

92 - P - 9

REPORT

ON

DRILLING

TAWEEL MOLYBDENUM OPTION

1966

KAMLOOPS

MINING DIVISION

Vancouver, B.C. January 19,1967 S.N. Charteris Jan. 30/67 Original to Dr. a. Dadson, Toronto 1 crpy File 2 Spares

BRITISH COLUMBIA GEOLOGICAL SURVEY

REPORT ON THE DRILLING OF THE TAWEEL MOLYBDENUM OPTION

KAMLOOPS MINING DIVISION
BRITISH COLUMBIA

92-P-9

Vancouver, B.C. January 19, 1967

S.N. Charteris

CONTENTS

	Page
INTRODUCTION	
LOCATION AND ACCESS	1
PROPERTY	
OPTION TERMS	1
LOCATION MAP	1A
EXPLORATION HISTORY	2
FALCONBRIDGE EXPLORATION - 1966	2
GEOLOGY AND MINERALIZATION	2
General Geology	• • 3
Geology of the Intrusive	3
Mineralization	lı
Structure	5
RESULTS OF FALCONBRIDGE EXPLORATION	5 - 6
CONCLUSIONS AND RECOMMENDATIONS	6 - 7
Diamond Drill Records	5 Pages

MAPS

In pocket.

REPORT ON THE DRILLING OF THE TAWEEL MOLYBDENUM OPTION

KAMLOOPS MINING DIVISION BRITISH COLUMBIA 92-P-9

INTRODUCTION

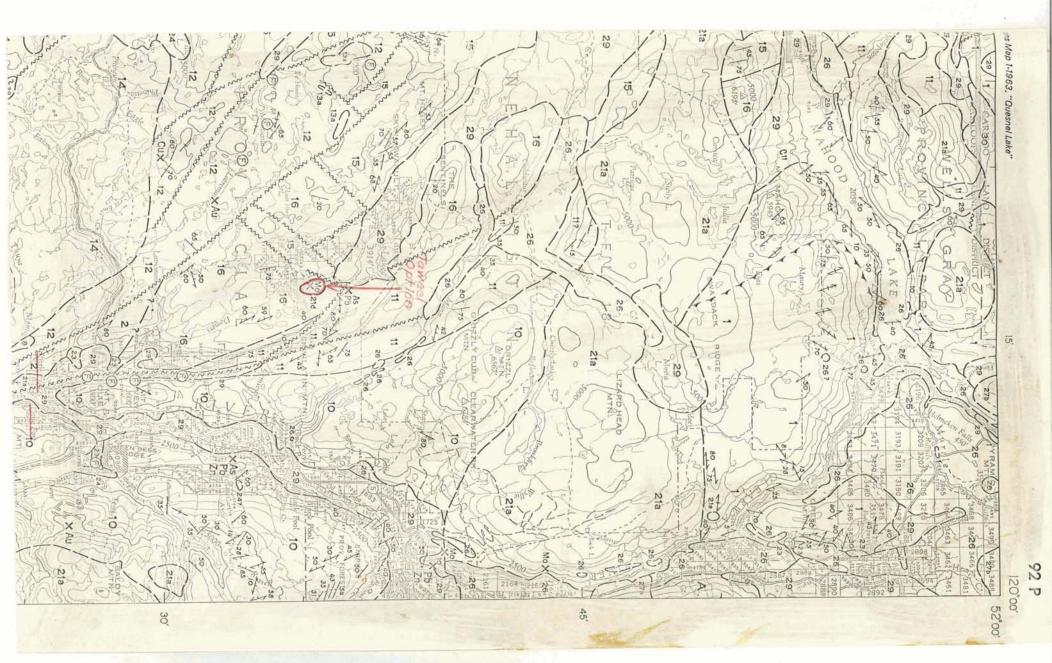
The property was optioned in April and explored during the months of July, August and September in conjunction with the South Cariboo Project. We were offered the property immediately after Rio Tinto dropped their option. Rio was faced with an option payment to Calder and Jim plus heavy commitments at Lornex and so they reluctantly elected to drop this prospect.

LOCATION AND ACCESS

For location, see the accompanying 1" = 4 mile plan.

Access is by a seventeen mile jeep road up the Lemieux Creek

valley from Little Fort. A few days bulldozer work could improve
this road to two wheel drive conditions.


PROPERTY

Ric Tinto surrounded the original 8 claims with an additional 42 claims on optioning the property. We dropped 11 claims leaving a 39 claim group. Details and descriptions of the claims are contained in the Calder-Jim/Falconbridge option.

OPTION TERMS

The terms of the option were:

- (1) A six months free option.
- (2) A \$10,000 payment on December 1, 1966 to hold the option.
- (3) A \$20,000 payment on December 1. 1967 to hold the option.
- (4) A \$50,000 payment on December 1, 1968 to hold the option.
- (5) A 3,000,000 share company to be formed by December 1, 1969 with one-half the vendors shares to be granted to the optionors.

