672512

REPORT ON THE AZZA AND AZZA 2 MINING CLAIMS COVERING GEOCHEM (1983, 1984, 1986), TRENCHING (1986) AND GEOPHYSICS (1986)

FOR

AMULET RESOURCES CORPORATION

Vernon Mining Division, B.C. NTS 82/15E

180°34'W and 49°56'N

Owner:

L.A. Bayrock, Ph.D., P.Geol.

1899 Queens Avenue, West Vancouver

Operator:

Amulet Rescurces Corporation

#708-1111 West Hastings Street

Vancouver, B.C.

Author:

G.L. VenHuizen. P.Eng.

3889 Hudson Street, Vancouver, B.C.

30 December 1986

32/328

LIGHTHING THAK

TABLE OF CONTENTS

I	Introduction	1 - 8
	 Scope of Report 	1 1
	2. Location	1
	3. Access	1
	4. Physiography, Vegetation and Climate	1 - 3
	5. Property Definition	3
	6. History of the Area	3 - 8
	o. History of the Area	3 - 6
II	Regional Geology	8
III	Geochemical Surveys	11 - 14
	1. Geochemical survey of 1983	11
	2. Geochemical survey of 1984	12
	3. Geochemical survey of 1986	12 - 13
	4. Discussion of results	13 - 14
	a. Geochemical Surveys of 1983 and 1984	
	b. Geochemical Survey of 1986	14
IV	Trenching	14 - 16
	1. Trench 1	14
	2. Trench 2	15
	3. Trench 3	15
	4. Trench 5	15
	5. Trench 6	15
	6. Trench 7	15
,		
	Trenching Results	15 - 16
V	Geophysics	16
VI	Conclusion and Recommendations	16 - 17
	1. Conclusions	16 - 17
	2. Recommendations	17
	Illustrations	
	Map 1 General Location of Azza Mining Claims Map 2 Claims Map	2 4
	Map 3 Appendix I	
	Map 4 Distribution of Claims in 1933	6
	Map 5 Geology of Lightning Peak Area	9 - 10
	Cost Estimate	18
	Certificate	19
	Bibliography	20
	P10110#170#17	7.1.7

APPENDIX I

Map 3

Azza Mining Claim Showing:

- 1. Soil Geochemical Results (1983 and 1984)
- 2. Trench and Geophysical Locations
- 3. Aerial Photo Lineations

APPENDIX II

1983 Soil Geochem Analyses

APPENDIX III

1984 Soil Geochem Analyses

APPENDIX IV

1986 Soil Geochem Maps and Analyses

APPENDIX V

Trenching Results

APPENDIX VI

Geophysical Report

MAP 1 - GENERAL LOCATION OF LIGHTNING PEAK AREA

AZZA AND AZZA 2 CLAIMS, VERNON MINING DISTRICT, BRITISH COLUMBIA.

I. INTRODUCTION

1. Scope of Report

This report covers all the work performed in the area of the claims beginning with old mining records and culminating in trenching and geophysical exploration performed in the fall of 1986.

2. Location

The claims, Azza and Azza 2, are located in the vicinity of 118 degrees and 34 minutes West longitude and 49 degraes 56 minutes North latitude in the Vernon Mining District, British Columbia. It is located in NTS 82 E/15 E. The area is a plateau at an elevation approximately 1,700 meters above sea level. The location of the area is shown on Figures 1 and 2, which is in the general area of Lightning Peak. Lightning Peak is located 5.5 kilometers Southeast of the claim.

3. Access

Access to the area is gained from Vernon, by taking highway 6, 80 km east to the Kettle River Road 10 km south on the Kettle River Road to Forestry Road K-50. Follow K-50 5 km and keep to the right on the Winnifred Creek Road. Follow the Winnifred Creek Road and keep right for 24 km. The following "milestones" are passed on the Winnifred Creek Road.

Bridge	8.8 km
Fort Jct. (keep Rt.)	9.1 km
Winnifred Creek Bridge	10.0 km
Cattlegard	15.0 km
Jct. (keep Rt.)	15.4 km
Jct. (keep Rt.)	18.4 km
Jct. (keep Rt.)	20.5 km
Campsite (end of road)	24.0 km

A four wheel drive vehicle is required.

4. Physiography, Vegetation and Climate

The claims are located on a gently sloping plateau in the vicinity of Lightning Peak. The claims are approximately 1,700 meters above sea level. Poor to medium quality forest covers the area; in places the tree vegetation is so sparse that large portions of the area may be described as parkland.

The claim area is in the Monashee Mountains. The relief ranges from about 1,700 meters above sea level in the bottoms of some creeks to about 2,000 meters on high points of the upland. Geomorphologically, the Azza area is a plateau with dissections by streams. The undissected plateau, which forms the greater portion of the area, is a rolling plain covered by thin colluvial cover. Outcrops generally are absent except near the showings of the Morning and Dictator claims, where they are numerous.

Snow covers the ground from November to the middle of May. The summer months are dry with very little rain.

5. Property Definition

Name Tag No. Date Staked No. of Units. Record No. Mining Division Azza 104103 23 Aug 1985 16 1976 Vernon

The Azza Claim was staked 23 August 85 by L.A. Bayrock of 1899 Queens Avenue, West Vancouver, B.C., who is also the current owner. The 16 units surround the Dictator Crown Grant and the Rob 1 mining claim.

Name Tag No. Date Staked No. of Units. Record No. Mining Division Azza 2 126326 18 Oct 1986 16 2165 Vernon

The Azza 2 claim was staked on 18 October 1986 by G.L. VenHuizen, P.Eng., as agent for L.A. Bayrock. The claims consist of 16 units immediately east of the "Azza" mining claim. The claims are in good standing and have been optioned to Amulet Resources Corp.

6. History

The Azza and Azza 2 claims, comprising 32 units, are owned by L.A. Bayrock. Previously, the claim was staked by K.S. Wengryn on the 23 February 1984 and the claim was abandoned on 25 June 1985 because of bureaucratic confusion. Previous to that, the area was staked for L.A. Bayrock in January 1983, Bay 1 and Bay 2 claims, and these were abandoned because of late filing. Before this last staking, the area of the Azza claim was held by a gentleman from Vernon and was called the Dictator claim. This claim was abandoned in 1982. The outline of the Azza claims and Azza 2 is shown on Map 2.

At one time most of the area was staked. The original Dictator claim was staked at the turn of the century and was crown granted on 9 October 1920. The history of other claims is more difficult to trace. Cairnes (1930) discussed briefly the Morning and Dictator claims. B.C. Department of Mines Annual Report, p.A150, shows the 1933 distribution of claims in the Dictator Creek area, Figure 3. The configuration of Morning 1 and 2 and the Cordova claims remained unchanged at least for the location of the centers of the claims. At present only four claims are in good standing; Azza and Azza 2, held by L.A. Bayrock, Rob 1 425 (4) and L4636 C.G., held by Betty Petroleum Corportation, Surrey, B.C.

All of the claims to the south of the Azza claim are held by Mohawk Petroleum Corporation under the name of the Waterloo property.

The distribution of the claims in 1930 is shown on Map 4.

Morning Claim

The following is description of the showing on the Morning claim as described by Cairnes (1930, p.97A):

"The claim lies with an extensive outcrop area of the Nelson prophyritic granite. Workings include two deep pits and one trench, all

MAP 2. Location of Azza Mining Claim, Vernon Mining Division (From DEMR Map No. 82E/15 "Damfino Creek)
SCALE 1:50,000

Om: 1000m 3000m

of which cut well into the underlying rocks. The two pits, 100 feet apart, expose a quartz vein 20 inches wide, striking nearly north and south and dipping 75 degrees west. The vein carries, in order of relative abundance, dieseminated pyrite, zinc blende, and galena. In most places, the sulphides do not exceed 2 percent of the total volume of vein matter, though in places and across widths of several inches the amount probably reaches 10 percent. The wall-rock on either side of the vein is heavily impregnated with pyrite for a width, on the foet-wall dise, of about 3 feet, and for a lesser distance on the hanging-wall. The wall-rock is a medium-grained, highly quartzose, sheared granite which seems to be a phase of the Nelson granite. In the vicinity of the quartz vein this granite has been altered by vein-forming solutions.

"The trench lies 55 feet north of the more northerly pit. Here the quartz vein is 4 feet wide and intersects pyritized granite which, 6 feet above the hanging-wall of the main quatz vein, carries a 6-inch vein of heavily mineralized quartz tightly "frozen" to the wall-rock. Where exposed by this trench the main quartz vein is sparsely mineralized.

"Mr. Melstrom claims that the main vein does not appear to extend more than a few yards north of the trench, but that in the opposite direction it has been traced for a distance of about 700'. Claims have been staked to the north and south of the Morning claim and are owned by Adam Scaia, Edgewood, B.C.

"Little is known of the values contained in the main vein or adjoining wall-rock. The prospect warrants further prospecting as well as careful sampling."

It is seen from the above that the quartz veins which are up to 4 feet wide are mineralized including portions of the hanging and the footwall up to 3 feet.

In 1933 the B.C.D.M. report it is recorded that the quartz veins follow a shear zone which is about 8 feet wide and it includes 3 feet of mineralized quartz with pyrite, galena and sphalerite.

Assays in the mining drift samples show 0.2- to 0.16 oz. of Au and 2 to 7 oz. of Ag. Surface float assayed 1.5 oz. to 1.7 oz. of Au.

In 1934 B.C.D.M. Annual Report are given some assays on the ore in the drift which range from 0.25 to 6.60 oz. of Au, and from 0.75 to 42.2 oz. of Ag. These assays are of quartz vein material which was from 4 inches to 2 feet in width.

Dictator Claims

The location of the claims is shown on Map 4. A vein, which was followed for 300' with good values of gold and silver is mentioned in B.C.D.M. 1919 Annual Report:

MAP-4 - DISTRIBUTION OF CLAIMS IN 1933 MORNING CLAIMS IS AT PRESENT ROB 1 CLAIM

"Dictator and Clorator owned by J. Glover, of Edgewood, and situated about three miles in a north-easterly direction from the Waterloo mine on the headwaters of the East fork of the main Kettle The country-rock surrounding the claims is a medium coarse grey River. granite, occasionally cut by porphyry dykes. The ore consists of galena, sphalerite, and iron, carrying gold and silver, in a gangue of quartz and broken country rock. The vein has a northerly and southerly strike. dipping 75 degrees to the west. The lead, which outcrops for about 300 feet, is developed by open-cuts and shafts varying from 20 to 30 feet in Owing to the bad state of repair of the deepest shaft it was impossible to visit it, but the owner claims an 18-inch lead in the The flatness of the surrounding country prohibits any development by tunnels, and the cost of sinking the shafts farther is beyond the means of the present owner".

The next and last mention of mining activity on the Dictator claims is in 1933 (B.C.D.M. Annual Report 1933):

"This claim (Lot 4636), owned by John Glover, Nelson, and under option, adjoins the Doris Fraction (see map) to the east and was one of the original discoveries in the area. Two shafts, probably 30 and 40 feet deep respectively, now filled with water, as well as numerous shallow pits and trenches have been sunk for about 800 feet along a parallel shear-zone to the one found on the Morning. As all the workings were badly caved it was impossible to sample the vein in place. The ore on the dumps consisted of galena, pyrite, and sphalerite in quartz gangue. There is a log cabin on the claim".

Cairnes (1930, pp. 97A to 98A) describes the mineralization as follows:

"Specimens of the vein matter are composed chiefly of massive to, in places, quite vuggey white quartz, mineralized chiefly by pyrite with some galena and zinc blend. A little native sulphur was noted in small cavities in the quartz, formerly occupied by other ore minerals. Both pyrite snd galena occur in small, mixed masses or disseminated grains through the quartz. Values are not known".

It is seen from the above that on the Dictator claim is present a shear zone similar to the one of the Morning claim. Both of the shear zone are mineralized similarly and have same strike and very steep dips. The two shear zones are about 500 to 600 feet apart.

Cordova Claim

The claim was adjoining the Morning claim to the south. The Morning shear zone was traced through to it, and also "a considerable amount of quartz float" (B.C.D.M. Annual Report 1933 p. A 152) was found south in the direction of the shear.

Ontario Claim

The Ontario Claim was located 1,500 feet north of the Morning claim. Apparently the continuation of the Morning shear zone was located there. Also float quartz is present which assayed: Au = 0.30 to 1.97 oz., and Ag = 23 oz. per ton.

II REGIONAL GEOLOGY

The geology of the area has been mapped by H.W. Little, 1957 and the map was published to a scale of one inch to four miles. Adjacent to the south of the Azza claims is a roof pendant of Permian greenstone, greywacke, and limestone which supports numerous narrow veins with silver and some gold. The Azza claim is located entirely in the granite which surrounds the roof pendant. Map 5.

The entire area of the Azza claims is underlain by Nelson granite which is a coarse grained granodiorite. Numerous dykes and intrusives of basic composition are present in the claim area. The extent cannot be shown as no detailed geological mapping has been done to date. The overburden is thin to very thin being from a fraction to three meters. It is comprised of regolith, colluvium and glacial drift. Outcrops are sparse and small, specifically outcrops are lacking in the shear zones and hydrothermally altered zones.

The entire area of the claims has been extensively sheared by two major sets of faults which run approximately north-south and east-west. Almost without exception, all of the shear zones have been hydrothermally altered and mineralized to varying degrees. The alterations are predominantly of the epithermal type. Kaolinization extends tens of meters laterally from the centers of the shear zones. In places extensive silicification has taken place. Some of the quartz veins are over one meter in width.

The altered shear zones are readily discernible in topography because of the shallow overburden and the incompetence to erosion of the kaolinized structures. The result is an extensive network of trench like depressions which follow the alteration zones. Normally, the alteration zones are from ten to over fifty meters wide, but at the intersections of east-west and north-south shear zones the width of the altered zones is over 100 meters. Map 3 shows the shear zones as interpreted from aerial photographs and ground exploration.

The shear zones are readily discernible on aerial photographs. The relative ease of spotting the shear zones greatly expedited the locating of mineralized anomalies. The total length of the shear zones within the claim area is over 40,000 meters. No detailed geological mapping has been done on the property.

LEGEND

CENOZOIC	TERTIARY MIOCENE(?) 11 Basalt, olivine basalt PALEOCENE OR EOCENE PHOENIX VOLCANIC GROUP 10 Andesite, trachyte; minor basalt; locally, interbedded tuff, shale, and/or siltstone 9 KETTLE RIVER FORMATION: rhyolite and dacite tuff; locally, conglomerate, sandstone, and shale; minor rhyolite flows and intrusive porphyritic rhyolite PALEOCENE(?) 8 CORYELL INTRUSIONS: syenite; monzonite, shonkinite and granite
MESOZOIC	CRETACEOUS(?) LOWER CRETACEOUS(?) 7 VALHALLA INTRUSIONS: granite, porphyritic granite 6 NELSON INTRUSIONS: granodiorite, porphyritic granite; diorite, monzonite, quartz monzonite 5 Ultrabasic intrusions, serpentinite JURASSIC ROSSLAND GROUP Andesite, latite; agglomerate and flow breccia; minor greywacke
PALAEOZOIC	PERMIAN(?) ANARCHIST GROUP Greenstone, greywacke, limestone; paragneiss PENNSYLVANIAN AND/OR PERMIAN MOUNT ROBERTS FORMATION; greywacke, greenstone, limestone; paragneiss
PROTEROZOIC (?)	MONASHEE AND GRAND FORKS GROUPS Paragneiss; minor crystalline limestone and pegmatite
	Drift-covered area

CANADA DEPARTMENT OF MINES AND TECHNICAL SURVEYS

GEOLOGICAL SURVEY OF CANADA

MAP-5 - GEOLOGY OF THE AREA AFTER LITTLE, 1957 SCALE 1 INCH TO 4 MILES

III GEOCHEMICAL SURVEYS

Geochemical sampling was done on two occassions. The first in 1983 by L.A. Bayrock (claims Bay 1 and Bay 2). The second sampling was done in 1984 by G.L. VenHuizen (Ken claim). The second sampling was done to define anomalous zones discovered in 1983 and to extend the sampling to some of the unsurveyed shear zones. The geochemical sampling was conducted by sampling the "B" soil horizon. The "B" horizon was generally present from 15 to 30 centimeters below the surface and was of a rust to reddish color. In ground water discharge locations or undrained depressions no "B" horizon was encountered and there any material occurring at depth from 30 to 40 centimeters below the surface was sampled. The sampling lines were limited along the axis of the shear zones and the sampling interval was 10 meters. Occasionally additional samples were taken from the edges of the shear zones. In 1984, some of the anomalies which were discovered by previous sampling, were sampled at intervals of 5 meters.

