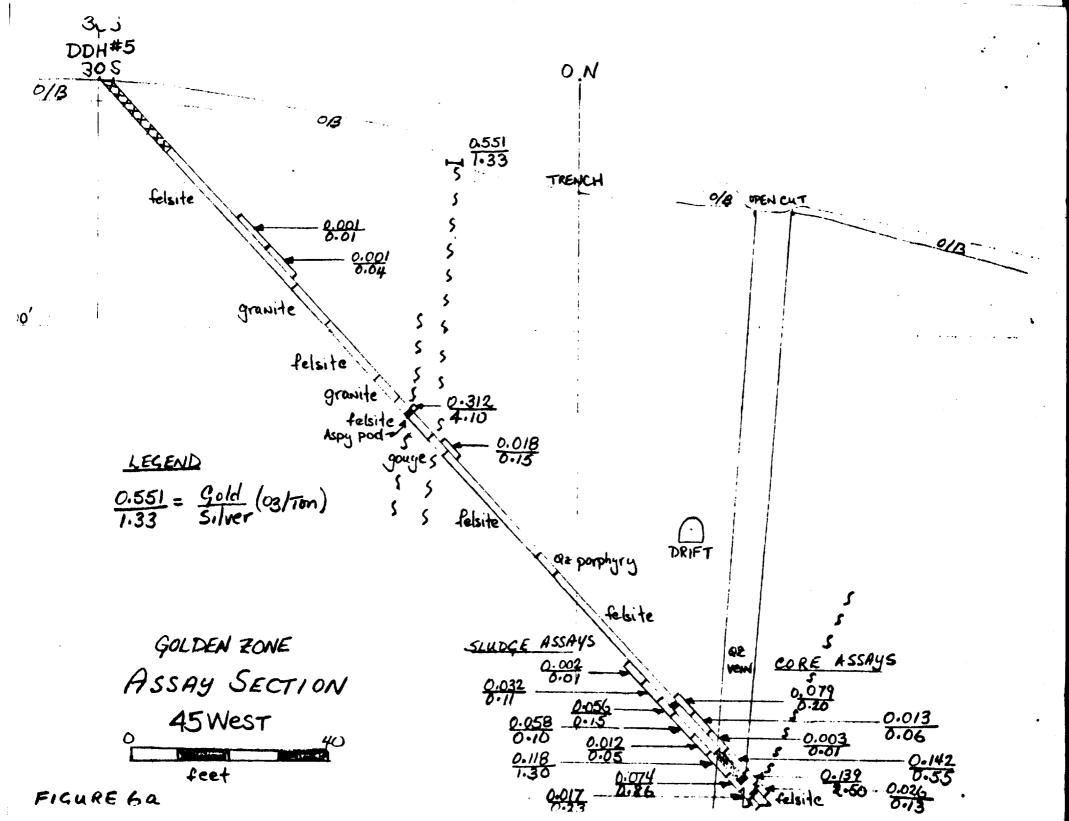
Thus usually on a "pole-dipole" array traverse with an electrode spacing of 100 metres a body lying at a depth of 50 metres will produce a strong response, whereas the same body lying at a depth of 100 metres will only just be detected. By running subsequent traverses at different electrode separations, more precise estimates can be made of depth, width, thickness and percentage of sulphides of causative bodies located by the I.P. method.

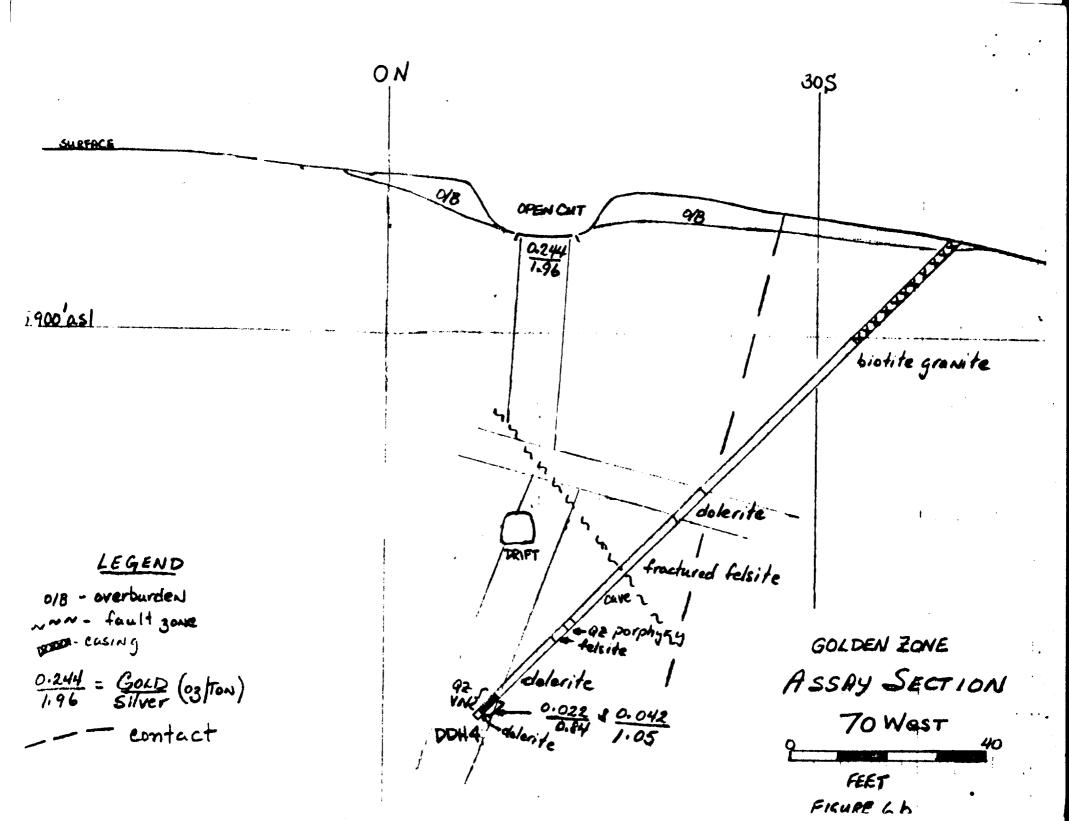
The survey was carried out using a 30 metre dipole and obtaining first and second separation measurements. In all some kilometres of surveying were completed.

