VANCOUYER COPY FIELD COPY

Mineral Exploration Texasgulf Inc. P.O. Box 870 Calgary, Alberta T2T 2J6

KECHIKA PROJECT VOLUME | FINAL REPORT 1976

NTS 94-C/F/K/L/M, 104-I/P December 1976

P. Boyle

KECHIKA PROJECT 1976

VOLUME 1

Reconnaissance of Lower Paleozoic Carbonates and Shales in Northeastern British Columbia, for Carbonate and Shale Hosted Lead Zinc Deposits

by

Peter Boyle

Texasgulf Inc.

NTS 94-C/F/K/L/M, 104-I/P

KECHIKA PROJECT 1976

FINAL REPORT VOLUME 1

Table of contents	Page
Review	4.
Summary and Conclusion	5.
Recomendations	6.
Regional Geology -Transcurrent faulting in the Rocky	9.
Mountain Trench and Tintina Trench -Geology of the area west of the Kechika River in the vicinity of	.11.
the Turnagain RiverGeology east of the Kechika River opposite the mouth of the Turnagain	.14.
RiverGeology of the Liard Bridge Area (south and west of the Alaska High-	.16.
way)Geology of the Gataga River Area -Geology of the Kwadacha River-Pesika Creek Area	.19. .24.
Geochemical Program Results	.26 .35.
Field Work Methods	.36. .36.
Sampling Procedure	. 36.
Analysis of Samples	.37.
Personnel	.38.
APPENDIX A -Description of Mineralization -Rough Showing, Through Creek Fe, Zn 94-L-8(1) M -Boya Showing, Cu, W, Zn 94-M-3(1) Memo -D,P Showing, Driftpile Creek Fe, Zn, Pb 94-K-4(-Driftpile Ca/Okg Showing Zn (Cu) 94-K-4(2) Memo	45. 1) Memo.51

FINAL REPORT VOLUME 2

Table of contents

APPENDIX B -Geochemical Data Sample Record Sheets

APPENDIX C -Geological Traverse Record

VOLUME 1

LIST OF FIGURES AND MAPS IN TEXT

	_ 1		
Fig.	1-1	Location Map	
Fig.	1-2	Geological Legend	to Location Map.
Fig.		Geology Map 94-L/I	
Fig.			of the Kechika River
119.	3 1		
		opposite the Mouth	or the rurnagarn
A 100 100 100 100 100 100 100 100 100 10		River.	
Fig.	4-1	Index Map to Barit	te Fluorite deposits
		(Alaska Highway)	
Fig.	4-2	Schematic Cross Se	ection A-B
Fig.		Schematic Cross Se	
Fig.		Geology Rabbit Riv	
		Schematic Cross Se	
Fig.			
Fig.			of Kechika Map area
Fig.	5-3	Geology of Kechika	a 94-L-SE
		APPENDIX A	
Fig.	A-1	Rough Showing	Claim Map
Fig.			Rock Chip Profile
Fig.			Soil Sample Profile
_		Davis Charring	Location Map
Fig.		Boya Showing	
Fig.			Geology
Fig.	A-6		Rock Chip Geochemistry
Fig.	A-7	•	Schematic Cross Section
Fig.	A-8	D,P Showing	Location Map
Fig.			Showing Location Map
	-		

VOLUME 1 IN POCKET

ROCK CHIP GE	OCHEMISTRY			Scale
Fig. D-1 D-2 D-3 D-4 D-5 D-6	Sample location	Map Rabbit River " Kechika " Tuchodi Ware	W 1/2 E 1/2 W 1/2 E 1/2 W 1/2 E 1/2	1:250,000
FigD-7 .D-8 .D-9 .D-10 .D-11 .D-12 .E-1 .E-2 .E-3 .E-4 .E-5 .E-6 .E-7 .E-8 .E-9 .E-10 .E-11 .E-12	Cu/Pb/Zn (V) "" "" "Sample location "" Cu " " Pb " " Zn (V) "		W 1/2 E 1/2 W 1/2 E 1/2 W 1/2 E 1/2 94-K-4 94-L-1 94-L-8 94-L-1 94-L-8 94-L-1 94-L-1 94-L-1 94-L-1 94-L-1	1:250,000

Also included with this report:

N.E. B.C. Lower Paleozoic Compilation Maps 1:1,000,000 (April, 1976/revised Sept., 1976)

Fig. ·F-1 Kechika Project Explorations, 1976 - N.E. B.C. Study area .F-2 Kechika Project Explorations, 1976 - N.E. B.C. Mineral Occurrences .F-3 Kechika Project Compilation, 1976 - N.E. B.C. Ordovician .F-4 Kechika Project Compilation, 1976 - N.E. B.C. Silurian .F-5 Kechika Project Compilation, 1976 - N.E. B.C. Devonian

KECHIKA PROJECT-EXPLORATIONS

REVIEW

AREA

-Northeastern British Columbia-Recon.

GEOLOGY

-Lower Paleozoic Platform Carbonates and related Shale Basin

EXPLORATION TARGETS

- -Carbonates hosted Zn/Pb deposits of the Robb Lake or Pine Point type.
- -Shale hosted Cu/Zn or Pb/Zn deposits of the euxinic shale basin type
- -Turbidite, avalanche debris hosted Zn Cu Pb deposits, of Meggen type.

EXPLORATION CREW

-Seven (7) men, helicopter supported, for ten (10) weeks (May-September, 1976)

RESULTS

MINERAL PROSPECTS

- (1) Rough Showing: 94-L-8(1) Zn Fe Pb, pyrite, sphalerite, galena. 5 claims, 92 units total, claims recorded Sept. 2, 1976.
- (2) Boya Showing: 94-M-3(1) Fe, Cu, W, Zn, pyrite, pyrrhotite, chalcopyrite, scheelite, sphalerite. No claim recorded. MINERAL OCCURRENCES
 - (1) D.P. Showing (PLACER): 94-K-4(1) Fe, Zn, Pb, pyrite, sphalerite, galena
 - (2) DRIFTPILE Ca/Okg Showings: 94-K-4(2), Zn (Cu) sphalerite, (chalcopyrite, malachite)
- (3) AKIE Showing: 94-F-7 (1) Zn Cu, sphalerite, chalcopyrite. GEOCHEMISTRY
 - (1) Black pyritic shales extend southeast from the mouth of the Gataga River, 100 miles to the Ospika River.

 Numerous red-ochre springiron tuffa deposits are noted where running water crosses massive pyrite beds within the black shale. Rock chip sampling indicates that the black shales have a higher than normal Zn Pb V metal content. This is particularly noticeable when the red spring-iron deposits are sampled.

PROSPECTING

Hydrozincite, sphalerite, malachite and chalcopyrite are frequently observed; in trace amounts associated with the black shale; in minor amounts associated with the bedded pyrite (D,P Showing); and in the black shale proximal to the shale/carbonate facies edge.

SUMMARY & CONCLUSION

Kechika Project was a comprehensive geological and geochemical reconnaissance survey in northeastern British Columbia. The objective of the project was to discover Mississippi Valley type Pb-Zn mineralization or Howards Pass type Pb-Zn-Cu mineralization in the Lower Paleozoic sediments.

Three distinct areas of interesting mineralization were located: The Boya Showing (Fe, Cu, W, Zn); The Rough Showing (Zn, Fe); and the Akie Showing (Cu, Zn). Only the Rough Showing was staked (5 Claims total 92 units).

In the Birches Lake region the Atan, Kechika, Sandpile and McDame Formations were examined. Previously, stream sediment geochemical anomalies were noted in this area (Deighton 1971), Many of which were examined. Follow up on some of these anomalies also resulted in the Mississippian Nitzi Formation being examined. East of Birches Lake phyllitic shale limestone and quartzite of indeterminate age were examined.

Interesting mineralization was noted at the Boya Showing. Chalcopyrite, pyrrhotite, scheelite and sphalerite were found associated with green skarn. These results indicate that the Liard Plateau should be examined in more detail for magnetic massive sulphide-tungsten showings.

West of the Kechika River the Hidden Valley Copper Showings. hosted in the Kechika Formation were examined. The mineralization is erratic and discontinous. High rock geochem PbZn values were obtained from the limonitic matrix of the Sandpile and McDame Fm breccias. However no associated sulphides were located in the vicinity.

In the Liard Bridge Area Units 3 thru 8 were examined. The rock chip geochem results were uniformly low. No evidence of any sulphides were seen in the area.

From Toad River the Cambro-Ordovician carbonates and shales were examined west of the Gataga River. The Ordovician graptolitic shales are very carbonaceous. In traces are common in the shales. Good In occurrences were located at several points along the Ca/Okg contact and one, the Rough Showing was staked. The mineralization is associated with pyritic shales overlying and intertonguing with the carbonate. The shales overlying the showing do have a regionally anomalous Cu Pb In metal content. The numerous metal occurrences in the area suggest that more significant discoveries may be made.

An aerial examination of the Besa River shales indicates that they may be metal rich between Toad River and Tuchodi River; particularly in the vicinity of Mt. Mary Henry where Zn-Pb showings have been located in the underlying Dunedin Fm. (James 1971, CBC claims)

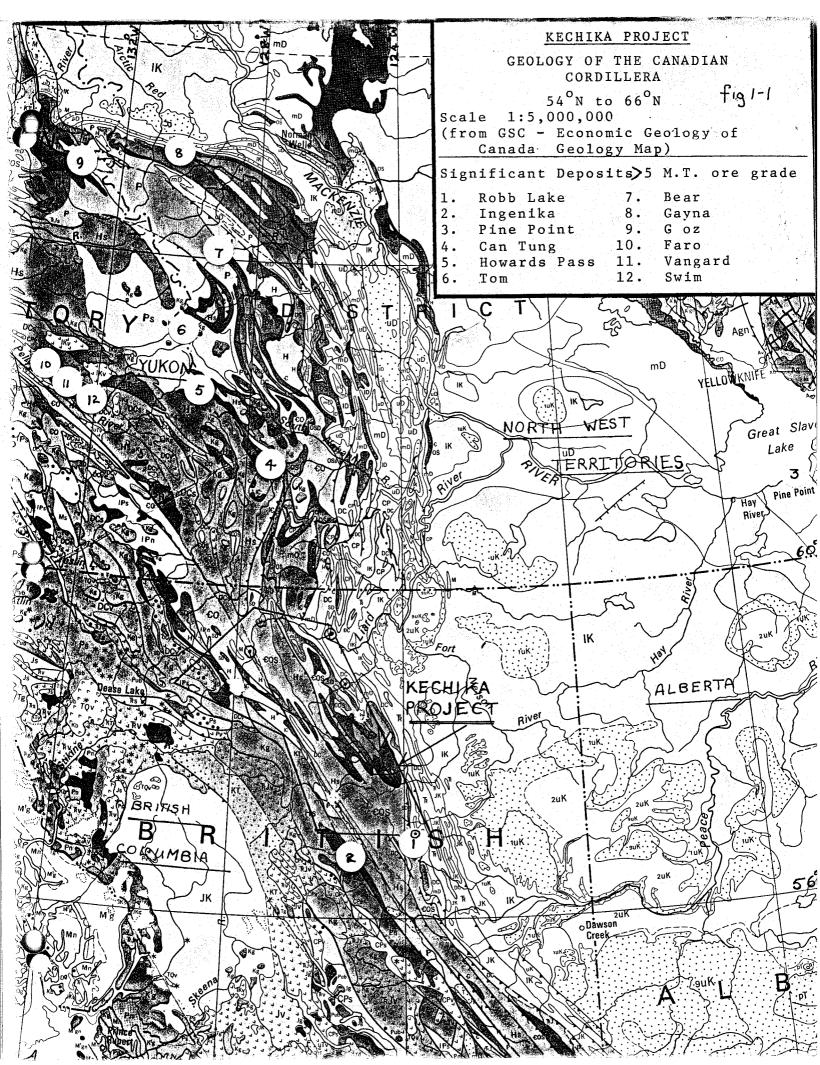
Based at Robb Lake, the sediments between Kwadacha and Ospika River were examined. Several Zn and Cu oxide occurrences were observed in the vicinity of pyritic shales on which red spring iron deposits were noted. The Akie Showing (minor chalcopyrite-sphalerite) is associated with quartz carbonate veining of slates overlying pyritic shales. This area should be examined in more detail, particularly to the south of the Akie Showing.

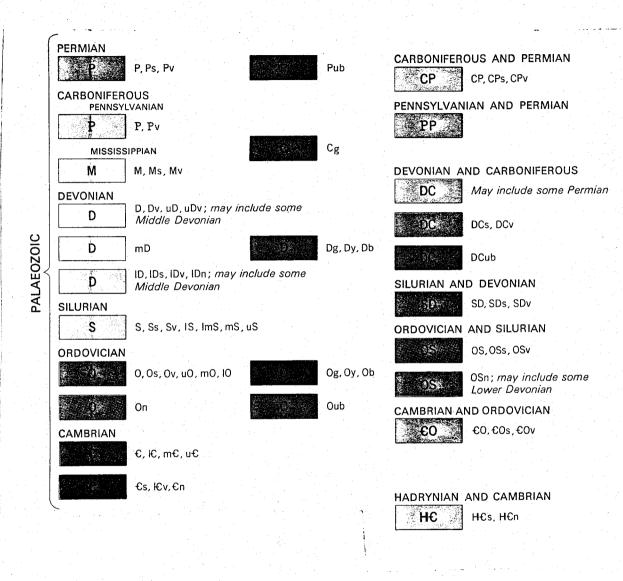
RECOMENDATION:

It is proposed that a seven men crew, (3 geologists, 3 assistants and cook) should be engaged in a reconnaissance exploration program, during the 1977 field season to examine the following areas: 1) The Gataga River Area

2) The Kwadacha River-Bernard Pass Area

3) The Akie-Ospika River Area


The object being to follow up on geochemical anomalies and favourable geology indicated by field work during the 1976 field season.


Further a 2 man crew (geologist and assistant) should examine, map and complete a soil sample program over the Rough claims.

The project to be serviced by a Jet Ranger helicopter, and fixed wing support to originate in Watson Lake.

A base camp to be established at North Gataga Lake.

Field work to start in early June and end in late August.

PALAEOZOIC

OSD, OSDs, OSDn; Ordovician, Silurian, Lower and Middle Devonian

Upper Cambrian, Ordovician, and Silurian

PALAEOZOIC AND? OLDER

P

Ps, IPs, may include some older rocks

Pn, IPn, may include some older rocks

HPs; Hadrynian and Lower

Palaeozoic; may include

some Helikian

HADRYNIAN AND PALAEOZOIC

fig 1-2

REGIONAL GEOLOGY

1. Transcurrent faulting in the Rocky Mountain Trench and Tintina Trench

Transcurrent faulting is particularly evident in the vicinity of Ware. A small granite intrusive is seen at Deserters Peak. A similar feature is seen on the west side of the Trench just north of Ware. They are similar in age (46, 47 MY), composition, and have similar geology. They represent the east and west halves of an intrusive, the western portion of which has been displaced 100 km N.W. by a transcurrent fault. These structures are now expressed as major lineaments. Evidence of a numerous small igneous and plutonic features are found along these lineaments. The metamorphosed areas surrounding these features are unusually large. Trace tungsten and copper is noted in the metamorphosed sediments surrounding them. (Boya, Winco, Fox, Pan, Ruby Red and Chowika Creek).

In the SE McDame area there is further evidence of significant displacement along transcurrent faults.

- l) North of the Turnagain River between Burnt Rose Lake and Birches Lake, Ordovician phyllitic Kechika Fm is unconformably overlain by a thin Silurian graptolitic siltstone, which is in turn unconformably overlain by Mississippian carbonate. On the eastern side of the Trench the only Mississippian carbonate near the Trench lies north of the east arm of Williston Lake, implying a displacement of 300 km.
- 2) Immediately west, between Deadwood Lake and Burnt Rose Lake. Ordovician Kechika Fm is overlain by Silurian Sandpile carbonate breccia and Devonian carbonate breccia.

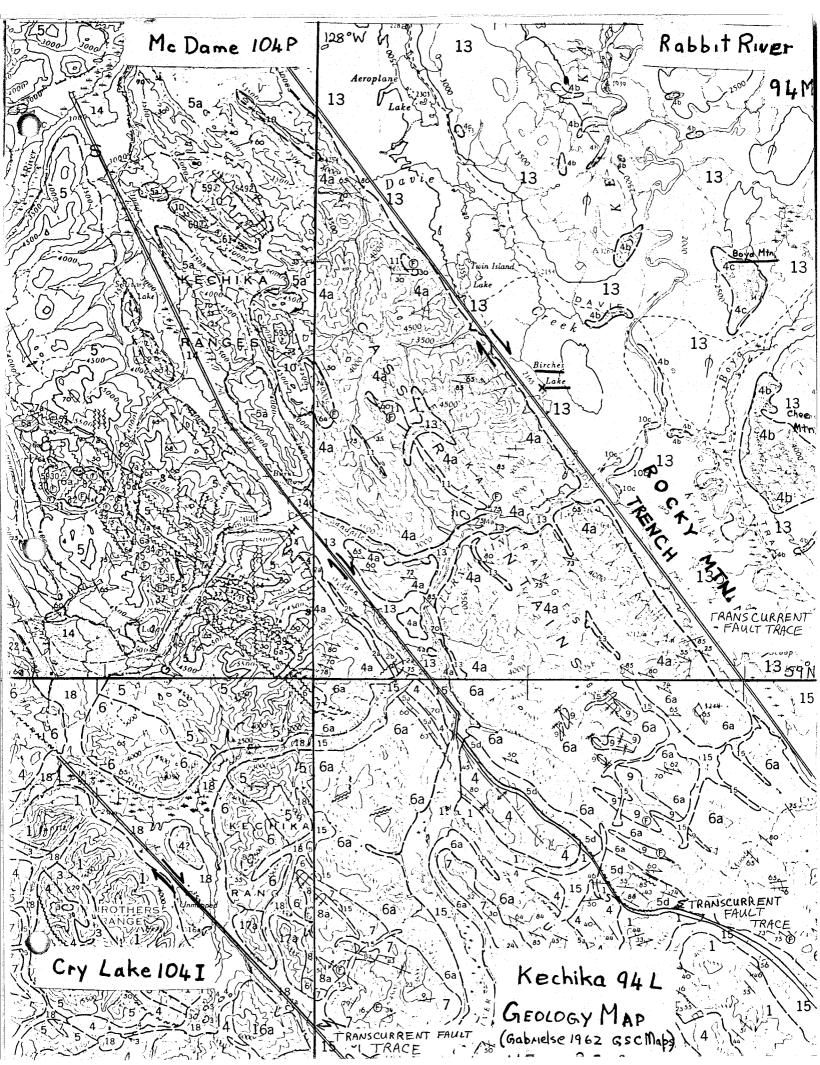
This structural block also appears to be a displaced fault block, explaining the apparent lateral facies differences between the two blocks. It is noted that the thin Atan Fm limestone is similar to the Atan Fm limestone near McDame.

- 3) Numerous offsets of granite bodies are seen in the Ominica Metamorphic belt to the south.
- 4) It is noted in passing that the Ingenika Fm is Lower Cambrian in age. It contains numerous trace Zn Pb occurrences, of the Fergusson-Ingenika Mines type, in the Cry Lake area.
- 5) The transcurrent faults extend southward to Quesnel, then follow the westward edge of the Shuswap Metamorphic Complex. From Quesnel a lineament splays off towards Kamloops, and another splays off down the Fraser Valley.

- 6) To the north the Tintina Trench is a locus of transcurrent faulting. Up to 500 KM displacement is reported. At latitude 60⁰ 20' N, west of the Trench, the quartzite observed to underlie the Atan FM changes to shale. The source of the clastic material is a problem, paleocurrent indications indicate a NE source. However to the northeast and east, during the Cambrian there was a shale basin. Thus, transcurrent faulting must have moved the western block northward to its present position. Evidence of possible Cambrian age transcurrent faulting may be indicated by Lower Cambrian age volcanics and tuffs on Gataga Mountain and in the Nahanni Valley near Can Tung.
- 7) No evidence of transcurrent faulting is seen east of the Trench in NE B.C. however the two intrusives in SE Rabbit River map area may be significant.

Significant aeromag anomalies are reported to coincide with instrusives.

In the northern Rocky Mountains northeast of the Trench the sedimentology of the Lower Paleozoic formations and present facies distribution indicate that facies changes were abrupt. An easterly sandstone and carbonate facies changes westerly and northwesterly to shale and siltstone. Shallow water facies are found closer to the Trench in the vicinity of Williston Lake, than is apparent in the Ware area. That the northern Rocky Mountain Trench formed a distinct boundary in terms of depositional environment is apparent from the present distribution of Lower Paleozoic strata. Similar facies change relationships are observed in Ware and Toodoggone map areas in relation to Lower Cambrian clastic rocks.


In the Gataga area sedimentological studies suggest that the Cambrian carbonates mark a significant facies anomaly, possibly the result of major transcurrent displacement along a fault zone coincident with the Rocky Mountain Trench.

2. Geology of the area west of the Kechika River in the vicinity of the Turnagain River.

The relief west of the Rocky Mountain Trench is extreme-rising from 2500 feet elevation in the valley floors, to northwest southeast trending ridges at 6500 feet elevation. The hills are covered in dense underbrush to an elevation of 6000 feet. Much of the area has been burnt by forest fire (1946). Steep brush covered hillsides are capped by bare limestone cliffs. The area has been deeply glaciated and many glacial features are found in the U-shaped valley floors. Glacial eratics are common and have been transported in a generally northwesterly direction. Surface drainage in this area is largely restricted to spring melt water runoff. The hillside drainage gullies are deeply incised. Significant subsurface drainage is active in the area, resulting in numerous artesian springs, (south end Birches Lake). Although no major cavern systems are reported in the area solution of limestone results in Ca CO3 concentrations high enough, to permit precipitation of carbonate, forming concretions along the shoreline of many lakes in the area.

A thick section of Cambrian sandstones is overlain by a thin carbonate Atan Formation west of Solitary Lake. East and west of Solitary Lake the Ordovician Kechika Formation is comprised of siltstones, slates and argillaceous carbonate. There is a very strong micaceous slaty cleavage parallel to the axial plane of the folding. Poor exposure makes it difficult to make a direct comparison of the two sections. However, there are significant variations. The Hidden Valley Creek copper showing was examined 104-P-1(1). Spotty and bleby chalcopyrite is associated with white quartz pseudo bedding, which is interbedded with a green micaceous phyllite through 75 feet of section. The grey slate footwall and hanging wall are unmineralized. In some areas the sulphides have been deeply weathered. Numerous similar occurrences are found at approximatly the same horizon over 14 miles to the The distribution of these occurrences along strike northwest. is erratic and the copper values are low.

Folding of the Kechika Formation, prior to deposition of the Silurian sediments east of Solitary Lake, resulted in thin Silurian carbonaceous graptolitic shales being deposited in broad synclinal troughs. West of Solitary Lake Silurian Sandpile Formation carbonate breccia overlies the Kechika formation. Chert and pyrite nodules are noted in some areas. The Sandpile carbonates are overlain by similar McDame Formation carbonate breccia. Chert and pyrite are more common in the McDame Formation near the Turnagain River. In this area the McDame carbonate is overlain by black shales of Late Devonian Brecciation probably resulted from the loss of evaporites. East of Solitary Lake the Silurian graptolitic shales are unconformably overlain by fossiliferous limestone of the Mississippian Nizi Formation. Eighteen miles south east of Deadwood Lake a post Laramide rhyolite extrusive center was examined.

Stream sediment sampling (Deighton 1971) failed to pick up any significant response downstream from the Hidden Valley Creek Showing even though specular hematite and quartz-chalcopyrite boulders were found up to 4 miles downstream.

The McDame and Sandpile carbonate breccias are marked by red stained creeks at several locations. These streams have highly anomalous Cu, Pb In values, particularly where the streams emerge at the foot of talus slopes below cliffs of these units. The staining appears to be a result of leaching of the pyrite nodules in the cherty carbonates. The breccia does have a limonite matrix which can give anomalous Cu Pb In values in rock chip grab samples. The Vale Showing 104-P-1 (2) (In, Pb) south of Sandpile Lakes is reported to be hosted in the carbonate breccia. No evidence of In Pb sulphide mineralization was found.

An interesting sphalerite float occurrence is noted on Rapid River near the mouth of the creek running out of Looncry Lake. The source of this mineralization has never been located. (Gabrielse 1963 Map 1110A Geology of the McDame Map Area NTS 104 P).

Further geological details of this area are reported by:- Gabrielse 1962 GSC map 29-1962 Geology of Cry Lake NTS 104 I.

Gabrielse 1962 GSC map 42-1962 Geology of Kechika NTS 94L,
Gabrielse 1963 GSC map 46-1962 Geology of Rabbit River
NTS 94 M

No further work should be done in the area at this time.

3. Geology east of the Kechika River opposite the mouth of the Turnagain River.

The Liard Plateau is an area of relatively low relief. Large plateau areas and ridges have an elevation of approximately 3300 feet. Broad valley floors are marked by glacial outwash scour channels at 2000 feet elevation. There are numerous reports of glacio-lacustrine deposits in the area. The entire area is heavily treed (poplar, jackpine) and the underbrush is full of deadfalls. Overburden is thin but only on the highest areas or steepest slopes is there any outcrop. Southeasterly facing slopes are particularly steep.

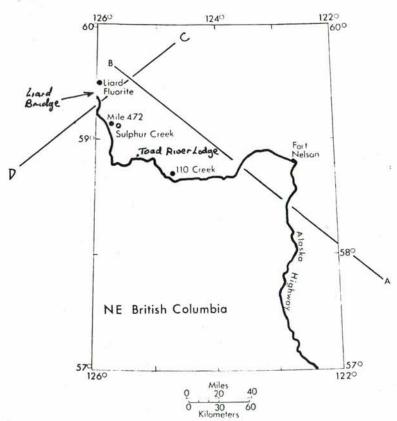
The tectonic structure of the Liard Plateau is similar to that to the south in the Rocky Mountains. Broad folds of resistant clastic sediments (Unit 1) of Proterozoic age are overlain by siltstone, phyllitic limestones and cherty shales (Unit 4a, b, c) of possible Cambro-Ordovician age. On Horneline Creek the cherty shales contained many pyritic nodules and white quartz pseudo-bedding. The Cambro-Ordovician sediments are overlain by silvery seritic phyllites (Unit 10a) (see fig. 3-1) poor outcrop exposure and heavy tree cover effectively prevents detailed examination of structure in the area and delineations of favourable facies changes. No significant facies trends were recognized. Regional metamorphism has developed a micaceous cleavage in the rocks. The micaceous cleavage is normally parallel to primary bedding.

Evidence of a significantly higher temperature metamorphism is seen on Chee Mountain where some coarse grained recrystalized limestone is noted, and on Boya Mountain 7 miles northwest where a pyrite, pyrrhotite, chalcopyrite, scheelite, sphalerite showing has been located associated with green skarn. Rock chip grab samples of the green skarn and associated siltstone give highly anomalous values, 40-1880 ppm Cu (see relevant memo, this report), through approximately 500 feet of section. No intrusive bodies are exposed in the immediate area.

The area is located in the southwestern quadrant of the Rabbit River geology map. (Gabrielse 1963 GSC map 46-1962 NTS 94-M-SW 1/4).

A helicopter-magnetic survey and soil sampling follow up program would indicate the presence of any massive sulphideskarn occurrences along strike.

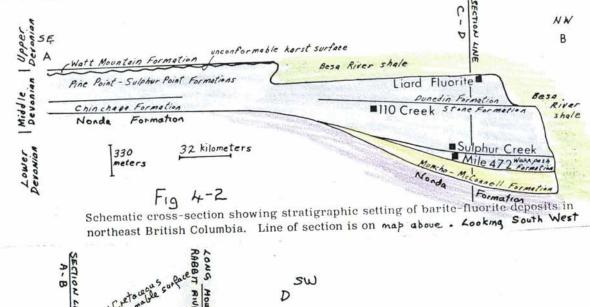
4. Geology of the Liard Bridge Area (south and west of the Alaska Highway


Interest in this area centered about Unit 7, a bleached carbonate breccia of Devonian age. No stratigraphic evidence was found to suggest that the breccia developed as a facies change, slope avalanche debris. The brecciation may have developed as a facies change, slope avalanche debris. The brecciation may have developed as a result of loss of evaporite beds. Unit 8 is also brecciated in some areas. Several stratabound fluorite barite bodies are located between 110 Creek and Liard Bridge (see schematic section fig 4-2) The contact with the overlying Besa River Shales (Unit 9) was not present in the area examined. The Nonda Formation (Unit 5) underlying the Devonian carbonate section (see schematic section fig 4-3) is a dark grey fossiliferous limestone. is underlain by a thick section of carbonates and limy carbonates which grade downward to siltstones and dark slates of Ordovician or older age. Unit 3b a polymictic conglomerate is now believed to be Proterozoic in age. Unit 1, maroon and green shales, is also believed to be Proterozoic in age.

Variation in thickness of the section and apparent lateral facies change (see schematic section fig 4-3) were noted (see geology map Fig 4-4) and were assumed to be facies pinchouts, reflecting minor tectonic instability of the Tathlina Arch and Macdonald Platform structures. A lack of significant lithological variations however suggest that the pinchouts mark erosional truncation of the relevant formations. This combined with post Cretaceous, pre Laramide erosion, and possible recurrent activity of the normal fault west of Long Mountain, have removed the potential host rocks for Pb-Zn mineralization. Outcrop exposure is poor in the wide valley floors.

On Vents Creek a small volcanic center was examined. Volcanic greenstone bands are found in Unit 8 carbonates. Evidence of extreme wall rock alteration was found in float in Vents Creek, however, no distinct contact metamorphism aureole was seen. Epidote is associated with quartz veining. A large well defined aeromagnetic anomaly is associated with the volcanic vent, suggesting that the feature is post Laramide in age.

Geological maps are available for this area (Gabrielse 1963 GSC map 46-1962, Geology of Rabbit River 94-M)


Analysis of rock chip grab samples gave no indication of any significant metal concentration in this area.

Stratigraphy of North - Eastern British Columbia
In the Vicinity of the alaska Highway.

