DIAMOND DRILLING, GEOCHEMISTRY, GEOPHYSICS
On the ZAP Claims
Liard Mining Division
NTS 104P/13E, 14W

January, 1981

J. R. Wilson

Vancouver, B. C.

DIAMOND DRILLING, GEOCHEMISTRY, GEOPHYSICS

ON THE

ZAP CLAIMS

Liard M.D

N.T.S. 104P/13E, 14W

TABLE OF CONTENTS

	Page
SUMMARY	. 1
LOCATION	. 1
ACCESS	. 1
BACKGROUND	. 1
DIAMOND DRILLING	. 4
ANALYSIS OF DRILL CORE	. 6
SOIL GEOCHEMISTRY	. 8
GEOPHYSICS	. 8
ROAD CONSTRUCTION	. 8
CONCLUSIONS AND RECOMMENDATIONS	. 9
Figure 079-80-1 - Property Map	. 11
APPENDICES	
Appendix I Drill Logs (Hole A1-A5)	. 12
Appendix II Mineralogical Report (Thornhill Lab)	. 34

SUMMARY

From mid August to early October, 1980, (477m.) 1566 feet of diamond drilling tested parts of the Zap mineral claims. Despite nearly continuous mechanical and logistical problems some encouraging results were obtained. Minor Pb-Zn-Cu mineralization and lithologies similar to the Gataga camp were intersected. Sections of core were split and analysed geochemically.

The drill results are significant in confirming this region as having stratiform Pb-Zn-Ag-Cu potential. Further drilling is recomminded on the Zap claims to better explore the pyritic argillite encountered in 1980 and to test other anomalies.

A later winter program is suggested, thus avoiding access problems.

Preparatory ground work in the 1981 summer should locate, survey, and mark important sites for the following winter's program.

LOCATION - In B.C. 48 km WSW from Watson Lake, Y.T.

ACCESS - By FNM constructed road leaving the One Ace Mountain forestry road.

BACKGROUND - Refer to "Geology, Geochemistry, and Geophysics of Zap claims" by P. Burns, July 4, 1980. for property work done prior to drilling.

The claims are believed to be in the transition zone from the Selwyn Basin to the Kechika Trough (probably an extension of the Basin). For this discussion, both areas will be termed the Selwyn Basin.

In 1980 R. Carne wrote (at the CIM Annual General Meeting):

"The majority of the zinc, lead and silver resources of western Canada are contained in stratiform mineral deposits hosted by Paleozoic clastic sedimentary rocks, commonly shales, within Selwyn Basin of Yukon N.W.T. and northern British Columbia. Over half of these deposits have been discovered within the past decade and the steady rate of discovery suggests that many more will be found.

Recent studies of these deposits, and of other well-known examples, such as the McArthur *H.Y.C.) deposit in Australia, the Meggen and Rammelsberg Mines in Germany and the Sullivan Mine in British Columbia, have led to an emerging, but still controversial, model of ore deposition. Shale-hosted or "sedimentary exhalative" (sedex) deposits form in active tectonic environments from metalliferous geothermal brines that rise to the seafloor along deep-seated fault zones and precipitate as bedded sulphide deposits, usually accompanied by barite. Although their mineralogy and zoning can be similar to that of volcanogenic massive sulphide deposits, sedex deposits have only a weak genetic link with volcanism."

Carne (1980) described the four major clusters of sedex deposits: in Yukon - Anvil, Howards Pass and MacMillan Pass in B. C. - Gataga.

Lithologic characteristics of each camp is similar.

In 1980 D MacIntyre mapped and reported on the Gataga area (at the District 6 CIM meeting). The following descriptions are from his paper. The mineral district is over 180 km. long and contains six major occurrences.

"The Cirque is the lagest known deposit with reserves in excess of 30 million tonnes grading 10 per cent combined lead-zinc and 45 grams per tonne silver. The host rocks for the Cirque and other deposits in the area are Middle to Upper Devonian carbonaceous black shales, siliceous argillites, and cherts (Gunsteel 'Formation').

The mineralized interval of the Devonian succession appears to be present throughout the basin of deposition, typically consisting of thin beds of nodular barite with interbedded pyrite laminae. This interval locally thickens and grades into lens-shaped bodies of massive bedded barite which may or may not contain sphalerite and galena. Minor zinc and lead mineralization is also found in elses of laminated pyrite which are spatially associated with the bedded barite deposits."

"The K showing is currently the main exploration target on the Cirque property. The showing consists of several small outcrops and a prominent white-weathering barite kill zone exposed on the northeast-facing slope of a northwest-trending ridge. Diamond drilling in this area has intersected a massive barite bed containing diffuse bands and interstitial blebs of pyrite, sphalerite, and galena. This horizon varies from less than 5 metres on surface to greater than 35 metres down dip to the southwest. Average grades of drill intersections from this horizon are in the range of 9 to 15 per cent combined lead-zinc with 50 to 70 grams per tonne silver. The zinc/zinc + lead ratio of the 1978 drill intersections varied from 0.72 to 0.77. The overall ratio for the reserves defined in the 1979 program is 0.77.

Very fine-grained sphalerite and trace amounts of galena also occur in bands of laminated fine-grained and massive coarse-grained pyrite directly overlying the main barite horizon. Assay results from this zone are extremely variable and range from 0.5 to 8 per cent combined lead-zinc. Anomalously high background concentrations of lead and zinc also occur in rocks immediately underlying the overlying the main deposit."

At the Driftpile Creek occurrence:

"The main massive sulphide horizons are characterized by very finely laminated pyrite which locally has soft sediment deformation and graded bedding."

Barite and sphalerite are present in variable amounts.

"What appears to be the same horizon was intersected in drill holes immediately south of Driftpile Creek but here finely laminated pyrite predominates and galena and varite are present in very minor amounts."

The Anvil Camp consists of seven potential orebodies along a 25 km. belt. According to Carne (1980) the "characteristic vertical and lateral zonation seen in all deposits is, in descending order:

- (i) baritic massive sulphide
- (ii) pyritic massive sulphide
- (iii) pyritic quartzite
- (iv) ribbon banded graphitic quartzite.

Chalcopyrite - pyrrhotite stringer zone are recognizable beneath some deposits."

DIAMOND DRILLING

D. J. Drilling completed 1566 feet (477metres) of the 2000 feet contracted in five holes. FNM was not charged for the undrilled portion. A Longyear 17 A drill was used and BQ core was recovered. All holes were vertical and were sited to test a variety of geophysical and geochemical anomalies. Drilling was entirely on the Zap 1 claim.

A D 6, rented from Grant Stewart Construction, prepared drill roads and hauled the drill and sloop.

Figure 079-80-1 shows drill hole locations and roads.

Hole #A1 drilled one of two EM::16 conductors near the base of slope that paralleled the valley axis east of our campsite. A few modestly anomalous soil samples (252 ppm Zn, 3.0 ppm Cd, 1.0 ppm Ag) and a good silt value of 10 ppm Ag had been found nearby. Drilling encountered a vertical fault zone with high water pressure. Twelve metres of overburden were found but 67 metres of casing were used in the very broken and open fault. The hole was stopped at 107 metres. Barren quartzites and siltstones were the only lithologies found. Overall core recovery was about 30%. The EM conductor is probably the fault. The high water pressure and warm water temperature encountered in the fault suggests that anomalous metal values found in nearby spring sediments could be due to migration from a considerable distance.

Hole #A2 tested a southeast trending EM-16 reverse cross-over that parallelled a normal conductor 50 metres away. This strike direction corresponds to regional fold axes as mapped by P. Burns. No soil samples at the site showed elevated values but scattered highs occur through the area (eg. to 410 ppm Zn, 4.3 ppm Cd, 1.2 ppm Ag).

Twenty metres of casing was used and the hole went to 151 metres encountering pyritic quartzites, siltstones and pyritic, graphitic black shales explaining the EM anomaly. Quartz/calcite veinlets are common and some carry specks of galena. A single 8 cm.

long section of core contains a veinlet with sphalerite, pyrite, galena, and chalcopyrite. Examination of the sample at Thornhill also confirmed traces of arsenopyrite and pyrrhotite (see attached report). Bedding here was found to be nearly vertical. Nevertheless, drilling was allowed to continue because of favourable results. Future angle holes are needed to test across the stratigraphy at the best mineralized depths or at levels suggested by rock geochemistry. Drilling should especially be directed towards the nearby EM conductor to the southwest.

Hole #A3/A4 was collared on the western "limb" of a coincident EM-16 - soils anomaly. The feature is ay least 700 metres in length, strikes roughly 100°, and is slightly sinuous indicating possible faulting or folding. Soils immediatly downslope were 14 ppm Pb, 1.5 ppm Ag, 470 ppm Zn, 10 ppm Cd. Although better soils values lie to the east this site was drilled because the EM response was clearest.

Drilling was difficult in this sheared graphitic shale. Casing couldn't be driven into solid rock because of the tight graphite and the BW sub broke off in hole A3. The set up was moved a few metres and hole A4 began with N casing going to 24 m. B casing going to 37 m., and coring coming to a standstill at 40 metres. During this difficult stage (12 days) considerable time was spent repairing the drill, obviously not capable of handling the conditions.