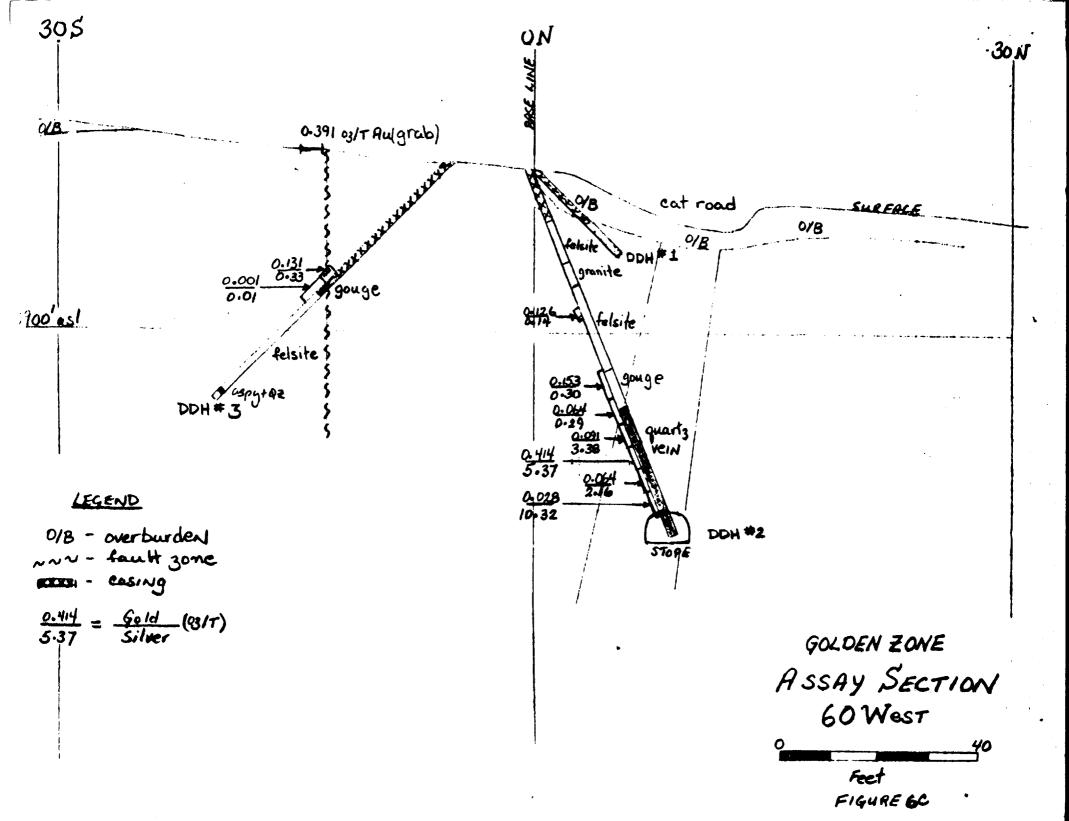

STATEMENT OF QUALIFICATIONS.

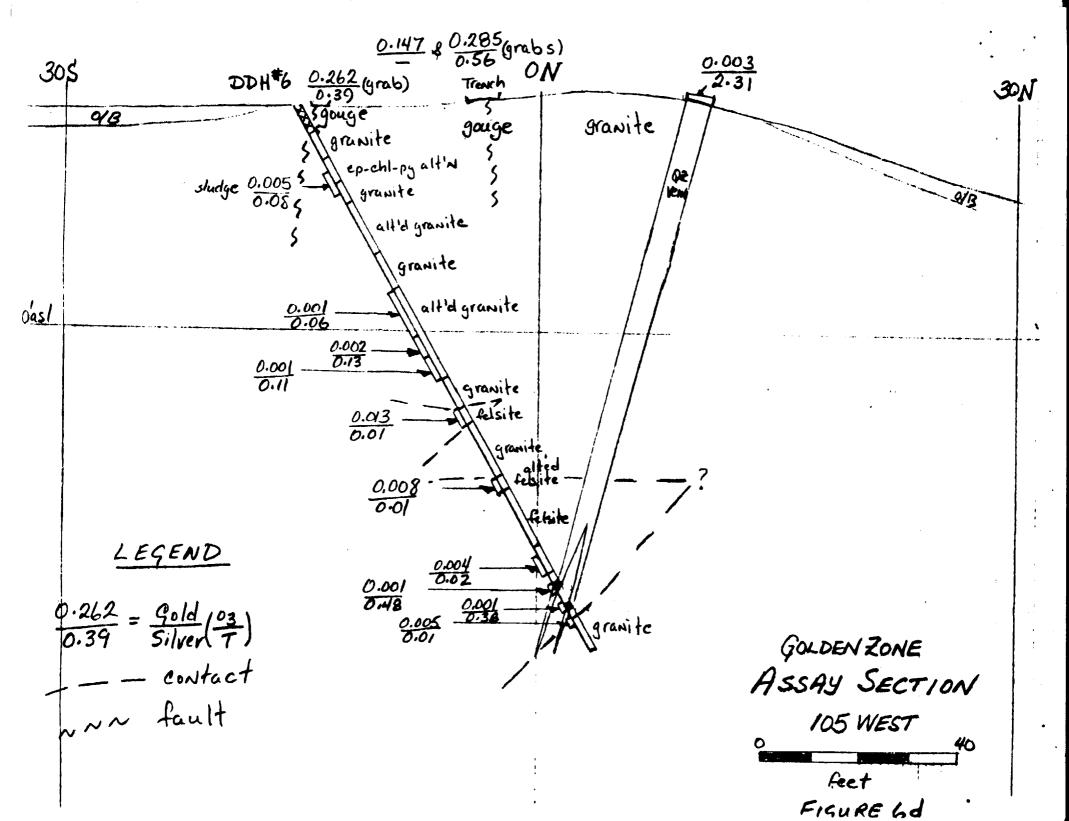

I, Peter E. Walcott, of the Municipality of Coquitlam, British Columbia, hereby certify that:


- 1. I am a Graduate of the University of Toronto with a B.A.Sc. in Engineering Physics, Geophysics Option, in 1962.
- I have been practising my profession for the last 21 years.
- 3. I am a member of the Association of Professional Engineers of British Columbia and Ontario.
- 4. I personally carried out the I.P. survey for Midland Energy Corporation on the property near Apex Mountain between July 27th and 29th, 1983.