1. Geochem Survey of 1983

A total of 424 soil geochemical samples were collected in 1983 and these were analysed by Min-En Laboratories, North Vancouver. The samples were analysed for Ag, As, Bi, Cd, Mn, Mo, Pb, Sb, Sr, Zn, Ba and Au by the I.C.P. method. The analyses results are given in Appendix 2.

Map 3 entitled "Azza Mining Claim, Vernon Mining Division, B.C." is enclosed. It shows the location, sample numbers, and the gold and silver results. For gold the following categories were chosen:

5 - 10 ppb background

15 - 25 ppb slightly anomalous

30 - 45 ppb anomalous

50 + ppb highly anomalous

The highest gold value obtained was 380 ppb, sample #118.

Similarly, silver results were divided into the following categories:

0 - 0.9 ppm background

1.0 - 2.9 ppm slightly anomalous

3.0 - 4.9 ppm anomalous

5.0 + ppm highly anomalous

The highest silver result is 9.4 ppm, Sample D-92. Geochemical Sampling lines of 1983 were numbered "BL 1" through "BL 9".

2. Geochem Survey of 1984

The 1984 geochemical survey was conducted on the Ken claim which is of the same outline as the present Azza claim. The samples collected were in locations of anomalies discovered by the 1983 survey, additional sampling of new shear zones on the Ken claim and sampling of shear zones outside of the Ken claim on Bay 3 claim. A total of 350 samples were collected of which only 152 were analysed by Min-En Laboratories, North Vancouver, B.C. The rest of the samples were held on file.

The results of the analyses were obtained on January 29, 1985. It was noticed that most of the gold values were very low. On the basis of this, the Bay 3 and Bay 4 claims were lapsed. Further consideration prompted a re-analyses of the samples which were completed on September 21, 1985. The new results are substantially higher as compared to the original results. The explanation given by the Laboratory was that the original samples were not fired at a sufficiently high enough temperature. The second analyses results are given in Apendix 3. Of the 198 samples not analyzed, 119 were analyzed on November 26, 1986, also found in Appendix 3.

The results of all analyses are shown on Map 3. It should be pointed out that although the second analyses confirm the anomalies, all of the confirmed anomalous values have a systematic error approximately 50% lower than the 1983 results.

Geochemical sampling lines of 1984 were numbered A through J.

3. Geochem Survey of 1986

The 1986 soil geochem survey was conducted by G.L. VenHuizen, P.Eng. for the following purpose:

- 1. Profile several of the soil horizons to aid in interpretation of soil anomalies found along the shear zones.
- 2. Sample the "A", "B" sad "C" soil herizons to determine which provides the best sampling medium (highest metal values).
- 3. Run sample lines perpendicular to the shear zones in selected areas to determine if soil anomalies may reveal mineralized zones within the shear zones.

Sampling of the "A", "B", and "C" horizons was carried out by digging 1 meter holes in selected areas and taking 2 to 4 kg samples from each of the horizons. A total of six sites were selected and 18 samples taken.

Sample lines perpendicular to shear zones were run in 4 selected areas. The sample spacing along the lines varied, yielding 5 to 10 samples across each line. Soil from the "B" horizon was taken just beneath the "A" horizon. Samples were from 100 to 200 grams each.

All sample locations, soil descriptions, sample depths, and metal values are found in Appendix 4.

A total of 58 samples were analyzed by Acme Analytical of Vancouver, B.C. The samples were run using atomic absorption methods for gold, and I.C.P. methods for 30 other elements. The analysis results are found in Appendix 4.

4. Discussion of Results

a. Discussion of Results of Geochemical Surveys in 1983 and 1984

The purpose of the geochemical survey was to assess the potential for finding mineralization along aerial photo lineations as interpreted by L.A. Bayrock. The surveys show that anomalous soil values in gold and silver are found along the lineations with values as high as 380 ppb in gold. All geochemical survey lines were run along axis of shear zones. Consequently, the background metal values of the unaltered country rocks could not be established statistically. They are believed to be 0 to 10 ppb for gold and 0 to .9 ppm for silver.

It was concluded that the following categories are applicable:

<u>Au</u>	<u>Ag</u>		
$5 - \overline{10} p_1$	pb 09	ppm	background
15 - 25 pj	b 1.0 - 2.9	ppm	slightly anomalous
$30 - 45 p_1$	b 3.0 - 4.9	ppm	anomalous
50 + p	b 5.0 +	ppm	highly anomalous

On Map 3 gold values over 10 ppb are shaded red and silver values over 1.0 ppm are shaded green. It can be seen from the map that the "H" "BL 3" "BLX" parts of "BL 7", "A", "B", parts of "BL 1", parts of "BL 6" and the "J" line all have higher than background values in gold and/or silver. Note that the "H" and, "BL 3" lines are on aerial photo lineations which lead into the old workings of the Morning mine.

The discovered anomalies are generally discontinuous. The discontinuities may be the result of spotty mineralization or of the soil sampled being of foreign derivation and thus not reflecting the underlying mineralization. The second case was found to be true in Trench 3 where significant mineralization was encountered but the geochemical samples showed only background values, as they came from thick glacial till deposits.

Lines "A" and "BL 1" show discontinuous anomalies over 400 meters. If the discontinuities result from foreign soil types the anomalies may reflect continuous mineralization over the entire length of the lines. The Phase I and II programs will tests this hypothesis.

It was hypothesized that the anomalies were the result of mineralization found in shear zones defined by the aerial photo lineations along which tho soil sampling took place. The 1986 trenching and geophysical program confirmed this hypothesis.

b. Geochemical Survey in 1986

The results of the survey are found in Appendix 4. The results show that sampling either the "A" or "B" soil horizon will produce similar results. The "C" horizon was found to yield lower metal values.

Profiles of soils were perpendicular to the aerial photo lineations along which previous sampling programs took place. The profiles show that results are variable across the lineations. The variability could be the result of vein structures beneath the higher values or could reflect lower values in places where coarse sandy alluvial soils are found. In either case it is likely that the soil samples taken during 1983 and 1984 may in some cases have been off of the trend on which the highest soil values are found.

IV TRENCHING

The purpose of the trenching program was to confirm that aerial photo lineations found in the area are surficial expressions of shear zones, and that soil geochemical anomalies found along the lineations are the result of mineralization in the shear zones.

Note that the trenching program was limited only to areas accessable by bulldozer. Most of the areas along which anomalies are found are in trench like depressions in which is found muskeg and so are not suitable for trenching with a bulldozer.

The sampling of the trenches was carried by continuously sampling the ripped bedrock perpendicular to the trend of the veine in the alteration zones. In some cases, separate samples were taken of individual quartz veins or highly mineralized zones.

The results of the trenching are found in Apendix IV. The locations of the trenches are found on Map 3 (Appendix I).

1. Trench 1

Trench 1 exposed a hydrothermally altered shear zone. The central zone of the trench was completely argillitically altered with the zones on either side being kaolinized with quartz seams up to 10 cm wide. Sample T1-10.7 was of a 5 cm quartz vein and assayed 16.3 g/tonne Au. (0.475 oz/ton). Samples T1-14.0-16.0-T1-2.4-6.4 show anomalous concentrations of Au in bedrock over 13.6 meters, with 3 meters (T1-6.4-9.4) at 370 ppb Au.

2. Trench 2

The central part of the lineation was inaccesible for trenching due to soft soil. The rock exposed signs of hydrothermal alteration with the granite being kaolinized.

3. Trench 3

The central part of the lineation was inaccesible due to soil conditions. The depth of the soil indicates extensive erosion. The bedrock exposed by the trench shows signs of hydrothermal alteration. The granite has been sheared, kaolinized and has quartz stringers and nodules throughout. Anomalous gold and silver values were found over 5 meters with 2.5 meters at 175 ppb Au and 17.4 ppm Ag.

4. Trench 5

Trench 5 showed sheared kaplinized granite, diabase dikes and some quartz seams. Two samples were taken from quartz seams. The best value was 144 ppb Au and 4.0 ppm Ag.

5. Trench 6

Trench 6 is located at the southern most extension of "BL 3". It appears that the zone ends near here as very little alteration or mineralization was found.

6. Trench 7

Trench 7 is located on "BL 3" which is on a lineation running into the Morning mine. The trench uncovered a l meter quartz vein which looks very similar to material found on dumps around the old mine. The vein is made up of white quartz with 10-20% coarse (up to 5cm) pyrite and galena. The vein contained anomalous but subeconomic amounts of gold and silver. The structure of the shear zone shows an unaltered footwall with an argillitized hanging wall. Diabase appears to have followed the same structure along which mineralization took place indicating that the structure extends to great depth. As reported in literature (in history section) this vein assayed over 1 oz/ton Au in places.

Trenching Results

Trenches 1, 2 and 3 were excavated over a vein over 900 meters long as determined by aerial photo interpretations and ground topographic examination. The strike of the vein is variable being generally about 350 degrees azimuth. The dip of the structure could not be determined in the field. Geophysics indicated a dip of 45 degrees E. (lines IPL - 1, IPL - 2, and IPL - 3). The width of the

epithermal alteration as determined in the trenches, is over 25 meters. Normal and intense epithermal alteration is expressed as complete argillitization over six meters in width. Surrounding the argillite zone, numerous quartz stringers permeate the altered country rock. The highest value on individual quartz veins was obtained in trench 1 which are .475 and .21 oz/ton Au. Continuous chip sample results from the three trenches are shown on trench cross sections given in Appendix 5. Trench 5 shows north-south trending epithermally altered zones.

Trench 6 and 7 show that the Morning mine vein is a wide epithermal alteration zone with silicification and argillization.

The trenching shows that the area supports numerous epithermal alteration zones which are mineralized with gold and silver. In all cases where trenching was performed the aerial photo lineations correspond to the epithermal alteration zones.

V GEOPHYSICS

The IP survey of chargeability and resistivity were conducted on five lines on the property and these are shown on Map 3. The survey was conducted by Geotronics Surveys Limited, Vancouver, Canada, and a complete report by Mr. D. G. Mark, Geophysicist, is enclosed in Appendix 6.

Resistivity and chargeability results indicate that the aerial photo lineations correspond to epithermal alteration zones in locations where the survey has been conducted. A number of possible mineralization zones have been delineated by the survey (geophysical report pg. 11).

Of importance is a conclusion on page 10 of the geophysical report which states that apparently large areas are epithermally altered and the specific veins, as delineated on aerial photos are resistivity lows within a general low resistance area. This refers specifically to IPL-1 line and in general to the remaining lines. The geological conclusion that may be drawn from the above is that in the area of IPL-1 a regional epithermal alteration zone is present. This zone encompasses the two 400 meter long geochemical sample lines "A" and "BL 1".

VI CONCLUSIONS AND RECOMMENDATIONS

1. Conclusions

It is concluded by the author that aerial photo lineations found on the Azza mining claim are surficial expressions of mineralized shear zones. Geochemical data done to date shows extensive anomalies in gold and silver along the lineations. Trenching (in accessible areas) has shown that the lineations lie over hydrothermally altered shear zones mineralized with gold and silver. Trench 7 shows that the mineralized vein found on the Morning Mine continues onto the Azza claim. Geophysical data has outlined extensive areas which show very low resistivities which is indicative of hydrothermal alteration and has indicated 9 prime targets for further exploration. Because many of the anomalies are inaccessible to trenching due to soil conditions, exploration methods over them are limited to geophysics and drilling.

The area shows a potential for low grade gold and eilver mineralization within large alteration zones as well as high grade gold and silver mineralization in narrow quartz veins.

2. Recommendations

The thrust of the program should be to evaluate the $1500 \text{ m} \times 1000 \text{ m}$ area studied thus far (Phase I and II). If economic mineralization is found, further work should be undertaken to delineate similar areas on the property (Phase III).

It is recommended by the author that further work be done on the property consisting of:

Phase I

The Phase I program should cover an area 1500 m x 1000 m, where most of the work to date has been done.

Trenching - all accessible targets should be trenched.

Mapping and linecutting - a grid should be established to provide a reliable map of the area. (maps presently available are based on aerial photos which have not been corrected for parallax).

Geophysics - further I.P. - resistivity surveys should be carried out in order to delineate drilling targets.

Phase II

Phase II should consist of diamond drilling assuming favourable results from Phase I.

.L. Value P.Eng.

bmitted,

COST ESTIMATE

DI	10	0	_	•	T
г	าล	-	т.		8

Linecuttin	g
------------	---

TOTAL PHASE II

Linecutting	
25 km @ 200	\$ 5,000
Geophysics (I.PResistivity) 25 km @ 1000	25,000
Trenching 60 hrs. @ \$125	7,500
Mapping 15 days @ \$200	3,000
Assays 100 @ \$15	1,500
Meals, transportation, accomodations	3,000
Report(s)	6,000
Geological Supervision \$400/day @ 15 days	6,000
	57,000
10% contingencies	5,700
TOTAL PHASE I	\$ 62,79
	发
Phase II (Upon successful completion of Phase I)	
Diamond drilling 1000 m @ \$90	\$90,000
Geological Supervision - reports	10,000
	100,000
10% contingencies	10,000

\$110,000

CERTIFICATION

- I, G.L. VenHuizen, of 3889 Hudson Street, Vancouver, B.C., hereby certify as follows:
 - I am a registered member of the Association of Professional Engineers 1. of British Columbia, No. 14584.
 - I am a graduate of the University of Minnesota, with a Bachelor of 2. Science Degree in Geo-Engineering.
 - I have practiced engineering and geology in exploration, development, 3. and mining during the past 7 years.
 - I have no interest directly or indirectly in the Azza Mining Claim or 4. the Azza 2 Mining claim.
 - The information contained in this report is the result of field work 5. carried out by me and the references cited.
 - 6. I consent to the use of this report in a prospectus or a statement of material facts.
 - I do not own any shares of Amulet Resources Corporation nor do I 7. intend to.

Respectful ritted,

G.L. VenHuizen, P.Eng.

December 30, 1986

BIBLIOGRAPHY

British Columbia Ministry of Mines Annual Reports 1933.

Cairnes, C.E. (1930): Lightning Peak Area, Osoyoos District, B.C.; G.S.C., Summ. Rept. 1930, part A. pp. 79 A to 115 A

Little, H.W. (1957): Kettle River, East Half, Map 6 - 1957, Scale 1:253,440

Aerial Photos B.C. 4242 29, 30, 31

L.A. Bayrock, Ph.D., P.Geol. and G.L. VenHuizen, P.Eng., "Soil Geochemical Survey Azza Claims", 15 March, 1986

G.L. VenHuizen, P.Eng.
"Soil Geochemical Report Azza Claim, Record No. 1967" 5 November 1986

David G. Mark, "Geophysical Report on Induced Polarization and Resistivity Surveys Over a Portion of the Azza Claims", 15 December 1986