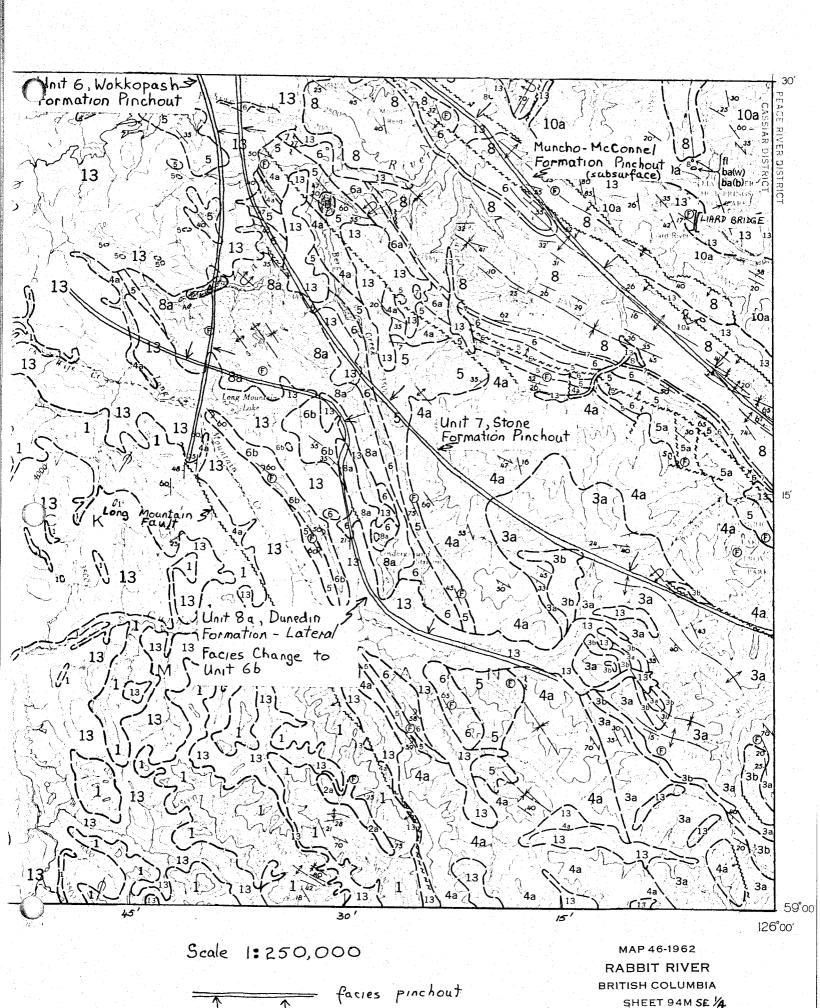
Index map showing location of the Sulphur Creek, 110 Creek and Mile 472 barite deposits and the Liard Fluorite deposit.

Fig 4-1

Duadin formation

Workpash Formation

Wants


Worker

Wanten

Wants

Wanten

Wa

5. Geology of the Gataga River Area

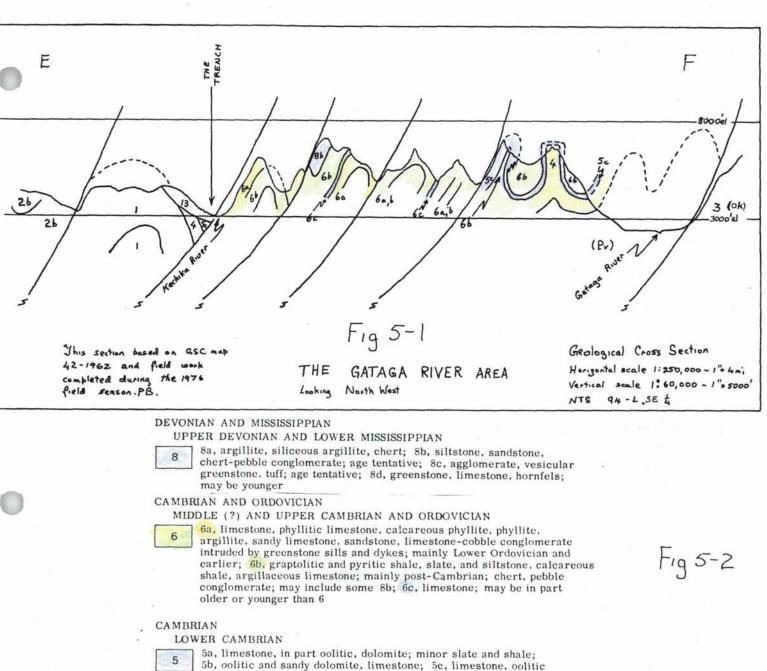
The range of hills lying between Toad River and Gataga River rise to over 7000 feet, with only a few low level passes at 5500 feet elevation. The treeline lies at 5000 feet, bare hillsides are grass or talus covered. The Gataga River runs down the eastern side of the forested valley, which has been scoured by alpine glaciers. There are many whale-back features and small elongate lakes. The Gataga River rises at the Lloyd George and Churchill glaciers. Netson Lake lies to the north in a deeply incised valley at the western edge of the same range of hills as the Gataga River. This valley is also heavily forested below 5000 feet. The area of principle interest to this report lies between Gataga River and the Kechika River. This range of hills rises steeply from the Gataga Valley to over 6000 The hills are largely grass and moss covered, the treeline lying at 3500 feet. The hills, form broad hogback, rolling ridges, except where steeply dipping limestone forms spires and cliffs. The rivers form consequent drainage patterns draining in a generally westerly direction. The tributaries are precipitous and deeply incised. The Kechika River lies in a subdued valley which drains northward in the Rocky Mountain Trench from the Sifton Pass watershed. The hills lying to the west are heavily forested to over 5500 feet.

Numerous hydrozincite, sphalerite and malachite occurrences have been noted in the vicinity of the Rough Showing, Driftpile Showing and D,P Showing (Placer). For details of these mineral occurrences see relevant memos, this report. The Zn, Cu located by prospecting was confirmed by rock chip geochemistry. Several significant Cu, Pb, Zn and V geochemical anomalies were obtained which will be examined by prospecting during the 1977 field season.

The oldest rocks in the area are of Hadrynian age. Greenish grey green chloritic phyllites and slates with minor amounts of maroon slates, sheared greenstone lenses and poorly sorted sandstones are exposed. These sediments have been metamorphosed to low greenschist facies. The upper contact is conformable with Cambrian Atan rocks. The argillaceous rocks within the Cambrian exhibit no evidence of metamorphism. This is a feature which is more often noted west of the Trench.

The Cambrian Atan Formation (Unit 4, 5c) paraconformably overlies the Hadrynian rocks. Two main facies have been mapped within the Atan Group, an eastern and lower clastic facies and a western partly coeval carbonate, shale facies. The carbonate is commonly brecciated but the upper units consist of fine grained blue limestone.

The upper contact is marked by black shale whisps, black shale and carbonaceous limestone lenses, limestone breccia pods intertonguing with the overlying black shales. Sediments near the contact are commonly isoclinally folded, and the contact is faulted locally. Sphalerite, galena and pyrite are associated with the black shale lenses and carbonaceous limestone lenses. Minor sphalerite, galena, chalcopyrite and barite are associated with sparry calcite in the limestone breccia pods. Sphalerite, pyrite and barite are associated with the intertonguing limestone and shale. Soil samples collected less than 100 stratigraphic feet above the contact have given high metal values on the Rough Claims.


The Kechika Formation is comprised of black carbonaceous graptolitic shales, the basal portion of which is pyritic at the Rough Claims. A long biserial graptolite 2-1/2 to 3 inches long with a 1/3 curled end is common. Bedded black barite is also common. The Kechika Formation is reported to contain some Silurian graptolites in its uppermost beds. The entire Kechika Formation black shale is tightly folded and its true thickness may be relatively thin (Unit 6b)

Unconformably overlying the Kechika Formation is a thick section of Devonian Mississippian siltstones, carbonaceous shales and black, well sorted sandstone, in the basal portion of which is carbonaceous black shale, bedded black barite and massive bedded framboidal pyrite exhibiting sedimentary compaction features. (Unit 6a) Many of the large springiron deposits appear to result from oxidation of the bedded pyrite. An assay of the bedded pyrite at the D,P Showing assayed .96% Zn, .56% Pb. Massive galena float has been located on the D,P claims but has not been found in outcrop. Numerous high Zn and V values have been obtained. The stratigraphy of Unit 6a and 6b is not sufficiently well known to permit accurate mapping at this time.

The stratigraphic relationship between Unit 6c, possibly Cambrian age carbonate, and Unit 8c a fossiliferous Devonian carbonate to the Atan, Kechika and Devonian Mississippian black shales is not clear.

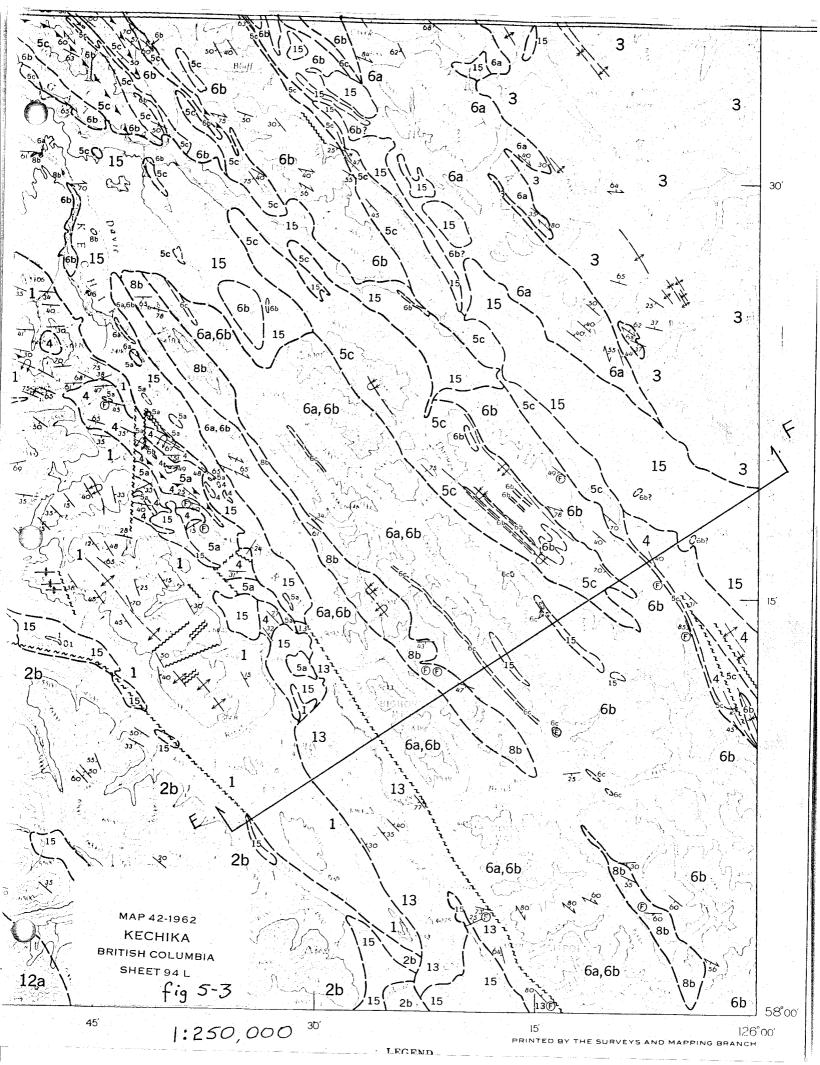
The geology of the area between Split Mountain and Terminus Mountain is very similar to that in the Gataga area.

The geology of the Netson Lake area is less clear however. Ordovician age graptolitic grey siltstones (2 ridges east of Netson L.) underlie, or are a more easterly facies, of Ordovician graptolitic siltstones and slightly carbonaceous shales. Oxidation of pyritic black shale results in some small red gossans on the ridge east of Netson Lake. These are inturn overlain by a thick section of black shales and argillaceous limestones which are exposed in a canyon which drains westwards joining Netson Creek 1 mile north of Netson Lake

5 5a, limestone, in part oolitic, dolomite; minor slate and shale; 5b, oolitic and sandy dolomite, limestone; 5c, limestone, oolitic and sandy dolomite and limestone, limestone conglomerate, chert-nodule limestone, sandstone, siltstone, shale; may be in part equivalent to 4; limestone conglomerate may be Middle (?) Cambrian; 5d, may be Precambrian

4 Quartzite, pebble conglomerate, siltstone, slate, shale

PRECAMBRIAN AND CAMBRIAN


PRECAMBRIAN AND LOWER AND MIDDLE CAMBRIAN

3 Sandstone, siltstone, slate, shale, calcareous sandstone, red and green slate and shale, limestone-cobble and boulder conglomerate, ouartz-pebble conglomerate; minor dolomite and black, pyritic shale in highest beds

PROTEROZOIC AND LOWER PALAEOZOIC (?)

2 2a, quartz-mica gneiss, quartzite, crystalline limestone, hornfels, skarn, feldspar-quartz gneiss; Cambro-Ordovician (?) and earlier; 2b, calcareous phyllite, phyllite, micaceous quartzite, schist, granitic gneiss, crystalline limestone, limestone, greenstone, pegmatite, hornfels; may be Cambro-Ordovician and earlier

Limestone, buff and grey shale, sandstone, phyllite, sandy limestone and dolomite, chlorite and muscovite schist, slate, argillite, micaceous crystalline limestone, pebble conglomerate, red and green slate and shale; locally includes small sills and dykes of greenstone; may include some Cambrian rocks

Some anomalous Cu values were obtained from rock chip grab samples in this area.

A detailed description of the geology may be obtained from reports by Taylor and Stott 1973 GSC Memoir 373 NTS 94K and Gabrielse 1962 GSC Map 42-1962 Geology of Kechika NTS 94L.

The rolling hills west of the Gataga River are very distinctive particularly where a bright green grass is found. Large red springiron deposits are also common. Shale fragments, organic material and quartz vein fragments are commonly found cemented by a ferruginate material. These springiron deposits commonly cover several acres. A bronze, green weathering, copper vanadium sulphide has been identified from quartz veins and a black crystalline limestone band in shale has been identified at one location. The mineralization is hosted in Ordovician age Kechika Formation. The shale contains barium, zinc, silver, manganese, vanadium and iron in higher than average amounts and the zone is weakly radioactive. The gossans are large and spectacular. (Rose 1973 GSC Economic Geology Report #27-Vanadium)

Attention will be focused or the Gataga Area during the 1977 field season, (Kechika Project 1977).

6. The Geology of the Kwadacha River-Pesika Creek Area

The northern Rocky Mountains can be subdivided into three distinct topographical elements. The western portion, lying within eleven miles of the Trench is a sombre coloured range with a number of prominent limestone Local relief between the Findlay River and these peaks may be up to 5000 feet. Typically the peaks of this range sustain vegetation to high elevations thus enhancing the dark colours resulting from weathering of dark coloured rocks. East of this range light weathering colours reflect a siltstone and phyllitic carbonate bedrock, contrasting sharply with underlying black shales in the vicinity of which occasional red springiron deposits are noted. The black shales form precipitous hillsides below the treeline and rolling grass covered ridges above. The siltstones and phyllitic carbonates form spires and This range of hills is approximatly fourteen miles The third range of peaks are light coloured and massivly bedded, reflecting the dominantly carbonate bed-These mountains are generally rugged and contain numerous cirques. They form the Rocky Mountain watershed. There are numerous alpine glaciers. This report is most concerned with the central range of hills.

The higher ranges of the northern Rocky Mountains prevented ice movement to the east although some low passes were filled with ice at the later stages of glaciation. Evidence of alpine glaciation is abundant throughout the area. Deeply incised drainage channels dominate local topography along the side of valleys. Drainage from the east was blocked by ice in the Trench at a time when the valleys were largely ice-free to the east, resulting in the impounding of lakes. Small areas of glacial silt along the sides of Kwadacha, Akie and Ospika Rivers are indications of the lakes.

The range of hills lying between the Kwadacha River at the headwaters of Paul River, and the watershed between Pesika Creek and Ospika River was the area in which interest was focused.

Black pyritic shales can be roughly correlated across the area. Locally, Ordovician graptolites have been found. However the structural and stratigraphic relationship between the fossil locations, even on a local scale, is only tentative. The pyritic shales are overlain by a thick section of grey siltstones and carbonates in which Silurian and Devonian graptolites have been found.

Numerous copper stain traces have been noted in this area associated with milky-white quartz veining which cuts the black carbonaceous shale. Zinc oxide traces are also common. At the Akie Showing minor chalcopyrite and sphalerite have been found exposed by a recent avalanche, on the west side of a deeply incised tributary stream on the south side of the Akie Creek. A pale red stain zone attracted attention to the area.

Several red stains in gullies approximately 100 feet down section indicate the presence of black pyritic shales. White quartz veins cross cutting siltstone were found associated with minor chalcopyrite and sphalerite.

The red springiron deposits associated with black pyritic shales are reported to have highly anomalous metal contents.

Reports of a similar style mineralization are made for the Copper King and Extension Property 94-F-2(1). Significant copper values are reported over a 5000 foot strike length. Attempts to locate this showing were not successful.

Trace malachite was noted at the brecciated upper contact of a 50 meter band of volcanic pyroclastics, with phyllitic limestone, 4 miles south of the headwaters of Paul River. Lower Ordovician age graptolites have been identified above and below the volcanic horizon.

Three miles to the west buff-blue fossiliferous limestone of Devonian age is noted which unconformably overlies Ordovician or Silurian age dark shales.

There are several other reports of mineralization in the immediate area, Akie River Showing Cu 94-F-8(1) Chowika CK Cu 94-E-15(1) and Ruby Red Creek Cu 94-C-15(2).

Geological details on the area of interest may be found in reports by: Tedrick 1962 MSc Thesis, Ordovician Geology of the Prophet River Map Area, (U of A). Davis 1966 PhD Thesis, Ordovician and Silurian of the Northern Rocky Mountains, (Uof A). Gabrielse 1975 GSC paper 75-33, Geology of Fort Grahame E 1/2 Map Area. Gabrielse 1975 sketch mappreliminary draft, Ware W 1/2 Map Area. No detailed geological maps of the immediate area of interest are available.

The prospecting and geochemical results were interesting in this area.

GEOCHEMICAL PROGRAM RESULTS

Examination of the metal values obtained from geochemical analysis of rock chip samples indicate that those results listed below are "highly anomalousie. $\bar{x}+2\Delta$. The assigned significance of the metal value is indicated in the Comment column (A-Most Significant, B-Interesting, C-Least Significant, X-mineral occurrences).

Metal	x + 2△	ppm Value	Sample	Traverse	Comment
Cu	63	80	KA1680	94-C-16(b)	See Zn Sample KA1680
		144	KA1684	" B-	- pyritic black slate
		244	KA1647	94-F-1(d) A-	
		82	KA1671	94-F-7(d) C-	
		81	KA2195	$94-F-7(e)_{X-}$	
		410	KA1701	$94-F-10(a)_{A-}$	
		48	KA2139	94-F-7(c) C-	
Pb	43	47	KA1671	94-F-7(d)	See Cu Sample KA1671
Zn	324	460	KA1680	94-C-16(b) _{C-}	_ black slate
		720	KA1681	" A-	_ slate bx. Zn oxide
		390	KA1685	" C-	
		580	KA1664	94-F-1(f) _{C-}	
		1,600	KA2196	94-F-7(e) $_{\rm X-}$	_ rusty float
		420	KA2197		_ black shale Akie Showing
Cu	68	82	KA 97	94-K-4(b) C-	
		70	KA 99	" C-	
		214	KA102	" B-	
		240	KA1427	94-K-4(d)	See Zn Sample KA1427
		630	KA1428		See Zn Sample KA1428
		116	KA 131		- black slate
		148	KA5018	The state of the s	- black slate
		120	KA1574		- arg. ls
Pb	72	300	KA 105	94-K-4(1)	See Zn Sample KA105
		190	KA 106	94-K-4(1)	See Zn Sample KA106
		330	KA 109	" X-	- shale float, D,P Claims
		260	KA 119	" X-	_ black slate float, "
		1,400	KA 120		_ springiron, "
		5,600	DPP5		See Zn Sample KA DPP5
		- 11,700	KB 17		_ Pb in float, D,P Claims
		108	KA 121	94-K-4(a) C-	- graptolitic barite
				A	slate.
		136	KA 102	94-K-4 (b)	See Cu Sample KA 102
		410	KA 134	94-K-4(i)	See Zn Sample KA 134
		73	KA 5011	94-K-4(k)	See Zn Sample KA 5011 Limonitic slate
	061	77	KA 1575	94-K-4(1) C-	
Zn	261	7,500	KA 1710	94-F-13(b) A-	_ springiron gossan
		- 15,500	KA 1712	" A-	· ·
		- 3,700	KA 1713	" A-	-
		555	KA 1716	04-V-4(1) A·	_ qtz-calcite float, D,P
		285	KA 105	94-K-4(1) X	Claims
		700	KA 106		the state of the s
		700	DPP5	11 X	pyrite bed Zn Pb, "
		9 , 600 800	KB 17	ıı X·	See Pb Sample KB 17 "
		390	DPP 3	u C	_ black baritic shale
		386	KA 2095	94-K-4(a) C	_ black mudstone
		780	KA 2100	11	stream gravel sample
		, 00	141 2100	A	

```
-1,460
                      KA 1425
                                94-K-4(c)
                                             A-- springiron
             950
                      KA 1427
                                94-K-4(d)
                                                 springiron
                                             A--
           - 1080
                      KA 1428
                                             A--
              930
                      KA 1452
                                 94-K-4(f)
                                             A--
                                                 slate
              550
                      KA
                           130
                                 94-K-4(i)
                                             B-- springiron
             1,030
                      KA
                           133
                                             A-- blue slate
              560
                      KA
                           134
                                             A-- black slate
              950
                      KA
                           129a
                                             A-- springiron
              600
                      KA
                           135
                                94-K-4(i)
                                            B-- springiron
              352
                      KA 5011
                                94-K-4(k)
                                             C-- bx.ls.
Cu
       77
            1,160
                      KA 3041
                                 94-K-4(0)
                                                 See Zn Sample KA 3041
             130
                      KA 1583
                                94-K-4(p)
                                                                 KA 1583
            1740
                                                 11
                      KA 1587
                                94-K-4(g)
                                                                 KA 1587
           11800
                      KA 1586
                                                                 KA 1586
             920
                      KA 5030
                                94-K-4(t)
                                                                 KA 5030
             100
                      KA 5033
                                                                 KA 5033
            0.12%
                      KA 5034
                                                                 KA 5034
Pb
               95
      92
                      KA 1601
                                94-K-4(s)
                                            C--
                                                 pyritic calc shale
               95
                      KA 1604
                                            C--
             550
                                94-K-4(t)
                      KA 5030
                                                 See Zn Sample KA 5030
             420
                      KA 5031
                                                                 KA 5031
             930
                      KA 5033
                                                                 KA 5033
Zn
           19.35%
     269
                      KA 3041
                                94-K-4(0)
                                            X-- Sphalerite, Ca/Okg
                                                 Showings
                68
                      KA 1582
                                94-K-4(p)
                                            X--
           26.15%
                      KA 1583
                                            X--
             310
                                94-K-4(g)
                      KA 1587
                                            X--
                                                Cpy, Sph
                      KA 1584
            2250
                                            X--
                                                 black slate
             760
                      KA 1585
                                                 pyritic ls.
                                            X--
             360
                      KA 1586
                                                 Cpy.
                                            X--
            18.7%
                      KA 5030
                                94-K-4(t)
                                            X--
                                                 Sphalerite
           17,000
                      KA 5031
                                            X--
                                                 11
            6.95%
                      KA 5033
                                            X--
            1,540
                      KA 5034
                                                Sphalerite Cpy"
                                            X--
             330
                      KC 2138
                                94-K-4(u)
                                            C-- Stream Sed Sample
             825
                      KA 3050
                                94-K-4(w)
                                            X-- Ba, Sph, Fl, Ca/Okg
                                                 Showings
            2,040
                      KA 1514
                                94-K-5(b)
                                                 limonite
                                            A--
             600
                      KA 1507
                                94-K-6(c)
                                                 ls. bx. Zn oxide
                                            B--
Cu
             100
                      KA 2110
      86
                                94-L-1(c)
                                            C-- black arg. chert
                                                 pyritic
             110
                      KA 1462
                                94-L-1(f)
                                                 See Zn Sample KA 1462
             153
                      KA 1462a
                                                                 KA 1462a
            1,100
                      KA 3023
                                94-L-1(h)
                                                 Qtz Carb vein, Cpy
                                                 Malachite
Pb
            3,900
                                94-L-1(g)
     115
                      KA 2121
                                            A-- black carb shale trZnPh
            6,100
                      KA 2129
                                                 slate breccia, pyritic
             126
                      KA 5009
                                94-L-1(h)
                                                 See Zn Sample KA 5009
             360
                      KA 2126
                                94-L-1(i)
                                                                 KA 2126
             200
                      KA 1472
                                94-L-1(e)
                                                                 KA 1472
```

```
128
                                                   11
                       KA 1473
                                                                  KA 1473
              180
                       KA 1474
                                                   11
                                                                  KA 1474
              185
                       KA 1481
                                                                  KA 1481
Zn
              315
                       KA 2113
                                  94-L-1(a)
                                              C-- black shale
       289
              400
                       KA
                            117
                                 94-L-1(d)
                                              C-- black slate
             1050
                       KA 1460
                                  94-L-1(f)
                                              A-- slate
             5,000
                       KA 1462
                                              A-- breccia
                       KA 1462(a)"
             2,100
                                              A--
                                                             trZn
             1,760
                       KA 2122
                                 94-L-1(g)
                                              A-- black shale trZn
              310
                       KA 2130
                                              C-- Slate breccia
              530
                       KA 3020
                                              C-- pyritic siliceous mud-
                                  94-L-1(h)
                                              C-- stone
                       KA 3025
              310
                                              C-- pyritic black shale
                                 11
             1,390
                       KA 5009
                                              A-- springiron
             1,360
                       KA 2126
                                 94-L-1(i)
                                              A-- black chert/ss
              720
                       KA 1472
                                              B-- black slate
                                 94-L-1(1)
              600
                       KA 1473
                                              B-- slate
              630
                       KA 1474
                                              B-- siltstone
                       KA 1475
              330
                                              C-- breccia
              365
                       KA 1476
                                              C-- siltstone
              295
                       KA 1480
                                              C--
                                                   sandstone
              620
                       KA 1481
                                              B--
                                                   slate
        85
Cu
               88
                            259
                                 94-L-8(1)
                       KA
                                                   See Zn Sample KA 259
              176
                       KA
                            257
                                                                   KA 257
                                                   11
             0.10%
                       KA 2137
                                 94-L-8(a)
                                                                   KA2137
              116
                       KA
                            206
                                 94-L-8(1)
                                                                   KA 206
              147
                       KA 1547
                                                                   KA1547
                                  H
             1,060
                       KA 2137
                                                                   KA2137
Pb
             0.11%
                       KA
                            258
                                  94-L-8(1)
                                                   15
                                                                   KA 258
      255
             0.24%
                       KA
                            259
                                                                   KA 259
                                  11
              280
                            253
                       KA
                                                                   KA 253
              340
                       KA 2136
                                 94-L-8(a)
                                                                   KA2136
             0.08%
                       KA 2137
                                                                   KA2137
            0.05%
                       KA 2139
                                 94-L-8(1)
                                                                   KA2139
             1260
                       KA 2141
                                                                   KA2141
                                  Ħ
                                                   11
             0.06%
                       KA 2142
                                                                   KA 2142
                                  11
                                                   11
              720
                       KA 2143
                                                                   KA 2143
                                                   11
              300
                       KA 2144
                                                                   KA 2144
                                                   11
              260
                       KA 2145
                                                                   KA 2145
             0.05%
                       KA 2159
                                                                   KA 2159
                                                   11
             0.14%
                       KA 2162
                                                                   KA 2162
              410
                       KA 2164
                                                                   KA 2164
             1,540
                       KA
                            207
                                                                   KA
                                                                        207
            0.34%
                       KA
                            205
                                                                   KΑ
                                                                        205
              985
                       KA
                            206
                                                                   KA
                                                                        206
              900
                       KA 1547
                                                                   KA 1547
              340
                       KA 1548
                                                                   KA 1548
              340
                       KA 2136
                                                                   KA 2136
              680
                       KA 2137
                                                                   KA 2137
      444
Zn
              920
                       KA 1568
                                 94-L-1(a)
                                              B--
                                                   limestone
                                              X--
              450
                       KA
                            257a
                                 94-L-8(1)
                                                   carbonate Rough Claims
              375
                            257
                                              X--
                                                   carbonaceous shale "
                       KA
                                              X--
             4.35%
                       KA
                            258
                                              X--
                                                                         11
             6.55%
                       KA
                            259
```

```
>20,000
                               252
                                                  x-- carbonaceous shale "
                           KA
                                      94-L-8(1)
                   2700
                           KA
                               253
                                                  X-- "
                                                  X--
                   2050
                           KA
                               254
                                                                             11
                                                  X-- "
                   9,200
                           KA
                               255
                   2.75%
                           KA 2136
                                      94-L-8(a)
                                                  A-- ls. float
                   1.10%
                           KA 2137
                                                  A-- arg. cherty shale
                   1,200
                           KA 1530
                                      94-L-8(d)
                                                  B-- arg. 1s.
                   1,200
                           KA 1531
                                                  B-- black slate
                   2.32%
                           KA 2139
                                      94-L-8(1)
                                                  X-- pyritic shale Rough
                                                  X-- "
                    870
                           KA 2140
                                                                      Claim
                   5.70%
                           KA 2141
                                                  X--
                   2.00%
                           KA 2142
                                                  X--
                   1,080
                           KA 2143
                                                  X--
                   3.75%
                           KA 2144
                                                  X--
                   1,280
                           KA 2145
                                                  X--
                    420
                           KA 2146
                                                  X--
                   1,300
                           KA 2153
                                                  X--
                    390
                           KA 2155
                                                  X--
                   2.40%
                           KA 2159
                                                  X--
                   1,680
                           KA 2160
                                                  x-- ls.
                                                  x--\cdot ls.
                   4.45%
                           KA 2162
                    920
                           KA 2163
                                                  X-- pyritic shale
                   6,800
                           KA 2164
                                                  X--
                    720
                           KA 2165
                                                  X--
                    720
                           KA 2166
                                                  X--
                   1,240
                           KA
                               207
                                                  X--
                  13.30%
                           KA
                               200
                                                  X--
                   3,100
                           KΑ
                               201
                                                  X--
                   1,600
                           KA
                               202
                                                  X--
                   3380
                           KA
                               203
                                                  X--
                   3.62%
                           KA
                               204
                                                  X--
                   4.55%
                           KA
                               205
                                                  X--
                   8.40%
                           KA
                                                  X--
                               206
                   7.90%
                           KA 1547
                                      94-L-8(1)
                                                  X-- mineralized ls.
                    490
                           KA 1548
                                                  X-- mineralized bx.
                                      11
                    450
                                                  X-- 1s.
                           KA 1540
                    275
                           KA 1442
                                                  X-- arg. siltstone
                           KA 1546
                                                  X-- ls.
                   5,000
                    336
                           KA 2167
                                                  X--
                                                       shale
                                                  X--
                           KA 2168
                   4,100
                   1.15%
                           KA 2169
                                                  X-- arg. chert
                    690
                           KA 2170
                                                  X-- micritic ls.
                   2.75%
                           KA 2136
                                                  X-- ls.
                   1.10%
                           KA 2137
                                                  X--1s.
V
                    800
                                                       See Zn Sample KA
                                                                            133
                           KA
                               133
                                      94-K-4(i)
       798
                   5,850
                           KA
                               134
                                                                       KA
                                                                            134
                                                  C--
                                                       siltstone
                           KA 1513
                                      94-K-5(b)
                    805
      1010
                                                  C--
                                      94-L-1(a)
                                                       black shale
                   1,050
                           KA 2104
```