Peter E. Walcott, P.Eng.


Vancouver, British Columbia, September 1983





DATE RECEIVED AUG 19 1983

DATE REPORTS MAILED #UE14

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 NL DF 3:1:3 HCL TO HND3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER.

THIS LEACH IS PARTIAL FOR: Ca,P,Mg,Al,Ti,La,Ma,K,N,Ba,Si,Sr,Cr AND B. Au DETECTION 3 ppo. SAMPLE TYPE - SLUDGE -

SMITTE THE SERVICE

ASSAYER __ Nolum DEAN TOYE, CERTIFIED B.C. ASSAYER

PETER PETO PROJECT # GOLDEN ZONE FILE # 83-1741A

PAGE# 1

SAMPLE	ppm CU	ZN	AS PPm	AG PPM	, AN
51102 CORE 51103 CORE 51104 CORE 51076 51077	70 43 17 160 221	52 50 11 169 173	796 243 30200 415 12014	1.0 .4 7.8 .5	ND ND ND ND
51078 51079 51080 51081 51082	122 112 136 165 143	110 125 118 340 206	9125 8037 27672 39287 11402	2.9 1.6 6.2 11.7 8.4	ND 3 3 ND
51083 51084 51085 51092 51093	148 146 122 277 298	179 281 295 288 281	21026 26299 11852 39434 16440	29.6 43.4 11.7 12.1 8.2	4 3 ND 2 ND
51094 51095 51096 51097 51098	129 87 81 87 81	255 148 129 115 110	19940 9891 10978 8357 10773	11.4 4.7 4.9 3.7 4.5	ND ND ND ND
51099 STD A-1	133 30	148 183	11192 10	3.5 .3	ND ND

DATE RECEIVED AUG 19 1983

DATE REPORTS MAILED Aug 25/6

ASSAY CERTIFICATE

SAMPLE TYPE : CORE - CRUSHED AND PRULVERIZED TO -100 MESH.

ASSAYER _ A SELL DEAN TOYE, CERTIFIED B.C. ASSAYER

PETER PETO PROJECT # GOLDEN ZONE FILE # 83-1741B PAGE# 1

SAMPLE	AG	AU
	OZ/TUN	OZ/TON
51086	.30	.153
51087	. 29	.064
51088	3.38	.091
51089	5.37	.414
51090	2.16	.064
51091	10.32	.028
51100	.33	.131
51101	.01	.001

DATE RECEIVED AUG 23 1983

DATE REPORTS MAILED HUM.

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK & CORE

ASSAYER ____ N DEM DEAN TOYE, CERTIFIED B.C. ASSAYER

FETER PETO PROJECT # GOLDEN ZONE FILE # 83-1786B PAGE# 1

SAMPLE AG ΑU DZ/TON DZ/TON 51142 .32 .113 .551 51143 1.33 .08 .013 51144 51145 .11 .067 51146 .18 .031 .08 51147 .036 .84 .022 DDH-4 131.4-135.7

DATE RECEIVED AUG 23 1983 DATE REPORTS MAILED Hug

ICP GEOCHEMICAL

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER.

THIS LEACH IS PARTIAL FOR: Ca,P,Mq,Aì,Ti,La,Na,K,N,Ba,Si,Sr,Cr AND B. Au DETECTION 3 ppe.

SAMPLE TYPE - SLUDGE

ASSAYER

DEAN TOYE, CERTIFIED B.C. ASSAYER

MR. PETER FETO	FILE	# 83-13	786A	Project #	GoldenZme FAGE‡	4 1
SAMFLE	₽pm CU	ZN ppm	AG ppm	AS ppm	,PPm AU	
51105 51106 51107 51108 51109	94 245 115 99 128	759 828 623 621 873	.4 .2 .3 .3		ND ND ND ND ND	
51110 51111 51112 51113 51114	121 88 77 53 104	218	90904 ••••••	47 74 33 91 168	ND ND ND ND	
51117 51118	421 403 220 100 89	366 350 205 117 95	.6 .6 .7 .8	33 73 210	ND ND ND ND ND	
51121 51122 51123 51124		197 204 147 176	2.0 .8 .7 .7	372 767 195 97 79	22 22 20 20 20 20 20	
51125 51126 51127 51128 51129	224 115 154 147 123	205 133 166 168 144	.66655	82 128 132 95 585	ND ND ND ND	
51130 51131	263 170 160 156 140	328 505	7.1 1.2 .0 .4	196	ND ND ND ND	
51135 51136 51137 STD A-1	199 192 197 30	221 162 1443 166	.9 .4 2.3	373 258 3001 10	22 20 20 20 20 20	

DATE RECEIVED AUG 26 1983

DATE REPORTS MAILED Aug 20/83

ASSAY CERTIFICATE

SAMPLE TYPE : CORE - CRUSHED AND PRULVERIZED TO -100 MESH.

ASSAYER _ N DEN DEAN TOYE, CERTIFIED B.C. ASSAYER

PETER PETO PROJECT # GOLDEN ZONE FILE # 83-1842 PAGE# 1

SAMPLE	AG	AU
	OZ/TON	DZ/TON
51162	.01	.005
51163	.38	.001
51164	. 48	.001
51165	.02	.004
51166	.01	.008
51167	.01	.013
51168	.11	.001
51169	.13	.002
51170	.06	.001
51171	.08	.005
51172 /	.01	.001
51173	.04	.001
w	• • •	

DATE RECEIVED JULY 25 1983

DATE REPORTS MAILED

July 2/83

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HN03 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER.