LOCATION MAP - - TAWEEL OPTION - - Scale 1"= 4 miles

EXPLORATION HISTORY

Southwest Potash had an examination option on the ground in 1960 when they apparently mapped and sampled the exposures but did no physical work. In 1961 Bralorne-Pioneer optioned the property and did geochemical (T.H.N.), geological, magnetometer and I.P. surveys followed by limited diamond drilling in widely separated areas.

Rio Tinto in 1965 completed:

- (1) Geochemical soil sampling at 50 foot intervals over $10\frac{1}{2}$ miles of picket lines.
- (2) Geochemical silt sampling of the drainage to the west of the claims.
- (3) A magnetometer survey over the picket lines.
- (4) 4,000 feet of bulldozer stripping that exposed large areas in the vicinity of the original trenching.
- (5) Geological mapping on a scale of 1" = 200' of the central portion of the claims.

Reports and maps of all the above work are in the Vancouver files.

FALCONBRIDGE EXPLORATION - 1966

G. Bysouth re-mapped the areas of known molybdenite mineralization with emphasis on the structural controls to the mineralization. Field work was on a scale of 1" to 50 feet with picket line and transit control. We tested the structures indicated by Rio's and Bysouth's mapping with 2,032 feet of AX wire line drilling in pre-drill holes.

GEOLOGY AND MINERALIZATION

The following is a resume from the writers' and Bysouths' observations supplemented with some details from Rio Tinto's report by F. Hus.

(a) General Geology

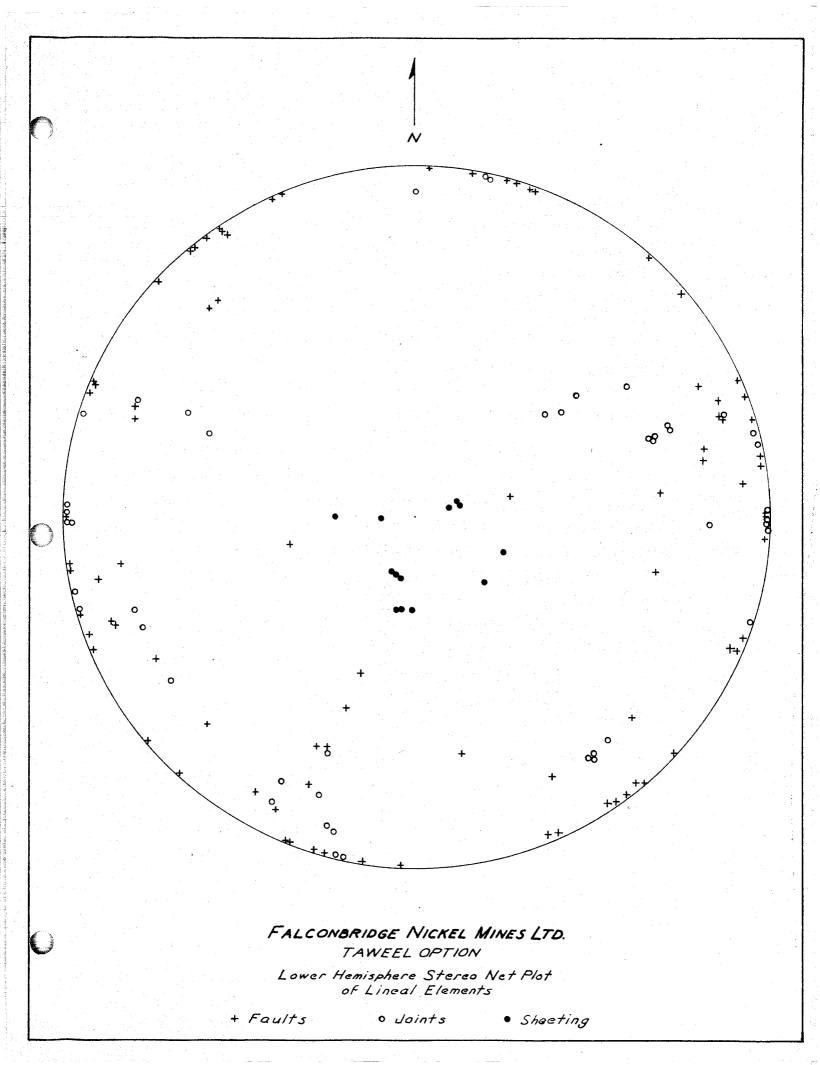
The property covers an oval stock of fine to medium grained leuco granite approximately 8,000 feet long and up to 4,000 feet wide. It intrudes thin bedded argillite with the development of a hornfels aureole up to 300 feet wide. Tertiary Basalt outcrops along the ridge to the north of the intrusive and in the valleys of Taweel Creek and Rong Creek. Rio Tinto considered the intrusive to be post basalt based on the minor carbonate and pyrite in the basalt. Such pyrite and carbonate is typical of fractured sections of the Tertiary basalt throughout the cariboo.

The molybdenum mineralization is confined to the central portion of the intrusive.

(b) Geology of the Intrusive

The leuco granite stock appears rudely zoned from the limited outcrops and diamond drill sections. The core of the stock is a uniform equigranular medium grained porphyritic granite with 65% to 70% subhedral white feldspars averaging 2 to 3 mm long, 1 mm wide and 30 to 35 percent spherules of quartz, 3 mm in diameter. Biotite is interstitial to the feldspar and is irregularly distributed with no relation to the zoning or to areas of mineralization.

