

REPORT OX

VESFROB MTTNES LIMTTED

GEOLOGY

To March, 1964

COMTETS

Page
LOCATION 1
HISTCRY 1
CLATMS 2
TOPOGRAPHY 2
REGIONAL GEOLOGY 2
REGICNAL STRUCTURE 4
SEQUENCE OF EVENTS 5
POST ORE 9
FCRMATION DESCRIPTIONS 10
MTIERALIZATION 14
INTRUSIVES (A) Pre-Ore 15
INTRUSIVES (B) Post Ore 17
EMANATION EFFECTS 18
MINERAL ZONES 22
DESCRIPTION OF \#1 ZONE 23
DESCRIPTION OF 2 ZONE 25
DESCRIPTION OF \#3 ZONE 27
DESCRIPTION OF Hh ZONE 29
DESCRIPIION OF $\# 5$ ZONE 30
pOST dRE FAULTING 32
ORE RESERVES - \#1 ZONE 33
\#2 ZONE 34
\#3 ZONE 35
SAMPLING 36
SURVEY 38
MAGNETCMETER SURVEY 40
DIAMOND DRILLIMG 41

Claim Map	Scale	$1^{\prime \prime}$ to 2000'	Figure 1
Regional Map	"	1 to 50,000	Figure 2
Basement Surface	"	$1^{\prime \prime}$ to 400	Figure 3A
Iron Distribution	"	$1^{\prime \prime}$ to 400'	Figure 3B
Geological Plan	"	$1^{\prime \prime}$ to 400'	Figure 3C
Pagnetometer	"	$1^{\prime \prime}$ to 400'	Figure 3D
Rock Relationships			Table 1
Sequence of Events			Table 2
Diamond Drilling			Table 3

Sections 1^{11} to $400^{\prime}(22,26,30,34,50,60,70,80,88)$
Sections $1^{\prime \prime}$ to 400' 2500W, 2000w, 1500W, 1000W, 500W, 0400
Additional Reference Maps
Tasu 50 \& 100 scale Sections
Tasu 50 \& 100 scale Level Plans
Surface Geology Sheets $A, B, C \& D-50$ scale
Ore Reserve Sections 50 \& 100 scale
Survey 50 scale Hard Plans \& Stadia Plans
Survey Base Map $1^{\prime \prime}$ to 400^{\prime}
Hagnetometer Sheets A, B, C, D, AW1, BW1, CW1

REPORT ON

WESFROB MINES LIMITED

GEOLOGY

To March, 1964

LOCATION:

The property is located at Lat. $52^{\circ} 46^{\prime} \mathrm{N}, 132^{\circ} 02^{\prime} \mathrm{W}$ on the south shore of Tasu Sound on the West Coast of Moresby Island which is the southernmost of the two main islands of the Queen Charlotte group. Task Sound should be suitable as a harbour for ocean-going ships. The sailing distance to the property from Vancouver is 500 miles and from Prince Rupert, 250 miles.

Sandspit airport is the closest regular airport and is approximately 35 miles from the mine. HISTORY:

In the years 1907 and 1909 the Tassoo Mining and Smelting Co. Ltd, staked a group of 17 claims. From 1913 to 1918 the recorded production was 5180 tons of cupriferous magnetite which was shipped to Tacoma. (This contained 94 oz. of gold, 1408 oz. silver and 165,566 pounds of copper.)

In 1953, two key Crown granted clans known as the warwick and the Tasso were bought at a Sheriff's sale by St. Eugene Mining Corporation Ltd. Nineteen additional claims were acquired before 1956.

In 1956 W sfrob Mines Limited was formed and exploration work commenced. In late 1957 the exploration was suspended due to provincial regulations which were brought into effect at that tine and which affected directly the export of iron ore.

In 1961 exploration was resumed. The work of delinsating and sampling the extensiva mineralkzed zones has continued to date. Addtumal clomins have bean staked.

Duxing $1962-63$ a teasiniltty repowt wss prepared by Wxight Engineers ied. or Vancouver.

CLMTMS:
The compary property consists af a total of 28 claims corastisting of 67 recordod clatms and 21 Crown grantad clains. The claims arc Indicated on the clanimap. Fig. i. TOPCGRAPHI ETC.:

The topogrophy in the victnaty of the ore dopersts is mountomonz ond rugged. Average siope pyer the minerelfzed zone is 30° bat this slope 1 s not constant duo to many steep pltches and the accosional gevermaded giziy or ciste.

Bed rock ms very close to suxface. The aom layer ta usuchly onIy 3 to frect thed. Outcrop averages cbout 15 to 25% of the total area overying the mexurahtued gones but bed rock noor swatace
 frichlay broken axtumed macmian. This zone of weatheritg extands to 20 ar 40 fabt bolow the maxime May of the rocks aspectany the

 gremstones derived trom vomcanc socks of the Voncourer group that are comeletwes of the Kermucsea formeton of Nexthera Vancouver ssiand.
(Late Painozelc os aaxiy Upyer Friassic.) The older valeazies are

声

 pathic cmuss
 also bow yartially alterad to suate.

The Kungo formation is locelly overlain unconformably by fragmental andesites of the Yokoun formation. (Middle Jurassic.)

Numerous dykes and aills of porphyritic, feldspothic diorite (Grey Porphyries) occur within the area. These intrusives form a gradational series, the early sepresentatives of which resemble the "mottled porphyries". Some of these intrastves hove been partiolly altazed to skern. The acrly grey porphyrias dazinitaly cut all of the aforementioned rocks with the exception of the Yokown Formetion Later grey porphyry intrusives become progressively more mafic and grade Insenstibly iato diarite glomaroporphyry. (Diorite Eorphyry.)

Abundant dykes of basalt and gabure datrude all of the rocks. Sone of these are pre-dark grey porphyxy in age but mest appenx to be post-DLorite Porphyry.
nEGIOVAL, STRUCTURE:
The structure or the premarate rocks on the south shore
 plunging 20° in that direction.

Secondary anticlines occur on each limb. The oasterneost
 ont cline is known os the "Gra Zonn Anticline" or Ore Zone Axch.

The ossemblege of sadimenty anc volounics lics tumediately to the north of the nocthernmost extreat ty of trse San Cristovol botholitho The foldung was probobly a zesurt ar tha 3ntruexon of the bacholith.

Ts the gicinity of the minerolimed wones the volcanics and swanments are thought to constitute only a chin neage averiying the dsorite. The dicrste contect way dip cuite gradually to the nerth west.

The whole area is highly fractraxed. Many faults are known. The main foult systams In the area of the Ore Zone Anticline are thought to be 3xd and 4th order to the wain wrench system which strikes N $30-35^{\circ}$ west parallel to the Dancli Fault whose trace follows the steep continental shelf clong the west coost of the Green Charlotre Islands. SERUENCE OF EVENTS: Sen Sequence Table (Tab. 2)
(a) Oider Volcantes: The oldest rocks in the area are finemgrained omphibolite greanstones. These ware dersved frota volconic rocks of the Vancouvar group that are cowrelatives of the Karwutsen formation of northers Vancouver Isiend. (Late Poleoraic or Eorly Upper Triassic). The oldar volcomes decinitoly pre dote all sediments in the area. Thay are also cut by all lrown intrusivas. (b) Tweed Porphyty: An wnswal form of porphyritic feldspathic diorite Is thought to be incrusive, bat it has nevar been observed cutting ony rocks bat the Older Volearics where At oppears to occur as sills. (c) Fcults: See "Fulting". There is sowe evidence shat the older Volcames were foulted perar to the deposition of the Kuago Formotion. Several systmas of fauts wara devalopad. Several zalts are indicated on the structural map the Oldar Voleancs. (Fig. 3A.) Scorps were forwed by the foulting. The shape of the block indscared betwoen faults 1 and 4 suggeats that it was perhaps a sorapies aplict horst or broken fold arch bounded by tha tealt scarps. Thene is zeason to believe that the tante were onky partally developed putar to the depestition of the Kunga forwetion and there ss swidence ther the foults were active for o Long period as fiwe, Brobobly whth the late Jurassice (Post Kunga.). (d) Misur Erosione the foregotig surfoce was slightly rodictied by woston. Volhays dewnloper olong the varicus fanlt lines and the scorps