THIS LEACH IS PARTIAL FOR: Ca,P,Mg,Al,Ti,La,Na,K,N,Ba,Si,Sr,Cr AND B. Au DETECTION 3 ppm.

SAMPLE TYPE - SOIL

ASSAYER _ NEM DEAN TOYE, CERTIFIED B.C. ASSAYER

ASSAYER	Verege ?	DEAN TO	IYE, CI	ERTIFIE	D B.C.	ASSAYER
PETER PETO	FILE # 83	5-1344	PROJE	CT:GOLDE	EN ZONE	PAGE#
SAMPLE		₽₽m CN	ppm ₽.Β	ZN ppm	AG ppm	AS ₽PM
330N 60W 300N 60W 270N 60W 240N 60W 210N 60W		25 14 20 25 24	6 4 6 4	71 63 57 80 128	.323 .45	139 92 169 319 338
180N 60W 150N 60W 330N 0W 300N 0W 270N 0W		29 52 19 16 15	5 6 7 3 6	141 266 73 62 80	.6 1.0 .5 .3	330 400 57 110
240N OW 210N OW 180N OW 150N OW 330N 60E		44 15 12 15 54	67 66 5	87 64 58 81 67	.7 .3 .2 .2	308 68 24 34 42
300N 60E 270N 60E 240N 60E 210N 60E 180N 60E		27 21 16 17 11	7 7 9 6 5	78 73 75 69 67	.8 .4 .2 .5 .3	35 48 46 56 46
150N 60E 120N 60E 90N 60E 60N 60E 30N 60E		13 12 14 20 18	3 6 9 4 6	75 109 103 70 79	.2 .3 .4 .2	109 20 22 46 58
0N 60E 30S 60E 60S 60E 90S 60E 330N 120E		25 16 17 22 21	6 5 16 8 3	109 90 99 88 72	.3 .2 .8 .7 .8	26 154 225 84 25
300N 120E 270N 120E 240N 120E 210N 120E 180N 120E		11 14 26 44 33	6 7 9 7	55 81 74 93 88	.1 .2 .7 .8	36 44 30 33 23
150N 120E 120N 120E STD A-1		14 13 31	7 7 36	79 68 18 0	.3 .1 .3	26 16 10

DATE RECEIVED AUG 25 1983

ASSAY CERTIFICATE

SAMPLE TYPE : SLUDGE & CORE

OLAN DEAN TOYE, CERTIFIED B.C. ASSAYER

PETER PETO PROJECT # GOLDEN ZONE FILE # 83-1832B PAGE# 1

SAMFLE	AG	AU
	OZ/TON	OZ/TON
51148	.01	.002 -
51149	.11	.032
51150	.15	.056
51151	.10	.058
51152	.05	.012
51153	1.30	.118
51154	.86	.074
51155	.23	.017 -
51156	.20	.079
51157	.06	.013
51158	.01	.003
51159	.55	.142
51160	2.50	.139
51161	.13	.026

DATE RECEIVED AUG 25 1983

1

DATE REPORTS MAILED Hug

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HN03 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER.

THIS LEACH IS PARTIAL FOR: Ca,P,Mg,Al,Ti,La,Na,K,N,Ba,Si,Sr,Cr AND B. Au DETECTION 3 ppm.

SAMPLE TYPE - SLUDGE

ASSAYER __ DEAN TOYE, CERTIFIED B.C. ASSAYER

	MR. PETEŔ PETO	FILE	# 83-1	832A	Agect & Golden.	Zone	PAGE#	1
SAMPL	E .	₽₽m CU	ΣN ZN	AG Ppm	AS ppm	AU PPm		
51138 51139 51140 51141)	209 226 176 135	756 560 1956 387	1.3 1.2 2.0 1.0	1152 1787	ND ND ND ND		

PETER PETO	FILE # 83-1344	FROJE	ECT:GOLD	EN ZONE	PAGE# 2
SAMPLE	CU ppm	PPm PB	ZN ppm	AG PPm	AS ppm
90N 120E 60N 120E 30N 120E 0N 120E 30S 120E	11 14 12 13 25	9 8 7 8	67 70 65 79 91	.1 .1 .5 .3	16 22 21 10 39
60S 120E 90S 120E 120S 120E 150S 120E 180S 120E	26 23 46 28 21	7 11 12 10 10	84 98 88 125 87	.6 .5 .7 .4	39 , 47 119 51 40
240N 180E 210N 180E 180N 180E 150N 180E 120N 180E	10 10 9 13 11	9 7 5 6 7	65 59 51 49 67	.1 .2 .2 .2	12 19 14 28 11
90N 180E 60N 180E 30N 180E 0N 180E 240N 240E	16 15 20 41 10	7 8 6 12 7	71 85 81 106 56	.2 .3 .3 1.2	18 15 23 48 8
210N 240E 180N 240E 150N 240E 120N 240E 90N 240E	11 15 13 36 16	6 5 8 10	61 66 55 70 79	.1 .1 .5 .1	12 12 12 23 15
60N 240E 30N 240E ON 240E STD A-1	22 24 21 28	5 9 8 38	102 117 126 173	.3 .2 .2	28 36 30 10

PROPE	RTY_	70LD	EN	20	NE
DRILL	HOLE	NO.		1	
DRILL	TYPE				
DATES	_	14 6	Tucil	ist 19	783

ਹ

DRILL	HOLE	LOG	æ	ASSAYS
LOCATI		BL	, -	60 W
ELEVA		5	95	30 ft
BEARIN	1G		lar	th
DIP		45		

Length	24 feet
% RECOVERY	
LOGGED BY	PiPeto
PAGEOF	ONE

SAMPLE	FROM	TO	TO LENGTH	NOTES		ASSAYS		
	 				oz Au	oz Ag		
	0	14	14	Casing				
	14	24	10	easing overburden & shattered rock	<u> </u>		 	
·····								
				Hole abandoned in shattered rock				
<u> </u>				which did Not core but was washed Away instead.				
				such ad An Annastand				
			<u> </u>	MUSHELL HUMY INSTELLA.	+			
					1	}		
	-				-		 	
					-		 	
								l
	1				1			
		}	<u> </u>		 		 	
	+				 	 	 	
	 	ļ				\	 	
	<u> </u>					 	 	<u> </u>
								i