Core recovered was black, graphitic, pyritic, sheared argillite/shale. One 3 cm breccia fragment held about 50% disseminated pyrite.

The graphitic rock explains the EM response but the associated geochemical values have yet to be accounted for. This hole can be regarded as partially successful since it encountered the lithology usually associated with Selwyn Basin stratiform deposits.

Hole #A5 was on the eastern end of the same feature tested by the previous hole. It was collared on a strong EM response and the best soils anomaly was immediatly downslope (over 10,000 ppm Zn, 215 ppm Cd).

Thirty metres of casing was used and the hole was stopped at 148 metres. All rock encountered was black argillite with graphite on fractures and disseminated pyrite throughout. Pyrite is also seen on fractures, as discrete blebs to 1 cm diameter, as irregular indistinct massive patches to 10 cm. and as laminated beds (sometimes massive) to 1 cm. thick. Rip-up soft sediment deformation is exhibited by one pyritic bed. An 8 metre section is interpreted as a possible vent with rounded clasts of the top grading down to angular fragments and passing into solid rock. Veinlet stockworks of calcite are prominent throughout the core.

On this hole the lithology, bedded pyrite, and occasional specks of galena heighten interst and point to the necessity of more drilling.

A final drill set up was made on the road in the Zap 10 claim but freezing weather reduced the nearby water supply making drilling impossible. The site should be drilled at a future date. It consists of an EM-16 conductor and high soil values (1675 ppm Zn and 71 ppm Cd).

All drilling was terminated at this point because of deteriorating water supplies, an inadequate drill for the difficult ground, small footage remaining in the contract (and no charge for cancellation), and a nearly impassible access road whose upgrading would be too expensive.

ANALYSIS OF DRILL CORE

Core from all holes except A1 was split and geochemically analysed, generally in alternate 5 foot lengths. Shorter sections were taken based on lithology or mineralogy. Sludge samples analysed were taken during drilling when core recovery was poor.

Ranges of values in drill core and in average sedimentary rocks are shown below in ppm.

Hole #	<pre># of samples</pre>	<u>Cu</u>	<u>Pb</u>	<u>Zn</u>	<u>Ag</u>	Ba
A2	49	4-110	2-90	4-1400	0.2-1.3	30-1090
A3/4	4	26-39	14-18	98-187	0.2-0.3	920-1350
A5	33	32-97	6-70	43-5800	0.2-7.0	490-1830
Average F shale Black sha	Ranges of geocher	30-150 20-300	ues (Hawk 20 20-400	es & Webb 50-300 100-1000	•	300-600 450-700

According to Hawkes & Webb some of our Zn and Ba results are well above average. The high barium content in drill core is especially significant as barite is commonly associated with mineralization at the Anvil, MacPass, and Gataga camps. However it is not present at Howards Pass.

 $$\operatorname{In}$$ hole A5 a chemical change occurs at about 320 feet (97.5 m):

- a) Sb was found in all rock below this depth but not above it.
- b) Ag values change at this point. 18 samples from 30.5 to 96.0 metres had a mean of 1.9 ppm Ag (standard deviation = 1.0) and 15 samples from 97.5 to 147.8 metres had a mean Ag content of 3.6 ppm (standard deviation = 2.0)
- c) For the same top section Zinc's mean was 306 ppm (S.D. = 308) and for the bottom section Zinc's mean value was 1639 ppm (S. D. = 2045).

Although not obvious, the stronger silver values appear to correspond roughly with higher pyrite content in the form of massive pyrite patches. The lower values are in core containing a long brecciated section (based on structure this may be a vent).

No other prominent traits were recognized but a thorough manipulation of data should preced further groundwork.

SOIL GEOCHEMISTRY

Regional soil sampling conducted by P. Burns (see earlier reference) located a concentration of good Cd and Ag values near our access road on Zap 10. I.L.Elliott reanalysed the samples for Pb and Zn. Results clarify a few multi element anomalies:

- (a) two Pb zones with moderate Zn, Ag, Cd associated values are centered on line 0+00 at 8+00 S and 17+00 S (to 128 ppm Pb, 880 ppm Zn, 2.2 ppm Ag, 3.9 ppm Cd).
- (b) Strong Zn and Cd results are on Line 5 E between 24+00 S and 28+00 S. (to 1675 ppm Zn, 71 ppm Cd, 3.5 ppm Ag, 13 ppm Pb).

GEOPHYSICS

Steve Presunka was in the area to run a few lines of EM-16 on John Schussler's Donna claims. While here, he made traverses over the soils anomaly and located a nearby conductor (DDH A6-not drilled).

ROAD CONSTRUCTION

The FNM road built in 1979 received considerable traffic during our program and consequently deteriorated quickly in the few wet sections. Culverts were installed to help drain spring waters. The road was thus improved for a week until very unusual late season rainfalls made the rest of the road nearly impassable. The cat, intended only for drill moves, had to be used to upgrade the road, adding a significant, unforseen expense.

New roads were built to three drill sites and considerable time was spent building across unavoidable swamps. Grant Stewart construction supplied an efficient crew to do the roadwork.

- K. H. Christensen and A. MacArthur started cleaning up debris from the 1979 road construction but spent more time on camp building, road repairs and construction of drill roads before leaving for personal reasons.
- J. Hugi and J. Wilson later continued the clean up until snowfalls blanketed the slash, preventing safe, efficient work. Hazard abatement can be completed in 1981 while exploration ground work is in progress here.

CONCLUSIONS AND RECOMMENDATIONS

Diamond drilling was successful in locating minor mineralization and promising lithologies. However, mechanical and logistical problems thwarted completion of the drill contract. Several thousand feet of drilling are needed to complete primary exploration and to follow up the 1980 drill results.

Soil sampling and EM-16 surveys provided the drill targets in 1980 and such work should be continued as fill in lines over known regional anomalies.

The following schedule is recommended:

Summer 1981 - fill in lines of soils and EM-16 in areas of good regional soils geochemical response, survey 1980 drill holes and 1980 roads with transit, survey critically placed tie lines through the grid to relate it to our topographic map and as an accurate record for future years work, mark drill sites, camp sites, water supplies, etc. for a winter drill project, and finish hazard abatement.

Late winter 81/82 (March) - Diamond drilling. Winter work will be more expensive than normal B.C. drill costs but, for this area , is the most economical. The main problem overcome is that of road building. In late winter most swamps and

and creeks are frozen and can be traveled by cat, avoiding forests, thus reducing problems with B.C.F.S. and costs to us. Also, the frozen road needs less maintenance. Finally drill sites can easily be made in swamps and waterways.

ALBERT CREEK SILVER

-\$- Drill holes 1980

N.T.S. NO.:104-P-13 : FIG. NO.:079-80-1

⊗ Future drill targets

SCALE: 1:50.000

APPENDIX I

Drill Logs for Holes #A1, A2, A3/A4 and A5

ABBREVIATIONS

```
Η.
       hardness
       none
no.
mod.
       moderate
ν.
       very
       medium grained
m.g.
       fine grained
f.g.
νfg
       very fine grained
       medium'
med.
       quartzite
qzte
dia.
       diameter
bed
       bedding
       occasional
occ.
tr.
       trace
       disseminated
diss.
fr.
       fracture
inter. interstitial
cm.
       centimetre
mm.
       millimetres
       metres
m.
       sample of core
spl.
       quartz
qz.
calc.
       calcite
       pyrite
рy.
       graphite
gr.
       chalcopyrite
сру
ga1
       galena
sph
       sphalerite
       questionable
       dominent (angle, mineral, etc).
```

veins and stockworks spacing
(eg.) 1-3/cm =1 to 3 per cm.
(eg.) 1-3 cm =1 to 3 cm between
 veins.

NORTH 10+75 West	STARTED 26 Aug. 1980 FALCONBRIDO	GE	PURPOSE F	or geologic	HOLE No. A 1
8+00 ELEV. 1016 metr	COMPLETED 31 Aug. 1980 DIAMOND DRILL F	RECORD	conductor	ting EM-16 c, and testing silt sample.	SECTION
BEARING Vertical DIP900 collar	ALBERT CREEK Acid test not possible due to high water pressure.	·		Y J. Wilson	OFFSET
FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	C. L.	
D. J. Drillin	g. 17 A Drill B Q Core				·
0 - 12.2 m	Overburden				
12.2 - 46.9 m	F.g m.g. light grey, porous qzte vugs to 1 cm.				
	dia. Mod. to very hard but occ. soft, buff weathering				
	patches (spl. 16.4 m) Bed: 50 ⁰ @ 14.3 m, 64 ⁰ @				3-
	30.5 m.				
	Concretion ? spl: 20.7 m. Sand layer spl:26.5 -				
	26.8 m.				
46.9 - 53.3 m	As above plus soft, buff, finely laminated				
	siltstone spl: 47.2 m. Bed - contorted, slumped ?				
	20° - 80°.				
53.3 - 74.1	Mod H, f.g., light grey qzte vugs to 5 mm.				
,	Bed: 50 ⁰ @ 71.9 m.				
74.1 - 107.3 m	Mod, H. f.g., med, to dark grey impure quartzite,				
End of hole	vugs to 5 mm. brown coatings on fractures.				
	Bed: 45 ⁰ @ 89.9 m				

FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	C.L.				
	Sp1: 76.8, 84.1, 86.9, 89.9, 92.0, 107.3.							
	Veins							
27.2 - 30.5	Rare 45° to 60° 3 mm qz veinlets							
76.2 - 407.3	Occasional 5º 1mm qz veinlets.							
	Fractures							
12.2 - 12.95	1 cm spacing @ 200, 700							
12.95- 13.9	5 cm @ 20°							
13.9 - 14.0	1 cm @ 35°				-			
14.0 - 15.5								-14
15.5 - 26.5	3 cm @ 5°, 40°					···		
26.5 - 32.0	5 cm @ 50, 200							
32.0 - 32.6	2 cm @ 3°						!	
	2-5 cm @ 3°, 35°					·		
70.1 - 72.5	5-2 cm @ 20°, 30°							
72.5 - 83.8	2-5 cm @ 3 ⁰ , 25 ⁰ , 40 ⁰							
	7-2 cm @ 5 ⁰ , 25 ⁰ , 45 ⁰						No. about 1 and a part of the second	
	mn stain @ 88.4 m							
	HCL test							
12.2 - 18.0	mod, interstitial and vugs							
18.0 - 24.0	Weak, interstitial					-		

SHEET No. 2

		SAMPLE	FOOTAGE	C.L.		 	
24.0 - 26.0	weak, frs.						
26.0 - 28.0	weak, frs, & yugs						
28.0 - 35.0	weak, inter & vugs & frs						
35.0 - 46.0	mod, inter						
46.0 - 48.0	none in siltstone						
48.0 - 51.0	mod, inter						
51.0 - 52.0	mod, inter & vugs, none in siltstone	-					
52.0 - 53.0	mod, inter						
53.0 - 60.0	none		and the state of t				 or productions - State - Victoria
60.0 - 68.0	mod, vugs						
68.0 - 70.0	mod, inter & vugs						
70.0 - 72.0	weak inter, strong vugs						
72.0 - 74.0	mod, inter					disk statement by the contract of	 , and replace of the Article Committee
74.0 - 75.0	weak inter		THE RESIDENCE OF THE PROPERTY		o de calabaga e apoquishmostral by the Print		
75.0 - 77.0	strong, vugs						
77.0 - 78.0	weak, inter, mod, frs.						1
78.0 - 79.0	strong vugs				n market or comment of the state		
79.0 - 81.0	weak, inter						
	mod, frs						
88.0 - 89.0	weak inter, mod vugs						

FOOTAGE		DESCRIPTION		SAMPLE	FOOTAGE	C.L.				
89.0 - 101.0	weak inter &	frs			denie all annual an		4			
101.0 - 103.0	weak inter, i	mod frs.								
103.0 - 104.0	weak inter, w	weak frs								
104.0 - 106.7	weak inter, n	mod vugs								
		Core Recovery (%) and c	asing							
0 - 12.2	casing	45.7 - 48.8	25%		85.3 - 88.4	62%				
12.2 - 15.5	90%	48.8 - 51.8	16%		88.4 - 91.4	20%				
	erne dade dad her	51.8 - 54.9	28%		91.4 - 94.5	16%				
12.2 - 15.2	casing	45.7 - 67.1	acasing		94.5 - 97.5	15%				-16
15.5 - 18.6	40%	67.0 - 70.1	20%		97.5 - 100.6	33%				
18.6 - 23.5	7%	70.1 - 73.1	43%		100.6 - 103.6	57%				
23.5 - 26.5	6%	73.1 - 76.2	48%		103.6 - 107.3	12%				
26.6 - 32.6	sand 25%	76.2 - 79.2	60%						- 1	
		79.2 - 82.3	34%							
15.2 - 45.7	casing	82.3 - 85.5	30%							
· · · · · · · · · · · · · · · · · · ·	: : !				and the second s					
								· Made visit page at the control of the		
	- V Anadoud Marin									

NORTH 10+25 West 1+00	STARTED 1 Sept. 1980 FALCONBRIDO	GE	PURPOSE Ge				No. A 2	
PAST	COMPLETED 5 Sept. 1980 DIAMOND DRILL F	RECORD	testing	EM-16	conduct	or CLAIN	Zap 1	
ELEV1018 m.		150.9 m (495 ft) PROPERTY						
BEARING <u>vertica</u>	1 ALBERT CREEK		LOGGED BY	J. W	ilson	OFFSET		
DIP <u>-90° @ coll</u>	<u>ar Acid test @ 150.9 m is -8</u> 8 ⁰		200020 81			PLOT	TED	
FOOTAGE	D. J. Drilling DESCRIPTION 17 A Drill BQ core	SAMPLE	FOOTAGE	C. U.	96	Zn	140	Ba
0 - 19 m	casing		·					
19.7 - 26.8	Mod. H, f.g., light grey quartzite. Occ. trace diss		21.3 - 22.9	10	6	16	0.2	90
	py = py and py in veinlets. (26 m 5° veinlets with py,		24.4 - 25.9	7	8	12	0.2	40
26.8 - 53.9	Hard, f.g. med to dark grey impure qzte. Buff, iron		27.4-28.4	6.	3	16	02	140
	stained zones: 27.1 - 27.3, 33.5-34.2 Bedding 10 ⁰ @ 27.7 m 5 ⁰ @ 33.2 m		05-32-0	8	5	10	0.2	867
	Trace diss. py & possibly cpy throughout 28.3 - 32.6 0° to 5° 2 mm calc vein. Tr py & gr ?		33-5 - 35.0	10	20	20	0.2	40
	34.1 - 34.7 5° to 15° 1-4 mm py vein. 37.2 - 37.3 altered, sheared? with 1-4 mm pyrite vein		36-6-381	6	6		0.2	40
	as above. Py. increasing gradually downhole	 	39.6 -41.1	6.	6	8	0.2	20
	40.5 py in 2 mm vugs. 41.1 80°, irregular, 2 mm black (Fe ?) vein.		42.7-44.2	6	10	8	0.2	40
	41.8 - 45.7 1% py in 15° & 80° 1 mm py. veins and bleb to 1 cm dia, and on rim of calc/qz vugs, and diss.		45.7 - 47.2	6	7	6	0.2	40
	45.7 - 49.1 0.5% py. as above but mainly diss. 1% black mineral in veinlets.		48.8 - 50.3	6	6	હ	0.2	20
***************************************	51.8 - 53.6 occ. suture-like fractures with trace black mineral & py.		51-8 -53.3	8	10	15	0.2	50
53.8 - 55.3	Soft, v.f.g., black mudstone as silt/clay or core with						-,	
	0° to 15° fractures. 1% (?) v.f.g. diss. py.; possibly graphitic. Bedding 5° @ 54.6 m.		54. 9 - 553	33	24	36	0.9	740
55.3 - 57.0	Hard, v.f.g., light grey, quartzite with trace v.f.g.							
	diss. py. 55.5 - 57.0 brecciated & poorly cemented, with calc.							ļ
	cavities. Top 5 cm is buff.						1	

HOLE No. __

V-11.

FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	С.Ц.	FE	Zn	Ag	Ba
57.0 - 60.3	Very hard, f.g., banded light to dark grey quartzite. Usually 2 to 5 mm parallel bands @ 0°, indistinct contacts. Bedding 0° @ 58.5 5° @ 59.7.		57.9-59.4	3	22	128	0.4	30
	Note: (2) 3 cm green volcanic pebbles @ 57.6 m. Caved? or in place? 60.0 - 60.3 py, galena, brown sph., + cpy? in 1-2 mm. veinlet.							
60.3 - 61.9	V. hard, f.g., dark grey, impure qzte with minor light grey streaks. Rare diss, f.g. py.		60.9-61.9	j	2	5	0.2	100
61.9 - 62.6	Light breccia zone. Pale f.g. qzte fragments in calcit rich matrix. Rare, irregular, dark, pyritic veinlets. Bed: 50 @ 62.2	e	61.9 - 64.0	4	22	24	0.2	50 -18
62.6 - 67.5	Hard v.f.g. light grey qzte with occ. dark wisps. Patches of mod. H, f.g. med. grey qzte. Traces f.g. py. throughout. 67.2 - 67.5: 1% py-diss. and veinlets and one v.f.g. galena in veinlet.		64.0 - 65.5 67.1 - 67.5		1	l .	t .	i
67.5 - 72.4	Mod. to v.h., f.g., med grey. impure qzte with occ. 1-2 mm black wisps often pyritic. Traces diss f.g. py. cubes throughout and 1 mm py. on frs. 68.4 - 70.6 Brecciated qzte with qz/calc. stockworks 1% py on fractures. Up to 2% black		67.5 -68.6 20.1 - 71.6		1	1		
72.4 - 73.8	mineral. Lower contact is 35°, 3 cm calc/qz V.H, vfg, med. grey qzte with 3 - 5% vfg fr. & diss. py.cubes.		73.1-73.8	3	14	4	0.2	340
73.8 - 74.7	Soft to mod. H, f.g, med. grey, impure qzte. Bed: 0° @ 74.1 3 - 5% vfg diss py.		73.8 - 14.7	15	20	10	0.3	1090

FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	C.U.	PE	Zn	<u>A</u> 5	Вэ
74.7 - 75.4	Soft to mod. H, m.g, med. grey, impure qzte. Possible breccia. 1 - 3% py-diss and on frs.							
75.4 - 82.3	Hard, f.g, light to med. grey, impure qzte. 79.9 - 80.5 - Breccia. Bed: 10° @ 76.2. 0.5% py in 1 mm	-	76.2-72.7	7	10 6	20 8	0.2	80 30
	irregular frs with black mineral. Lower contact is 3 cm, 30° qz vein in qzte breccia.		79.2-80-8	6_	E	0	0.2	
82.3 - 82.9	Soft. vfg, med. grey siltstone 3 - 5% diss. vfg py 82.3 m: 5 mm py vein.		82.3 - 82.9	25	12	24	0-2	70
82.9 - 83.8	V.H, vfg, light grey, qzte with 0°, 1 - 3 mm. wisps of black mineral & pyrite. Dark grey 1 cm band with 2% diss. py. Bed: 10° @ 83.5, 13° @ 83.8		82.9 -83.8	3 <i>5</i>	14	17	0.3	260
83.8 - 85.0	Soft, vfg, med. grey siltstone with 1 - 3% diss. fg. py. occ. veinlets of pale green waxy mineral (clay?).			<u></u> .				
85.0 - 86.6	Hard, vfg, light grey impure qzte with zones of med. grey wisps carrying 3% diss. py.		85.3-86.6	18	6	11	0.2	390
eg	.(Dark wisps in light rock - 3% py. throughout light grey - trace py).							
	Lower contact is 4 cm. brecciated, calc & qz filled at 25°.							
86.6 - 87.2	Soft, med. grey siltstone5% vfg. diss. py.							
87.2 - 90.7	Hard, fg to mg, med. grey qzte .5%-10% diss. vfg py		88-4-88-7	13	17	12	0.2	730

FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	C.LI	FE	2.	Ag	Вэ
	Strongest py to 88.7 2-4% py in frs & diss. to 90.7		887-89.9	9	14	25	0-2	48c
90.7 - 91.4	Soft, med grey, siltstone. 3% f.g. diss. py.							
91.4 - 93.9	Mod. to hard, f.g. to m.g, impure qzte 1-2% diss. f.g. py. 1% py in 5° to 45° frs. with 1% black mineral		91.4 - 930	G	6	//	0.2	310
93.9 - 95.2	0° bedding contact between (a) v. hard f.g pale grey							·
	qzte with 1-2% diss. py and 1% py in frs. (b) soft, graphite? black shale with white layer (barite? or calc-qz? or both?). 5% diss. py. in shale. Bedding 50 @ 94.2							
95.2 - 97.7	V.hard, f.g, pale grey qzte with patchy trace diss. py & tr. py on frs.		97.5-99./	10	12	//	0.2	560 %
97.7 - 98.8	Soft, fg-m.g, med. grey, impure qzte. 5% diss. f.g							
98.8 - 101.6	V. hard, f.g., light grey. qzte. Occ. dark grey patche Tr. to 0.5% f.g. diss. py. often cubes. Some on frs.	5.	100.6-102.1	10	16	28	0-2	. 170
101.6 - 102.1	Hard, f.g. to m.g., pale grey qzte with rare diss.py laminated with mod. H to soft, black, graphitic? shale with 1% py vein on contact. 3 mm to 2 cm white barite? or qz-calc? vein? in shale. Bed 50 @ 102.1							
102.1 - 103.5	Hard, f.g. to m.g pale grey qzte with occ. dark streaks. Patches of tr. to 1% diss vfg py usually with dark zones.							
103.5 - 103.9	Soft, med. grey siltstone. 3% diss. py. Bed 50 @ 103.6		103.6-103.9	110	28	3/	1.3	300

HOLE No. A 2

FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	Ç. U.	F6	Zn	Ac	\mathcal{B}_{a}
103.9 - 105.6	m.g., pale grey qzte 104.4 - 104.7: brecciated 105.0 - 105.6: altered friable. Trace to 0.5% diss. fg. py.		103.9-105.2	23	20	12	0.2	140
105.6 - 107.2	Mod. H, f.g. med. grey, impure qzte. Dense, fine (1 mm) black pyritic stockworks. Total py. 5 to 10%. Lower contact @ 36°.)	106-7 - 107.2	12	16	10	0-3	810
107.2 - 108.8	Mod H, m.g., pale grey, pzte with 1 cm band of shale and white qz ? @ 20°. Tr. diss. f.g. cube py. 107.9 108.2: as 105.6 - 107.2			W 14 17 1 1 1				
108.8 - 110.5	V. hard, f.g. pale grey qzte. Tr. to 0.5% diss. py. 108.8 - 109.7: brecciated, qz-calc filled 110.4: greenish waxy veinlet (clay ?)							-21-
110.5 - 110.9	Mod. H. m.g., med. grey, impure qzte.		110.5-111.2	10	8	16	0.2	<i>36</i> 0
110.9 - 112.6	Brecciated as 108.8 - 110.5							
112.6 - 113.8	Hard, m.g., med. grey qzte. Irregular 1-2 mm black and pyritic veinlets @ 0° total py. 0.5%.		112.8 - 113.8	28	20	580	0-2	360
113.8 - 114.3	Mod. H, f.g., dark grey, impure qzte 2% DISS. PY. Bed: 0 ^o @ 114.3.							
	Hard to mod. H, m.g., light grey qzte Vague, laminated appearance to 115.2 (dark wavy 1-3 mm bands and occ. qz veins @ 0 to 10°. 116.4 - 117.3: 30° sheet, soft, friable. 118.1 - 118.4: sheared Tr. diss. py. throughout. 115.2: 80° 1 to 6 mm py. veining. 115.3: Tr. galena on fr.		1/5.8 - 1/23	14	/6	94	0-2	190
		· · · · · · · · · · · · · · · · · · ·		MATERIAL PROPERTY OF THE				

HOLE No. A2

N		•	TM	•

FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	Ç.U.	ρ6	Zn	Ag	Ba
118.4 - 120.2	V.H. f.g., med. grey, qzte		1189-120-2	6	12	20	0.5	620
	118.4 - 118.9 shear				17	11	-	-80
	1% diss. f.g. py. Tr. py. on frs. Lower contact @ 120		1214-1234			76	0.2	20
120.2 - 120.4	Soft, friable, black shale 2% diss. py.			·. ···				
120.4 - 123.4	Mod. H to soft, m.g., med. grey, impure gzte.		121.9 - 123.4	7	13	16	0-2	80
	Irregular 1 mm py. stockworks @ 0°,5°,80°. 120.4 - 121.0: 0.5% diss. py.							
123.4 - 127.6	Soft to mod. H, f.g. med. grey qzte. (125.3 - 126.5:							
	$\frac{1}{2}$ to 1cm black shale with 2-5% diss. py. Contact zone is 2 mm py. vein 0 0 to 50).		125-3 - 126-5	//	66	167	0-8	750
	eg.							
	Shale safe to med give			an to the group of the second of the second of				.22-
	123.4							
	5% diss. f.g. py. as cubes in qzte. some concentration							
	in blackish zones.							
ago qualcal (viv. e. si apromissa giga vigina e de estaman.	Note: vague, near boxworks of black throughout. Bed: 50 @ 126.2			· · · · · · · · · · · · · · · · · · ·				
		and the second second	128.0 - 129.5	4	12	530	0.4	360
127.6-137.2	V.H., fg, light grey qzte. 0.5% diss vfg py cubes & 0.5% py on frs		i		1	1		
	131.7-137.2 broken, sheared?		131.1-132.6	6	19	36	0-2	430
	131.7-132.0 whitish, bleached, brecciated.		134.1-135.6	6	16	18	0-2	50
137 2_149 0	usually Hard, f.g light grey qzte. Brecciated,		137.2-1387	/3	42	1400	0-2	700
	veined, fractured. Some parallel 0° to 5° white and light grey laminations (1-3 mm). Trace diss. vfg py.	ht	140.2 -141.7	11	9	11	0.2	80
149.0 - 150.9			143.3-144.8	9	20	16	0.2	140
And the state of the second state of the secon	diss. py.		146-3-147.8	9	12	8	0-2	60
	149.0 - 149.2 med. H. fg. med. grey qzte with 1% diss. py. Bed @ 5°		149.3 - 150.4		6	12	0.2	150
//					HOLE	No. A 2		
and of hole.	And the second s							