APPENDIX 2 1983 SOIL GEOCHEM ANALYSES

NTION: MR. BAYROCK	(y,			(604)980-	-5814 OR (· ·	()	DATE: S	LE NO: 5- SEPTEMBER	
ORT VALUES IN PPM)	AG	AS	BI	CD	MM	MO	PB	58	SR	ZN	BA	AU-PPI
	.3	0	0	1.3	67	3	29	0	28	13	63	
2	1.3	0	21	2.6	91	6	22	2	39	26	56	!
3	1.7	3	0	2.1	122	9	32	2	29	41	56	
Ä	1.2	1	0	1.6	58	5	26	0	27	29	61	
•	5.7	j	۸	3.0	231	13	25	Ř	54	48	69	,
					58	<u>-</u> -	12	;	46	23	5 /	·`;
	4.8	3	0	2.8		5		7				1
7	3.3	23	0	2.2	29	5	12	1	38	15	49	
8 40MESH	.6	0	0	3.1	9	1	10	0	38	9	27	;
9	.1	6	0	4.8	6.	2	8	Ģ	39	3	22	1
10	.2	0	0	3.1	6	0	1	0	31	6	23	
11 4 OMESH	2		0	3.9	8	0	7	- 0	43	7	26	
12 40NESH	0	0	0	3.1	9	2	1	0	37	4	25	<
13 40MESH	ň	Ŏ	ň	2.3	R	Õ	5	Ó	39	5	29	1
	•	Δ.	٨	2.3	12	ĭ	Ď	Ŏ	37	5	33	•
14 40HESH	• • •	•	•	.7	14	^	٨	۸	45	ī	36	
15					· <u>- </u>	<u>Y</u> -		\ 		· ; - ·	30	
16 40MESH	.1	0	0	2.3	9	5	′	v	38	1		
17	.9	0.	0	3.1	15	0	5	0	43	10	38	
18	1.3	0	0	4.8	400	10	49	2	64	50	136	· !
19	1.4	0	23	3.6	897	17	26	5	59	59	106	
20 40MESH	1.2	0	0	2.6	106	6	28	2	59	29	103	
	1.7	5 -		2.3	100	·	27	·	- 53	34	9 8	
21			V	2.6	76	,	15	- 1	47	25	96	
22	1.3	0	V ^		10	7	9	7	78	R	77	1
23 40MESH	.4	0	V	2.0		-	•	3	/a 67	7	43	•
24 40MESH	.5	11	0	2.1	11	5	19			<u>'</u>		
_ 25	7	_ 11	0	3.1	12	3	. 14	4	49	!	35	. . -
26	.4	- 0	0	2.2	12	3	4	0	50	3	39	
27	0	0	0	2.2	16	i	8	0	45	3	37	1
28	Ô	Ď	0	2.0	50	5	10	0	25	16	53	
29 29	•	۸	۸	2.9	33	,	15	0	36	32	40	1
	. U	V A	^	0	10	٨		6	. 46	1	45	•
_ 30	,			<u>- 0</u> -		· ½ -	19		10		37	1
31	.1	Ĵ	V		9	۷.		٧,				1
32	1.0	0	0	.7	9	1	18	1	39	1	38	
33	.2	0	0	2.3	9	3	2	0	41	2	49	
34	0	0	0	1.2	20	2	0	0	32	0	24	!
	0	32	0	3.0	97	9	27	8	29	17	50_	
- 32		0	23	1.0	70	13	2 7 25	i	53	0	68	
37	٨	28	24	3.6	109	10	28	. 1	37	16	63	2
	V A	70					29		35	25	61	1
28	V	0	0	4.1	118	8		Ø *				
39	0	5	18	2.2	88	10	21	5	41	10	65	3
- 40	0	_ 0 _	0	1.7	77 - 46	9 _	25 23	3	38	0 _	87	
41	0	0	0	1.9		4		0		9 7	94	1
42	1.	0	0	4.3	34	ı	18	0	34	0	62	1
43	0	0	0	2.4	63	5	21	0	40	7	74	
44	Ô	ō	ò	1.5	65	7	31	5	36	15	70	1
45	1	٨	Ŏ	2.7		_		Õ	46	6	96	i
- 45		, y -		===================================	46 199	5 -	<u>15</u>	· v -	26	37	62	;
	•	13	0	.4				4		8	60	
47	1.0	0	0	1.9	41	3	28	į.	43			
48	0	0	0	2.2	36	3	13	ø	51	16	45	i
49	.1	0	0	2.5	55	6	24	0	46	17	64	
50	0	0	0	2.5	56	6	20	0	25 - ·	! .	49	
- 50	0	5	0	ī.ī -	89	5	51	0	Ž6 .	3	39	7
52	٨	A	Ŏ	2.0	81	Ģ	11	٥	21	14	39	7
53 53	V A					10	14	۸	19	15	28	
	V	v	0	2.0	106	10		V .		2	47	•
54	Ø	0	0	1.7	58	9	10	V	29			1
- 55	0	0	. 0	- 1.5 1.5	68_	<u>\$</u> _	31	0	28	9	58	
56	0	0	0	1.5	122	6		0	27	35	54	
57	0	0	0	1.3	- 106	7	21	0	32	16	55	7
58	ó	Ó	ò	1.7	65	7	11	0	17	18	47	3
59	Ď	٨	20	3.1	120	14	24	j	40	41	64	9
	V	•	21	4.2	362	13	47	i	51	75	83	1
60	a	0	71	4.7	14.7	1.1	=/		7/	73	67	

ITION: NR. BAYROCK					5814 OR (B.C. V/M 524				LE No: 3 SEPTEMBE	
RT VALUES IN PPM)	A6	AS	BI	CD	MM	MO	PB	SÐ	SR	ZN	BA	AU-PPB
61	0	0	0	1.8	101	7	24	0	21	26	44	5
62	0	0	0	3.7	308	10	35	2	24	60	49	10
63 N/S												
64	0	0	0	.4	97	5	4	0	30	54	52	5
65	0	0	0_	2.2	107	_ 6 _	16	0	25_	19	43	15
66		0	0	2.9	279	8	24	0	25	40	56	10
67	0	0	. 0	2.4	377	12	15	0	28	51	56	5
68	0	0	17	2.4	141	11	32	0	22	36	48	5
69	.4	0	20	1.5	397	10	17	0	28	50	56	30
70	.3	23	18	2.7	208	15	40	5	27	41	50	5
71		0	23	2.8	260	14	23		27 -	52	65	10
72	3.6	0	- 24	5.2	465	19	61	0	115	206	302	5
73	6.9	Ô	25	5.8	686	17	45	8	86	170	160	5
74	7.7	Ŏ	25	5.3	378	19	42	0	81	220	130	10
75 N/S	, • •	•		•••		•						
75 - K/3	3.1	12	24	6.3	932	19 -	62		94	214	128	10
77 40MESH	3.7	44	30	7.3	1040	19	383	3	74	222	110	5
77 4UNESH 78	4.3	0	25	4.5	552	17	369	4	73	400	135	5
79 N/S	7.3	•	4.5	7.0	JJ2	• •	70 /	•				•
	5.0	0	19	1.7	523	12	124	. 0	61	134	103	10
80	3.0 2.0		17	$-\frac{1.7}{2.8}$	- 323	12 -	124		48	194	101	š
82	.8	Λ	0	2.1	444	9	106	ò	47	182	90	5
82 83	2.8	۸	Ó	4.2	37B	11	112	6	47	193	93	(5
	2.8	۸	0	2.5	712	9	108	٨	46	188	89	5
84	•	^	0	.8	214	3	32	٨	16	60	34	10
85 86	,,'	×			- 7730	3 -	116	/ -	104	73 -	167	5
	7.5	0	18 0	14.0		3	14	6	100	16	92	5
87	2.1	•	17	3.8	352	14	23	^	60	36	116	15
88	V	0		2.0	633			0	37		88	
89	0	Ü	0	3.3	130	9	18	0		21		10 5
90	0	0	0	1.3	- 93	9 -			30	19	72	
91	0	0	22	2.0	148	15	10	1	117	. 0	299	10
92	0	0	17	1.8	109	6	36	2	68	7	130	3
93	1.5	0	15	3.8	171	7	22	4	79	75	112	3
94	0	0	24	3.6	313	22	39	0	118	0	315	3
95	0	0	17	2.2	_ 114	10	16		- 63	13	144	10
96	.5	0	18	2.1	35	6	7	0	61	0	97	3
97	.2	21	0	1.3	14	3	11	2	61	4	60	2
98 40MESH	3.1	0	0	2.7	14	5	13	2	176	4	160	5
99	0	0	17	1.8	80	9	5	0	38	15	70	5
100	0	0	17_	1.7	50	10	17	. 0	68	0 _	140	5
101	0	0	0	1.8	62	9	25	0	63	0	123	5
102	0	0	0	1.4	50	5	18	0	33	1	82	5
103	0	0	0	0	15	4	0	0	28	0	28	10
104	0	0	0	2.7	51	3	4	0	21	10	50	5
105	0_	0	0	.5	62	9	_ 6	0	36	19	_ 113_	5
106	0		0		64	;	16	- -	37	21	83	5
107	0	0	0	1.6	85	9	5	0	49	10	80	5
108	0	0	0	1.9	116	4	20	0	50	33	97	5
109 40MESH	.1	0	0	1.9	51	5	14	0	46	7	102	10
110	0	0	Ō	1.4	83	2	12	0	29	18	70	10
111		0		ī.B	57	2 - 2	3	0-	30	7 - 7	62	5
112 40HESH	0	0	Ó	2.3	9	1	2	0	59	5	37	5
113 40MESH	Ō	Ŏ	ō	1.5	6	i	Ō	. 0	66	3	34	. 5
114 40HESH	.2	1	. 0	0	5	•	10	1	80	Ā	45	10
115	.1	Ÿ	. 0	1.7	345	ō	29	i	22	33	60	5
116	:;;		<u>1</u> 9	$-\frac{1.7}{2.9}$	196	7 -	43	7 -	22	55	4 8	🗧
117	.3	0	23		176 92	7 p	43 21	ν	20 34	13	40	٠ د
118	n	34	23 18	2.1 3.0	139	11	21 22	V A	22	33	38	380
119	٥	JT R	24					. 7	22 24	35 35	52	5
120	. 7	47		2.5	161	11	18	4				_
144	1.7	7/	25	2.0	699	21	49	٥	57	71	106	5

PROJECT No: Attention: Mr. Bayrock			/05 WEST		, MORTH VI -5814 OR (8.C. V7H 4524	172				3 -9 165/P5 ER 1 3 , 19
(REPORT VALUES IN PPH)	A6	AS	18	CD	MN	MO	PB	SB	SR	ZN	BA	AU-PPB
121	2.3	0	27	3.2	1170	26	67	0	68	46	116	5
1 22 123	.6 .1	0 50	23 24	3. <i>2</i> 2.6	210 125	12 10	62 40	1	53 25	84 99	140 49	5
125 124	1.2	0	26	5.0	1950	10	206	11	2J 54	329	133	3 (5
125	.5	0	20	3.6	833	13	245	5	43	279	79	5
126	.2	0	20	1.7	302	10	213	0-	40	204	63	5
127	3.8	0	23	2.7	119	12	848	0	46	92	53	5
128	.7	9	21	1.1	134	11	35	2	28	52	43	5
129	.4	0	21 20	1.0 .9	173 334	13	31 37	0	29 31	38 28	50 43	10
- 130 131	·	v -	17	- :† -	156		· 3/ 14	0 -	28	· - <u>- 25</u> -	73-	5
132		Ŏ	.,	1.5	309	7	10	Ö	23	28	49	5
133	Ö	0	0	1.6	375	6	12	0	19	43	42	5
134	0	0	0	.2	86	5	4	0	16	26	28	5
135	0	0	0_	1.8	153		13	9	17.	47	43_	5
136	0	0	0	2.5	213	10	15 29	2	26 31	56 66	54 67	2
137	0	0	21 24	1.2 3.4	339 243	9 11	27 35	4	32	52	63	5
138 139	0	0	0	1.0	22	4	0	0	34	0	30	(5
140	0	Õ	ŏ	1.5	57	11	5	Ŏ	39	Ö	57	5
141		- -	0	2.8	85	13	21	7	33	5	45	5
142	.1	23	24	1.7	82	12	45	7	41	5	74	5
143	.7	0	23	2.0	105	14	25	1	56	3	58	5
144	.4	0	0	4.7	59	8	14	0	41	1	56	(5
145	3.0	0 -			44	<u>- /</u> .	<u>14</u>	2 -	64 - ·	<u>0</u> -	43 -	10
146 147	.8 ^	0	0	2.8 1.3	513 94	7	36 7	0	24	14	70 39	5
148	Ó	ő	0	1.8	133	8	32	2	23	9	29	10
149	Ō	Ō	0	1.8	70	8	10	0	23	13	20	5
150	0	0	. 0	2.2	258		21	2	30	24	28_	_ 5
151	0	0	0	1.8	401	9	13	0	22	22	35	10
152	.2	0	0	1.7	215	8	25	0	31	23	53	5
153	.8	0	0	1.5	172	9	19	0	62 63	5	52 92	5
154 155	0	۸	0	1.2 2.1	106 118	11	15 23	0		35 35		J 5
155 156	۵	0 -		$-\frac{2.1}{2.4}$	198	13	23 18	0 -	46	- 39 -	7 0 4 5	<u>5</u>
157	0	Ŏ	Ŏ	2.3	463	14	17	Ó	23	60	52	5
158	0	0	Ö	.8	279	6	12	0	28	42	` 70	5
159	0	0	0	1.8	187	5	14	. 0	33	41	65	5
160	0	0	0_	1.3	259	9	10	0_	42	23	65_	5
141	.2	0	0	2.2	62	2	2	0	35	13	56	5
162 40NESH 163 40NESH	0	Q A	0	3.2	50 42	0	0	0	40 52	7	52 54	5 10
164 40MESH	0	0	V	3.1 3.0	43	7	0	ň	52 65	2	59	5
165 40MESH	ŏ	ŏ	ő	6.1	24	š	Š	ŏ		2	50	10
166 ROMESH	1.6	· ö -		3.0	102	·	18	0	5 3	2	79	5
167	2.4	0	0	3.0	117	2	19	1	66	0	79	80
168	1.6	0	0	1.7	137	7	22	1	55	15	76	5
169	4.0	18	0	3.8	62	5	11	3	150	0	79	10
170	<u>.</u> 9	0 -	20	2.1 -	140	<u>B</u> -	24	2 -	$-\frac{35}{31}$	44 -	64	\$
171 172	1.7	10 23	18	3.3 2.1	116 208	10 10	24 34) 1	28 21	47 53	48 61	40
173	2.0	25 35	0	4.9	208 256	10 7	191	7	36 49	55 67	75	350
174	4.4	58	0	10.5	411	11	273	B	126	138	81	5
175	1.8	72	24	5.0	273	15	54	10	61	59	95	5
176	3.0	11	18	4.4	769	14	71	8		- 60	88	5
177	2.7	0	17	9.2	4160	15	70	. 8	58	81	157	5
178	.6	0	0	4.6	1650	10	41	0	47	61	86	(5
179	.9	0	0	2.8	756	10	40	0	48	82	84	5
190	2.2	6	0	3.7	350	10	35	5	46	51	72	5

PROJECT Na:	705 WEST	15th ST.,	NORTH VA	NCOUYER,	B.C. V7H 1	T2		FIL	 E Na: 3-9	1 165/P9+ 10
ATTENTION: MR. BAYROCK		(604)980-	5814 OR (6041988-	4524			DATE:	SEPTEMBER	13, 1983
(REPORT VALUES IN PPN) AG AS	BI O	CD CD	MM	MO	PB	SB	SR	ZN		AU-PPB
241 3.5 0 242 40MESH 2.1 0	0	B.O 4.9	85 80	6 A	39 30	0 2	82 32	31 34	81 61	ว ร
243 2.2 0	Ŏ	4.0	162	5	28	ō	66	43	93	₹5
01 .4 0	0	1.4	70	5	23	0	29	23	76	5
2.7 0	0	1.8	92	7	<u>35</u>	1	30_	32	48	5
33 .7 0	0 15	2.9 2.1	101 55	5		2	40 36	26 17	57 56	5
D4 .9 0 D5 .4 0	15	2.1	33 71	5 9	15 14	3	31	20	53	5
D6 3.4 0	17	1.8	102	7	i	Ō	44	37	60	(5
D7 4.0 0	18	1.8	176	6	15	0	59	20	70	5
DG 1.6 0	21	3.2	832	15	33	3	55	47	84	15
Dý 3.5 0	16	1.0	93	5	22	0	55	9	63	. 5
D10 2.3 0	15 0	1.5 2.3	129 49	6 7	21 25	0	41 25	32 13	67 52	5 10
D11 .1 0 D12 0 0	20	2.0	77 75	8	11	ŏ	23 37	3	56	5
D13 1.1 0	20	2.6	242	12	31	6-	35	799	- 5 1	10
D14 .9 0	19	5.3	324	17	53	8	53	111	103	5
015 .5 0	0	.7	66	5	11	0	29	9	66	5
D16 .1 0	18	3.0	136	11	32	5	28	23	77	5
D17 0 0	14 - 26 -	$-\frac{2.5}{6.1}$	68 - 417	<u>6</u> -	<u>15</u> 77		40	181	6 0	10 -
918 .4 0 919 .7 0	17	2.0	230	10	27	4	32	118	52	5
B20 .1 0	19	2.5	95	10	23	3	52	12	114	5
021 1.1 33	27	4.0	236	16	39	13	40	57	54	<5
922 .4 0	0	2.5	177	10	11	_ 2	21	43	_ 36	10
923 .3 0	27	2.1	197	11	8	0	43	47	106	₹5
B24 0 0	21 30	2.5 4.4	156 678	10 21	18 48	2	28 49	38 6 5	54 82	2
_B25 1.1 0 B26 1.6 0	30 26	3.1	425	13	78 28	5	47 67	86	156	5 5
D27 1.1 0	23	3.4	473	17	60	9	51	96	104	10
028 1.3 0	18	.5	183	7	15	<u>2</u>	43	51	88	5
029 1.7 23	26	5.4	351	15	78	12	44	461	89	20
030 1.0 0	21	2.5	638	15	48	8	50	83	135	10 5
031 .6 0 032 4.5 0	23	5.0 4.1	383 466	13 17	111 112	10	60 67	378 611	112 131	3 5
032 033	23 - 18	1	503	¹ / ₈ -	42	4	· - 4)	73	¹³¹	· 5 -
034 1.2 0	21	.4	175	7	20	Ö	41	28	63	5
035 3.3 0	18	3.2	436	10	81	7	56	305	103	5
73 8 5.2 0	20	2.9	296	8	94	5	60	326	104	15
5.2	0	3.7	406	7 -	75		60	247	103	10
038 1.5 0 039 0 0	0	4.2 2.2	212 75	8 9	47 12	10 9	50 51	220 0	94 98	25 10
00 1.2 0	0	1.8	73 58	4	13	4	55 55	0	76 260	15
0)1 0 0	Ŏ	1.8	105	8	14	Ò	30	18	37	5
012 1.3 4	28	2.1	435	15	43	10	59	23	155	5
043 .6 0	0	2.1	278	- 6	16	6	27	33	32	10
044 .4 0	0	2.1	157	7	.7	0	49	1	64	10
465 2.9 0 046 1.8 0	0	2.1 4.3	192 298	15 11	44 48	14 10	66 70	27 56	141 251	5
947 .4 0	0	2.4	776 79	5	9	5	51	0	106	5
048		3.2 -	1576	13	42	13	57	73	132	5
019 .3 0	0	1.1	99	11	16	7	43	33	58	5
050 1.4 0	0	3.1	98	9	24	12	67	6	119	5
051 1.7 0	0	2.6	107	8	20 25	11	68	0	146	5
052 063 1.8 0	0	1.2	455 219	5 -	25 ·	9	- <u>66</u>	- 26 - ·	215 94	- 15 10
45 4 1.2 0	0	2.0	125	, k	32 24	9	38	16	74	15
45 5 1.9 0	Ŏ	1.8	124	ī	40	i	28	38	54	5
4 56 1.3 0	0	1.6	149	11	37	11	39	22	71	10
657 1.3 0	0	2.6	B4	5	17	10	41	7	72	5