PROPERTY GOLDEN ZONC
DRILL HOLE NO. 2
DRILL TYPE BQ wireline
DATES 14-15 August 1983

DRILL	HOLE	LOG	æ	ASSAYS
LOCAT1		B. L.	_	60 W
ELEVAT	ION_			Ofect
BEARIN	1G	No	_	
DIP		-66°	>	

LENGTH 79 feet
% RECOVERY 78
LOGGED BY P. Heto
PAGE 1 OF TWO

30 44	32·5	LENGTH	Notes	oz Au	oz Ag			1
	.32.5	25			V~ 76			L
44		2.5	grey, med to fn gr., orgillic granite, aspi-pi, fracedis.	0.126	0.14			
	50	6.0	Quartz - arsonopyrite vein in grey felsite	1.153	0.30			
50	55	<i>5.0</i>	Fractured, milky QZ Vein E 25% sulphides	0.064	0.29			
55	60	5.0	Drusy chalcedonic QZ VeIN, as above.	0.091	3.38			
60	65	5.0	·	0.414	5.37			
65	70	5.0		0.064	2.16			
70	76	6.0	as above coarse sphalerite in Milky 02.	0.028	10.32			
			1	As	ZN	Cu	Ha	Au
19	25	6.0	Sludge	415	169	160	0.5	ND
25	30	5.0	sludge	12014	173	221	0.6	ND
30	35	5.0	Studge	9125	110	122		
35	40	5.0	Sludge	8037	125	112	1.6	NO
40	45	5.0	Sludge	27672	118	136		
45	50	5.0	sulphide rich sludge	39287	340	165	11.7	3
<i>5</i> 0	1			11402	206	143	8.4	ND
	1			21026	179	148	29.6	
						T		T
<u></u>	1							
	1							
	55 60 65 70 19 25 30 35 40	\$5 60 60 65 65 70 70 76 19 25 25 30 30 35 40 40 45 45 50 50 55 60 60 65	\$5 60 5.0 60 65 5.0 65 70 5.0 70 76 6.0 19 25 6.0 25 30 5.0 30 35 5.0 35 40 5.0 40 45 5.0 45 50 5.0 50 55 5.0 50 55 5.0 60 65 5.0	55 60 5.0 Drusy, chalcedonic Qz vein, as above. 60 65 5.0 as above, zocm py-aspy seam 2 62.5', blk chal- 65 70 5.0 as above, py-aspy fracs & breccia matrix 70 76 6.0 as above, coarse sphalexite in milky Qz. 51 25 6.0 sludge 65 30 5.0 sludge 30 35 5.0 sludge 30 40 5.0 sludge 45 50 sludge 45 50 supphide rich sludge 50 55 5.0 sulphide rich sludge 50 55 5.0 sulphide rich sludge 50 55 5.0 sulphide rich sludge	55 60 5.0 Drusy, chalcedonic Q2 vein, as above. 60 65 5.0 as above, 20cm py-25py seam \$2.5', blk chal. 65 70 5.0 as above, py-aspy fracs & breccia matrix 65 70 5.0 as above, py-aspy fracs & breccia matrix 65 70 5.0 as above, coarse sphalerite in Milky Q2. 60 25 60 sludge 60 5.0 sludge 60 5.0 sludge 60 5.0 sludge 60 5.0 sludge 70 75 5.0 sludge 70 75 6.0 sludge 70 75 75 75 75 75 75 75 75 75 75 75 75 75	55 60 5.0 Drusy, chalcedonic Q2 vein, as above. 65 5.0 as above, 20cm py-aspy seam 262.5, blk chal. 70 5.0 as above, py-aspy fracs & breccia matrix 70 76 6.0 as above, coasse sphelerite in Milky Q2. 70 5.0 as above, coasse sphelerite in Milky Q2. 60 5.0 sludge 60 5.0 sludge 70 5.0 sludge	55 60 5.0 Drusy, chalcedonic Q2 veint, as above. 60 65 5.0 as above, 20cm py-aspy seam \$\otimes 62.5', blk chal. 70 5.0 as above, py-aspy fracs & breccia matrix 70 76 6.0 as above, coarse sphelerite in Milky Q2. 70 76 6.0 as above, coarse sphelerite in Milky Q2. 19 25 6.0 sludge 19 25 6.0 sludge 19 25 6.0 sludge 19 25 6.0 sludge 19 25 10 173 221 30 36 5.0 sludge 30 36 5.0 sludge 40 5.0 sludge 40 45 5.0 sludge 40 45 5.0 sludge 40 45 5.0 sludge 40 45 5.0 sludge 41 173 125 42 126 148 136 45 50 5.0 sulphide rich sludge 55 5.0 sulphide rich sludge 56 60 5.0 sulphide rich sludge 57 148 146 58 60 5.0 sulphide rich sludge 60 65 5.0 sulphide rich sludge 60 65 5.0 sulphide rich sludge 70 179 148 70 179 148	55 60 5.0 Drusy, chalcedonic Q2 vent, as above. 60 65 5.0 as above, 20cm py-aspy seam \$\otimes 62.5', blk chal. 65 70 5.0 as above, py-aspy fracs & breccia matrix 65 70 5.0 as above, py-aspy fracs & breccia matrix 65 70 5.0 as above, coarse sphalerite in milky Q2. 66 60 as above, coarse sphalerite in milky Q2. 67 60 as above, coarse sphalerite in milky Q2. 68 60 sludge 69 15 169 160 0.5 65 30 5.0 sludge 60 5.0 sludge 60 5.0 sludge 60 5.0 sludge 60 65 5.0 sulphide rich sludge