Veins, stockworks, breccia filling

From To Spacing Width (mm) Mineral Filling Ang	
	le (°)
19.7 m-29.0 m 1-2/cm 0.5-1 qz*, calc 10,17,5	
29.0 - 31.4 1-10 cm 0.5-1 calc*,qz 0,5,	40
31.4 - 33.2 5-20 mm 0.5-1 calc 5,80	
33.2 - 34.7 1-4 /cm 0.5-2 calc,py,qz 5,20,	
34.7 - 38.7 $1-2$ cm $0.5-2$ qz*, calc $10,40,8$	80
38.7 - 39.6 breccia qz	
39.6 - 50.3 1-3 /cm 0.5-5 calc,qz,py,	
black mineral 40,80	
50.3 - 51.5 1-3 cm 0.5-1 calc,qz 5,20,	
51.5 - 53.0 1-3 /cm 0.5-1 calc,qz 5,20,	
53.0 - 53.9 2-10/cm 0.5-2 calc,qz 5,20,	
53.9 - 55.8 1-2 cm 0.5-1 calc,qz 5,20,	40,80
55.8 - 57.3 breccia and	
1-2 /cm 0.5-2 calc,qz 15	
57.3 - 63.4 1-3 cm 0.5-2 qz*, calc, sph, gal, py 10,50,	80
63.4 - 67.4 3-20 cm 0.5-1 qz*, calc 5,40	
67.4 - 72.5 $1-2 / cm$ $0.5-2$ calc $5,20,6$	60,80
72.5 3 cm vein calc 33	
72.5 - 74.8 5 cm 0.5-3 calc*,qz 20,45,	80
74.8 - 80.5 1-3 /cm 0.5-4 calc,qz,py,	
black mineral 5,25,	80
80.5 - 84.6 1-3 cm 0.5-3 calc*,qz 10,20,	80
83.8 2 cm vein qz, calc 15	
82.3 3 cm vein qz,calc,py 35	
84.6 - 86.7 1-2 /cm 0.5-4 calc*,qz 30,40	
86.7 2 cm vein qz,calc 20	
86.7 - 88.7 5-20 cm 0.5-1 calc,qz 20,80	
88.7 - 89.1 1 cm 0.5-3 calc 15,25	
89.1 - 89.6 10-20 cm 0.5 calc 15,20	
89.6 - 93.0 1-3 cm 0.5-2 calc 15,20	
93.0 - 93.3 10-20 cm 0.5 calc*,qz,py 10	
93.6 - 94.5 2-5 cm 0.5-2 qz*,calc 5,25	
94.5 - 97.5 1-2 /cm 0.5-3 calc*,qz 5,30,	50
94.8 1 cm vein calc,qz 20	
97.5 - 98.7 20 cm 0.5 calc,qz 4	
98.7 - 101.2 1 /cm 0.5-2 calc 15,50	
101.2 - 104.2 1-5 cm 0.5-2 calc*,qz 15,30	
101.8 1 cm vein qz,calc 5	
104.2 - 104.5 3 cm 0.5-1 calc	
104.5 - 108.8 2-10 cm 0.5-1 calc 5,20	
108.8 - 109.7 primary? (sedimentary) breccia zone with:	
5-10 cm 0.5-1 calc,qz 15,30	
109.3 1 cm vein qz*,calc 15	

Sheet 7 Hole A 2

Veins, stockworks, breccia filling

From	<u>To</u>	Spacing	Width (mm)	Mineral Filling	Angle (°)
	- 110.3m - 110.6	3-10 cm 1-3 cm	0.5-1 0.5-1	calc calc,qz,waxy	40
110.6 112.9	- 112.9 - 113.6	2-4 cm 1 cm	0.5-2 0.5-2	grain mineral calc qz*,calc	5,40 10,30,70 10,30,70
113.6 115.1	- 116.7	5-20 cm	0.5-2 1 cm vein	qz*,calc py	30,75 75
116.7 118.9 120.4	- 118.9 - 120.4 - 122.7	1-4 /cm 2-5 cm 1-2 /cm	0.5-5 0.5-2 0.5-3	calc*,qz calc*,qz	15,35,70 15,35,70 5,45
112.7 122.9	- 122.7 - 122.9 - 127.7	2-4 /cm 10-20 cm	0.5-3 0.5-3 0.5-1	calc,qz,py calc*,qz calc,qz	3,43 30 5,30
127.7 134.7	- 134.7 - 140.2	1 /cm breccia zone		qz*,calc calc	5,25,35,55
140.2 149.0	- 149.0 - 150.8	1-2 /cm 1-3 cm	0.5-2 0.5-2	calc calc,qz*	15,20,70 20,35,50

Fractures

From	<u>To</u>	Spacing (cm)	<u>Angle</u>
21.9 25.9 33.2	- 34.7	1-5 10 15-30 1-10	25,60* 70 10,25,55 10,80*
34.7 52.6 53.0 53.8	- 53.0 - 53.8 - 55.3	10-25 1-5 5-15 clay, graphitic, pyritic gou	70 5,80* 25,60 age
55.3 57.4 58.7 63.4	- 58.7	10-20 1-5 & pebbles 5-7 1-5	65,80 5,45,80 50,70 5,40,70
68.3 71.3 75.0	- 71.3	7-20 5-15 clay, graphitic, pyritic, gou	55 40
78.2		1-5 crumbly - clay, graphite,py	35,75

Fractures

From	<u>To</u>	Spacing	Angle
84.7 90.5 98.4 99.1 99.7 100.0 100.9 103.0 105.8 110.0 116.4 121.0 122.8	- 122.8 - 126.5 - 128.9	1-5 10-15 5-10 1-5 5 0.5-3 1-5 5-15 5 10-20 7-15 1-5 5-15 1-5 5-20 1-5	5,35*,75* 30,50 0,75 5,25 65 50 55 10,65 5,35 5,25 5,30 5,35,45 5,35 0,5,25 10,40,80 25,80
	- 137.2	0.5-1 & pebbles 5-15	5,40,60

Acid Test

From To			
19.7m - 27.4m	moderate	interstitial a	and veinlets
27.4 - 33.5	strong	interstitial	
33.5 - 38.1	moderate	interstitial	
38.1 - 51.8	strong	interstitial	
51.8 - 56.4	v. strong	interstitial	
56.4 - 57.8	strong	interstitial	
57.8 - 67.0	weak frs		
67.0 - 71.6	strong	interstitial	
71.6 - 74.7	weak frs		
74.7 - 86.9	strong	interstitial	
86.9 - 95.1	moderate	interstitial	
95.1 - 101.2	. weak	frs	
101.2 - 101.8	3 strong		
101.8 - 103.0	9	frs	

Sheet 9 Hole A 2

Acid Test

From		<u>To</u>		
			_	
103.0m	-	105.5m	moderate	frs
105.5	-	107.1	weak	frs
107.1	-	108.8	v. strong	none in shales
108.8	-	123.3	usually v. strong in whit	e matrix of fragmental rock
			none in dark grey zones of	f qzte.
123.3	-	131.7	weak	frs
131.7	-	131.8	v. strong	
131.8	-	138.4	moderate	interstitial
138.4	_	150.6	strong	interstitial in shear?
150.6	-	150.9	moderate	interstitial

Core Recovery

From		<u>To</u>	%
18.3m	_	21.3m	55
21.3	-	24.4	95
24.4	-	33.5	100
33.5	-	36.6	95
36.6	-	45.7	100
45.7	-	48.8	95
48.8	-	54.9	100
54.9	-	57.9	95
57.9	-	128.0	100
128.0	-	131.0	60
131.0	-	134.1	55
134.1	-	137.2	45
137.2	-	140.2	60
140.2	-	143.3	95
143.3	-	146.3	20
146.3	-	149.3	20
149.3	-	150.9	100

NORTH 19 + West	STA	ARTED 5, Sept	1980	FALC	CONBRI	DGE		PURPOSE Geo	ologic	data,	HOLE	No. A 3	§ А 4
****** 4 +	75 con	MPLETED 17, S	Sept 1980	DIAMOND	DRILL	RECOR	D	EM-16 cond	ductor	, soil	CLAIN	<u>Zap 1</u>	
	metres	ютн <u>40.2 meti</u>			PROPERTY			sample anor	naly.		SECT	ION	
BEARING Vertic	a1				ERT CREEK			LOGGED BY	J. Wi	lson	OFFS	ET	
DIP	° @ collar		D.	J. Drilling,	, 17A Dril	1, B.Q. co	ore	COOOLD BI			PLOT	TED	
FOOTAGE		DE	SCRIPTION			SAMPLE		FOOTAGE	C. LL	PE	Zn	Ac	Ba
0 - 21.3 m	N casing to	o 24 m. B casi	ng to 36	.6 m								\ \	
_21.3 - 40.2	Black Graph	nitic, sheared	shale.	Probably nea	ır vertica	1							
	fault. Pyri	ite throughout	as 0.5%	(?) diss. v	.f.g. One						,		
		cia fragment s dark f.g. mass									<u> </u>	 	<u> </u>
	are fine la	aminated mudst	one. Blac	ck laminae a	lternatin	g	<u> </u>	· · · · · · · · · · · · · · · · · · ·		ļ	ļ		ļ
	with light not matrix	grey. Stockwo	rk veinle	ets across f	ragments,						·		-2
	No veining.	•											7-
		Structures.								ļ. <u>-</u>			
21.3 - 22.9	1 cm., grav	vel/chips					21.	3-24.4	26	14	90	0.2	920
22.9 - 23.5	1-3 cm @ 5 ^C), 45 ⁰	······································										
23.5 - 24.4	3 mm. to 1	cm. flakes, o	ccasional	l 3 cm. bloc	k.								
24.4 - 27.4	2 cm. pebb1	les.			* * * * * * * * * * * * * * * * * * * *		24.	4-30.5	38	16	143	0-2	1160
27.4 - 29.6	3 mm. to 1	cm. flakes											
29.6 - 34.7	0.5 to 1 cm	n. chips @ 5 ⁰	to 20 ⁰				30	5-36.6	38	16	123	0.3	1350
34.7 - 40.2		segments, so					36.	6-40.2	39	18	187	0.2	1190
End of Hole	Dark to med throughout	lium grey brec hole.	cia fragn	nents in bla	.ck matrix								
		HCL t	est										
		oderate react	ion throu	ighout Inter	stitial								
	and in vein	lets.											
V-11.											A 3 /	'A4	

FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	C.L.		T		
	Core Recovery							
21.34 - 24.4	40%							
24.4 - 27.4	15%							
27.4 - 30.5	15%							
30.5 - 33.5	45%				-			
33.5 - 36.6	90%							
36.6 - 39.6	40%							
39.6 - 40.2	25%							
			Mineral Commission of Manager States of the Commission of the Comm					-28
······································			and the second s					
and the second s			540	IDO	- E	5.4	WPCE.	>
The state of the s			Forty (in)			Zn		Ba
THE RESIDENCE COLORS AND DESCRIPTION OF THE PROPERTY OF THE PR			30.5		20	i	0.2	1490
The control of the materials applying the second con-			36.6		23	260	0.3	1740
			40.2	4.4	16	136	0.2	// 66

NORTH 20 +80 EAST 2 + 00	STARTED 16, Sept 1980 FALCONBRIDO		PURPOSE Geo EM-16 cor				No. A 5	
ELEV. 1077 metr	LENGTH 148.4 m. (487 feet) PROPERTY	ECORI	sample an	nomaly	y SECTION			
DIP900 @ col1	D.J. Drilling 17A Drill, E	R O cor				PLOT	TED	
FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	C. U.	PE	24	Aci	$\beta_{\rm a}$
0 - 30.5	Casing							
30.5 - 45.7	Very soft, crumbly black shale to 38.7 and broken chips		30.5-32.0		16	230	1.4	1280
	of black argillite to 45.7.		33.5 - 35.0		22	1400	3.4	1830
45.7 - 48.8	Mod. to v. Hard black, fragmented argillite. Rounded		45.7-47.2	52	14	43	2.3	12/0
	clasts (0.5 to 1 cm. dia). Clast supported. 20% v.v.fg diss. py. in clasts. Matrix is black with			_				-29.
	diss py. occ. 5mm. py bleb. and py. on edges of calc veins. 45.8: brucite crystals in vertical vein (?)							9-
,	Total py = 5% (?) Graphite on frs.							
48.8 - 53.9	As above but angular brecciated fragments to 3 cm.		48.8 - 50.3	46	12	110	1.4	800
	dlameter. Gradation of roundness indicates possible vent/collapse type structure.		51.8-53.3	7/_	10	124	3.0	1210
	51.8, 49.4 m. 25° banding (bed?)							
	50.6 m. grey specks gal.? graph.? 50.3 - 53.9 - strong black material and diss & bleb							
	py. + 10%							
53.9 - 81.4	As above but usually massive.		54.9-56.4		16	570	09	1020
>	Higher py (10-15%) diss., layers & veins in black argillite.		57.9-59.4	# 66	14	630	1.0	110c
	57.9: 1mm. 60° py.layer		60.9-62-5		14	144	0.2	1250
	59.4: 1mm. 40° py. layer 60.6: 5mm. 55° py layer		64.0-65.5		14	/38	1.0	1150
***************************************	66.4: 3mm. 40° py layer		r		8	174	4.2	940
V-11.			70.1-71.6		HOĻE	166 NoA!	ت ر	28 ₀
			76.2 - 72.2		Ċ	110	08	1270

FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	C. ك.	P6	24	Ac	Ba
81.4 - 91.1	As above but 1% (?) v.v.f.g. diss. py.		19.2-80-8		17	126	1.0	18/0
91.1 - 114.6	As above but py as bands, yeins, blebs, diss., and		823-83.8		8	210	2.1	770
	irregular patches total 5-10% 92.3: 1-2 mm. 50° py. layers and calc. veinlet		85.2-86.9	30	15	420	1.8	1110
	w. specks of grey mineral (galena?) 107.6 - 107.9: 1-3 cm. irregular massive py. patch		88.4 -89.9	40	25	350	2.4	920
	111.9: 3 mm. 35° py. band. 112.2 - 113.1: 1 mm. calc. vein with occ. grey specks.		91.4 - 93.0	33	22	320	1.6	720
	114.0: 1 cm. 30° py layer and grey specks in 1 mm. calc vein.		94.5 - 96.0	32	9	230	2.4	740
114.6 - 130.1	As above (massive black, moderate to hard argillite).		97.5 - 99.1	44	10	310	4.0	840
	Trace to 1% diss. vfg py. graphite on fractures and some strongly graphitic zones (116.1 - 116.7, 121.0 -		100.6-102.1		10	260	5.7	620
	121.3, 122.2 - 122.5)		103.6-105.2		30	1300	7.0	10° - 30
130.1 - 134.1	As above but 3% py. (vfg. diss, veins, 5 mm. blebs).		115.8 - 112.3	43	8	340	3.8	720
	As above but stockworks prominent. Trace diss. py.		118.9-120.4		6	250	3.4	570
136.5 - 146.3	Upper contact is 5 mm. py, layer @ 40°.		121.9-123.4		10	370	6.0	7/0
	Rock is as above but trace to 1% total py. as patches of 5% (?) diss. vfg py., blebs, layers		125.0 - 126.5		7	320	3.5	720
	142.3: 1 cm. py layer @ 55°.		128.0-129.5		25	1200	5.6	1/20
146.3 - 148.4	As above but trace py.		131.1-132.6		26	370	0.3	8/0
End of hole.			134.1-135.6		8	80	0.2	490
The second secon	Veins, stockworks, breccia fillings		137.2-138.7		48	5500	4.2	910
			138-7-140.2	97	70	3 800	4.0	800
30.5 - 148.4	All calcite filling except at 96.8 & 146.0 : 2-3 mm.	alcite	1402 - 141.7 and qtz.		44	3 000	4.4	740
30.5 - 45.7	Broken rock.		143.3 - 144.8		22	3200	2.4	760
**************************************			146-3-147.8	With the Control of t	12	290	c - 2	1040

FOOTAGE	DESCRIPTION	SAMPLE	FOOTAGE	C.L.				
45.7 - 54.5	Brecciated with 1 mm. stock works 1 to 5 /cm spacing							
1317 0715	(1 cm vein 45.9 m. 45°)							<u> </u>
	(5 mm vein 47.8 m. 5°)							
F.4. F. 70. 1	(1 cm vein 50.3 m. 10°)							
54.5 - 70.1 70.1 - 80.5	5 - 10 cm spaced 1 - 2 mm vein @ 45°, 55° Breccia zone and 1/cm veins @ 60°			-		<u> </u>	 	<u> </u>
80-5 - 82.0	5 - 10 cm. spaced 1 mm. @ 50°					}		
82.0 - 89.6	2 - 5 /cm spaced stockworks							
89.6 - 106.7	85.3 - 89.6: very broken 2 / cm spaced stockworks 0.5 - 1 mm.							
106.7 - 112.6	2 - 5 /cm spaced stockworks 0.5 - 1 mm.							
	occasional 3 mm. vein @ 15°, 60°.			1				
112.6 - 122.5	1 - 3/cm spaced stockworks 0.5 - 1 mm.							
122.5 - 133.8	1 / cm spaced stockworks 0.5 - 2 mm. (123.4 1 cm 25° vein)			į				
	(123.4 1 cm 25° Vein) (132.6 4 mm 20° Vein)			ļ		ļ		
133.8 - 133.9	3 mm irregular calcite veins.							-3]
133.9 - 136.2	1 - 5/cm spaced stockworks and breccia filling 0.5 0	2 mm.						Ī
	134.2 2 cm qz, calc, breccia filling @ 55°, 80°.						ļ	
136.2 - 137.0	•							
	2 - 3 / cm spaced 0.5 - 1 mm stockworks. Stockworks and breccia filling 0.5 - 3 mm.							-
148.3 - 148.1	1 - 2 cm spacing 0.0° , 70° .		5/11	5-1=		Sam	22	
1,0.1	1 2 cm spacing 6 20 , 70 .		S LUI (octage (m)		21		1	0
			(octagi(m)	Cu	1-6	Zu	49	ßa
			21.3		10	600	0.4	2040
			44.8		12	510	1-2	148c
			82-3		20	690	15.	1270
			85.3		18	890	4.2	1060
			88.4		16	·	2-5	1
							6.6	
			91.4	ļ	24	170	6.6	1070
			94.5		20	570	5.8	1150