OJECT No: TENTION: NR. BAYROCK			705 WEST	(604)980	-5814 OR	(604) 988-4	B.C. V7H : 1524	172		DATE:	No: 3-91 SEPTEMBER	
EPORT VALUES IN PPN)	A6	AS	BI	CD	MM	MO	PB	SB	SR	ZN		AU-PP8
D110	2.0	0	21	0	365	7	0	1	42	19	54	5
D119	2.5	0	24	.6	276	12	18	6	48	44	74	10
120	0	0	22	0	337	13	18	3	32	33	54	45
312 1	0	0	21	.3	191	7	5	2	16	36	48	30
9122	.9	0	23	6	312	10	17	3	32	40	61	15
0123	1.0	0	27	.4	512	15	7		3B	38	81	10
B124	2.0	0	22	1.2	554	12	24	2	42	45	90	35
D125	2.1	0	23	1.1	581	15	55	8	61	48	116	10
D126	2.5	0	16	3.5	93	4	11	2	52	67	91	30
D127	2.2	0	23	3.0	676	15	15	7	71	133	122	10
0128	2.3	- 5 -	20	1.9	397	12	18	6	63	129	113	15
3129	2.1	0	23	1.1	466	12	28	9	63	131	116	10
D130	2.6	Ď	23	2.5	460	13	32	8	66	139	120	10
B131	3.0	Ŏ	23	2.4	649	12	31	7	64	143	116	5
D132	2.3	Ó	25	4.4	966	15	35	ġ	65	177	131	15
0133	1.9	- , -	25		309	10 -	30	10	54	122	78	10
1134	2.1	ů	23	3.2	342	12	14	7	62	146	105	5
D135	3.6	٨	23	6.3	1270	14	26	9	81	207	155	15
D136	4.2	٨	24	9.6	2670	15	41	΄ ο	84	168	174	10
D137	1.8	0	24	1.4	492	10	15	7	54	129	105	5
0138					1610	10 -	39	12 -	7 1	81	154	
	1.8	0	30	3.0			54					35
D139	2.6	0	25	3.5	896	16		10	64	96	124	
Ð140	4.6	0	21	1.4	200	9	25	6	54	69	154	20
D141	5.3	0	19	4.4	834	16	35	10	120	130	163	125
D142	2.8	24	32	4.9	1050	22	43	14	62	195	144	10
9143	3.8	ō	15	14.7	270	8	22	6 -	127	154	147	15
D144	6.0	17	30	5.7	1040	18	57	12	90	117	209	20
9145	6.0	15	31	8.2	2190	22	81	22	92	93	212	10
D146	4.5	0	23	14.4	468	14	46	7	80	211	202	5
0147	2.3	0	0	1.7	264	11	27	4 .	74	291	230	5
9148	.9	0	14	5.9	344	8	17	4	69	241	264	5
B149	.7	0	17	4.6	268	13	31	5	5 7	188	102	10
D150	0	0	14	.4	1480	15	24	4	63	82	145	5
D151	0	0	17	1.9	760	12	34	3	52	72	111	5
0152	0	0	0	.5	748	11	31	_ 2	44	67	107	<5
D153	0 0	- 0 -	0	.4	602	11	12	7 7 7 7	40	62	106	5
D154	0	0	0	1.1	911	10	33	5	61	67	196	10
9155	0	0	0	.6	976	7	25	0	41	57	93	5
D156	0	0	0	1.7	1160	17	16	1	46	76	111	5
0157	0	0	13	.6	1040	11	19	Ó	48	77	113	5
1258	0	- 5 -	0		39	0	0		45	1	83	5
3159	Ō	0	0	Ö	122	3	5	0	27	26	72	25
3 (60	Ö	Ď	ŏ	Ŏ	141	1	ĺ	ó	24	0	52	5
D 161	۵	٥	å	٥	57	5	0	Ó	26	,	63	5
D162	۵	6	٨	A	37	5	ř	ż	22	7	53	5
D163			21	- ī.ž -	186	12 -	26	10 -	42	21	106	5
D164	.4	٨	14	0	45	7.	15	0	31	0	63	5
D145	,4	Δ	22	1.3	382	13	19	7	61	15	143	10
D166	1.0	٨	20	.3	227	9	14	٥	61	12	110	5
1167	v	۸	20	.8	286	0	21	ī	55	22	87	ς.
D168	:3	- 7 -	23	8 -	148	11 -	21		5 2	14 -	102	5
D169	1.0	V A	23 21	.2	296	*1	26	1	48	22	76	14
_ U_70	0	^		.2 .5		7	£ 70	E.				10
D\$71	•	V	21		164	, ••	J 47	2	35	24	70 05	3
	2.4	V	28	1.7	211	12	23	7	44	19	95	5
91/2	2.4	- ¥ -	24	1.1	385	4 -	- 18	'	- 31	- 24 -	76	2
0173	2.7	0	28	1.3	B65	13	26	11	53	22	97	5
9174	2.0	0 •	27	0	226	6	6	0	55	21	83	5
0175	4.5	0	27	1.1	221	10	2	1	56	21	92	230
9176	3.0	0	25	.5	591	14	15	8	59	33	103	5

rnujeli a j:					NORTH VAI			172				noe i ur 3-9165/P1
ATTENTION: NR. BAYROCK	(604)980-3814 OR (604)988-4524 DATE: SEPTEMBER 13,										R 13, 198	
(REPORT VALUES IN PPH)	A6	AS	BI	CD	KN	MO	PB	SP	SR	ZN	BA	AU-PPB
7 7 10	2.6	0	23	1.1	213	12	9	3	45	36	92	5
DITE	4.1	0	16	0	137	7	12	7	47	17	97	5
D 1 79	2.9	0	16	0	94	4	0	3	47	2	81	5
D # EO	4.8	0	19	0	111	2	7	6	44	3	73	15
0/81_	5.7	0	20	0	223	8	14	3	61	30	97	5
D53	0	0	20	0	152	8	11	9	- 34	27	57	5

APPENDIX 3 1984 SOIL GEOCHEM ANALYSES

inghis, consequent that the Ends set ALTURY indistinct and additional final assets.

1	Coll Mit	er cene un	** COLO					FI VELDE!		.nu) i Ul		יים נים ב
		A STATE OF THE PARTY OF THE PAR			705 NES			A STATE OF THE STA				
Act												
Section 1.0 1	IVALUE	ES IN PPM	46	AS								
Alt	41+50		MI 1.8	2	85 5	84 1.4						30
Act	A1460			6 1	4							20
2000 1,2 1 7 1,2 120 4 14 1 42 30 47			20 7.7	2 5								16
\$\frac{2}{2} \frac{1}{2} \fr	H (+00			1	3							30
1, 2, 3, 4, 1, 2, 9, 3, 6, 120, 3, 15, 1, 24, 33, 41, 2, 2, 2, 3, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	82+00			1	1							5
Age												10
### ### ### ### ### ### ### ### ### ##												20
\$\frac{1}{85466} = \frac{1}{2.6} = \frac{3}{3} = \frac{1}{2.1} = \frac{4}{38} = \frac{3}{5} = \frac{1}{11} = \frac{1}{5} \frac{7}{10} = \frac{4}{9} = \frac{1}{2} = \frac{1}{85466} = \frac{2}{2.2} = \frac{2}{4} = \frac{7}{2} = \frac{2}{8} = \frac{1}{11} = \frac{1}{125} = \frac{3}{3} = \frac{1}{15} = \frac{1}{3} = \frac{4}{3} = \frac{1}{3} = \frac{1}						. J						180
## ## ## ## ## ## ## ## ## ## ## ## ##					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							30
### ### ### ### ### ### ### ### ### ##		40M										15
R3-89 2.8 15 4 9 317 4 24 1 50 108 143 3 34 4 2 2 1.0 293 3 15 1 45 46 65 64 2 2 24 35 3 3 5 1 45 46 65 64 2 2 24 35 3 3 5 1 45 46 65 64 2 2 24 35 3 3 5 1 47 79 104 1 24 25 1 47 79 104 1 24 25 1 27 28 27 28 27 28 27 28 28												26
84-19					2							5
\$\frac{44-10}{64-10}					4							30
\$\frac{2}{64+50}					2							5
### ### ### ### ### ### ### ### ### ##					1							20
24 4 20 20 2 4 5 1 3.3 14 1 23 1 25 11 37 1 44 10 4 28 7 7 31 24 4 2 2 1 1 3.2 14 1 10 1 27 7 7 31 35 4 2 2 1 1 1 2 1 1 1 1				2	1							10
Bath		På		1 -	1							10
Section 1.5 1 26 9 47 1.5 1 1.5 1.				2	1			1 10				10 5
### ### ### ### ### ### ### ### ### ##				1	1							w23 10
## ## ## ## ## ## ## ## ## ## ## ## ##					<u>1</u>							
#\$5-50					-							CH391
## ## ## ## ## ## ## ## ## ## ## ## ##					1			PGP - G.				34941
1.6					1 A							36363 6
## ## ## ## ## ## ## ## ## ## ## ## ##					3 7							-265
## ## ## ## ## ## ## ## ## ## ## ## ##												10
A6+10				10	,							2:15
Restrict		2.00		3	3			30C T. J				15
\$\frac{0}{0} \frac{0}{0} \frac{0}{0} \frac{0}{0} \frac{1}{0} \frac{0}{0} \frac{1}{0} \fr												5
\$\frac{86}{6}												10
\$\frac{97}{47} \ \ \frac{9}{47} \ \ \frac{1}{47} \ \ \frac{10}{47} \ \ \frac{1}{47} \ \frac{1}{47} \ \ \frac{1}{47} \ \ \frac{1}{47} \ \ \frac{1}{47} \ \frac{1}{47} \ \ \frac		101										15
47+50 1.6 14 3 1.1 303 4 26 1 37 76 74 1 47+70 2.0 7 2 .9 162 4 21 1 50 80 96 3 47+70 1.8 10 2 .9 278 3 19 1 31 52 60 22 80+00 2.0 16 3 1.0 272 4 25 1 35 66 86 2 80+10 1.7 10 6 .7 200 4 16 1 57 78 2 80+20 1.6 7 1 1.2 68 2 13 1 29 25 51 10 80+20 1.6 7 1 1.2 68 2 13 1 29 25 51 10 9 1 3 1 4 1 <td></td> <td>10</td>												10
A7+70 2.0 7 2 .9 162 4 21 1 50 80 96 3 A7+90 1.8 10 2 .9 278 3 19 1 31 52 60 2 A8+00 2.0 16 3 1.0 272 4 25 1 35 66 86 2 80+00 40H 1.6 2 2 1.4 43 2 10 1 47 15 53 2 80+10 1.7 10 6 .7 200 4 16 1 61 57 78 2 80+20 1.6 7 1 1.2 68 2 13 1 29 25 51 10 80+20 1.6 1 1.9 76 2 8 1 36 12 43 1 80+20 1.0 2.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td></th<>												10
A7-990					2				1 50		96	30
88400 2.0 16 3 1.0 272 4 25 1 35 66 86 22 80400 40H 1.6 2 2 1.4 43 2 10 1 47 15 53 2 50410 1.7 10 6 .7 200 4 16 1 61 57 78 80420 1.6 7 1 1.2 68 2 13 1 29 25 51 1 20 80430 1.4 5 1 1.9 76 2 8 1 36 12 43 1 29 25 51 1 20 80430 1.4 5 1 1.9 76 2 8 1 36 12 43 1 29 25 51 1 20 80430 1.4 5 1 1.9 76 2 8 1 36 12 43 1 29 25 51 1 20 80430 1.4 5 1 1.5 332 3 14 1 48 49 67 1 20 80450 1.2 8 8 2 1.1 277 3 22 1 48 81 84 1 20 80450 1.6 14 3 1.1 277 3 22 1 48 81 84 1 20 80450 1.6 14 3 1.1 297 4 21 1 47 95 88 1 20 80450 1.6 14 3 1.1 292 4 21 1 47 95 88 1 20 80450 1.6 14 3 1.1 292 4 21 1 47 95 88 1 20 80450 1.6 14 3 1.1 292 4 21 1 47 95 88 1 14 101 81 100 1 2.2 21 3 1.2 719 4 22 1 61 91 96 99 1 21 10 2.2 21 3 1.2 719 4 22 1 61 91 96 1 1 96 1 1 1 1 1 1 1 1 1 1 1	A7#90			10	2			3 19		52		20
B0 0 40 1.6 2 2 1.4 43 2 10 1 47 15 53 2 2 2 2 1.4 43 2 10 1 47 15 53 2 2 2 2 2 2 2 2 2	48+00									66	86	20
80+10								2 10				20
B0+2e	80+10			10	6	.7	200	1 ()	1 61	57	78	5
80-40	80420			-	1	1.2	88	2 17	1 29	25	51	10
80+50 40H 2.0 4 1 1.5 332 3 14 1 48 49 67 1 80+50 2.2 6 2 1.1 277 3 22 1 48 81 84 1 80+70 1.6 1.6 14 3 1.1 292 4 21 1 47 95 88 80+80 1.6 14 3 1.1 292 4 21 1 47 95 88 80+80 2.2 13 4 1.3 397 5 25 1 58 114 101 80+80 2.2 13 4 1.3 397 5 25 1 59 106 99 1 81+10 2.2 21 3 1.2 719 4 22 1 61 91 96 1 81+20 1.6 17 4	86430				i	1.9	76	2 8	1 36	12	43	10
80480 2.2 6 2 1.1 277 3 22 1 48 81 84 10 80480 1.6 14 3 1.1 292 4 21 1 47 95 88 80480 2.2 13 4 1.3 397 5 25 1 58 114 101 80480 2.0 20 4 .9 379 6 25 1 58 114 101 81400 2.0 20 4 .9 379 6 25 1 59 106 99 1 81410 2.2 21 3 1.2 719 4 22 1 61 99 1 81420 1.6 1.7 4 1.2 691 4 21 1 43 79 88 81430 3.0 25 4 1.3 883 5 28 </td <td>80+40</td> <td>60</td> <td>2.0</td> <td>4</td> <td>i</td> <td>.8</td> <td>106</td> <td>2 12</td> <td>1 31</td> <td>34</td> <td>53</td> <td>lù</td>	80+40	60	2.0	4	i	.8	106	2 12	1 31	34	53	lù
30480 2.2 8 2 1.1 277 3 22 1 48 81 84 1 50470 1.6 10 4 1.2 442 4 19 1 54 94 93 1 80480 1.6 14 3 1.1 292 4 21 1 47 95 88 80480 2.2 13 4 1.3 397 5 25 1 58 114 101 81100 2.0 20 4 .9 379 6 25 1 59 106 99 1 81410 2.2 21 3 1.2 719 4 22 1 61 91 96 1 81420 1.6 17 4 1.2 691 4 21 1 43 79 88 81430 2.0 25 4 1.3 863 5 28 1 57 119 104 81440 1.4	80+50	404			1			7	1 48	49		15
60170 1.6 10 4 1.2 442 4 19 1 54 94 93 1 80480 1.6 14 3 1.1 292 4 21 1 47 95 88 50480 2.2 13 4 1.3 397 5 25 1 58 114 101 81400 2.0 20 4 .9 379 6 25 1 59 106 99 1 81410 2.2 21 3 1.2 719 4 22 1 61 91 96 1 81420 1.6 17 4 1.2 691 4 21 1 43 79 88 81430 2.0 25 4 1.3 883 5 28 1 57 119 104 81440 1.4 25 5 .6 591 5 <td></td> <td></td> <td>26 2.2 B</td> <td>- 8</td> <td>2</td> <td></td> <td>277</td> <td>7 77</td> <td></td> <td></td> <td></td> <td>10</td>			26 2.2 B	- 8	2		277	7 77				10
80450 1,6 14 3 1,1 292 4 21 1 47 95 88 50480 2,2 13 4 1,3 397 5 25 1 58 114 101 81400 2,0 20 4 .9 379 6 25 1 59 106 99 1 81410 2,2 21 3 1,2 719 4 22 1 61 91 96 1 81420 1,6 17 4 1,2 691 4 21 1 43 79 88 81430 2,0 25 4 1,3 883 5 28 1 57 119 104 81440 1,4 25 5 .6 591 5 23 1 48 112 98 1 81460 1,2 11 4 .9 258 4 <td></td> <td></td> <td></td> <td>10</td> <td>4</td> <td>1.2</td> <td>442</td> <td>TOT 4 C 1 19</td> <td></td> <td></td> <td></td> <td>10</td>				10	4	1.2	442	TOT 4 C 1 19				10
81190 2.0 20 4 .9 379 8 25 1 59 106 99 1 81410 2.2 21 3 1.2 719 4 22 1 61 91 96 1 81420 1.6 17 4 1.2 691 4 21 1 43 79 88 21430 2.0 25 4 1.3 883 5 28 1 57 119 104 81440 1.4 25 5 .6 591 5 23 1 48 112 98 1 8140 1.2 11 4 .9 258 4 21 1 41 97 85 8140 .8 11 5 1.3 439 4 19 1 48 114 100 1 8140 1.6 1.6 5 .8 319 4 23 1 43 116 83 81490 1.2 17<			1.6	14	3	1.1						5 5
81190 2.0 20 4 .9 379 6 25 1 59 106 99 1 81410 2.2 21 3 1.2 719 4 22 1 61 91 96 1 81420 1.6 17 4 1.2 691 4 21 1 43 79 88 81430 2.0 25 4 1.3 883 5 28 1 57 119 104 81440 1.4 25 5 .6 591 5 23 1 48 112 98 1 81450 1.2 11 4 .9 258 4 21 1 41 97 85 81450 .8 11 5 1.3 439 4 19 1 48 114 100 1 81480 1.2 20 4 .7 498 4 25 1 47 125 91 14 81490 1.		19	2.2		4		397					
81+10 2,2 2! 3 1,2 719 4 22 1 61 91 96 1 81+20 1.6 17 4 1.2 691 4 21 1 43 79 88 21+30 2.0 25 4 1.3 883 5 28 1 57 119 104 81+40 1.4 25 5 .6 591 5 23 1 48 112 98 1 81+50 1.2 11 4 .9 258 4 21 1 41 97 85 81+50 .8 11 5 1.3 439 4 19 1 48 114 100 1 81+50 .8 11 5 1.3 439 4 19 1 48 114 100 1 81+80 1.2 20 4 .7 498 4 25 1 47 125 91 14 81+90 1			2.0		4				1 59			10
81+20 1.6 17 4 1.2 691 4 21 1 43 79 88 21+30 2.0 25 4 1.3 883 5 28 1 57 119 104 81+40 1.4 25 5 .6 591 5 23 1 48 112 78 1 81+50 1.2 11 4 .9 258 4 21 1 41 97 85 81+60 .8 11 5 1.3 439 4 19 1 48 114 100 1 81+80 1.6 16 5 .8 319 4 23 1 43 116 83 81+80 1.2 20 4 .7 498 4 25 1 47 125 91 14 81+90 1.2 17 4 .9 355 4 23 1 45 122 89 2 82+00 1.0			89 2.2 21		3		719					10
21+30 2.0 25 4 1.3 883 5 28 1 57 119 104 81+40 1.4 25 5 .6 591 5 23 1 48 112 98 1 81+50 1.2 11 4 .9 258 4 21 1 41 97 85 81+60 .8 11 5 1.3 439 4 19 1 48 114 100 1 81+70 1.6 16 5 .8 319 4 23 1 43 116 83 81+80 1.2 20 4 .7 498 4 25 1 47 125 91 14 81+80 1.2 17 4 .9 355 4 23 1 45 122 89 2 82+00 1.0 16 5 .9 523 <td></td> <td></td> <td>2111.6</td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td>			2111.6		4							5
81440 1.4 25 5 .6 591 5 23 1 48 112 98 1 81450 1.2 11 4 .9 258 4 21 1 41 97 85 81450 .8 11 5 1.3 439 4 19 1 48 114 100 1 81470 1.6 16 5 .8 319 4 23 1 43 116 83 81480 1.2 20 4 .7 498 4 25 1 47 125 91 14 81490 1.2 17 4 .9 355 4 23 1 45 122 89 2 82+00 1.0 16 5 .9 523 4 18 1 46 116 96 1 82+10 1.5 17 3 1.4 440 4 20 1 38 93 80 82+20 2.0<					4	1.3	883					5
81+59 1.2 11 4 .9 258 4 21 1 41 97 85 81+60 .8 11 5 1.3 439 4 19 1 48 114 100 1 81+70 1.6 16 5 .8 319 4 23 1 43 116 83 81+80 1.2 20 4 .7 498 4 25 1 47 125 91 14 81+90 1.2 17 4 .9 355 4 23 1 45 122 89 2 82+00 1.0 16 5 .9 523 4 18 1 46 116 96 1 82+10 1.5 17 3 1.4 440 4 20 1 38 93 80 82+20 2.0 13 2 1.4 833 4 17 1 46 87 90 2		48			5							10
81+80 .8 11 5 1.3 439 4 19 1 48 114 100 1 81+70 1.6 16 5 .8 319 4 23 1 43 116 83 81+80 1.2 20 4 .7 498 4 25 1 47 125 91 14 81+90 1.2 17 4 .9 355 4 23 1 45 122 89 2 82+00 1.0 16 5 .9 523 4 18 1 46 116 96 1 82+10 1.5 17 3 1.4 440 4 20 1 38 93 80 82+20 2.0 13 2 1.4 833 4 17 1 46 87 90 2			1.2	11	4							5
81470 1.6 16 5 .8 319 4 23 1 43 116 83 81489 1.2 20 4 .7 498 4 25 1 47 125 91 14 81490 1.2 17 4 .9 355 4 23 1 45 122 89 2 82+00 1.0 16 5 .9 523 4 18 1 46 116 96 1 82+10 1.5 17 3 1.4 440 4 20 1 38 93 80 82+20 2.0 13 2 1.4 833 4 17 1 46 87 90 2			8. 446					czo 4 a n 19 a				10
B1+89 1.2 20 4 .7 498 4 25 1 47 125 91 14 B1+90 1.2 17 4 .9 355 4 23 1 45 122 89 2 B2+00 1.0 16 5 .9 523 4 18 1 46 116 96 1 B2+10 1.5 17 3 1.4 440 4 20 1 38 93 80 B2+20 2.0 13 2 1.4 833 4 17 1 46 87 90 2			971 1.5 M	16				CAC 4 23				5
82+00 1.0 16 5 .9 523 4 18 1 46 116 96 1 82+10 1.5 17 3 1.4 440 4 20 1 38 93 80 82+20 2.0 13 2 1.4 833 4 17 1 46 87 90 2			1.2									140
82+10 1.5 17 3 1.4 440 4 20 1 38 93 80 82+20 2.0 13 2 1.4 833 4 17 1 46 87 90 2												20
82420 2.0 13 2 1.4 833 4 17 1 46 87 90 2												15
			-									5
# (* · · · · · · · · · · · · · · · · · ·												20
	#74 TO	%		14	13	1.7	1119	3 20	1 40	72	97	10