The fault ilne vaileys and scarps are indicated on the Contour Plan of Basement Surface. (Fig. 3A.)
(e) Kunga Formation: Upper Triassie: based on deseription by A. Sutheriand Brown (BCDIX) 1) Base: Wassive grey Limestone (Karnion) was deposited over the aforementioned Oldmr Volcamic sumface.
2) Lower Canter: (Kamian-Norian). Thin
bedded block Ifaestones overlay the massive grey limestome.
3) Top: (Morian-Early Muressic): Argillites and arginlaceous liwostones ovexife the aforenemtioned rocks.
(5) Evidence for Pre-Kungo erosion of older volconics and for age of Saults. See Pre-Kunga Fults.

1. The fault-line valley system is apparently due to arosion. Sea Fig. 3A, A branching dratnage pattern ks suggested by the contour plan of the basement surfoce (older Volcomics portion.)
2. The scarps appear to heve been sorathat rounded and modified.
3. In ploces the Kurge formation appears to lap aguinst the Older Volcanies.
4. Sluzping is ovident hn porticus of Kumga Formetion and especially odjacent to old faut scarps would suggest that Kunge was deposited en a comparctively broken surfice.
5. Foulting offeets have bewn noted in the Kanga formation over the scarps (Indieated by the basment contours) but displocenents ore not nearly of the order of magntrude imatcased by the scanps.
(g) Moude Formation: Late Enriy Jwrostic (Tionctan). The Eunge Formation is normally overlain by the kouca Foruothong but in Tasu Farbour the Houde is missing It is norwolly compoted of grey sholes, blocky dark grey argillte, celcoreous shole: greenishmgrey sandstone. Hormally the Noude has contomable wantimathps with the Kuaga.
(h) Yokoun Formation: (Early Maddle to Exrly-late Jurassie) In Tasu Sound the Kunga formation is overlain, usually with apparent unconformity by the Yakoun formotion wich is composed mainly of Andesite agglomerate, scoria, etc.

Elsewnere the Yokow bears conformble relationships with the Riaude Formation.
(i) Folding and Foulting: (Midde Jurassic)? The Ore Zone Arch or Anticline trending E-V and plumging $20^{\circ} \mathrm{H}$ way have boen formed during the middle Jurossic. As the folding is thought to have bean due to the 2ntrusion of the Son Crstoval Botholith it is probable that the folding
 the man folding probobly reached elimex dux tag the midde Jurassic. Tha Yoloun formetion probobly reproments volcansm associated with the loutholith sntrusion.

Upilfe movanent was token up in the older woleonfes by fracturing and by foult movemonts and possibly alse by foldizg wheres movement withia the lisestones was probably takan mp manly by folding With some frccturing ond fratting over the old forst lanes in the basement.
 Porphyry: inhte Perphyry.

Assce frow the Tweed Porphyzy, whath way hove beea pre-Funga. the first intrusives in the area ore feldspar porghyxy masses which regresent tha border phases of the fiswt stages ot hatramion of the San Cristoval batholith. The age of the group of zocks is not accurately knawn bat they ura thought te ba cicide uracesstc.
(c) Emonation Effects: 1) Foldspethization: Howniels: Mottod Poxphyry (in part).
2) Pre-arg shorns: Cextain of the racks were then
altered by (Fe? Mg?) metasomatism to garnet epidote chlorite skarns. See Rock Descriptions, also Sharns.
2.a Skarns replace silty or argillaceous beds in lizestone (Dark Skaras)
$2 . b$ " innestone directly.
2.c " " Bottlad Porphyry: Feldspathization or Kiornfels.
(Tan Skarns)
2.d 11 " older Volconics: rare.
3) Heneralizotion: mineralization followed the skazns and probably rapresemted a phase of the skarn metasomatic process. Constituent minerals: 3.a Magnetite
3.b Pyrite
3.c Chalcopyrite
3. 1 Sphalerite
3.* Trace Henatite

Mneralization 45 described soparately.
(1) Intrusfon: 1) A few dykelets of gabbro or basalt (Older Gabbros) are frown to cut the ore zomes.
2) Gzey Porphyry and Thite Porphyry Dykes (derivotives of the Diorite) cut Ore Zones and the older gobbro dykes. These porphyxies oceuz as dyke swarms trending MW, with variable dipa.
3) Darif Grey Porphyry dyles: as Entruston progressed the feldspathic diorites became more and nore mafic. (Se Tables 1 \& 2.
4) Diortte Gloweroporphyry: (DAorite Porphyry). Further differantiction resulted in a grodetion to diorite porphyry. These dykes rum to min ond uswally dip 400 or 60° to the east.
(m) Post Ore Skarns: Several of the winit pozphyry intrusives have been slightly altered to pidote garnet skarns. This post-ore skarn is not common.
(n) Gabibro Dykes: The youngest intrusives in the ared are a suite of basic dykes of gabbroic derivation. Thase strike N-S to N2OE and usually dip 60 to 70° to the east. They are probobly Tertiary in age. POST ORE: Foulting \& Fracturing:

Considerable movemant has taken place subsequent to the ore deposition. The gray porphyries were intruded along a tensional fracture systen that trended wh and dipped 60° to the NE or SU. The dark grey porphyries and diorite porphyries intruded along a tensionsi system of fractures striking ware Nivit. Dip 60° to E. lost of the gabbroic dykes occupy tensioncl system striking $\mathbb{N}-S$ dipping 70° E. It would therefore appers that as time went on the tensional direction changed frow SIUNE to Ewit, rosulting in a swing in the strike of intrusion from Nid to IS .

The extrene complexity of the frocture and intrusion systems makes the dectphering of foult movemonts almost an impossibility. There is much evidonce of conaiderable novament bedng spread out over innumerable fracture surfaces. Indivicual foult lanes with obvious large displocements are not readity recogntzed on surfect.

The northenstenmost portion of the ore zone is truncated Ly a NW stribeing feult that probobly dips 80° to the WE. The N-E offset zone is considered to be the foulted extemsion of the main zone. A wrench wovement is thererere indtoated with south side moving relatively west. Lovement on this fcult is pre-gabbro in part.

FORMATION DESCRIPTIONS

Older Volcanics: (Smokey): See Rock Descriptions:
The oldest rocks in the area are fine grained amphibolite greenstones. These were derived from volcanic rocks of the Vancouver group that are co-relatives of the Karmutsen formation of northern V incouver Isiand (Late Paleozoic or Early Upper Triassic).

The original nature of these rocks is obscure, but amygdaloidlike relict forms suggest that they were flows or possibly incandescent tuffs. Aside from the amygdaloidal foms there is no other evidence of flow activity or of any structure that can be readily traced.

In places the rocks have been variably bleached. The areas of bleach are extremely irregular in outline but usually the bleaching is concentrated near shears or fractures in the rock or occuss as a halo around intrusives Bleaching is not so evident away frem the ore zones.

The oiders volcanics are characterized by a network of fine carbonate veiniet fracture fillings.