Between the core and the margin is an annulus approximately 500 feet wide of mixed chilled rocks principly aplite and porphyritic aplite with irregular sub-pegmatoid phases along the margins of a few aplite masses. Dykes of aplite also extend into the hornfelsed sediments. The contact between the border zone and the core is well exposed on the hill north of Rong lake between lines 6 and 7. It is gradational over a foot.


The stock is remarkably fresh from our visual and Rio Tinto's petrographic examinations. Hole F-1 near the centre of the core was unaltered throughout its length. Lazenby noted "sericite rich sections" in Hole No. 2 and kaolinization in Hole No. 4. Neither kaolinization nor sericitization are obvious in the vicinity of the mineralization. Except for occasional quartz veins, silicification is noticeably absent. The quartz flooding (intense replacement and silicification) associated with Newmont's Alice Arm deposit, Climax's Hudson Bay Mountain and Lucky Ship deposits has not been found near this intrusive.

(c) Mineralization

Only rare narrow quartz-molybdenite veinlets were encountered in the drill core, so the following observations are from the exposures in the trenches. Here molybdenite concentrations are confined to:

- (1) Wide spaced quartz-molybdenite veins.
- (2) Irregular disseminations of molybdenite in the porphyritic granite, usually where there are concentrations of feldspar.
- (3) Pegmatic phases within the rhyolite where molybdenite occurs with pyrite and minor wolframite and bismuthite in quartz rich sections.
- (4) As coatins on fine fractures.

 Nowhere did the sampling of the trenching exceed .03% molybdenite over significant widths.

(d) Structure

Shears (faults) and parallel joints have a predominant northwest trend, parallel to the regional shearing in nearby Lemieux Creek and to the long axis of the intrusive. Detailed mapping however showed numerous other directions, especially N70W and NhOE. These are shown on the 1"=50' and 1"=100' mapping by Bysouth and compiled on the Stereonet plot of the poles. Thus there is a near radial pattern to the fracturing discernible through the dominating northwest trend. These fractures converge between Rong Lake and the area between lines 6 and 7 in the vicinity of Drill Hole number 5.

The radial pattern suggested that a vertical movement was imposed on the stock - or, alternatively, there was a caulderatype collapse. Such a centre could contain a tectonic or injection breccia, or a fracture concentration healed by quartz such as exists at Boss Mountain. Supporting the idea of vertical movement is the wide spread, low angle quartz healed sheeting (see stereonet).

RESULTS OF FALCONBRIDGE EXPLORATION

The geological mapping by Bysouth on a scale of 1"=50' and 1"=100' is in the folder of this report. Lazenby combined this mapping with the other data provided by Rio Tinto to produce the 1"=200' plan. We re-sampled the B horizon and we received the Rio Tinto soil samples. Both Rio's and our samples will be analyzed for trace amounts of molybdenum.

The diamond drill logs are in the appendix. Summary logs follow:

HOLE	BEARING	DIP	DEPTH	LITHOLOGY
F-1	230°	-15°	540'	Massive unaltered Quartz Porphyry cut by rare quartz-molybdenite fractures.
F-2	050°	-15°	650'	Massive quartz porphyry with some sericite alteration.
F-3	230°	-115°	126*	"Chloritized greenstone" - actually a hornfelsed argillite.
F-4	050°	-45°	436 *	0-101 - Hornfelsed argillite. 101-436 - Aplite with k feldspar patches, occasional molybdenite bearing stringers 262'-268'.
F-5	050°	-12°°	288*	Quartz Porphyry. 0 - 137 - massive, dense, unfractured. 137 - 140 - kaolinized. 160 - 167 - kaolinized. 167 - 215 - Intense feldspathization.
				260 - 265 - Graphite seams. Hole stopped when drill broke down.

and the potash feldspar impregnation of holes F-4 and F-5 is not exposed in the surface outcroppings and trenches. Hole F-5 was not seen by the writer but it is reported that the kaolinization was the cause of poor core recovery in this hole. The intense "k" feldspar impregnation in this hole also indicates intense late stage hydrothermal activity. The "graphite seams" in hole F-5 seems out of place since the rare sedimentary inclusions are completely hornfelsed with no residual carbon. We had returned the property to the owners on the understanding that the hole F-5 intersected only massive unaltered, barren quartz porphyry.

CONCLUSIONS AND RECOMMENDATIONS

- (1) We have not located any concentration of fracturing on the property such as our structural interpretation suggested.
- (2) The lack of concentration of molybdenite may be due to the lack of silicification and a paucity of quartz veining, i.e. a deficiency of free quartz in the mineralizing medium. Thus molybdenite tends to be in open fractures and was not concentrated in a siliceous phase. In all the significant molybdenum deposits in this Province, the molybdenite is concentrated in a siliceous envelope or in a multitude of quartz veins.

(3) There remains a possibility that a sheared kaolinized zone containing molybdenite exists in the vicinity of hole F-5. At the first opportunity we will recover this drill core and have it assayed. If there is significant molybdenum, we will try to re-negotiate an option.