comment can best	nuc.				EN LHES I					1461:660		C 1 Ur 1
FRGJECT NO:			705 WEST		•	ANCOUVER, B.C.	V7H					27S/P1+2
ATTENTION: L.A. 86	· · · · · · · · · · · · · · · ·					(604) 988-4524		. TYPE SOIL				21. 1985
VALUES IN PPH	A6	AS	P1	CD	MN		P8	SR	SR	2N 65	105	AU-PPB
1 4 100	100	5	1	.8	271	5 4	21 25		61 52	85	103	10
n0130	et \$	6	5	1.5	559 1912	661. 5 T.	41		57	113	143	5
804 () 8044)	1.8	9	5	1.4	1411	988 5 Sal	38	1 1	55	109	117	5
	1.2	8	3	.8	649	241	20		44	80	89	5
H0+20	3.8		3	1.5	694	100	20-		62	42	90	116
19450	1.7	5	5	.6	108	19 1	lo	1 1 3	30	47	37	69 16
00478	2.0	23	8	.7	359	29 6 0.	30	2 01	53	110	85	ol 1è
[6:49]	1.0		4	.5-	202	221 1 438	18	1 1 4	27	52	49	9005
fingen	1.0	5	4	. 4	138	1111 7 4.	19	\$ 1 184	25	48	40	0.64(5)
[i] 4 (ii)		6	4	.5	128	0.44 3	16	i	26	43	39	174.5
81+19	1.2	8	c	.5	244	4	25	1 4	34	60	56	084.5
D1+30	.4	8	5	.1	522	4 4	22	1	41	58	76	08415
[:1+49	1.2	6	4	.6	144	204 3 - E	20		26	48	51	5
51+50		8	5	.9	430		20		39	55	73	3
i) to	1.2	10	5	.4	698	31 7 7 7	18	1	38	56	69	5
Pi+9:	1.5	8	6	.6	360	3 6.6	18	1	39	53 59	59 55	5 10
1150	1 3	8	5	.5	457 921	3 -0 H 4 4.2	16 19	1	37 38	74	72	19
DŽICV	3 3	9	3	.9	1056	2	19	4	30	33	39	5
D TRENCH 2	1.2	27	44	.5	434	3	20	<u>7</u>	73	27	BI	10
5 MENCH FLOAT	Ω .°	26	3	.4	396	51 2 9.E	19	1 1	34	26	42	10
235+	1.2	16	3	1.1	399	5.4 2596	83	2 91	42	159	81	35
53-8	1.2	- 25	11	1.4	961	107 5.1	53	3 1 5	76	422	199	10
53:C	i.2	10	4	2.2	1467	227 3 9"	54	1 31	51	244	109	10
D374	4,0	8	5	1.7	208	4	53	i	50	166	82	56
V3.51	3.2	1	1	1.0	145	29 3 7.5	43	1	55	109	77	5
53.5	1.8	4	đ	.6	81	4	22	1	45	64	106	25
0398	1.2	6	2-	.4	67	2	17	1 1	20	28	66	60
5380	1.4	1_	3	1.5	218	3	36	1	58	109	101	60
9139A	2.4	9	2	2.7	617	707 1 1	18	1 1	56	166	124	15
0134B	an 2.9	11	1	.3	299	2	22	1 1	29	79	69	15
D134C	4.1 52	9	2	.9	196	877	22	2 01	42	92	66 93	15
5135C	1.6	14	3	.9	213	2 2	28	1 1	25 21	66	68	96 15 96 15
0137B 0137C	1.8	<u>16</u> 7	22	.5	191	<u>2</u>	21 16		43	62	76	10
D138A 49M	4.4	5	2 2	3.0	668	.7. 4 200	27	8 91	88	84	197	15
00710	2.8	28	4	1.4	1223	84 5 5.4	36	1 1	76	83	196	20
01380	2.4	1	1	1.8	149	3 9-1	19	t c	58	69	107	10
91390	1.4	10	1	1.0	240	à01 g 8.	23	1 1	48	61	92	92415
31404	2 Q	28	3	6.6	582	8	40	1	79	230	163	15
D1402	1.6	17	- 1	.7	149	3 4.4	20	1	24	65	62	10
P1418	1.2	16	3	1.2	1037	1 4 1 4 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	28	1	64	78	156	V-115
21414	177	17	2	1.0	139		24		24	68	56	20
P1425	1.2	15	3	1.2.	205	114 1 6-41	27		27	65	67	10
51436 - 40M	2.1	16	3	15.0	1301	5 6	28	1 12	95	173	151	5
9143B	1.2	10	2	4.	158	2	19	1	23	48	59	5
9145A 49M	633	Ċ	3	9.7	220	3	72	1	62	175	152	
01458 46H	1.8	37	5	33.5	3371	8	47	2	70	378	238	10
21450	2.8	9	3	1.4	447	-	18		43	85 266	238	<u>5</u>
914eu 914eE	3.2	19 20	3	9.2 11.0	660 937	1,3	28	3 11	55	446	135	10115
Bid.	2.0	29	1 4	3.4	262	5 0.	31	16 1 5	94	178	270	otelğ
Aŭ†10	1.9	5	6	.6	29	97) 2 1	12	20 - 1 - 02	31	13	21	915
A0120	2.0	17	7	.4	31	832. P.	42	1 1	50	18	45	(P+15
80425	2 &	:	7	.4	23	3	27	2	37	21	17	15
40470	CA	7	2	.8	42	2 2	16	1 1	40	19	60	10
A0490	1.2	14	3	.5	43	3	17	1 1	28	21	49	10
A0+30	2.0	15	3	.4	115	3 1.1	24	5I.M.	40	49	68	5
41+in	1.8	2	2	.7	57	2	17	1	46	24	64	15
									1		134	

LOMFHN: MOLE! RESOURCES

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2

FILE NO: 6-11

DESTECT NO: AZZA-86	L		705 MEST			YANCOUYER,		1 172		FILE NO: 6-1199/P1+2
ATTENTION: 6.L. VEN			103 4531	1404198	0-5814 DR	(604) 988-	4524	TYPE SO		DATE: NOV 26, 1986
YALUES IN PPN)	AG	AS	CD	CU	PB	ZN	AU-PPB	ZA -		
3 0+45	.8	1	1.0	6	4	11	19		0.1	805, 609 (3
4 (45)	1.2	1	1.1	8	21	16	5.9			
4 0+60	.8	1	2.4	8	23	23	5			
A 1+10	.8	1	.6	4	7	10	5			
A 1+20 40M	.4	1	1.0	8	2	6	5	36		341-7
A 1+30 254	.4	1	1.0	5	6	7	5			
4 (+40	2.9	1	1.7	8	28	27	10			
A 1+30	2.2	1	2.1	11	31	33	5			
A 2+10	1.2	1	2.8	10	25	40	40			
A 2+20	3.6	1	3.8	18	42	63	5 5		0.4	
A 2+30	1.0	1	2.5	13	27	35				
A 2+40	1.0	1	1.7	13	_ 26	29	5			
A 2450	1.2	1	1.3	11	7 28	23	5			
A 2480	9.	1	1.8	7	19	29	80			
A 3+00	.5	1	2.0	11	22	30	80			
A 3+20	1.0	1	2.7	14	24	35	20 /			
A 3+10	1.2	1	2.0	11	28	37	5.8			
A 4+(-)	1.2	- 1	1.9	9	23	57	15			
A 4+20	3.2	13	3.1	11	33	97_	5			
A 4+4-)	4.4	5	7.3	12	320	107	10			
A 4+90	1.2	8	4.3	9	21	10	5			
A 5-00	2.0	1	2.7	7	23	10	5			
A 5+40	2.4	5	9.2	8	20	60	5			
A 5-90	1.2	1	3.3	7	1?	47	5			MIS 36841 3
A 6+39	.8		1.7	5	24	24	5			
A 5+40	.4	1	2.9	6	23	20	5			E 2+10C 20H
A 6+50 40M	2.0	9	2.4	5	30	43	5			
A 6470	1.6	3	3.7	5	38	55	5			
A 6+60	2.8	?	2.6	8	32	47	5			0740 1
¥ 8+60	2.8	4	2.3	9	46	37	5			
A 7+00	2.4	1	1.9	21	31	49	3			
A 7+19	1.6	31	7.8	13	42 27	219 142	5			
A 7+20	1.6	9	5.1	14		33	5			
A 7+30	2.4	1	3.2		23	137				-09+6]
A 7+40	8	14	4.8	9	32	46	5			
A 7+80	1.2		3.0	10		6	5			
B 3460 20M	. 4	1	2.2	9	16 25	27	5			
9 3470	.6		1.7	4	15	11	5			
8 3480 0 7.00	1.0	1			22	24	5			
9 3+90 8 4400	1.0	-	2.3	6	35	28	5			6140 4
C (+00 5 -2xry.	.6	22	2.6	4	33	68	5			
[0+10	.4	12	3.7	4	19	45	5		0.5	0410 6
C 0420	.6	75	6.3	5	30	52	3		1.3	
C 0+30	.8	9	3.2	7	22	39				
E 0440	1.6	47	7.3	19	43	65	5 5		1.1	0.546.9
C 0+50	.4	6	2.1	- 5	19	33	75			
C 0+10C 20M	.2	7	.2	2	6	14	5			
E 6+20C	.4	23	1.6	5	19	44	10			
E 0+30E 20M	.2	2	.4	2	4	13	5			
E 0440E 40M	.2	2		3	5	20	5			
€ 6.50€	.8	1	2.2	11	25	58	5			OU H L
2 0 10	.2	8	2.2	6	20	48	33%			
0 420	.6	1	2.7	8	26	35	5			
0 0+30	.6	i	2.6	13	23	48	5	1	2.0	0461 6
0 4+40	.4	- i	2.9	11	20	47	5		41	2 \$479
D 6+90	.8	1	2.9	12	26	43	5			
D 1+20	1.2	i	3.5	11	31	54	5			
0 1+70	.6	1	3.1	8	23	46	5			
E 3-90	.8	13	3.2	3	; 9	46	5			