It is thought that the greenstones in the vicinity of the ore zones constitute only a thin skin or wedge between the overlying limestones and che diorite below.

The older volcanics have been altared to skarn but the total mount of skarn is small.

Mineralization occurs only rarely and in small amounts fithin the older volcanics.

Mineralization and skam where seen are nearly always confined to fractured areas in the imediate vicinity of major faults that are known mineralization chamels.

The surface of the older volcanics now represents an arch that has been much broken by faulting. (See Basement Surface Fig. 3A) Some of the faulting and/or folding that caused the arch probably took place prior to the deposition of the Kunga Formation overlying the Olwer Volcanics.

The older volcanics are in most cases the footwall rock for the mineralized zones.

Kunga Formation: Upper Triassic: (Base):
Normally the base of the Kunga formation consists of a massive grey limestone of Karnian age that was deposited over the Older Volcanic surface. In the vicinity of the mineralized zones the grey linestone is seldom recognizable due to recrystallization to white calcite or marble.

No fossils have been observed within this rock at Tasu but elsewhere the facies is characterized by Karnian Amonites.

As this rock constitutes a host for much of the mineralization a knowledge of its structure and composition is important. (Sec Ore Controls). This information might only be obtained at some distance from the mineralized zones where the rock is relatively unaltered. At present very little is known of its local unaltered composition.

In places the bedding appears to lap against the enderlying older volcanics.

Kunga Formetion: Lower Cnter (Karnian-Norian)
Regionally the grey inmestones are overialn confomably by thin bedded black limestones. This facies is characterized by Minotis and Halobia. Both pelagic fossils.

Amonites were also observed within these beds. There is no sharp line of demarcation between the grey limestone and the overlying thin-bedded limestones, but, in the vicinity of the ore zones the thin bedded limestones
may usually be seen from 250 to 350 feet above the ore zone. Recrystallization makes doubtful the use of this facies as a structural marker. Certain beds of the thin bedded limestones containing the occasional argillite parting may, however, prove to be structural markers.

There is considerable evidence of slumping within this sequence of beds. There is probably a relationship between this slumping and the underlying basement topography. There is also the possibility that faulting was active, or intermittent during the time of Kunga deposition.

On the point to the north of the ore bodies and along the shoreline for $1 / 4$ mile to the west of Horn Island the thin bedded limestones are variably altered to hornfels.

Kunga Formation: Top: (Norian-Early Jurassic)
Argillites and argillaceous limestones normally overlay the thin bedded limestones. These rocks are characterized by arniocerated amonites but none have been observed at Tasu. Locally the upper portion of the thin bedded limestone is intercalated with beds of black massive imestone. This sequence may constitute a recognizable formation.

Kunga Formation: General
Little is knom about the detalled internal structure of the Kunge Formation. Over the eastern portions of the mineralized zones where work has been most concentrated the relationships are so obscured by pecrystallization that various horizons cannot be traced. To the west of the area of detalled work the delliing is too scattered to give good interpretation.

There is some evidence of slumping within portions of the kunga. Locally the Kunge Formation has been arched to form an anticiinal structure. See "Ore Zone Anticline". Although thickesses of the component beds are apparently quite variable there is the suggestion that the beds thin towards the crest of the arch.

Folding and Fuiting: (Early Jurassic)

The folding of the Ore Zone Arch (trending EW and plunging W 20°) may have started during the Upper Triassic and continued until the folding reached a clfmax when the San Cristoval batholith was emplaced.

This anticline-like structure lies astride the horst bicck between faults 1 and 4 or may extend even further to the south (Basement Contours Map. Fig. 3A). As some of the faulting resulting in the broken arch, or horst structure, is thought to be pre-Kunga (see Page 6, Par. (f), Sequence of Events) and as the shape of the anticline closely approximates the shape of the horst, it is considered probable that the anticline was at least partially supratenuous in nature. The original drape structure was probably further accentuted by folding. There is some suggestion of thinning of beds towards the crest.

It is thought that uplift movement uithin the older volcanics was taken up mainly by faulting and possibly with associated minor folding whereas movement was taken up within the limestones mainly by folding. There is evidence of some pre-ore faulting in the Kunga.

Fracturing and faulting in the limestones mainly above the faultline scarps in the basenent indicates that these faults were active subsequent to the deposition of the linestones.

The ore zone asch constitutes en fimportant structural control for the mineralization. The crest of the basement surface trends more or less east-west. To the north of this crest the sedinents apparently strike NE to $\mathrm{N} 60^{\circ} \mathrm{E}$ and dip 30 to 45° to the NW. To the south of the crest and within the \#3 Zone Area the strikes average N30-40E and dips $20-30^{\circ}$ to the WW. The top of the arch between 3 and 2 Zones is relatively flat but farther to the west, where the arch is floored with diorite the arch crest is much sharper and
strikes on the south rlank swing to $\mathrm{N} 30^{\circ} \mathrm{W}$. Dips to the $5 \mathrm{H} 25-30^{\circ}$.
The relationship of the iron content (within the minexal zones) to the structure is indicated on the Iron Distribution Pian. Fig. 3B. MINERALIZATIOI CONIROLS:

1) Ore Zone Arch (or Anticilne): The relationship of the mineralization to the arch structure is well established. See Figure 3A which indicates contours of the basement surface (underiying the Kunga Limestones) which normally constitutes the footwall of the aineralization. Fig. 38 indicates the iron distribution as related to the "Arch" stmucture and to other controls. 2) Linestone-Greenstone Contast: Host minerallation is concentrated just above the Kunga-OIder Volcones contact. See Sectoms.
2) Fault Chameis: Hinezal concentration is greatest over the old fauls in the basement wich undoubtediy acted as channels for the mineralization. See Contour hap indicating iron distrebution Fib. $3 B$ and coapare with contour map of hasement indicting mabered chanel faults.
3) Replacement of Limestone: (a) Certain beds of the 1 mestone are selectively replaced which suggests a physical as well as a cheakel control. Replacement is especially selective and aponentiy follows silty or argillaceous beds.
4) Replacement of Sharns: (a) After Limestone: the shazns selectively replaced certain sinty on inpure bens. Bedoing texture remments are retamed in the skarns.
(b) After Hotiled Porphyy (i) Along borders of Antwusives (rase).
(2) Along certann horizons in rothled porplyyy.
(3) In breccia zones in porphysy.
(e) After Olier Volcanics: Rere.
5) Replacement of Fracture Zones: (a) Replacenent of 1mestone breccia in areas of fignage or ustally close to old chamel faults.
(b) Replacentin of siam breccia close to chanmel fauts.