	DRILL HOLE LOG & ASSAYS
PROPERTY	LOCATION
DRILL HOLE NO. 2	ELEVATION
DRILL TYPE	BEARING
DATES	DIP

LENGTH	
% RECOVERY	
LOGGED BY	
PAGE_2OF_	TWO

SAMPLE F	FROM	TO	LENGTH NOTES	ASSAYS					
ORIGIDD.	11011		DDNGTI		oz Au	OZ Ag			
· - · · · · · · · · · · · · · · · · · ·	<u> </u>			CORE LOG					
	0	11	11	PUSIALC .					
	11	20	9	gren vibrar felsite puritic chlorite fracs					
	20	25	5	aren to white, accilling median aranite					
	25	44	19	area highly broatweed sucity of elsite ason -or	Stace				
	44	52	8	grey, v.fn.gx. felsite, pyritic, chlorite fracs grey to white, argillic, med.gr. granite grey, highly fractured, pyritic telsite, aspy-py highly fractured felsite gouge & aspy-py veins milky as vein & aspy-py-sphalerite clots & frace No core; intersect stope; stop hale.				•	
	52	74.5	22.5	milky oz vein & ason - py - sobalerite clots & frace					
	74.5	79.0	4.5	No core intersect stope; stop hale.					
				CORE loss at 15-19, 42-44, 49.6-51.6,					
				71.5-74.5.					
				·					
									Γ
· 	1	· · · · · · · · · · · · · · · · · · ·							
	<u> </u>								1
	 				l				T
	 		 				-		
	 								1
	+				·				1
····	 	 			<u> </u>				
		 				ļ			╀

PROPERTY GOLDEN ZONE
DRILL HOLE NO. 3
DRILL TYPE BQ wire line
DATES 15-16 August 1983

DRILL HOLE LOG & ASSAYS
LOCATION 7.5 - 60W
ELEVATION 5930 {ce}
BEARING 770°
DIP - 45°

LENGTH 67.5 feet % RECOVERY 72. LOGGED BY P. Peto PAGE OF ONE

SAMPLE	FROM	TO	LENGTH	NOTES		ASSAY			
					oz Au	OZ Ag		ZN	cu
51100	32	35	3.0	core loss, py-aspy-02 gouge zone infelsite	0.131	0.33	_	-	
51101	35	41	6.0	core loss compact grey teleite & 5% sublides	0.001	.01		-	-
51102	41	45	4.0	highly fractured felsite & pa-chlor fracs 2 Dz vits	ND	1.0	796	52	70
51103	45	<i>5</i> 5	10.0	core loss, compact grey teleite & 5% sulphides highly fractured felsite & pg-chlor fracs & Dz vits core loss, fractured felsite & 10% pyrite	ND	0.4	243		43
51104		66.5	0.5	DZ-Py-aspy VeiN	2	7.8	30200		17
				. ludge geochem. in ppm	As	2N	Cu	Ha	Au
51092	32	37	5.0	sulphide rich sludge	39 434	288	277		2
51093	37	41	4.0	Sludge	16440	281	298		NO
51094	41	45	4.0	Sludge	19940	255	129	11.4	ND
51095	45	50	5.0	Studge	9891	148	87	4.7	ND
51096	50	55	3.0	Eludge	10978	129	81	4.9	ND
51097		60	ن.0	Studge	8357	115	27	3.7	ND
51098	60	45	5.0	Studie	10773	110	81	4.5	ND
51099	65	67.5	2.5	State	11 192	148	133	3.5	NO
				CORF LOS					
	0	32	32	Casing					
	15	32	17	highly fractured, gray, v.fo. gr., rusty lessite, diss py					
	32	37	5	asabove, 02-py-aspy gouge in faultzone					
	37	67.5	30.5	highy fractured, grey felsite, parmells, 5-10 hdisspe					
				CORE loss at 15-19, 27.5-35, 37-41, 43-45, 46.6-5	8.				
		1		Hole abandoned due to tight rods, cave					
				& excessive bit wear.					

PROPERTY GOLDEN ZONE
DRILL HOLE NO. 4
DRILL TYPE BO WITE line
DATES 17-20 August 1983

DRILL HOLE LOG & ASSAYS
LOCATION 70W-35W
ELEVATION 5920 feet
BEARING /80°
DIP -45°

LENGTH 137.7 feet
% RECOVERY 77
LOGGED BY P. Peto
PAGE 1 OF TWO

SAMPLE	FROM	TO	LENGTH	NOTES		ASSAY	S		
ORIGID.	- ROM			NOIBS	oz Au	oz Ag			
	131	136	5.0	milky 02-sulph vein, py-aspy-sp, 10cm lens@134.5'	0.022	0.84			
51178	131	1.35	4.0	as above, replicate assay.	0.042	1.05			
				Sludge geochem reported in ppm	As	ZN	Cu	Ag	Au
<u> 31/05</u>	32	40	8.0	Sludge	262	759	94	3.	ND
51106	40	45	5.0	Sludge	301	828	245	0.3	ND
51107	45	60	15.0	Sludge	157	623	115	0.2	ND
51108	60	65	5.0	Sludke	99	621	99	0.3	
51109	65	70	<i>5.</i> 0	Studge	58	873	128	2.1	ND
31110	70	75	5.0	Studge	47	828	121	0.2	ND
51111	75	80	5.0	Sludge	74	604	88	0.3	ND
51112	60	85	5.0	Sludge	33	665	77	0.2	ND
51113	¥	90	5,0	Sludge	91	218	53	0.3	ND
51114		95	5.0	Sludge	168	265	104	0.4	NE
				CORE LOC.					
.,	0	28	28	Casina					
	28	72	44	fractived, into med gr. biotite granite					
	72	80	8	dkgreen, massive any gdaloidal dyke					
	80	109.5	29.5	fractioned, dkgree, compact felsite, 5-10% diss py					
	109.5	111.5	2.0	palegrey, 02 - feldspar porphyry clube					
	111.5	115	3.5	dkaren felsite					
	115	131.4	16.4	dk green, porphyxy dyke, ep-chi frace, 1%py					
	131.4	135.8		milky Q2 vein c py-sph clots, 20% sulphides					

DRÍLL HOLE LOG & ASSAYS PROPERTY LOCATION LENGTH DRILL HOLE NO. 4 ELEVATION % RECOVERY DRILL TYPE BEARING LOGGED BY PAGE 20F DATES DIP ASSAYS SAMPLE FROM TO LENGTH NOTES oz Au OZ AR Core loss at 32-36, 61-63, 65-72.5, 79-90.5, 101.5-106, 128-131.