SHEET No. _____3

Fractures

From 7	<u> </u>	Fracture spacing ((cm.) Angle (°)
30.5 - 45.	. 7	1-5	
45.7 - 47.		5-10	45,55
47.2 - 54.		10-30	0,45*,15
54.2 - 56.		2-5	35,55
56.4 - 59.		5-10	0,55,70
59.1 - 60.		1-5	55,70
60.0 - 60.		10	20,70
60.6 - 61.		1	0,70
61.6 - 62.		5-10	25 , 55
62.5 - 65.		1-5	5,30
65.2 - 84.		5-15	30,65*
84.1 - 88.		1-3	irregular
88.1 - 91.		0.5*-5	crumbly*,5,30
91.4 - 95.		1*-5	0,80
95.7 - 98.	. 4	2-10*	5,30
98.4 - 99.	. 1	1-5	0,80
⁹⁹ .1 - 105	5.5	5 - 15	5,60*
105.5 - 106	5.7	2 - 5	15
106.7 - 110).9	10-20	15,30
110.9 - 111	l.5	1-5	5
111.5 - 114	1.6	5-15	5,20
114.6 - 117	7.3	1-5	5,30
117.3 - 127	7.8	2-10	25,50
127.8 - 133	3.8	3-5	25
133.8 - 138	3.4	10-15	30,45,60
138.4 - 139	9.3	1-5	45,60
139.3 - 139		10-20	25
139.9 - 141		1-3	45,60
141.1 - 142	2.3	10.15	25
142.3 - 143		5 - 10	5,30
143.3 - 145		1-5	0,45
145.4 - 148		10-15	60
148.1 - 148	3.4	1-5	25
		HCL Test	
	_		
30.5 - 65.		strong	interstitial
65.2 - 133		none	
133.2 - 136		strong	interstitial
136.2 - 146		none	
146.6 - 148	3.2	strong	

Core Recovery (%)

From To	%	From To	%
30.5 - 33.5	30	85.3 - 88.4	30
33.5 - 36.6	16	88.4 -,94.5	75
36.6 - 42.7	2	94.5 - 97.5	80
42.7 - 45.7	10	97.5 - 100.6	75
45.7 - 54.9	100	100.6 - 115.8	100
54.9 - 57.9	80	115.8 - 121.9	95
57.9 - 61.0	100	121.9 - 125.0	55
61.0 - 64.0	80	125.0 - 131.1	65
64.1 - 67.1	45	131.1 - 134.1	90
67.1 - 70.1	50	134.1 - 137.2	100
70.1 - 73.1	60	137.2 - 140.2	80
73.1 - 76.2	40	140.2 - 143.2	90
76.2 - 79.2	100	143.2 - 146.3	70
79.2 - 82.3	100	146.3 - 148.4	90
82.3 - 85.3	60		

Sheet 5

Hole A5

APPENDIX II

Thornhill Mineralogical Report (J0#2754) by R. Buchan

Albert Creek Project

A. Drill core A2, 197.0' - 197.2'

A description of PTS 5893, cut from the mineralized drill core, is given on the following page. The host rock is an equigranular, fine grained quartzite. It is cut by veinlets of carbonate-sphalerite accompanied by lesser pyrite, arsenopyrite, chalcopyrite and galena.

B. "Gunnar's sphalerite"

The brown mineral in a carbonate matrix now consists entirely of goethite with traces of hematite. However, relict textures in the polished section (PS7202) and the presence of zinc (Table I, sample B), strongly indicate that the goethite has completely replaced sphalerite.

C. Overburden cuttings, hold A2 (10', 50' and 100' depth).

At first examination, there appeared to be no obvious heavy minerals in the three samples of drill cuttings. The samples from 10' and 50' were both treated by heavy liquid separation (S.G. - 2.9), giving sink fractions of about 20% the original volume. Both heavy fractions appeared similar and a portion of the sample from 10' was crushed and X-rayed. It consists of feldspar, clinopyroxene, amphibole and possibly epidote with no indications of any common heavy minerals.

The sample from A2 at 100' was also X-rayed. It consists of quartz, mica, chlorite, feldspar and possibly calcite and dolomite. Again there are no indications of a heavy mineral constituent. The presence of barium in the qualitative spectrographic analysis, Table I, might indicate the presence of minor amounts of barite.

In summary, no abnormal amounts of heavy minerals were detected in any of the samples which would account for the difficulty in raising the cuttings during drilling.

RB. Re

RB:sls Attach. B. Buchan

FALCONBRIDGE METALLURGICAL LABORATORIES QUALITATIVE SPECTROGRAPHIC ANALYSIS

DISTRIB	UTION:		REPORT No.
ANALYT	TICAL METHOD:_		_
REQUES	TED BY:		DATE:
RECEIVI	ED FROM:		CHARGE:
SAMPLE	No.:	80-705	No. of SAMPLES: 1
SAMPLE	DESCRIPTION:_	Mineralized Sediment	
		DRILL CORE (DDN #/	12)
		A2, 197.0' - 197.2'	
10	- 100%	Si	
3	- 30%	Zn	,
1	- 10%	Fe	
0.3	- 3%	Mg, Ca	
0.1	- 1%		
0.03	- 0.3%	Al, Ni, Cu, Ti	
0.01	- 0.1%	Mn, Cr, Co	
0.003	- 0.03%	РЬ	
0.001	- 0.01%		
0.0003	- 0.003%		
0.0001	- 0.001%	Ag	
< 0.0	0003%		
	I	K, Sr, Cd, Zr	
	S		

Unless specified above, the following were not detected at the approx. ppm lower limits of 0.5 Cu,Ag; 1 Mn; 5 Mg, Cr; 10 Ba, Be, Bi, Ca, Co, Ni, V; 25 Ge, Fe, Pb, Mo, Si, Sr, Sn, Ti, Zr, Tl, Pd; 50 Al, Sb, B, Cd, Ga, In, Li, Zn; 100 As, Au, Na; 200 Rh, Re, Ir, Pt, Ru, Sc; 300 Te, Os; 1000 K, U, Th; 2000 P.

FML-1017

Analyst _____

I = Interference prevents positive identification.

S = Strong spectral lines, unable to estimate amount.

FALCONBRIDGE METALLURGICAL LABORATORIES QUALITATIVE SPECTROGRAPHIC ANALYSIS

DISTRIBUTION:		REPORT No.
ANALYTICAL METHOD:		
REQUESTED BY:		DATE:
RECEIVED FROM:		CHARGE: 83-302
SAMPLE No.: 80-705		No. of SAMPLES: 3
SAMPLE DESCRIPTION: Rock Samples		
Cuttings from DDH AZ		
A2 cuttings at 100'	"B"	"SC-1"
	Scraping of sphal? in calcite	Black S after Py(?)
10 - 100% Si		
3 - 30% Fe, Ca, Al	Fe	Fe
1 – 10%		Si
0.3 - 3% Mg, Ti, Na	Si	•
0.1 - 1%	Mg, Ca	Mg, Al
0.03 - 0.3%	Zn	
0.01 - 0.1% Mn, Ni, V, Ba	Al, Pb	Ni, Cu, Ti
0.003 - 0.03% Cr	Ni	Ca, Co
0.001 - 0.01% Cu, Zn	Mn, Cu, Au	Mn
0.0003 - 0.003% Pb, Co, Mo		Мо
0.0001 - 0.001%	V, Mo	V
< 0.0003%	Ag	Ag
I B, K, Sr, Be, Zr	K, Sr, Zr	K, Sr, Zr
S		

Unless specified above, the following were not detected at the approx. ppm lower limits of 0.5 Cu,Ag; 1 Mn; 5 Mg, Cr; 10 Ba, Be, Bi, Ca, Co, Ni, V; 25 Ge, Fe, Pb, Mo, Si, Sr, Sn, Ti, Zr, Tl, Pd; 50 Al, Sb, B, Cd, Ga, In, Li, Zn; 100 As, Au, Na; 200 Rh, Re, Ir, Pt, Ru, Sc; 300 Te, Os; 1000 K, U, Th; 2000 P.

FML-1017

I = Interference prevents positive identification.

S = Strong spectral lines, unable to estimate amount.

Location

Albert Creek Project, B.C.

Lab. No. 80-705

DRILL CORE

DPH A

Sample Description Di

DDH A2, 197' - 197.2'

PTS No. 5893

MINERALS .	Est. % by Vol.	Grain Size Max.	(m.m. Avg.	
Quartz	. 86	-	0.12	
Tourmaline	Tr	-	0.08	
Zircon	Tr	_	0.05	
Carbonate	5	_	0.25	
Sphalerite	5	_	0.25	
Galena	<1	-	0.02	
Chalcopyrite	1	-	<0.01	
Arsenopyrite	Tr	-	0.08	
Pyrite	<1	_	0.12	
Pyrrhotite	Tr	-	0.01	

DESCRIPTION

The host rock consists of equigranular partly rounded quartz with scattered grains of tourmaline and zircon. It is transected by trains of minute gas and/or fluid inclusions and with occasional sulphide-carbonate veins. Sulphides consist mainly of dark brown sphalerite containing abundant micro-inclusions of exsolved chalcopyrite, pyrrhotite and galena. Subhedral arsenopyrite and pyrite occur as blocky grains associated with the sphalerite veinlets.