		2,400	KA	2111	in the second second	B	siliceous mudstone
		1,100		2121	94-L-1(g)		See Zn Sample KA 2121
		1,525		2122	11		" KA 2122
		1,100		2133	94-L-1(k)	C	cherty argillite
		1,300	KA		94-L-8(1)	Ŭ	
Cu	60	142	KA		94-L-10(c)	D.	See Zn Sample KA 255
Pb	40	168	ICA	72	94-L-10(C)		carbonaceous slate
		75				A	
			17.7	2072	94-L	C	
	and the state of the state of	54		2073			micritic limestone
		110		1405	94-L-10(b)		shale
	125	7.2	KA		94-L-10(c)		See Cu Sample KA 92
Zn	135			lous va			
Cu	34	47	KA		94-M-1(b)	C	arg. slate
		49	KA	6031	94-M-1(c)	C	slate
		40	KA	6033	94-M-1(e)	C	· 변경 : 살아지고 아이들의 아이트 등을 다.
		72	Ka	85c	94-M-7(b)	B	intrusive Vents Ck.
		93	KA	85f	ti	B	n .
		52		2040	94-M-8(b)		limestone
Pb	65	240		2040	11	· ·	See zn Sample KA 2040
Zn	96	133		2062	94-M-1(b)	C	argillite
		5,000		2040	94-M-8 (b)		
		230		2040			limonite matrix to bx.
Cu	68				94-M-8 (d)		fetid dol.
Cu		600		1010	94-M-3(1)		sandstone
		1,880		1014			green skarn Boya
		273		1013	H	X	21101121190
		640	KA	46	11	X	
		99	KA	47	н	X	
* *		104	KA	48	Ħ	X	
		192	KA	49	ti .	X	
		1,020	KA	53	II .	X	"
		110	KA	54	Ħ	X	п
		320	KA	55	11	X	11
		225	KA	56	· u	x	•
		1,360	KA	55c	n	x	n ·
		167	KA	58	11	X	u,
		118	KA	1140	94-M-3(1)		groon gleam Down Char
		92	KA	59	11 (T)	X	green skarn Boya Show
					n		limestone
		114	KA	61	н		qtzite
		81	KA	62		X	
		152	KA	63		X	
		80		1150	94-M-3(b)	B	shale
	20	166		1151		B	•
Pb	28	80	KA	2034	94-L-14(c)	B	
		34	KA	63	94-M-3(1)		See Cu Sample KA 63
		33	KA	1150	94-M-3(b)		" KA 1150
		50	KA	1290	94-M-3(e)	C	limestone
		49		1295	11	C	11
		36		1299	II .	C	II .
		36	KA	25	94-M-4(a)	Č	micaeous slate
		34	KA	36	94-M-4(c)	Č	"
		270		2019	and the second s	A	calc siltstone/
		. 210		2017	Ja Mau (a)		
Zn	256	200	77.70	2022	94-L-14(c)	C	sandstone
411		280	MΑ	2033	24-1-14(C)	_	chert lense

```
22,000
                                  46
                                       94-M-3(1)
                            KA
                                                        See Cu Sample KA
                                                                              46
                       700
                                       **
                                  47
                            KA
                                                                        KA
                                                                              47
                                       "
                       270
                                                        11
                            KA
                                  48
                                                                        KA
                                                                              48
                       290
                            KA
                                  53
                                                                        KA
                                                                              53
                       580
                            KA
                                  54
                                                                        KA
                                                                              54
                       275
                                  56
                            KA
                                                                        KA
                                                                              56
                       700
                                  58
                            KA
                                                                        KA
                                                                              58
                    1,900
                            KA 1140
                                                                        KA 1140
                     1,100
                            KA
                                  63
                                                                        KA
                                                                              63
                       640
                            KA 1150
                                       94-M-3(b)
                                                                        KA 1150
                       350
                            KA 1151
                                                                        KA 1151
                       363
                                  25
                            KA
                                       94-M-4(a)
                                                        See Pb Sample KA
                                                                              25
                       580
                            KA 2009
                                       94-M-5(c)
                                                   B-- micaceous phyllite
Cu
                       114
                                  61
                                       94-L-13(c) B--
                            KA
                                                        shale
          37
                                                   B--
                        81
                            KA
                                  62
                       100
                            KA
                                  66
                                       94-L-13(f) C-- springiron
                      2,500
                            KA 1041
                                       94-M-4(b)
                                                   C-- qtz vein float
                                                        malachite
                        46
                            KA 1042
                                                   C-- calcite/dol vein
                        38
                                       94-M-4(d)
                            KA 1071
                                                   C-- limestone
                       195
                            KA 1074
                                                   A-- phyllite
Pb
                        75
                            KA 1041
                                       94-M-4(b)
                                                        See Cu Sample KA 1041
          52
                        66
                            KA 2024
                                       94-M-4(h)
                                                   C-- chert
                       101
                            KA 2025
                                                   B-- arg shale
                      1,220
                            KA 2028
                                                   A-- fetid dol
                                       94-L-16(a)
                                                   C-- "
                        61
                            KA 2029
                        54
                                                   C-- "
                            KA 2030
Zn
                       155
                            KA 8009
                                       94-L-13(b) C-- calcite vein float
         119
                       200
                            KA
                                  66
                                       94-L-13(f) C-- See Cu Sample KA 66
                       154
                            KA 1046
                                       94-M-4(b)
                                                   C-- carb shale
                       124
                            KA 1095
                                       94-M-4(g)
                                                   C-- limestone
                       180
                            KA 2025
                                       94-M-4(h)
                                                        See Pb Sample KA2025
                     1,400
                            KA
                               2028
                                       104-I-16(a)
                                                        See Pb Sample KA2028
Cu
                       147
                            KA
                                   1
                                       104-P-1(a)
                                                   B-- limestone
          63
                                                   X-- Hidden Valley Cu Show
                      5,520
                            KA
                                  10
                                       104-P-1(1)
                                                   X-- "
                       415
                            KA
                                  11
                        86
                                  15
                                       11
                                                   X-- "
                            KA
                                                   X-- "
                                  17
                       124
                            KA
                                                    X-- "
                     2,400
                            KA
                                  18
                     1,590
                                                   X-- "
                            KA
                                  19
                       288
                                                    X-- "
                            KA
                                  20
                                       104-P-1(g)
                        80
                            KA 1173
                                                   A-- carbonaceous shale
Pb
                       166
                            KA 1162
                                                    A-- limonite
          54
                       600
                            KA 1200
                                       104-P-1(i)
                                                   A-- limestone
                       190
                            KA 1224
                                       104-P-1(j)
                                                   A-- limestone
                        86
                            KA 1244
                                       104-P-1(n)
                                                   C-- dol.
                       340
                            KA 1251
                                       104-P-1(0)
                                                    A-- limestone
                                                    C-- "
                            KA 1252
                        62
                                                    C-- "
                        74
                            KA 1254
Pb
                            KA 1262
                        90
                                       104-P-1(p) C-- dol
Zn
                       144
                            KA 1126
                                       104-P-1(c) C-- chert
         129
                       560
                            KA 1127
                                                    A-- shale
```

130 KA 38 104-P-1(d) C-- limestone
835 KA 1173 104-P-1(g) See Cu Sample KA 1173
940 KA 1200 104-P-1(i) See Pb Sample KA 1200
228 KA 1204 104-P-1(i) C-- limestone
179 KA 1251 104-P-1(0) C-- limestone
166 KA 2027 104-P-8(a) C-- cherty limestone

CO	P	P	Ε	R

The state of the s	diameter menter menuntaria di la	والمتحافظ والمستوجع ومنافعها والمتمارة والمتحارة والمتحاومة والمتحاوية		against 1914 to the commission of the commission	ويعتمده والمناجع المبيرة المطهرة	prince which it comme
#		The state of the s	kground		d Highly	Samples
Sample Loc. S	Samples	Dist. m	ean = x	X+A		$> \bar{x} + 2\Delta$
Akie					Xt2A	
(94F SE 1/4)	49	0-82 ppm	23 ppm	43 ppm	63 ppm	6
Gataga-A					The second of th	
(94K SW 1/4)	r-9·	4 0-116 ppm	24 ppm	46 ppm	68 ppm	6-7
Gataga-B	142				The second section with the second section of the section	12
(94K SW 1/4)	<u>-4</u> :	8 0-116 ppm	26 ppm	51 ppm	77 ppm	6-
Gataga-A		to the enterior of the enterior of the				والمستواد كرون بمعتقرة
(94L SE 1/4)	-9	4 0-153 ppm	32 ppm	59 ppm	86 ppm	4,
Gataga-B	186					10
(94L SE 1/4)	<u></u> −9:	2 0-176 ppm	25 ppm	55 ppm	85 ppm	6-
Netson Lake	46	0-55 ppm	26 ppm	43 ppm	60 ppm	1
(94L NE 1/4)						
Liard	68	0-52 ppm	12 ppm	23 ppm	34 ppm	6
(94M SE 1/4)						
Boya	77	0-100 ppm	26 ppm	47 ppm	68 ppm	20
(94M SW 1/4)						
Turnagain-A	 5	0 0-30 ppm	11 ppm	24 ppm	37 ppm	5-
(94L/94M/104I)	131					14
Turnagain-B	{					
(104P SE 1/4)	-8.	1 0-147 ppm	15 ppm	39 ppm	63 ppm	9-1
The second secon	To the last and worker with	Contract and Contract	ar Santinos, care action		•	

LEAD

Samples
> x + 2A
1
The second secon
127
_ 17
5-4
8
29
21
The second s The second secon
5
1
de concentration
8
5-
13
87

ZINC

Sample Loc.	e Loc. Samples Dist. mean =x			ound =x	Thre			Lous	ample >X+2∆	
Akie (94 F SE 1/4) Gataga-A	49 — 94	0-460 0-390	ppm	108 87	ppm	216 174	ppm	324	ppm	6 22-
(94K SW 1/4) Gataga B (94K SW 1/4)	141	0-360	mag	99	maa	184	ppm	269	ppm	37 15-
Gataga-A (94L SE 1/4)	186 - 94	0-365	ppm	111	ppm	200	ppm	289	ppm	19 61
Gataga B (94L SE 1/4) Netson Lake	92 46	0-490 0-130	47 Til.,		ppm	312 99	ppm		ppm	
(94L NE 1/4) Liard	68	0-230				62			ppm	
(94M SE 1/4) Boya (94M SW 1/4)	77	0-370		84	ppm	171	ppm	256	ppm	13
Turnagain-A (94L/94M/104I)	131	0-200 0-228			ppm		ppm			17.3
Turnagain-B (104P SE 1/4)	-81	0-228	ppm	45	ppm	87	ppm	129	ppm	8-

T77	AT.	7 1	•	T TZ	. 8
VA	IN A	41	, ,	u	٧I

A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	Water the market comment of the control of	***										
	Normal	Back	grour						Sa	mpl	esi	
Sample Loc.S	amples	Dist. r	nean	= X	X	TOA		\nomal	ous.	>	\tilde{x} +	24
								Xtal			The state of the s	-
Gataga	32	0-805	mag	288	mag	253	mag	798	mag	3		1
(94L SE 1/4)								h Ti	I I			
Gataga	The same of the sa	to the state of the state of the state of the state of	Marian - Million of the	Remarkation of the control of		•	A CONTRACTOR OF THE PARTY OF TH	Telepis to personal may	والمتيعات والمحادة		***************************************	*******
(94K SW 1/4)	79	0-1525	ppm	330	ppm	670	ppm	1010	ppm	6		1

Field Work

From June 7 to July 7, 1976, a camp was set up on the southeastern shoreline of Birches Lake. The seven man crew was supported by B2 helicopter (Northern Mountain Helicopters). Camp logistical support originated in Watson Lake (BC Yukon Air Service, Campground Services and Twilight Expediting). The weather was generally pleasant and warm although some extremely strong winds were encountered. Two man geological-prospecting crews were able to complete one traverse per day due to the difficult terrain and lack of helicopter landing sites.

The southeastern portion of the Rabbit River
Map Area was examined between July 15 and July 23, 1976.
The crew was supported by a 206B Jet Ranger helicopter
(Frontier Helicopter), and stayed at Lower Liard River Lodge.
The helicopter was socked in by fog, rain and snow for
several days. Access to ridgelines and valley floors was
relatively easy.

Access to the Gataga River region was gained from the Alaska Highway (Toad River Lodge July 23 to August 15, 1976) through high level passes from Toad River and Racing River. The treeless terrain and steep hillsides permitted two traverses per day. Ground fog, rain and winds prevented the helicopter from flying several days and on several other occasions added to the daily flying time.

For 2 weeks from August 15 to September 1, 1976 the Kwadacha River to Pesika Creek area was examined. Fog, heavy rain and snow caused many delays. Clouds and high winds in the vicinity of Mount Kennedy and the Kwadacha River made flying out of Robb Lake difficult. Staking of the Rough Claims (August 27-28, 1976) was done from Robb Lake. Logistical support originated in Mackenzie (Northern Thunderbird Airlines, Kerri Transport Expeditor).

Methods

A combined geological mapping, prospecting and rock geochemical sampling program was used for this project. In order to direct the efforts of the field work detailed stratigraphic studies of potential areas of interest were carried out by crew members.

Geological mapping, prospecting and stratgraphic studies were carried out by a field party comprised of 1 geologist and 1 prospector-assistant. Interesting lithological samples were collected from outcrop for later examination. A diamond saw and binocular microscope were kept in camp for this purpose. All lithologies in the area were examined with equal care although metal rich shales attracted the most attention. Detailed stratigraphic studies were concentrated in the vicinity of new mineral occurrences.

Sampling Procedure

		Samples	collected, were designa	ted as follows:-
KD			= Kechika Project,	Lithological sample
KC				Stream sediment sample
KB				Soil Sample
KA				Rock Chip Sample
KA	1 to	999		" P. Boyle
KA	1000	to 1999		" B. Maxwell
KA	2000	to 2999		" P. Hubacheck
KA	3000	to 3999		" J. Innis
KA	5000	to 5999		" F. Pember
KA	6000	to 6999	· 〓 등원생들이 바다를 받는 그리고 있다.	" G. Haile
KA	8000	to 8999	'플러스 '함께 말라'시네요. (H.)	" G. Small

Geological traverses and mineral prospect locations were designated by NTS "cell" and an alpha numeric.

eg. 94-L-8(c) Geological Traverse NTS 94-L-8(c) (BM, 31/7/76) eg. 94-L-8(l) Mineral Prospect, Rough Claims 94-L-8(l) (PB, JM, 8/8/76)

Rock chip geochemical samples, the number of chips representative of a sample location, were collected at stations where geological observations were made, and samples descriptions were included with the geological notes. Where sulphide mineralization was noted, a rock chip grab sample was included for analysis. Soil samples were collected on the Rough Claims. These samples were taken from frost boils or from pits approx. eight inches deep, and contained more than 50% rock fragments.

High altitude tundra soils predominate. shallow soil profile reflects a significant accumulation of soil parent material but poor differentations of the soil horizons. No stream sediments samples were collected. Samples were placed in 35 lb wet strength brown kraft envelopes. A record of sampling observations was kept on "Tg-Geochemical Data Sheets".

Analysis of Samples

Analysis of samples was done by Bondar-Clegg Laboratories, 1500 Pemberton Ave., Vancouver. All samples were analyzed for Cu, Pb and Zn.

Cu, Pb, Zn, Ag, Mn, Fe, Mo, Ni, Cd, Au-Hot Aqua Regia Extraction

V O -Perchloric Nitric Extraction

-Hot HNO3 Extraction

W -Basic Fusion

U -Fluorometric Analysis

-X.R.F Analysis Ba, Ti, Sn

Cu, Pb, Zn, Ag, Mn, Fe, V, Mo, Ni, Au, Cd-Atomic Absorbtion

Analysis

-Colormetric Analysis W Au -Fire Assay Analysis

Samples which gave values greater than 100 ppm. Cu, 5,000 ppm Pb and 5,000 ppm Zn were assayed.

<u>Personnel</u>

The following personnel actively contributed to Kechika Project 1976.

J. Macdougall P. Boyle P. Hubacheck	Tg Tg	Supervisor Project Manager
B. Maxwell	Temporary	Geologist Geologist
J. Innis F. Pember	j u ljuši i koje provincije. Liu provincije provincije i	Geological Assistant-Prospector
G. Haile		Geological Assistant-Prospector Geological Assistant-Prospector
G. Small Ruth Page	" Charter	Geological Assistant-Prospector
Doug Green	Charter."	Helicopter Pilot (Northern Mtn) Helicopter Pilot (Frontier)

KECHIKA PROJECT 1976

APPENDIX A. Description of Mineralization
-Rough Showing, Through Creek Fe, Zn 94-L-8(1), Memo
-Boya Showing, Cu, W, Zn 94-M-3(1), Memo
-D,P Showing, Driftpile Creek Fe, Zn, Pb

94-K-4(1) Memo

-Driftpile Ca/Okg Showing Zn (Cu) 94-K-4(2) Memo

Texasgulf

Date September 24, 1976

To J. Macdougall Location Calgary

From P. Boyle Location Calgary

Subject Rough Showing, Through Creek, 94-L-8(1)

MINERALIZATION

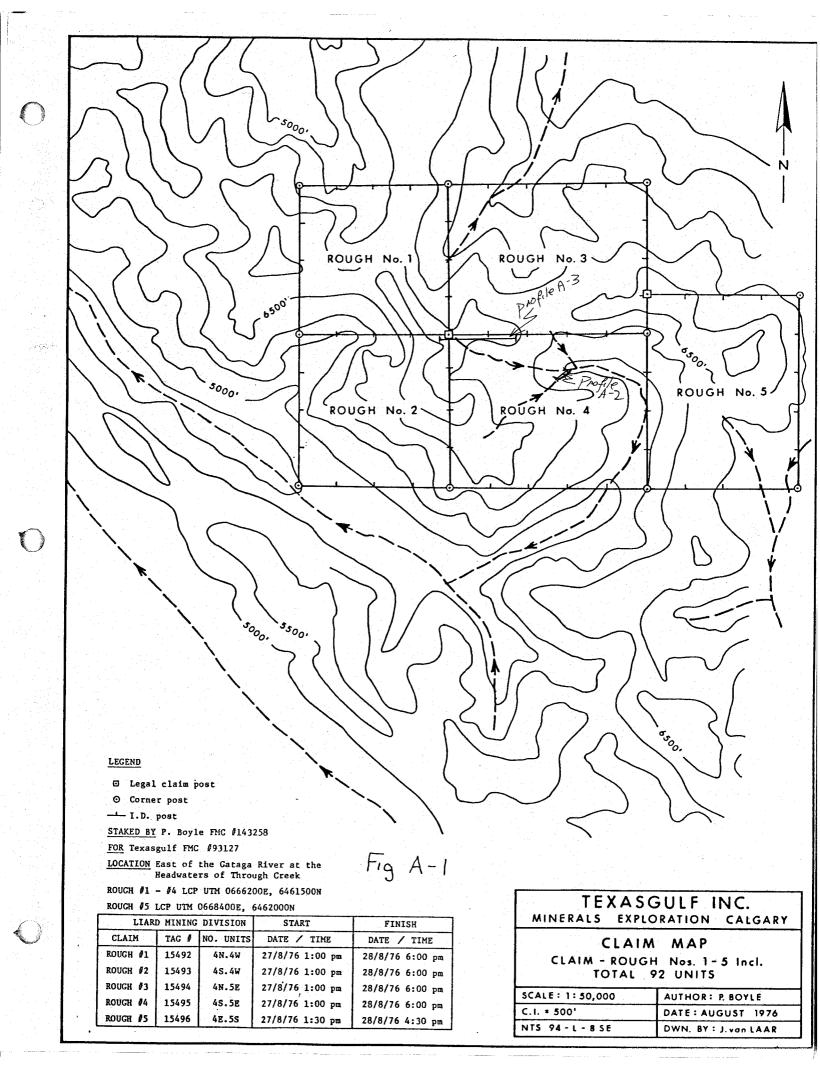
Zinc mineralization is noted at the abrupt limestone-shale facies contact on the Rough Claims. A thick limestone breccia, unit 5c, overlies brown weathering shales containing Lower Ordovician graptolites. The uppermost beds of Unit 5c are bleached, clean, fine grained limestone containing occasional carbonaceous shale whisps.

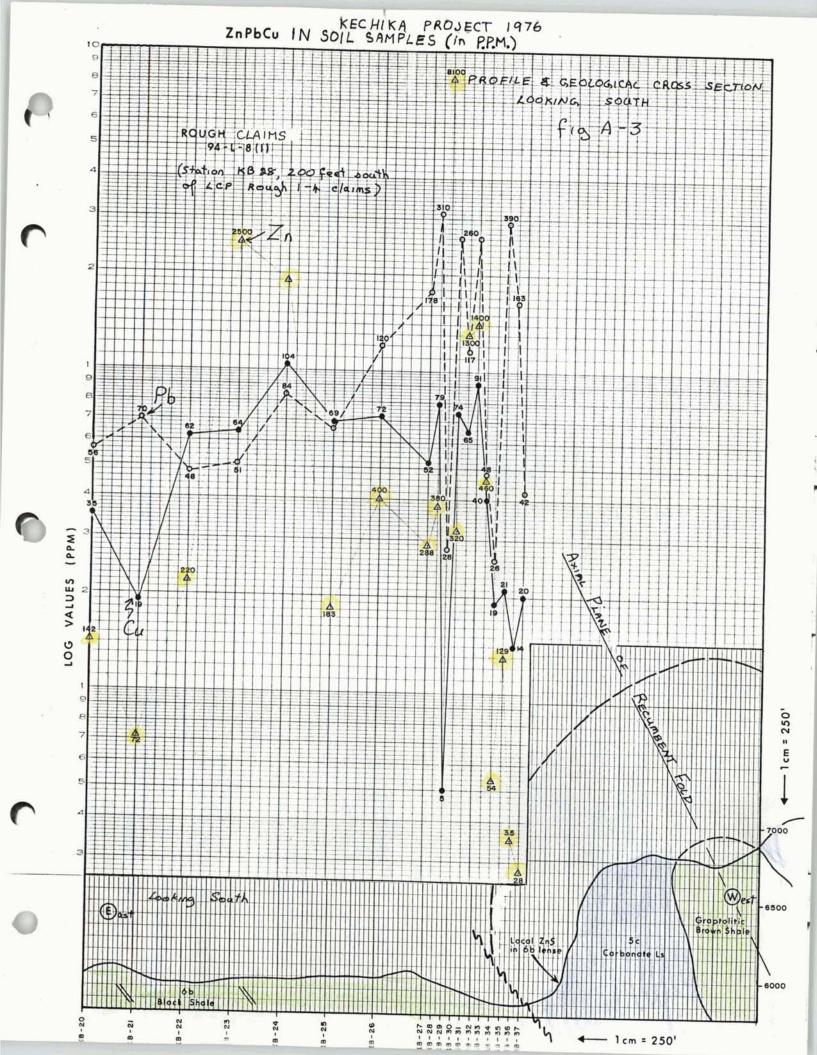
The clean limestone is overlain by, and locally intertongues with black carbonaceous shale, which locally is associated with massive pyrite. Some quartz veins found in the uppermost limestone beds, normal to the limestone-shale contact. In the overlying black pyritic shales thin massive pyrite beds are noted and springiron deposits are common. Sphalerite and galena have been noted disseminated along the bedding in the uppermost limestone beds. Hydrozincite, smithsonite and sphalerite are noted in close proximity to the quartz veins. Sphalerite is associated with the carbonaceous pyritic shales, intertonguing with the limestone. Highly anomalous zinc values have been obtained from the springiron deposits in the pyritic shales immediately overlying the limestone. Some soil sampling over these shales also indicated their anomalous zinc content.

Chip samples KA-2138 to 2166 were collected across the "Creek Bed Showing". The values were characterized by a high Zn/Pb ratio. Zn%

KA	2139	2.32	over	5'
KA	2141	5.70	. 41	5 '
KA	2142	2.00	11	5 '
KA	2144	3.75	11	5 '
KA	2159	2.40	- 11	5 '
KA	2162	4.55	"]	L5'

Chip sample KA-207 was collected from the "Hillside Showing".


KA-207 8.40 grab sample


OWNERSHIP, HISTORY

five claims were staked August 27/76 and August 28/76 for Texasgulf, a total of 92 units. There is no evidence of any previous work by exploration companies in the immediate vicinity of the showings.

P. Boyle

PB/dh

5c

LOG VALUES (PPM)

97△ 96 △

1cm = 25%

Texasgulf

Date September 24, 1976

To J. Macdougall

Location Calgary

From

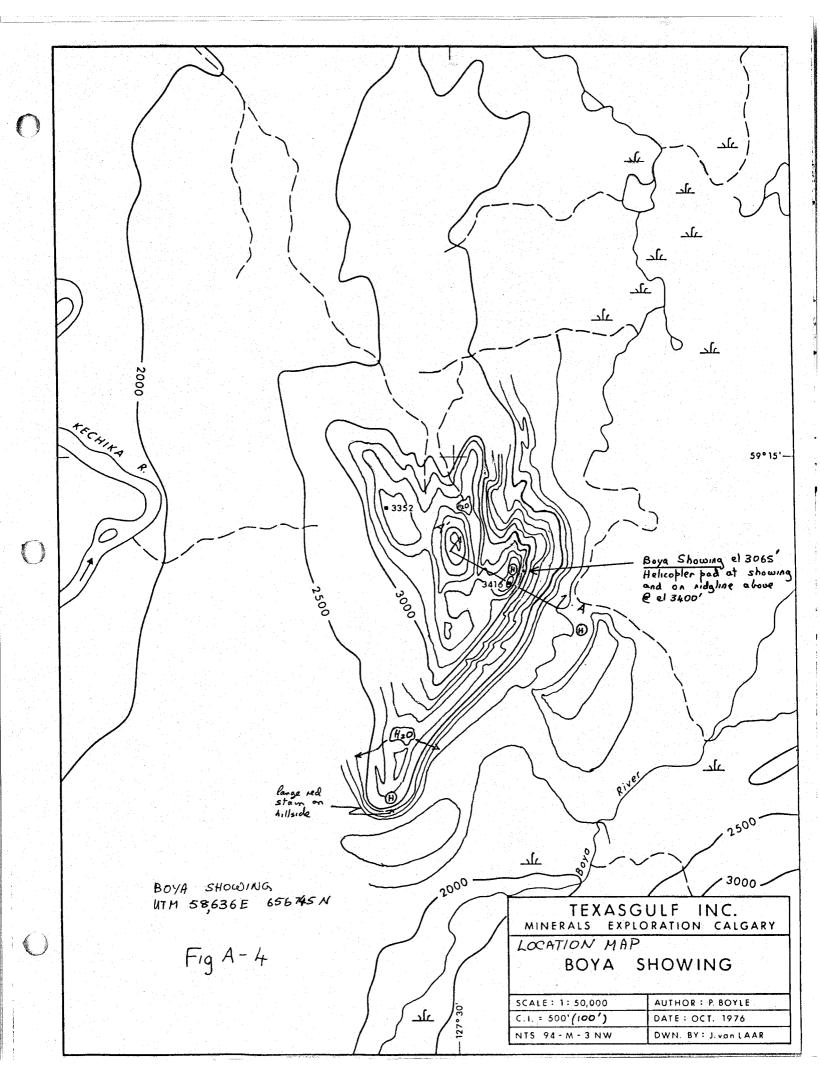
P. Boyle

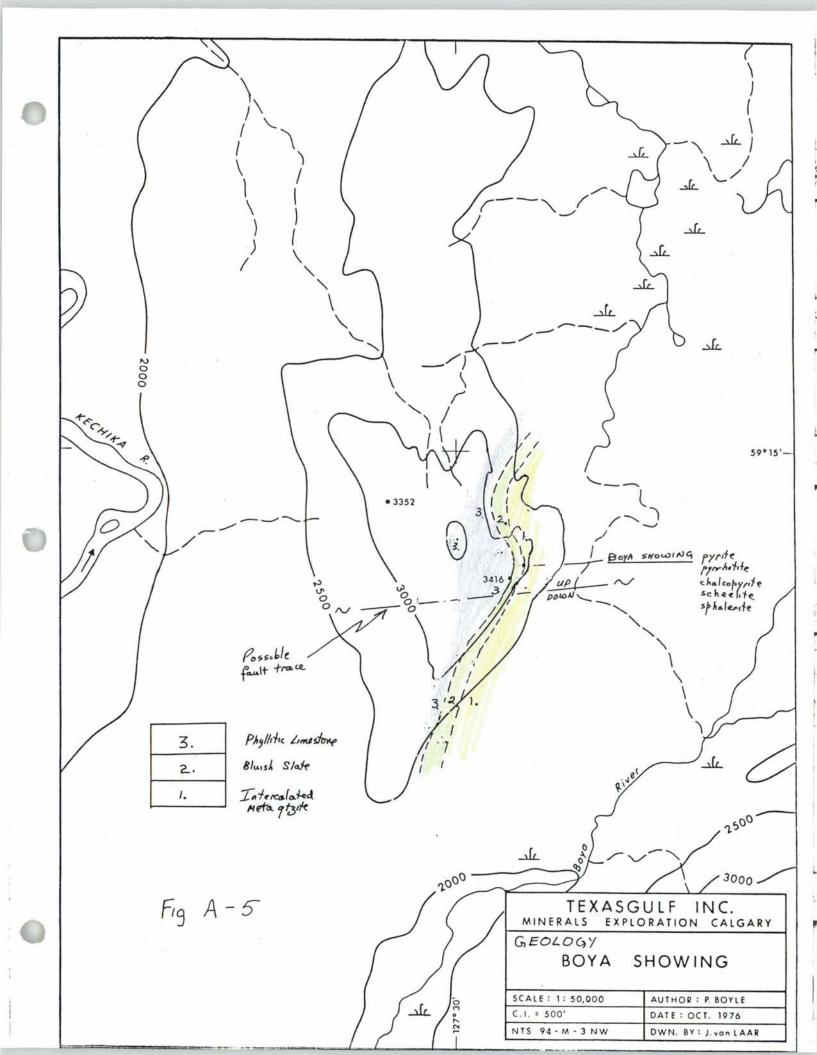
Location Calgary

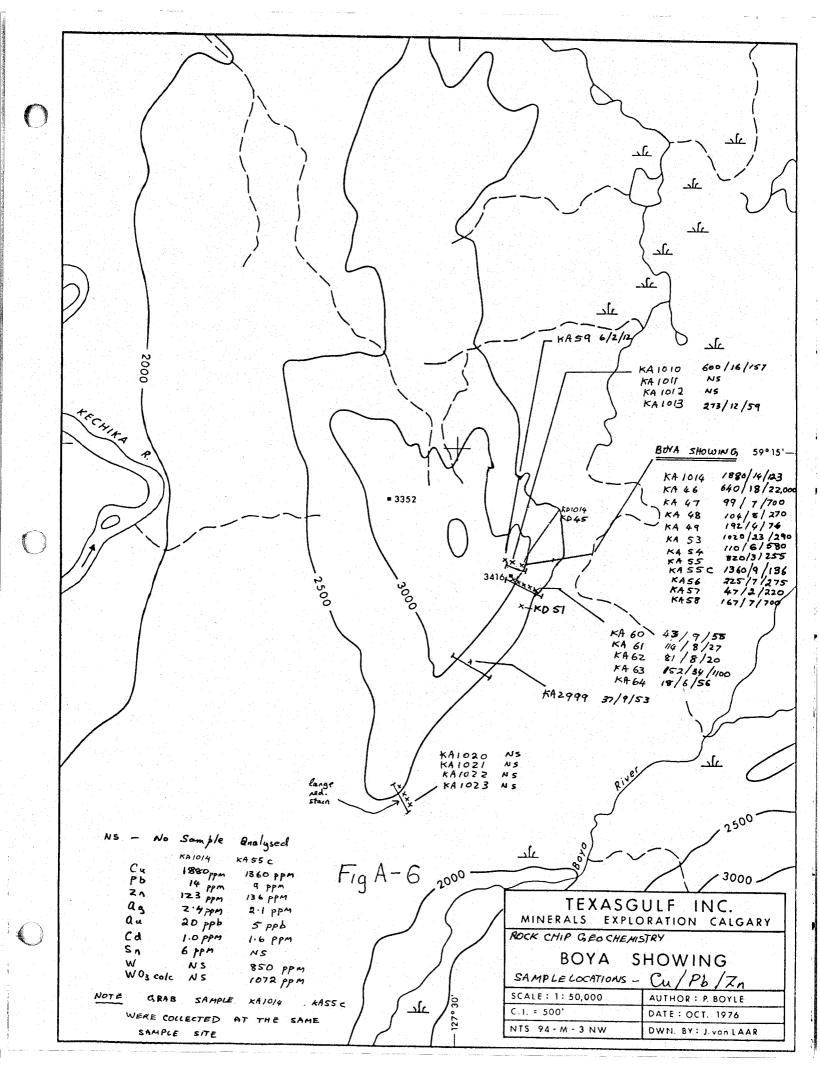
Subject

Boya Showing, Cu W Zn 94-M-3(1)

KA-1014


MINERALIZATION


Cu W Zn mineralization was located 3.46 miles NE of the mouth of the Turnagain River, 4200 feet west of BM3352 at el 3065'. A lense of pyrite pyrrhotite chalcopyrite scheelite sphalerite (marmotite?) was located. Subsequent examination indicated that the extent of the mineralization did not justify staking the property. It is the first time tungsten has been reported east of the Trench in this region. The only W property in the region lies 37 miles SW. The lense is 14 inches wide and 50 feet long. Chip samples were collected from the sulphide lense, footwall and hangingwall. The sulphide band is magnetic.


