REPORT ON EXPLORATION AND DIAMOND DRILLING ON THE NIMPKISH GROUP MAY, 1984 T. Bruland Report #129-086-84 MTS 92 L/6 E

B0+8

FALCONBRIDGE

Memorandum

Date:	October 10, 1984
To:	Expl. 382/84 L.C. Kilburn

Copies to: From:

J.B. Gammon

Files

Subject: Report #129-086-84 Drilling at Nimpkish

T. Bruland, E. Specogne

Please find enclosed Tor Bruland's report on drilling carried out on the Nimpkish property this spring. No extensions to the mineralized showing were found and the VLF anomaly appears to be due to a water filled shear. The option has been terminated.

J.B. Gammon

JBG:ktt Encls.

REPORT ON EXPLORATION AND DIAMOND DRILLING

ON THE

NIMPKISH GROUP

NANAIMO MINING DIVISION

Longitude 127 07'W Latitude 50 15'N NTS 92L/6E

OWNER: FALCONBRIDGE LIMITED OPERATOR: FALCONBRIDGE LIMITED

Report No. 129-086-84

Tor Bruland May 1984

TABLE OF CONTENTS

Introduction	1
Location and Accessibility	1
Claim Information	4
History	4
Objective of Current Program	5
Geology	5
Karmutsen Formation	7
Island Intrusion	7
Mineralization	7
Geochemical Survey	8
Diamond Drilling	9
Conclusion and Recommendation 1	3
Statement of Cost 1	4
References	5
Statement of Qualification 1	6

APPENDICES

Geochemical Soil Sample Result	Appendix	Α
Rerun of Anomalous Pulps	Appendix	В
Drill Logs	Appendix	С
Core Sample Assays	Appendix	D

ILLUSTRATIONS

Figure	1:	Location Map 2
Figure	2:	Claim Map
Figure	3:	Geology Map 6
Figure	4:	Drill Hole Locationin pocket
Figure	5:	Cross Section A - A' 10
Figure	6:	Cross Section B - B' 11
Figure	7:	Cross Section C - C' 12

TABLE OF CONTENTS

Introduction1Location and Accessibility1Claim Information4History4Objective of Current Program5Geology5Karmutsen Formation7Island Intrusion7Mineralization7Geochemical Survey8Diamond Drilling9Conclusion and Recommendation13Statement of Cost14References15		
Location and Accessibility	Introduction	
Claim Information.4History.4Objective of Current Program.5Geology.5Karmutsen Formation.7Island Intrusion.7Mineralization.7Geochemical Survey.8Diamond Drilling.9Conclusion and Recommendation.13Statement of Cost.14References.15	Location and Accessibility 1	
History4Objective of Current Program5Geology5Karmutsen Formation7Island Intrusion7Mineralization7Geochemical Survey8Diamond Drilling9Conclusion and Recommendation13Statement of Cost14References15	Claim Information 4	
Objective of Current Program.5Geology.5Karmutsen Formation.7Island Intrusion.7Mineralization.7Geochemical Survey.8Diamond Drilling.9Conclusion and Recommendation.13Statement of Cost.14References.15	History	
Geology	Objective of Current Program 5	
Geology5Karmutsen Formation7Island Intrusion7Mineralization7Geochemical Survey8Diamond Drilling9Conclusion and Recommendation13Statement of Cost14References15	objective of earliest regiment to the second s	
Karmutsen Formation7Island Intrusion7Mineralization7Geochemical Survey8Diamond Drilling9Conclusion and Recommendation13Statement of Cost14References15	Geology	
Island Intrusion.7Mineralization.7Geochemical Survey.8Diamond Drilling.9Conclusion and Recommendation.13Statement of Cost.14References.15	Karmutsen Formation	
Mineralization7Geochemical Survey8Diamond Drilling9Conclusion and Recommendation13Statement of Cost14References15	Island Intrusion	
Mineralization 7 Geochemical Survey 8 Diamond Drilling 9 Conclusion and Recommendation 13 Statement of Cost 14 References 15		
Geochemical Survey 8 Diamond Drilling 9 Conclusion and Recommendation 13 Statement of Cost 14 References 15	Mineralization	
Diamond Drilling. 9 Conclusion and Recommendation. 13 Statement of Cost. 14 References. 15	Geochemical Survey	
Conclusion and Recommendation 13 Statement of Cost 14 References 15	Diamond Drilling	
Statement of Cost	12	
Statement of Cost	Conclusion and Recommendation	
References	Statement of Cost	
	References	
Statement of Qualification	Statement of Qualification	

APPENDICES

Geochemical Soil Sample Result	Α
Rerun of Anomalous Pulps Appendix	В
Drill Logs	С
Core Sample Assays	D

ILLUSTRATIONS

Figure	1:	Location Map 2
Figure	2:	Claim Map
Figure	3:	Geology Map 6
Figure	4:	Drill Hole Locationin pocket
Figure	5:	Cross Section A - A' 10
Figure	6:	Cross Section B - B' 11
Figure	7:	Cross Section C - C' 12

INTRODUCTION

Detailed geochemical soil sampling around isolated high Au values and a Ag anomaly, from 1983 geochemical soil sampling, were carried out on the Nimpkish Group (Fig. 1 & 2) in February, 1984. The sampling was done over an area of 100 m by 100 m on 25 m lines with 25 m station spacing over the high Au values, and on 50 m lines with 25 m station spacing over the multiple point Au anomalies. The Ag anomaly in the northwest corner of the property was originally sampled on 200 m lines and 100 m stations. One line with 50 m stations was put in before weather condition stopped the work. A total of 190 samples were taken, all returned low Au and Ag values. The pulps with high Au and Ag values from 1983 were analysed again and also returned low values so the remaining sampling of the Ag anomaly was aborted.

A 366.4 m diamond drill program was carried out on the property between April 4 and April 14 to test the VLF-EM anomaly under the main showing. All the core was sampled in 3 m' interval and assayed for Au, Ag, Cu, Pb, Zn and Mo. No anomalous values were received from the assaying and no major mineralization was found in the core.

No assessment report will be recorded since the property is in good standing to May 1989 which is enough for it to be returned to Efrem Specogna with one year assessment work.

LOCATION AND ACCESSIBILITY

The property is located on northern Vancouver Island, B.C. on the west shore of Nimpkish Lake, 12 km south of Port McNeil and 310 km northwest of Vancouver, on the Alice Lake, topographic sheet (NTS 92L/6E) (Figure 1).

Access to the property is gained by using the Canadian Forest Products logging road, the Kilpala main line, which intersects the Island highway at the north end of Nimpkish Lake (Figure 1).

The main showing is located in a small rock quarry beside branch 800 which cuts the main line at mile 14. (Figure 2).

۲.

CLAIM INFORMATION

The Nimpkish Group mineral claims consist of the Following claims:

Name	<u>Record No.</u>	<u>Units</u>	<u>Hectars</u>	<u>Expiry date</u>
Marino	1150	18	450	May 7/89
Fido A	1159	1	25	May 8/89
Fido B	1160	1	25	May 18/89
Fido C	1161	1	25	May 18/89
Fido D	1162	1	25	May 18/89
Fido E	1163	1	25	May 18/89
Fido F	1164	1	25	May 18/89
Fido G	1165	1	25	May 19/89
Fido H	1166	1	25	May 18/89
Kilpala 1	1167	1	25	May 18/89
Kilpala 2	1168	1	25	May 18/89
Kilpala 3	1169	1	25	May 18/89
Kilpala 4	1170	1	25	May 18/89
Kilpala 5	1171	1	25	may 18/89
Kilpala 6	1172	1	25	May 18/89

The Nimpkish Group consists of 32 units and covers a total of 800 hectares.

The claims cover a hill with a peak of 550 m at the north side of the Kilpala River. The claim area has been almost completely logged off with only two relatively small stands of trees left. The logging activity has, therefore, provided excellent coverage in the form of new roads and uncovered new outcrops.

HISTORY

Prospecting by E. Specogna along logging roads in early 1982 led to the discovery of a sphalerite-chalcopyritepyrite-quartz vein system in a shear zone within Karmutsen massive and amygdaloidal basalts. Further prospecting in the general area outlined a number of other pyrite-chalcopyritequartz veinlets in a nearby Island granitic intrusion. Specogna staked the area in early May and optioned the property to Falconbridge Ltd. in January 1983.

Rock samples submitted from mineralized quartz veins in 1982 ran .27% Mo, .14% Cu, 15.4 g/t Au and 65.2 g/t Ag, .83% Cu, 11.5% Zn, 31.0 g/t Au and 48 g/t Ag.

With the possibility of optioning part of Falconbridge's interest in the property Chevron Canada Resources Limited completed a property examination in April 1983 to determine the extent and nature of the mineralization. A program consisting of geological mappping and prospecting and soil sampling (300 samples) was conducted along all logging roads and on some traverses between roads. One north-south VLF-EM traverse as completed in the area of the showing. No variation was obtained in the area of the showing. They located a couple of small Au, Cu-Mo and Zn anomalies. They concluded that the mineralization is associated with quartz veins withing shear zones that cut the Karmutsen massive basalt. These shear zones contain local high grade lenses. The high grades within the shear zones may be one or more lenticular bodies of pyrite and chalcopyrite that have been caught up in the shear. The Karmutsen is known for its local high grade pods of mineralization and Chevron thought that no more work was warranted.

Additional samples of mineralized quartz veins in June 1983 gave 39.1 g/t Au and 52 g/t Ag.

Geochemical and geophysical programs were carried out on the property in 1983. A total of 693 soil samples were collected, the results outlined several Au and Ag anomalies, a high Cu-Mo anomaly and an extensive Zn anomaly.

A VLF-EM survey in the central part of the property covering the main showing outlined a strong conductor with a northeast strike, under the main showing.

OBJECTIVE OF CURRENT PROGRAM

Last years program had several Au and Ag anomalies. Most of the Au anomalies were single high values and a detailed soil sampling around these anomalies was intended to outline the direction and extent of the anomalies. These anomalies would then be trenched in a follow-up program.

A three hole diamond drill program was done to determine the extent of the mineralized zone and determine the type of conductor outlined by the VLF-EM survey.

GEOLOGY

The rocks that underlie the claim block fall into two units: (Figure 3) (1) Karmutsen Formation - massive, amygdaloidal and porphyritic basalt flows. (2) Island Intrusion - quartz monzonite to granodiorite intrusive plug.

Karmutsen Formation

The Karmutsen Formation is prevalent in the area. On Vancouver Island it is composed of 10,000 feet of monotonous massive, amygdaloidal and pillowed basalt flows. Only the massive and amygdaloidal flows were found on the claim block.

Throughout the claim block the flows appear fresh, green to dark green in colour, fine grained with occasional phenocrysts of feldspar and amygdules filled with quartz and epidote. Epidote veins, lenses and fragments up to 15 cm are found in parts.

Pyrite occurs as fine disseminations in some of the flows and is occasionally associated with some of the epidote-quartz veins.

In several outcrops volcanic layering can be determined because of the presence of flow-top breccias with a more massive, porphyritic base to the flows. The flows vary from .6 m to greater than 3.0 m thick where recognizable. In all locations where layering is visible a very shallow dip is indicated to the west.

The majority of the alteration occurs along the shear zone which follows the regional structural trends (northerly and northwesterly). The alteration is in the form of chlorite, sericite and quartz and calcite veining which leaves the rock very soft and crumbly.

Island Intrusion

This intrusion is a quartz monzonite stock that intrudes the Karmutsen basalts. No actual contacts have been seen between the stock and the basalt. However, one quartz monzonite dyke was seen cutting the basalts.

The quartz monzonite is a medium grained, equigranular granitic rock with potassium feldspar, plagioclase, quartz and hornblende. The rocks display no alteration except for one locality where potassium feldspar veins were noticed.

MINERALIZATION

The mineralization is primarily associated with quartz veins which vary in width from one centimeter to eight centimeters in quartz boundins. The veins are comprised of quartz, sphalerite, chalcopyrite, pyrite and/or molybdenite. The best mineralization occurs in quartz veins within an anastomosing shear zone that is 18 meters in width, (the main showing on figure 2 and 4. The central six meters of the shear zone has quartz veins while the outer edges of the shear zone have calcite veins with no mineralization. High grade samples have produced values such as 11.5% Zn, .83% Cu, 39.1 g/t Au and 65.2 g/t Ag. A second shear zone with quartz-chalcopyrite-pyrite mineralization was located in Karmutsen basalts. Analysis of samples from this zone gave little encouragment but showed that mineralization occurs along shear zones in two directions, one northerly, the other northwesterly.

In addition to this quartz vein associated mineralization two pods of massive pyrite and chalcopyrite were found. The pods are small lenticular bodies (30 cm wide 1.5 metres long). High grade samples of these bodies ran up to 2% Cu, however the dimensions are very small. The host rocks are totally unaltered, massive basalts.

GEOCHEMICAL SURVEY

Detail sampling of 7 isolated and 2 multiple Au anomalies throughout the property and 1 multiple Ag anomaly in the northwestern corner of the property located during the 1983 program. A total of 190 soil samples were collected from the B horizon at usually 10-20 cm depth. If B horizon was missing no sample was collected. The samples were put in Kraft sample bags and sent to CDN Resource Lab. Ltd., #8-7550 River Road, Delta, B.C. V4G 1CB. The samples were analysed for Ag by AA, a .5 g sample is digested with 5 ml of 20% HNo3 at 90 deg. C for 1.5 hours and then an additional 5 ml of 20% HNo3 is added before analysed by AA. Au analyses were done by a compilation of F.A. and A.A., a 15 g sample done by F.A. (3 Ag was added so Ag analyses can not be done), the Ag bead is dissolved by .5 ml HNo3 (dissolves Ag) and 1.5 ml HCI is added to dissolve Au and diluted by 3 ml H2O and analysed by AA.