130 PEMBERTON AVENUE, NORTH VANCOUVER, B.C. (604) 985-0681

Geochemical Lab Report

FROM: Falconbridge Mietel Mines REPORT NUMBER: 21 - 85 Allant Colle DATE: Tobrusy 2, 1981 079 WILSON

me be.		1000	· <u>· </u>		core		
SAMPLE NUMBERS	34	33-	37-	1	33-		
11.3 2 - 70 22-		6	16	9.2	90		
4.4 \$6 25.9	7	8	12	0.2	40		
30.5 100 32.0	6 8	8	16 10	0.2	140		
33.5 110 35.0	19	20	20	0.2	40		
36.6 120 38.1	•	6		0.2	40		
39.6 130 41.1	•	6	8	0.2	20		
42.7 140 44.2		10		0.2	40		
7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3	7	8	0.2	40 20		
48.8 160 48.45° 51.8 170 53.3					50		
54.9 180 55.3	33	10 24	15 36	0.2	740		
57-9 190 59.4	3	22	128	0.4	30		
10.9 200 61.9	1	2	5	0.2	100		
51-9 203 64.0	•	22	24	0.2	50		
64.0 110 65.5	2	20	28	0.2	220		
	3	10	21	0.2	50 50		
67.5 221 68.6 70.1	5	16	14	0.2	20		
73.1 240 73.8	3	14	•	0.1	340		
13.8 142 74.7	15	26	10	0.3	1090		
76-2 250 77.7	7	10	20	3.2	30		
79.2 260 80.8	•	6	8	0.2	30		
82-3 170 82.4 -2-9 272 83.8	2 5 3 5	17	24 17	0.1 0.1	70 250		
- ,			1		1 (
85-3 250 86.6 88-4 290 88-7	18	17	11	0.2	390 730		
78-7 291 89-9	9	14	25	0.2	130		
91.4 300 93.0	•	6	11	0.2	310		
97-5 320 99.1	10	12	11	0.2	560		
100.6 130 102.1		26	28	9.2	170		
1.03.6 340 103.9	110	23 20	31. 72	1.3	300		
103.9 341 105.2	12	15	10	0.2 0.3	140		
110.5 362 111.2	10	3	16	0.2	310		
112-8 370 113-8	28	30	530	3,2	35 0		
115.8 330 117.3	14	1.6	34	0.2	190		
118.4 390 120.2	6	12	20	0.5	520		
121.9 400 123.4	7	13	16	0.2	30		
125.3 411 126.5		•	447	₩.₩	750		

BUNDAH-CLEGG & COIVII ALL ---

Geochemical Lab Report

PAGE:____ REPORT NUMBER: ____ 21 - 85 COYC From SAMPLE NUMBERS Ha 3 32. 払 11-128.0 2 -420 129.5 360 330 0.4 12 438 436 132.6 131.1 36 0.1 19 440 135.6 0.2 134.1 16 16 50 0.1 450 138.7 13 42 1400 137.2 700 0.1 460 141-7 11 • 11 140-2 30 470 j44.8 140 143.3 0.2 29 16 60 430 147-8 146-3 9 12 0.2 4:0 150-9 12 0.1 3 149.3 150 7 24.4 14 95 0.1 26 21.3 920 **80** 30.5 0.1 38 16 143 1160 24.4 100 36 6 1350 0.3 B 16 175 30.5 1190 120 40.2 0.2 39 18 187 36.6 16 250 1.4 30.5 5 - 100 32-0 1230 33-5 110 35-0 22 1400 3.4 1830 14 W 1.3 45.7 150 42.2 32 1210 300 1.4 12 110 48.8 160 50-3 48 1210 3.0 51.8 124 170 53.3 71 19 16 370 0.9 54.9 140 55-4 1020 190 59.4 46 14 630 1.9 57.9 1100 0.2 144 200 62.5 -14 1250 60.9 1150 64.0 210 65.5 138 1.0 • 14 230 271.6 340 174 4.2 • 8 10.1 240 74.F 1.3 · 6 166 23.1 700 • 6 250 27-7 110 0.3 76.2 1270 260 80.8 -17 116 1.0 79.2 1810 -8 2.1 770 210 170 83 A 82-3 230 56.Q 1110 30 15 420 1.8 85-3 25 2.4 290 59.9 48 350 320 80.4 33 300 93.0 22 320 1.6 91.4 720 94.5 230 32 9 2.4 310 96.0 740 840 4.0 97.5 320 99.1 44 10 310 **620** 330 102-1 260 3.7 -10 100.6 • 1300 7.0 340 105.1 30 1036 1100 43 8 340 3.8 110.3 115-8 .20 •6 250 3.4 390 120.2 118.9 570 370 6.0 710 400 123.4 •10 121.9 720 3.5 410 126.5 • 7 320 125.0 1200 5.4 .25 128-0 420 1295 1120 430 /32-6 . 26 370 0.5 131.1 810 440 135.6 •8 ુ:**૭** 0.2 134.1 490 132.20 -48 910 450 135.7 3500 4.2 135-7 435 800 70 5300 4.0 97 140 2460 141.) -44 3000 4.4 740 . 143.3 470 144.8 1200 2.5 -17 750 146.3 486 147.8 -12 290 0.1 1040

DUINDALL DEFE

Geochemical Lab Report

REPORT NUMBER: 21 - 35

Studge

PAGE:

10 12 29 18 16 24 20	600 510 690 890 480 940 570	0.2 0.4 1.2 13. 4.2 2.5 6.4 5.8	2028 1400 1270 1060 1240 1070 1150				
•	- 12 - 29 - 18 - 16 - 24	- 12 510 - 29 690 - 18 890 - 16 450 - 24 940	- 12 510 1.2 - 29 690 15. - 18 890 4.2 - 16 490 2.5 - 24 940 6.6	- 12 510 1.2 1270 - 20 690 15. 1270 - 18 890 4.2 1060 - 16 480 2.5 1240 - 24 940 6.6 1070	- 12 510 1.2 1270 - 20 690 15. 1270 - 18 890 4.2 1060 - 16 480 2.5 1240 - 24 940 6.6 1070	- 12 510 1.2 1270 - 29 690 15. 1270 - 18 890 4.2 1060 - 16 430 2.5 1240 - 24 940 6.6 1070	- 12 510 1.2 1270 - 29 690 15. 1270 - 18 890 4.2 1060 - 16 480 2.5 1240 - 24 940 6.6 1070

Geochemical Lab Report

ROM.	Falconbridge Nickel Mines	REPORT NUMBER:	21 - 209
110W			
DO IECT.	079	DATE:	February 20, 1981

SAMPLE NUMBERS	Pb ppm	ppm	ŀ				
2 - 70	-	90					Т
80	-	40	ŀ				-
90	-	140					
100		80					
110	-	40					
		40					
120	-	40					1
130	•	20					
140	•	40					
150	-	40			•		İ
160	-	20					
	İ						
170	-	50					
180	-	740					
190	-	30					
200	-	100					
203	•	50					
210	_	220					
	1	60					
,220	•						
221	-	60	·				
230	-	20					
240	-	340					
242	-	1090					
250		80					
260	-	30					
270		70					
272		260]	•			
2/2	_		į				
280	-	390	į				
290	-	780					
291	-	480					
300	-	310					
340	_	300					
			ļ				
341	-	140		1			
350	-	810		į,		}	
362	-	360					
370	-	360					
380	-	190					
390	•	620					
400	-	80					
411	-	750					
420	•	360					
430	•	430				1	1

BONDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

REPORT NUMBER: 21 - 209

PAGE: 2

SAMPLE NUMBERS	Pb ppm	Ba ppm						
2 - 440	-	50						
450	-	700						
460	-	80						
470	_	140						1
480	-	60						
400	_	00		-	Í			
490	-	150			1	1		
4 - 70	_	920						İ
80	_	1160						1
								1
100	-	1350						
120	•	1190						
5 - 100	15	1280						1
	22	1830						
110	1	1030			i i			
150	-	1210				[1
160	-	800				i		
170	•	1210			1		1	
		1000					,	
180	15	1020				ļ		-
190	-	1100						1
200	14	1250					1	
210	14	1150					ļ	
230	8	940						
250		740						
240	6	780						
250	5	1270					ł	
260	17	1810					†	
	3	770						
270							1	ł
280	-	1110						
290	_	920					}	Ì
300	_	720			ļ		•	
		740						
310	-							
320	-	840						
330	10	620					1	
340	30	1100						
	30							
380	-	720						
390	5	570						
400	10	710	}					
410	7	720						
	35	1100					ì	
420	25	1120	ļ					
430	26	810		•				
440	8	490						
450	48	910						
455	•	800						
460	44	740						
470	42	760						
480	12	1040						
A3 - 100	-	1490						
	1 1							
A4 - 120	-	1740						
	1	ļ	1			l	1	1

BONDAR-CLEGG & COMPANY LTD.

Geochemical Lab Report

REPORT NUMBER: 21 - 209

PAGE:___3____

SAMPLE NUMBERS	bb w 5₽	Ba ppm				
A4 - 132 A5 - 70 147 270 280	-	1180 2040 1480 1270 1060				
290 300 310	-	1240 1070 1150				
NOTE: 5-330 80 5-480 con	tain Sb					