Cu 1880 ppm

	Pb 14 ppm Zn 123 ppm Ag 2.4 ppm Cd 1.0 ppm Au 20 ppb Sn 6 ppm		
KA-55c	Cu 1360 ppm Pb 9 ppm Zn 136 ppm Ag 2.1 ppm Cd 1.6 ppm Au<5 ppb W 850 ppm	grab	sample
KA46	Cu 640 ppm Pb 18 ppm Zn 22000 ppm (2.2%)	grab	sample
KA53	Cu 1021 ppm Pb 23 ppm Zn 290 ppm		

grab sample

GEOLOGY

The mineralization is located at the contact between a thick section of siliceous fine grained rock and overlying slates. There is limy and cherty lenses at this contact and pyrite nodules and lenses are common. In the immediate area of the showing the host rock appears silicified or skarned. The rock is greenish brown in colour. A thin sequence of slates overlies the contact and the hillside is crowned by a thick sequence of phyllite Ordovician carbonates. The carbonates are overlain by limy phyllite exposed along the Kechika River and Turnagain Canyon.

The mineralization is stratiform in nature.

P. Boyle

PB/dh

Texasgulf

Date September 24, 1976

To J. Macdougall

Location Calgary

From P. Boyle

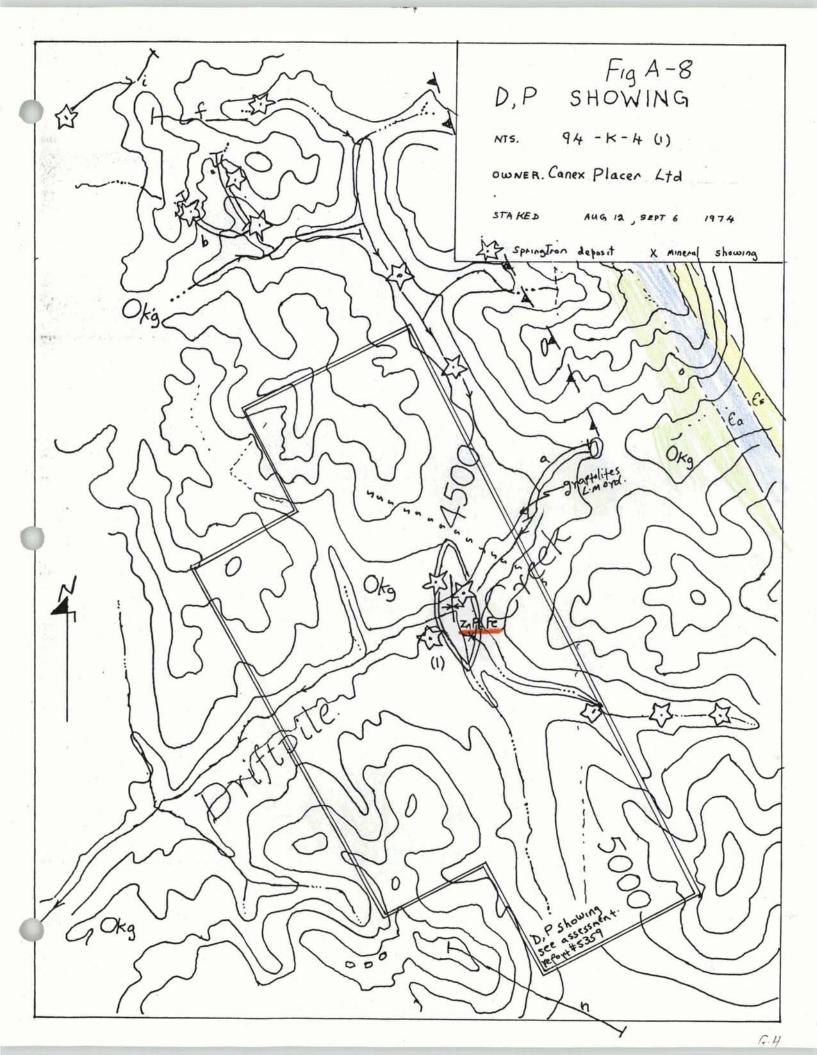
Location Calgary

Subject

D,P Showing, Driftpile Creek, 94-K-4(1)

MINERALIZATION

The minerals of economic importance that occur on the Driftpile Creek prospect are sphalerite and galena. Barite is of potential interest, but the remote location of Driftpile Creek would result in very high transportation costs of a low-value commodity.


Sphalerite and galena has been found within beds of massive framboidal pyrite and in close association to bedded barite. The bedded pyrite and bedded barite are enclosed by non-calcareous black shales that may be part of Kechika Group of Ordovician age, or overlying basal units of the Devono-Mississippian dark shales.

The structure and ore textures are consistent with a sedimentary origin of the pyrite-sphalerite-galena deposit.

Mineralization of potential ore grade has only been found in boulders so far. However the environment is favourable for the development of a large tonnage lead zinc deposit.

The sulphide grains occur as anhedral interlocked grains interstitial to the pyrite framboids. No sphalerite or galena is found within the black shale interbeds. The grain size of the sulphides is estimated from microscope work as less than 20 microns, with many of the grains being one order of magnitude smaller. The pyrite framboids range in size from 100 microns to 25 microns in diameter.

Beds which contain commercially significant quantities of galena or sphalerite have only been found as float. Framboidal pyrite makes up less than 10% of the rock. Float boulders contain rare visible sphalerite and galena interbedded with pyrite, black shale and barite.

Boulders containing bedded pyrite with visible galena were found within one limonite spring deposit.

A massive pyrite bed was sampled by the writer. The fine grained massive pyrite exhibited numerous sedimentary compaction features. Galena and sphalerite were associated with the pyrite. (see sample DPP5)

DPP-5 Zn 0.96%, Pb 0.56%, Cu 7 ppm, Ag 0.2 ppm, Fe 12% Mn 7900 ppm, V 50 ppm, U 0.8 ppm

The following samples were collected by Canex Placer 1974

		Zn%	Pb%	Ba%
1	float	1.1	19.7	26.3
2		1.82	0.01	6.5
· 3		1.49	0.28	25.0
4	over 5'	1.2	0.06	1.36
5	over 13	1.4	0.01	0.48
6	over 46	0.26	2.44	9.73
7	float	4.5	0.62	4.1
8	float	5.4	0.7	0.16
9	float	6.35	1.9	0.09
10	float	4.0	0.4	0.12
11	float	3.5	6.2	0.27
12	float	0.73	.52	26.2
13	float	8.8	• 53	.30

GEOLOGY

The Driftpile prospect lies within the northern Rocky Mountain fold system, fourteen miles east of the Rocky Mountain Trench. According to Gabrielse (1962) the Trench is a locus of faulting which separates the Rocky Mountain Structural Province from the Cassiar Mountains.

The prospect lies within black shale terrain that has been assigned to the Kechika Group (Taylor & Stott, 1971). The Kechika Group is of Ordovician age (Taylor & Stott, 1971; Gabrielse, 1962) based upon graptolites found in strata of similar lithology as that within the Driftpile Creek area. L-M Ordovician graptolites were located by the writer on Driftpile Creek at the eastern edge of the property.

Towards the north and northwest the Ordovician strata changes facies from shale to argillaceous limestone. Towards the east the Ordovician strata undergo a facies change to clean platform-type shallow water limestones.

Greenstone dikes and sills have been observed to cut Ordovician carbonates in the Turnagain River area northwest of Driftpile Creek. Thick units of volcanic sediments occur within the lower part of the shale succession (Taylor & Stott, 1971).

HISTORY

As a result of a reconnaissance stream geochemical survey conducted by Geophoto Consultants Ltd. in 1970, prospectors located galena and sphalerite on Driftpile Ck. associated with pyrite banded black shale, in float, in 1973. In 1974 153 claims were staked. The property was examined, in detail by Canex Placer Ltd. during the 1974 and 1975 field season, and by the writer in August 1976.

OWNERSHIP

The Driftpile prospect is owned by a partnership of Canex Placer Ltd., General Crude Oil Co. Northern Ltd., Pembina Pipeline Ltd. and Sun Oil Co. (Delaware). Canex Placer Ltd. is the operator.

REFERENCE

BCDOM Assessment Report File 5359, 1974

P. Boyle

PB/dh

Texasgulf

Date September 24, 1976

To J. Macdougall

Location Calgary

From P. Boyle

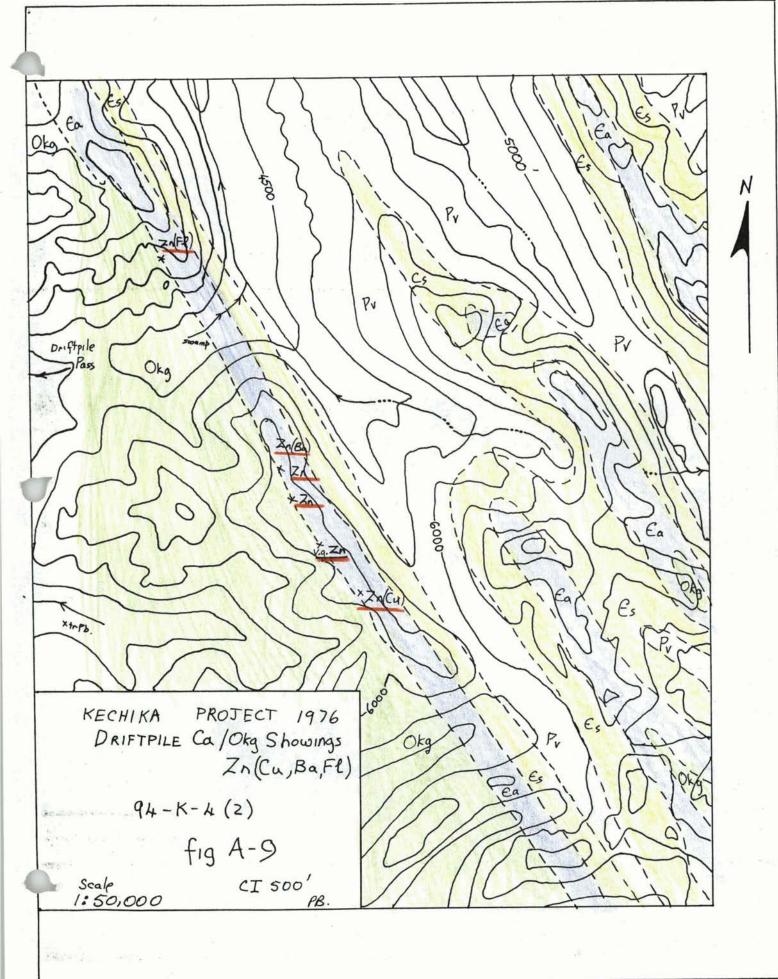
Location Calgary

Subject Zn (Cu) Ca/Okg Driftpile Showings 94-K-4(2)

MINERALIZATION

Numerous Zn (Cu Pb) showings have been located at the Ca/Okg contact over a distance of 4.5 miles extending south from a point 1 mile north of Driftpile Ck. Euhedral sphalerite crystals, 1/4 to 1-1/2 inches diameter, locally are disseminated through clean mottled blue limestone and dark grev argillaceous limestone, within 20 feet of the contact. Minor galena, chalcopyrite and malachite are also noted. The Okg shales are recessive. The Okg/Ca contact is a transitional contact reflecting a rapid lateral shale/carbonate facies change. None of the showings were extensive enough to warrant staking however the numerous occurences do indicate that the area has good potential.

The age relationship between the host rock at Driftpile Ca/Okg showings and the D,P Showing is not clear but they are probably of similar age. The D,P Showing pyritic beds were probably the source beds for the mineralization.


No claims were staked.

The following chip samples were collected from some of the occurrences.

	Zn		
KA-1582	6.00%	gral	samples
KA-1583	26.15%		11
KA-3041	19.35%		"
KA-5030	18.70%		H
KA-5033	6.95%		11

P. Boyle

PB/dh

KECHIKA PROJECT VOLUME 2 FINAL REPORT

NTS 94-C/F/K/L/M, 104-I/P

December 1976

P. Boyle

KECHIKA PROJECT 1976

VOLUME 2

Reconnaissance of Lower Paleozoic Carbonates and Shales in Northeastern British Columbia, for Carbonate and Shale Hosted Lead Zinc Deposits

by

Peter Boyle

Texasgulf Inc.

NTS 94-C/F/K/L/M, 104-I/P

KECHIKA PROJECT 1976

FINAL REPORT VOLUME 1

Table of contents	Page
Review	4.
Summary and Conclusion	5.
Recomendations	6.
Regional Geology -Transcurrent faulting in the Rocky	9.
Mountain Trench and Tintina Trench -Geology of the area west of the Kechika River in the vicinity of	.11.
the Turnagain RiverGeology east of the Kechika River opposite the mouth of the Turnagain	.14.
RiverGeology of the Liard Bridge Area (south and west of the Alaska High-	.16.
way)Geology of the Gataga River Area -Geology of the Kwadacha River-Pesika	.19.
Creek Area Geochemical Program Results Field Work Methods Sampling Procedure	.35. .36.
Analysis of Samples	.37.
Personnel	.38.
APPENDIX A -Description of Mineralization -Rough Showing, Through Creek Fe, Zn 94-L-8(1) Mem -Boya Showing, Cu, W, Zn 94-M-3(1) Memo -D,P Showing, Driftpile Creek Fe, Zn, Pb 94-K-4(1) -Driftpile Ca/Okg Showing Zn (Cu) 94-K-4(2) Memo	4.5.

FINAL REPORT VOLUME 2

Table of contents

APPENDIX B -Geochemical Data Sample Record Sheets

APPENDIX C -Geological Traverse Record

VOLUME 1

LIST OF FIGURES AND MAPS IN TEXT

Fig.	1-1 1-2 2-1 3-1		
Fig.	4-1	Index Map to Barit (Alaska Highway)	te Fluorite deposits
Fig. Fig. Fig. Fig. Fig.	4-3 4-4 5-1 5-2	Schematic Cross Se Schematic Cross Se Geology Rabbit Riv Schematic Cross Se	ection C-D ver 94-M-SE ection E-F of Kechika Map area
Fig. Fig. Fig. Fig. Fig.	A-2 A-3 A-4 A-5	APPENDIX A Rough Showing Boya Showing	Claim Map Rock Chip Profile Soil Sample Profile Location Map Geology Rock Chip Geochemistry
Fig. Fig. Fig.		D,P Showing Driftpile Ca/Okg	Schematic Cross Section Location Map Showing Location Map

VOLUME 1 IN POCKET

ROCK CHIP GE	OCHEMISTRY			Scale
Fig. D-1 D-2 D-3 D-4 D-5 D-6	Sample location	Map Rabbit River " Kechika " Tuchodi Ware	W 1/2 E 1/2 W 1/2 E 1/2 W 1/2 E 1/2	1:250,000
Fig. D-7 D-8 D-9 D-10 D-11 D-12 E-1 E-2 E-3 E-4 E-5 E-6 E-7 E-8 E-9 E-10 E-11 E-12	Cu/Pb/Zn (V) "" "" Sample location "" Cu "" Pb "" Zn (V		W 1/2 E 1/2 W 1/2 E 1/2 W 1/2 E 1/2 94-K-4 94-L-1 94-L-8 94-L-1 94-L-8 94-L-1 94-L-8 94-L-1 94-L-1 94-L-1	1:250,000 "" " 1:50,000 "" " " " " " " " " " " " " " " " "

Also included with this report:

```
N.E. B.C. Lower Paleozoic Compilation Maps 1:1,000,000 (April, 1976/revised Sept., 1976)
```

Fig. F-1 Kechika Project Explorations, 1976 - N.E. B.C. Study area F-2 Kechika Project Explorations, 1976 - N.E. B.C. Mineral Occurrences
F-3 Kechika Project Compilation, 1976 - N.E. B.C. Ordovician F-4 Kechika Project Compilation, 1976 - N.E. B.C. Silurian F-5 Kechika Project Compilation, 1976 - N.E. B.C. Devonian

KECHIKA PROJECT 1976

APPENDIX B -Geolochemical Data Sample Record Sheet
NTS File

EXPLORATION DIVISION

AMPLE JMBER I	ROCK TYPE	LOCATION			PTION		ANALYTICAL RESULTS												
KA rı	bk. slate								AGE	FRESHNESS		VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
	usty brown weathering	94-B-12(a 6 mi. W c Lady Laurier Mt.) f Ord				52	15	216				94-B-12(a)						
												-							

EXPLORATION DIVISION

20/8/76

GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

			DESCRIPTION					ANALYTICAL RESULTS						
AMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEII MET.	NING MIN.	Cu	Pb	Zn				COMMENTS
KA 2190	bk. quartzite	94-C- 16 (a)	Upper Ord.		rusty brown weatheri	ng đe		11	9	24				94-C-16(a)
2191	bk. shales yellow brow weathering	vn	1	highly fissile				4	12	30				94-C-16(a)

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

23/8/76

Kechika PROJECT..

AREA.....

SAMPLER....

BM

3	ROCK TYPE		94-C-16 (b) DESCRIPTION				ANA	YTICAL F	ESULTS		-	
SAMPLE NUMBER		LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA1680	black slate	ridge W of Ospi R.	Ord ka	•	Nil		80	9	460			Note this Section - 94-C-16(b)
KA1681	Slate breccia Zn oxide	к.	u	11	· ·	Zn oxide wo gtz wern at any 15 comp slater	3	8	720			Zn-Zap Pos 94-C-16(b)
KA1682	black slate		11	•	11		4	5	28			34 6 20(2)
												94-C-16(b)
KA1683	black slate		Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	II.		9	4	26			
										- <u> </u>		94-C-16(b)
KA1684	pyritic slaty breccia	#	# 1	H			144	20	173			94-C-16(b)
KA1685	black slate	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		H	#		39	15	390			
		V 9 4 4	array (Managarian) Wall I I'l		1.0				: .	·		94-C-16(b)
KA1686	black slate	11		u t			30	10	85			
					1 1 1 1 4							94-C-16(b)

EXPLORATION DIVISION

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

23/8/76

94-C-16(b)

PROJECT Kechika AREA..... SAMPLER.....

BM

DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE FRESHNESS ALTERATION MET. Cu Pb MIN. Zn #1 KA1687 black traverse orgillite W of 1 3 6 slate Ospika Ord OK OK 94-L-16(b) R

18/8/76

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT....Kechika.....AREA....94-F-1(c).....SAMPLER.BM

SAMPLE NUMBER	ROCK TYPE	LOCATION	DESCRIPTION					AÑA	T			
			AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA1640	black slate	W of head waters Ospika R Traverse #1	Ord		out in		35	14	168			94-F-1(c)
KA1641	LS		H				8	34	98			94-F-1(c)
KA1642	Slate	i	14 / 4 / 11 1 11 / 12 / 12				31	10	54			94-F-1(c)
		1										
KA1643	Slate		n .				26	14	20			94-F-1(c)
KA1644	breccia		1				20	8	132			94-F-1(c)
KA1645	SITS		H .				62	29	131			94-F-1(c)
KA1646	limonite breccia	II.	**************************************				23	13	153			94-F-1(c)

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

18/8/76

ANALYTICAL RESULTS DESCRIPTION COMMENTS SAMPLE VEINING ROCK TYPE LOCATION FRESHNESS ALTERATION NUMBER AGE MET. MIN. Cu Pb Zn KA1647 Slate traverse 244 94-F-1(d) 244 28 II 94-F-1(d) 18 54 KA1647a 18 94-F-1(d)32 103 30 11 KA1648 Slate 94-F-1(d)34 17 4 KA1649 slate 100000 200 -171

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

19/8/76

PROJECT...... Kechika...... AREA .94-F-1(f)...... SAMPLER......BM

		N _W	DESCRIPTION					ANA					
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
KA1660	,	traverse II ridg NW of hea waters of Ospika R.	e d-Ord	OK	, and the second	Nil	18	13	140				94-F-1(f)
KA1661	LS	u .	81	11		"	7	11	8				94-F-1(f)
KA1662	Slate	"	11	"	-		23	25	102				94-F-1(f)
					,								
KA1664	LS breccia	"	**				20	31	580				94-F-1(f)
KA1665	black slate		. "	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			8	8	25				94-F-1(f)
KA1666	Slate	***************************************	u .	•			47	12	96				94-F-l(f)
KA1667	argillite		11			•	10	9	76				94-F-1(f)
	i .	I	1	1 -	1	La de la companya de	1	i	I .	I	1 .	1 .	I

EXPLORATION DIVISION

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

19/8/76

PROJECT.....Kechika 94-F-1(f) BMSAMPLER.... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE **FRESHNESS ALTERATION** MET. MIN. Cu Pb Zn KA1668 carbonate contact 94-F-1(f) 18 23 92 11 zone 94-F-1(f) 8 8 20 KA1669 argillite Market State of the State of th in the said of

EXPLORATION SISION

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

				DESCRI	PTION			ANA	LYTICAL	RESULTS		
AMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 1630	Arg LS						24	38	49			94-F-2(b)
KA 1631	Phyllitic Arg	*					32	15	105			94-F-2(b)
KA 1632	Lithic arenite					locally Pyritic	14	12	6			94-F-2(b)

		DECODIBITION	4.14.14	TIO 41 DEGILI TO	
1.100201.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		Allena		O/31411 LLL1111111111111111111111111111111	
PROJECTKechik	ca in the little of the little	AREA. 94-F-2(d)		SAMPLERBM	

				DESCR	IPTION			ANA	LYTICAL	RESULTS		
AMPLE JMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 1673	greywacke	Traverse #2	11				18	20	7			94-F-2(d)
	C					0						

PROJECT	Kechika	AREA	94-F-7(b)	 SAMPLERPH	

				DESCRI	PTION			ANA	LYTICAL	RESULTS		
SAMPLE -UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	РЬ	Zn			COMMENTS
KA 2137	arg. cal phyllitic limestone	C "	1				4	31	36			94-F-7(b)
KA 2186		94-F-7(b on ridge Ord 9 mi. S of	Ord				9	30	38			typical Kechika 94-F-7(b)
		Akie R.										
										: : ::::::::::::::::::::::::::::::::::		
nach in											1.0	
					•							
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					من المعادر والمعادد	A Chairman						

				DESCRI	PTION			ANA	LYTICAL	RESULTS		
AMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 2138	bk. shale	s 94-F-7	(c) Ord				18	27	140			sample outcropin creek near iron spring gossan bleeding into creek
KA 2139	bk. argil ite	1- "	"				8	48	69			94-F-7(c) 94-F-7(c)

PROJECTKechika	AREA. 94-F-7(d)	SAMPLER

				DESCR	IPTION			ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v	V205	COMMENTS
KA1670	is	Ridge NW Headwate Pesika C Traverse #1	rs K Ord.	ок	Nil		7	42	49			94-F-7(d)
KA1671	black slate	U .			7		82	47	315	1000	1785	94-F-7(d)
		•										
					4**							

EXPLORATION DIVISION

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

25/8/76

PROJECT....Kechika

AREA. 94-F-7(e)

SAMPLER...PH

				·· AREA							 	
SAMPLE				DESCRI	PTION			ANAI	LYTICAL F	RESULTS	. : '	
NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA2192	bk. shale	4 mi. S of Akie R. on c outcrop	Ord	high fissilit			1	7	16		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50' from phyllitic siltstones with Zn & Cpy in calcite
KA2193	bk. shale	u	Ħ	11			8	24	86			veins 94-F-7(e) 94-F-7(e)
KA2194	bk carb shale	"	11			heavy calcite veining	10	9	76			94-F-7(e)
KA2195	bk. py. shale	II .	Ħ				81	20	156			94-F-7(e)
KA2196	rusty Float	• • • • • • • • • • • • • • • • • • •					32	17	1600)	gossa	beneath large rusty red in shale 94-F-7(e) n
KA2197	shales sampled from gossa	. "					25	20	420			94-F-7(e)
	zone											

EXPLORATION DISION

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 25/8/76

PROJECT Kechika AREA 94-F-10(a) SAMPLER BM

				DESCRI	PTION			ANA	LYTICAL	RESULTS	,	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA1700	Volc anic	Head of Paul Ck.	۷.			ennumber	30	10	94			94-F-10(a)
≅A17 6 1	LS	from igneous er contact	"			Cu (trmalachi	410 te)	36	114			94-F-10(a)
						2 22						
							The state of the s	Management of the state of the				

EXPLORATION DIVISION

GEOCHEMICAL DATA SHEET ROCK CHIP SAMPLING

PROJE	CTKechil	ςa		AREA	.94-E-13.((b)		•••••	SAMI	PLERI	3МРН	PB	JM
CAMBLE				DESCR	IPTION			ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION		Cu	Pb	Zn				COMMENTS
KA1710	breccia	Spring iron Gossan N of Gata Lakes	Ord ga(?)	See NTS SHOWING **	file — Proper 94-F-13 ()	TY DATA	48	17	7,5	0			94-F-13(b)
KA1711	black sla barite	te "	III				6	2	62		3		94-F-13())
KA1712	limonitio breccia	"	11				26	13	15,	500			94-F-13(b)
KA1713	limonitio breccia	H 194					53	11	3,7	00			94-F-13(b)
KA1714	black slate ¢ black barite	"					12	2	158				94-F-13(Ъ)
KA1716	black argillite	II.	n,			Zn oxide on fractur surfaces	^e 16	14	555				94-F-13(b)

77 1	0.4D. 3.4./b.)	
Rechika Kechika	AREA 94-F-14(b)	SAMPLER BM
PROJECT	 AREA.	SAMPLERBM
		O/

	1			DESCR	IPTION	<u> </u>		ΔΝΔ	IYTICAL	RESULTS	· .	 <u> </u>
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	HEGULIS		COMMENTS
KA1690	LS	ridge tom W of headwater S.Gataga River	rs		Sideriti	c _{Nil}	3	38	13			bright orange weathering 94-F-14(b)

PROJECT. Kechika AREA 94-K-3(a) SAMPLER BM

				DESCRI	IPTION			ANA	LYTICAL I	RESULTS	· · · · · · · · · · · · · · · · · · ·	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	V		COMMENTS
KA1500	dol breccia	l mi. W of Church peak at Headwater		acing R.			7	42	64	42		94-K-3(a)
KA1501	Slts	11	•				22	36	79	70		94-K-3(a)
	1											
									•		*	
						4						
	0											

PROJECT...Kechika.....AREA...94-K-4(1).....SAMPLER...PB

	1	<u> </u>		DESCR	IPTION			ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	Fe%	Ti%	Ba	COMMENTS
KA105	qtz & calcite	Driftpile Ck. D,PProper			Ni1	qtz	8	300	700				94-K-4(1)
KA106	Shale frag	"						N3					94-K-4(1)
KA107			11				11	38	68				94-K-4(1)
					er week								
KA108	"		1					NS					94-K-4(1)
KA109.	11		11				16	330	68				94-K-4(1)
KA119	black slate float					Weak Pb est 0.5%	8	260	17	0.56%	0.075	1850	Mo 34 ppm Ag Q2 ppm Ni33 ppm Mn 48 ppm U 5 ppm -94-K-4(-1)
KA120	red springiron breccia shale frac			h **	float		23	1400	192	7.5%	0.190		Mo 19 ppm Ag 0.2 ppm

PROJECT... Kechika AREA... 94-K-4(1) SAMPLER... PB, JM

				DESCRI	PTION		T	ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v	Fe %	COMMENTS
DPP5		200' abov fork skk D,P Showing	e Ord Okg	11		Fe Zn Cu	7	5600	9600	50	12.0%	Ag 0.2 ppm* Mn 7900 ppm U 0.8 ppm* Ba 348 ppm Ti 0.04 %
		f	eature	ained bed s, associ te mud	lded pyri Lated wit	te exhibit h very fin	s sed:	iment a ined	ry slı	ımp	*Bac **Int	kground correct
							±					
	0					3						

CEXAS GULF SULPHUR COMPANY

EXPLORATION DIVISION

GEOCHEMICAL DATA SHEET — SOIL SAMPLING

27/7/76

AREA 94-K-4(1) PB PROJECT Kechika SAMPLER ... ANALYTICAL RESULTS DESCRIPTION SAMPLE LOCATION DEPTH & Part. % рΗ SLOPE VEG COMMENTS NUMBER HORIZON Colour Size Org. Cu Pb Zn D.P. Property 1/8-Ridgelihe 32 92 West half of trenc. from trench 2' below 33 0 tributaries c horizon to Driftpile scrub at treeline 4100 el brown East half of trench 11,700 1/2"wide Galena Vei 800 KB -17 oblique to bedding 19 in oval black shale 1.30% boulder. British Street

Howard's Pass Y.T.