On the isolated Au anomalies a detailed grid with 25 m lines and 25 m stations was done in a 100 m by 100 m area centered over the anomaly, for a total of 22 samples. On multiple Au anomalies 50 m lines with 25 m stations were done over the anomaly. In the area of the Ag anomaly previous sampling was done on 200 m lines and 100 m stations, and it was now supposed to be done on 100 m lines and 50 m stations extending 600 m west of the previous grid. Only 1 line was done before the program had to be postponed due to extreme weather conditions.

No anomalous samples were found for either Au or Ag. The samples returned a high of 30 ppb Au and .8 ppm Ag. Due to these low values it was decided to re-analyse the pulps of the 1983 anomalous samples. The pulp was split and sent to two different laboratories, CDN Resource Lab. Ltd., Delta, B.C. and ACME Analytical Lab. Ltd., 852 E. Hastings, Vancouver, B.C. Both laboratories analysed the pulp by AA, CDN Resource Lab. by the previously described method while ACME Analytical Lab. took a .500 gm sample and digested it with 3 ml of 3:1:3 HCl to HNo3 to H20 at 90 deg. C for one hour. The sample is then diluted to 10 mls with water and anlysed for Ag by AA. For Au a 5 gm sample was ignited with a hot aqua regia extraction and analysed by AA.

No anomalous Ag values were reproduced from either of the laboratories and only a couple of the Au values were reproduced. Due to these negative results, the remaining sampling of the Ag anomaly was abandoned and no trenching of these anomalies is recommended.

DIAMOND DRILLING

A three hole (366.4 m) diamond drill program was carried out to test the VLF-EM anomaly under the main showing. The maximum VLF-EM values calculated from Fraser Filter were estimated to be at about 100 m below the surface. The anomaly seems to be dipping weakly to the east, and the pyrite-sphalerite vein with the high Au values in the main showing also dips gently to the east so all the holes were collared to the east of the anomaly with a steep western dip to intersect the anomaly, at its maximum, at about 100 m below surface. (Fig. 4).

All three holes (Fig. 5, 6 & 7) intersected Karmutsen volcanics. A fine grained to porphyritic basalt with locally up to 10% anhedral quartz and/or hornblende phenocrysts. Short propylite intersections were found throughout, they are believed to be propylite fragments in the basalt similar to those found on the surface. Minor to moderate disseminated epidote is present throughout the basalt. Disseminated pyrite and locally magnetite and hematite (hematite up to 25%) are present.

Hole 84-1 intersected 3 felsic dykes of .1 m, .2 m and .5 m. The felsic dykes are medium grained, light grey equigranular, with minor disseminated epidote and/or chlorite. Fine disseminated magnetite and isolated pyrite lenses 1-3 mm.

Two mineralized quartz veins were intersected in hole 84-1 at about 70 m, these were a 1 cm quartz-pyrite vein with minor molybdenite and a 4 cm quartz vein with minor pyrite and sphalerite.

G-B (Sizes)	0100000	ALC: NOT THE OWNER.			COMPANY ROUTING	
COLUMN TWO IS NOT	Contraction of the local division of the loc	A.C. STREET, S	COLUMN STATEMENTS	A DECEMBER OF THE OWNER OF	AT IS A COMPANY OF A	State of the second
1000000	B 00000				Contract Contract	And the second second second

- 10

1

١

FALCONBRIDGE LIMITED PROPERTY: NimpkishGroup LOCATION: Vancouver Island B.C. TYPE OF MAP: D.D.H. Section A-A' Looking North BASED ON: Feildwork by T.B. DATE OF WORK: April 1984 N.T.S.92-L-6 FIG. NO.: 086-84-5

Depth 146.9

SCALE: 1:500

- 11 -

1

FALCONBRIDGE LIMITED

PROPERTY: Nimpkish Group

LOCATION: Vancouver Island B.C.

TYPE OF MAP: D.D.H. Section B-B'Looking North

BASED ON: Feildwork by T. B.

DATE OF WORK: April 1984

N.T. S. 92-L-6 FIG. NO.: 086-84 6

12 -

١.

FALCONBRIDGE LIMITED PROPERTY: Nimpkish Group LOCATION: Vancouver Island B.C. TYPE OF MAP: D.D.H. Section C-C'Looking North BASED ON: Feildwork by T.B. DATE OF WORK: April 1984 N.T.S.92-L-6 FIG. NO.:086+84-7 The core was logged and split on site. Three metre samples were collected throughout the core, no part of the core justified a more detailed sampling. The core samples were analysed by CDN Resource Lab. Ltd. #8-7550 River Road, Delta, B.C. V4G 1C8. Au and Ag were analysed by standard F.A., while Cu, Pb, Zn and Mo were done by a massive digestion. The samples were mixed with 2 ml HClO4, 10 ml HNO3 and 10 ml HCl, on a hot plate it was digested to fumes and taken up in 10 ml HCl and an Al solution was added and diluted to 100 ml and analysed by standard A.A. The samples returned background values for Ag, Cu, Pb, Zn and Mo. A couple of samples had Au > .05 g/t with a high of .6 g/t from basalt.

CONCLUSION AND RECOMMENDATION

Poor recovery and blocky ground towards the bottom of each of the 3 diamond drill holes indicate that the VLF-EM anomaly is a major water filled fault and not a mineralized zone. The core did not intersect any mineralized veins similar to the 15 cm massive pyrite-sphalerite vein found at the main showing and the main showing is therefore concluded to be a massive sulphide lense of minor extent.

No further work is justified on the Nimpkish group and it is recommended that it be returned to Efrem Specogna. The property is now in good standing to May 1989, which is in excess of assessment work needed for returning the property to the Vendor according to the Agreement. No assessment work will be filed from this program.

STATEMENT OF COSTS

A: <u>Geochemical soil sampling</u>

Room & board 2 men for 8 days @ \$35.00	\$ 280.00
Project geologist Feb. 12/84-Feb. 19/84	
8 days @ \$140.00	1,120.00
Assistant Feb. 12/84-Feb. 19/84	
8 days @ \$75.00	600.00
Travel Vancouver-Nimpkish return	87.00
Truck rental 8 days @ \$30.00	240.00
Compilation	
Project geologist 7 days @ \$140.00	980.00

B: <u>Diamond</u> Drilling

Room & board 6 men 11 days - Port McNeil	2,167.98
Project geologist April 4/84-April 14/84	
11 days @ \$140.00	1,540.00
Core splitter April 4/84-April 14/84	
11 days @ \$75.00	825.00
Diamond drilling 336.4 m	26,715.81
Travel Vancouver-Nimpkish, 2 men	61.45
Compilation and report	
Project geologist 10 days @ \$140.00	1.400.00
Drafting and preparation 2 days @ \$75.00	150.00

C: <u>Assaying</u>

190	Soil samples	1,282.50
40	Pulps (CDN)	243.00
40	Pulps (ACME)	240.00
116	Core samples	3,207.40

\$41,140.14

REFERENCES

Bruland, T. (1983)	Report on Geochemical and VLF-EM Survey on Nimpkish Group (unpublished report).
Fraser, D. C. (1969)	Countouring of VLF-EM data, Geophysics Vol. XXIV, No. 6.
Fraser, D. C. (1981)	A review of some useful algorithms in geophysics, CIMM, Vol. 74, No. 828.
Walton, G. (1983)	Geological and geochemical program Marino, Kilpala 1–6 and Fido A–H mineral claims Nimpkish Lake, B.C. (unpublished report).

STATEMENT OF QUALIFICATION

FOR

TOR BRULAND

Mr. Tor Bruland graduated from the University of Bergen, Norway in 1977 with a Cand. Mag. (B. Sc.) and in 1980 with a Cand. Real (M. Sc.), and has work as an exploration geologist in B.C. and the Yukon since 1980. He is a member of the Geological Association of Canada.

Yours truly, Tor Bruland

APPENDICES

0

 \bigcirc

APPENDIX A

ł

 \bigcirc

GEOCHEMICAL SOIL SAMPLE RESULTS

C N RESOURCE LABORATORIES LTD. RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL (604) 946-4448

MAR 2 1984

RECEIVED

ASSAY REPORT

Falconbridge Limited 6415 - 64 Street Delta, B.C. TO:

F١	LE	NÖ.	84	4-	30

PROJECT:

Ans'd.

March 2, 1984 DATE:

ATTENTION: Mr. J. Gammon

Sample Description	Au (ppb)	Ag (ppm)	Geochemical analyses
NB L94 + 50N			
101 + 00E	V 5	1	
25E	V 5	L	. 영영 : 동안 : 19 20 19 19 19 19 19 19 19 19 19 19 19 19 19
50E	v L	te yr ef gydaethau e	신 그는 것이 이 것을 통해도 많다. 영화
en la productiva de 75E de la	٧L	<u> </u>	
NB L94 + 50N			
102 + 00E	٧L		
NR 119 + 00E	۰L	.2	
NR 25E	91	.1 , 2, 4, 7, 1	
NR 75E			
NR 75E	1		
NR 120 + 00E	٨F		
NR L94 + 75N		영 (비사)(1998), 1987 (1997) 영국 (1997) (1997) (1997) (1997)	
119 + OOE	✓ 10	.8	
25E	1 ()	.1	
SOE	<u>~5</u>		
75F		6.64 .1 .86.87	
120 + 00F			
NB 1.95 + DON			
101 + 25F	VL		
75Ĕ	VÎ.		
NR 119 + 25E	~L		
NB 75E	v L		
NR L95 + 25N			
119 + 00E	~ 5		
25E	v 5	.1	
	✓ L	L	
75E	v 5	L	
NB 120 + 00E	VL	L	
NB L95 + 50N			
101 + 00E	v L	.1	
25F	v L	and L arge in the	
	× 5	.1	이 것 같아요. 저는 것 같아요. 말했다. 않는 것
75R	v 5	1 (1) L	
102 + 00F	v 5	L	
25F	v L	L	
50F	v 5	.1	
201 75F	v 5	Ē	
103 + 00F	v 5	L T	
200 00D	v 5	Ē	

Rejects retained one month, pulps one year, unless specific arrangements made.

Falconbridge Limited 6415 - 64 Street TO: Delta, B.C.

FILE NO .: 84-30

ATTENTION: Mr. J. Gammon

Sample Description	Au (ppb)	Ag (ppm)	Geochemical analyses
NB L95 + 50N			
103 + 50E	✓ L	11 L 2000 - 20	·동생 : 동생이 같은 것은 것은 것은 것은 것을 가장한 것을 위한 것을 가장한 것을 수 있다. - 동생은 것은 것은 것은 것은 것은 것은 것은 것은 것을 것을 것을 수 있는 것을 것을 수 있다.
75E	✓ 5	.1	
104 + 00E	v L	이 영제 비가 성장을	
NR 119 + 00E	∨ 5	L	
NR 25E	× 5	.2	
NR 50E	~ L	.1	
NR 75E	✓5	L	
NR 120 + 00E	VL	L	
NB L96 + 00N	한 동일 영화 관계		
102 + 25E	v L	.1	
75E	V 10	.1	
103 + 25E	J 5	.1	
75E	√15	.1	
NB L96 + 50N			
103 + 25E	V L	.1	
75E	v 5	L (1997)	
104 + 00E	V L	L	
117 + OOE	✓ 5	.3	
25E	v L	.1	
50E	v 10	-1	
75E	~ 10	.1	
NB L96 + 75N			
117 + 00E	~ L	.1	
25E	~L	.2	이 같은 것이 있는 것이 있는 것이 같은 것이 있다. 가격한 것이 가격한 것이 있는 것이 있는 것이 있다. 같은 것이 같은 것이 있는 것이 같은 것이 같은 것이 있는 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 없다. 것이 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 있는
50E	• L	.1	
75E	▼ Ľ	. 1	사람은 가장
NB L97 + 00N			홍정 동생이 지난 것이 같은 것이 많이 많이 많이 많이 했다.
117 + 25E	• L	.1	가 있는 것 같은 것이 있는 것이 있는 것이 있는 것은 것이 있는 것이 있는 것이 있다. 가방에 있는 것이 있는 같은 것은 것은 것이 같은 것이 있는 것
NB L97 + 25N			
117 + 00E	v 5	•2	
25E	٨Г	.1	소가 해외에 가지 않는 것은 것이 있는 것이 있는 것이 같은 것이 있었다. 이가 가지 않는 것이 있는 것이 있다. 가지 않는 것이 있는 같은 것은 것은 것은 것이 있는 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것이 있
50E	٧L		특별 방법에 있는 것은 것이 있는 것이 있는 것이 있는 것이 있었다. 이상 방법에 가지 않는 것이 있는 것이 있는 방법에 있는 것이 있
151 7 5E	→ 5 × 5	.1	경험은 방법 이 이 이 것은 이 방법 방법을 위해 가격을 했다. 것은
118 + 00E	<u>~5</u>	.1	
NB L97 + 50N			
117 + 00E	٨٢	.1	
25E	~ 5	.1	
50E	✓ L	L	
7.5E	v 5	L	

Rejects retained one month, pulps one year, unless specific arrangements made.