TTENTION: G.L.VEN				(604)980-	400000000		AU-PPB	TYPE SOIL BEDCHEN .	DATE: NOV 26, 19
(VALUES IN PPH)	AG	AS	CD	CU	PB	2N 46	AU-rrs 5		
E 1400 ZON	1.0	8	3.4	9	32	48	5		
E 1+10	.8	23	2.9	•	28 29	56	3		
E 1+20	.4	20	3.7	5	31	50	3		
E 1+30	-8	21	3.0	7	30	56	5		
E 1+40	.6	26	4.2		26	53	15		
E 1+50		10	1.9	8	24	43	5		
E 1+60 40M	.6		2.1	8	21	57	10		
E 1+70	.6	17	5.9	9	30	79	10		
E 1+80	.8	13	3.2	8	24	65	5		A Delta
E 1+90	1.0		3.7	8	23	56	5		
E 2+6->	.6	16		9	24	46	10		
E 2416	-6		3.8	5	29	43	5		
E 2429	.8	30	4.7						
E 2430	.8	11	3.2	. 8	21	56 78	20 10		
E 2+40	1.0	16	4.9	7		53	5		
E 2+50	1.0	19	3.3		22				
E 2+60	.8	20	3.7	7	25	61	5		17.47
E 2+70	.8	9	3.6	8	24	66	10		
E 2480 40M	.4	4	2.0	2	8	18	5		
E 2490	1.2	21	4.5	<u>7</u>	25	46	5		
E 3400	.8	4	4.1		23	46 28	10		
E 1+20C 20M	- 4	13	2.5	2	16	49	25		
E 1+50C 40N	.4	12	1.8		7	19	5		
E 14BOE 20M	.2	5	1.0	1	7	25	10		
E 2410C 20N	4		1.3	3	14	39	5		
E 2+00C 20H	.2	14	1.0	4	43	48	10		
E 2470C 40H	.4	1	1.8	9	25	46	5		
1 0410	2.0	3	2.0	8	22	43	5		
I 0+20 I 0+30	1.0	6	2.5	8	30	44	5		
1 0440	.8	11	7.2	11	27	63	5		
1 0+50	1.2	13	3.7	8	28	63	10		
1 0+60	2.0	5	4.2	9	37	81	5		
1 0496	.8	1	3.1	10	24	63	5		
I 1+00 40H	.8	13	1.8	8	25	81	5		
1 1410	1.6	9	3.2	11	27	72	10		
1 1+26	1.0	i	2.7	7	26	44	10		
I 1+30	1.0	q	2.1	7	21	44	5		
I 1+40 40M	2.0	11	2.7	8	22	57	5		
1 1150	1.6	2	3.0	13	28	60	10		
1 0+10	1.0	1	2.0	6	26	26	10		
1 0+36	4.0	7	1.6	12	25	29			
J 0140	3.0	1	2.4	9	52	38			
J 0450	4.4	,	2.2	10	38	86			
1 0460	3.0	i	1.6	9	26	17	5		
J 0470	2.4	<u>-</u>	1.6	10	24	26	5		
1 0480	.8	1	.7	4	16	26	5		
1 9480	.4	12	1.0	3	13	36	5		
J 1:00	3.8	11	3.1	13	25	70	5		
J 1+10	.6	8	1.5	6	12	24	10		
J 1+20	.4	6	1.8	4	24	6	5		
1 1+30	.0	3	3.5	9	21	57	5		
J 1440	.6	i	2.2	8	21	36	5		
J 1+50	.8	i	2.2	8	24	32	5		
3 1+60	2.0	3	2.2	9	23	25	10		
J 1476	1.6	i	1.2	8	24	10	5		
J 1+80	1.6	i	2.2	9	25	25	5		
1 1490	1.4	i	2.0	9	32	30	10		
J 2400	1.6	1	1.6	14	30	51	10		
	1.0	•		- 2 / - 1			1.6		

PROJEC:	*i/it			705 WEST	1518 ST.	. NORTH V	ANCOUVER.	B.C. V7M	1/2		F	THE NO: 5	-275/P5+6
	W: 1. A. BAY	1302					1694) 988-			IL SEDCH	EM e	DATE: SEPT	21. 1985
	IN PPM 1	46	AS	81	CD	MN	MO	PB	58	SR	211	BA	AUPPR
1.446		1.5	5.	3	1.8	984	3	13	1	41	62	84	7.6
87.5		1.5	4	3	1.7	1348	2	12	1	42	51	89	10
17.6		2.0 -	4	3	2.3	1226	2	11	1	45	43	98	5
12-70		1.6	1	2	1.8	268	2	12		35	19	58	20
92480		1.2	1	2	2.5	38	1	7	1	36	17	47	15.
R2+90		1.9	3	3	.7	186	2	12	1	40	36	66	20
23+0-		2.0	7	3	1.4	695	3	20	1	49	65	85	10
93410		1.7	10	2	2.4	814	3	20	1	50	51	84	19
83+2··		1.2	10	2	14.8	106	2	15	1	49	10	59	NES
33439		1.0	4	2	2.7	84	1	12	1	56	7		10
93440	2011	.5	4	1	.9	15	1	7	1	74	4	54	5
83450	408	.4	5	1	.7	14	2	5	1	81	5	54	10
Ellafei		.4	14	4	.8	. 376	5	21	1	44	60	72	5
200+03		.3	38	6	1.2	2294	6	36	1	60	91	106	5
E9+10		1.2	21	4	.6	471	5	19	1	49	61	72	5
E0429		1.3	24	5	.6	2510	5	26	1	48	50	73	10
E0+30		1.0	23	4	.9	1923	5	23	1	48	58	92	10
E0+3%2	40H	.9	34	4	1.1	2900	5	29	1	32	79	104	10
E0+40		1.7	28	6	1.3	4041	5.41	27	986!	45	53	92	30
E0+59		.9	20	3	1.1	457	4	22	!	52	51	87	20
£0460		1.6	18	4	.5	454	5	20	i	46	62	78	5
EdtadC	40M	1.9	42	7	2.0	6669	7	35	1	43	87	215	10
50+70		1.5	20	5	1.0	1154	6	22	1	47	98	80	19
E0+80		1.4	18	4	. ò	434	4	20	1	46	56	80	10
E04966	40M	.8	42	4	1.0	3760	5	35	1	32	72	169	20
C0*000	20ff	.4	5	2	. 4	109	1	6	1	11	24	26	10
10470		1.4	9	5	1.2	659	3	21	1	43	54	67	30
10480		.2.0	18	4	.4	681	4	23	1	47	77	82	35
10400		1.0	13	2	. 6	58	5	. 23	1	31	31	41	10
J0+20		2.4	9	5	.5	131	6	21	1	64	45	68	30
205A		1.5	6	5	.9	428	4	15	1	32	57	59	15
207A		1.6	12	5	.3	526	3	20	1	30	55	68	10
20 8 A		1.2	7	6	.4	395	3	16	1	34	45	58	10
209A		1.0	9	7	.5	608	3	15	1	30	58	65	15
2 m/a		1.2	13	5	.5	1147	4	29	1	37	61	65	25

APPENDIX 4 1986 SOIL GEOCHEM MAPS AND ANALYSES

(79) 3.0 60 120 60-A-50+0 800 20 40 80 40--50-05-1.0 20 40 20-SOIL DEPTH (CM) 0 2 8

CHART 16 COMPARISON OF "A", "B" & "C" SOIL HORIZ AT A-50-0 & A-290 SCALE 1:10

DRAWN BY: G.V.H.
1 NOY 84
(LOCATIONS SHOWN ON M.

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED SEFT 30 1986 852 E. HASTINGS, VANCOUVER B.C. PH: (604) 253-3158 COMPUTER LINE: 251-1011 DATE REPORTS MAILED OF

PAGE# 1

GEOCHEMICAL ASSAY CERTIFICATE

SAMPLE TYPE : SOILS

AUT - 10 GM. IGNITED. NOT AGUA REGIA LEACHED. HIBK EXTRACTION. AA ANALYSIS.

AZZA MINING FILE# 86-2948

A-290-B A-290-C

Joseph DEAN TOYE . CERTIFIED B.C. ASSAYER

SAMPLE	Au* opb
J-5-A J-5-B J-5-C GL-10-A	1 1 3 1
6L-10-B 6L-10-C	2
J-13-A J-13-B	1 1
J-13-C A-50-0A	4
A-50-08 A-50-0C A-50-15R-A A-50-15R-B A-50-15R-C	1 1 3 1
A-290-A	. 2

SAMPLE	Au* oob
GL-0 6VH-0 GVH-7 GL-10 GVH-14	1 1 1 1
GL-20 GVH-21 GVH-28 GL-30 GVH-35	1 1 1 1
GL-40 GVH-42 GVH-49 A-50-1 A-50-2	3 1 1 1 1
A-50-3 A-50-4 A-50-5 A-50-6 A-50-7	2 1 1 1 1
A-50-8 6L-50 6VH-56 6L-60 GVH-63	1 1 1 1
GL-70 GVH-70 GVH-77 GL-80 GL-90	1 1 1 2
GL-100 GL-110 GL-120 GL-130 GL-140	1 1 1 2 1
A-290-1	1

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

\$3 26 20 123 171 00 50 1000 2745 20 16 24 65 10 11 16 11 16 17 16 1640 17 26 100 100 100 20 1755 100 123 12 1 8 8 20 7 8 2 20 125 2760 5 9 80 2 7 1 8 5 47 167 167 027 6 52 720 66 107 5 1720 107 107

.500 GRAM SAMPLE IS DIGESTED MITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILLUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM.FE.CA.P.CR.MG.BA.TI.B.AL.MA.K.M.SI.ZR.CE.SM.Y.MB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PULP

DATE RECEIVED: OCT 14 1986 DATE REPORT MAILED: Oct 17/86 ASSAYER. DEAN TOYE. CERTIFIED B.C. ASSAYER.

						2					AZZ	A MI	NIN	5 F	ILE	# 8	6-29	948	Ř										P	AGE
SAMPLEO	No	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Ng	Ba	Ti		Al	Na	K	
	PPN	PPN	PPH	PPH	PPH	PPN	PPH	PPH	1	PPH	PPH	PPH	PPH	PPH	PPH	PPH	PPH	PPH	1	1	PPH	PPH	1	PPH	1	PPN	1	1	1	PPH
J-5-A	3	4	18	26	.5	3	1	166	1.21	5	5	ND	1	19	1	2	2	16	.15	.029	28	5	.11	50	.03	,	1.19	.03	.04	1
J-5-B	2	6	17	30	.4	3	2	137	1.56	6	5	ND	2	15	1	2	2	18	.13	.027	24	5	.13	48	.04		2.28	.04	.04	
J-5-C	2	5	16	58	.1	2	3	387		5	5	MD	9	14	1	2	2	16	.22	.055	22	1	.23	30	.02	A	.61	.03	.10	•
6L-10-A	3	4	13	14	.5	3	1	85	1.01	5	5	ND	2	29	1	2	2	17	.25	.057	53	À	.09	43	.01	*	1.32	.03	.03	
GL-10-B	12	3	-11	11	.3	1	1	530		28	5	ND	12	13	1	2	2	30	.10	.014	35	4	.07	41	.01	3		.03	.03	i
6L-10-C	1	4		30	.2	1	1	95	.70	2	5	ND	7	13	1	2	2	11	.15	.032	12	2	.14	30	.01	,	.41	.02	.06	
J-13-A	5	6	22	37	1.6	4	4	1032	2.11	2	5	MD	2	32	1	2	3	22	.31	.065	64	4	.18	64	.03		1.88	.03	.05	
J-13-9	5	8	29	68	.7	5	5	904	2.53	2	5	100	4	24	1	2	2	28	.26	.049	43	5	.30	89	.04		2.47	.04	.09	
J-13-C	3	6	21	53	.3	3	3	338	1.81	2	5	MD	9	16	1	2	2	17	.22	.051	22	4	.21	42	.02	2		.03	.08	;
A-50-DA	1	5	21	23	.9	3	1	104	1.73	2	5	ND	2	34	1	2	2	22	.31		79		.14	61	.02		1.79	.03	.05	i
A-50-08	1	10	14	12	.5	5	2	43	1.40	9	5	MD	9	21	1	2	2	21	.20	.036	58	1	.12	36	.13	4	3.97	.07	.03	1
A-50-0C	1	3	11	44	.2	1	2	123	.94	2	5	ND	7	13	1	2	2	12	.18	.043	21	1	.19	29	.02	3		.03	.08	1
A-50-15R-A	1	5	12	6	.7	2	1	12	1.02	2	5	ND	2	22	1	2	2	15	.18	.073	64	3	.04	40	.01	7.	1.37	.03	.02	•
A-50-15R-9	1	9	20	19	.7	6	3	69	2.05	10	8	ND	15	25	1	2	2	39	.23	.046	75	9	.18	90	.08	3		.07	.04	
A-50-15R-C	1	4	10	36	.2	2	1	96	.69	2	5	ND	6	12	1	2	2	9	.16	.040	15	3	.15	28	.01	2	.47	.03	.08	1
A-290-A	1		16	41	.1	4	2	312	1.79	7	5	ND	2		1	2	2	30	.08	.051			.23	53	.05	2	1.08	.03	.07	1
A-290-B	2	12	10	59	.1		4	322	2.31	4	5	ND	4	9	1	2	2	37	.08	.065	10	12	.34	49	.07	3	2.11	.04	.07	1
A-290-C	1	21	11	63	.1	13	7	342	2.74	3	5	100	6	15	1	2	2	46	.15	.052	13	15	. 63	76	.07	7	0000000	.04	.14	1
STD C	22	59	38	133	7.0	68	28	1005	3.91	38	15	6	32	44	16	15	18	62	.48	.095	35	52	. 88	166	.08	34	1.72	.09	.12	12
																											100 C 100 C			(C) (C) (C)