7）Folding：The eastw－west trending Ore Zone Arch is the major ore control but minor folds in the limestones may also be important as ore cantrols． IUTRUSTVES：（ A ）Pre－Ore：
（a）Tweed Porphyy：the oldest Intrusive may be an unusual form of feles pathic diorite porphyry known as the Tweed porphyry．This porphyry apparentiy occurs as silis，but lit bas been observed only ofthin the older volcanics．It may be pre－kunga in age．
（b）Feldspar Porphyry：The oldest fnown intrusives in the area are feldspan porphyry masses which my represent the first stages of intrusion of the San Cristoval batholith．The age of this group of pocks is not frnown accurately but they are thought to be prewakoun and wy therefore be related in time to the pre－Mude folding（Eaxly Juressic）．

See Table 1 and 2 －Aso Rocin Descriptions．
The main bodies of feldspax poxpingy occur as irregular masses along the shore line to the 1 wif the ore zones．（See Regonel Geology．Fig．2） Locally this porphyry is known as hottied Porphyry．Sowe of this moteled porphyry is kuown to be intwus⿱⿴\zh11⿰一一⿲⿺𠄌⺀⿺𠄌⺀㇂ feldspachization of silicification of existha rocks，i．（silty ox argilizceous amestones）．

The notiled porphyy is mom to grade into homblende diorite and Is probably a border phase of that root．In the vicinity of the shore ine masses of porphyry the Kung fimestones and Ifuey argilltes have been altered to feldspathic hornfels．Theve appeers bo be a gradedon from diorite to mottled porphyy to homifels or ieldspathmatron then to sedinents．

The older woicantes tadentying the northem liab of the ore zone arch atre sepatated frchine haga sedivents，wheh nosmally oveste them directly，by a vartable thichress of the rottied porphyry．The wothed porphyty sequence appears to thichen to the nowth away from the crest of the arch．

As much of the mineralization occurs as selective replacements of the mottled porphyry horizons a knowledge of the origin of the porphyry is of importance. Although some of the mottled porphyry is undoubtedly intrusive in nature (as indicated in \#2 and \#3 Zones) many of the occurrences resemble beds more than sills. It is postulated that certain beds near the base of the Kunga were silicified and feldspathized due to underlying intrusive of diorite and later the diorite encroached by intrusion on its own zone of feldspathization.
(b) 1. Feldspathization has bean observed: it is remarkable in that the alteration is extremely selective and follows certain beds closely. Contacts are shaxp.
(b) 2. The process of metasomatic feldspathization is considered to be of practical interest in that it is occasionally accompanied by the formation of magnetite lenses in fault areas. A known occurrence is in the northern West Sayan mountains in Siberia, where porphyritic albitites, previously thought to be intmasive, are now known to be of metasomatic origin. (addition of aluminum.)
(b) 3. On the Kasaan peninsula of Alaska similar rocks are described as being "unusual sills -- if they are sills."
(b) 4. At Tasu it was originally thought that these rociss were glowing avalanche deposits, but the prevalence of feldspathization in the area suggests that a metasmatic origin may be the explanation. Elsewhere in B.C., however, the rocks have been described as "volcanic breccias."

Surface exposures of the mottled porphyry are usually poor and relationships are difficult to determine. See Fig. 3. Geological Plan.

Because of uncertainty as to the origin of the Pottled Porphyry and because of its importance as a host rock for the minexalization it may readily
be inderstood that projections based on wrong interpretations could easily result in significant errors within the ore reserve. It was therefore frund advisable to drill sufficient holes so that incorrect projections would not result in significant errors in grade or in outline. That is to say, the drill sampling is sufficiently adequate so that projection errors for the Mottled Porphyries are of no real significance. INTRUSIVES: (B) Post Ore:
(a) A fev dykelets of gabbro or basalt are known to cut the ore zones. These are possibly the earliest post ore dykes.
(b) Grey Porphyry and White Porphyry Dykes: The mineral zones, the premineral rocks and the older gabbro dyhelets are cut by numerous dykes of feldspathic diorite which usually occur as swarms. Thicknesses, strifes and dips of these dykes are variable in detall but the general trend is NW with dips usually 60 to 70° to the NE or to the NW. One swarm of dykes occurs over the \#14 fault (3 Zone). Another swarm occurs parallel to this set halfway between faules 3 and 4 . (3 and 4 zones). A third swarm occurs through \#1 zone.
(c) Dark Grey Porphyry Dykes: Age relationsinips indicate that the feldspathic diorites becane more and more mafic as time progressed. A grade onal differentiation sequence is indicated. See Tables 1 and 2.
(d) Diorite Glomeroporphygy: Continued diffexentiation resulted in gradation
 the east: fine grained derivelives of this rock are greenish in colour and are known as dacite-type dykes. (a mancorex.)
(e) Gabbros:(Basalts) The latest rochs in the areas are suarms of gabbro and basalt dykes winch usually strike MIOE and dip" $60-70^{\circ} \mathrm{E}$ or strike WWith variable, but steep dips (often $70^{\circ} \mathrm{NE}$.). Scane of the gabbros are definitely
pre-dark grey porphyry in age as they are lnown to be cut by the porphyry. Other gabbros have been cut by the diorite-glomeroporphyry. It therefore appears that the gabbros were injected over a period of time as a system coapletely separate from the grey porphyry differentiation sequence.

The dykes are usually thin, comonly from 5 to 50 feet thick, but thicknesses up to 100 feet have been observed.
(i) Differentlation Sequence: The differentiation or gradational sequences for the intrusive rocks are indicated on Tables 1 and 2. Also see Rock Descriptions.

EMANATION EFFECTS:
(a) Mottled Porphyry ?: A feidspathization of existing rocks ? Described previously under Intrusives.
(b) Feldspachization \& Silicification: The thin bedded sedireenes of the central portion of the Kunga limestones have been feldspathized and variably altered to homfels. This has been abserved in the sediments on the camp point to the north of the ore bodies. Original bedding may be seen in the altered rock, but as the diorite is approached the bedding fades or is masked by alteration. Along the shoreline to the west of the catap point the result of the alteration of the sedinents is a feldspathe homfels rock. Further metasonatism may possibly resuit in the "Plottled Porphyry" type of rock. (Sce Mottied Porphyry). As one proceeds up the road from the camp a transition from feldspathized limestone to mottled porphyry may be seen but it is not known whether the nottled porphyry is in sharp contact with the hornfels (intrusive porphyry) or whether the mothled porphyry is itseif an advanced stage of the metasciatism.

Feldspathlation and siliciplcation has been observed in the core where it follows certain beds in a rewantably selective manner. (c) Skarns: Certein of the rocks were altered by Fe, Mg metascmatism to Garnet,

Epidote, Chlorite Skarns: Pyrite and calcite also are common constituents of the skarns.

For description of the Skarns see Rock Descriptions, etc.
(c)1. Skam replaces silty or argillaceous beds in the limestone sequence. This replacement is remarkably selective and usually results in a Dark Skarn. (Carnet Chlorite Epidote) high chlorite commonly.
(c)2. Skarn replaces limestone directly. This replacenent apparently takes place in brecciation zones in the limestone and may also occur within flowage areas In the limestones. The resulting skarn is variable in compositon, but it is generally low in epidote.
(c)3. Skarn replaces Older Volcanics. This is not uncomon but these skarns make up only a small percentage of the total. These sharns are varlable but tend to be similar to the Dark Skams previously described (1.)
(c)4. Skarn replaces Mottled PorphyEy, Feldspathization or Hornfels. These skarns selectively replace
(i) Brecciated areas in the Hottied Porphyry.
(ii) Certain beds or horizons in the Mottled Porphyry sequence. (These beds within the Mottle Porphyry sequence zay have been various beds within the limestones.)
(iii) Certain bands of feldspathization which in curn were selective replacements of silty, limy sedinents.