March 2, 1984 DATE:

and the second se

PROJECT:

CDN RESOURCE LABORATORIES LTD. *8. 7550 RIVER ROAD. DELTA, B.C. V4G 1C8 / TEL (604) 946-4448

O Falconbridge Limited 6415 - 64 Street			FILE NO.: 84-30
Delta, B.C.		가지 유통한 동물 것이라고 한 방법 지원 동물 감사 이 지원	DATE: March 2, 1984
TTENTION: Mr. J. Gammon			PROJECT:
Sample Description	Au (ppb)	Ag (ppm)	Geochemical analyses
NB L97 + 50N			
118 + OOE	∠L	\mathbf{L}	
NB L100 + 50N			
102 + 50E	v 5	•1	
75E	✓ 20		
103 + 00E	v L	.1	방법 가지 않는 것은 것이 다 운영하지 않는 것
25E	✓ L		성 방법이 가장에 가장 것이 가장을 갖춘다. 것은 가장에 가장에 가지 않는다. 이 사람은 이 이 가장 것이 가장을 갖추고 있는 것은 것을 알았는 것을 수 있는 것이다.
NO LIIO + 30 110 + 50E	v 10	•1	
NB L100 + 75N			방수도 전철 방송 영양 방송 등 영화 문화 전체 이가 다니
102 + 25E	✓ 5		
50E	✓ 5		
75E	✓ 1 5	L	
103 + 00E	× 5	. .1	성상 경험에는 동안되고, 소비되었는 외국 (1997년 1978년 1978년 - 1978년 1977년 - 1977년 1977년 1월 1977년 1977년 - 1978년 1977년 - 1978년 1978년 1978년 1978년 - 1978년
25E	√10	.1	사람 관계는 사람은 것이 관계가 가격하는 것이 것이 같은 것이 가지는 것이 가지는 것이다. 1981년 - 1991년 2월 2월 20일 - 1991년 2월
NB L101 + 00N			
102 + 25E	v 5	.1	
50E	r 10	.2	
103 + 00E	, Ĺ	L	
25E	v L	1	
NB L101 + 25N			
102 + 25E	• <u>L</u> .	τ.	
50E		.1	순영하다. 2011년 1월 2011년 1월 2012년 1월 2012년 2012년 2월 2012년 1월 201
75E	v L	1	상품 관계 위험 것은 것은 것은 것을 가지 않는 것이 없다.
103 + 00E	v L	그는 아파 감독과 신지	같은 것이 가지 못했다. 이번 방법은 정말 것이 가슴다. 이상은 것은 것은 것은 것이다. 같은 것이다. 그는 것은 것은 것이 같은 것은 것은 것이 가슴다. 것이 같은 것이 같은 것이다. 것이 같은 것이다.
25E	, 1		
NB 1.101 + 50N			
102 + 25E	ΥL	1	에 가락하는 것이 있는 것이 있는 것이 가지 않는 것이 있는 것이 있는 것이다. 같이 같이 가장 것이 같은 것이 같이 것이 같이 같이 같이 같이 있는 것이 같이 있는 것이다.
50R	vL	그는 것 이 같은 것 같아.	같은 사람은 것은 것은 것이 있는 것이 같은 것이 있었다. 그는 것은 것은 것이 같이 있는 것이 같이 있다. 같은 것은 것은 것이 같은 것이 같은 것이 같은 것을 것을 알았는 것이 같이 있는 것을 것을 것이 같이 있다.
75E	vĒ		사람이 있는 것은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있 같은 것은 것은 것은 것이 같은 것이 있는 것이 있 같은 것은 것은 것은 것이 같은 것이 있는 것이 없는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 있
103 + 00E	• 7		위에는 동안 이 있는 것은 이 가지 않는 것은 것이 있다. 이 가지 않는 것이 있는 것이 있다. 이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 이 가지 않는 것이 가 가지 않는 것이 있는 것이 없다. 이 가지 않는 것이 있는 것이 없는 것이 없는 것이 있는 것이 없는 것이 있는 것이 없는 것이 없
25E	٧L	\mathbf{i}	
105 + 00E	V L	L	
25 E	∧ I		에서 아님께 있다. 여러 가지 않는 것이다.
50E	~L	.1	
75E	vL	.1	
106 + 00E	vL	.1	
NB L101 + 75N			
105 + 00E	VL	L.	
200 00D	vL	.1	
505	v30	L	

Rejects retained one month, pulps one year, unless specific arrangements made.

FILE NO .:

DATE:

84-30

March 2, 1984

CDN RESOURCE LABORATORIES LTD. *8, 7550 RIVER ROAD. DELTA, B.C. V4G 1C8 / TEL (604) 946-4448

TO	Falconh	ridge	Limited
	6415 -	64 St1	reet
	Delta,	B.C.	

TTENTION: Mr. J. Gammor			PROJECT:
Sample Description	Au (ppb)	Ag (ppm)	Geochemical Analyses
NB L101 + 75N			
105 + 75E	~ L		
106 + 00E	٧L	L,	
NB L102 + 00N	이 같은 것이 있는 것은 것이 있는 것이 같은 것은 것이 있는 것이 있		지수는 것은 것이 많은 것이라. 이 같은 것이 같은 것이 같이 많은 것이 같이 없는 것이 없다. 것이 같은 것이 없는 것이 없 것이 없는 것이 없 않이
105 + 25E	V 5	L .	
75E	νL	1	
NB L102 + 25N			
105 + 00E	νL	L	방법 영화 전 방법 영화 전 영화 문화 영화 문화 전 영화 영화 전 영화 영화 전 영화 영화 전 영화 전
25 E	υL	L	
50E	VL		
75E	<u> </u>	L	
106 + 00E	νL		
NB L102 + 50N	승규는 것 같은 것을 받는	관광 승규는 것 것 같은 것	방법 영상 이 방법을 위한 바람이 있는 것이 같이 있는 것이 없다.
105 + 00E	v L	1	
25E	V L	L	
50E	v10		
75E	v L		
106 + 00E		I	
NR L109 + 00N			
104 + 25E	V 1	L	
NR L109 + 50N			
103 + 00E	15		
25E	ΥL	L	
NR L110 + 00N		날 이 같은 것 이 가 같은	
103 + 25E	V L		이 이는 것이 없는 것이 같은 것이 같은 것이 않는 것이 없다.
104 + 25E	V L	.1	
NB L110 + 25N	고양한 감상 같아?		
110 + 75E	la state de L e serve	.1 (1987)	같은 사내는 것은 것이 많은 것이 많을 것이다. 것은 것은 것은 것은 것이 없는 것이 없다. 것이 없는 것이 않는 것이 없는 것이 없 것이 없
NR L110 + 50N			승규는 가지 않는 것은 것을 하는 것을 하는 것을 하는 것을 수 없다.
103 + 50E	VL	<u> </u>	
104 + 00E	√15		김 씨의 전 것은 것은 것이라고, 것은 물건값 한 것이다.
NB L110 + 50N		판단화 여기는 신것	집 집에 가격 물건을 잘 물었다. 가지 않는 것을 못 못 물었다.
110 + 25E	v 10	L	에는 것 같은 것이 있는 것은 것이 같은 것이 없을까? 것이다.
75E	v L	L	
111 + 00E	v L	L	
NB L110 + 75N			
110 + 00E	~ L	L	
25E	✓ L	L	
50E	• L	L	
111 + OOE	5	L	

Rejects retained one month, pulps one year, unless specific arrangements made.

CDN RESOURCE LABORATORIES LTD. *8, 7550 RIVER ROAD. DELTA, B.C. V4G 1C8 / TEL (604) 946-4448

O: Falconbridge Limited 6415 - 64 Street		FILE NO.: 84-30
Delta, B.C.		DATE: March 2, 1984
TTENTION: Mr. J. Gammon		PROJECT:
Sample Description	Au (ppb) Ag (ppm)	Geochemical analyses
NB L111 + 00N		
110 + 25E	∨ 15 L	이 같은 것이다. 그는 말에서는 것이라는 방송 행사가 것
75E	✓ 10	가 가지 않는 것은 것은 것이 있는 것이 있는 것이 있는 것이 가지 않는 것이 있는 것이다. 같은 것은 것은 것은 것은 것은 것이 있는 것은
NB L111 + 25N		
110 + 00E	5 L	
50E	v 5 L	
75E	~ 10 L	
111 + 00E	, S L	
NB L111 + 50N		
110 + 00E	v L	
25E	v L	
50E	v 5	
75E	v 5 L	
111 + 00E	~ 5	
NB L117 + 50N		
106 + 75E	∽L L	
107 + 00E	~L L	7
25E	,L L	
50E	vL L :	
<u>NB L117 + 75N</u>		
107 + 00E	VL L	
50E	VL	
NB L118 + 00N		
106 + 50E		
107 + 29E 50E	L. L.	
NB L118 + 25N 4	가 있는 것이 있는 것이 있는 것이 있는 것에서 가지 않는 것이 있다. 가지 않는 것이 있는 것이 있는 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이 없는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것	
107 + 00E	v 5. L	
50E	✓ 5	
NB L119 + 75N		
110 + OUE	an 🕐 📕 🖓 👘 🖓 👘 🖓 👘	
NB L119 + 50N		
TOA + ORE	n markana (No. 🔿 Carlos and Santa and Santa ang Sa Santa santa ang Santa	
/5E		
110 + OUE	in an Y⊃ ha an bhain Lu in an T	
<u> </u>	<u>vi</u>	
SUE	Ϋ́L Λ	
NR FITA + 12N		
109 + 50E	₩L. L	
/5E		
110 + 25E	VL	

Rejects retained one month, pulps one year, unless specific arrangements made.

Colored and and the second second

UN RESOURCE LABORATORIES LTD. *8. 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

CDN

Falconbridge Limited 6415 - 64 Street TO: Delta, B.C.

84-30 FILE NO .: March 2, 1984 DATE: PROJECT:

Mr. J. Gammon ATTENTION:

いっかく、おうちになるないないないできるにした またがものをため あまいないちょう

いまいというないというないないないないないないで、ないのであるのである

Sample Description	Au (ppb)	Ag (ppm)	Geochemical Analyses
NB L119 + 75N			
110 + 50E	∨ L	L	
NR L124 + 00N			
98 + 00E	5	L	
NB L120 + 00N			방상 방송에는 사망하는 것이 가장 것이다. 그는 것은 것이 가장 가장 있는 것이 가장
109 + 50E	<u> </u>	L.	
75R	ΥĽ	L	
110 + 25E	✓ 30	$\mathbf{\tilde{i}}$	
SOF	✓ T .	L.	
NR 1170 4 25N			
		1	
110 · VOD 758			
435. 925			
4JE			
NB LIZU T JUN			
TOA + ODF	<u> </u>		
/3K	`?		
110 + OOF	• L (3.65)		A
25B	*>	4	
NR L123 + OON			
100 + OOE	5	$\{\cdot,\cdot\}$	
50E	15	••• -L	
101 + 50E	10	L	
102 + 00E	25		
50E	5		
103 + 00E	10	L	
* 00E	L	L	
50E	5	4	
104 + 00E	5	1	
50E	L	L	
105 + 00E	L	1	
SOE	5	L	
106 + 00E	30	L	방송 방송 사람이 가는 것 같은 것이 없는 것이 같이 많이 나라.
NR L124 + 00N	이지 사람성 (값	신호 전 전 전 전 전 전	
97 + NOF		이것 같은 것 같아요.	
507	5	영상 2월 20일 17일 - 20일 2월 20일 11일 - 1939 - 1939 - 1931 - 2019 - 2019	방송성은 말을 다시 사람들 것 같아요. 영송 전문
08 ± 50F	ξ.		
70 T JUE 00 L 007	у с	- 1999 - ₩ 1999 - 1 99 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999	
97 T UUL		an an an An an a' an	L indicates less than 5 ppb Au
JUE	ала (р. 2 7) ала айс Ала	L	and less than .1 ppm Ag

Rejects retained one month, pulps one year, unless specific arrangements made.

APPENDIX B

RERUN OF ANOMALOUS PULP

RESOURCE LABORATORIES LTD. ROAD DELTA B.C. V4G 1C8 / TEL (604) 946-4448

								· · .	
	A State		1 - A 🔶 - C		1.1.1	- 11 - 140	- -		
_ L' 🔿	100	min	~ ~ /		`	1 7	~	1. I I	
га	سانيا بلد		10 11 1	14			· • •		
								72 - X	
							1.1.1.1	2 C - C	
P			1 8	~	£				
жл.		<u> </u>	6 /i						
- U 4	1.1		0	_ _	L	5 G.			
			- T					·	
							11 A M		
-			1 10 - 1				1.245.15		
110	1 1 2	1913 - E	H 1		1.00			19.14	
. DC	C		L . \	- -					
						現代があり	2 A A S		
		· · · · ·	1 A 44						

Mr.

TO:

ATTENTION:

J.

Gammon

CDN

FILE NO: 84-40 DATE: March 9, 1984

PROJECT:

Sample Descript	ion	Au (ppb)	Ag (ppm)) Geochemical analyses
94	94 + 50E	30	L	
94	95E	10	L	
94	95 + 50E	10	L	
95	101 + 50E	20	L	
95	119 + 50E	30	L	
96	103E	10	L	
97	117 + 50E	10	L	
100	110 + 50E	90	L i i	
101	102 + 75E	10 👘	L	
101	109 + 50E	50	L	
102	105 + 50E	80	L	
102	109 + 50E	10	L	
106	111E	40	L	이 것은
107	108 + 50E	30	L	
108	112E	10	L	
109	104 + 50E	L	.4	
110	103 + 50E	10	L	
110	112E	10	L	
111	105E	40	L	
111	106E	10	.1	
III	110 + 50E	10	L	
111	111 + 50E	L	L	경험을 알려야 한다. 이렇게 가지 않는 것은 것은 것은 것은 것은 것은 것은 것은 것을 가지 않는다. 같은 것은
114	105E	40 *	L	
118	107E		L	
120	100E	L	L	
120	101E	L	L	
120	102E	50	L	가는 이상에 있는 것이 있습니다. 이상에 가장
120	103E	L	L	
120	104E	L	L	
120	110E	L	L	26 : 26 : 26 : 26 : 26 : 26 : 26 : 26 :
122	100E	20	L	가슴 가 없다. 병사 명 사망 방법 가 있는 것이다. 가지가 가지 않는 것은 것을 알 같아요. 가지가 다 나는 것이다. 같은 것은
122	101E	L	L	· 동물 : 2013년 2017년 - 1월 - 1
122	102E	\mathbf{r}	L	그 가슴 영화에 가슴을 물러 가는 것이 같다. 가슴 가슴 가슴을 들었다.
122	104E	L	L	
122	105E	Γ	<u> </u>	
124	100E	L	L	
124	101E	L	L	L indicates less than 10 ppb Au
124	102E	L	L ·	L indicates less than .1 ppm Ag
124	104E	\mathbf{L}	- L	* 1g sample only. Result could
124	105E	L	L. ·	be ±40ppb

Rejects retained one month, pulps one year, unless specific arrangements made.