AREA MINIME FILE # 86-29AB K

SAMPLEO	No PPM	Cu PPM	Pb	In PPH	Ag PPN	NS PPN	Co	Mn PPN	Fe	As PPH	PPM	Au PPH	Th PPH	Sr PPH	Cd PPM	Sb PPH	B1 PPH	PPR	Ca	P	La PPH	Cr PPM	Ng I	Pa PPH	Ti 1	PPR	A1	Na Z	K	PPH	
6L-0	5	6	20	38	.4	4	4	400	6.24	8	9	ND	14	24	1	5	5	36	. 22	.046	61	4	. 27	97	.02	4	2.54	.03	.03	1	
6VH-0	11	9	14	71	1.0	6	4	271		2	9	ND	4	23	1	2	3	38	.19	.029	33	11	.42	80	.03	2	2.12	.03	.06	1	
SVH-7	2	16	21	37	1.2	8	2	134	1/16	2	29	ND	10	20	1	7	3	19	.22	.073	64	4	.19	65	.14	4	5.00	.04	.04	1	
6L-10	37	4	24	16	.3	2	3	907	15.83	107	19	ND	20	26	1	2	. 2	47	.19	.022	65	5	.11	65	.01	10	1.10	.04	.02	1	
6VH-14	17	6	11	150	.7	2		1012	8.56	3	13	ND	9	40	- 1	2	2	88	1.04	.326	47	6	1.23	215	.22	8	3.13	.07	.18	1	
6L-20	C 13	5	9	17	.2	2	1	82	1.52	5	5	ND	13	22	1	2	2	41	.21	.045	25	6	.14	86	.01	2	.87	.02	.02	2	
PAH-51	2	16	32	180	1.0	13	6	522	2.57	2	21	ND	7	67	2	6	3	46	.67	.122	42	25	.62	152	.05	2	2.79	.04	.10	1	
6VW-20	2	14	18	07	1.3	7	3	372	1.69	2	26	MD	6	70	1	6	2	24	.71	.091	44	9	.18	96	.08	2	3.22	.05	.04	1	
SL-30	5	5		12	.2	2	1	57	2/3/2/2	13	14	ND	3	21	1	2	2	30	.15	.032	20	1	.07	26	.01	2	.53	.02	.02	1	
64W-35	1	9	13	84	.7	6	3	244	1.61	3	14	ND	4	50	1	5	2	24	.40	.052	31	5	.22	90	.08	2	2.71	.04	.05	1	
6L-40	13	5	39	58	.5	5	6	4074	4.03	6	5	ND	14	24	1	5	4	37	.23	.060	32	6	.30	158	.02	3	1.60	.03	.08	1	
6VH-42	3	11	23	74	1.7	9	4	1611	1.96	2	36	ND	8	56	1	6	3	31	.57	.076	47	10	.24	101	.11	2	3.95	.05	.05	1	
6VH-49	1	20	27	76	1.3	11	3	246	1.78	2	50	ND	9	61	- 1	2	2	35	.50	.086	60	11	.24	119	.11	5	4.42	.05	.05	1	
A-50-1	1	5	21	28	.5	2	2	71	2.03	4	5	MD	2	18	1	7	2	26	.14	.028	23	6	.15	64	.04		2.62	.03	.02	1	
A-50-2	1	7	25	47	.7	5	3	119	2.45	2	5	ND	5	30	1	. 4	3	35	.24	.023	36	10	.29	95	.03	2	3.01	.03	.03	1	
A-50-3	45 1	8	41	75	.7	5	4	244	2.76		17	MD	16	41	1	12	3	43	.31	.014	144	13	. 48	110	.03	2	2.16	.03	.03	1	
A-50-4	1	7		10	.4	4	1	30	-	2	25	HD	9	14	1	2	3	19	.15	.041	50	4	.11	31	.14		3.74	.04	.02	1	
A-50-5	1	5	6	7	.2	4	1	23		2	11	ND	6	11	1	4	2	14	.13	.041	25	6	.09	19	.12		2.78	.04	.01	1	
A-50-4	1	4	5	6	.2	4	1	20		2	5	MD	3	16	1	2	2	13	.16	.040	17	5	.09	24	.08		2.02	.05	.02	1	
A-50-7	1	3	23	86	.4	4	5	249	2.76	9	10	MD	17	27	1	5	2	47	.32	.081	74	8	.49	138	.03	3	2.26	.04	.03	1	
A-50-8	1	5	14	18	.3	3	2	50	2.45	3	5	MD	3	9	1	6	4	25	.06	.041	34	4	.12	42	.06	2	3.54	.03	.02	1	
6L-50	1	7		21	.6	21 4	2	58		2	- 6	ND	. 6	24	1	2	2	18	.21	.035	33	5	.14	47	.09	2		.04	.02	1	
6VH-56	1	9	8	32	.7	7	2	88	1.00	2	20	ND	6	30	- 1	5	3	22	.32	.057	30	6	.15	48	.15	6	4.25	.05	.03	1	
er-90	2	4	17	25	.3	2	2	54	2.11	2	5	ND	2	27	1	5	3	23	.23	.027	12	3	.11	52	.04	2	2.23	.03	.02	1	
EAH-93	I LAND	15	13	54	1.2	9	3	347	1.98	2	35	MD	5	35	1	3	3	20	.38	.071	64	8	.21	76	.10	2	4.44	.05	.05	1	
6L-70	2	5	19	23	.3	2	1	57	1.92	2	5	MD	2	31	1	3	3	23	.27	.029	14	047	.09	47	.03	2	1.78	.03	.02	1	
6VW-70	1	14	12	46	1.3	8	3	219	2.11	3	23	MD	6	32	1	2	3	27	.36	.068	56	10	.20	60	.10	3	4.05	.04	.03	1	
6VH-77	1	18	17	95	1.4	12	5	406	-	4	21	ND	5	37	1	2	4	46	.39	.071	63	16	.41	92	.07	2		.04	.05	1	
PF-80	2	6	22	31	.3	2	1		2.15	3	5	ND	2	29	1	9	2	23	.26	.034	14	4	.11	48	.03	2	1.66	.02	.03	- 1	
SL90	1	5	62	32	.3	2	2	82	1.83	2	5	ND	3	19	1	4	2	22	.16	.030	16	6	.12	45	.04	3	2.20	.02	.03	1	
6L-100	3	4	19	36	.2	3	2	70	2.52	6	5	MD	4	16	1	2	2	29	.12	.027	9	6	.13	45	.10	2	2.51	.03	.02	1	
6L-110	71013	7	15	60	1.1	5	3	150		2	5	ND	4	31	MAC I	2	2	35	. 28	.041	20	13	.31	57	.08	3	3.08	.03	.03	1	
6L-120	5		27	01	2.2	8	4	236		3	11	ND	5	38	1	5	2	37	.33	.040	49	11	.31	90	.05		3.05	.04	.05	1	
GL-130	5	11	26	90	2.7	11	4	274		2	17	MD	6	43	1	2	2	37	.35	.046	77	12	.30	113	.03		3.56	.04	.06	1	
6L-140	5	9	20	73	.9	9	2	553	2.38	2	13	ND	5	46	1	2	2	31	.41	.037	50	14	.26	93	.02	2	2.25	.04	.06	. 1	
A-290-1	1	8	9	51	.1	5	3	1275376	100000000000000000000000000000000000000	2	5	ND	3	6	1	2	2	46	.05	.054	8	23	.30	48	.08		1.54	.02	.04	1	
STD C	22	59	28	132	7.1	68	28	1008	3.97	28	19	8	34	48	18	17	19	67	.48	.098	36	59	.88	180	.08	34	1.72	.09	.12	13	

A 7 7 A	MINING	CTIC	44	04-2040
4//4	DINING	FILE	**	00-27-60

SAMPLEO	No PPN	Cu PPN	Pb PPH	In PPM	Ag PPN	Ni PPN	Co	Mn PPM	Fe 1	As PPH	U	Au PPM	Th PPM	Sr PPH	Cd PPM	Sb	Bi PPN	V PPN	Ca	P	La	Cr PPM	Mọ	Ba PPM	Ti	PPR	Al Z	Na I	K	W PPR	
A-290-2	,	10	17	50	2		3	341	2.37	2	5	MD	4	,	1	2	2	47	.07	.074	10	16	. 32	54	.09	4	1.86	.03	.05	1	
A-290-3	,		17	46			4	550	2.27		5	MD	7		1	2	2	42	. 07	.064	10	15	. 29	58	.08	3	2.11	.03	.05	1	
W-540-2	4	11	13	93	. 1	3	- 1	330	2.41	0	-	140							AFF				22	47	67	2	2 17	43	0.4	9	
A-290-4	2	9	11	51	. 2	5	2	136	2.19	2	5	MD	4	- 1	1	2	2	31	. 05	. 066	10	10	. 22	42	.07		2.11	.03	.04		
A-290-5	2	0	11	45	.2	4	2	106	2.04	3	5	ND	4	6	1	2	2	33	.04	. 057	10	7	.18	40	.06	2	1.74	.02	.04	1	

SENCETING BE

PAGE 3

APPENDIX 5 TRENCHING RESULTS

WEATHERED STIELED COMPANY: ANULET RESOURCES MIN-EN LABS ICP REPORT (ACT: GEO27) PAGE 1 OF 24
PROJECT NO: AZZA 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2 FILE NO: 6-1140R/P1+2

PROJECT NO: AZZA			705 WEST	15TH ST.	NORTH	YANCOUVER,	B.C. V7H 1	T2		FILE	MD: 6-11	40R/P1+2
ATTENTION: L.BAYRO	CK			(604)980	-5814 OR	1604) 988-	4524	. TYP	E ROCK GE		DATE: NOV	5. 1986
(VALUES IN PPH)	AB	AS	BA	CO	CU	HH ·	110	NI	PB	SB	Y	2%
11-2.40-6.40	1.5	1	42	1	11	94	2	3	401	1	1.8	38
11-6.4-9.4	2.9	1	53	1	30	48	3	5	762	2	1.3	44
11-9.00	11.9	15	40	1	33	26	3.	4	532	4	1.1	152
71-9.10	1.6	88	87	. 8	33	1143	13	20	159	15	33.9	221
T1-9.40-12.00	1.7	1	37	1	23_	73	3	4	321	1	2.4	55
T1-10.70	43.5	53	144	2	50	26	5	5	8915	12	2.0	41
T1-12.00-14.00	.3	1	25	1	14	191	3	` 6	14B	1	3.6	81
T1-14.00-16.00	1.2	1	58	2	45	213	4	6	422	1	6.3	105
T1-15.50	3.9	42	90	2	34	25	8	5	543	, 7	2.5	204
71-22.00-24.00	.1	1	46	1	7	238	3	4	27		9	29
T1-23.50	.5	ı	54	3	6	73	4	5	103	3	1.3	58
11-24.50-27.00	.2	1	42	1	5	103	2	3	9	· . 1	2.8	25
12-2.00-5.00	.2	1	43	2	11	240	3.	14	20	1	6.3	35
T2-4.50	.7	66	102	17	21	976	10	116	58	7	66.5	76
T2-4.50-7.50	.6	24	123	7	12	234	<u> </u>	62	42	3	21.5	43
T2-10.00-13.00	.2	3	65	3	6	449	4	18	18	2	12.8	3á
13-0-2.50	.2	13	29	4	7	742	5	9	73	5	22.0	78
13-2.50	.5	30	23	5	8	1181	7	10	28	6	26.9	81
13-2.50-5.00	.4	1	21	2	5	523	4	5	10	2	8.8	36
T3-5.00-7.50	.2	11	26	2	6_	323	3	55_	9	1	6.1	27
13-4.50	.4	1	26	1	5	456	4	5	10	2	5.5	2ú
T3-7.50-10.00	17.4	37	27	2	5	561	8	7	1000	6	17.9	61
T3-10.50-12.50	1.4	21	43	2	9	120	8	6	44	4	9.8	32
T5-47.80-48.50	2.5	14	41	2	7	303	7	4	38	3	3.2	26
T5-54.00-57.00	.4	2	39	3	7	696	5	6	27	3	11.5	44
T5-57.00	4.0	12	128	2	5	117	4	5	41	2	7.6	12
T6-7.60	.5	1	49	1	4	211	<u></u>	5	16	1	2.0	36
T6-7.60B	.2	1	49	2	5	619	3	5	14	1	5.2	31
T6-7.60-B.10	1.4	6	57	2	5	392	4	5	78	3	5.7	117
76-8.10-9.00	.7	7	31	1	4	320	3	6	24	?	3.5	62
T6-19.20	.6	1	39	2	3	332	3	5	9	2	4.9	57
17-0.80-1.10	8.5	195	100	5	8	325	13	13	161	17	8.8	60
17-1.10-1.20	54.0	107	93	2	6	36	11	9	292	12	4.2	28
T7-1.10-1.20B	53.0	261	39	6	5	1	27	20	196	31	4.4	27
17-1.10-1.80	4,4	47	32	2	<u>5</u>	44	5	<u>8</u>	57		2.6	40
17-1.80-2.10	16.2	9	30	1	3	15	3	6	17	3	1.7	8
17-2.10	1.1	108	98	7	31	1535	19	16	70	15	40. i	212

COMPANY: ANULET RE PROJECT NO: AZZA ATTENTION: L.BAYRE		MIN-EN LABS ICP REPORT 705 WEST 15TH ST., MORTH VANCOUVER, B.C. V7N 1T2 (604)980-5814 OR (604)988-4524 • TYPE ROC	(ACT: 6E027) PAGE 2 DF 2 FILE NO: 6-1140R/P1+2 IX BEDCHEN + DATE: NOV 5. 1986
(VALUES IN PPN)		1007/100 0017 00 1007/100 1007	a ornarii - aurrino di 1700
71-2.40-6.40	290	00000000000000000000000000000000000000	
T1-6.4-9.4	370		
T1-9.00	3500		
T1-9.10	47		
T1-9.40-12.00	137		
T1-10.70	6500	g o - 440 pa 40 pa 40 pa 40 pa a a a a a a a a a a a a a a a a a a	
T1-12.00-14.00	15		
T1-14.00-16.00	46		
T1-15.50	275		
T1-22.00-24.00	6		
71-23.50	30	00 + 0 a D+ 6 9 0 9 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	************
11-24.50-27.00	5		
J72-2.00-5.00	3		
T2-4.50	6		•
-12-6.50-7.50	7		
-12-10.00-13.00	3		
13-0-2.50	2		
13-2.50	12		
T3-2.50-5.00	2		
T3-5.00-7.50	2	, a ç sa q q a sig a xxxu an a x a v o q vocor r véssu o no âmpai à à â â â â â â ê ê ê ê ê ê ê ê ê ê ê ê	
13-6.50	1		
T3-7.50-10.00	175		
73-1 0.5 0-12.50	28		
T5-47.80-48.50	89		
15-54.00-57.00	5		
15-57.00	141		
16-7.60	10		
76-7.60B	14		
76-7.60-B.10	26		
T6-8.10-9.00	43		
76-10.20	3		
T7-0.80-1.10	135		
T7-1.10-1.20	280		
77-1.10-1.20B	290		
17-1.10-1.80	108		
17-1.80-2.10	83		
17-2.10	18		

MIN-EN LABORATORIES LTD.

Soecialists in Mineral Environments
705 Nest 15th Street North Vancouver, B.C. Canada V7H 112

THE: (604) 980-5814 OR (604) 988-4524

TELEX: VIA USA 7601067 UC

Certificate of ASSAY

Company: AMULET RESOURCES

Project: AZZA

Attention: L. BAYROCK

File:6-1140 Date:NOV 5/86 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Samole NNumber	AU G/TONNE	AU OZ/TON		
T1-6.4-9.4 T1-9.00 T1-10.70 T7-1.10-1.20	.49 7.20 16.30 .45	0.014 0.210 0.475 0.013		
				· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		•	
		**************************************		u + 2 40 h ar 10 2 th 4 th 80 th 10 2 th 10 2 th 10
·	er en			
		·		
18 16 18 18 18 18 18 18 18 18 18 18 18 18 18 		*** ** * ** *** *** *** *** ***		

Certified by

MIN-EN LABORATORIES LTD.

APPENDIX 6 GEOPHYSICAL REPORT

GEOPHYSICAL REPORT

ON

INDUCED POLARIZATION AND RESISTIVITY SURVEYS

OVER A PORTION OF THE

AZZA CLAIMS

(DICTATOR PROSPECT)

WINNIFRED CREEK, MONASHEE MOUNTAINS

VERNON M.D., BRITISH COLUMBIA

PROPERTY

- : On upper reaches of Dictator Creek and 1900 m due south of its confluence with Winnifred Creek
- : 49° 57' North Latitude 118° 34' West Longitude
- : N.T.S. 82E/15E

WRITTEN FOR

: AMULET RESOURCES CORPORATION \$430-475 West Georgia Street Vancouver, B.C., V6B 4M9

WRITTEN BY

: David G. Mark, Geophysicist GEOTRONICS SURVEYS LTD. 530 - 800 West Pender Street Vancouver, B.C., V6C 2V6

DATED

: December 15, 1986

GEOTRONICS SURVEYS LTD. Engineering & Mining Geophysicists

VANCOUVER, CANADA

TABLE OF CONTENTS

SUMMARY	1
CONCLUSIONS	ii
RECOMMENDATIONS	iii
INTRODUCTION AND GENERAL REMARKS	1
PROPERTY AND OWNERSHIP	2
LOCATION AND ACCESS	2
PHYSIOGRAPHY	3
HISTORY OF PREVIOUS WORK	4
GEOLOGY	4
INSTRUMENTATION	5
THEORY	5
SURVEY PROCEDURE	7
COMPILATION OF DATA	8
DISCUSSION OF RESULTS	9
REFERENCES	12
GEOPHYSICIST'S CERTIFICATE	13
AFFIDAVIT OF EXPENSES	14

LIST OF ILLUSTRATIONS

		Map #
Location Map	1: 8,600,000	1
Claim Map	1: 50,000	2
Survey Plan (in back pocket)	1: 2,000	3
Induced Polarization Survey Apparent Chargeability and Resistivity Pseudosection IPL-1	1: 2,000	4
Induced Polarization Survey Apparent Chargeability and Resistivity Pseudosection IPL-2	1: 2,000	5
Induced Polarization Survey Apparent Chargeability and Resistivity Pseudosection IPL-3	1: 2,000	6
Induced Polarization Survey Apparent Chargeability and Resistivity Pseudosection IPL-4	1: 2,000	7
Induced Polarization Survey Apparent Chargeability and Resistivity Pseudosection IPL-5	1: 2,000	8

SUMMARY

Induced polarization and resistivity surveys were carried out during October and November, 1986 over five lines within the Azza claims located on the upper reaches of Dictator Creek, a tributary of Winnifred Creek within the Monashee Mountains within south central British Columbia.

The purpose of the work was to locate and delineate epithermal gold-silver mineralization such as has been found on the property. In addition, some pyritization and strong kaolin alteration occurs with the epithermal veins. The host rock is a granitic-type of the Nelson intrusives of early Jurassic age.