The skarns replacing the Hotiled Porphyry are normally a distinctive crem-tan in colour, hence the local designation of Tan Slam. Porphyroblastic garnets (pale tan to tan brom) often occur in a fine grained ground-mass or the skarns may be massive. Epidote is a minor constituent but it can be locally dominant.
(c)5. Skarn Replacements in Post Ore Dykes: occas lonally the earliest members of the post ore grey porphyry dyke sequence are slightly altered to a pale skarn. These skarns occur mehiy in the white porphyry type of dyke.
(c)6. Late Skarns: The latest skarns are epidosic and seen to be associated with the Diorite Glomeroporphyry (Diorite Porphyzy) and with the Gabbro (Basalt) dykes. This skarn is apparently composed almost exclusively of epidote and might better be described as epidotization. It makes up only a very small portion of the total bulk of the skarns.
(d) Mineralization: Mineralization followed the skarns in the time sequence. The mineralization probably represented a phase of the skarn metasomatic process. Constituents: (1) Piagnetite: Commonly fine grained to very fine grained: Occasionally medium grain: Rarely shows crystal structure: Nakes up the bulk of the mineralization. (Usually over 95% of total mineralization.): Commony massive replacements but disseminated and stringer mineralization also common: Selective repiacement of limestone or of sharn: Replacenent textures comon: Probably closely related in tine with the skarns.
(2) Pyrite: (a) Commony occurs as subhedral or euhedral crystals or small blebs disseminated in the magnetite. (crystals 1 (1) to $1 / 4^{m}$).
(b) Makes up about 5-10\% of the total bulk of mineralization in H1 Zone and about $3-5 \%$ of the mineral in if2 Zone. Uncommon in \#3 Zone in quantities over 1%.
(c) Hay also occur as massive stingers or as disseminated halos with massive stringers.
(d) Often the disseminated pyrite is associated with silicification (late stage).
(e) Comoniy concentrated in fracture areas or areas of faulting.
(i) Often a vague concentration may be seen at the base of various vineral horizons.
(g) Often hairline concentrations around the periphery of fragments of limestone or skarn that have been incompletely replaced by magnetite. (Usually skarn fragments.)
(h) Quite comon as euhedral crystals in several of the gabbro dykes.
(1) Disseminated pyrite probably same age as manetite, but stringer pyrite with silicification apparently post ore.
(3) Chalcopyrice: A cownon, but minor, constituent: In //3 Zone averages about 2 or 3% of total mineralization: in $\# 2$ Zone about $1 / 2$ of 1% or less: Uncomon in $\# 1$ Zone: Occurs as fine blebs, usumlly in nearly massive magnetite. Blebs usually <1 M in dismeter. Main concentrations often near base of main mineral horizons. Occasionally occurs as stringers. Zoning In chalcopyrite with values fading away from structural controis.
(4) Sphalerite: Sphalerite occurs occasionally, usually as massive patches in the mineralized zones. The sphalerite is a dark brom-black bladed variety that is exceptionally high in iron: patches up to 2 or 3 fect thick have been observed. Sphalerite occurrences are of little economic significance. The mineral makes up a very suall percentage of the cotal mineralization and local concentrations are too small to be of mportance: Disseminated flechs occur quite commonly in the slanns.
(5) Pyrhotite: Pyrrhotite also occurs quite frequently. Usually as narrow, nearly massive patches in the manetite: usually it is associated with chalcopyrite: In $/ 3$ zone it mahes up 1% of the cotal mineraligation (ox more). Dissemintions of pyrrhotite are quate conmon but they are often halos around
more massive stringers.
Pyrrhotite is uncommon in \#1 Zone; occurs occasionally in \#2 Zone and is a common constituent in \#3 Zone.
(6) Hematite: Traces of hematite have also been noted in the mineral zones. It is usually associated with silicification and pyritization: it has no economic significance.

MINERAL ZONES: Description: See Sections (21-36) and (44-90) also Longitudinal Sections and 50 Scale Level Pians

For ease in reference the Zones are numbered fron 1 to 5: actually the five zones merge and form one main horizon of mineralization. Each individual zone with exception perhaps of $/$ has a structural feature that influenced the mineralization and each can be described more or less as a unit. \#1 2ONE: Strikes on the average N6OE and daps 25-35 to the NW. Plost of the mineralization in this zone is concentrated over an old fault (f1). This zone extends to the SE to section 62, where the main structural control was the intersection of Feult \#2 with Fault $\# 3 \mathrm{~F}$.
\#2 20NE: The \#1 Zone merges with the $\# 2$ Zone which is minly a bulldup of mineralization over fauls \#3 and the western porifion of fault \#2. An arbitrary line of demarcation between the $\neq 2$ and $/ 71$ Zones way be described as follows: "East from $11+00 \%$ along section 68 to $5 * 00 \%$ then SE to 200 West on Section 60.1 This line is indicated on the Iron Distribution map. Fig. 38. \#3 ZONE: $\# 3$ Zone maneralization is a concentration over old fault $\#$. 4 . It's western extremity is not known. It way extend directly west and join with the concentration of iron at the intersections of section 50 and 20+00w. On the other hand this zone may also join with \#2 Zone. The line of demarcation is shown on Fig. 38 as being along Section 52.

F4 20NE: Is a sumall extenston of //3 to the S.E. It is separated from \#3 by an area of intrusives.
\#5 20NE: Is the zone lying astride the crest in the basement rocks on the western portion of the Ore Zone Arch. It is undoubtedly the down dip extension of $\# 2$ and $\# 3$ Zones and the concentration indicaced at 64 NJ on, Section 2000w may represent the extension of the \#1 zone buildup. For purposes of description the 1 ine of demarcation between $\# 5$ and \#'s 1,2 and 3 Zones is indicated by the gap shown on Fig. 3B.

DESCRIPTION OF \# 1 ZONE

The mineralization consists of a series of beds of limestone (3) and skarn that have been selectively replaced by magnetite. The beds are separated by layers of mottled porphyry that appear to be remarkably concordant with the mineralized beds. The man mineral concentration is within the eastern portion of the zone where the beds occupy a trough-like depression trending from 200 W on Section 66 to 500 West on Section 74. (Overlying Fault \#32.) The depression then swings to the ME, crosses Section 80 at 200 West and extends to Sction 86 at 250 East. See Fig. 3B. The NE trend to the mineral concentration is no doubt due to the channeling effect of the underlying old fault $\# 1$ which is known to extend from section 86 at 400 E to $11+50$ wist on Section 72 .

Outcrop Trend - M10W
Strike - (a) Whole Zone: Average $N 60^{\circ} \mathrm{E}$. Dip 20-30 NW.
(b) Component Mineral Zones \& Lenses why wary in strike and dip.
(c) Strike $N 60^{\circ} \mathrm{E}$ Dip 5° SE indicating trough feature at 8 HN200E.
(d) Strikes NW Dip $105 W$.a 200 W Section 68.

Rake - The intersection of the faults with the older Volcenic surface constitutes a rake control.

Shape - (a) Whow zone: modified sheet with pinch and swell structure: whole zone is composed of coalescing and splaying component horizons.
(b) Component Horizons: (or Component Beds) are Sheet-like to Tabular; gradual lensing: intercalated with Mottled Porphyry as sills or beds.

Splaying to NW. Some cross-cutting mineralleation.
Mineralization - Magnetite: mainly fine grained. Some medium grain: coarse grain rare: selective replacement of certain beds (presumably Kunga 1 imestones). Replacement textures comon: mineralization from disseminated to massive. Average mineralization within zone about 50-60\% pagnetite.

Pyrite: Average 3 to 5\%: manly as disseminated grains in magnetite but occasionally patehy up to 20% of mineralization: some as stringers. Pyrite appears to be most concentrated in areas near faults, usually post ore faults. (associated with silicification).

Accessory Minerals - Traces of Chalcopyrite and Fyrrhotite: occasional patch sphalerite.

Size - Within Ore Reserve Area oniy: Strike Length: 1700 feet. 1100 W Section 70 to 400 E on Section 88.

Width: Down Dip: 1300 feet from 100 W Sect. 62 to 700 W Sect. 86.
Limits: Indicated on Fig. 3 B .
Thichess: Variable: average thichness of cotal zone (inciuding center waste beds, etc.) is approximately 130-150 feet.

Mineralization Type - Selective repiacement of certain beds and of skarns. Some disseminated and stringer type.

Ore Reserves -See "Ore Reserves." Area included in reserves is outlined in red on Fig. 3B.