lele

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-53124

DATE RECEIVED MAR 8 1984

130

5

.2

. 3

DATE REPORTS MAILED Mar 12/84

PAGE# 1

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GH SANPLE IS DIGESTED WITH 3 HL OF 3:1:3 HCL TO HNO3 TO H2D AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : PULP

AUS - 10 GH, IGNITED, HOT ADUA REGIA LEACH HIBK EXTRACTION, AA ANALYSIS. - An with only 5915

DIM-DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER

FALC	INBRIDGE	FILE (84-0312
SAMPLE		AG PPM	AU* PPB
L 124	100+00E 101+00E 102+00E 104+00E 105+00E	.3 .2 .3 .3 .1	5 5 5 10 5
L 122 L 122	100+00E 101+00E 102+00E 104+00E 105+00E	.5 .4 .3 .3 .4	5 25 5 20 5
L120	100+00E 101+00E 102+00E 103+00E 104+00E	.2 .5 .4 .4 .3	5 5 5 15 5
L 102 L 101 L 94	105+50E 109+50E 102+75E 94+50E 95+00E	.2 .3 .5 .4 .3	10 5 5 5 5 5
L 94 L 96 L 95 L 97 L 95	95+50E 103+00E 101+50E 117+50E 119+50E	.1 .1 .2 .3 .2	5 5 5 30 5
L 120 L 118 L 111 L 111	110+00E 107+00E 111+50E 110+50E 103+50E	.3 .1 .1 .1 .1 .1	10 55 5 5 5
L 109 L 100 L 106 L 114 L 111	104+50E 110+50E 111+00E 105+00E 106+00E	.3 .2 .3 .1 .6	20 140 60 60 25

105+00E

112+00E

L 111

L 110

FALCONBRIDGE FILE #	84-0312
SAMPLE AU	AU*
이는 그 것은 사람을 잡았다. 친구님과 관람이 많은 것은 물건을 받는	
L 108 112+00E .1	5
L 107 108+50E .1	5
ь 101 109+50Е •3	30

いたいであう

は、一個ないのないないない

PAGE#

2

APPENDIX C

DRILL LOGS

 \bigcirc

•

		Collar 146.9m	Inclination -60.0 -53.0	Bearing 090 090	Property:Nimpkish Location:West of Nimpkish Lak Elevation: 469.4m Coordinates:5590350N,640330E	Length e Bearin Begun: Comple Core s	: 146.9m g: 090 Apri ted:April ize: B.Q.	1 10/84 13/84 . Recov	1 Noon 2.00 very:	an 83.9%	Hole: Logged Sample Drille	84-1 by: T.H d by:R.H d by:D	Brulan Gard J.Dril	Minera d ener ling	1s:0=n 1=t 2=m 3=m 4=i	ot pre races inor oderat ntense	sent e	Ore Mi	nnerals	:0=0 1=0-1 2=1-5 3=5-1 4=>10	X 0X X			
1	K Meters KFron To	=#======= * *	*********		DESCRIPTION		*5ample * No.	Hete From	ers To	Recov- ery %	RQD 1	Inter- 1 val(M)	Au Kgnt	Ag gæt	Cu X	Pb %	Zn %	No X	¥ Min ¥ Ep. C	erals al. Ch	* 1. *	Ore M Py	inerals Hem. Mg	* 1. *
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(2003.0 (3.0146.9 (5.0146.9) (5.0146.9 (5.0146.9) (5.	* *DVERBUR *BASALT *Fine gra *Isolated *of dark *anhedral *epidote *quartz *Quartz *Ausis and	DEN ained grey e d anhedral q green gypsu l dark green lenses subr phenocrysts and quartz-e d irregular	quigranula uartz phen m/anhydrit gypsum/ an ounded 2-5 Isolated i pidote vei quartz str	r with minor to locally intense ocrysts 3-8 mm. Irregular dist e in groundmass 0-15%. Locally nhydrite phonocrysts 2-6 mm. Is Omm and epidote as rims around i anhedral light red alkali feldsp ns 1-10mm at 30 dg. to -80 dg. ingers .5-1.0 mm. Chlorite alon	epidote. ribution up to 5% olated solated ar 3-10 mm to core g	= = = = = = = = = = = = = = = = = = =						K ===== K K K K K K K K K K						×======= × × × × × × × × × × × × × × × ×		===****			* * * * * * * * * *
נ ו ג	K K K	*Fine dis *Eagnetis *hematite	es and local sseminated p te and hemat e in isolate	yrite, irro ite. Iso d quartz pl	egular distribution of fine diss lated pyrite veins 5-2 mm. Dis henocrysts and veins	eminated seminated	* * *					3	k k				:		*		* *			* *
2	K K	*5.1n 10 *along qu	c∎ quartz-ep uartz vein, ■ ponovitre	idote vein displacement fine grain	at 80 dg. to core axis. Offset nt 8mm quartz vein, displacement ed light green persburitic with	by fault 8mm anhedral	* 14275 * * 14276	3.0	.6.0 9.0	61.4	15.2 48.6	3.0	k(.05 k k(.05	<.5 <.5	0.02	0.01	0.07	<.001 <.001	* 1: * * 2	0	1 *	1	0	2 * * 1 *
; ; ; ; ; ;	k K K K	*0.0-0.0 *quariz a *dissemi *core ax: *6.9-7.4 7.4 20cs *8.2-8.5 *ouartz a	and epidote nated pyrite is m 15% dissem m with 5% gy PROPYLITE and epidote	ne grain phenocryst 1% and he inated hem psum/anhdr fine grain phenocryst	a 11ght green porphyritic with 5 3-10mm. Intense epidote. Fin matite 2%. Contact at 6.6m at 4 atite. ite phenocrysts up to 6mm. ed light green porphyritic with 5 3-10mm. Intense epidote. Fine	e Odg to anhedral	* 11270 * * * * *						k k k k k k						***		*****			
1	k K K	*dissemi 12.0m *14.0-14 *quartz	nated pyrite 2cm shear zo .5m PROPYLIT and gypsum/a	ne at 30dg E fine gra nhydrite p	to core axis. ined light green porphyritic wit henocrysts 4-15mm, 15%, intense	h anhedral epidote.	* * 14277 * 14278 *	9.0 12.0	12.0 15.0	98.7 90.8	48.9 56.3	3.0 3.0	* *{ 05 *{ 05	<.5 <.5	0.02 0.01	0.01 0.01	0.07 0.08	<.001 <.001	* * 2 * 3	0	* 1 * 1 * *	1 1	0	* 1 * 1 *
2	k k k	*Fine di: *16.6m 1 *18.2-20 *3mm	sseminated p cm quartz ve .3m 15% gyps	yrite. in at 40dg um/anhydri	to core axis. te in groundmass and as phenocry	sts up to	* * 14279 * 14280 *	15.0 18.0	18.0 21.0	96.4 99.0	64.7 61.1	3.0 3.0 3.0	k k(.05 k(.05 k	<.5 <.5	0.01 (.01	0.01	0.07 0.08	<.001 <.001	* * 2 * 1 *	0 0	* 1 * 1 *	1	0 1	* 1 * 1 * *
2	k . K	*20.3m 10 *22.8m 1	Ocm shear zo .5cm light r	ne with br ed alkali	oken core. feldspar phenocrysts, anhedral,	with 2mm	* * 14281	21.0	24.0	91.0	28.4	3.0	k k{.05	<.5	0.01	(.01	0.07	(.001	¥ * 2	0	2.*	1	0	2 *
1	k K se K se se	*24.8m 1 *28.8m 1 *contact	along conta cm quartz-al cm quartz-ep	kali fedls idote vein	par vein at 30dg to core axis. at 20dg to core axis with chlor	ite along	* 14282 * 14283 *	24.0 27.0	27:0 30.0	78.3 89.7	31.5 42.1	3.0 3.0	*(.05 * .05	<.5 <.5	0.01 (.01	<.01 <.01	0.08 0.08	<.001 <.001	* 1 * 1 *	0	1 * 2 *	1 1	0	2 * 2 * *
1	r k k k k	*29.6m 5 *30.6-32 *quartz *pyrite *31.0m 1 *32.9m 2	na light red <u>1 PROPYLIT</u> phenocrysts and isolated an pyrite ve cn epidote v	alkali fe E fine gra 3-15mm 2-1 I pyrite ve in at 10dg ein at 60d	ldspar vein at 20dg to core axis ined light green porphyritic wit 5%. Intense epidote. Fine diss ins. to core axis. q to core axis. fine grained lig	h anhedral eminated ht green	* * 14284 * * * *	30.0	33.0	98.6	36.0	3.0	k *(.05 k * *	۲.5	0.01	(.01	0.08	.001	* 2 * * *	1 · 	* * 2 * * * * *	1	1	* * * * * *
1	k k	*porphyr *33.5m 2 *34.0m 5	itic with an Ocm moderate cm shear zon	hedral qua epidote. e at 60dg	rtz phenocrysts 2-4mm. to core axis.		* * 14285 *	33.0	36.0	100.0	72.9	3.0	k ≭<.05 [°] k	<.5	0.01	0.01	0.08	.001	* 2	0	2 *	1	0	* 2 * *
1	⊼ K K	*34.58 3 *and ang *37.08 5 *37.2-37	em quartz ve ular basalt na shear zon .3m <u>PROPYLIT</u>	xencliths e at 20dg E fine gra	to core axis, minor disseminate 5-10mm. to core axis with chlorite and p ined light green equigranular.	u chiorite grite Intense	* * * 14286 *	36.0	39.0	99.3	58.4	3.0	¢ ¢ ¢	(.5	0.01	0.01	0.08	. 001	* 2	0	* 1 * *	1 1	0	* * 2 * *
: -1 	⊼ k k	<pre>*epidote *37.6-37 *epidote *axis.</pre>	, fine disse .8m <u>PROPYLIT</u> , fine disse	E fine gra ninated py	rite. ined light green equigranular. rite. Contact at 37.6m at 45dg	Intense to core	* * *						• * *						~ * *		* *			* * *
1	* *	*37.8m *10 core *38.8m 2	Red alkali f axis. cm epidote v	eldspar ph vein at 20d	enocrysts 5mm and 5mm quartz vei Ig to core axis, fine grained lig	n at 30dg ht green	* *						* * *				- 		* .		* * *	. •		* *
	⊼ ≭ ¥	#equigra #39.2m 3 #41.5m 1	nular. Oca moderate cm quartz ve	e epidote. in at 20dg	to core axis.		* 14287 *	39.0	42.0	94.4	57.0	3.0	* *<.05 *	(.5	0.02	(.01	0.08	(.001	* 2 *	1	* 1 * *	1	0	2 *