AREA...94-K-4(a) Kechika SAMPLER...PH ANALYTICAL RESULTS DESCRIPTION COMMENTS SAMPLE VEINING ROCK TYPE LOCATION Zn?b Camb FRESHNESS ALTERATION Cu Pb NUMBER AGE MET. MIN. Zn Howard's hydrozincite Ord Reported surface Grapt HPP1 black Pass assey as per J. 28.35% 16.55%11.80% facies " mudstone coating Morganti 25% <0.01% Zn/Pb Visual estimate 20% Howard's HPP2 black 0.08% 0.08% 0.16% Reported Carb Pass none assay value 10% Zn/Pb // Shale 40.01% Upper no reaction DPP1 black Drif tpile Lower with zinc 100 38 mudstone 53 Creek Ord zap white Barite Graptolites coating 800 downstream 94-K-4(a)prevalent from fork no white Upper 600' oxide Driftpile DPP2 black downstream 94-K-4(a) Barite 22 52 coating mudstone Creek from fork no white oxide black DPP3 Barite 29 20 39 d coating carb 94-K-4(a)shale

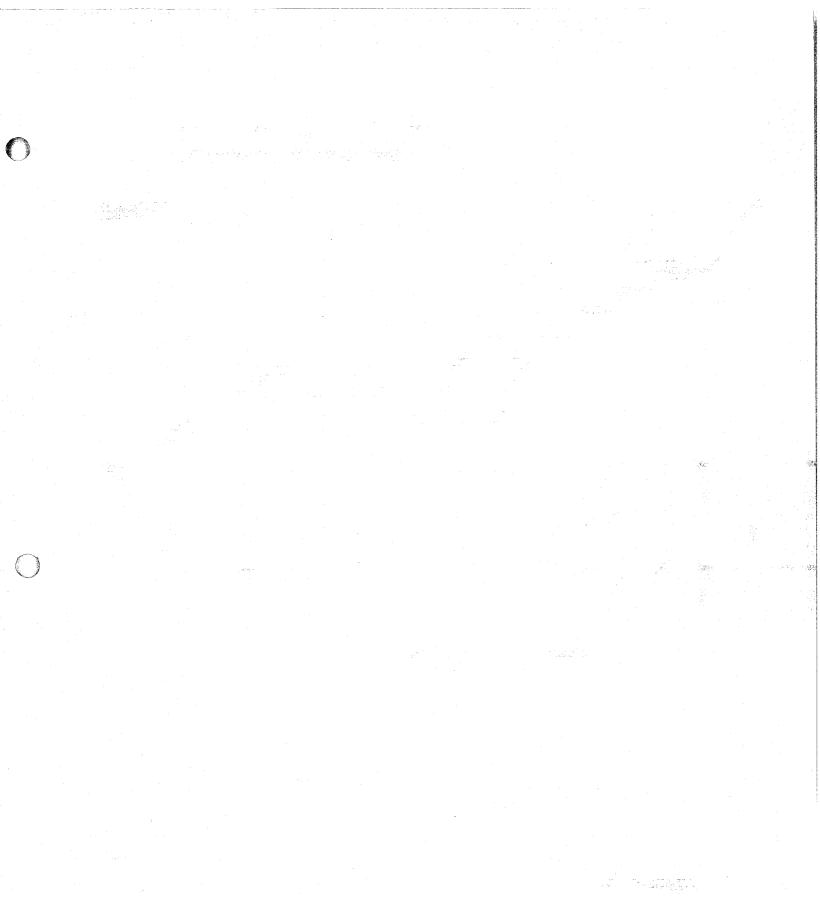
				DESCRI	IPTION				ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	IING MIN.	Cu	Pb	Zn	Fe%			COMMENTS
KA121	Ord heavy slate	Driftpile 600' up- stream from N.	Ord Ork	11	Nil	Nil		14	108	16	1.31%	Ba 2 Ti 0	2450 ppr	Mo 14 ppm Ag 0.2 ppm Ni 41 ppm Mn 178 ppm U 0.8 ppm 94 K 4(a)
KA122	H	Driftpile 600 downstream from N.	" fork					3	48	13	0.76%	Ba 9)10 ppm	Mo 1 nnm
								gan makanakan dan tan tan s				ALE PROPERTY.	planty reg. direct	
												÷		
	ga Arraga (n. 1946) Arraga (n. 1946)													
												e de la companya de La companya de la companya de l	7	
					102 mg		en e	19 C						
							11 - 1 - 1							
											·			

PROJECT	Kechika	AREA94-K-4(a)	•••••	SAMPLER P.H	
		DECCRIPTION			

		1		DESCR	IPTION			ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Рь	Zn			COMMENTS
KA2102	black carb mudstone	Headwate Driftpil Creek	rs e Mid Ord				15	32	56			94-K-4(a)
KA2103	ti .	u .	11				12	39	33		•	94-K-4(a)
KA2104	blackcarb shale	u .	II				12	12	14			94-K-4(a)
											en j	
												3

PROJECT....Kechika...... AREA....94-K-4.(b)....... SAMPLER..PB.......

	T	T		DESCRI	RTION				ANA	LYTICAL I	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	ING MIN.	Cu	Pb	Zn	X.		COMMENTS
KA94		N. Fork Driftpile Ck.	Ord	Weathere	d _{Nil}	Nil		38	13	87			94-K-4(b)
KA95	white qtz	William Control of the Control of th				white	e qtz	34	5	256		•	94-K-4(b)
KA96	sfoliated	1		"	"	Nil		10	12	32			94-K-4(b)
KA97	V. black carbonaced	" Sus		•		red	stain	ed 82	15	79			94-K-4(b)
KA98	spring iro breccia (limonition matrix)	11		•				6	9	45			94-K-4(b)
KA99		tt					1	70	10	207			94-K-4(b)
KA100	Carbonaceo slate	us "	1	"	***	1		32	13	62			94-K-4(b)


25/7/76

PROJECT. Kechika

AREA....94-K-4(b)

SAMPLED PE

SAMPLE NUMBER KA101	ROCK TYPE									YTICAL F				
KA101		LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	ING MIN.	Cu	Pb	Zn			7 - 1	COMMENTS
	Carbonace float	ous						19	11	37				94-K-4(b)
						:			v					
KA102	massive		. 1. 1. 1.			Pyrite Lense	2						•	
	pyrite					1/2	x 10	" 214	136	124				94-K-4(b)
KA	pyrite		-											04 77 441
103	lense 1/2"x6" Near as sa	mple						49	27	216				94-K-4(b)
KA	102											-		
								ин э май 	:		•			
	The second section of the sect													
	1						:	-	٠					

PROJE	СТ	.Kechika		AREA	94-K-4 (.c)	•••••		SAMP	LERB	М	•••••	<i></i>
0.1.1.5				DESCR	PTION			ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
KA1420	ructiv	Traverse Ridge I mile	#1 Ord				34	6	10				94-K-4(c)
	weathering slate	N. of Driftpile Ck.											
												•	
KA1422	slaty siltstone	11					7	18	24			•	94-K-4(c)
TZ 7 1 4 0 4	1-11-												
KA1424	black carb slate	11	. 				3	18	4				94-K-4(c)
KA1425	springiron breccia (limonitic matrix)	13					31	22	146	þ			94-K-4(c)
	C	3				0							

EXPLORATION DIVISION

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 25/7/76

				DESCRI	PTION			ANA	LYTICAL I	RESULTS		
MPLE MBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA L427	spring iron breccia (limonitio	travers #2	eÖrd				240	33	950			94-K-4(d)
	matrix)											
KA L428	11	11	u				630	67	1080			94-K-4(d)
								7.				
KA 1430	Carbonace siltstone	stream	11				22	18	85			94-K-4(d)
		bottom						4. 1 - 44				
												•
, a												

PROJECT. Kechika AREA 94-K-4(e) SAMPLER PB

				DESCR	IPTION			ANA	LYTICAL I	RESULTS	 	
SAMPLE SUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	V		COMMENTS
KA 123	Cambrian slope bx limonite Matrix	Traverse #1	Eamb	· ·	Nil	extensive Sparry calc Some brecci Red Matrix						94-K-4(e)
						Rock Chip	64	56	36	25		
						Matrix	4.					
								•				

28/7/76

				DESCR	IPTION			ANA	LYTICAL	RESULTS		
MPLE IMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Рь	Zn	v		COMMENTS
1450	Slate carbonaceou	Driftpil Sk N fork T _{raverse}	e Ord	11	"		28	б	102	490		94-K-4(f)
1451	As above	# I		*			12	18	42			·
1452	Slate	100 generalis 110 generalis 120 generalis					18	23	930	7 5	•	94-K-4(f)
				10.5%							•	
1454	Slate	"					17	11	67	450		94-K-4(f)
1455	Carb Slate	11	11				11	7	49	490		94-K-4(f)
			,,				6	12	9	680		94-K-4(f)
1457	Limonite											
-							 		-			
	S											
					\$1							

EXPLORATION DIVISION

GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

28/7/76

AREA..... 94-K-4(i) PROJECT..... Kechika SAMPLER... ANALYTICAL RESULTS DESCRIPTION COMMENTS VEINING SAMPLE ROCK TYPE LOCATION NUMBER AGE **FRESHNESS ALTERATION** MET. MIN. Cu Pb Zn 94-K-4(1)33 40 350 11 Traverse Ord #2 **KA124** blue 5 1/2 mi. slate el 6220 of Driftvile Ck. 10 3/4 Mi E of Mt Mark 94-K-4(i)49 405 " 16 KA125 black carbonaceous el 6080 slate mixed frags red spring shale KA126 iron breccia 94-K-4(i)140 27 20 Shale 11 ? bх el 6000 94-K-4(i)640 40 20 17 KA127 Black Carbonaceous 11 Nil Slate el 5830 Black shale 94-K-4(i)360 14 72 5 11 KA128 slaty el 5650 red spring Miller A down el 5350 iron breccia Shale bx KA129 limitic 74-K-4(i) 38 335 32 11 matrix


28/7/76

GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

PROJE	ECTKecl	nika		AREA	\ 94-к-	·4 (i)			SAM	PLER	. PB		
				DESCR	IPTION		T	ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v			COMMENTS
KA 130 f	oft red mu rom active	5 1/2 mi Oriftpile	N			Wet Mud	1 2	21	550	195			Wet Red Mud from Spring
	springiron seep of	Ck. 10 3/4 E Mtn. Mark		"	11								94-K-4(i) el 5220
KA131		Traverse #2		• • • • • • • • • • • • • • • • • • •	##	Ni1	116	16	34	640			94-K-4(ⁱ)
KA132	Vein mater float	ial "		•		qtz & calcite	34	12	102	195			94-K-4(ⁱ)
K A133	dusty black bluish shal float	e "	• • • • • • • • • • • • • • • • • • •			Nil	38	93	1030	800			94-K-4(i)
KA134	Blue black slate			"	*** *** *** *** *** *** *** *** *** *** *** *** **		20	410	560	5850			94-K-4(i)
KA129a	red spring iron breco	Traverse ia		**************************************		limonite matrix	33	17	950	380			94-K-4(i)
			Ord										e e e e e e e e e e e e e e e e e e e
KA 135	Red sprin	g											
•••	mi downstr	eam	11		H	10 10 10 10 10 10 10 10 10 10 10 10 10 1	8	30	600	60			94-K-4(i)

	1, 3			DESCR	IPTION			ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MI		Pb	Zn			COMMENTS
KA5011	brecciated lithograph LS		s €amb ile		Buff ora weatheri		9	73	352			Some oolites present 94-K-4(k)
KA5012	Calcareon grainstone with limonite particles	ıs "	u		rusty		3	19	55		:	Only very narrow unit
KA5013	fine med grained calcareou grainston	\$			brown orange rust		4	40	144			with pyrite and heavily veined with quartz 94-K-4(k)
	Black carbonaceo slates		Ord		rusty		18	6	67			94-K-4(k)
KA5015	banded slaty siltstone	11	11	:			5	21	73			94-K-4(k)
KA5016	Black carbonaceo slates	us n	11				24	26	153			94-K-4(k)
KA5017	II .	"	••				4	5	41			K-4(k)

EXAS GULF SULPHUR COMPANY

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT....Kechika AREA...94-K-4(k) 10/8/76 JI SAMPLER...

				DESCRI	PTION				ANA	LYTICAL	RESULTS		11.
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEII MET.	NING MIN.	Cu	Pb	Zn			COMMENTS
KA5019	Carbonac black slate	7.5 m SE of North eous Headwater Driftpile 2 mi S BM	Ck					4	25	232			94-K-4(k)
KA5020	Slaty me grey siltstone	"						9	17	43		:	Contains pyricand Limonite grains 94-K-4(k)
KA502J	Silty med greyblue slate	•			rusty			22	16	150			Cut by thick quartz veins 94-K-4(k)
KA5022	Black carbonaceo slate	us	u		heavy limonite coating			63	24				94-K-4(k)
								03		::			
	1									X 150			

EXPLORATION DIVISION

10/8/76

GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

				DESCRI	PTION			ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
KA1572	pyritic slate	traverse	€amb										94-K-4(1)
, ,		I W Gata	ga				21	17	66			1 1	
KA1573	pyritic	- 1 										•	94-K-4(1)
• • • • • • • • • • • • • • • • • • • •	slate					•	65	23	1630			•)
KA1574		•			1								94-K-4(l)
	LS						120	29	240			*	
	•									1. 7		1.	
KA1575	limonition slate		, i				9	77	21				94-K-4(1)
KA1576	clay phyllite	11 11					25	29	112				94-K-4(1)
							ļ				:		
A								•			a dage of		
-													
•													

EXPLORATION DI ION

GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

10/8/76

PROJECT.....Kechika AREA....94-K-4(m) BM SAMPLER.... ANALYTICAL RESULTS DESCRIPTION COMMENTS VEINING SAMPLE ROCK TYPE LOCATION ALTERATION Cu Pb Zn FRESHNESS MET. MIN. AGE UMBER black traverse KA slate 94-K-4 (m) 2 10 3 II 1577 94-K-4(m)KA 1579 Limontic 11 53 62 LS

Kechika AREA 94-K-4(n) SAMPLER...PH PROJECT...

-			<u> </u>	DESCR	IPTION			ANA	VTICAL	RESULTS		T
SAMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	NESULIS		COMMENTS
KA 2176	black chert SS				1	flecked with limonite spects	19	16	133			94-K-4(n) el 6300
KA 2177	black calc silty mudstone		"				12	41	9			94-K-4(n) el 6400
KA 2178	bk. chert sandstone	# 12 minutes	н		greenish yellow oxide stain		17	8	7			94-K-4(n) el 6300
KA 2179	bk. py shale	!	"		rusty red brow weatheri		8	19	32			94-K-4(n)
KA 2180	bk. clay base of shale ridge	n	Ħ			red brown specks in shales.	16	50	116			94-K-4(n) in ck. draning ridge
KA 2181	bk. shale strong rusty weathering	of D,P showing	Ord			red brown specks in shale	11	14	22			94-K-4(n)
	•				en e	0						

CIEXAS GULF SULPHUR COMPANY

EXPLORATION DIVISION 11/8/76

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

Kechika	94-K-4(0)		FP	
PROJECT	AREA	 SAMPLER	• • • • • • • • • • • • • • • • • • • •	

				DESCR	IPTION			ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	NING MIN.	Cu	Pb	Zn			COMMENTS
KA3038	Fine grai	3 mi. NE of D.P. See map	Camb	slight weathere crust & Fe oxide			9	72	74			Adjacent To contact 94-K-4(0)
KA3039	Black calcareous shale, fissile	11	Ord Kechik GP	a			19	36	16		•	94-K-4(0)
KA3040	Fetid fine grained dolo- stone tigh				Dolomit ization		10	27	215			94-K-4(0)
KA3041		l.5 mile - NE of D,P	€amb	weathere crust abundant Fe Oxides	_		0.1%	88	19.35			visible sphal ite as garnet like euhedral crystals chos sample 5% Zn 6 94-K-4(0)
												Scree Boulder Adjacent to contact 94-K-4(0)

EXPLORATION DIVISION 11/8/76

GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

PROJE	ст ^К	echika	•••••	AREA	94-1	(-4(p)		ega ar e senari a	SAM	PLER	ВМ	 ••••••••••
		y		DESCR	IPTION			AN	ALYTICAL	RESULTS		T
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA1580	LS	W of Gataga traverse I	R. Ord				7	73	11			94-K-4(p)
KA1581	black slate	11					19	38	48		* m	94-K-4(p)
KA1582	Zn miner ized	al- "					45		6% > 20,0	000		94-K-4(p)
KA1583	Zn miner ized LS	al- "	71				0.01		26.15			94-K-4(p)
							130	53	> 20,0	00		
	•				The state of the s	0						

EXPLORATION COSION 11/8/76

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT Kechika	AREA. 94-K-4(9)	SAMPLERBM	
1 1100001111111111111111111111111111111		SAWII LEN	• • • •

				DESCRI	PTION				ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	IING MIN.	Cu	Pb	Zn				COMMENTS
KA1587	ized		Ord					17,400			i siji			94-K-4(9)
	LS	Travers #2	е		general control of the control of th	Cu		0.41%	21	310				Checker
KA1584	black slate	Traverse					• 1							
		II	**											94-K-4(q)
								20	56	2250		-		
KA1585	pyritic LS	11	•											94-K-4(q)
								8	78	760				
KA158	6 C u.m iner ized LS	al-	11			Cu		1.50 1.80		360				94-K-4(q)
		e de la companya de l					aller of the second		53	300				
													·	
		A Company												
										· •				

				DESCR	IPTION			ANA	LYTICAL	RESULTS		
SAMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 1600	fine Xlline LS	W of Gataga traverse I	Camb				50	52	50			94-K-4(r)
									4			
				841 12 11	• • • • • • • • • • • • • • • • • • •							

우리는 그는 사람들은 사람들은 소리를 하는 사람들이 되는 사람들이 함께 함께 되었다. 그 사람		
PROJECT. Kechika	AREA94-K-4(s)	SAMPLERBM
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	O/1411 PP1

		l Total	DESCRIPTION				ANALYTICAL RESULTS						T	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEII MET.	NING MIN.	Cu	Pb	Zn				COMMENTS
KA 1601	sparry breccia matrix	traverse II						54	76	35			18 (19 ) 18 (19 ) 18 (19 )	94-K-4(s)
KA 1602								16	63	61				94-K-4(s)
KA 1603	Fe rich LS							11	64	27				94-K-4(s)
KA 1604	Fe minera ized shal carbonate	e ·						32	95	140				94-K-4(s)

# EXPLORATION DIVISION 12/8/76

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

SAMPLE NUMBER	ROCK TYPE		DESCRIPTION					ANA		<del></del>		
		LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
					+							
KA1601	sparry breccia matrix	traverse II									**************************************	94-K-4(s)
							54	76	35		•	
KA1602	<b>H</b>	<b>11</b>	1									94-K-4(s)
						***	16	63	61			A STATE OF THE STA
KA1603	Fe rich	<b>u</b>	11					. 1				0/ 7 //->
·	ш						11	64	27		3.	94-K-4(s)
KA1604	Fe minera	lized							••			•
RII 2 0 0 4	shale carbonate						32	95	140			94-K-4(s)
							32	93	140			
									,			

EXPLORATION DISION 12/8/76

				DESCRI	PTION			ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
KA5030	Dark gray fine grain ed limesto	on ridge	( R. J.	weather- ed crust Zn, Fe oxides		Zn; sphalerite Zn oxides	0.1% 920		18.7% >20,0	000			Adjacent to carbonate shale contact Zn 5% 94-K-4(t)
KA5031	limestone breccia; sparry cal cite matrix		Limest Camb	one		11	14	420	17,000			• 12.	" within spar filled zone Zn 1.2% 94-K-4(t) calcite 20%
KA5032	Medium gr calcareous shale		Eamb	slight weather- ed crust minor Fe			20	46	150				Transition zone of contact 94-K-4(t)
KA5033	As for KA5031		Camb bred ragment alcite natrix	Crust	n	Zn sphalerite Zn oxides	0.01	930	% 6.9 > 20,				Adjacent to contact; mineralization in calcite spar
KA5034	Limestone breccia calcite matrix		Camb brec ragmen alite ariix	ts		Cu; Chalcopyri Malachite Azurite	8.12 4,90	1 /	1540				Adjacent to contact; with in brecciated spar filled
													94-K-4(t)
											2000		

# EXPLORATION DIVISION 12/8/76

PROJE	CTKeçl	ika	•••••	AREA	94-K-	4 (u)		•••••	SAMP	LER	 PH	
				DESCR	IPTION			ANA	LYTICAL	RESULTS	1	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA2182	bk. shale (highly fissile)	s	Ord				14	20	44			94-K-4(u)
KC2183	stream se	e d	Ord				26	19	330		•	94-K-4(u)
KA2184	bk. silty argillite		Ord			strong py framboids	26	11	76			94-K-4(u)
			13 T						1.4			

## EXAS GULF SULPHUR COMPANY

EXPLORATION ASION 14/8/76

DDO IFOT	Kechika	ADEA 94-K-4(	( w)		FP	
Phojeci	Kechika	 AREA	( w)	SAMPLER	F F	
			.,,			,
and the second s						

				DESCRI	PTION				ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION		NING MIN.	Cu	Pb	Zn			COMMENTS
KA3050	Barite carbonate veining in a fine gra ed lime\$to	Showing in contac	€amb t of	Minor Weathered Crusts	<b>1</b>	Zn Sphal	Barite erite ides uorite	1	32	825			Barite carbonate veining carrying minor visible sphale ite Zn 1% See
													notes of FP, A 14,76 Analyze for Ba 94-K-40 Cpy Malachite noted nearby
												c	
							•						

## GEOCHEMICAL DATA SHEET — SOIL SAMPLING

14/8/76

94-K-4(w)

	34-X-4(W)		
PROJECTKechika	AREA	CAMPLED FD	
	//////////////////////////////////////	SAMPLERFP	• • • • • • • • • • • • • • • • • • • •

* .			DE	SCRIPTION	ON				1	ANA	LYTICAL	RESULT	S		
SAMPLE UMBER	LOCATION	DEPTH & HORIZON	Colour	Part. Size	% Org.	рН	SLOPE	VEG	Cu	Pb	Zn				COMMENTS
KB 3007	350'	l foot	grey	silt- clay			Flat	grass	Юo	SAMP	ć.	94-	K-4(	w)	
KB 3008	300		1							ŭ		94-	K-4 (	w)	
KB 3009	200	<b>11</b>	<b>11</b>	•	•		u					94-	K-4(	w)	
KB 3010	100		1	•	<b>1</b>					И		94-	K-4(	w)	
KB 3011	50' TO NNW	11	u 1	<b>1</b>					27	22	70	, 94	-K-4	(w)	
KB 3012	100' TO NNW	ŧŧ	11		11				19	16	86		94-	K-4 (w	<b>)</b>
		A da il													

# CEXAS GULF SULPHUR COMPANY

EXPLORATION DIVISION 14/8/76

## GEOCHEMICAL DATA SHEET — SOIL SAMPLING

PROJI	ECTKe.ch	ika			AREA	<u>.</u>	9.4 -K-4	(.w.)		••••	S	AMPLE	R		.FP
		: . 	DE	SCRIPTION	ON	See S	amples Lo	cation	Map	Aug	ust I	2/76	FP		<del></del>
SAMPLE NUMBER	LOCATION	DEPTH & HORIZON	Colour	Part. Size	% Org.	рН	SLOPE	VEG	Cu	Pb	Zn	RESULI	5		COMMENTS
кв3000	3 mi E of DP Showing 50' from contact	1 foot	grey	sil clay			negliges	ble	6	9		94-	K-4 (	<b>σ</b> )	Samples taken from centres of frost boils
KB3001	100'	<b>**</b>				•	1		Νo	Sah	PLES	94-	K-4(	w)	Adjacent to contact of Ca And Okg
KB3002	150'	<b>n</b>	M 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		**************************************		H .			**		94-	K-4 (	<b>∀)</b> 11 (1	Shale (Okg) side to West
кв3003	200'	•					<b>11</b>			ħ		94-	K-4(	w)	Zn Ba Mineralizatio found in Ca
кв3004	250'			• • • • • • • • • • • • • • • • • • •			10 10 10 10 10 10 10 10 10 10 10 10 10 1			,		94-	K-4 (		on East side of contact
кв3005	300'	• A		## (* )			100 <b>計</b> (200 <b>対</b> (200 (200 (200 (200 (200 (200 (200 (200			7		94-	K-4(	w)	See Notes of F.P Aug. 14/76
КВ3006	350						11					94-	K-4(	w)	

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

2/8/76

PROJECT...... Kechika..... AREA....94-K-5.(a)..... SAMPLER....P.H.... DESCRIPTION ANALYTICAL RESULTS SAMPLE ROCK TYPE VEINING LOCATION COMMENTS NUMBER AGE FRESHNESS **ALTERATION** MET. MIN. Cu Pb Zn Heavily probably very KA3030 Black. weathered Iron finely dissemi fissile Stain crusts 16 61 89 ated pyrite Ord shale. rarely visible pyritic 94-K-5(a)11 KA3031 25 50 53 94-K-5(a)KA3032 11 10 46 36 94-K-5(a) 11 KA3033 Dark gray 18 23 94-K-5(a)82 fissile shale medium moderate KA3034 gray Iron siltstone 15 24 84 94-K-5(a)Stains

Kechika

PROJECT.

EXPLORATION SION

2/8/76

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

				DESCR	IDTION		1					100 m
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	LYTICAL Zn	V		COMMENTS
KA1510	siltstone	traverse I	Ord				30	30	125	215		94-K-5(b)
KA1511	qtzite	u.	••				14	15	88	19	•	94-K-5(b)
KA1512	Slate	H					38	26	137	140		94-K-5(b)
KA1513	siltstone		<b>"</b>				22	20	132	805		94-K-5(b)
KA1514	Siltstone						12	26	112	635		94-K-5 (b)
KA1515	Limonite						66	24	2040	70		94-K-5(b)
									is is			

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 1/8/76

				DESCRI	PTION			ANA	LYTICAL	RESULTS		
SAMPLE JUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	1	VEINING MET. MIN.	Cu	Pb	Zn	v		COMMENTS
KA 1505	LS	7 mi. E. of Mt. Roosevelt					10	40	80	28		94-K-6(c)
KA 1507	Breccia (Znoxide)		Dev			Zn Oxide	10	44	600	10		94-K-6(c)
		•										
						0						

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 2/8/76

PROJECT....Kechika...... AREA...94-K-12(b)..... SAMPLER...BM

				DESCR	IPTION			ANA	LYTICAL	RESULTS	ý.	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	ν		COMMENTS
KA1516	Siltstone	Travers #2	e Ord				31	18	113	120		94-K-12(b)
KA1517	LS	•	<b>1</b>				8	54	40	20		94-K-12(b)
KA1518	Limonite	<b>u</b>						No s	Sample	S		
											ender of the control	

# **EXPLORATION DIVISION** 24/7/76

### GEOCHEMICAL DATA SHEET - SOIL SAMPLING

PROJECT... Kechika AREA....94-K-14(a)...... SAMPLER.... FP DESCRIPTION ANALYTICAL RESULTS SAMPLE LOCATION **DEPTH &** Part. % рН SLOPE VEG COMMENTS NUMBER **HORIZON** Colour Size Org. Cu Pb Zn 1 foot red mud KB-1 Toad R. Lower clav grass 3 13 38 underlain By Lodge brown silt flat moss Besa Shale Field on В tree 94-K+4(a)N side of roots

KB-2 " " 5-10 " 7 15 51 94-K-14(a)

KB-3 Ħ 5.10 ** 11 18 56 94-K-14(a)**KB-4** Ħ ** 5.10 11 15 20 51 94-K-14(a)

 KB-5
 "
 "
 5
 "
 9
 18
 54
 94-K-14(a)

 enriched red
 red

KB-6 " " enriched red brown " 5 " " 3 12 55 94-K-14(a)

11

brown

5

" 7 16 50 94-K-14(a)

# GEOCHEMICAL DATA SHEET — SOIL SAMPLING

24/7/76

				and the state of t
PROJECTKechika	ARFA 94-K-14	4 (.a )	SAMPLER	F.D
	,	·	or the Letters	

				SCRIPTIO						ANA	LYTICAL	RESULT	S	
SAMPLE NUMBER	LOCATION	DEPTH & HORIZON	Colour	Part. Size	% Org.	pН	SLOPE	VEG	Cu	Pb	Zn			COMMENTS
кв 8	Foad R. Lodge Fie on N side of Highway	B Minor	red brown	Clay silt	1-2			grass moss tree roots	6	17	58			Underlain By Besa Shale 94-K-14(a)
кв 9		1 foot Lower B Upper C			5				10	22	27			94-K-14(a)
KB10		l foot Lower B		" Mino sand	5				2	10	50			94-K-14(a)
KB11		1 foot Lower B Upper C	<b>"</b>	Minor sand 2%					10	18	37			94-K-14(a)
KB12		l foot Lower B							5	16	48			94-K-14(a)
КВ13				Sand 5%					8	18	53			94-K-14(a)
KB14	11 (2)	1 foot Lower B Upper C		Sand 5%	11. 12.				15	22	35			94-K-14(a)

#### EXPLORATION DIVISION

24/7/76

#### GEOCHEMICAL DATA SHEET — SOIL SAMPLING

			DE	SCRIPTIC					T T	ANA	LYTICAL	RESULT	S	
SAMPLE NUMBER	LOCATION	DEPTH & HORIZON	Colour	Part. Size	% Org.	рH	SLOPE	VEG	Cu	Pb	Zn			COMMENTS
KB15	Toad Rive Lodge Fie on N Side of Highwa	ld Lower B	Brown	Clay Silt	5		Flat	grass moss tree roots	20	21	48			Underlain By Besa Shale 94-K-14(a)
	0						0		** *** **** **** **** **** **** **** ****					

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 27/7/76

Kechika PROJECT.

94-L-1(a)

				DESCR	PTION			ANA	LYTICAL	RESULTS	 · · · · · · · · · · · · · · · · · · ·	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v		COMMENTS
	bk. carb shale Unit 6b	East slope of Mount New	Ord W				52.	9	56	1050		94-L-1(a)
K <b>A</b> 2105	bk. shale sands	•	W.				73	13	150	645	•	94-L-1(a)
KA2106	grey blac banded slate	k "	•				40	30	85	110		94-L-1(a)
KA210	grey blac micaceous shale	k "	•				31	30	85	125		94-L-1(a)
								AL . S				
							A45					

27/7/76

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

			T	DESCRI	PTION			ANA	LYTICAL I	RESULTS	Jan 1	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v		COMMENTS
KA211	Hematitic siliceous mudstone		pe				76	22	27	2400		94-L-1(a)
KA2112	Pyritic Siltstone	и					21	41	111	60		9 <b>4-L</b> -l(a)
KA211	black Shale	4	•				37	30	315	770		94-L-1(a)
KA2114	4 Calcareou Mudstone	s ¶					58	20		280		94-L-l(a)
KA211	Dark Shale	21					22	22	71	95		94-L-1(a)
	•					O .						