References - (a) 400 Scale Sections appended to this report.
(b) $50 \& 100$ scale sections.
(c) $50 \& 100$ scale plans at 50^{\prime} intervals through the zones.

Open - The zone is open to the SW on Sections 72,74 and 76.
Internal Waste - Dykes make up about 20% of the total volume (of the Ore
Reserve). Mottled Porphyry and skarn make up another 25%. Total Internal Waste 45%.

DESCRIPTTON OF 江2 ZONE

The fl Zone mineralization extends to the south and coalesces with the $\# 2$ Zone which differs from the \#1 mineralization by having a small amount of copper. The main mineral concentration is in limestones over the NW trending fault \#3. The ore control was apparentiy very strong and the mineralization is generally more massive than in \#l Zone. The mineralization In the component beds tends to coalesce in the vicinity of the fault (cross cutting). It is apparent that much of the movement on the fault took place prior to the deposition of the Kunga formation, but sone offseiting of the beds indicates that the fault was also active after the kunga was deposited, but prior to the mineralization. Folding may have taken place over the fault scarp and may also be an ore control.

See Sections 44 to 68 .
Outcrop Trend - WNW.
Trend of Mineralization - WW
Strike - Over fault strikes are Nif to N-S but away from fault strikes are N70E. Dips over fault are 30° SN to Em but away from fault dips are $20-30 \mathrm{NH}$.

Rake - The intersection of the HW trending raut with the volcanic surface constitutes a rahe control. WNW.

Control Structure - The limestones probably lapped against the fault surface
which locally affected the sedimentary trends. Possible folding over the fault scarp. Fault strikes NW and dips $70^{\circ} \mathrm{SW}$: considerable pre-ore fracturing and faulting of Kunga limestones?

Shape \& Component Horizons - A thick buildup of mineralization over the fault scarp with fading away from the control. The mineralization tends to follow certaln beds away from the fault line and the upper beds fade first, whereas the mineralization following the lower beds (at the contact with the older volcanics) goes for considerable distance before fading. (400 reet $*$ down dip).

Mineralization - Magnetite: mainly fine grained: some mediungrain. Mineralieation generally massive: average mineralization within zone indicated by Reserve Sections 60-70\% magnetite. Type: selective replacement of certain beds and of skarn. Crosscutting in area of major fault control.

Pyrite: Average 2 to 3\%. Phinly as disseminated grains in megnetite but occasimal stringers. Sone pyrite associated with silicification near post ore feults.

Calcopyrite: An accessory nineral in the $\$ 2$ Zone, but seldom as concentrations. Average less than $1 / 2$ of 1% chalcopyrite, mainly as fine dissemination.

Pyrrhotite: More pyrmoiice than in \#1 Zone. Up to 1\% of total mineralization, usually as patches near base of ore zone.

Accessory Minerals - Sphalerite, occasional patch.
Size - Within area indicated for Ore Reserve Only - Length along trend 1400 feet. Whath: about 500 seet.

Thichess - Gver fanit - 200 to 300 feet: main bed to west of fault is 80 seet theis at 500 w on Section 54 Open

35 feet thick at 600 w on Section 56 Open
100 reet ? thick at 700 W Section 60 Open 20 feet thack at 1100 k on Section 66 Open

Gre Reserves - See "Ore Reserves" area included in Reserves is outined in ged on Fig. 3E.

Open - The zone is open to the west smon Section 54 to Section 66.
Internal Waste - Dyhcs male wp $25 \times 30 \%$ of wolume of Ore Reserve. Mottled Porphyry raites up mother $10-15 \%$. Total Interval wese about (35-40\%).

DESCRTPTTON OF ZONE \#3

See Sections 21-36 (100 Scale) and Ore Reserve Sections.
Outcrop Trend - NWW
Trend of Mineralizacion - WNW
Strike - over fault \#h is more or less NH, but away from favt shikes are M30E.
Dips - Dips over falt are more or less sin 20 to 30 but away from faut dips are $20-30 \mathrm{NW}$.

Raine - The intersection of the NW trending fault with the volcantc swerace constivutes a raite control. The fault is thought to dip 60 to 70 to the SW.

Control Stucture - The Iimestones prowably lapped against the fault surface which locally affected the sedinentary trends; grobable folding over the fapt scapp. Slumping over scarp also pronable: fault serikes whw and is thought to dip 60 to 70° to the Sm: mineraliamion fades away fron control seructsue (250 feet \pm tom dip) : pre-ore sracturing over Ore Zone ??

Shape \& Components - A thict buildup of mineralteacion over the fault scarp with facing away to the NE and 5 anay from the concrol fault. Fron

Section 21 to Section 28 the 7one is composed of two component beds that appear to be draped over the fault scarp in the basement. A fold structure is indicated. From Section 32 to Section 36 it appears that the zone is composed of three component mineralized horizons that seem to splay to the NO. The fold structure is also suggested here. Mineralization - Magnetite: Mainly fine grained. Some medium grain (1 man.) Selective replacement of certain beds: Some cross cutting mineralization over fault: Average mineralization within mineral horizons 70-80\% magnetite: Some breccia replacement.

Chalcopyrite: Average of 2 to 3% chalcopyrite disseminated as small blebs and specks through the magnetite. Especially within the lower mineralized zones. Some zoning of the chalcopyrite content is evident.

Pyrrhotite: Possibly 1% of total mineralization. Usually as disseminations of small specks in magnetite or as patches of disserination. Associated often with chalcopytite concentrations.

Accessory Minerals - (e) Occasional patch of sphalerite
(b) Hematite rare.

Size - Within area indicated for Ore Reserve Only:
Length: Along mineralization trend 1200 feet.Section 21 to Section 36 Width: About 450 feet.

Thickness: Over fault Sections 21 to 28 about 150 to 200 feet. Sections 30 to 36 mineralized zones splay. Total thickness whole zone 200 to 320 reet. (Total thickness mineral beds average 180 feet.)

Zone Open - On west of Section 26 - 30' Mineral Zone
On west of Section $30-220^{\prime}$ Mineral Zone
On west of Saction $36-80^{\circ}$ Low Grade
Internal Waste - Dykes make up 15-20\% of total volume of Ore Reserve: Limestone makes up another $10-15 \%$.

DESCRIPTION OF ZONE HL

Several outcrops are known at 15500N 21100E: this mineralization
is thought to represent the SE extension of the \#3 Zone. It is apparently separated from the \#3 Zone by a block of intrusives. Very sittle is known about this zone as it has not been drilled. (Drilling commencing presentiy.) Outcrop Trend - NNW

Strike - Unknown. Probably same as / 3 Zone: about N3OE to N2OE.
Dips - Unknown. " " \#\#3 " " 20-30 NW.

Trend of Mineralization - www? Fading to SW?
Control Structure - \#h Fault?: limestone contact.
Shape - Sheet-1ike: following limestone. Volcanics antact. Fading to SW. Mineralization - As in 43 Zone: magnetite (quite massive) with disseminated chalcopyrite. Quantity unknown.

Size - Unknown but probably small.
Length - along outcrop trend
Width - unknown
Thichness - 15-20 feet at outcrop: see surface Geology Map Fig. 3C.
Zone Open - To WNW.
Internal Waste - Unknom
Remarks - If \#h Zone copper tenor is high the zone may provide a mall tonnage that might possibly be mined by stoping: if \# flault (\#3 Zone Fault)

Is the structural control then the zone will probably be small. It is possible, though, that the control is another fault. Under this circumstance the zone might swell down dip. (Considered unlikely.)