										A A4				4	•	1 4	4	•	2.
	#44.4-44.7m FELSIC DYKE medium grained light grey equigranular minor #	14288	42.0	45.0	104.2	19.8	3.0 4	1.05	(.)	0.01	(.01	J.VO 1	1	1 · · ·	v	• ¥	•		1
	*pyrite in lenses 1-3mm. Contact at 30dg to core axis.	¥	A5 A	AQ 0	02 0	44 5	1 1	k k 05	15	0 03	0.01	0.08	(001 1	r 1	1	2 1	1	1	2 #
	\$45.0-45.5m FELSIC DYKE medium grained light grey equigranular minor thisseminated chlorite fine disseminated magnetite. Contact at 60dg to 2	14C07	4J.V	10.0	72.0	04.0		t					1	t i		- *			*
	tore axis.	¥ .						k Kalena						k K		*			*
	#45.6m 4cm snear zone/chloritic gouge. #46.5-46.6m FELSIC DYKE medium grained light grey equigranular, minor	ţ.					1	k .						k •		· . ¥			*
	*epidote and chlorite. Fine disseminated magnetite. Dyke only cut part	*						k K					1	K		, *			*
	*47.4-47.6m <u>PROPYLITE</u> fine grained light green equigranular, intense	*					1	t t						*		*			*
	<pre>#epidote. Fine disseminated magnetite. Lontact at youg to core axis. #</pre>	* 14290	48.0	51.0	61.9	22.3	3.0	¥(.05	(.5	(.01	0.01	0.08	(.001	* 0	0	3 *	1	0	2 *
	\$51.0m 50cm shear zone/chlorite gouge at 80dg to core axis.	¥ 14291 ¥	51.0	54.0	55.1	4.6	3.01	K(.UD K	(.)	0.01	0.01	0,07	. 004	* 1	v	*	E	V.	*
	\$52.3-63.0m fine pyrite in lenses 1-3mm and veins 5-3mm, 1-8%, isolated	*					1	* *				•		*		*			*
	<pre>%lenses up to 15mm. #52 7m 5cm shear zone/chlorite gouge</pre>	*					. 1	*					-	*		*			*
	#53.5-55.2 moderate epidote.	¥ ¥ 14292	54.0	57.0	74.6	33.0	3.0	≭ ≰(.05	(.5	0.01	0.01	0.08	(.001	* 1	0	2 🕯	2	0	1 *
	x14.9# 1.30# quartz-epitote pgrite vein, dx pgrite ofsteringte and an #lenses.	*						*						¥ *		* *			*
	\$55.7m quartz vein Amm and epidote vein 5mm at 600g to core axis. \$56.2m 5mm light red alkali feldspar phenocrysts.	*						*						*		*			*
	#56.8m 1cm quartz-epidote vein at 50dg to core axis.	* * 14293	57.0	60.0	100.0	33.6	3.0	¥ ¥(.05	(.5	0.02	0.01	0.08	(.001	* 1	1	1 *	2	0	1 *
	\$58.2m 8mm quartz-epidote vein at 300g to core axis:	*					1	*						*		*			_* *
	\$59.4m fra quartz vein at 50dg to core axis. \$41 5m 5mm quartz-nurite vein at 40do to core axis.	* * 14294	60.0	63.0	78.2	25.6	3.0	* *(.05	(.5	0.02	{.01	0.09	.001	* 1	0	1 *	3	0	2 *
	*	* 14295	63.0 66.0	66.0	85.3 86.8	29.5 31.2	3.0 3.0	*(.05 *(.05	<.5 <.5	0.02	(.01 0.01	0.08	(.001 .004	× 1 * 2	0		1	1	0 *
	*66.0-75.0m fine pyrite in lenses 1-5mm and verns 1-5mm, 5m *66.2-67.8m hematite on fractures and local faults.	*						*						* -		*			*
	*66.5-66.8m PROPYLITE fine grained light green equigranular, intense *enidote Fine nurite disseminated and in lenses 2-8mm, fine	*						*						*		*			*
. •	*disseminated magnetite	*						* *					· · ·	*		*			*
	\$68.2m icm quartz vein at 800g to core axis. \$69.0m icm quartz-pyrite-molbdenite vein at 60dg to core axis	* 14297	69.0	72.0	101.3	38.0	3.0	\$(.05	(.5	0.01	0.01	0.08	(.001	* 1	0	2 *	2	1	0 * .
	\$69.58 hematite on fractures and local faults.	*						*						*		*			*
	*71.25 Ace quartz vein with pyrite and sphalerite at 85dg to core axis.	*						* · ·						*		*	[. 齐
	*Vein and mineralization is cut by Smm epidote vein. *72 3m 5mm quartz-purite vein at 70dg to core axis.	* 14298	72.0	75.0	72.3	13.1	3.0	\$(.05	(.5	0.02	0.01	0.09	. (. 001	* 2	0	2 1	2	0	0 *
	\$73.4-73.78 PROPYLITE fine grained light green equigranular, intense traideta	*						*						*	_	*			*
	*76.2-76.5m <u>PROPYLITE</u> fine grained light green equigranular. Moderate	* 14299	75.0	78.0	74.3	4.4	3.0	¥(.05 *	(.5	0.02	0.01	0.08	.001	* 2 *	0	23	(1 t	1	0 X X
	to intense epidote. Isolated light red alkali telospar, annearai #2.5mm. Fine disseminated magnetite and pyrite.	¥.						*						*		t	(t		* *
	\$76.5-79.3m Isolated light red alkali feldspar phenocrysts, anhedral	*						*						* *	_		i i	-	*
	#78.5-78.7m hematite on fractures and local faults.	* 14300	78.0	81.0	71.7	20.4	3.0	≭ {.05 ≭	(.5	0.02	0.01	0.05	.001	* 2.	0	21	r 2	. 1	1 ¥ *
	#79.3-79.95m fine pyrite disseminated in lenses 2-own and verify 1-3m by #80.1m 2cm epidote vein at 30dg to core axis with 3mm quartz along	*						*						*			k .		*
	<pre>%contacts. #01 1e locally 5% disseminated ourite</pre>	¥ 14301	. 81.0	84.0	79.9	27.4	3.0	*(.05	(.5	0.01	0.01	0.08	3.00	¥ 2	0	2 1	1	0	1 *
	<pre>#81.4-81.65 PROPYLITE fine grained light green equigranular. Intense</pre>	*						*						¥ *		, ž	K K		* *
	#epidote. Frace fine disseminated pyrite. #82.0-82.3m hematite on fractures and local faults.	*		07 0			3.0	*	15	0 01	2.01	0.03	8 (001	* 1	0	1	k k 1	1	* 1 *
	#85.3m trace disseminated hematite in 1mm and 8mm quartz veins at 300g #to core avis	¥ 1450/	2 84.1	1 61.V	73.1	37.3	3.0	*	1 1.9					*		1	k -		*
	\$85.8m Bmm quartz vein at 85dg to core axis with minor disseminated	* *						*						*		1	ŧ.		*
	Thematite. #88.0-89.4m anhedral quartz and light red alkali feldspar phenocrysts	¥ 1430	3 87.(90.0	96.3	63.7	3.0	\$(.05	5 (.5	0.01	(.01	0.0	B <.001	* 1	0	1	* 1 *	0	2 *
	#2-8mm, 1-4%. #90 0-111 0m Hoderate quartz yein stockwork 1-10mm at 20dq-70dg to core	* 1430	4 90.0	93.0	91.4	59.4	3.0	*(.05	5 (.5	0.01	0.01	0.01	B .001	¥ 1	0	2	* 1	1	2 *
	Xaxis.	*						* *						*			¥		× *
	XAN'D-TTO'AN AIRPENINGFAN HENGTIFE IN IRREGARD AND AL ACTUR.	* 1430	5 93.0	96.0	36.7	0.0	3.0	*(.05	5 (.5	0.01	(.01	0.0	B (.001	* 1 * 1	0	2 2	* 1 * 1	1	2 *
	an ∰ an an an Araban ann an Araban an Araban ann an Ar Ar ∰ ann an Araban ann an Ar	* 1430 * 1430	6 96.0 7 99.0	0 99.0 0 102.0	94.7	40.7	3.0	*(.05	5 (.5 5 (.5	0.02	(.01	0.0	B (.001	* 1	Õ	1	* 1	ò	2 *
	\$103.8m >3cm shear zone/chloritic gouge at 30dg to core axis associated	* 1430	8 102.	0 105.0	97.1	56.9	3.0	¥(.05 ¥	5 (.5	0.01	0.01	0.0	8 (.001	* 1 * ·	1	2	¥ 1 ¥	. 1	<u>د</u> *
	Xwith Sam quartz vein. X104.5-104.6m <u>PROPYLITE</u> fine grained green equigranular. Intense	*	· .					*						*			*		*
	*epidote. Fine disseminated pyrite, contact at 50dg to core axis. *105 1-106 6m aphedral gunsum/anhudrite phenocrusts 3-15mm, 1-4%, dark	¥ ¥ 1430	9 105.	0 108.0	91.9	9 56.1	3.0	* *(.0	5 (.5	(.01	0.01	0.0	8 (.001	* - 1	1	. 1	x _1	1	2 *
	*green.	* *						* *						¥			* *		· *
	#106.9m 1cm quartz vein at 400g to core axis with disseminated chiorite. #107.6-107.75m FELSIC DYKE fine grained light grey equigranular. Minor	x						1						*			*		*
۰.	#disseminated chlorite and minor epidote in subrounded lenses 2-15mm. #Fine disseminated purite. Contacts at 70do to core axis.	¥ \$						*						*			*		*
	\$108.0-108.4m. Noderate sheared basalt, foliation at 30dg to core axis.	* 1431	0 108.	0 111.(94.	2 30.5	3.0	¥(.0	5 (.5	0.0	1 0.01	0.0	8 (.001	¥ 1. *	1	5	¥ . 1 *	1	∠ ∓ ¥
	#108.88 1.508 quartz-pyrite vein at 400g to core axis. #110.28 2cm chloritic gouge.	*						*						* 1 1 1		· · · · ·	*		. ° ≤ ≭ °

\$111.5m 2cm shear zone at 50dg to core axis.	14311	111.0	114.0	83.1	33.3	3.0 \$	(.05	(.5	(.01	0.01	0.08	(.001 ¥	1	1	3 *	1	1	2 1	
\$111.8s 3cs chloritic gauge at 50dg to core axis.	t a <u>1</u> 11						K								*			1	£ -
\$113.3-113.9m anhedral epidote, quartz and light red alkali feldspar	X (1997)						¥ .						K		*			1.1	¥ ~ ~
*phenocrysts 3-6mm, 3-20% with dominant epidote 113.3-113.6m and	k a sa s					. j i	k ., 1								· *			1	k .
#dominant quartz and alkali feldspar 113.7-113.9m.	k 1					1	*						K ji		*			1	1
#114.1m 3cm chloritic opuge.	\$ 14312	114.	0 117.0	49.6	4.0	3.0 1	¥(.05	(.5)	0.01	0.01	0.09	.001 1	K 1	1	3 🗱	1	0	. 1 🕇	ţ.
\$114.2% icm shear zone at 30do to core axis.	X						k					· 1	k, .		· *			- <u>,</u> 5 - X	¥
*114 6-115 6m shear and chloritic gouge.	K					1	t					1	K j		*			. *	K .
\$116 3m anhedral light red alkali feldspar pheonerysts icm.	t					. 1	X 1 1					1	k i i i		*			1	¥
\$116 7m 1cm shear zone at 30do to core axis.	K - 2 - 1					·	*					. .	k		*			* *	K
*116.7-118.8m anhedral epidote and minor guartz and light red alkali	*					· . 1	X						k in		. *			<u> </u>	¥
*feldspar phenocrysts 3-20%.	*					1	k					. 1	K		*			- 1 t	ķ.
\$118.4m disseminated hematite in guartz phenocrusts.	* 14313	117.	0 120.0	77.1	35.0	3.0	* {.05	۲.5	(.01	0.01	0.08	<.001	K 1	2	2 *	1	1	11	¥
#119 1-119 7m Moderate to intense sheared with foliation at 30dg-50dg	*					1	*					1	k, i s		*			*	K .
\$to core axis. Disseminated chlorite and hematite 1-15%.	*					<u> </u>	*					· · •	k.		. *			1	k
\$121.8-122.6 Moderate to intense sheared, foliation at 30dg-40dg to	* 14314	120.	0 123.0	67.7	14.0	3.0	\$.05	(.5	(.01	{.01	0.08	(.001)	k 1	1	1 🗱	1	1	11	ŧ.
*core axis, disseminated chlorite.	X -						x						k i		*			1	¥ i
\$122.3 pyrite veins parallel foliation 1-10mm.	X					. 1	*						k 🛛		*			1	K
\$123.1s ics epidote vein/lense fine grained light green equigranular.	* 14315	123.	0 126.0	91.9	37.3	3.0	\${.05	(.5	0.01	(.01	0.09	<. 001 1	K 1	1	2 🗱	1	· 1	11	K (
\$123.3m Acm epidote vein/lense fine grained light green equigranular.	*						*	-				S	k		*			. 1	ĸ
\$123.3-123.8m moderate sheared, folation at 75dq to core axis,	*					·	*						*		· *			· 7	K
#disseminated chlorite and hematite, hematite 2-6%.	* •					1	X .					. · · · ·	ĸ		*				ĸ
\$128.7% 5mm guartz - hematite (40%) vein at 60dg to core axis.	* 14316	126.	0 129.0	97.0	45.8	3.0	*(.05	<.5	0.01	0.01	0.08	<.001 1	K 1	1	1 *	1	1	2 1	ŧ –
\$128.9# 4% disseminated hematite.	*						*						k -		*		· ·	1	ĸ
\$130.3# 2.5cm quartz-hematite (10%) vein at 60dg to core axis.	* 14317	129.	0 132.0	80.2	40.7	3.0	*(.05	. (.05	0.01	<.01	0.08	(.001)	K 1	2	1 *	2	2	1 1	\$
#130.6m 4.0cm quartz vein at 40dg to core axis, 2% disseminated hematite	*					- 1	*						ĸ		. *			1	K ·
#and 1-5mm at lower contact with 50% hematite.	*		· .				*	·					K.		*				Ϊ.
#134.7-134.9m 1-2mm calcite-chlorite veins at 5dg to core axis.	* 14318	132.	0 135.0	60.9	8.0	3.0	*(.05	(.5	0.01	0.01	0.08	(.001)	K 1	1	2 *	1	- 1	21	Ķ .
#136.4-138.0 PROPYLITE fine grained light green porphyritic with	* 14319	135	0 138.0	68.3	12.7	3.0	¥(.05	(.5	0.01	(.01	0.07	(.001)	K 3	0	2 ¥	1	0	1,1	¥
*anhedral quartz phenocrysts 5-15mm, 2-7%. Intense epidote, trace of	*					1	*						K		×			3	£
#fine disseminated pyrite.	¥						X						¥		*			1	K
\$139.6m icm chlorite gouge at 80dg to core axis.	* 14320	138.	0 142.0	68.7	27.7	4.0	*(.05	<.5	0.01	(.01	0.08	(.001)	K - 1	0	2 *	1	0	~ 21	¥.
\$142.2m 2cm quartz vein at 10dg to core axis with locally light red	* 14321	142.	0 145.0	98.8	47.8	3.0	¥(.05	(.5	0.01	0.01	0.08	(.001	ж З	0	1 🕷	1	1	1 1	*
*alkali feldspar and epidote.	*						¥.						Ķ.						¥.
#142.2-142.4m <u>PROPYLITE</u> fine grained light green equigranular, intense	*						¥						*		*				₩. -
*epidote, trace of disseminated pyrite.	X.						ž						ب		*				њ -
\$142.75-143.4 PROPYLITE fine grained light green equigranular with	×						*						*						÷
*isolated anhedral quartz phenocrysts 3-8am. Intense epidote. Irace of	X.						¥ •						* .						* . *
*fine disseminated pyrite, gradual change from basalt to propylite.	¥						¥ •						₩			,			*
#144.1-144.7 PROPYLITE fine grained light green equigranular, intense	¥						*						4. 4.		1				*
Repidote. Trace of fine disseminated pyrite. Gradual change from	*						*					· · ·	*		4				÷
*basalt to propylite.	* * *****	1 45	A 4 AZ A	101 0	50 1	1.0	≁ ★/ ለ⊑	1 5	0.01	0.01	0 07	/ 001	* 2	•	1 4		0	•	÷.
\$146.28 Moderate epidote.	* 14322	145.	0 140.9	101.9	30.1	1.7	₩U3 ₩	1.3	0.01	0.01	0.07	1.001	* . ~ .	U					*
All 1 - stud down as 18/ On other Abrough as ins fould	↑						*						*						¥.
THOIE SNUT DOWN AT 146.78 WHEN THROUGH BAJOF TAULT.	*						*						*						¥
T END OF HOLE	÷						-					· · · ·	*	· .					÷ .