Melhar hui!

Vancouver, B.C. January 19, 1967

DDADEDTV	TAWEEL OPTION	
PROPERTY.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

HOLE NUMBER	F-1	
SHEET NUMBER	1	
	Λ	۲)،n

xxx 20' E. of Line 8, 910' S.	11 Muly, 1966
LOCATION:	SIARIED
ELEVATION OF COLLAR	COMPLETED
DATUM	ULTIMATE DEPTH 540
BEARING 230°	PROPOSED DEPTH
DIRECTION AT START:15	PROPOSED DEFITI

DEPTH FEET	FORMATION	FROM	то	WIDTH OF SAMPLE		
0 - 82	Casing.					
- 540	Quartz - feldspar porphyry.					
- 142	Hard fine grained. Quartz phenocrysts-1/10". Epidot	e				
	& minor pyrite along joints. Occasional quartz-pyrit	e				
	& quartz-molybdenite stringers 30-45° to core.					
- 164	Larger phenocrysts. Some → 1/4" giving mottled appe	arance				
- 181	More highly weathered. Rusty orthoclase pseudomorph	າຣ				
	& some epidote pseudomorphie after feldspar. Mino					
	molybdenite along joints.					
- 226	As 0 - 142					
- 246.5	As 164 - 181		-			
- 288	As 0 - 142 Aplite dykes 263-264, 269-270.					
- 291	As 164 - 181.					
- 328	As 0 - 142. Slight increase in concentration of		· .			
	quartz stringers with minor pyrite from 307 - 319.					
- 338	White colored. Feldspar heavily kaolinized.					
- 540	As 0 - 142 @ 499 large pyrite-filled vug. with					
	weathered tourmaline, fluorite, & minor molybdenite					
	END OF HOLE.					
		1				
	H.S.L.					

PROPERTY	TAWEEL	OPTION	

HOLE NUMBER	F-2	
SHEET NUMBER	1	
	,	/ m/
SECTION FROM	0 ,	650

LOCATION:	90' bearing 315° from Line 7, 1500'S	STARTED		4 Augus	st 1966				
ELEVATION OF COLL	AR	COMPLETED 650 ULTIMATE DEPTH 650							
DIRECTION AT START:	DIP	ULTIMATE	DEPTH.	6 ^c	<u>(</u>				
DEPTH FEET	FORMATION	FROM	то	WIDTH OF SAMPLE					
0 - 35'	Casing								
- 650*	Quartz-feldspar porphyry. Lighter and darker								
	sections as in F-4. Sericite rich sections.								
	Occasional quartz-molybdenite stringers, epidoti	zeđ					1		
	sections, pyrite stringers & aplite dykes.				<u></u>				
	END OF HOLE.								
	H.S.L.								
					`				
							4.		