Hole abandoned due to excessive cave & bit wear, water return lost at 95 feet. (attempto cement hole 19 Aug 1983, hole deviation starts at about 95 feet.)

PROPERTY GOLDEN ZONE
DRILL HOLE NO. 5
DRILL TYPE BO
DATES 21-23 August 1983

DRILL HOLE LOG & ASSAYS
LOCATION 30S-45W
ELEVATION 59.50 4cct
BEARING NORTH 0°
DIP - 46.5°

LENGTH 200 feet
% RECOVERY 63
LOGGED BY P. 78-10
PAGE 1 OF FOUR

SAMPLE	FROM	TO	LENGTH	NOTES		ASSAY	s		
					oz Au	OZ Ag			
51172		47	9.5	pale green felsite, ep-chl-py althe, py fracs	0.001	0.01			
51173		54	7.0	as above, fractured, 10-15% diss. punte	0.001	0.04			<u> </u>
51176	99.5	104	4.5	highly fractified, chiloritic telsite gouge & py-aspy-az	0.018	0.15			
51179	90	91	1.0	ainssive py-aspy-sp-02 pocket	0.312	4.10			
51156	170	175	5.0	Iractured areuto palegreen felsite 20-0500 10%	0.079	0.20			
51157		180	5.0	fractured greyto palegreen felsite, py-aspy 10% as above, 1-2 mm pystringers, 1-5 mm 02 vits, ep-chilaltin	0.013				
511 58	1	185	5.0	as above	0.003				
511 59		191	6.0						
5116C	191	194	3.0	milky 02 vein & py-aspy-sp? stringers to 5mm, 15% drusy 02 vein, as above	0.139				
51161	194	197	3.0	core loss, highly fractured grey felsite, 10% sulph.	0.026				
				Sludge geochem reported in onm	As	2~	Cu	Ag	Au
51115	25	30	5.0	Sludge geochem reported in ppm sludge	38	366	421	0.6	ND
51116	30	35	5.0	Sludge	33	350	403	0.6	ND
31117	35	40	5.0	Sludge	73	205	820	0.6	ND
51118	40	45	5.0	studie	210	117	100	0.7	ND
51119	45	50	5.0	Eludie	219	95	19	0.8	ND
51120	50	55	5.0	Sludge	372	1105	160	2.0	ND
51121	55	60	5.0	Sludge	767	197	135	0.8	ND
31122		65	5.0	Studie	195	204	128	0.7	ND
51123		70	5.0	Sludge	97	147		0.7	ND
51124	1 70	715	5.0	sludge	79			0.8	
5/12	75	80	5.0	Sludge	82	205	224	().6	ND

	DRILL HOLE LOG & ASSAYS
ROPERTY	LOCATION
RILL HOLE NO. 5	ELEVATION
RILL TYPE	BEARING
ATES	DIP

LENGTH	•
% RECOVERY	
LOGGED BY_	
PAGE 2 OF	Four

SAMPLE	FROM	TO	LENGTH	NOTES		ASSAY	S		
	 		DENGIN	NOIBS	oz Au-	OB AR	Cu	Ag	Au
51126	80	85	5.0	Sludge	128	133	//3	0.6	ND
51127	85	90	5.0	sludge	1.32	166	154	0.6	ND
51128	90	95	S.0	sludee	95	168	147		ND
51129	95	100	5.0	sludge	585	144	123		
51130	100	105	J. 0	sulphide rich sludge	3399	328		2.1	ND
51131	105	110	J.()	Lludge	220	505		1.2	
51132	110	115	5.0	Sludie	196	197	160		
51133	115	120	J.0	Sludge	203	174	156		1
51134	120	125	క. 0	Sludge	155	161	140		ND
51135	125	130	5.0	studie	373	221	199		ND
51136	130	135	5.0	sludge	258	182	192	0.4	
51137	135	140	5.0	cludge	3001	1443	197	2.3	ND
51138	140	145	5.0	clude	1843	756	209	1.3	ND
51139	145	150	5.0	Studge	1152	660	226	1.2	ND
51140	150	155	5.0	Slude	1787	1956	176	2.0	ND
51141	155	160	5.0	sludge :	555	387	135	1.0	ND
51148	160	165	5.0	Sludge assays for Au & Ag only	0.002	0.01			
51149	165	170	5.0		0.032	0.11			
511 50		174	4.0	11 11 11 11 11 24	0.056	0.15			
51151	174	180	6.0	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	0.058	0.10			
51152	180	185	5.0		0.012	0.05			
51153		191	6.0	1, 1, 1, 1, 11	0.118	1.30			

PROPE				
DRILL	HOLE	NO.	3	
DRILL	TYPE	_		
DATES	-			

DRIL	L HOLE	LOG	æ	ASSAYS
LOCA				
ELEV	MOITA			
BEAR	ING -			المسيخسس في الم
DIP				

LENGTH	
% RECOVERY	
LOGGED BY	
PAGE 3 OF	FOUR

SAMPLE.	RROM	TO	LENGTH	NOTES		ASSAYS	
					oz Au	oz Ag	
51154	191	195	4.0	studge assays for the & they only	0.074	0.86	
51155	195	200	5.0	" " " " "	0.017	0.23	
				CORE LOG			
	0	20	20	Cusing			
51172	20	43	23				
	43	49	6	highly fractured, rusty, grey compact felsite pale green, fractured telsite or as porplyinglyk	e		
51173	49	58	9	highle fractured, grey-green felsite, ep-chlattin, 10%	94		
	58	68	10	mottled green grew white, medar granite 10-15% pu	7		
	68	83	15	grey compact felsite, 10% on purch fracs			
	83	89	6	mottled green, grey, white, medgr. granite, 10-15% py grey, compact felsite, 10% py, py-chil fracs chlep alt'd, med gr. granite, <5% py		·	
	89	92	3	streaky siliceous aftered felsite			
	92	99.5	7.5				
51176.9	-Y	104	4.5	highly breaking over source 20010 and D. D.			
7	104	125	21	highly fractured area felsite 10-15% diss on			
	125	127.5	2.5	highly fractured, grey felsite, 10-15% diss purple green felsite			
	127.5	128	0.5	dark green porphyry dyke			
	128	132	4/	pale green felsite 5-10% disson, pu-chlor fracs			
	132	137	5	dkgreen, Ingr., 02-feldspar porphyri dyke			
	137	144	-/	Tribegreen, felsite, 1-2mm Dz-pyvlts			
	144	165	21	fractured gree, felsite, 1-5mm 02-pg-aspy VHs, 5-102diss py			
51157-60		186.5	19.5	akgren, forgr. felsite, as above, massive Aspy 173-174			
51161	186.5		7.5	milky we verné py-Aspy-sph stringers to smm,			