	Inclination Bearing Property:Nimpkish Length: Collar -73.5 090 Location:West of Nimpkish Lake Bearing 100.0m -70.0 090 Elevation: 454.2m Begun: Coordinates:5590300N,640250E Complet Core si	NIMPKIS ******** 100.0m): 090 Apri ed:April ze: B.Q.	H 1984 ****** 1 5/84 8/84 Reco	1:00 2.00 very:	L HULE 2 ######### p.m. pm 80.2%	Hole: Logge Sample Drill	84-2 d by: T.E ed by:R.E ed by:D ===================================	Brulan E. Gar J.Dril K=====	Minera d dener ling	11s:0=n 1=t 2=u 3=u 4=i	ot pre races inor ioderat ntense	sent e	Ore Mi	nnerals	:0=0 1=0-1% 2=1-5% 3=5-10% 4=>10%	*		
* Neters *From To	DESCRIPTION	#5ample # No.	Met From	ers To	Recov- ery %	RQD 1	Inter- X val(M) 1	k Au Kgat	Ag gæt	Cu X	Pb 1	Zn 1	Ko X	* Min * Ep. C	erals al. Chl.	¥ Ore ¥ Py.	Minerals Hem. Mg	, * jt. *
*0.0 3.7 *3.7 100.0 * * * * * * * * *	KOVERBURDEN (BASALI, KAINE grained grey light and dark greenish grey equigranular with minor Khornblende phenocrysts locally, anhedral 1-3mm. Anhedral and subhedral Kquartz and feldspar phenocrysts/amygdules 2-5mm 0-5%, locally up to K10%. Locally dark green gypsum/anhydrite amygdules 3-8mm, locally up Kto 30%. Minor to moderate epidote, disseminated and in irregular Kpatches 1-5mm. Calcite in veins 5mm. Quartz veins irregular and at K0dg-60dg to core axis 1-10mm. Minor disseminated chlorite, and ktchlorite and minor clay minerals on local faults. Traces of hematite Kas coatings on quartz amygdules and on isolated fractures and local kfaults. Local faults at 0dg-60dg to core axis. Fine pyrite, Kdisseminated in quartz veins in lenses, 5-2mm, and in irregular Kdistribution of fine disseminated magnetite.	*****												***		*****		
* · · · · · · · · · · · · · · · · · · ·	* * *8.5m 1cm quartz-pyrite vein at 45dg to core axis *9.4m 2cm quartz-pyrite vein	* 14204 * 14205 * 14206	3.7 5.0 8.0	5.0 8.0 11.0	48.1 76.2 85.9	10.0 29.5 31.6	2.3 3.0 3.0	k(.05 k(.05 k(.05 k	<.5 <.5 <.5	0.01 0.01 0.05	<.01 <.01 <.01	20.02 20.0 20.0	<.001 <.001 .002	* 1 * 3 * 2	1 1 1 0 1 0	* 1 * 2 * 2	0 1 0	0 * 0 * 0 *
	k k k k18.9-20.0m 5% anhedral hornblende phenocrysts 2-10mm. k20.0-20.4m 1-2% disseminated hematite k24.5m hematite on local fault k25.5-30.5m Pervaissive quartz stringers k k33.6m 1-3mm pyrite veins at 60dg and 90dg to core axis and 5% pyrite in k1000000 1-2mm	* 14207 * 14208 * 14209 * 14210 * 14211 * 14212 * 14213 * 14213 * 14214	11.0 14.0 17.0 20.0 23.0 26.0 29.0 32.0	14.0 17.0 20.0 23.0 26.0 29.0 32.0 35.0	92.7 85.5 71.2 84.5 88.7 87.8 87.7 77.3	25.0 33.3 10.8 53.0 31.5 66.9 39.2 27.8	3.0 % 3.0 % 3.0 % 3.0 % 3.0 % 3.0 % 3.0 % 3.0 %	k .30 k(.05 k(.05 k(.05 k(.05 k(.05 k(.05	<pre>(.5) (.5) (.5) (.5) (.5) (.5) (.5) (.5)</pre>	0.04 0.01 (.01 (.01 0.01 0.03 0.01 0.03	<pre><.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01</pre>	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	<pre><.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001</pre>	* 1212	1 1 2 1 1 0 2 1 1 2 1 1 2 2 1 1 2 2 1		1 1 1 1 0 1 0	0 * 0 * 1 * 1 * 1 *
	Alenses 1-2mm. k #39.0-47.9m fine to medium grained light grey equigranular basalt #41.2m 2mm pyrite vein at 10dg to core axis. # #47.7m Pervaissive epidote in lense or vein)4cm. #51.0-54.0m irregular distribution of anhedral gypsum/anhydrite Kamygdules .3-1.5cm with disseminated chlorite, dark green 0-5%. #51.3 % 51.4m 1.5cm quartz veins with pyrite and epidote along Kcontacts, contacts at 60dq to core axis.	* 14215 * 14216 * 14217 * 14217 * 14218 * 14219 * 14220 * *	35.0 38.0 41.0 44.0 47.0 50.0	38.0 41.0 44.0 47.0 50.0 53.0	42.8 71.6 78.2 102.4 90.9 87.4	2.9 23.3 29.2 63.9 40.5 35.0	3.0 3.0 3.0 3.0 3.0	* *(.05 *(.05 *(.05 *(.05 *(.05 *(.05 * * *	<.5 <.5 <.5 <.5 <.5 <.5	0.02 (.01 0.02 0.02 0.02 0.02	<.01 <.01 <.01 <.01 <.01 <.01	0.02 0.02 0.02 0.02 0.01 0.01	<pre>{.001 {.001 {.001 {.001 {.001 {.001 {.001 {.001 {.001 {.001 }.001</pre>	* 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 2 1 1 1 1 1 1 1 0 2	*********	0 1 0 1 1 1	********
* *	\$55.0m 2 quartz veins 1.0 cm at 60dg to core axis, chlorite along Acontact to basalt. \$57.0-58.0m dark green gensum/anhudrite in groundmass. locally up to 30%.	* 14221 * * 14222	53.0	56.0 59.0	93.7 84 4	42.9	3.01 3.01	k(.05 k k(.05	<.5 < 5	0.01	.∢.01 ∢.01	0.02	<.001	*~_1 · * · ·	1 2	* 1 * * 1	0	1 *
k k k	K58.0-89.0m 1-5% subrounded and irregular dark green gypsum/anhydrite Kamygdules 1-15mm and gypsum/anhydrite as coating around rounded to Ksubrounded epidote amygdules.	*	E0. *					k k k	, E		,	A	, , , , , ,	*		* *		*
* ¢ *	K37.5-60.3% IS-20% epicore amygoules, suorounded S-13mm. K60.5-61.0m up to 30% gypsum/anhydrite in groundmass .5-3.0mm. K63.4 Icm quartz veins at 60dg to core axis. K63.5-64.0m Chlorite along local faults at 70dg to core axis in shear	* 14223 * * 14224 *	62.0	65.0	73.9	27.3	3.0 1 3.0 1	k(.05 k k(.05 k	(.5	0.01	(.01	0.02	<.001	* 2 * 2 *	1 2	* 1 * * 1 * 1	0	1 # * 1 * *
* * * *	*zone. K65.6m 20cm epidote vein at 30dg to core axis, pervasive epidote. Cut kby 1cm irregular quartz veins with epidote xenoliths. K66.1m lineation of gypsum/amhydrite amygdules at 60dg to core axis. *67.8-68.0m <u>PROPYLITE</u> , fine grained light green equigranular, pervasive kenidate	* * 14225 * * *	65.0	68.0	97.2	43.9	3.0 1	# #{.05 # # # #	₹.5	0.01	{.01	0.02	<.001	* 2 * *	12	* 1 * 1 * *	0	* 2 * * * *
- * * *	*68.1s 1.5cs irregular epidote vein, traces of alkali feldspar and cut kby quartz stringers. k69.3s moderate epidote in groundmass and in amygdules 3-8mm. k69.8-70.7m moderate epidote in groundmass and in amygdules 3-8mm. k70.7m Isolated subrounded alkali feldspar amygdules/phenocrysts 4-10mm.	* 14226 * * *	68.0	71.0	80.0	23.0	3.0	*(.05 * * * *	(.5	0.01	(.01	0.02	<.001	* 1 * * *	12	* 1 * * * *	1	2 *
k k k	 k71.0-79.3m Moderate evenly distributed disseminated magnetite. k71.5m 5mm quartz vein at 30dg to core axis with disseminated hematite. k73.2m 3-8mm quartz veins at 60dg to core axis. k74.8-75.0m Moderate epidote. k75.8m 5mm, epidote vein at 30dg to core axis. 	* 14227 * * * 14228 *	71.0 74.0	74.0 77.0	87.7 105.0	37.7 69.2	3.0 1 1 3.0 1 1	k(.05 k k k(.05 k	<.5 <.5	0.02	<.01 <.01	0.01	<.001 <.001	* 1 * * * 2 *	02	* 1 * * 1 * 1	1 0	2 # # 2 # #

ě,

\$78.0s Epidote alteration along contact to Sam quartz vein, 5-10mm on	14229	77.0	80.0	74.1	44.1	3.0 *	(.05	<.5	0.01	(.01	0.01	<.001 *	• 2 · #	0	2 *	1	0	2 *	,
Reach contact.	*												t						i
X/8.0-/8.8 1-3mm light red alkali feldspar veins at 0-300g to core axis.	*												t -					ÿ	i
\$78.0-100.0m Broken core, poor core recovery is major fault.	*						•						≁ ¥			I		, i	į
\$79.2-81.6s Light red alkali feldspar phenocrysis, anneoral and	4												*					·	i
*subhedral 3-5mm, 5-15%.	* 1 4000		07.0	70 7	20.2		₽ ₽/\\	15	0 05	7 01	0 02	/ 661	* 9	41	1 1			ं न ब	ż
#81.6-89.0m Moderate to intense evenly distributed magnetite	¥ 14230	80.0	0J.V	10.1	30.3	5.04	41.VJ	1.5	0.03	1.01	V.VC	1.001	4 <u>C</u>	1			. 0		,
*(disseminated)	*							/ E				/	•				•		
#84.6m 40cm sheared basalt, foliation at Odg-20dg to core axis.	¥ 14231	83.0	86.0	68.1	22.9	3.01	K . 1V	(.5	0.02	K.01	0.02	(.001	¥ 1	1	្រារ		v	_ C #	
\$85.4a-87.4a Light red alkali feldspar, anhedral and subhedral 3-8aa.	¥														- 4			*	
*Core loss, poor recovery.	*				·								¥						r
\$87.8-88.6m Chlorite gouge with clay minerals at lower contact, contact	* 14232	86.0	89.0	27.9	4.7	3.0 1	K.05	(.5)	0.02	(.01	0.02	(.001)	K 1	1.	<u>4</u>	1	1	2 4	•
#at 50dg to core axis. Core loss.	¥						K						*		1	ι.	· · · _ ·	*	÷
#89.0-89.4m Hoderate sheared basalt, foliation at 70dg to core axis.	* 14233	89.0	92.0	79.4	18.1	3.01	k .10	(.5	0.04	(.01	0.02	(.001	X 1	1	3 1	1	0	0 *	÷
#89.4m 10cm chloritic gouge at 40dg to core axis.	X				_	1	¥ .					·	*		. 1	(*	ć
*	* 14234	92.0	95.0	67.5	15.8	3.0 1	k.40	(.5	0.01	(.01	0.01	(.001	X 1	1	. 21	. 1	1	1 ¥	ſ
\$95.3-95.6 PROPYLITE fine grained light green porphyritic with	* 14235	95.0	98.0	65.8	11.9	3.0 1	¥(.05	(.5	(.01	(.01	(.01	(.001	¥ 4	- 1 -	21	(<u>1</u>	0	1 1	1
*anhedral quartz phenocrysts 3-6mm. Intense epidote. Trace of fine	苯					1	k i						*		1	(*	í
#disseminated purite.	*					1	¥ .						*		1	r.		*	Ļ
*96 1-96 9s PROPYLITE fine grained light green porphyritic with	*					1	*						*		. 1	t i		*	Į.
kanhedral quartz chenocrusts 3-8ms. Intense epidote. Trace of	*					· 1	X						*		1	r i			ķ
tdisseminated nurite	*					1	\$						*		. 1	t		*	1
\$94.9-97.5m Intense fine disseminated magnetite (5%).	*					1	* .						x		2	k i		*	ţ
\$97 5-98 Am PROPYLITE fine grained light green porphyritic with	*					. 1	X						X .			k 🛛		1	Ĺ
tanhedral quartz nhenocrusts 3-10mm. Intense epidote. Trace of fine	*					2	*						*		,	k 🛛		1	Ķ
Idisseminated nurite	*					1	*						*		1	K .		1	ķ
198 4-100 On Fine disseminated magnetite (5%).	* 14236	98.0	100.0	88.8	40.8	2.0	\$4.05	<.05	<.01	(.01	(.01	<.001	* 3	1	- 1 1	k 1	0	1 1	ķ
*	*					;	X -						X		1	t i		*	ļ
THE FUND OF HOLE	*					. 1	*						*		1	k 🛛		1	ļ
	*					- 1	*						X		1	k i		- 1	ķ
	*					· 1	*						*		1	k		1	ķ
												5 K	· .						