PROPERTY	TAWEEL OPTION

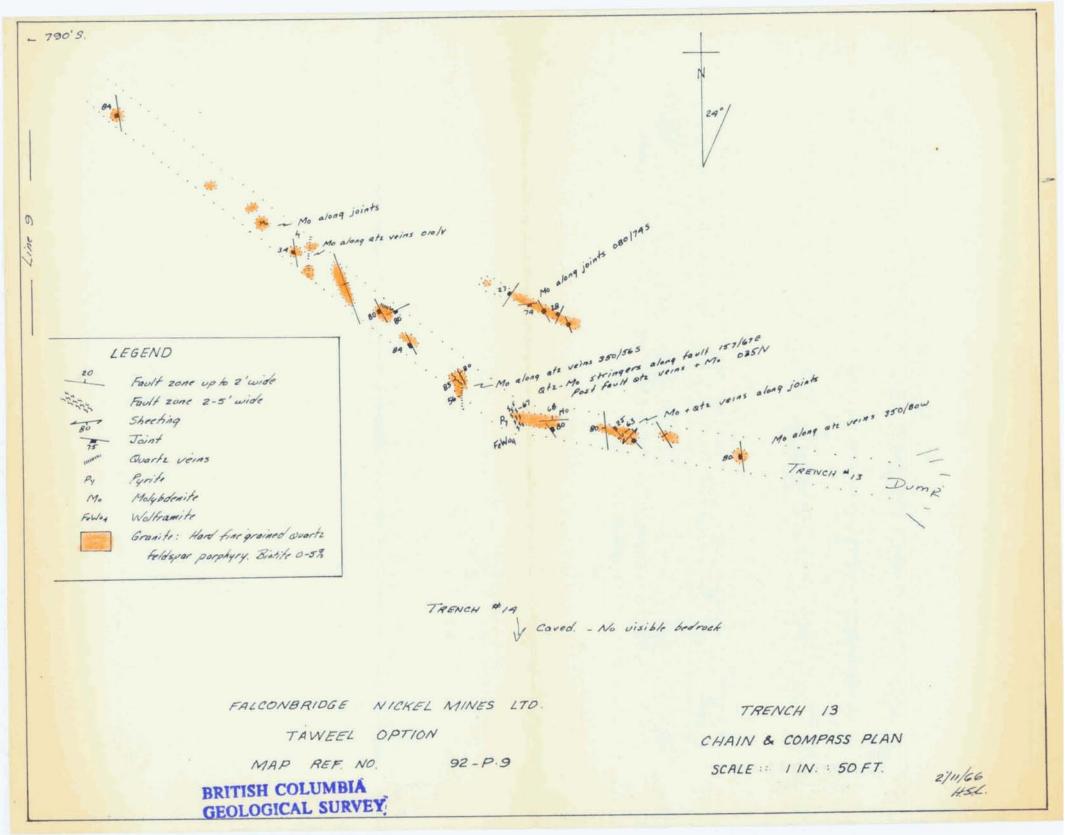
N. M. P. - FORM A

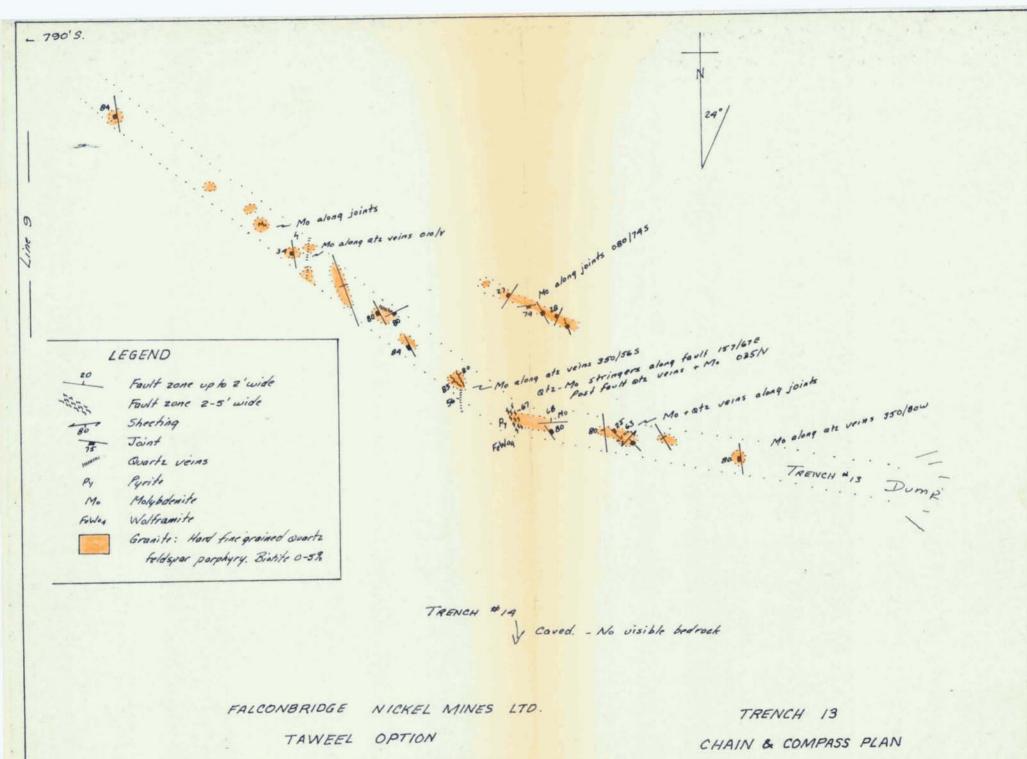
HOLE	NUMBER	F-3			
SHEET	NUMBER_	1	en, en f		
			•		

ELEVATION OF COLLAR DATUM BEARING BEARING DIRECTION AT START: DIP TO E of line 6, 1470' S 230' DIRECTION AT START: DIP TO E of line 6, 1470' S 230' DIRECTION AT START:		STARTED	11 Sep 13 Sep				
		ULTIMATE DEPTH		126 ' 500 (*)			
DEPTH FEET	FORMATION	FROM TO	WIDTH OF SAMPLE			10 10 10 10 10 10 10 10 10 10 10 10 10 1	
0 - 15	Casing.						
- 126	Solft banded chloritized greenstone with						
	serpentinized slip faces 30° to core for first						
· · · · · · · · · · · · · · · · · · ·	30 ft. (=every 2 inches). Minor pyrite		:				
	along joints. Felsite dykes @ 104 - 109.5 and					The state of the same	
	117 - 119.			·			
	END OF HOLE.		·				
Adams and a second							
	H.S.L.						
· · · · · · · · · · · · · · · · · · ·							
			· · · · · ·		:		
			<u> </u>				
							<u> </u>