# CIEXAS GULF SULPHUR COMPANY



#### EXPLORATION DIVISION

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 27/7/76

94-L-1(b)Kechika DDO ICCT

				DESCRI	PTION			ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA1440		traverse #1 West of Bighor Mtn.	Ord n				18	20	65			94-L-1(b)
KA1441	silty mudstone	•					11	42	16			94-L-1(b)
KA1444	shaly siltstone		<b>"</b>				9	20	29			94-L-1(b)

#### **EXPLORATION DIVISION**

CALLDIC	•			DESCR	IPTION			ANA	LYTICAL	RESULTS		T
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v		COMMENTS
		of Mount	Ord				32	36	86	80		94-L-1(c)
KA2109	bk. micri limeatone		11			extensive calc					•	
						veining	17	43	31	50		94-L-1(c)
KA2110	bk. arg chert	"	• • • • • • • • • • • • • • • • • • •			pyritic concretion	100 is	12	34	80		94-L-1(c)
									••			

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 27/7/76

PROJECT.....Kechika......AREA...94-L-1(d)......SAMPLER.PB......

		1 1		DESCR	IPTION			ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KAllO	Slate	3 3/4 NW of Bigho Mtn traverse	rn	"	Nil	Nil	7	30	35			94-L-1(d)
KA111	carbonaceo slate	us		1			28	30	76	i Australia		94-L-1(d)
KA112	slate			"			11	32	40			94-L-1(d)
KA113	black sla	te "			"		22	8	115			94-L-1(d)
KAll4	black slate				1		36	10	96			94-L-1(d)
KA115	black slat	<b>"</b>		***************************************	•		72	5	76			94-L-1(d)
KA116		•					66	7	74			94-L-1(d)

#### **EXPLORATION DIVISION**

27/7/76

				DESCR	IPTION			ANA	LYTICAL I	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn		1.1	COMMENTS
KA117		B 3/4 mi t of Bighorn	ht	11			8 5	20	400			94-L-1(d)
	Black slate	Mtn. Traverse	Ord E		Nil	Nil						
KA118	11	"	11	Ħ	11	11	18	21	118			94-L-1(d)
									<b>y</b>			
						Her An Charles				1111		
						0						

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

27/7/76

PROJECT... Kechika AREA 94-L-1(e) SAMPLER BM

				DESCRI	PTION		T	ΔΝΔ	LYTICAL	RECULITE		
SAMPLE CUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	РЬ	Zn	LOULIS		COMMENTS
KA 1445	silty mudstone	travers	e Örd				78	20	78			94-L-1(e)
KA 1446	Carb mudstone	1					39	10	32			94-L-1(e)
KA 1447	Slate	п	U				26	25	99			94-L-1(e)

#### **EXPLORATION DIVISION**

#### GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

28/7/76

T				DESCRI	PTION			ANA	LYTICAL	RESULTS		
AMPLE JMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	V	4	COMMENTS
KA 1460	Slate	Traverse #2	"Ord				11	15	1050	15		94-L-1(f)
KA 1461	breccia					Zn Pb	57	11	123	310		94-L-1(f)
KA 1462	breccia	u	11			Zn Pb	110	20	5000	280		94-L-1(f)
										*		
					·							

EXPLORATION DISION

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

26/7/76

PROJECT...Kechika..... AREA...94-L-1(f) SAMPLER....BM

				DESCR	PTION		T .	ANA	LYTICAL	RESULTS		<u> </u>
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v	Fe%	COMMENTS
KA1462		" Traverse	#2 Ord			hydrozincit Zn Zap-pos		42	2100	300	1.08%	Ni 26 ppm Mn 179 ppm Ag 1.9 ppm U 0.4 ppm Mo 8 ppm Ba 1360 ppm
KA1463	silty carbonate		# 1				14	49	134	25		Ti 780 ppm 94-L-1(f)
KA1465	Slate	<b>11</b>					80	46	260	980		94-L-1(f)
					. U							

# GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING 28/7/76

PROJECT...Kechika AREA...94-L-1(g) SAMPLER...PH DESCRIPTION ANALYTICAL RESULTS SAMPLE ROCK TYPE VEINING LOCATION **COMMENTS** NUMBER FRESHNESS | ALTERATION AGE MET. MIN. Cu Pb Zn V headwaters calc. KA2116 . of megascopic Braid Cr. Ord 19 37 90 48 bright metallic lustr on Cambrian Ord Contact high SG 94-L-1(9)KA2117 calc. arg mudstone 10 46 20 35 94-L-1(_q) trilobites

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 29/7/76

AREA 94-L-1(g) SAMPLER....PH PROJECT....Kechika

,			1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )					·				 , <u>, , , , , , , , , , , , , , , , , , </u>
:JAMPLE				DESCR	IPTION			ANA	LYTICAL	RESULTS		
UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	u,	٧	COMMENTS
(Å 2120	bk. shale (high fissility)	1/2 mi N	Ord - 5 of				6	16	38		390	94-L-1(g)
KA 2121	bk. carb	Braid Cr.				fine disse	m					
						Pb/Zn	36	3900	212	0.8	1100	94-L-1(g)
KA 2122		"	<b>#</b>			strong Zn indicator reaction	60	48	1760	3	1525	94-L-1(g)
KA 2123	bk silt- stone		•		light yellow oxide coating		12	34	73		180	94-L-1(g)

#### **EXPLORATION DIVISION**

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 29/7/76

PROJECT. Kechika AREA. 94-L-1(g) SAMPLER. PH

SAMPLE	***			DESCR	IPTION			ANA	LYTICAL	RESULTS		1
NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn		v	COMMENTS
KA2127	bk. slate	Traverse 10 mile N of Bighor Mt. 5 1/2 mi. N of	n Ord	rusty coating C.			20	20	62		435	94-L-1(g)
KA2128	H grey slates				Black re coating	d qtz veinl		13	40		270	94-L-1(g)
KA2129	H. grey slate and breccia	<b>u</b>				pyritic	20	6100	104		225	94-L-1(g)
KA2130	. <b>11</b>	11 (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	<b>1</b>		n		23	30	310		245	94-L-1(g)
KA2131	LT grey to dk. grey slate		<b>II</b>		yellow brown co	a t	26	58	104		685	94-L-1(g)
		***										
						0						

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT.....Kechika AREA....94-L-1(h) SAMPLER ... PH. DESCRIPTION ANALYTICAL RESULTS VEINING COMMENTS AMPLE ROCK TYPE LOCATION UMBER AGE **FRESHNESS ALTERATION** MIN. Cu Pb MET. Zn KA 5 3/4 Check 2118 bk. py Ord sub surface mi. N of vanadium value shale drainage 44 12 201 430 oval shaped Cr. 94-L-1(h) producing py blebs large ochre vellow lim. Check vanadium KA value 6 59 32 860 2119 bk py 94-L-1(h) shale (highly fissile)

#### TEXAS GULF SULPHUR COMPANY

#### **EXPLORATION DIVISION**

29/7/76

				DESCR	IPTION			ANA	LYTICAL	RESULTS	:	
UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn		V	COMMENTS
KA3020	Siliceous mudstone pyritic	2 mi. N of Braid 11 mi E of Mt New			gossaned surface		63	14	530		530	94-L-1(h)
KA302	Black Fissile Shale	H			Slight weathered crust		21	17	140		510	94-L-1(h)
KA3022	Black Fissile Shale				Yellowis Oxide Powder Vanandium		32	10	63		390	High S.G. 94-L-1(h)
	Quartz Carbonate Vein, cpy Malachite	•	11			Qtz	1100	11	168	:	155	.94-L-1(h)
	1% Black Pyrite Shale Fissile		<b>"</b>		Gossane		55	10	81		435	94-L-1(h)
KA3025	Black, Pyritic shale Fissile				rusty weather crust	<b>≥d</b>	50	56	310		180	94-L-1(h)
	<b>6</b>											

EXPLORATION DISION

29/7/76

그게 하면 뭐요 그 있는데 뭐 지역에 가난 네트를 살아야 되어서 그렇게 보면 다니고 말아봅니다.	그는 아이들이 그리고 아이를 살아왔다면 하는 아이들이 아이들이 아이들이 살아왔다면 그 아이들이 모든 아이들이 되었다.			
PROJECTKechika	ADEA 94-I-1(h)	CANADIED	PH	and the state of t
· 1100E01	AREA94-L-1(h)	SAMPLER.		

				DESCR	IPTION			ANA	LYTICAL	RESULTS	1 1 1 1 1 1 1	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA5006	med. blue grey silsto interbeddeo massive & shaly	ne Braid 11 mi E	C. Orđ		buff weatheri	ng	10	28	184			94-L-1(h)
KA5007	black slat	e "			rusty we ing almo and powd yellow	st	12	16	54		•	94-L-1(h)
KA5008	non rusty weathering						4.	33	60			94-L-1(h)
KA5009	limonite breccia slate clasts	H.					74	126	1390			likely recen a surface formation no conformable 94-L-1(h)
									•			

29/7/76

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT Kechika AREA 94-L-1(i) SAMPLER PH

			<u> </u>	DESCR	IPTION			ANA	LYTICAL	RESULTS		<del></del>	
SAMPLE	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	u	V		COMMENTS
KA 2124	bk. carb shale	Bighorn M on ridge	Ord = =		•	Sulphide min with qtz Zn in- dicator turns blue	31	8	39		560		also ruby red oxide present suspect Vanadium 94-L-1(i)
KA 2125	bk chert concretion	N of Brai	d Cr.		azure blue Zn indicator reaction	suspect Cu	23	10	95		330		94-L-1(i)
KA 2126	bk chert sand/pebb sandstone	" le					17	360	360	2	145		fluores ear pale yellow and bright orange red
-	sandscone									<u> </u>			94-L-(i)
							•						
									•				
	0					Ó							

EXPLORATION DISION

29/7/76

#### GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

PROJECT...Kechika...Area.....94-L-1(j)...sampler.PH

	A trade			DESCR	IPTION			ANA	LYTICAL	RESULTS	4-,	
AMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn		v	COMMENTS
KA 3026	Dark grey fissile shale	.u	Ord		Slight weathered crust		49	14	280		290	94-L-1(j)
KA 3027	dark grey siltstone mudstone				greenish weathered staining	1	30	14	40		445	94-L-1(j)
KA 3028	phyllitic shale and Qtz veining				rusty stains and limonite Blebs		13	14	28		190	Minor Boxworks 94-L-1(j)

				DESCR	PTION			ANA	LYTICAL	RESULTS		
AMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	u.	V.	COMMENTS
KA 2132	bk carb shale with light yell pigment	10 mi. Ni of Bighor ow Mt. 5 1/2 mi.N Braid Cr	rn				29	16	152	1	700	run for V 94-L-1(k)
KA 2133	bk. cherty argillite		<b>11</b>	•		sulphides present Zn indicator reaction	21	6	93	1	1100	Suspect copper vanadium sulphides 94-L-1(k)
KA 2134	bk. cherty argillite	<b>"</b>				11	26	9	130		870	94-L-1(k)
KA 2135	bk. shale with yello oxide coating	W					8	12	22		380	94-L-1(k)
			+ 13/40X			O						

## CIEXAS GULF SULPHUR COMPANY

EXPLORATION DISION

30/7/76

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT...... Kechika AREA 94-L-1(1) SAMPLER BM

				DESCRI	PTION			ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v			COMMENTS
KA1472	black sla	te S. cir Driftpile Creek	que Ord										94-L-1(1)
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					47	200	720	100			
KA1473	Slate	• • • • • • • • • • • • • • • • • • •									·	•	94-L-1(1)
							32	128	600	205			
KA1474	siltstone						32	120	800	203			94-L-1(1)
KA1475	Breccia	11	M				3	180 83	630 330	52 60			94-L-1( ₁ )
AL4/J	Breccia												
KA1476	siltstone												94-L-1(1)
							25	94	365	88			
KA1477	Slate	N. cirque		<b>11</b>			44	66	215	150			94-L-1( ¹ )
KA1478	ss	11	1				20	23	148	325			94-L-1( ¹ )

#### **EXPLORATION DIVISION**

30/7/76

				DESCR	IPTION		14, 4	ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Си	Pb	Zn	v		COMMENTS
KA1479	ss						55	32	205	300		94-L-1(1)
			Ord									
KA1480	SS	11					20	32	295	600		94-L-1(1)
												Vis.
KA1481	S1ate	N Cirque						. :1				94-L-1(1)
							30	185	620	45		
KA1482	slate	ee .						48	100	43		94-L-1(1)
									•	i		
								10				Andrew Control of the
					4							

#### GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

9/8/76 PROJECT...Kechika..... AREA...94-L-1(頭).... SAMPLER.... BM

				DESCRI	PTION				ANA	LYTICAL	RESULTS		
SAMPLE SUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEII MET.	NING MIN.	Cu	Pb	Zn			COMMENTS
KA1560	slate	94-L-1(m) S of Roug Showing Traverse I	h <b>6</b> rd (?)					12	44	15			94-L-1 (m )
KA1561	limonițe mudstone	ii						26	2	87			94-L-1(m)
KA1562	slate							4	16	2			94-L-1(m)
KA1563	greywacke	n						10	8	2			94-L-1 ( m)
										• 5			
							•						

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

8/8/76

	and the control of the second			
PROJECT	Kechika	AREA 94-L-1(n)	 SAMPLERPH	

an et in	* F			DESCRI	PTION			ANA	LYTICAL	RESULTS	· · · · · · · · · · · · · · · · · · ·		
SAMPLE JUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
KA 2171	bk. arg siltstone slightly calc	Rough Showing	Ord			visible py	30	23	320				94-L-1(n)
KA 2172	•		Ord			visible py high SG	9	33	174				94-L-1(n)
KA 2173	•	II	Ord				28	31	138				94-L-1(n)
KA 2173a			Ord				14	48	153	Augen Lenti to J	cules	ed sample	94-L-1(n)

EXPLORATION DICTION 9/8/76

#### GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

AREA....94-L-1(o) SAMPLER BM PROJECT. Kechika DESCRIPTION ANALYTICAL RESULTS MPLE VEINING COMMENTS **ROCK TYPE** LOCATION MBER AGE FRESHNESS ALTERATION MET. Cu Pb Zn MIN. 94-L-1(0)KA Traverse 1564 94-L-1(o) LS 7 96 34 ΙI €amb KA 1565 slate Ord (?) 5 46 14 94-L-1(0)KA 105 176 94-L-1(o) 1566 11 LS €amb KA  $\texttt{Traverse}^{\texttt{Camb}}$ 94-L-1(o) 8 80 81 1567 LS #2 KA 94-L-1(o) 82 920 10 1568 LS KA 1569 black  $\theta$ rd slate 94-L-i(o) 46 43 (?)

PROJECT Kechika AREA 94-L-1-(p) SAMPLER BM							
PROJECT RECITIAN SAMPLER SAMPLER		Kochika		QA - I - 1 - (n)	0.1101.50	RM	tiga da water a garanta da araba da ar
	PROJECT	.veciiiva	 AREA		SAMPLER		 

AMPLE	ROCK TYPE	LOCATION	DESCRIPTION				ANALYTICAL RESULTS						
			AGE	FRESHNESS	,	VEINING MET. MIN.	Cu	РЬ	Zn				COMMENTS
KA 1549	LS	traverse #2 94-L-1(1	# <u>T</u>				36	81	48			3	94-L-1(p)
	·												
	Ó					0							



### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 24/7/76

PROJECT Kechika AREA 94-L-7(a) SAMPLER PH

										3.		
SAMPLE				DESCR	IPTION	VEINING		ANA	LYTICAL I	RESULTS	1	COMMENTS
NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION		Cu	Pb	Zn			COMMENTS
KA2075	bk. pyrit shale	2 1/2 mi.  c due wes of Split Top Mtn.	^t Ord			white qtz pseudo bedding pots & vein	16 s	24	16			94-L-7(a)
KA2076	silty bk shales						52	168	72			94-L-7(a)
KA2077	bk pyriti shale	<b>3</b>					14	28	41			94-L-7(a)
KA2078	bk phylli siltstone	te "					54	16	103			94-L-7(a)
KA2079	greyish black sandstone						6	75	9			weathers buff brown 94-L-7(a)
KA2080	) banded silty slates	n					9	16	77			94-L-7(a)

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 28/8/76

PROJECT. Kechika AREA 94-L-8(1) SAMPLER PB

#			T	DESCRI	PTION			ANA	LYTICAL F	ESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v		Comb	COMMENTS
KA256	Carbonaceo carbonate	l .	L Ord		Nil	_ I	5	85	270	140		Zn Pb	
KA257A		11	"	11	11	as below	4	46	450	140	<b>~</b>		Note close correlation between 2 sample of same material
KA257	Carbonac shale	eous "	•	·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sphalerite pyrite	8	51	375	130	12		
KA258			<b>11</b>	u Transition	11	sphalerite pyrite	75		>20,0 4.35%	110		4.469	
KA259	************************************	II .	<b>H</b> 1	•	# 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		88		20,00 6.55%	100		6.79	
Britania (Control of Control of C													
	0					0							

EXPLORATION SION

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT. Kechika AREA 94-L-8(1) SAMPLER. PH 78

				DESCRI	PTION			ANA	LYTICAL	RESULTS	X	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA2145	Pyritic Shale	Creek bed Showing Rough Property	Ord	Fe Stone Oxidized	N11	ZnFe	20	260	1280			5'sample 94-6-8(1)
KA2146	Massive LS 50% pyriti Shale	<b>2</b>	11 of the second	Fe Stai		Zn Fe	4	76	420			" 94-L-8(1)
KA2147		"		Fresh	# ************************************	Nil	4	94	228			" 94-L-8(1)
KA2148	11	#				<b>11</b>	3	68	131			" 94-L-8(1)
KA2149	<b>1</b>	# 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				11	3	65	112			" 94-L-8(1)
KA215	0 "	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		3	67	90			" 94-L-8(1)
KA215		•					3	62	122			" 94-L-8(1)

EXPLORATION DIVISION 5/8/76

#### GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

AREA....94-L-8 (1) PROJECT....Kechika ..... SAMPLER.....PH P DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE **FRESHNESS ALTERATION** MET. MIN. Cu Pb Zn 94-L-8(1)KA2152 73 258 5 Ck bed Ord Ni1 Ni1NilLS 5 sample Showing Rough Property 94-L-8(1)11 11 12 68 1300 KA215B " 94-L-8(1)65 ** 3 152 11 KA2154 11 94-L-8(1)390 61 11 4 KA2155 11 94-L-8(1)97 ** 11 4 64 KA21.56 11 94-L-8(1)11 4 62 96 KA2157 " . . . 94-L-8(1)52 4 64 " KA2158

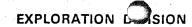
# TEXAS GULF SULPHUR COMPANY



### GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

Kechika

5/8/76 PHPB


94-L-8(1)

				DESCRI	PTION			ANA	LYTICAL	RESULTS		general control
SAMPLE :UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA2159	Pyritic shale lense	Ck bed	Ord	Oxidized partly		in Fe Zn		500 0.05%	<b>&gt;</b> 20,0			5 sample 94-L-8(1)
KA216C	Carbonat minor LS	<b>*</b>		Nil	Nil	Nil	5	75	1680			5' sample 94-L-8(1)
KA2161		<b>II</b>	<b>1</b>	•			4	66	114			5' sample
KA2162	Pyritic Slate	•		Oxidize	d Fe sta	in Fe Zn	40	1340	720,0 4.55%			15' sample 94-L-8( ¹ )
KA2163	carbonac pyritic sh	eous	<b>i</b>		"	Fe	4	182	920			10 sample 94-L-8(1)
KA2164	pyritic Sh	•			H.	Fe	30	410	6800 • <b>60</b> %			30 sample 94-L-8(1)
KA216	<b>,</b> , <b>,</b> ,	11	**************************************			Fe	11	36	720			10 'sample 94-L-8(1

5/8/76

# GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

PROJE	CTKechi	ka	• • • • • • • • •	AREA	94-L-	8(1)	• • • • • • •	••••	SAM	PLER	•••••	PH <b>P8</b>	•••••
				DESCR	IPTION		Τ	ANA	LYTICAL	RESULTS		•	T
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
KA2166	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1		<b>11</b>	•	Fe	13	36	720				10 sample 94-L-8(1)
												•	
								*					
									3.5				
										1		•	
					1					-			



# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 6/8/76

PROJECT... Kechika AREA 94-L-8(1) SAMPLER PB

	,		. 1					!	į		<u>. 44.</u>		
				DESCR	PTION	<u> </u>		ANA	LYTICAL	RESULTS	T	1	
SAMPLE	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	V	Fe%	Ti%	COMMENTS
		- 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (											Ag 5.8 ppm Mn 70 ppm
KA207	n	Fe Shale		H.	Nil		32	1540	1,240	45	25%	0.07%	Mn 70 ppm U 1 ppm Ba 903 ppm
				erika Perinangan Perinangan					8				
												•	
								7.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2				•	
					70 Hakkir <b>1</b>								

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJE	CTKe c.l	ııka				8.(1)				LER		.P.B	······
SAMPLE	ROCK TYPE	LOCATION	AGE	DESCR FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	V	Fe%	Ti%	COMMENTS
KA200	Rough Showing Area	Unit 5c/6b Shale	Canb	U	secondar	У	64	156	17000 13.30				smithsonite sample
KA201				"	Nil		27	122	3100				black slate red ck. 94-L-8(1)
KA202	"			## ***********************************	Ni1		28	88	1600				Carbonaceous shale red ck. 94-L-8(1)
KA203	· II.			**	Nil		56	88	3380				pyritic shale 94-L-8(1)
KA204	11				seconda	<b>y</b>	39	102	<b>&lt;</b> 20,0			,	Zn Zup reacti red ck. spring 94-L-8(1)
KA205	"			Fe sta:	n Nil		56 0.01%		20,00 4.55				PbZn Fe shale from Ck. KD205
KA206	" <b>C</b>	•			Nil		0.01%	1 005	8.40 <b>(</b> 20,00				•

Kechika



7/8/76

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

				DESCR	PTION			1	ΔΝΛ	YTICAL	RESULTS	<u> </u>	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	NING MIN.	Cu	Pb	Zn	NESOE13		COMMENTS
KA 1547		d N of Driftpile W of Gata S through Ck Traver				ZnS		147	900	20,00			94-L-8(1)
KA 1548	mineralize breccia	<b>a</b>						15	340	490			94-L-8(1)
KA 1548a	slate							10	220	169			94-L-8(1)

# GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

PROJE	CTKe	chika		AREA	A94-L-8.	(1.)	*****		SAM	PLER	• • • • • • •	ВМ	: •
				DESCR	RIPTION	······································		AN	ALYTICAL	RESULTS			
SAMPLE	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
KA154	) LS Unit 5c	N of Dri pile W C R,S of T Traverse #1	of Gata				9	86	450				04.7.0(1)
KA154	l dolomit LS	c "	***				9	26	75				94-L-8(1) 94-L-8(1)
KA1542	argillite		ti				18	46	275				94-L-8(1)
KA1543	argi. siltstone		· ·				34	230	135				94-L-8(1)
KA1544	LS	11					16	41	65				94-L-8(1)
KA1545	siltstone	<b>.</b>	'n				16	81	149				94-L-8(1)
KA1546	LS	**************************************				0	16	185	5000				Q

## EXAS GULF SULPHUR COMPANY

### EXPLORATION LASION

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJE	CTKech				94-L				·	PLER	••••	•••••••	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	DESCR FRESHNESS	<u> </u>	VEINING MET. MIN.	Cu	Pb	LYTICAL	RESULTS		<u> </u>	COMMENTS
KA2167	bk. carb shale yellow wit green oxid	Showing h ation	Ord				19	186	336				94-L-8(1)
KA2168	orange weathering shales		Ord				14	29	4100			•	strong seconda cleavage norma to bedding 94-L-8(1)
KA2169 and	contorted arg chert loca calc shal		Ord		heavy gossan	Zn traces	26	24	12,50 1.15%	0			94-L-8(1)
KA2170	micritic limestone	• • • • • • • • • • • • • • • • • • •	Eamb			Zn trace no visible sph		60	690				sampled 10 / above shale contact 94-L-8(1)
										ř			

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 9/8/76

			T	DESCR	IPTION		T	ANA	LYTICAL	RESULTS	······		
SAMPLE SUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
KA2174	bk chert	Rough Claims 94-L-8(1)	Ord				14	155	48				94-L-8(1)
KA2175	orange weatherin shales	Rough g Claims 94-L-8(1)	Ord				11	44	60			: crysta	high SG perhap bedded micro lline black barite present 94-L-8(1)
	3												
-						2 / 1 / 2 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /							

EXPLORATION DESIGN

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

28/7/76

PROJECT Kechika AREA 94-L-8(1)

SAMPLER....PB

				DESCRI	PTION			ANA	LYTICAL	RESULTS		# 1	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	V	V205		COMMENTS
KA250	carbonaceo	us Rough											
	the state of the s	Showing					30	184	152	570			
KA251							10	143	28	40			
KA252							39	112 >	20,00	0 80			
												7	
KA253							31	280	2700	56			
W7 OF 4							10	105	2050	28			
KA254							18	105	2030	20			
KA255							176	179	9200	1,30	⁾ 2321		
												2	
Land Company of the Company					<u></u>		1		1				

				DESCR	IPTION			ANA	LYTICAL I	RESULTS	:	
SAMPLE SUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	-	v ·	COMMENTS
KA 2136	Ls. float						14	340	20,000 2.75%		38	scree float near Sc/6B contact at EL 6900 Estimated grade 94-L-8(a)
KA 2137	arg cherty shale				strong rusty gossan		1060 0.10%	680 0.08	12000		45	Trace Zn minera ization sampled from contact zone between 5c 6B 94-1-8(a)
A 1 1 1 1 1 1 1 1												

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

31/7/76

PROJECT...Kechika......AREA...94-L-8(a) SAMPLER...PH

			<del>                                     </del>	DESCR	IPTION		;	ANA	LYTICAL	RESULTS		·	
AMPLE	ROCK TYPE	LOCATION	AGE	FRESHNESS		VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS
KA 2136	light gre coarse crystal LS with stron Zn min.	6462ON	"				14	340	20000 2.75%		38		scree float near Sc/6B contact at El 6300 Estimated grade 94-L-8(a)
KA 2137	arg chert shale	<b>V</b>			strong rusty gossan		1060	A 3 1 1 1	12000	}	45		Trace Zn mineralization sampled from contact zone between 5c/6B
						Jeck	1						94-1-8(a)

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 31/7/76

AREA...94-L-8(c) PROJECT....Kechika SAMPLER....BM DESCRIPTION ANALYTICAL RESULTS AMPLE ROCK TYPE VEINING LOCATION COMMENTS **IUMBER** AGE FRESHNESS ALTERATION MET. MIN. Cu Pb Zn KA 1495 LS traverse ΙI Ord 7 62 60 22 94-L-8(c)KA 1496 phyllite 35 16 295 360 94-L-8(c) KA 1497 slate 23 23 111 380 94-L-8(c)

# CTEXAS GULF SULPHUR COMPANY

EXPLORATION DIVISION 31/7/76

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT	Kechika		AREA94-L-8(b)	. 1 <del>6</del>	SAMPLER	ВМ	
			A116A111111111111111111111111111111111	 •••••	SAMPLEN	* * * * * * * * * * * * * * * * * * * *	••••••

1.				DESCRI	IPTION			ANA	LYTICAL	RESULTS	•		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	v			COMMENTS
KA1490	Slate	traverse ridge W o	f Eamb				24	38	137	72			94-L-8(b)
		ataga R. ni S <b>T</b> hrou	gh Cr.										
KA1491	SS		**************************************				4	56	168	20		•	94-L-8(b)
												•	
KA1492	Slate	.11					6	73	169	33			94-L-8(b)
KA1493	LS	# (1)	<b>H</b>				6	52	195	46			94-L-8(b)
													e Angele

#### GEOCHEMICAL DATA SHEET — SOIL SAMPLING

5/8/76

PROJECT..... Kechika..... AREA...94-L-8(1).....

SAMPLER..