. _

*

*	Inclination Bearing Property:Nimpkish Length: Collar -65.0 090 Location:West of Nimpkish Lake Bearing 119.5m -65.0 090 Elevation: 462.7m Begun: Coordinates:5590400N,640350E Completed Core size	119.5m :090 Apri : Apri : B.Q.	1 8/84 1 9/84 Reco	12:00 10:30 very:	0 Noon 0 pm 92.7%	Hole: Logged Sample Drille	84-3 i by: T.E ed by:R.E ed by:D.c	Brulan E.Gard J.Dril #=====	Miner d ener ling	als:0=n 1=t 2=m 3=m 4=i	ot pre races inor oderat ntense	sent e ======	Ore Mi	nnerals *=====	:0=0 1=0-1 2=1-5 3=5-1 4=>10	X X 0X X ===X	======	=====	=== *
* Neters *From To	# DESCRIPTION	*5ample * No. *=======	Met From	ers To	Recov- ery X	RQD	Inter- x val(M)	k Au k gat	Ag gat	Cu X	РЬ %	Zn %	Mo 1	* Min * Ep. C	erals al. Ch	* 1. *	Ore Ni Py.	ineral Hem. M	5 ¥ gt. ¥
********************	*OVERBURDEN *BASALT *Fine grained equigranular grey with isolated anhedral quartz *phenocrysts 2-8mm, locally anhedral and subhedral hornblende *phenocrysts 2-4mm 0-10%. Epidote alteration rim around isolated quartz *phenocrysts 1-10mm, irregular thickness and shape around individual *phenocrysts. Minor to moderate epidote in groundmass in parts. *Chlorite along fractures and local faults. Quartz veins irregular *1-3mm and at 20dg-70dg to core axis 2-25mm. Epidote veins 1-8mm at *30dg-60dg to core axis. Minor disseminated chlorite. Isolated dark *green anhedral gypsum/anhydrite amygdules/phenocrysts 1-4mm. Isolated *light red alkali feldspar veins 2-5mm at 10dg-40dg to core axis.	* * * * * * * * * * * * * * * * *						***						****					*****
* * *	*Irregular distribution of fine disseminated magnetite. *5.8m quartz vein, 6mm, with epidote alteration at 30dg to core axis. *6.9m 10mm quartz vein with disseminated epidote at 10dg to core axis.	* * 14237 *	5.5	8.0	68.7	38.1	2.5	* *(.05 *	(.5	<.01	<.01	0.01	(.001	* 2	0	* 1 *	1	0	* 2 * *
* * *	\$7.6m Quartz-epidote vein at 20dg to core axis. \$9.9m Local faults at 10dg-80dg to core axis and quartz vein)4mm at \$0dg to core axis.	* * 14238 *	8.0	11.0	92.2	38.2	3.0	¥ : ≮{.05 ¥	<.5	(.01	(.01	0.01	(.001	* * 1 *	0	5 *	1	0	2 * *
* * * *	#10.7# Local fault at 30dg to core axis. #11.0-11.9m <u>PROPYLITE</u> Fine grained light green and greenish grey #equigranular. Quartz veins at 10dg-60dg to core axis, fine #disseminated pyrite. Upper contact at 50dg to core axis, gradual #change between basalt and propylite at 11.9m. Moderate to intense #anidote	x x 14239 x x x x	11.0	14.0	86.2	51.6	3.0	∓ * .40 * * *	<.5	₹.01	(.01)	0.01	<.001	* * * *	0		1	. 0 	2 * * * *
* * * * * * * * * * * * * * * * * * *	<pre>#epicore. #12.2-22.4m Fine to medium grained with feldspar, quartz and #hornblende, equigranular. # #17.2-17.9m Moderate epidote. #20.5-20.6m PROPYLITE Fine grained light green equigranular, intense</pre>	* * * 14240 * 14241 * 14242	14.0 17.0 20.0	17.0 20.0 23.0	99.2 92.3 103.8	65.6 50.3 54.5	3.0 3.0 3.0	* * *(.05 * .20 * .15	<.5 <.5 <.5	<.01 <.01 <.01	<.01 <.01 <.01	0.01 (.01 (.01	<.001 <.001 <.001	* 2 * 2	0 0 0	* 1 * 1 * 1 *	1	0 0 0	* 2 * 2 * 2 *
* * *	 *epidote, fine disseminated pyrite. Gradual increase in epidote. *22.4-28.0m Medium grained grey equigranular basalt. *25.0m Epidote veins at 60dg and 20dg to core axis, 2cm, irregular 	* * * 14243	23.0	26.0	97.4	59.2	3.0	* * * .10	۲.5	<.01	<.01	<.01	<.001	* * * *	0	* * * *	1	0	2 *
* * * *	<pre>%contacts. %26.4-27.8m 10% gypsum/anhydrite in groundmass, anhedral. %27.6m 1cm quartz vein at 70dg to core axis. %28.0-28.1m PROPYLITE fine grained light green equigranular, intense %epidote, fine disseminated pyrite.</pre>	* * 14244 * * *	26.0	29.0	98.3	42.2	3.0	¥ * .15 * *	<.5	<.01	<.01	<.01	<.001	* * *	0	1 *	1	0	* * * *
* * * * * * * * * * * * * * * * * * * *	#28.05m 1.5cm quartz vein at 30dg to core axis. #30.0m 2mm quartz vein at 40dg to core axis. #30.7m 3mm quartz vein at 10dg to core axis. #31.1m 5mm quartz vein at 60dg to core axis with chlorite along	* * 14245 * *	29.0	32.0	101.3	80.1	3.0	* * 20 * *	<.5	<.01	<.01	<.01	(.001	* * 1 * *	0	2 * *	1	0	* 2 *
* * * *	*CONTACTS. *32.0-50.0m Traces of minor disseminated hematite. *32.9m 5mm quartz-epidote vein at 60dg to core axis. *33.2m 1.5cm shear zone at 85dg to core axis with quartz vein and *chlorite	* 14246 * * ·	32.0	35.0	99.4	79.9	3.0	* .20 * *	(.5	<.01	{ .01	(.01	<.001	* 1 * *	0	2 *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2 * * *
* *	*35.5m 2mm and 4mm epidote veins at 20dg to core axis. *39.3m 5mm epidote vein at 45dg to core axis. *41.7m 1cm quartz vein at 80dg to core axis. *43.5-43.9m 10% disseminated hematite locally up to 25%.	* 14247 * 14248 * 14249 *	35.0 38.0 41.0	38.0 41.0 44.0	93.8 92.5 99.1	78.1 46.9 63.6	3.0 3.0 3.0	*(.05 * .05 * .10 *	<.5 <.5 <.5	<.01 <.01 <.01	<.01 <.01 <.01	<.01 <.01 <.01	<.001 <.001 <.001	* 1 * 1 * 1 *	0	1 * 1 * 1 *	1 1 1	1 1 2	5 * 5 * 5 *
* * * *	#43.5-65.0m 5-10% anhedral quartz phenocrysts 4-10mm. #44.05-44.25mPROPYLITE fine grained light green porphyritic with #anhedral quartz phenocrysts 5-8mm, intense epidote, trace of fine #disseminated pyrite. #46.6-46.9m PROPYLITE fine grained light green equigranular, intense	¥ * 14250 * *	44.0	47.0	89.2	62.5	3.0	* *(.05 * *	(.5	<.01	(.01	(.01	{.001	* * 3 * *	0	2 *	1	2	1 * * * *
* * * *	<pre>*epidote. Irregular quartz vein 1-10mm, trace of fine disseminated *purite. *48.0-48.2m <u>PROPYLITE</u> fine grained light green porphyritic with 5% *anhedral quartz phenocrysts 3-8mm, intense epidote.</pre>	* * * 14251 *	47.0	50.0	59.1	32.7	3.0	* * *{.05 *	(.5	(.01	(.01	(.01	(.001	* * * 3 *	0	* 2 *	1	1	* * 0 *
* * *	\$48.5m 10cm with 15% disseminated hematite. \$49.1-49.2m <u>PROPYLITE</u> fine grained light green porphyritic with *anhedral quartz phenocrysts 5-8mm, intense epidote. Irregular contacts *to basalt.	* * * * * * *	•					* * *						* * * * *		* *	k		* * *
* * *	\$49.4-49.6m <u>PROPYLITE</u> fine grained light green porphyritic with \$anhedral quartz phenocrysts 5-8mm intense epidote. Irregular contacts \$to basalt.	****** ***** *					1	* * *						*		*	1 1 1		*

,	150.2m 3cm quartz vein at Odg-40dg to core axis. Irregular contacts to #	14252	50.0	53.0	97.0	82.9	3.0 \$(. 05	<.5	(.01	(.01	(.01	(.001 #	3	0	1.*	2	0	1 *
	#basalt. #50 5-/5 Am. Icolated populite repulithe/homeoria fragments subappular	¥ · ¥ ·					*							* *		*			* * *
	to subrounded 1-10cm, intense epidote.	ŧ .					*					· ··.		*		*			*
	#52.4m 2cm quartz vein breccia at 20dg to core axis. Angular fragments	*					*							‡ : ¥		*			* -
	*C-UBB. *52.9m Isolated angular light red alkali feldspar phenocrysts 4-8mm.	*					*							*		: ¥			*
	*	¥ 14253	53.0	56.0	99.4 07 A	66.8	3.0 *	.60	(.5	(.01	(.01	(.01	(.001	* 2	0	1 *	1	0	2 *
	x08.3-38.98 <u>PROPILIE</u> the grained light green purphyritic with anneural xouartz phenocrusts 3-8mm, 7%. Intense epidote. Contact at 58.5m along	* 19694 *	JG. V	37.0	77.4	00.0	3.0 4		1.0	1.01	1.01	1.01	1.001	* <i>L</i> *	v.	*	1	. V	**
	*quartz vein, 5mm, at 60dg to core axis, quartz vein faulted,	*			÷.,		*							*		*			*
	#displacement lom. #59 A-99 Am Fine disceminated bematite	¥ 14255	59 0	62.0	96 4	59.8	3.0 x	10	< 5	(01	(01	< 01	(001	¥ 3	0	¥ 1 X	1	1	1 #
	\$59.2m Sam quartz-pyrite vein at 45dg to core axis.	*	07.0	02.0			*		•••					¥ .	•		•	. •	.*
	\$60.7m 10cm hematite xenolith, 25% disseminated hematite, fine grained	*					*	,						*		. *			*
	Tredish grey, equigranular. #63 Dm local fault at 60do to core axis.	* * 14256	62.0	65.0	92.7	53.8	3.0 *	(.05	(.5	(.01	(.01	(.01	(.001	• ≭ 3	0	2 *	1	1	1 *
	#63.1m 3cm chloritic fault gouge.	*					*	L		· . •				*		*			*
	#64.0m Local fault at 30dg to core axis. #65 3-65 6m Anbedral/irregular dark green gunsum/anbudrite	¥ ¥ 14257	65.0	68.0	86.6	36.1	3.0 *	(.05	(.5	0.02	(01	(.01	(.001	¥ \$\	0	2 #	1	. 1	• 1 x
	<pre>\$phenocrysts/amygdules 3-20mm.</pre>	*					*	1						*		*	-		* *
	*65.4m 10% disseminated hematite. */5 From 1 Seminated hematite.	*					*							* .		*			*
	x65.3# 1.5CB quartz-epidote vera at 200g to core axis. x66.3# 8mm quartz-minor epidote vera at 5dq to core axis.	* *					*	• 						* · · *		*			*
	#67.5m 3cm and 5cm gypsum/anhydrite-epidote xenoliths, irregular	*					*	۲. <u>.</u>					-	*		*			*
	#subangular. Une with epidote crystals and one with one part epidote #and one part oursum/anhudrite. Xenolithsout by quartz veins	¥					· *							*		· *			* *
	#67.6m Parallel quartz and epidote veins 3mm and 4mm at 30dg to core	*					*							*		*			*
	#axis.	¥ * 11050	10 0	71 0	00 7	22.0	* • ^ •	1 05	/ 5	/ 01	/ 61	/ 61	/ 601	*		*		•	*
	*axis. Increasing amount of quartz veins with depth. Minor epidote	* 19230 *	60.V	11.0	07.1	36.7	J.V #		1.5		1.01	1.01	1.001	* 1	1	*	2	1	*
	with isolated quartz veins. Isolated light red alkali feldspar veins	≭					*							*		*			*
-	#2-Dem and lenses D-lumm. #48 0-89 Nm. Fine purite in lenses and apprecates 2-5mm. 3% locally up	*					*	с. С						¥ \$		*			*
	*to 8%.	*		, 			*	۲ .						*		*			*
	# #74 1# 20rm quartz vein at 40dq to core avis with minor disseminated	¥ 14259 ¥ 14260	/1.0	77.0	90.5 64.6	51.8 19.8	3.0 ¥	K.05 K.05	(.) (.5	(.01	<.01 <.01	(.01	<.001 <.001	* 1 * 1	1	2 #	2	2	0 ¥ 0 \$
	*chlorite and pyrite along contacts and in basalt xenoliths, angular	*					*	(*	-	*	-		*
	5-3088. \$74 5-75 As Quantz wain with sinor disceptinated chlorite and along	* *					- X	ι					÷.	*		- X X			*
	*fractures. Minor epidote in lenses, subrounded 1-8mm and isolated	*					*	t						*		*			* -
	<pre>#pyrite lenses 1-3mm. *75 / 7/ 0- Mideante to interest channed baselt. Enlisting at 70de to</pre>	*					*							*		*			*
	*core axis with chlorite, oupsum/anhydrite and pyrite along foliation	▲ ≭ 5					*	ι [* • •		*			*
	*plane.	*					*							*		*	_	-	*
	#//.Om //Cm quartz vein at /Vog to core axis and Dmm quartz-pyrite vein #at 40dn to core axis.	* 14261 *	11.0	80.0	85.4	30.2	J.U.#	U.U3	3 (.3	1.01	(.01	(.01	(.001	× 1, *	1	2 *	3	2	• ¥
	\$79.0-79.9m 5% disseminated hematite.	*					*							*		*		•	*
	#79.0m 1cm quartz vein at 80dg to core axis. #79.8m 1cm quartz vein at 60dg to core axis.	¥ ¥					· ¥							* ·		*			*
	<pre>x81.9m 1cm quartz vein at 70dg to core axis.</pre>	* 14262	80.0	83.0	104.9	41.5	3.0 *	.10	(.5	(.01	(.01	(.01	<.001	*.1	1	2 1	3	3	0 *
	#82.2m 3cm light red alkali feldspar lense. #82.0-84 Am Moderate to interce shared baralt. Enlisting at 404r-404r.	* 10020	02 A	84 A	102 0	20 7	30.4	1	15	/ 01	7 61	2 11	(001	* * ^	1	*	2	2	. ≭
	to core axis. Local variation.	* 19203 \$	03.0	00.0	IVL.U	27.7		(1.9	1.01	1.01		1.001	*	1	*	· E		*
	#83.3m 2cm light red alkali feldspar phenocrysts/xenoliths, subrounded.	*					1	K .						*		1			*
	#84.2m Smm pyrite vein at 600g to core axis. #86.0-89.0m Moderate sheared basalt foliation at 30do to core axis.	* * 14264	86.0	89.0	95.5	59.5	3.0 \$	K. 05	(.5	(.01	(.01	(.01	(.001	* * 0	1	3 1	2	1	0 *
	<pre>\$locally buff coloured.</pre>	* - [*]					*							*		*			*
	#88.0-89.0m 10% dark green gypsum/anhydrite on foliation plane. #89.0-105.0m .Moderate to intense sheared basalt foliation at 10do-20do.	¥ * 14265	89 0	92 0	100 0	62 7	3 0 x	(05	(5	(.01	(01	0 08	(001	× ··	1	4 *	1	0	0 *
	<pre>\$to core axis local variation to Odg to core axis.</pre>	¥ 1 1200	07.0				*	t	••••					*	-	1	-		*
	\$92.0-95.0m Trace of disseminated hematite in quartz.	* 14266 *	92.0	95.0	101.5	63.7	3.0 *	K.05	(.5	(.01	<.01	0.09	(.001	* 0	1	4 *	1	1	0 *
	*/1.0# OBB quarts pyrise vern with minur disseminated newalite at 1900 -	¥					*							*		. *			· *
	\$95.0-119.5m Disseminated fine and coarse pyrite 2-3%.	* 14267	95.0	98.0	101.0	58.8	3.0 \$	K.05	<.5	0.09	(.01	0.09	(.001	x 0	1	4 1	2	0	0 *
	* #102.4m Quartz purite lense 1x3cm with minor disseminated hematite	* 19268 * 14269	78.0 101.0	101.0	100.5	58.8 67.6	3.0 ¥	10	(0.03	(.01	0.09	(.001 (.001	τυ 1 1	1 1	4 ¥ 3 \$	2	1	U # 0 #
	\$104.0m icm quartz-chlorite vein at 40dg to core axis.	* 14270	104.0	107.0	100.0	53.5	3.0 *	(.05	(.5	0.01	(.01	0.08	(.001	* 0	ī	3 \$	ž	1	0 *
	#104.0-107.0m Minor disseminated hematite associated with quartz vein	¥ . \$					*	t t						¥ ·		*			*
	\$105.0-115.0m Moderate to intense sheared basalt at 30dg-40dg to core	*												*		i			*
	*axis	X					· *	L .						¥		- 1			*