PROPERTY	TAWEEL OPTION

HOLE NUMBER	F-4	
SHEET NUMBER	1	
	0	1,36

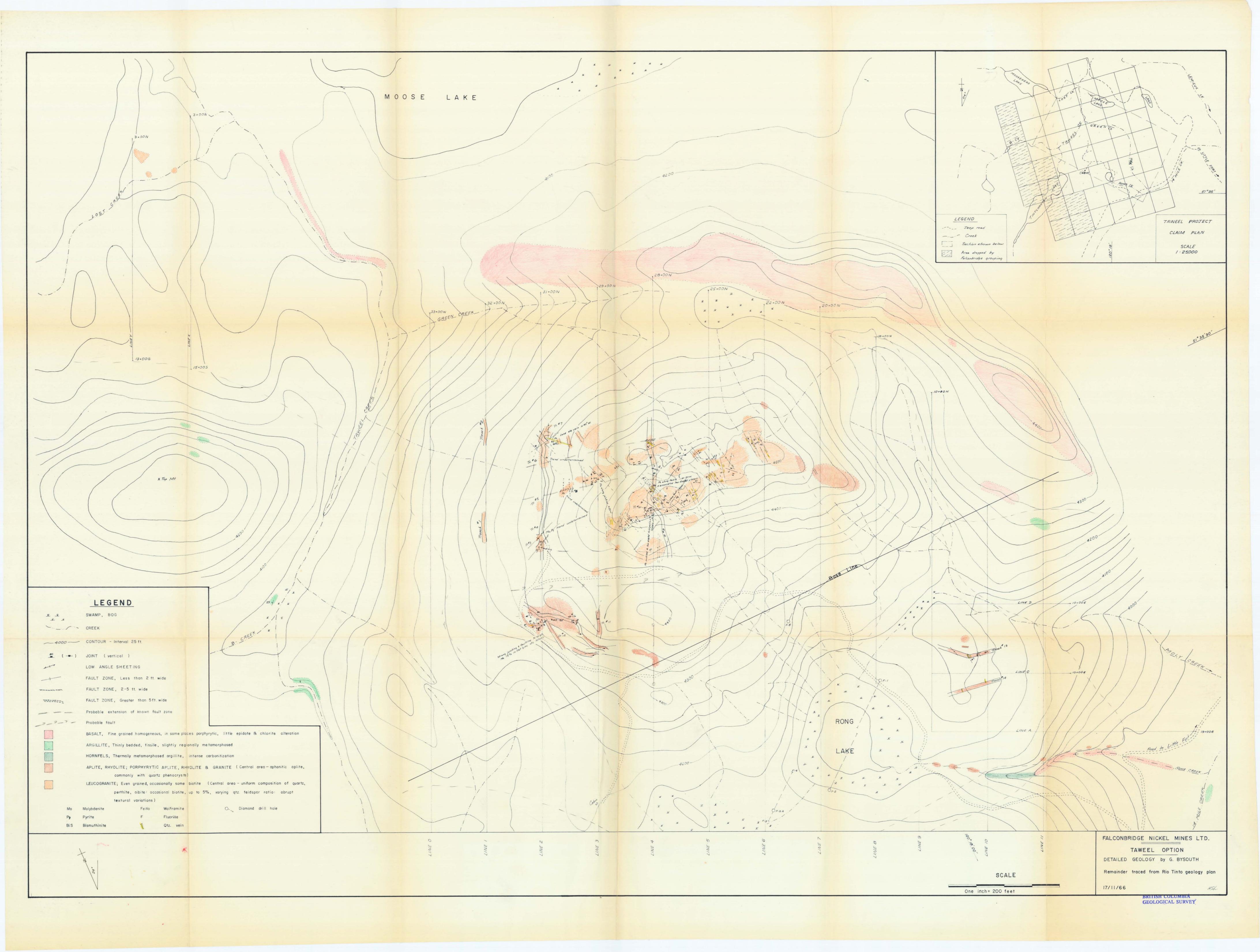

×1.1									
LOCATION: 70° E of Line 6, 1470°S ELEVATION OF COLLAR		STARTED 16 September 1966							
		COMPLETED	22 September 1966						
DATUM	0	ULTIMATE DEPTH	436'						
DIRECTION AT START: DIP.	050 -45	PROPOSED DEPTH	550 (≛)						
DIRECTION AT START. DIP.									
DERTH EEET	FORMATION	FROM TO WID	TH						