	T		DE	SCRIPTIC	)N	<del></del>				ANAI	YTICAL	RESULTS	3	
SAMPLE NUMBER	LOCATION	DEPTH & HORIZON	Colour	Part. Size	% Org.	рН	SLOPE	VEG	Cu	Pb	Zn			COMMENTS
KB22	along ridgeline @gz 265 E to W @ el 6000'	B-3 or C-1	black soil over slate	55%				ge- Alpin gr <b>a</b> ss slate felsen	62	56 70 48	142 72 220			94-L-8(1)
KB24	Showing @250 intervals	"		20 25 20				<b>,</b>	64 104 69	51 84 66	2500 1750 183		3	10% qtz frag 15% qtz frag 94-L-8(1)
KB26 KB27 KB28	50' inter	" vals	W 1	20 50 50%		ı			72 52 79	120 178 310				Zn float in frost- heave 94-L-8(1)
KB29 KB30 KB31		# 1	# 1	60 55 55%	5% 5%			turf	5 74 65	28 260 117				94-L-8(1)
KB32 KB33 KB34	11	1		55 55 55%	5 5 5%			11	91 40 19	260 48 26	1400 460 54			94-L-8(1)
KB35 KB36 KB37	fault contact Unit 5c/6	u b	<b>"</b>	80 80 10%		el 58	75		21 14 20	390 163 42	129 35 28	1		94-L-8(1)
	C													

5/8/76

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

				DESCRI	PTION			ANA	LYTICAL	RESULTS		
AMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
A1530	Arg LS	W. of Gataga R. N of Drif pile C. Traverse					10	104	1200			94-L-8(d)
A1531	Black Slate						21	62	1200	g park to the second of the se		-94-L-8( <b>d</b> )
A1532	S1ty Slate	**************************************					10	72	360			94-L-8(d)
(A1533	quartzit	e "					74	72	390			94-L-8(d)

#### GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

5/8/76

				DESCR	IPTION		T	ANA	LYTICAL	RESULTS	 	
SAMPLE 	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn .			COMMENTS
KA2138	Massive LS	Showing Rough	Ord?	1		Nil	4	58	54			5'sample.top of section 94-L-8(1)
KA2139	Pyritic .		Ord	? Fe stain		FeS ZnS Hydro zincite	1	470 0.05%	≯20,0 お3スプ	1		5' sample. The Gssay of the following samp les may not be significant
KA2140		<b>!</b>				•	26	110	870			as gossan material was included 94-L-8(1)
KA2141		11				11		1260	<b>≯</b> 20,0			94-L-8(1)
KA2142							28	610	<b>≯</b> 20,0	00		94-L-8(1)
KA2143				H. A. San			29	720	1080			94-L-8(1)
KA2144	Ö	# ************************************	<b>11</b>			Ö	50	300	<b>)</b> 20,0	- K		94-L-8(1)

5/8/76

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJE	ст	echika	a. • • • • • • • • • • • • • • • • • • •	AREA	94-L-8	(e)	•••••		SAMI	PLER.,	BM	 ••••
			I	DESCR	PTION			ANA	LYTICAL	RESULTS		1
EAMPLE -UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 1535	Slate	travers	e Ord				20	73	400			94-L-8(e)
KA 1536	dolomitic breccia						8	74	154			94-L-8(e)

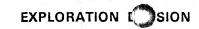
#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 24/7/76

				DESCR	PTION	. 3		ANA	LYTICAL	RESULTS		
AMPLE JMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 1414	Slate	5 mi. E of Split Top Mtn.	€amb	n.	II		35	6	11			94-L-8(f)
						•						
							9		-3			
			• 1									

EXPLORATION DIVISION 8/9/76

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT. Kechika AREA. 94-L-8(h) SAMPLER. BM


				DESCR	IPTION			ANA	LYTICAL	RESULTS		E La Company
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 3550	LS Black LS	of Rough Showing	Eamb	0k	minor			91	34			94-L-8(h)
(A1551	black shale		0rd (?)				98	44	242			94-L-8(h)
(A1552	argillite	11					17	25	124			94-L-8(h)
CA1553	slate	***					18	22	70			94-L-8(h)
ζA1554	shale breccia					sparry	14	17	18			94-L-8(h)
CA1555	argillite		11				22	19	73			94-L-8(h)
KA1556	black slate	• • • • • • • • • • • • • • • • • • •	# ************************************				36	23	142			94-L-8(h)

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

11/6/76

SAMPLER....PB PROJECT. Kechika AREA 94-L-10 (1) DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS **ROCK TYPE** LOCATION NUMBER ALTERATION AGE FRESHNESS MIN. MET. Cu Pb Zn by small lake ppm ppm ppm E. side Was unable KA-2 Unit 4a LS to locate Netson Lake 1 4 7 Netson Lake 94-L-10 e-Ord Fresh N₁1 showing 94-L-10 (1) Nil 1 46 KA-3 Ni1 94-L-10 (1) 1 38 calcite vug corse colcite Nil KA-4 material

#### EXAS GULF SULPHUR COMPANY



#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 23/7/76

PROJECT Kechika AREA 94-L-10(a) SAMPLER PH

				DESCR	PTION				ANAL	YTICAL I	RESULTS	<u> </u>		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. M		Cu	Pb	Zn				COMMENTS
KA2063	br. mud- stone wit shaly wisps Unit 6b	North slo of ridge h E. side of Netson Lake.	On					30	15	76				contains pyrite blebs 94-L-10(a)
KA2064		<b>n</b>					# A	38	14	28				94-L-10(a)
KA2065	bk. sand- stone gra to grey- wacke	ding						6	37	49			Š	contains sand shaly frags and fossil frags 94-L-10(a)
KA2066	dk. grey ortho- -quartzite	H			weather rusty brown	s		18	8	53				94-L-10(a)
КА2067			• • • • • • • • • • • • • • • • • • •		strong rusty gossan rainbow colors			24	6	123				94-L-10(a)
KA2068	H C C C C C C C C C C C C C C C C C C C	•						11	5	68				94-L-10(a)
EA2069	black shale				yellow brown oxidatio		***	32	16	87				moderately fissile 94-L-10(a)

#### GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

23/7/76

PROJECT Kechika AREA 94-L-10(a) SAMPLER PH

				DESCRI	PTION			ANA	LYTICAL F	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn		·	COMMENTS
KA2070	(strongly	North slo le of rid on east s of Netson Lake	geUppe ide	r			41	12	108			·94-L-10(a)
KA2071	•		11				68	31	113			94-L-10(a)
KA2072	cale silt- stone into bedded with bk. Lam sl	er- th					44	30	127			94-L-10(a)
KA2073	platy mic	ritic "	11				7	54	15			94-L-10(a)
KA2074	grey black	<b>!!</b>	W.				55	22	106			94-L-10(a)
					(1) (1) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4							

23/7/76

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT... Kechika AREA 94-L-10(b) SAMPLER BM

DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING **COMMENTS** ROCK TYPE LOCATION NUMBER AGE FRESHNESS **ALTERATION** MET. MIN. Cu Zn Pb 94-L-10(b) 20 KA1400 mudstone Ridge top Ord 49 27 94-L-10(b) 36 18 KA1401 LS 3 94-L-10(b) 99 24 18 KA1402 shale slope 94-L-10(b) 12 50 18 KA1403 Shale 94-L-10(b) 63 130 6 KA1404 94-L-10 (b) 43 28 110 KA1405

23/7/76

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJE	CTKechi				*-	. \ 7./						
SAMPLE				DESCR	IPTION	VEINING		ANAI	COMMENTS			
NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION		Cu	Pb	Zn			COMMENTO
KA90	carbonace	canyon ous	Ord	Weather	ed		_	10				04.7.10(-)
	slate			ос	Nil	some qtz	5	12	28			94-L-10(c)
KA91	"	В	u	W	11	<b>u</b>	142	72	122			94-L-10(c)
			: J									
KA92		<b>"</b>	"		"	<b>"</b>	48	18	43			94-L-10(c)
							. :					
	h g											
												• 1.8.2.1
										2.		

EXPLORATION DOION

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

23/7/76

PROJECT.....Kechika AREA 94-L-10(f) SAMPLER PB

- <del>(</del>	DESCRIPTION ANALYTICAL RESULTS												
SAMPLE	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEII MET.	NING MIN.	Cu	Pb	Zn			COMMENTS
KA 93	Slates	Canyon	Ord	Weathered OC	Nil	Some	Quart	z 37	22	35.	<u>.</u>		94-L-10(f)
Andrew Comments								2	•				

# GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

24/7/76

PROJECT...Kechika AREA. 94-L-10(g) SAMPLER BM DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING ROCK TYPE LOCATION UMBER **COMMENTS** AGE FRESHNESS **ALTERATION** MET. MIN. Cu РЬ Zn 1 mi. E. KA of Split 1411 Slate Top Mtn. Ord 18 14 44 94-L-10(g)

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 24/7/76

						1.0	
The state of the s						31 Table 1 St. 1	
* · · · · · · · · · · · · · · · · · · ·	Kechika		AREA 94-L-10(h	1	OALADIED PH		
DDO IECT	receit Trea		AREA	/	SAMPLER . P. P		
FROJECT			——————————————————————————————————————			1 1 2	
A .		<b>  第</b> 2分 - 第二次				The state of the s	

•			DESCRIPTION					ANA				
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN	Cu	Pb	Zn			COMMENTS
KA2081	Graptoliti Unit 6b)	**** <i>(</i> ********************************					44	14	13			94-L-10(h)
KA2082	greyish black sandstone						18	6	75			94-L-10(h)
KA2083	black pyritic shales						54	24	127			94-L-10(h)
KA2084	black carb shales						19	36	58			94-L-10(h)
::A2085	black carb shales						20	28	95			94-L-10(h)
KA2086	black carb shales						19	29	88			94-L-10(h)
KA2087	black carb shales						46	22	55			94-L-10(h)

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 24/7/76

PROJECT....Kechika 94-L-10(h) PH SAMPLER...

		T .		DESCRI		ANA					
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn		COMMENTS
KA2088	carb shales	6 mi. SE of Netson Lake on Ridge NW of Bluff					20	29	82		94-L-10(h)
KA2089							30	26	73	33.43°	94-L-10(h)
								,		7	
KA2090	<b>11</b>	III					21	32	71		94-L-10(h)
KA2091	11	IT	<b>*I</b>				14	32	39		94-L-10(h)
KA2092			11				17	33	59		94-L-10(h)
KA2093		•	11				16	28	48	·	94-L-10(h)
					34 m						
						0					

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

21/6/76

PROJECT Ketchika AREA 94-L-13 (b) SAMPLER PH

			DESCRIPTION					ANA				
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
	plack dol micrite	beginning o traverse une 21	f	G			4	8	14			94-L-13 (b)
KA 8002	med. grey domite grainstone			G			4	8	13			94-L-13 (b)
KA 8003	dolomite grainstone	from weather calcite vein		F			4	8	42			94-L-13 (b)
KA 8004	crinoid bed light grey grainstone			G			4	4	15		ere ere	94-L-13 (b)
KA 8005	quartz bando grainstone ridge forming	top of Mtn. from drop off		G			5	8	13			94-L-13 (b)
KA 8006	Black dol micrite	top of ridge going west.		G			7	9	47			94-L-13 (b)
KA 8007	Black dol micrite slate cleaverage			G			6	<b>11</b>	31			94-L-13 (b)

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

21/6/76

PROJECT....Ketchika...... AREA.....94-L-13.(b)...... SAMPLER......GS...... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE **FRESHNESS ALTERATION** MET. MIN. Cu Pb Zn KA 8008 light grey dolomite 28 94-L-13 (b) 10 float grainstone 2 weathered surfaces leached heavily KA 8009 float 2 weathered brecciated surfaces 94-L-13 (b) 155 6 17 calcite veihing corals weathered dark gray KA 8010 94-L-13 (b) surfaces calcite 10 37 mudstone steepgully near drop off

EXPLORATION DON

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 22/6/76

AREA.....94-L-13(c) SAMPLER...PB.... Ketchika PROJECT...

<del></del>			DESCRIPTION				ANALYTICAL RESULTS							
SAMPLE JUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	NING MIN.	Cu	Pb	Zn				COMMENTS
KA 59	Lower Sandpile? fault contact with shales to	W of T <b>ø</b> rnagain _W Cabin	Sil? Dev					6	2	12				94-L-13(c)
KA 60								43	9.	58				94-L-13(c)
KA 61								114	8	27				94-L-13(c)
KA 62								81	8	20				94-L-13(c)

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

5/7/76

PROJECTKechika	•••••	AREA. 94-L-13(f)	SAMPLERPB
			OAM LEM

			:	DESCR	PTION		ANALYTICAL RESULTS						I	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn				COMMENTS	
KA66	- LOPODEO	- S side Major Har River 1 m upstream from mout		Very			100	51	200				Recent Spring deposit on river edge 94-L-13(f)	
												•		
-					•									
					3				3					
						0								

2/7/76

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT... Ketchika q AREA 94-L-14(c) SAMPLER PH

			-	DESCR	PTION		<del>1</del>	ANA	LYTICAL	DECLUTO		
SAMPLE !UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	NESULIS		COMMENTS
KA 2032	Horneline Creek Fe rich shale	Horneline Creek					62	26	184			94-L-14(c)
KA 2033	Chert interbedde	d "					57	18	280			94-L-14(c)
KA 2034	Fe rich shale	11					50	80	170			94-L-14(c)
										5		

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 20/7/76

				DESCR	IPTION			ANA	LYTICAL	RESULTS	 	T
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn		1	COMMENTS
KA87	Slate Unit 2a	8 mi. S of Campbells Peak Unit 3a	Camb	<b>,</b>			27	22	5			94-M-1(b)
KA88	Basal Cgl Unit 2a		# 1		18	n	6	7	2	. 12		94-M-1(b)
KA86	Slate a Unit 3a under 3b	rg	<b>11</b>			<b>"</b>	47	10	17			94-M-1(a)
			,									
								-				
						0						

Kechika

PROJECT..

21/7/76

# GEOCHEMICAL DATA SHEET ROCK CHIP SAMPLING

					11 March 14	4tu-m(6)			0, 1111			••••	••••••
				DESCR	PTION			ANA	LYTICAL	RESULTS	3111		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	)			COMMENTS
KA6030	Slate	traverse 3 mi. N o headwater Gundahoo	f eamb				8	38	15				94-M-1(c)
KA6031	Slate	n .	# 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				49	3	10				94-M-1(c)
KA6032	Slate	travers	e #2			11	19	26	3	NG.			94-M-1(d)
KA6033	Slate	trave #3	rse "				40	12	11				94-M-l(e)
									A 1				

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 94-M-1(f)

PROJECT....Kechika

94-M-1(g)

20/7/76

DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING **ROCK TYPE** COMMENTS LOCATION NUMBER AGE **FRESHNESS ALTERATION** MET. MIN. Cu Pb Zn 5 1/2 mi KA 2058 banded SE of Campbell Cambrian 22 33 14 94-M-1(f)siltstone Peak KA 2059 banded argillite cleavage and siltstones 11 17 94-M-1(q)24 14 strong penetrat ion. KA 2060 18 7 94-M-1(g)KA 2061 94-M-1(q)19 9 limonite KA 2062 bk. oxidation 11 staining 19 17 133 94-M-1(h)argillite



SAMPLER....RJM with G.S. PROJECT....Ketchika AREA. 94-M-2 (a) DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER FRESHNESS ALTERATION AGE MET. MIN. Cu Pb Zn K-A cg1 massive ppm ppm ppm Ord? lichen ridge w. 94-M-2 (a) 16 9 of Rabbit R covered 1031 silstone 11 ** slightly shale K-A 176 30 12 weathered 1033

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

15/6/76

AREA....94-M-2 (b) BM PROJECT. Kechika SAMPLER..... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE FRESHNESS | ALTERATION Zn MET. MIN. Cu Pb ppm ppm ppm slate Ridge of K-A 11 Ord?) 29 14 97 94-M-2 (b) Rabbit R. 1060 ridge 2 94-M-2 (b) H.: 2 11 18 6 118 Ord (1) ridge 3 K-A 1062



PROJECT Kechika	AREA 96-M-3 (1)	SAMPLERBM	
LUODÈCI Machini de la	 - ADEAGO A COLOR C	Order Luiter	

				DESCRI	PTION				ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	ING MIN.	Cu	Pb	Zn			COMMENTS
K-A 1010	SS	hill north of chee Mt	n. Ord?	weathere	d			ppm 600	ppm 16	ppm 157			94-M-3 (1)
K-A 1014	gneen skann		***************************************					1880	14	123			Ag 2.4 ppm Au 20 ppb Cd 1.0 ppm Sn 6 ppm 94-M-3(1)
K-A 1013	goeglan	•						273	12	59			94-M-3 (1)
. L.													

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 12/6/76

				DESCR	IPTION			ANA	LYTICAL	RESULTS	·		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			T	COMMENTS
KA-2999	Unit 4 C	Hill North of Chee Mtn. Centr traverse	Ord?	Fresh	N±L	Nil	ppm 37	ppm 9	ppm 53				Along strike from showing 2000 south, up section, dissem py
		Boya Show:	ng										94-M-3 (1)
		*			<b>1</b>								
						0			a . Wa				

EXPLORATION COSION

21/6/76

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJE	CTKetcl	nika	• • • • • • • •	AREA	94-M-3 (‡)	)		••••	SAME	LER	 <b>P</b> ]	3
				DESCRI	PTION			ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 46	siliceous cherty horizen At showing	Boya Showing Hill north of Chee Mtr		oxidize ?) surfac		occasional normal qtz veins generally unmineraliz	640 ed	18	22,000			breast samples see notes 94-M-3 (1)
KA 47	*						99	7	700			for spacing approx 50' 94-M-3 (1)
KA 48							104	8	270			94-M-3 ( ¹ )
KA 49					**		192	4	76			94-M-3 ( ¹ )
KA 53				<b>11</b>			1020	23	290			Vertical sample top to bottom 94-M-3 ( ¹ )
KA 54					<b>1</b>		110	6	580			approx. 2'spacing See notes 94-M-3 (1)
KA 55			** A: 6. 20				320	3	255			Massive Mineral- ization Py Pyrrhotite 94-M-3 ( ¹ )

21/6/76

PROJECT.....Kechika AREA.....94-M-3(1) SAMPLER...PB DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER FRESHNESS ALTERATION AGE MET. MIN. Cu Ph Zn siliceous Hill North variable occasionally of Chee some oxidacherty barren Mtn. tion on Ord KA56 horizon 225 Boya Show-(?) atz 275 94-M-3(1)outside veins of frags ing **KA57** 47 2 220 94-M-3(1)py, pyrrhotite Ag 2.1 ppm scheelite Cd 1.6 ppm Same samples as KA55c Massive chalcopyrite Au 5 ppb KA55 Zn oxide Sn Mineralization Massive sul-1360 W 850 ppm 136 phide lense 94-M-3(1) 167 700 **KA58** 

EXPLORATION DISION 21/6/76

GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJE	CTKechik	a		AREA		,4-M-3	(1)	• • • • • • • • •		SAME	LER	Dri	••••••	
			1 × A*	DESCR	PTION	···	***	T T	ANA	LYTICAL	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	IING MIN.	Cu	Pb	Zn				COMMENTS
KA 1145	gn chert	Hill of che Mtn. 3 below mineralizat Boya Show	? ion	u u		Ni1		10	2	215				94-M-3 (1)
KA 1140	chert	3' above mineral Boya Showi	?	•		N11		118	7.	1900		1,40		94-M-3 (1)

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 29/6/76

PROJECT. Kechika AREA. 94-M-3 (1) SAMPLER. PB

				DESCR	PTION			ANA	LYTICAL F	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 59 KA59	LS	Boya Showin	g <b>O</b> rd?	Fresh OC	Nil	N11	6 92	2 7	12 ×	Not	e Sam	See sample KD 94-M-3 ( <b>‡</b> )
KA 60 KA60	Slate	<b>1</b>	<b>!</b>			"	43 20	9	58 23		<b>"</b>	KD-60 94-M-3 (1)
KA 61	Ortho Qtz		11 · · · · · · · · · · · · · · · · · ·	•		11	114 28	8	27 75		11	KD-61 94-M-3 ( <b>↓</b> )
KA 62	intercalate slate lense		<b>11</b>	<b>11</b>	<b>11</b>		81 6	8 7	20 13		II	94-M-3 ( <b>1</b> )
KA 63				<b>1</b>			152	34	1100			94-M-3 (i)
KA 64	intercalate qtz volc?	<b>d</b>		. <b>11</b>	•	<b>11</b>	18	6	56			94-M-3 (1)

EXPLORATION DOSION

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

10/6/76

				DESCRI	PTION			ANA	LYTICAL	RESULTS		35-4
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA-100	5 Unit 4B C <b>q</b> lcite Veined LS	Chee Mtn. west slope Unit 4B	€- <b>0</b> rd	Fresh	N11	Calcite Veined	ppm 8	ppm 3	ppm 4			No visible sulphides 94-M-3 (a)
KA-100		11			11	# 1	7	1	2			94-M-3 (a)

# EXPLORATION DIVISION 22/6/76

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

AREA.... 94-M-3 (b) PROJECT...Ketchika SAMPLER..... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION **NUMBER** FRESHNESS AGE **ALTERATION** MET. MIN. Cu Pb Zn SLTS KA shale E. Slope N11 94-M-3 (b) 1150 Chee Mtn. Ord (1) N11 80 33 640 OK KA 11 94-M-3 (b) 166 10 350 carb. shale 1151 phyllite W. slope Chee Mtn. chlorite 15 7 69 KA talc 94-M-3(b)1152 KA 32 96 8 Nil 1153 W. slope SS 94-M-3(b)Chee Mtn.

EXPLORATION COSION

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

7/7/76

PROJECT. Ketchika AREA 94-M-3 (e) SAMPLER. BM

				DESCRI	PTION		1	ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS		VEINING MET. MIN.	Cu	Pb	Zn	<del> </del>		COMMENTS
KA												
1290	LS	Chee Mtn	?		11	Nil	9	50	9	la de la companya de		94-M-3 (e)
KA												
1295	LS		. <b>11</b>			<b>H</b> .,	8	49	7			94-M-3 (e)
KA									*			
1296	LS				11	- 100 M	11	13	81			94-M-3 (e)
KA												
1299	LS				11	•	9	36	27	17		94-M-3 (e)
										+ 4x		
							334					
						erope <u>na Para</u>	\$					

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

13/6/76

DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING **COMMENTS** ROCK TYPE LOCATION NUMBER AGE FRESHNESS | ALTERATION MET. MIN. Cu Pb Zn ppm Turnag**a**in Unit Dirty ppm ppm Weathered metamorphosed KA-21 micaceous River 10A Thisisthe cliff. 34 11 167 some slate Canyon U. Dev. only oc. of exposure greenshist qtz` trpy Devonian in 94-M-4(a) Rabbit River W 2 3 85 'n 11 28 KA-22 94-M-4 (a) 11 31 22 11 KA-23 94-M-4(a)140 12 7 ** KA-24 94-M-4(a)363 11 Ħ 10 36 11 KA-25

#### XAS GULF SULPHUR COMPANY

EXPLORATION DOSION

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

14/6/76

BM PROJECT...Ketchika AREA....94-M-4 (b) SAMPLER..... ANALYTICAL RESULTS DESCRIPTION COMMENTS VEINING SAMPLE ROCK TYPE LOCATION ALTERATION Cu Pb Zn FRESHNESS MET. MIN. NUMBER AGE Ord R-A minor (?) 3 mi. SW some LS 94-M-4(b)1040 2 calcite 7 of Birches algae lake Camp K-A 94-M-4 (b) atz vein 1041 inalachite 2500 75 (?) float K-A 46 3 2 94-M-4 (b) calcite + 1043 11 some dol vein weathered material surface minor 94-M-4 (b) K-A 32 calcite some bn LS 1044 weathered surface 94-M-4 (b) K-A 73 23 shale 1045 94-M-4 (b) 154 K-A 21 carb. shale " 1046 94-M-4 (b) K-A 2 11 LS 10447

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

14/6/76

PROJECT Ketchika AREA 94-K-4(b) SAMPLER.

: : 7.				DESCRI	PTION			ANA	LYTICAL I	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
K-A 1048	LS	<b>11</b>	<b>"</b>	H.		calcite	8	3	2			94-K-4(b)
K-A 1050	LS		<b>"</b>				7	2	2			94-K-4(b)
			· ***									
						•						



16/6/76

PROJE	:ст	.Ketchika		AREA		94-M-4.(c).			SAMP	LER		PB
				DESCR	IPTION		Γ—	ANA	LYTICAL I	RESULTS		1
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 26		E. bank Kechika R. at mouth Turnagain R	Unit 4	Weathered b	micaceous on cleavage	qtz in bedding 1/8 to 1/4 occassional qtz vein	10	6	29		Bar .	All samples test approx same horizon 94-M-4 (c)
KA 27				Fresh			31	7	55		. de	94-M-4 (c)
KA 28	n	11				11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	5	<b>13</b>			94-M-4 (c)
KA 29		heading downstream	•	# 1		<b>"</b>	13	10	41	e And		94-M-4 (c)
KA 30				Weathered			10	4	3		44 <u>1</u>	94-M-4 (c)
KA 31		1000 east of OC				u	28	6	56			94-M-4 (c)
KA 32	11	1000 east of OC		<b>"</b>	<b>,</b>	11	26	3	101			94-M-4 (c)

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

16/6/76

PROJE	СТ	.Ketchika		AREA	.94-M-4.(c)	)			SAME	PLER	•••••	 . P.B
				DESCRI	PTION		Γ	ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 33	slate inter- bedded W. recessive b. mud.	Ketchika	€- <b>0</b> rd Unit 4	b Weathe			44	9	123			94-M-4 (c)
KA 34	11	<b>11</b>	11	H.		***	30	19	121			94-M-4 (c)
<b>KA35</b>			• • • • • • • • • • • • • • • • • • •	III	11	н	7	16	44			94-M-4(c)
ка 36			11			<b>1</b>	16	34	26			94-M-4(c)
								- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				

16/6/76

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

				DESCR	PTION				ANA	LYTICAL	RESULTS		:	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEI MET.	NING MIN.	Cu	Pb	Zn				COMMENTS
KA 1071	Aphanitic LS	Ridge W. of Birches Lake	4 <b>a</b>	Fresh	Pronounece cleavage developed superimpos			38	13	24				94-M-4 (d)
A 072		11		Weathered	18. 11	**		24	9	9				94-M-4 (d)
A 073	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Ridge W. of Twin Isl Lake	II	Fresh	11	11		26	8	14				94-M-4 (d)
A 074	Phyllite	"			None	py n	o vein	195 s	8	45	sample mixed	s		94-M-4 (d)
A 081					<b>11</b>	•		193	8	45				94-M-4 (d)
					- 15		4							

Brown of the grade grade and server

EXPLORATION DI ON

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

17/6/76

PROJECT. Ketchika AREA 94-M-4(f) SAMPLER BM

·		1		DESCRIPTION				ΔΝΔ	LYTICAL	RESULTS	: :	
SAMPLE	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	LEGGETG		 COMMENTS
KA 1091	LST	S face o ridge 4 m W of Twin Ls. Lake	i.	•			6	11	18			94-M-4(f)
KA 1092	Particular of the control of the con	П	# # # # # * * * * * * * * * * * * * * *				6	8	13			94-M-4(f)
KA 1093							13	10	43			94-M-4(f)

Ketchika

AREA.....94-M-4(f)

SAMPLER...BM

				DESCRI	PTION			ANA	LYTICAL I	RESULTS		
SAMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 3001	Aphantic Limestone slightly argillaceo	N face of ridge 4	(?)	slightly oxidized crust weathere surface	u		6	9	15	• :		94-M-4(f)
KA 3002	Calcite vein breccia o aphanitic Limestone		u	Fc Oxid on well weathere surface	n.	cpy Breccia Calcite Matrix	4	6	9			94-M-4(f)
KA 3003			U	Slight weathere crust	đ "		8	10	26			94-M-4(f)
	Limestone			CIUSC			J	10	20		1 1 1 1 1	)
										- 12 - 12 - 1		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
											·.	
**************************************					•							
										hong.		

EXPLORATION D SION

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

	4			DESCRI	PTION			ANA	LYTICAL I	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 3006	Siliceous material nodular Limestone	S. facing slope 1 mi SW of Twin Island Lake		slight weathered crust	•		2	4	18		and the second s	94-M-4 (g)
ка 3007	Micritic Limestone	<b>=</b>		•	II.		4	5	36			94-M-4 (g)
ка 3008				<b>II</b>	11 888		4	4	29			94-M-4 (g)
KA 3009	11	"			"		5	5	36			94-M-4 (g)
KA 3010				minor weathered crust			2	6	22			94-M-4 (g)
KA 3011	Siliceous material nodular Limestone	**************************************		slight weathered crust	"		3	3	21			94-M-4 (g)
KA 3012	Micritic Limestone						4	5	28			94-M-4 (g)

17/6/76 PROJECT. Ketchika AREA. 94-M-4(g) SAMPLER BM DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING ROCK TYPE LOCATION NUMBER COMMENTS FRESHNESS | ALTERATION AGE MET. MIN. Cu Pb Zn face of KA ridge 2 mi 94-M-4(g)3004 AphaniticW of Twin LimestoneIslands Lake 7 10 16 heavily KA weathered 3005 slightly surface calcareous fissile shale 9 16 5 94-M-4(q)

17/6/76

SAMPLER....BM PROJECT. Ketchika AREA 94-M-4(g) DESCRIPTION ANALYTICAL RESULTS COMMENTS SAMPLE VEINING **ROCK TYPE** LOCATION UMBER **ALTERATION** AGE FRESHNESS MET. Рb MIN. Cu Zn N face of 94-M-4(q)ridge 2 mi kA (?) 1094 W of twin LST Is. Lake 10 9 23 KA 94-M-4(g)13 10 124 1095 KA 94-M-4(q)1096 8 10 28 KA 94-M-4(q)32 1097 8 8

18/6/76

PROJECT Ketchika AREA 94-M-4(h) SAMPLER PH

		DESCRIPTION							ANA	LYTICAL	RESULTS	 <del> </del>	
SAMPLE HUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	ING MIN.	Cu	Pb	Zn			COMMENTS
KA	LS Fn grained homog mudstone			black cliff face active mass was	stage			3	12	31			94-M-4(h)
KA 2021	11			"				5	10	26			94-M-4(h)
KA 2022	<b>H</b>						-	4	7	32			94-M-4(h)
KA 2023	11			п				5	6	41			94-M-4(h)
KA 2024	cherty boulders shaly dolomite matrix			rubbly	vestrong Limeston staining	8		11	66	33		1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	94-M-4(h)
KA 2025	Argillaced shales	us		highly fissile				18	10	180			94-M-4(h)
					•		•						



June 16/76

94-M-5 (b) PROJECT.....Kechika.... AREA. SAMPLER..... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION **NUMBER** AGE **FRESHNESS** MIN. **ALTERATION** MET. Cu Pb Zn local calcite ppm ppm weathered Kechika R. ppm Ka-2000 Grey Black Unit 4b yeining 19 West bank S1ate 58 OC cliff 94-M-5 (b) exposure

PROJECT....Kechika

AREA....94-M-5 (b)

SAMPLER..

				DESCRI	PTION			ANA	LYTICAL	RESULTS	 	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA-2001	Micaceous phyllite shale	4 mile not of Davie Cr. Kechika				qtz veining with calcite local py min veins	ppm 28	ppm 2	ppm 23			Unit 4b 94-M-5 (b)
KA-2002		<b>"</b>	11				30	2	10			94-M-5 (b)
KA-2003		<b>"</b>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				32	2	18			" 94-11-5 (b)
KA-2004	11	•	•				30	2	12			" 94-M-5 (b)
KA-2005		<b>1</b>	<b>II</b>				24	2	25			" 94-M-5(b)
ка-2006			# ************************************				47	4	30			" 94-M-5(b)



June 14/76

•						
	化二氯化甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	94-M-5 (b)		PH		
ppo icor Kechika		AREA DT 12 CO	and the same of th	0440150		
		AREA		SAMPLER		
			A. T. C.		그 이 사람들은 사람들이 되었다.	

	<b>r</b> -			DESCR	PTION			ANA	LYTICAL	RESULTS	 ***	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	LEGGETG		COMMENTS
KA-2007	Micaceous phyllitic shale	6 mi. N o Davie Cr. Kechika I West					32	2	18			" 94-M-5(b)
KA-2008			#				33	1	13			94-M-5(b)
							in the second se					

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

June 15, 1976

PH AREA....94-M-5 (c) PROJECT..... Ketchika SAMPLER..... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE **FRESHNESS ALTERATION** MET. MIN. Cu Pb Zn KA qtz veining 9.5. mi. north 2009 strong micacous of Davie Cr. 94-M-5 (c) limonite phyllite Ketchika R. staining 38 19 580 Unit 4b shale West 9000' Ord

qtz veining KA 2010 bk. fine no sulphides 11 11 94-M-5 (c) grained quartzite black quarteite (Fined grained) " 6 12 94-M-5 (c) black.

KA 2011 **CA** 2012 quartzite 94-M-5 (c) 13 fine med. grained A 2013 dark grey flintstone 120 94-M-5 (c) 18 7 A 2014 brownish gray silty 185 94-M-5 (c) 46 16 dolostone

EXPLORATION DOION

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING June 15/76

<del> </del>	<u> </u>			DESCRI	PTION			1	ANA	LYTICAL	RESULTS		,
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	IING MIN.	Cu	Pb	Zn		: .	COMMENTS
2015	arg. dolosto	9.5 Mi N ne of Davie Kechika F W.						46	4	94			94-M-5 (c)
2016	brownish grey dolostone	11						22	5	155			94-M-5 (c)
							· ·						

#### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 16/6/76

PH PROJECT...Kechika AREA....94-M-6 (a) SAMPLER..... ANALYTICAL RESULTS DESCRIPTION SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER FRESHNESS ALTERATION AGE MET. MIN. Cu Pb Zn 4 Miles NE unit forms ppm ppm calcareous ppm of Graveyatd resistant siltstone *** 94-M-6 (a) 18 42 KA-2017 sandstone Lake bluffs active mass wastage 94-M-6 (a) 2 50 19 KA-2018 KA 2019 94-M-6(a)270 36

EXPLORATION DISTON

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

16/7/76

Kechika AREA. 94-M-7 (b) PB PROJECT.... SAMPLER... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING **COMMENTS ROCK TYPE** LOCATION NUMBER AGE FRESHNESS **ALTERATION** MET. MIN. Cu Pb Ζn Headwaters Post Intrusive Vents CK 85A Floatin Ck 16 14 Dev Nil 14 Nil Unit A 94-M-7(b)KA85B 94-M-7(b)28 10 6 94-M-7(b)72 15 36 KA85C 94-M-7(b)Sample ff. No KA85D 94-M-7(b)58 11 4 KA85E 94-M-7(b)93 10 60 KA85F 94 m - 7 (b)73 47 21 KA85G

16/7/76

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT...Kechika 94-M-7(b) PB SAMPLER....