DESCRIPTION OF \#5 ZONE

\#5 Zone is the ore zone lying astride the crest in the basement rocks on the western portion of the Ore Zone Arch. A large portion of this zone has a footwall of diorite. The zone connects with the 1-2 Zone mineralization and undoubtediy also connects with the \#3 Zone mineralization. Arbitrary lines of demarcation are indicated on the Iron Distribution Map, Fig. 3B. Information about this zone is scanty. Driliing to date has been done mainly only on a 500 -foot grid.

Outcrop Trend - Outcrops only at (16900N 17700E). No trend. Otherwise blind. Control Structure - The relationship of the mineralization to the Ore Zone is indicated on Fig. 3B. The arch may also be seen on Sections 25W, 20W, 15 W and 10W. The eastern portion of the structure appears to be floored with diorite. This diorite also probably under1ies the greenstones under Zones 1, 2 and 3: it is considered probable that the \#1, \#2 and $\# 4$ faults all extend into the area of the arch. The crest of the arch trends EW and plunges $20^{\circ} \mathrm{W}$. Shape - An arched sheet-like structure inmediately superimposed over older volcanics or diorite. To the north of the crest of the arch the zone splays into two or three components: psinch and swell structure.

Strike - Strikes are apparently more or less parallel to the basement surface
(See Fig. 3A: also see Sequence of Events: Sec. (1) Folding and Faulting) To the north of the crest the sediments apparently strike NE to NGOE and dip $30-45^{\circ}$ to the NW. (At extreme NW corner strikes may be EW, dip 30N.) To the south of the crest strikes are more or less NW and dips 30° or more $S W$.

Size - Within limits indicated by 20 unit contour of Equal Iron Distribution Contour Map, Fig. 3B. Area is only roughly delineated by drilling.

Thickness - Variable: about 100 feet or more along Section 20 w but thinner on Section $15 W$ and on Section 25 W. Intersection at T-322 on (Sect. 15W-Sect. 60) may be thicker than shown. See Sections $1^{\prime \prime}-400^{\prime}$.

Faulting - Very little is known about this but SW edge may be a fault trending H30w?

Mineralization - South of crest much like \#3 Zone but lower copper content. North of crest much like $/ 72$ Zone mineralization.

Zone Open - To north - thin beds spiaying
To SW - Section 20W at Section 50-120 thick at depth Section 15w at Section 50-70' thick at depth

Very little known about souchwestern extremity.
Internal Waste - Sampling inadequate to determine amount of waste. (Probably about the same amount as in $\# 2$ Zone. Dykes 20\%. Limestone and mottied porphyry and skarn 20%.)

Copper Content - Information is scanty but the copper content is apparently concentrated south of the axis of the Ore Zone Arch. (Extension of the \#3 Zone probable.) Grade probably intermediate between 3 and 2 Zones.

POST ORE FAULTMN - (1) Contact Creek Fiult: Post Ore: Follows Contact Creek N-S. Dips 85° to East. East Side Down: Offset unknown.
(2) NE corner of \$1 Zone is truncaled by fault striking NW and dipping 80 to $85^{\circ} \mathrm{NE}$. Movement south side west. Mainly a wrench novement but South side up. (The \#1 East Offset Zone is the faulted extension remnant of *1 Zone.)
(3) Nu Faults. A series with varlable dips cut the \#1 and \$2 Zones. Minor offsets. Usually south side west. South side up in \#1 and \#2 Zones.
(4) $N 20^{\circ} \mathrm{E}$ fault? The $S E$ corner of the $\# 2$ Zone may be offiset to the south by a $N 20^{\circ} \mathrm{E}$ fault. A similax offset is seen In \#3 Zone, (About 100 feet) but much of this is thought to be pre-ore.
(5) Probably some post ore movement along fault \#3. (\#2 Zone fault.) Offsets umimown.

ORE RESERVES

QRE RESERVES

\#2 ZONE	For this to Sectio	figure	\#2 Zone was tak	from Section 46
PANEL	GRADE Fe	GRADE Cu	VOLUHE	
46-48	46.87	0.24.4	$320,000 \mathrm{ft}^{3}$	
48-50	34.30	0.228	1,120,000 ft^{3}	
50-52	34.55	0.201	3,165,000 ft^{3}	
52-54	38.63	0.170	5,305,000 ft^{3}	
54-56	44.16	0.195	6,147,500 ft^{3}	
56-58	45.81	0.278	7,487,500 ft^{3}	
58-60	38.77	0.204	8,280,000 ft^{3}	
60-62	32.32	0.075	6,005,000 ft^{3}	
62-64	32.72	0.083	6,030,000 ft^{3}	
64-66	36.68	0.066	11,172,500 ft^{3}	
66-68	37.53	0.061	12,967,500 ft^{3}	
$7,513,812$ long tons	38.10	0.137	$\frac{68,000,000 \mathrm{rt}^{3}}{9.05}$	Tonnage Factor 9.05 Long Tons

Reported - 7,640, 449 Metric Tons (1) Factor 8.9

ORE RESERVES

\#3 ZONE - See Ore Reserve \& Grade Sections - 100 Scale. Sections 21 to 36 and 44 to 90 Alternate Sections. Reserves indicated are taken within the area outlined in RED (Fig. 3B).

PANEL	GRADE Fe	GRADE Cu	VOLTAE	
21-22	39.54	0.86	1,748,750 ft ${ }^{3}$	
22-23	44.13	1.04	2,157,500 $\mathrm{ft}{ }^{3}$	
23-24	43.63	1.26	2,321,250 It^{3}	
24-25	50.39	1.31	2,421,250 ft^{3}	
25-26	49.25	0.96	2,701,250 ft^{3}	
26-28	45.51	0.71	9,915,300 rt^{3}	
28-30	50.35	0.71	8,556,000 ft^{3}	
30-32	50.30	0.74	$8,319,000 \mathrm{ft}^{3}$	
32-34	48.48	0.61	7,547,500 st^{3}	
34-36	49.54	0.41	5,877,500 tt^{3}	
	47.64	0.82	51,565,300 ft^{3}	Tonnage Factor 8.5

Reported $\frac{51,565,300}{3.4}=6,138,726$ Metric Tons 47.64% Fe $0.82 \% \mathrm{Cu}$

SAMPLIMG:

Methods:
Sampling for Reserve Calculations was done exclusively by diamond driling. All mineral zones were sampled. In addition, five feet above and five feet below the zones were also smpled.

Core was broken into $2^{\prime \prime}$ to 2_{2}^{111} pieces and alternate pieces were taken so that $1 / 2$ of the core constituted a sample. All material (Including waste) within the reserve zone outlines were sampled.

Where possible, sample lengths were adjusted to correspond with mineralization or rock changes. Average length of sample was about 8 feet.

To outline and sample the ore zones the drllling was done on sections 100 feet apart with holes every 100 feet. Due to the large number of dykes it was found that the zones could not be delineated by this sampling alone. The extremely complex jumble of intrusives masked the outline and internal details of the mineral zones to such an extent that an adequate evaluation could not be made. As most of the dykes have steep dips it was found necessary to drill additional angle holes to intersect the intrusives.

Projections:

Drilling and sampiing have therefore been done in sufficient detail that exrors of projection will not produce significant errors in delineation of the zones. Furthermore, the sampling is sufficiently adequate that projection errors will not produce significant error in the grade determinations.

In view of the geological complexity and in order to insure that projections were as accurate as possible all the necessary data was correlated by three dimensional methods by use of a plastic mode1. These projections have been used for the preparation of level plans at 50-foot intervals.

It should be noted that although samping and projections are adequate for the outiine and grade determination for the overall zones, they are hardiy adequate for small block determinations where projection exrors may become significant. (i.e. benches, etc.)