	DRILL HOLE LOG & ASSAYS	
PROPERTY	LOCATION	LENGTH
DRILL HOLE NO5	ELEVATION	% RECOVERY
DRILL TYPE	BEARING	LOGGED BY
DATES	DIP	PAGE 4 OF FOUR

SAMPLE	FROM TO 1		TO LENGTH	NOTES	ASSAYS					
THE DE	RON				oz Au	oz Ag	•			
	CONH			190-191 massive aspy,					L	
51161	194	197	3	fractured, grey felsite & gouge, 10% diss py					L	
	197	200	3	190-191' massive aspy, fractured, grey felsite & gouge, 10% diss py No core, no water return, fault zone?						
				END]			
 				core loss at 20-23.6, 27.6-29.6, 35.5-43.0,						
				92-102, 104-108, 116-119, 122-127.5						
		L.,		92-102, 104-108, 116-119, 122-127.5, 137-144, 165-169, 171-172.5, 183.5-200.					L	
									L	
	ļ			abandon hole e 200 ft due to tight rods,				·····	\perp	
				No water return & core recovery.					1	
				ADENDUM					_	
51183	191	192.5	1.5		0.158	1.92				
51184	192.5	194	1.5		0.237	2.46			L	
51185			3.5		0.115	0.92				
51186			1.5		0.01	0.07				
5 1187			2.0		0.008	0.05				
 	1								Π	
									Γ	
									T	
									\prod	
	1								Γ	

PROPERTY GOLDEN ZONE
DRILL HOLE NO. 6
DRILL TYPE BO
DATES 23-24 Hugust 1983

DRILL I		LOG	æ	AS	SA	YS
LOCATIO		155	} -	10	5 v	∇
ELEVAT	[ON_	59	14	5	Ŧe.	<u>e</u> 1
BEARIN(3	Not	7	h_{\perp}	0	>
DIP		60	0			

LBNGTH	126 feet
% RECOVERY	85
LOGGED BY_	P. Peto
PAGE / OF	TWO

SAMPLE	FROM	TO	LENGTH	NOTES	ASSAYS				
					oz Au	oz Ag			
51171	15	20	5.0	sludge	0.005	0.08		محاضد	
51170	43	53	10.0	CORE Yloss, palegreen felsite, cp-chlorattn, 5% py	0.001	0.06			
51169	53	58	5,0	as above, bleached frac carrelages, QZ seams	0.002	0.13			
£1168	58	63	5.0		0.001	0.11			
51167	70	73	3.0	jalegicen falsite, sulph smears, cipy cubes, or vits.	0.013	0.01			
51166		89	2.0	Q2-aspy-py vein	0.008				
51165		108	4.0	palegreen telsite, ep-chl-py atti, QZ seams	0.004	0.02			
51164	1	112	2.0	Q7- py-sph vein (110-110.5), grey felsite		0.48			
51163	114	116	2.0	Qz-pg-sph vein, grey felsite	0.001	0.38			
51162		120	2.0	pale green felsite	0.005	0.01			
				CORE LOG			,		
	0	6	6	Casing					
	6	12	6	fractured, rusty fine grained biotite granite					
	12	17.5	వ.5	pale ween, ep-chl-py all'n, 1-2mm GZ VIts					
	17.5	22.5	5.0	gren, juga histite granite					
	22.5	34	11.5	valle : reen alt'el oranite					
	34	42	8.0	grey fine gr. liotète granite					
	42	63	11.0	pule green alt'd crasinte					
	63	70	7.0	dk gree, bio granite, ep-chl fracs		·			
	70	73.5	3.5	alt'd granite, ep-chl-py, sulph sniears					
	73.5	86	12.5	dkyrey, streaky, frigrigranite i-smm Qzvits					
	86	89	3.0	Dale green felsite, E7-88" DZ-aspy-py Vein					

	DRILL HOLE LOG & ASSAYS	
PROPERTY	LOCATION	LENGT
DRILL HOLE NO. 6	ELEVATION	% REC
DRILL TYPE	BEARING	LOGGE
DATES	DIP	PAGE
		

LENGTH	
% RECOVERY	
LOGGED BY	
PAGE 2 OF	TWO

SAMPLE	FROM	TO	LENGTH	NOTES	ASSAYS					
					oz Au	oz Ag				
	89	102	1.3	dk gren streaky, bio granite 1-32 pyclots						
	102	108	6	pale green felsite						
	108	110	2	grew felsite & 1-2 mm 02 seams 5% diss pu						
·•	110	110.5	0.5	QZ-py-soh vein						
	110.5	115	4.5	dk grey, streaky, his granite, 1-32 pyclots pale green felsite grey felsite = 1-2 mm az seams, 5% diss py Qz-py-sph vein grey felsite az-py-sph vein pale green felsite = 02 vit to 5 mm dk grey, fr. gr. biotite granite. END						
	115	116	1.0	02-py-soh vein						
	116	118	2.0	pale areen felsite = 02 vit to 5mm						
	118	126	8.0	dk green for are biotite granite.						
				O'O' END						
				core loss between 37-41 44.5-46.5.						
				48.5-55. 74.5-76.5. water discharge		i				
				Core loss between 37-41, 44.5-46.5; 48.5-55, 74.5-76.5. water discharge lost at 20-25 feet.						
				,						
······································										
	1									
<u></u>	†								Г	
	 	 							\vdash	
	†	 								
	 	 							一	
	<u> </u>	 	 			}			├	