The property is easily accessible by 4-wheel drive vehicle. The terrain consists of flat to gentle slopes covered with lightly-to moderately-populated coniferous trees with light underbrush.

The IP and resistivity surveys were carried out using a Huntec receiver operating in the time-domain mode. The array used was the dipole-dipole array read at five separations with a dipole length and reading interval of 30 m. A total of five lines were done and the results were plotted in pseudosection form and contoured.

CONCLUSIONS

- 1. The resistivity survey has responded to fault and shear zones as noted directly in the field and as interpreted from air photos by Bayrock. Epithermal veins mineralized with gold and silver occur along the shear zones. The resistivity results show the shear zone to dip predominantly east with some to the west. Where shear zones cross are of special exploration interest since these areas are more amenable to mineralization.
- 2. Pyritization associated with the epithermal veins appear to have responded as low amplitude IP highs. As a result, IP highs correlating with resisitivity lows are of strong exploration interest. Nine of these have been noted on the survey and three of these occur near interesting resistivity lows that are indicative of cross-shearing.
- 3. Two shear zones are of special interest because of significantly high geochemistry results. These have been labelled A and B respectively. Three trenches have cut B and intersected gold/silver mineralization. On a the strongest soil values occur as well as correlating IP anomalies.

RECOMMENDATIONS

The resisitivity and IP surveys have been very successful in further defining exploration targets on the Azza claims.

Some of these should be trenched and/or drilled. However, it is highly preferable to more accurately delineate these targets through further resistivity and IP work. Lines 1, 2, and 3 are, on average, 200 m apart which is only reconnaissance in nature. The fill-in lines, which should be done at about a 50 m interval, will not only locate the targets more accurately, but also more definitely define the dip.

While carrying out the drilling and trenching, the results should be closely correlated with the resistivity and IP results in order to maximize the benefit from these surveys.

GEOPHYSICAL REPORT

ON

INDUCED POLARIZATION AND RESISTIVITY SURVEYS

OVER A PORTION OF THE

AZZA CLAIMS

(DICTATOR PROSPECT)

WINNIFRED CREEK, MONASHEE MOUNTAINS

VERNON M.D.

BRITISH COLUMBIA

INTRODUCTION AND GENERAL REMARKS

This report discusses the instrumentation, theory, field procedure and results of induced polarization (IP) and resistivity surveys carried out over a portion of the Azza claims, covering the old Dictator prospect. The property is located on the upper reaches of Dictator Creek, which is a tributary of Winnifred Creek located in the Monashee Mountains 60 km southeast of Vernon.

The field work was completed from October 26th to November 2nd, 1986 under the supervision of the writer and under the field supervision of Pat Cruickshank, geophysicist, who also formed part of the field crew. A geophysical technician as well as 2 helpers completed the crew of four.

The purpose of the IP and resistivity surveys on the Dictator prospect was to extend the known gold mineralization both to depth and along strike as well as to locate new zones. This included the testing of targets produced from soil geochemical testing and photogeological interpretation.

The gold mineralization occurs in epithermal zones which has alteration associated with it. The purpose of the resistivity survey was therefore to map the alteration as resistivity lows and thus the gold vein. In addition, on the Dictator prospect, sulphides, principally pyrite, are associated with the gold mineralization and thus the purpose of the IP was to map the sulphides.

PROPERTY AND OWNERSHIP

The property consists of 2 contiguous claims totalling 32 units as shown on Map 2 and as described below:

Name of Claim	No of Units	Record Number	Anniversary Date
Azza	16	1976	August 23
Azza 2	16	2165	October 20

The 2 Azza claims as shown on Map 2 are wholly owned by Lu Bayrock, Ph.D., P. Geol., and are under option to Amulet Resources Ltd.

LOCATION AND ACCESS

The property is located about 60 km southeast of Vernon, B.C. on the upper reaches of Dictator Creek 1,900 m south of its confluence with Winnifred Creek located within the Monashee Mountains. The south-flowing Kettle River occurs about 7 km to the west. The geographical coordinates for the center of the property are 49° 57' north latitude and 118° 34' west longitude.

Access to the property is gained by travelling about 76 km along Highway #6 to the gravelled Kettle River valley road which runs southerly. One then travels for 10 km to the K50 logging access road which turns off to the east. The property is located about 30 km from the Kettle river road through a series of logging roads as shown on map 2. Four-wheel drive is highly recommended and is a necessity if the roads are wet.

PHYSIOGRAPHY

The property occurs on the western side of the Monashee Mountains, a physiographic division of the Interior Plateau System. The terrain is gentle over most of the property except for the northern part which occurs on the north-facing steep-sided Winnifred Creek valley. The elevations vary from 1370 m along the northern boundary to 1800 m within parts of the Azza 2 claim to give an elevation difference of 430 m.

The northern part of the property is mainly drained by the northerly-flowing Dictator Creek as well as 2 other tributaries of Winnifred Creek. The southern part is drained by a south-flowing tributary of Rendell Creek.

The vegetation consists mainly of lightly- to moderately-dense stands of spruce and fir with some underbrush. In places, swampy and meadow areas occur.

HISTORY OF PREVIOUS WORK

The Dictator dates back to possibly as early as the turn of the century. The writer is unaware of what work has earlier been done. However, since Lu Bayrock has acquired the property, he has carried out photo-geological interpretation, geological mapping and soil/silt sampling. In addition, just before the IP and resistivity surveys were started, five trenches were dug by bulldozer.

GEOLOGY

The following is taken from the G.S.C. map of the area by Okulitch.

The property occurs within the Nelson intrusives of early Jurasic age which consist of quartz diorite, grandiorite, granite, amphibolite, gabbro and ultramafic rocks.

The only other rock group in the area is a rock pendant of the Thompson assemblage of Permian age which occurs 1600 m to the south of the main propsect. On the previous G.S.C. map of the area (Little) this group was referred to as the Anarchist. The Thompson assemblage consists of siliceous argillite, volcaniclastic sandstone, quartzite, siltstone, different limestones, different conglomerates, chert, breccia, greenstone, and tuff.

The mineralization consists of gold and silver with associated pyrite within siliceous epithermal veins. Intense kaolin alteration is associated with the veins.

INSTRUMENTATION

The transmitter used for the induced polarization-resistivity survey was a Model IPT-1, manufactured by Phoenix Geophysics Ltd. of Markham, Ontario. It was powered by a 2.0 kw motor-generator, Model MG-2, also manufactured by Phoenix.

The receiver used was a model Mark IV manufactured by Huntec ('70) Limited of Scarborough, Ontario. This is state-of-the-art equipment, with software-controlled functions, programmable through the front panel.

The Mark IV system is capable of time domain, frequency domain, and complex resistivity measurements.

THEORY

When a voltage is applied to the ground, electrical current flows, mainly in the electrolyte-filled capillaries within the rock. If the capillaries also contain certain mineral particles that transport current by electrons (most sulphides, some oxides and graphite), then the ionic charges build up at the particle-electrolyte interface, positive ones where the current enters the particle and negative ones where it leaves. This accumulation of charge creates a voltage that tends to oppose the current flow across the interface. When the current is switched off, the created voltage slowly decreases as the accumulated ions diffuse back into the electrolyte. This type of induced polarization phenomena is known as electrode polarization.

A similar effect occurs if clay particles are present in the conducting medium. Charged clay particles attract oppositely-charged ions from the surrounding electrolyte; when the current

stops, the ions slowly diffuse back to their equilibrium state. This process is known as membrane polarization and gives rise to induced polarization effects even in the absence of metallic-type conductors.

Most IP surveys are carried out by taking measurements in the "time-domain" or the "frequency-domain".

Time-domain measurements involve sampling the waveform at intervals after the current is switched off, to derive a dimensionless paramater, the chargeability, "M" which is a measure of the strength of the induced polarization effect. Measurements in the frequency-domain are based on the fact that the resistance produced at the electrolyte-charged particle interface decreases with increasing frequency. The difference between apparent resistivity readings at a high and low frequency is expressed as the percentage frequency effect, "PFE".

The quantity, apparent resistivity, ρ_a , computed from electrical survey results is only the true earth resistivity in a homogenous sub-surface. When vertical (and lateral) variations in electrical properties occur, as they always will in the real world, the apparent resistivity will be influenced by the various layers, depending on their depth relative to the electrode spacing. A single reading cannot therefore be attributed to a particular depth.

The ability of the ground to transmit electricity is, in the absence of metallic-type conductors, almost completely depending on the volume, nature and content of the pore space. Empirical relationships can be derived linking the formation resistivity to the pore water resistivity, as a function of porosity. Such a formula is Archie's Law, which states (assuming complete saturation) in clean formations:

$$\frac{RO}{RW} = 0^{-2}$$

Where: Ro is formation resistivity
Rw is pore water resistivity
O is porosity

SURVEY PROCEDURE

The IP and resistivity measurements were taken in the time-domain mode using an 8-second square wave charge cycle (2-seconds positive charge, 2-seconds off, 2-seconds negative charge, 2-seconds off). The delay time used after the charga shuts off was 200 milliseconds and the integration time used was 1,500 milliseconds divided into 10 windows.

The array chosen was the dipole-dipole array shown as follows:

DIPOLE-DIPOLE ARRAY

The dipole length ('a') was chosen to be 30 m. It was read to five separations ('na') which was therefore 150 m which gives a theoretical depth penetration of 75 to 100 m.

The dipole-dipole array was chosen because of its symmetry resulting in a greater reliability in interpretation. Furthermore, narrow, vein-like targets which occur within the area, can be missed by the pole-dipole array.

Stainless steel stakes were used for current electrodes and the potential electrodes were comprised of metallic copper in copper sulphate solution, in non-polarizing, unglazed, porcelain pots.

Readings were taken over 5 different lines as shown on the survey plan (map 3) to give a total survey length of 1750 m.

COMPILATION OF DATA

The chargeability (IP) values are read directly from the instrument and no data processing is therefore required prior to

plotting. The resistivity values are derived from current and voltage readings taken in the field. These values are combined with the geometrical factor appropriate for the dipole-dipole array to compute the apparent resistivities.

The results are shown in pseudosection form for the five lines on Maps 4 to 8, respectively, at a scale of 1:2,000. Each value is plotted at a point formed from the intersection of a line drawn from the mid-point of each of the two dipoles.

The survey plan of both grids is drawn on Map #3 at a scale of 1:2,000 with some interpretational results.

DISCUSSION OF RESULTS

The resistivity results correlate remarkably well with the photogeological interpretation done by Bayrock. His interpretation consists of lineations that are strongly indicative of fault and shear zones. Geological structure such as this responds as resistivity lows and these on the Azza claims are correlating directly with the photo-interpreted lineations. As a result, the lineations are verified to be fault and shear zones.

The resistivity data also shows the dip of the structure as seen on the pseudosections. The predominant dip is to the east though there are some dips to the west. On IPL-1, the dips are more difficult to determine because of the extensive resistivity low probably caused by a greater amount of alteration in this area. The 2 north-south pseudosections on either side of Azza lake (IPL-1 and -2) have picked up a photo-interpreted northeasterly-trending shear zone and show its dip to be to the southeast.

Where the resistivity pseudosections show that east and west dipping shear zones cross, prime targets for gold and silver mineralization are often found. This also holds true, of course, for shear zones that cross on the horizontal plane.

The resistivity values over the whole survey area, considering the surveys were done over a granitic rock-type, are unusually low. The values, for the most part, range from 200 to 800 ohmmeters whereas intrusive rock-types usually have resistivity values much higher. The lower values are, in the writer's opinion, likely caused by the shearing and associated epithermal vein alteration. In other words, the resistivity targets are resistivity lows within a broad resistivity low. The higher surficial values on IPL-3 at 1+80W are probably due to the intrusive being relatively free of alteration.

Surficial resistivity lows are shown on the survey plan. These indicate broad areas of alteration and are probably at a depth shallow enough for back-hoe trenching.

The induced polarization (chargeability) data is relatively flat showing a background of about 3 to 5, or perhaps 6, milliseconds. As a result, the only anomalous results are low-amplitude highs with values ranging from 6 to 10 milliseconds. One of these appears to correlate with the pyrite noted in trench #1 on IPL-1 at about 0+60W.

The low response of the IP is in agreement with the writer's experience on surveys over epithermal zones in other areas. Most of the sulphides produced in an epithermal system are destroyed by the acidic environment.

However, the low-amplitude highs are considered to be of interest, more so if they correlate with resistivity lows and even

more so if they correlate with intersecting resistivity lows (which indicate cross-shearing). These highs, prime targets for further exploration, are located as follows:

- 1. IPL-1, 0+60W at depth
- 2. IPL-1, 2+70W at depth near intersecting resistivity lows
- 3. IPL-2, 2+10W to 2+70W at depth
- 4. IPL-2, 2+25W at depth
- 5. IPL-2, 0+70W near intersecting resistivity lows
- 6. IPL-3, 3+30W highest IP anomaly, near intersecting resistivity lows
- 7. IPL-3, 1+80W, at depth
- 8. IPL-3, 0+25W
- 9. IPL-5, 2+40S, very low-amplitude anomaly but it occurs close to trench 1 where pyritization has been noted

It must be noted that a shear zone without a correlating IP anomaly does not mean it is of no exploration interest. It may simply be that all the sulphides are destroyed and therefore there is no IP response.

Bayrock did soil sampling along the photo-interpreted shear zones. The two along which the best results were obtained have been labelled A and B, respectively. Trenching has been done on B and some encouraging gold and silver mineralization was encountered. However, A is of particular interest since it contains stronger soil geochemistry results and since it correlates with IP highs. A particular interesting soil anomaly occurs between IPL-1 and IPL-2 and reaches a high of 370 ppb.

Respectfully submitted, GEOTRONICS SURVEYS LTD.

David G. Mark, Geophysicist

December 15, 1986

REFERENCES

- Bayrock, L., Ph.D. P.Geol., Verbal communication and hand drawn maps of photo-geological interpretation and soil geochemistry results on Azza claim.
- Okulitch, A.V., Geological Map of Thompson-Shuswap-Okanagan, B.C., Geological Survey of Canada, Open File 637, 1979(?).
- Little, H.W., Geology Map of Kettle River (East Half), B.C., Geological Survey of Canada, Map 6-1957, 1957.

GEOPHYSICIST'S CERTIFICATE

I, DAVID G. MARK, of the City of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geophysicist of Geotronics Surveys Ltd., with offices located at #530-800 West Pender Street, Vancouver, British Columbia.

I further certify:

- 1. I am a graduate of the University of British Columbia (1968) and hold a B.Sc. degree in Geophysics.
- I have been practising my profession for the past 18 years and have been active in the mining industry for the past 21 years.
- I am an active member of the Society of Exploration Geophysicists and a member of the European Association for Exploration Geophysicists.
- This report is compiled from data obtained from induced polarization and resistivity surveys carried out by a crew of Geotronics Surveys Ltd., under my supervision and under the field supervision of Pat Cruickshank, geophysicist, from October 26th to November 2nd, 1986.
- I do not hold any interest in Amulet Resources Corporation, nor in the property discussed in this report, nor will I receive any interest as a result of writing this report.
- 6. I consent to the use of this report by Amulet Resources Corporation in any prospectus or statement of material facts.

David G. Mark Geophysicist

December 15, 1986

APPIDAVIT

This is to certify that I have caused induced polariz - tion and resistivity surveys to be done over a portion of the Azza claims located on Dictator Creek, 1,900 m south of its confluence with Winnifred Creek, within the Vernon Mining Division to the value of the following:

FIELD:

Share of mob-demob	\$ 1,000
4-man crew, 6.5 days at \$1,500/day	9,750
Interpretive report	2,500
	13,250

Grand Total \$ 13,250

Respectfully submitted, GEOTRONIAS SURVEYS LTD.

David G. Mark, Geophysicist Manager

December 15, 1986 36/G384

CERTIFICATE OF THE COMPANY

The foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by this Prospectus as required by the Securities Act and its regulations.

AMULET RESOURCES CORPORATION		
Del lui	_ /W . Ws	
LEWIS VACEK,	PAUL MEHRABIAN,	
Chief Executive Officer	Chief Financial Officer	
ON BEHALF OF THE BOARD OF DIRECTORS		
ROBERT PERRIS	THOMAS HASEK	
PROPRO	MOTER	
LEWIS VACEK	PAUL MEHRABIAN	

DATED at Vancouver, British Columbia, this 30th day of June, 1987.

CERTIFICATE OF THE AGENTS

To the best of our knowledge, information and belief, the foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by this Prospectus as required by the Securities Act and its regulations.

YORKTON SECURITIES INC.

OSLER INC.

MERIT INVESTMENT CORPORATION

UNION SECURITIES LTD.

Per: // Chalme

DATED at Vancouver, British Columbia, this 30th day of June, 1987.