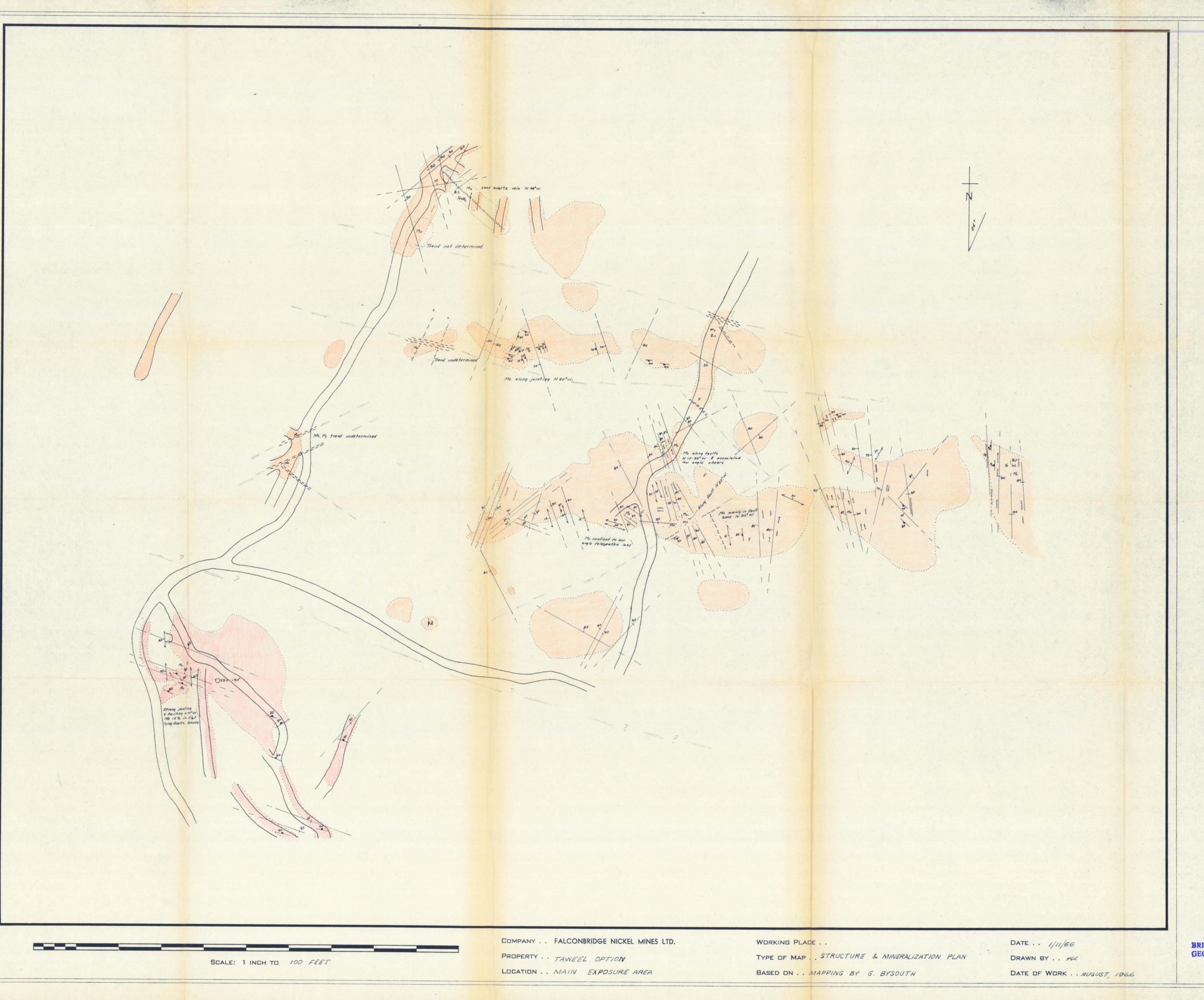

IRECTION AT ST	ART: DIP.	PROPOSED DEPTH	l				
DEPTH FEET	FORMATION	FROM TO	WIDTH OF SAMPLE				
0 - 18	Casing.			, ·			
- 99	Banded chloritized greenstone (tuff?) banding	¥.					
The state of the s	30° to core. Minor pyrite & less molybdenite along						
	occasional slip faces parallel to banding.						
- 100.5	Hard light grey-green aplite.	-				. 6/2 y	
- 101.5	Fine grained greenstone.			, , , , , , , , , , , , , , , , , , ,			
- 1 56	Hard fine grained light grey quartz feldspar porphyry						
	with aplitic groundmass. Quartz & pink K feldspar					4 4 4	
	phenocrysts - 1/10°. Some feldspar kaolinized. Epido	te					
	& minor pyrite along joints. Minor molybdenite along						
	joints at 107',138'. Aplite dykes 108-109, 112-113,						
· · · · · · · · · · · · · · · · · · ·	128 - 128.5.					* *	-
- 168	As above but darker in color. (more mafic?)						
- 191	As 101.5 - 156						
- 194	As 168 - 191						
- 202	As 101.5 - 156						
- 216	As above, but more heavily kaolinized & epidotized						
- 224	As 101.5 - 156						
- 255	Darker in color & greater % K feldspar.			-			
- 436	Inter-mixed sections of light and dark colored quartz mafics. Pinker due to greater percentage of pink fel 269-273. Molybdenite-bearing quartz stringers 1/10	dspar, white	r due to i	nore kaol	inization.	er percen Aplite	tage dyke

PROPERTY	TAWEEL	OPTION	
IV. I			

HOLE NUMBER	F-5	
SHEET NUMBER	1	
	Λ	288

LOCATION XXXX	200° E of line 6, 150° S.	CTARTER		10	Septembe	n 1066		
ELEVATION OF COLLAR DATUM BEARING DIRECTION AT START: DIP.		STARTED				1966		
		COMPLETE			-001	1700		<u></u>
		ULTIMATE DEPTH						
DIRECTION AT STA	RT: DIP -15	PROPOSED	DEPTI	1	500 (*)			
DEPTH FEET	FORMATION	FROM	ТО	WIDTH OF SAMPLE				
0 - 60	Casing.					1		
- 167	Hard fine grained quartz-feldspar porphyry. Epidot	ized						
e 1	sections. Occasional quartz-pyrite & quartz-					· · · · · · · · · · · · · · · · · · ·		
	molybdenite stringers. @ 137' = 1/8" graphite string	ger			,			
	20° to core. Softer-more heavily kaolinized to 140	•						
	155'-160' = 5% biotite. 160'-167'= 20% recovery							
	260'-265' - graphite seams.		,					
- 215	As above but coarser grained. Pink K. feldspar						1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
	phenocrysts $\frac{1}{4}$ " - $\frac{1}{2}$ ".							
- 288	As 0 - 167. Aplite dyke 242-243							
	@ 288 - broken crank shaft. HOLE STOPPED.							
	H.S.L.							
			,					
W. T. C.			-					
				1,3				




92-P.9

MAP REF. NO.