				DESCRI	IPTION			- 1 T				
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	RESULTS		COMMENTS
КА85Н	Intrusive	Headwate Vent CK	rs pos Dev	<b>-</b> "	Nil	Nil	20	24	84			float in ck 94-M-7(b)
KA85I	II	"	11	## ## ## ## ## ## ## ## ## ## ## ## ##		<b>"</b>	6	40	14			94-M-7(b)
KA85J	<b>n</b>		u	# 2000 P	<b>1</b>	"	B	39	12			94-M-7(b)
KA85K	11	<b>11</b>	11				19	23	52			94-M-7 (b)
							: .					



# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

17/7/76

PROJECT....Kechika

ARFA 94-M-8(a)

SAMPLER..

PH

			* * *											
			Į į	DESCRI	PTION				ANA	LYTICAL I	RESULTS			
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEIN MET.	IING MIN.	Cu	Pb	Zn		PH 1	.:" 	COMMENTS
KA2036	crinoidal fetid dol (black) Unit 8	6 1/2 no of Liard R. Bridge on antic	Mid Dev	good outcrop				5	46	13				base 94-M-8(a)
KA2037	med. grey grainston (fetid)	1.0						6	49	19		(9)	Repea Typical	upper 94-M-8(a)
KA2038	dark grey dol grainston (fetid)							6	49	31		(gradational	ted thru	middle 94-M-8(a)
KA2039	fetid black dol	•						5	57	19			1500' of	basal LS thick 94-M-8(a)
KA2040	Breccia (intra fm) calc-spar limonite inf lling							8	240	5000			section	94-M-8(a)
KA2041	breccia with mud (micritic matrix	<b>"</b>						6	51	64				94-M-8(a)

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 17/7/76

				DESCRI	IPTION			ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA66	bx w. limonite Unit 8a	Lapie Ck 5 mi. fro mouth	U. De	<b>≥v "</b>	Nil	Limonite in BR	23	63	18			See notes for location 94-M-8(b)
KA67	Carb Unit 8a	1	11	<b>II</b>	11	Nil	52	56	7			" 94-M-8(b)
KA68	Unit 4A Carb	Campbells Peak traverse	Ord		Nil	Nil	11	32	14			94-M-8(b)
KA69	slate		11	wthd.	"	Nil	15	27	37			94-M-8(b)
KA70	graphitic bunds in slate	C "		Fresh		Nil	6	18	49			94-M-8(b)

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

19/7/76

Kechika AREA 94-M-8(c) PROJECT... SAMPLER....BM DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING **COMMENTS** ROCK TYPE LOCATION NUMBER AGE FRESHNESS **ALTERATION** MET. MIN. Cu Pb Zn KA 6020 94-M-8(c) carbonate Unit 8 Dev OK 4 46 12 Lapie C. 94-M-8(c) 28 KA6022 49 KA6023 limonite 94-M-8(c)26 veinlets 5 40 94-M-8(c)30 25 KA6025 8 94-M-8(c)51 28 KA6025a unit 7 94-M-8(c)46 61 KA 6026

19/7/76

### GEOCHEMICAL DATA SHEET- ROCK CHIP SAMPLING

PROJECT...Kechika....AREA...94-M-8(d) SAMPLER ... PH DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE **FRESHNESS** ALTERATION MET. MIN. Cu Ph Zn south flank bk. fetid KA2042 pervasive of Syncline crackling dolor (crinoidal) mi. north Unit 8 all (calc-spar of Lapie Mid 56 230 6 samples c. Dev 94-M-8(d)calcite veining KA2043 dk. grey dolo grainstone (med. 94-M-8(d)51 51 6 texture) dk. grey KA2044 pervasive crackling dolo grain-94-M-8(d). 23 (calc-spar) 5 49 stone 11 (med) (Fetid) 11 thinly 11 20 53 KA2045 bedded 94-M-8(d)94-M-8(d)17 49 11 6 KA2046 ** KA2047 bk. dolo 94-M-8(d)6 49 13 micrite (fetid) amphip Ora rich 94-M-8(d)11 46 bk. fetid KA2048 do micrite

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

19/7/76

PROJECT. Kechika AREA 94-M-8(d) SAMPLER PH

				DESCRI	PTION			ANA	LYTICAL I	RESULTS	<del></del>	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA2049	dolo micri	south fla of Sy <b>n</b> cli 9 miles te north of Lapie L				**************************************	6	49	7		2	94-M-8(d)
KA2050	•						5	49	<b>7</b>			Pale Pink Zinc Zap reaction 94-M-8(d)
KA2051	bleached dolo micri horizon	te "					4	44	7			pink reaction with zinc Zap 94-M-8(d)
KA2052	Dark grey dolo micr	.te "					5	50	7			94-M-8)d)
KA2053	limestone slope breccia Unit 7	•					9	52	9			matrix (micrite limestone) weathers light 94-M-8(d) grey
KA2054	LS Breccia Unit 7						10	44	16			weathers orangered 94-M-8(d)
KA2055	LS Brecci rubble debris zone	<b>a</b>					10	34	16			weathers orange pink 94-M-8(d)

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 19/7/76

PH 94-M-8 (d) PROJECT....Kechika SAMPLER..... ANALYTICAL RESULTS DESCRIPTION SAMPLE **COMMENTS** VEINING ROCK TYPE LOCATION NUMBER AGE **FRESHNESS ALTERATION** MET. MIN. Cu Pb Ζn orange buff weathered KA2056 At base LS breccia Mid of Section south 40 9 Dev 94-M-8(d)breccia KA2057 9 miles calc-spar upstream float 48 12 6 Lapie Cr. matrix 94-M-8(d)1 35 - 17.

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

19/7/76

PROJECT......Kechika...... AREA...94-M-8(e)...........SAMPLER.PB.....

<del> </del>				DESCRI	PTION		N/F	ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA73	Unit 5 k	from ride south do to N end Lopie L. Traverse	^m Sil	•	Nil	Nil	10	42	20	The control of the co		94-M-8(e)
KA74	Slate	"	Ord	n September 1	•		11	29	33			94-M-8(e)
KA75		<b>1</b>	**************************************	ı		TT .	9	33	13			94-M-8(e)
ка76	Vol∉. déke	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<b>1</b>		***	50% qtz	7	29	18			94-M-8(e)
KA77	Slate				<b>1</b>	Nil	10	26	29			94-M-8(e)
КА78	graphiti as above						10	27	32			94-M-8(e)

19/7/76

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

SAMPLER....PB AREA 94-M-8(g) 94-M-8(f) PROJECT. Kechika.... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS **ROCK TYPE** LOCATION NUMBER AGE FRESHNESS **ALTERATION** MET. MIN. Cu Pb Zn Unit 5 KA81 94-M-8(q)3 1/2 mi8 9 49 Nil Nil Silurian " SE of Silurian Forcier4 Carb Traverse #3 KA82 94-M-8(q)6 50 48 94-M-8(g)53 **KA83** 6 2 94-M-8(q)9 12 36 **KA84** scionar **KA78** Unit 7 94-M-8(f)27 32 10 Dev Carb N side Slope bx Hoole Ck 1 mi. Traverse #2 94-M-8(f)41 9 **KA79** as above ferrugineous cement 94-M-8(f)hydrocarbon 11 29 13 KA80 as above

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

1/7/76

		and the second of the second of the second	1967年 - 建设工工工作 1967年 -		and the control of th	
1/a+ah i laa						
PROJECTKetchika	••••••••••••••••••••••••••••••	ADEA	104-1-16(a)	044401 Em D	u	
11100501		Anca	+	 SAMPLER	H	
				 O		

				DESCR	PTION			ANA	LYTICAL	RESULTS		
MAMPLE UMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 2028	McDame Breccia fetid Dol	W of oTurnagair R.					16	1220	1400			104-I-16(a)
KA 2029		"					7	61	42			104-I-16(a)
KA 2030		<b>II</b>					8	54	23			104-I-16(a)
KA 2031							10	27	49			104-I-16(a)
							33.					

Kechika

PROJECT...

#### **EXPLORATION DIVISION**

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

9/6/76

104-P-1 (1)

AREA 104-P-1 (a)

SAMPLER....PB.

				DESCRI	PTION	· · · · · · · · · · · · · · · · · · ·	r.	ANA	LYTICAL I	PECI II TO			
SAMPLE				DESCINI	11014	VEINING	-	ANA	LITTOAL	NESOLIS	·		COMMENTS
NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	MET. MIN.	Cu	Pb	Zn				
KA-1		1 mile E. of Hidder Valley Cree Showing	Unit 44	Greenish	Brown Green	Qtz	ppm 147	ppm 52	ppm 13				PBPH BM 104-P-7 (a) June 9/76
KA-10	Qtz Vein	Hidden Valley Ck Showing # 1 See note for Detail	Kechika sFM sam	White		cpy qt _z	5520	5	23				104-P-1 (1) Note Unit 4A Rabbit River Kechika Fm McDame
KA-11	Qtz Vein		<b>11</b>	Weathered oxidized	Oxidized	Malachite Azurite cpy Qtz	415	28	31				104-P-1 (1)
KA-15	FW	1	# ************************************	Weathered Competent OC Brown			86	18	51				
KA-16	<b>11</b>		. <b>"</b>	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			42	19	15				<b>u</b>
KA-17	Vein Interbo Phyllite Pellite	ed "		Weathered incompeter greenblack		tr Qtz	124	6	9				• • • • • • • • • • • • • • • • • • •
KA_18	Ö	H	<b>!</b> †	1474		Otz Qtz	2400	3	6			Maria Cara Cara Cara Cara Cara Cara Cara	

EXPLORATION DIMON

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

9/6/76

PROJECT Kechika AREA Birches Lake 104-P-1(1) SAMPLER. PB

	l ·			DESCR	PTION			ANA	LYTICAL	RESULTS		
SAMPLE WUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn		ę	COMMENTS
KA 19	Vein Interbed Pellite	Hidden Valley C Showing #1	€-Ord { Kechi} Fm			trQtz	ppm 1590	ppm 3	ppm 6			104-P-1(1)
KA 20	HW Slaty Argillite	·				tr Qtz	288	9	9			104-P-1(1)
							(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

18/6/76

AREA.....104-P-1 (b) PROJECT .Ketchika SAMPLER.....

BM

				DESCR	PTION			ANA	LYTICAL	RESULTS	<u> </u>		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn		-		COMMENTS
KA 1100	LS	Zebra Mtn. Ridge 9 mi. due W Birches	Miss Lk.	Fresh	Nil	N11	6	6	23			* 20 min	104-P-1 (b)
KA 1101	LS	<b>"</b>		•	•		6	7	38				104-P-1 (b)
KA 1103	LS	"	<b>"</b>	<b>11</b>	11	11	7	5	65				104-P-1 (b)
KA 110	LS				**		7	6	54				104-P-1 (b)
KA 1106	LS			<b>"</b>			7	8	54	7 -			104-P-1 (b)
KA 1107	LS	W					7	6	31				104-P-1 (b)
KA 1107	LS	#			••	Ö	7	5	67				104-P-1 (b)

18/6/76

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

			[794] 	DESCR	PTION				ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEII MET.	NING MIN.	Cu	Pb	Zn			COMMENTS
KA 1108	LS	Zebra Mtn Ridge 9 mi W. Birches Lake	Miss	fresh	nil	nil		7	4	66			104-P-1 (b)
KA 1109	LS			1	H			8	10	55			104-P-1 (b)
KA 1110	LS	<b>''</b>			11	11		7	4	23			104-P-1 (b)
KA 1112	LS							9	6	108			104-P-1 (b)
KA 1113	LS		•		<b>'H</b>			4	6	35			104-P-1 (b)

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

19/6/76

NOMBER	Loat	AGE Miss (?)	fresh	ALTERATION N11	VEINING MET. MIN. N11	<b>C</b> u 5	Pb 6	Zn 31			104-P-1 (c)
A 1121 SS fload  A 1124 phyllite fload  A 1125 sadd	Loat	(?)						31			104-P-1 (c)
A 1124 phyllite float  A 1125 saddi					. 11	5					
A 1125 saddi	oat	(?)					3	38			104-P-1 (c)
Shale				<b>11</b>	11	3	8	13			104-P-1 (c)
A 1126 Chert ridge		(?) under 1 Miss	ies "			4	10	6			104-P-1 (c)
1 1	dge	Miss	11			10	3	144			104-P-1 (c)
A 1127   shale "				3	<b>11</b> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	35	5	560			104-P-1 (c)
A 1132 LS "		•		11	11	6	3	43	1		104-P-1 (c)

EXPLORATION DON

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

20/6/76

PROJECT....Ketchika

AREA...104-P-1 (d)

SAMPLER.

PB

				DESCRI	PTION	1 · · · · · · · · · · · · · · · · · · ·	1	ANA	LYTICAL	RESULTS	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	**************************************	COMMENTS
A 37	Ketchika LS	Traverse 104-P-1 2 3/4 mf SE of cabi	<b>∂</b> rd Sil	weathered rel.fresh		some weak qtz veinin		5	130		104-P-1 (d)
A 38	11	n'	***	•		11	9	11	21		104-P-1 (d)
	The second section of the section of the second section of the section of the second section of the section of the section of the second section of the	ann, gh' chuir bhainn an gach an tair gha bh Lach - Bailte Baille ann an Air ann an Air ann an Air ann an Air								al and the second and the second	
							and the second s				
Agency (Specification), and the second section (1975).							Action of the control	And the state of t			

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 20/6/76

<del></del>				DESCR	PTION			ANA	LYTICAL	RESULTS		
AMPLE JMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 39	Ketchika slate Phyllites minor LS	Traverse #2 104-P -1 5 1/4 Mi. W of solidory Lake	<b>0</b> rd	weather	ed phyllite locally	some quart many bould ers in creek bed	z - 16	23	78			104-P-1(e)
KA 40		stream traverse					29	30	88			104-P-1(e)
KA 41	11	II	n .	1	<b>"</b>		12	8	50			104-P-1(e)
						pril 1					Ÿ.	
KA 42	•	•			1	11	22	15	75			104-P-1(e)
KA 43							5	9	12			104-P-1(e)
KA 44	Kechika slates phyllite minors		olitory S		eathered ph	yllite some qtz veining	. 8					104-P-I (°)
KA 4	Ketchika		. "	orange LS qtz v	e stained red ozidi surfac		ins 8		9			)104-P-I (e)

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

23/8/76

AREA....104-P-1 (g) BM PROJECT. Ketchika SAMPLER..... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS LOCATION **ROCK TYPE** NUMBER AGE FRESHNESS ALTERATION MIN. MET. Cu Pb Zn KA 1162 1imonite 1.4 mi. E. Dev 15 166 20 104-P-1 (g) of Sandpile Lake on Ridge Тор KA 1164 black Fe rich dolostone 6 17 11 104-P-1 (g) 11 KA 1165 21 shale 104-P-1 (g) KA 1166 sandstone 27 3 121 104-P-1 (g) KA 1169 pyrite nodule rich 12 37 104-P-1 (g) siltstone KA 1173 barbonaceous shale valley 104-P-1 (g) 17 835 bottom 80 11 19 63 KA1167 16 11 104-p-1(g)

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

25/6/76

PROJECT...Ketchika AREA....104-P-1 (h) BMSAMPLER..... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE FRESHNESS **ALTERATION** Pb MET. MIN. Cu Zn Ni1 12 66 104-P-1 (h.) Sandpile Cr. N11 OK Dev LS A 1180 McD ameFM 14 104-P-1 (h) A 1181 do1 104-P-1 (h) 11 A 1183 do1 104-P-1 (h) 6 10 (A 1184 LS 104-P-1 (h) 12 2 sandpile S11 5 do1 A 1188 Cr.

EXPLORATION DON EXAS GULF SULPHUR COMPANY GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 27/6/76 AREA... 104-P-1 (1) SAMPLER....BM PROJECT. Ketchika. DESCRIPTION ANALYTICAL RESULTS COMMENTS VEINING SAMPLE ROCK TYPE LOCATION NUMBER AGE **FRESHNESS ALTERATION** MIN. Cu Pb Zn MET. Near Sand-McDame FM KA 104-P-1 (i) 940 600 9 Nil OK LS pile Lake Dev 1200 104-P-1 (i) 11 KA 1201 46 6 KA 104-P-1 (i) Ketchika Ord 228 1204 3 53 LS

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING 28/6/76

PROJECT. Ketchika

AREA....104-P-1 (j)

			* 1. 10 may - 100 may - 10	DESCRI	PTION			ANA	LYTICAL I	RESULTS	***************************************	
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 1221	McDame _{FM} LS	Near Sand- pile Lake	De∜ es		Nil	N11	8	8	27			104-P-1 (j)
KA 1224	LS	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	**************************************		•	· · ·	27	190	16			104-P-1 (j)
KA 1227	do1	Sandpile	Si1	***************************************		**************************************	4	6	15			104-P-1 (j)
									4			
	0		(本的) (基本) (本)						4 5 L 4 a.			

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

29/6/76

PROJECT. Ketchika..... AREA. 104-P-1 (k) SAMPLER.....BM

											- 147 	
SAMPLE				DESCRI	PTION	VEINING		ANA	LYTICAL	RESULTS		COMMENTS
NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	MET. MIN.	Cu	Pb	Zn			 COMMENTS
KA 1233	McDame FM do1	N of Sand pile Lake	- Dev	•	N11	N11	6	18	14			104-P-1 (k)
KA	do1	•					5	29	41			104-P-1 (k)
1234												
							E A					
					Together de	i Li <b>s</b> i shan i ¹⁸⁸ nin na ni na	£					

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

1/7/76

PROJECT. Ketchika

AREA....104-P-1 (n.)

SAMPLER..

BM

		1		DESCRI	PTION			ANAI	YTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
A 242	McDame FM do1	W. of Deadwood Lake traverse #2	Dev		Ni1	N11	14	14	29			104-P-1 ( _n )
A 244	do1	1	11	# 1		**************************************	19	86	44			104-P-1 (n)
A 245	d _{o1}	"	***		W.	11	11	49	25			104-P-1 ( r)
									: 			
											/	

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

2/7/76

PROJECT...Ketchika AREA 104-P-1 (o)

SAMPLER.....BN

BM

			T	DESCR	IPTION			ΔΝΔ	LYTICAL	RESILITE		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	LUULIU		COMMENTS
KA 1251	McD ame FM LS	Ridge 5.5 Mile SW of Solitary L		"	•	<b>"</b>	12	340	179			104-P-1 (o)
KA 1252	LS				11	<b>1</b>	12	62	26			104-P-1 (o)
KA												
1254	LS	<b>11</b>				<b>n</b>	11	74	31			104-P-1 (o)
											999	

4/7/76

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

PROJECT Ketchika AREA 104-P-1 (p) SAMPLER BM

				DESCR	PTION			ANA	LYTICAL I	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn	·		COMMENTS
KA	Upper McDar	me . of Deadwood	Dev	<b>11</b>		II .	8	46	11	-		104-P-1 (p)
1260	do1	Lake							}			
KA												
1261	11						9	44	14			104-P-1 (p)
KA								ta .		i		
1262		11	11	, <b>11</b>	1	11	19	90	71			104-P-1 (p)

# GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

5/7/76

	1 11	Contract Con	104-D-1 (a)		BM	
PROJECT	Ketchika	 AREA.	104-P-1 (q)	SAMPLER		
		/ ///////		 Ordin LEIT.		• • • • • • • • • • • •

										·		
				DESCR	PTION	·		ANA	LYTICAL	RESULTS	<i>r</i> .	 COMMENTS
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 1270	Atan ^{FM} LS	W. of Soli Lake	tory Camb	<b>1</b>	•	• • • • • • • • • • • • • • • • • • •	11	51	15			104 <b>-</b> P-1 (q)
KA 1271	LS	"	Camb	·II	# 1		8	42	6			104-P-1 (q)
		*										

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

20/6/76

PROJECT...Ketchika...... AREA 104-P-8 (a) SAMPLER PH DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE FRESHNESS | ALTERATION MET. MIN. Cu Pb Zn 6.5 mi. W. KA 2026 chert of Aeroplane nodular Lake 104-P-8 (a) Miss N11 Nil 41 LS highly sheared 16 166 sheared altered KA 2027 weathers to ochre red colour 104-P-8 (a)

EXPLORATION [ sion

## GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

20/6/76

PROJECT...Ketchika

ARFA 104-P-8 (a)

SAMPLER..

PH

PROJE	CTKetch	ıka	• • • • • • • •	AREA	104	ο (α)			SAMF	LER	 	
· · · · · · · · · · · · · · · · · · ·				DESCRI	PTION		<del>                                     </del>	ANA	LYTICAL	RESULTS		
SAMPLE NUMBER	ROCK TYPE	LOCATION	AGE	FRESHNESS	ALTERATION	VEINING MET. MIN.	Cu	Pb	Zn			COMMENTS
KA 3013	cherty nodular LST	6.5. mi. W. of Aeroplan	e Miss Fn	Fine weathered crust	-	•	8		47			104-P-8 (a)
KA 3014							8	5	67			
KA 3015		11		=			6	5.	38			
ка 3016		11		1			7	3	60			
							対し、					

### GEOCHEMICAL DATA SHEET— ROCK CHIP SAMPLING

20/6/76

PROJECT... Ketchika AREA... 104-P-8 (a) PH SAMPLER..... DESCRIPTION ANALYTICAL RESULTS SAMPLE VEINING COMMENTS ROCK TYPE LOCATION NUMBER AGE FRESHNESS **ALTERATION** MET. MIN. Cu Pb Zn 6.5. mi. W. KA 5000 Thin cherty nodular of Aeroplane Lk. weathered 35 104-P-8 (a) 6 LS crust MISS 104-P-8 (a) 77 KA 5001 weathers to ochre red in shear zones LS more coarsely KA 5002 5 37 crystalline 104-P - 8 (a) KA 5003 6 30 104-P-8 (a) KA 5004 5 39 104-P-8 (a) KA 5005 6 33 less chert 104-P-8 (a)

### KECHIKA PROJECT 1976

APPENDIX C -Traverse Location Record NTS File

Kechika Project NTS 94-B-12 1976 GEOLOGICAL TRAVERSES 20/8/76 94-B-12 PHKechika Project NTS 94-C-16 1976 GEOLOGICAL TRAVERSES 23/8/76 23/8/76 94-C-16 PH BMNTS 94-C-9 Kechika Project 1976 GEOLOGICAL TRAVERSES

20/8/76

BM

94-C-9

В	NTS	GEOLOGICAL	94-F-1 TRAVERSES			Kech	nika Project 1976
			94	-F-1	a b c d e f	PH PH BM BM BM BM	18/8/76 18/8/76 18/8/76 18/8/76 19/8/76
n	NTS	GEOLOGICAL	94-F-2 TRAVERSES			Κe	echika Project 1976
			94	-F-2	a b c d	PH BM PB BM	17/8/76 17/8/76 17/8/76 22/8/76
	NTS	GEOLOGICAL	94-F-7 TRAVERSES			Kech:	ika Project 976
O			94-F-7	a b c d e f	PB PH PH BM PH PB	22/8/7 22/8/7 22/8/7 22/8/7 25/8/7	76 76 76

GEOLOGICAL TRAVERSES 94-F-8 a PH 19/8/76 NTS 94-F-13 Kechika Project GEOLOGICAL TRAVERSES 1976 94-F-13 10/8/76 26/8/76 PH a BMNTS 94-F-14 Kechika Project GEOLOGICAL TRAVERSES 1976 24/8/76 24/8/76 94-F-14 PB. a b BM

94-F-8

NTS

Kechika Project 1976 94-K-3

a BM 1/8/76

NTS.

94-K-4

GEOLOGICAL TRAVERSES

Kechika Project 1976

94-K-4	a	PН	25/7/76
	b	PB	25/7/76
	C	BM	25/7/76
	d	BM	25/7/76
	е	PB	28/7/76
	£	ВМ	28/7/76
	g	PH	28/7/76
	h	PH	28/7/76
	i	PB	28/7/76
	j	${ t FP}$	8/8/76
	k	JIGS	10/8/76
	1	BM	10/8/76
	' m	BM	10/8/76
	n	PH	10/8/76
	0	FP	11/8/76
	р	BM	11/8/76
	q	BM	11/8/76
	r	BM	12/8/76
	S	BM	12/8/76
	t	FP	12/8/76
	u	PH	12/8/76
	V	BM	14/8/76
	W	FP	14/8/76
	Х	PH	14/8/76
	Y	PB	14/8/76

^{94 -} K - 4

DP Showing (Placer) Driftpile Ck
PB 27/7/76 (1)

⁽¹⁾ 

⁽¹⁾ PBJM 8/8/76

Kechika Project 1976

NTS 94-K-5

GEOLOGICAL TRAVERSES

94-K-5 a PH 2/8/76 b BM 2/8/76

NTS 94-K-6

GEOLOGICAL TRAVERSES

Kechika Project 1976

94-K-6 a PH 1/8/76 b PH 1/8/76 c BM 1/8/76

NTS 94-K-12

GEOLOGICAL TRAVERSES

Kechika Project 1976

94-K-12 a PH 2/8/76 b BM 2/8/76

NTS 94-K-14

GEOLOGICAL TRAVERSES

Kechika Project 1976

94-K-14

a

FP

## GEOLOGICAL TRAVERSES

94-L-1	a	PH	27/7/76
	b	BM	27/7/76
	С	PН	27/7/76
	d	PB	27/7/76
	е	BM	27/7/76
	f	BM	28/7/76
	g	PH	29/7/76
	h	PH	29/7/76
	i	PH	29/7/76
	j	PH	29/7/76
	k	PH	30/7/76
	1	BM	30/7/76
	m	BM	9/8/76
	n	PH	8/8/76
	0	BM	9/8/76
	a	BM	7/8/76
	a	BM	9/8/76

NTS 94-L-7

Kechika Project 1976

GEOLOGICAL TRAVERSES

94-L-7 a PH

24/7/76

NTS

94-L-8

GEOLOGICAL TRAVERSES

Kechika Project 1976

31/7/76 31/7/76 31/7/76 5/8/76 5/8/76 24/7/76 5/8/76 8/8/76 94-L-8 PHa  $\mathbf{b}$ BMC BMd BMе BMf BMg h PH, PB BM

94-L-8 (1)	Rough Sl	nowing	
	PH	31/7/76	
(1)	PH, PB	5/8/76	
Jan 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1	PB, JM	7/8/76	
(1)	PH	7/8/76	
(1)	BM	7/8/76	
**(1)	PB, JM	8/8/76	
<b>(1)</b>	PB, PH.	9/8/76	Staking
	PB BM	28/8/76	п
(1)	PB BM	29/8/76	n .

NTS

94-L-9

GEOLOGICAL TRAVERSES

Kechika Project

1976

94-L-9

a h PH BM 3/8/76 3/8/76 NTS

94-L-10

GEOLOGICAL TRAVERSES

Kechika Project 1976

94-L-10	a	PH	23/7/76
	b	BM	23/7/76
	C	PB	23/7/76
	d	PH	23/7/76
	е	BM	23/7/76
	f	PB	23/7/76
	g	BM	24/7/76
	h	PH	24/7/76

NTS

94-L-13

GEOLOGICAL TRAVERSES

Kechika Project 1976

94-L-13 PH11/6/76 а 21/6/76 b PH 22/6/76 22/6/76 C PBđ PH 29/6/76 PH е 5/7/76 £ PB 5/7/76 g PΗ 6/7/76 PH

NTS

94-L-14

GEOLOGICAL TRAVERSES

Kechika Project 1976

94-K-14 a PH 25/6/76 b PH 27/7/76 c PH, PB 2/7/76

	NTS 94-M-1			Ke	echika Project
	GEOLOGICAL TRAVERSES				1976
	94-M-1	a b c d e f g h	PB PB BM BM PH PH PH	20/7/76 20/7/76 20/7/76 20/7/76 20/7/76 20/7/76 20/7/76 20/7/76	
	NTS 94-M-2			Kech	ika Project
	GEOLOGICAL TRAVERSE			1	976
O C	94-M-2 NTS 94-M-3 GEOLOGICAL TRAVERSES		a Bl b Bl	M 15/6/7	
	94-M-3	a b c d e	BM BM PB BM BM	10/6/76 22/6/76 6/7/76 6/7/76 7/7/76	
O	94-M-3 (1) (1) (1) (1) (1) (1) (1) (1) (1)	Boye BM BM PH PB BM PB PB,	a Showing 11/6/76 12/6/76 12/6/76 12/6/76 21/6/76 21/6/76 BM, PH	(1) PB (1) PB	27/6/76 29/676

94 - M - 4

GEOLOGICAL TRAVERSES

Kechika Project

1976

94-M-4	a	PB	13/6/76
	b	ВМ	14/6/76
	C	PB	16/6/76
	d	BM	16/6/76
	e	PH	17/6/76
	£	ВМ	17/6/76
	g	BM	17/6/76
	h	PH	18/6/76
	i	PH	
	j	PH	28/6/76

NTS

94-M-5

GEOLOGICAL TRAVERSES

Kechika Project

1976

13/6/76 14/6/76 15/6/76 94-M-5PН a b PH PН C

NTS

94 - M - 6

GEOLOGICAL TRAVERSES

Kechika Project

1976

94-M-6

a

PH

16/6/76

Kechika Project NTS 94-M-71976 GEOLOGICAL TRAVERSES 16/7/76 16/7/76 16/7/76 17/7/76 94-M-7a PBb C PΗ BMNTS 94-M-8 Kechika Project 1976 GEOLOGICAL TRAVERSES 17/7/76 17/7/76 19/7/76 94-M-8 PΗ a b PB BMÇ 19/7/76 d PH 19/7/76 19/7/76 19/7/76 e PB f ΡВ PBg

NTS

104-1-16

Kechika Project 1976

GEOLOGICAL TRAVERSES

104-I-16 a PH 1/7/76 b PH, PB 4/7/76



104-P-1	a	PB BM	9/6/76
	b	ВМ	18/6/76
	c -	BM	19/6/76
	d	PB	20/6/76
	е	PB	20/6/76
	f	PH	23/6/76
	g	BM	23/6/76
	h	BM	25/6/76
	i	BM	27/6/76
	j	BM	28/6/76
	k	BM	29/6/76
	1	BM	30/6/76
	m	PH	30/6/76
	n	BM	1/7/76
	0,	BM	2/7/76
	ď	BM	4/7/76
	đ	BM	5/7/76

(1) Hidden Valley Ck. Cu Showing 104-P-1

- pB PH 9/6/76 BM 9/6/76 (1) (1)

NTS 104-P-8 Kechika Project 1976

GEOLOGICAL TRAVERSES

104-P-8

a

PH 20/6/76