Assays:

All samples were assayed for acid soluble iron and for copper exceptfore the sampling on Sections 68 to 90 which was assayed solely for acid soluble iron.

Metallurgical Tests:
Representative bulk samples of dianond drlll core wexe prepared for each zone. These were sent to Lakefleld Research of Canada Ltd. for composite assaying, magnetic cobing tests, Davis Tube Tests, recovery of iron and copper investigation, ete.
\#1 Zone - 1800 ibs.
/f2 Zone - 1150 lbs.
\#3 Zone - 1000 lbs.
Method of Derfvation of Ore Reserves:
Iron and copper grades were detemblned by sampling all material within the outined ore zones. Semples were also tairen for 5 neet above and 5 reet below the zone. Each assay was weighted for length and for specific gravity.

Sampling interval was every 100 reet. Where additional holes increased the sampling (i.e. lessened the interval) the effect of oversamping as taken into consideration by combining averages to revert to the 100 -foot interval. Areas were determined by phanimetry of areas on each section. Eech area was checked independentiy.

Tonnages indicated are metric tons. Tonnage volume factors are derived from specific gravities of calculated iron grades.

See Ore Reserve Sections 1" to 100 ' indicating out line of reserve as well as individual hole (intersection) averages for iron and copper grades. SURVEX

Die to the extreme complexity of the geology in the vicinity of the ore zones the need for detailed drilling and sampling necessitated an accurate control survey laid out in such a sanner that information could be retalned and used as a control for mining procedure. Furthermore, as normal methods of geological mapping proved ineffective it was found necessary to carry on an unusually detailed progran of geological mapping. In order to tie this information in with drilling and sampling data an accurate ground survey was prerequisite.

Method:
Transit-tape concrol traverses on the ground tied to a triangulation network: traverses were closed and balanced to the trianguiation. Intermediate traverses were fun to break up the main traverses: stations every 100 to 200 feet: stadia points were shot in from the traverse stations: over mineralized zones a stadia point every 50 to 60 feet: all stadia points picketed and flagged: elevations carried up hill by traverses but tied in to bench marks established by levelling.

Base line:

A base Iine was established by ground traverse on Horn Island. End points at NE (Sta. 1) and SI (Sta. 10) tips of island: back chained: no sag, temperature or tension corrections: wild instrument: (Reads to 20")T-16: elevations carried by vertical angles.

Base Line Check: Re-surveyed: single taping: triangulation to 0 D (at camp point) and to Seal Rock $\Delta 21$. From ΔD and $\Delta 21$ triangulated points $1 A$ and 10A, established near $\Delta 1$ and 410 respectively. Distance 41 to $\Delta 10$ calculated from triangulation and by tying in $\cap 1$ and $\cap 10$ to Base Line traverse on ground: difference between calculated and surveyed Base is 0.21 : difference in azimuth $4^{\prime \prime}$: base line accuracy 1:8500: additional ties with government hydrographic stations in the harbour are good, indicating an adequate base line: base line end points permanent in rock.

Triangulation: By Wild T-16 (Reads $20^{\prime \prime}$): each angie read four times upright and plunged: points set in rock: triangulation net with points on isiands in harbour and on shore: net carried to trifangulation points on or near mineralised zones: traversing on ground between points.

Levelling: Elevations have been established on the hill by double levelling with fild precise Level: main levelling traverse along the present access road fron Hydrographic bench mark "h to triangulation point 15 (Core Shack) to triangulation point it (\#3 Zone at Adic).

Distance 7400 feet: difference in levels up and down $0.048:$ elevation difference about 1200 feet.

Bench marks have been set in the rock along the road leveling route.
Traversing: Huos every 150 -200 feet: some points in rock: mein traverses back chained: readings to minutes or bettex: angles read up and plunged: vertical angles carried: traverses closed and balanced.

\#1 Zone	-16 traverses	- distance $24,034.63-1: 3117$			
$\# 2,3,4$ Zones	-34	$"$	-	$"$	$35,282.11-1: 2700$

68 traverses $\quad 78,706$. 44 reet, average $1: 2752$

$$
\text { Lineal Tolerance } 0.0 \mathrm{H} \sqrt{\mathrm{D}}+0.20
$$

Angular Tolerance $1.5 \sqrt{M}$ where N is reading in minutes:
(1.5 Mountain Factor).

Stadia Points: Approximately 15,000: numbered stakes: flagged with coloured tape. These points comprise the control survey for contouring, geological mapping and magnetometer.

Road Traverse: The main control traverse is the road traverse from camp to \#3 Zone adit: run as a check on previous work and for balaneing: has been balanced to 415 ('Core Shack) and $\Delta 14$ (Upper Adit).

Balancing: Peripheral traverses around area covered balanced to triangulation and levelling control points: control tie points balanced by working inwards: various traverses leading to same tie point are weighted according to the number of instrument set-ups: balancing same for elevations. MAGMETOMETER SURVEY

Method: Using a Sharpe A-3 magnetometer individual readings were taken by null method at each ground traverse station or stadia point. Over the mineralized zones these points average 50 feet apart. Background was established as 57,400 gamas. (See Magnetoneter Survey Plan, Scale 1"-400', Figure 3D.) Readings indicated on the map are in thousands of gamas above or below background (contouring factor is 100) where background (57400 g.) is indicated as zero.

Results: Where magnetite rinexalization comes to surface the magnetic intensity is generally over 10,000 gammas above background. The anomalles are sharply defined and in shape they closely approximate the outcrop pattern. The effect of topography as compared to structure is well inaicated. Highs (above background) are compensated by lows (below background) with the 0 contour (background 57400 gamas $=0$) being located at or close to the footwall contact of the rineralization. The "lows" occur as a rule topographically below the mineralization. Where mineralization occuss at surface the changeover from
high to low is remarkably sharp.
Within \#1 and \#2 Zones several areas consisting mainly of waste within the ore zone are indicated by "lows". (See Fig. 3D and compare with Geological Plan Fig. 3C and with Iron Distribution Contour Plan Fig. 3B.)

The most important point indicated by the survey is that a sheetlike mineralized zone (magnetite) at depth is indicated by a very low "positive" anomaly.

At Tasu the extensive \#5 Zone is indicated at surface usually by an anomaly of only 1000 to 2000 gammas above background. (Again see Figures 3B, 3C, 3D.) An anomaly of 4000 to 5000 gammes is therefore indicative of considerable concentration at depth.

Magnetic profiles are indicated graphically for Sections 22, 26, $30,34,50,60,70,80$ and 88 . Contouring factor = 100 (Example: 100 on the graph $=100 \times 100=10,000$ gammas)

The effect of the ore zones dipping to the west is usually indicated by the shape of the profile curve. To the west of the outcrop area the profile of the curve is generally flatter than to the east of the outcrop. DIAMOND DRILLIMG

The diamond drilling done on the property to date is indicated by Table \#3. Total to end of March, 1964 - 116,921 feet, of which 103,318 feet were with $A X$ coring.

Vancourer, B. C. April 10, 1964
G. K. Polk

Gcologist

WESFROB MINES LTD (TASU)
 LEGEND

Wesfrob Mines Lta.

Drilling

Year	$\text { Holes } A X$	$X_{\text {Feet }}$	Holes	Feet	Hoks ${ }^{\text {PS }}$	Feet
$\overline{956-1887}$	55		12		82	${ }^{3}$
	- 32				4	
	10					
taters	-					
		-		--		
		\square				
-						
		-				

| Totals | 322 | Av 321
 103318 | | 12 | Av 287
 3447 | 123 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Av 83 |
| :--- |

457 Holes, 256 feet average depth, 126921 feet total.

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |

(1000ELEV.