*	* * 110.2m 10cm quartz vein with disseminated pyrite.	* 14271 107.0 110.0 98.7 41.6 3.0 * 14272 110.0 113.0 89.4 19.2 3.0	*(.05 (.5 0 *(.05 (.5 *	0.02 (.01 0.09 (.001 * 0.02 (.01 0.09 .001 *	1 1 1 1 4	3 * 2 0 0 * 4 * 2 0 0 * * *
*	<pre>\$111.5m Two subrounded pyrite lenses icm. \$112.2m Zcm chlorite-pyrite gouge at 10dg to core axis. \$113.6m Scm chlorite-clay gouge. \$113.6m Scm chlorite-clay gouge.</pre>	* * 14273 113.0 116.0 74.5 10.2 3.0 *	\$ 0 \$.10 <.5 \$	0.02 (.01 0.09 .001	k 1 1 k 1 1	* * 4 * 2 0 0 * * *
* * * * * * * *	<pre>%115.5m 5mm quartz-chiorite vein at oug to core axis. %116.4m 2cm quartz vein at odg to core axis. %118.0m 5cm intense sheared at 40dg to core axis. %119.2m 20cm moderated disseminated epidote, 10%. % % #HOLE SHUT DOWN, NO WATER RETURN, BROKEN CORE LAST 3M, COULD BE DUE T(#WARN OUT BIT AND NOT TO FAULTING.</pre>	* 14274 116.0 119.5 69.2 0.5 3.5 * * * * *	5 *(.05 <.5 * * * * *	0.01 (.01 0.09 .001	k 1 1 k k k k	4 * 2 0 0 * * * * * * * * * * * *
* * *	* * * * *	 The second second	* * *		k k k k − − − − − − − − − − − − − − − −	* * * * * * *

 \bigcirc

APPENDIX D

CORE SAMPLE ASSAYS

#8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL (604) 946-4448

OURCE LABORATORIES LTD.

ASSAY REPORT

TO: Falconbridge Ltd. 6415 - 64 St. Delta, B.C. V4K 4E2

FILE NO .: 84-62

PROJECT:

April 19, 1984 DATE:

ないで、これをおやいないで、

L

L

Mr. J. Gammon ATTENTION:

Sample	Au	Ag	Cu (2)	PD (%)	2n (%)	(8)	
	(g/t)	(4/6/		<u>, , , ,</u>	.02		
14204	1	이 같은 것이 나 라 가슴이 있는 것이. 이 같은 것이 아파	.01		02	L	
05			.01		02	.002	
06	\mathbf{L}		.05	1	· 02	Τ.	
07	.30	일을 가 흔들었는 것	.04		.02		
08	L	L.	.01	<u>لا</u> •••••••••		.	
14209	L .	L.	L	ia - 1 4 - S≥2 - S •	.02	÷	
10		L	L .	<u>ц</u> .	.04	μ	
11	L	Ľ	.01	b .,	.02		
12	L	L	.03	L a j	.02	- F	
13	\mathbf{L}	.	.01	L	.02	نل. • • • • • • • • • • • • • • •	
14214	••••••••••••••••••••••••••••••••••••••	····· 1		···· L	.02		
15	L	L	.02	L .	.02	Ļ	
16	ni santi t ariya	L	L	L	.02		
17		L	.02	L	.02	b 200	
18	L	L	.02	L	.02	ь	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				L	See 2
20	L	L	.02	L	.p2	\mathbf{F}	
21	L	L	.01	L	.02	L	
22	T.	Б	.01	L	.02	. L	
23		ī . –	.01	L	.02	· L	
**********	•••••			R		т. Б. А	
	· Ť.	$\mathbf{\tilde{L}}$.01	L	.02	j - L _∠*'	
23		L	.01	L	.02	- 	
20		7	.02	L 🗳	.01	L R	
27		\mathbf{F}	.01	L	.01	L	
	•••••	.			.01		835
17223 20 -	- we shall the state	in an s hi n a si t	~	L	.02		and the second
31	10	1. 1.	.02	L	.02	Ľ	
2) 27		.	.02	L	.02	L	
22	10	ĩ	.04	L ·	.02	L .	
				•••••E•••••			
144J4 25			L	L	L	Б 🔶	
JJ 72	· 영상 · 영상 · 영상 · 특히 · 영상 · 영상 · 영상 · 영상 · 영상 · · · · · · · · · · · · ·	1		1	L	S - L - S.	
30	· · · · · · · · · · · · · · · · · · ·		8 7 - S	동안 이 귀엽니 같이 같이 같이 같이 같이 같이 같이 않는 것이 같이 않는 것이 같이 많이 했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다.	.01	1. 2	
3/	i i i i i i i i i i i i i i i i i i i	1999 - 1 999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	T.	\mathbf{T}	.01	1	
50	ц нъ		· · · · · · · · · · · · · · · · · · ·			····· Ľ	
14239	.40		14 T	Ť	.01		
40	<u>ь</u>	ىل •	LU T		T.	L	
4 1			نا د	فيلا	+		

L

L

L

L

L

Rejects retained one month, pulps one year, unless specific arrangements made.

.20

.15

.10

41

42

43

2. Contration

L

L

L

L

FILE NO .: 84-62

PAGE NO .: 2 of 2

Sample Description	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (Mo (%)	
14244	.15	L	L	L	L	L	
45 46	.20 .20	L	L L	L L	L L	L L	
47 48	L 05	Alexandra Ericana a Alexandra Francis	L	L	L	Ĺ	
14249	.10	L. L	ب. L		⁴ L		••••
50	\mathbf{L}	Ĺ	L	L	.01	L	
52	Ľ	L	L L	L	L	L	
53 14254	.60 .10	L	Ľ	······	<u>L</u>	Ļ	•••
55	.10	$\tilde{\mathbf{L}}$	Ľ	Ĺ	Ĺ	L.	
56 57		1999 - State L andonae 1999 - State La ndonae	L .02	L L	L	L L	
58	L	Ē	L	<u>.</u>			•••
60		L L	L	L L	L L	L.	
61	.05	L	L	L	Ľ	Ĺ	
62 63	.10 L	L L	L L	L L	L .01	L L	
14264	L 1 50		L 07	L	.01	L	
3301	1.30 L	L	.07	L	.02	L L L	
3303	L	L	.08	L	.62	L	
•••••	For Ag: L For Cu: L For Pb: L For Zn: L For Mo: L	indicates le indicates le indicates le indicates le indicates le	ess than . ss than .(ss.than(ss than .(ss than .(5 g/tonne)1%)1%)1%)01%	<u>×</u>		
A.s. rej. post	195 4 1 (k						
· • • • • • • • • •			•••••		*****		•••

	••••				•••••		
	••••						

U U N RESOURCE LABORATORIES LTD. #8. 7550 RIVER ROAD, DELTA, B C V4G 1C8 / TEL (604) 946-4448

TO: Falconbridge Ltd. 6415 - 64 St. Delta, B.C. V4K 4E2

CD

FILE NO .: 84-66

PROJECT:

April 19, 1984 DATE:

anella

ATTENTION: Mr. J. Gammon

Sample Description	Au (g/t	Ag (g/t	Cu) (%)	Pb (%	Zn) (ቼ	Mo (そ)	
14265	Ĺ	, L	L	L	.08	L	
66	Ĩ	L	L	L	.09	$\mathbf{L}_{\mathbf{r}}$	
67		L	.09	L	.09	L	
68	I	, L	.05	L.	.09	$\mathbf{L}_{\mathbf{r}}$	
69	.10)L		L		.	
14270	I	, L	.01	L	.08	L	
71	l	, , , ,	.02	\mathbf{L}	.09	L	
72	같은 가는 것을 많이 !	, L	.02		.09	.001	
73	.10)	.02	L	.09	.001	
74	I		.01	Ľ			
14275	i de la casa de la cas	L	.02	.01	.07		
76	I	L	.01	Ĺ	.07		
77	이 안전 동안 관람이 <mark>!</mark>	L L	.02	.01	.07		
78	I	L L	.01	.01	.08	이야 한 것은 것은 가 가 가 분 가 있다. 이 분 가 있는 것이 하는 것이 같이 하는 것이 같이 하는 것이 같이 하는 것이 하는 것이 같이 않는 것이 하는 것이 같이 않는 것이 같이 않는 것이 않는 것이 같이 않는 것이 같이 않는 것이 않는 것이 같이 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 같이 않는 것이 않는 것이 같이 않는 것이 같이 않는 것이 같이 않는 것이 않 것이 않는 것이 않이 않이 않이 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 않이 않이 않는 것이 않는 것이 않는 것이 않이 않이 않이 않이 않이 않이 않는 않이	
	I	L				····	
14280		-	L Ol	با ج	.00		
81	1	L .	.01	ц т	.07		
82	1	L L	.01	ц. Т	.00		
83	.0:	5 L	ц 10		.00 09		
		ų		······································			••••
14285			.01	.01	.00	.001	
86		ىل يا . .	.01	•V1	.00	I.	
87		L L 7 T	-02	T.	.08		이 가슴 모르는
88		L L r T	.01	01	.08	L	
14200		HH. r T.		.01	.08	L	
14290	STATES AND STATES		6.01	.01	.09	.004	: 3 16-3 Mp
91		r. T.	.01	.01	.08	L	
93		Б — — Г. Б.	.02	L	.08	L	
94		L L	.02				
14295	••••••	L L	.02	.01	.08	L	
96		L L	.01	.01	.08	.004	
97		L	.01	.01	.08	L	
98		L	.02	.01	.09	L	
		LL.		01			
14300		L L	.02	.01	.09	.001	
01		LL	.01	.01	.08	.001	
02		L	.01	L	.08	L	
03		L	.01	L	.08	L	
0.4		Τ. Τ.	.01	.01	.08	.001	

Rejects retained one month, pulps one year, unless specific arrangements made. CDN UDN RESOURCE LABORATORIES LTD. #8, 7550 RIVER ROAD, DELTA, B.C. V4G 1C8 / TEL. (604) 946-4448

ASSAY REPORT

FILE NO .: 84-66

PAGE NO .: 2 of 2

Sample Description	Au (g/t)	Ag (q/t)	Cu (%)	Pb (%)	Zn (Mo (%)
14305	L	L	.01	L	.08	L
06	$\mathbf{L}_{\mathbf{k}}$	L	.01	.01	.08	
07	\mathbf{L}	L	.02	\mathbf{L}	.08	
08	\mathbf{L}	terioren eta alteria de la composición de la composición de la composición de la composición de la composición La composición de la c	.01	.01	.08	L
14310	L		01	01	.08	•••••••+•••••••• T.
11	L L	Ľ	•••1 L	.01	.08	L
12	l i se i se i L i se i	L	.01	.01	.09	.001
13	L	L	L	.01	.08	L
	L.	L	L.	L		^L
14315	이는 이 가지 가지 1 가지 같은 이 방법에 있는 것 같이 많이.		.01	$\mathbf{F}_{\mathbf{r}}$.09	
10		89. (19.). 1. (19.)	.01	L T	.08	
18	· · · · · · · · · · · · · · · · · · ·	4	.01	.01	.08	L
19	Ľ	ī	.01		.07	ī
14320	Ľ	Ľ	.01	L	.08	L
21		Γ	.01	.01	.08	
22		L	.01	.01	.07	L
	For Zn: L For Mo: L	indicates 1 indicates 1	ess than ess than	.01% .001%		
de altre i c	4 16 1 9 18 1	Ne sa se me	E-ACCO.			
						•••••
		• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •			
S						
					1.	and the second