BRITISH COLUMBIA GEOLOGICAL SURVEY

2/11/66

MAP REF. No.: 92-P

LEGEND

aud. Quartz veins

Low angle sheeting

Fault zone less than 2' wide

Fault zone greater than 5' wide

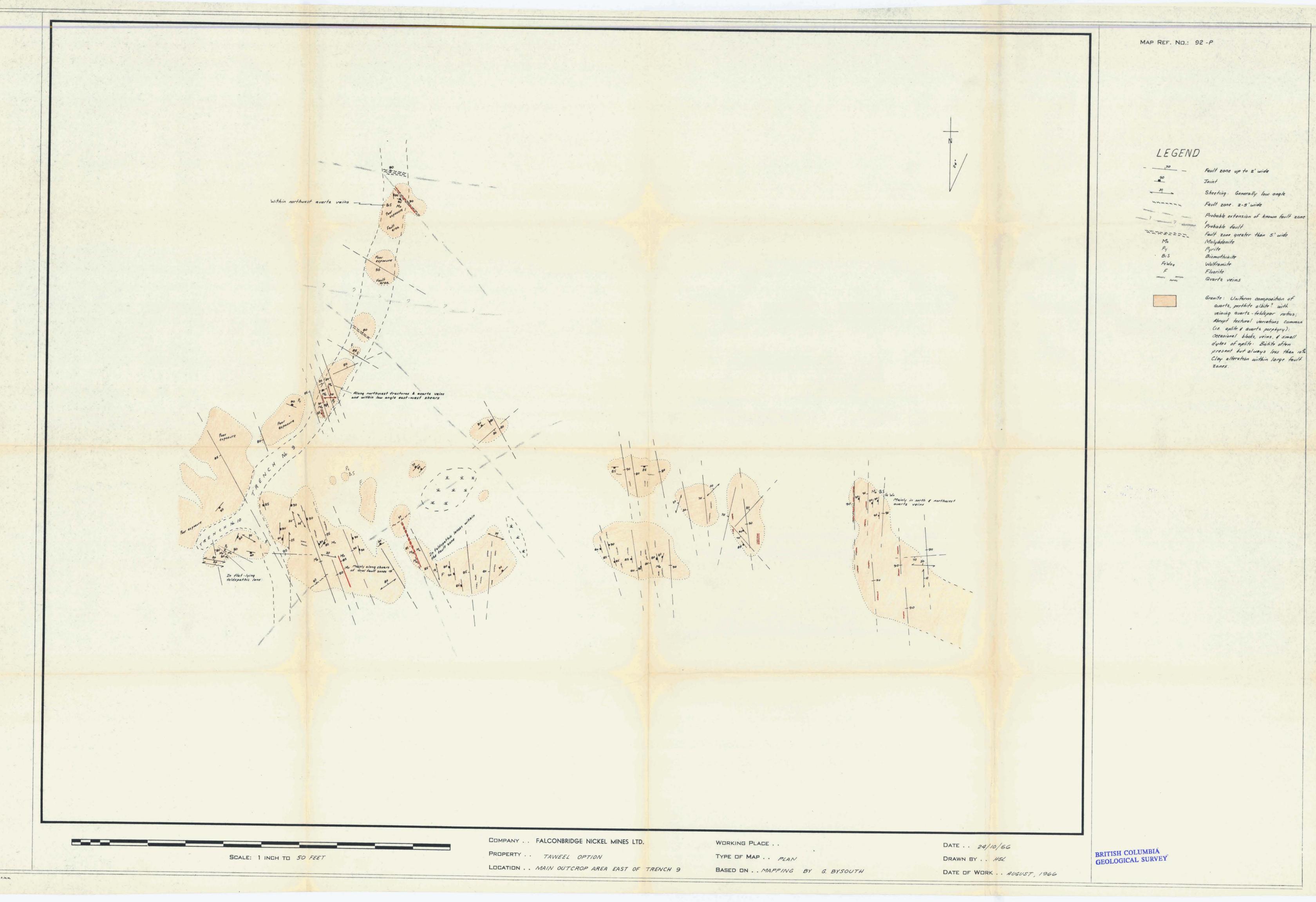
Probable extension of known fould zone

Probable fault

Mo Molybdointe

Py Pyrite

Bis Bismothinite


Wolframite
Fluorite

GRANITE: uniform composition

of avartz, perthite albite, occasional biotite up to 5% varying avartz-foldspar ratio. Abrupt textural variations

APLITE: Fine grained to appaintie, commonly with avartz phenoorysts.

BRITISH COLUMBIA GEOLOGICAL SURVEY

8 C 1 L - 742 - F. H. M.