REPORT

BACON LAKE MAGNETITE

1964

NANAIMO

MINING DIVISION

J. J. McDougall Geologist

- Jan.

29/65

REPORT ON

BACON LAKE - MAGNETITE

<u> 1964</u>

Vancouver, B. C. January 29, 1965

J. J. McDougall Geologist

INDEX

				Page	
Location.	*****		****	. 1	
Access		****	****	1	
Property.		*****		I	
History .				1	
	nt				
	on				
	ns				
	lations	N			
Reference	5		*****	3	
Drill Log	js – Packsaci	Holes #1	to 5		
Section	- A - A1 -	- section t Drill Hol	hrough es 3, 4 &	5	
leps -	Location Maj	o, BL 1(b)/	64 1.25"	= 1 mi.	
	Drill Hole of Willy In Scale 1" =	on Deposits	dle Map -	BL/6L/1	- in pocket

REPORT ON

BACON LAKE - MAGNETITE

1964

This report summarizes work done on the Bacon Lake magnetite property early in 1964. Such was designed to meet assessment requirements and to help determine possible grade of the Bacon Lake iron.

LOCATION:

The property is located on the southeast corner of Bacon Lake, 17 miles west of Campbell River (see Map BL 1(b)/64).

ACCESS:

Access is by direct road from Campbell River, B.C. PROPERTY:

Property consists of 5 located claims - Willy #1 and 2, Rock #1, 2 and 3 - in good standing until 1969.

HISTORY:

Locations cover known and well described minor magnetite occurrences (Willy #1 and 2) at Bacon Lake. Rock #1 to 3 cover a magnetic anomaly which we discovered in 1960 and drilled in 1961. The Willy deposit was previously drilled by Upton (?) while Argonaut was producing but results are not available.

DEVELOPMENT:

Four hundred and three feet of drilling (3 EX-LY and 1 P.S.) plus heliport construction on "Rock deposits" was done in 1961. 1964 work consisted of 318 feet of packsack drilling in 5 completed* holes on the "Willy" anomalies shown by dip needle work. (see Map BL/64/1).

^{*} As in other reports, abandoned holes are not recorded except as assessment work.

DESCRIPTION:

Five packsack diamond drill holes totalling 318 feet were put in between March and March 20 by drillers Schussler and Cross along a 60-foot long exposed section near the road on the Willy #1 claim. A dip needle survey was run of the MOO-foot long zone of which the drilled section is a part. (Map BL/6h/1 in pocket)

In general, a number of small magnetite bodies, previously described in a 1961 report by the writer, occur in or near the volcanic-limestone contact areas. One of our sections, A - A₁ (holes 3, 4 and 5), shows maximum pyritic magnetite thickness of 20 feet, this representing a replaced tufaceous band having a gentle easterly dip of 20°. Sharp folding and faulting is suspected judging by the more erratic results of holes #1 and #2.

Overall grade is about 30% soluble iron with an estimated 1/2 to 2% sulphur content but on section A - A₁ would average out between 40 and 45% with a high of 56%. One 10-foot section returned \$5.00 gold-silver values but the average is in the 35-50 cent range.

CONCLUSIONS:

The 1964 work on the Willy property was of too limited a nature to allow large-scale conclusions. Certainly, as shown by the shallow drilling and dip needle and air mag work, there is no important magnetite body within a few hundred feet of surface. The surface showings are small and discontinuous.

RECOMMENDATIONS:

Recommendations remain as previous, i.e. that the property be held for better evaluation at a time when it may have some value as a supplementary source of iron ore.

REFERENCES:

- Report on Bacon Lake and Willy Iron Prospects, J. J. McDougall,
 1960 (report on file) includes earlier G.S.C. descriptions.
- 2. Report on Bacon Lake Magnetite, J. J. McDougall, 1961 (report on file bound with Hiller Iron)
- 3. Summary Report, March 1, 1964, J. J. McDougall (on file)

Vancouver, B. C. January 29, 1965

J. J. McDougall, Geologist.

	BACON	TAKE	TRON
PROPERTY.	DACON	Liferia	TYPEAN

Willy #1

HOLE NUMBER	1
SHEET NUMBER	1

		0_0;;0;;
About 200 ft. west of road on Willy #1 Claim - 230 feet west of location line and 715 ft. south	STARTED	March 4th, 1964
DEP Of #2 stakes. ELEVATION OF COLLAR 1350 feet approx.	COMPLETED	March 6th, 1964
DATUM	ULTIMATE DEPTH	101.0 feet.
DIRECTION AT START: DIR	PROPOSED DEPTH	

DEPTH FEET	FORMATION	FROM TO	WIDTH OF SAMPLE	% Iron	Au	Ag	Cu
0 - 7	Black, fine-grained, finely crystalline arg.	24 - 30	6 ft	45.01	.01	0.4	0.06
		30 - 40	10 ft	62.05	tr	tr	0.04
		40 - 50	10 ft	8.71	tr	tr	0.05
7 - 8	Pyritic (py) impure magnetite (mag)	A S	3		: /4		
8 - 24	Siliceous (sil) mottled porphyry (porph) (dyke or						
	intr volcanics?)		-				
24 - 25	Brecciated (brecc) py mag, chloritic (chl) in part.	80 A 1 1 1 M					
25 - 40	Py mag, Co3 stringers (strgs) -	43 - AN	*		4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	epidote (ep) banding (bndg) at 40°.					, .	
40 - 53	Chalcopyrite (CP) py, pyrr min. disseminated						
	(diss) in epid.						
1 A 3	Carbonaceous tuff(?) or amyg volc.						-
53 = 91	F.g. (fine-grained), sl (slightly) amyg						
	(amygdaloidal) to tuffaceous volcanic (V1);		41	De la constantina	7		<u> </u>
	occ Co3 strgs.						
91 - 101	- as above but 80% coarse brecciated sctn.				-		
	- end in Carb. Vl.						
	95% C. R.						
				:			

HOLE NUMBER	2	
SHEET NUMBER	1	_
SECTION FROM	TO	

	STARTED	March 10th, 1964
ELEVATION OF COLLAR	COMPLETED	March 11th, 1964
DATUM	ULTIMATE DEPTH	76 ft.
DIRECTION AT START: DIP -44	PROPOSED DEPTH	

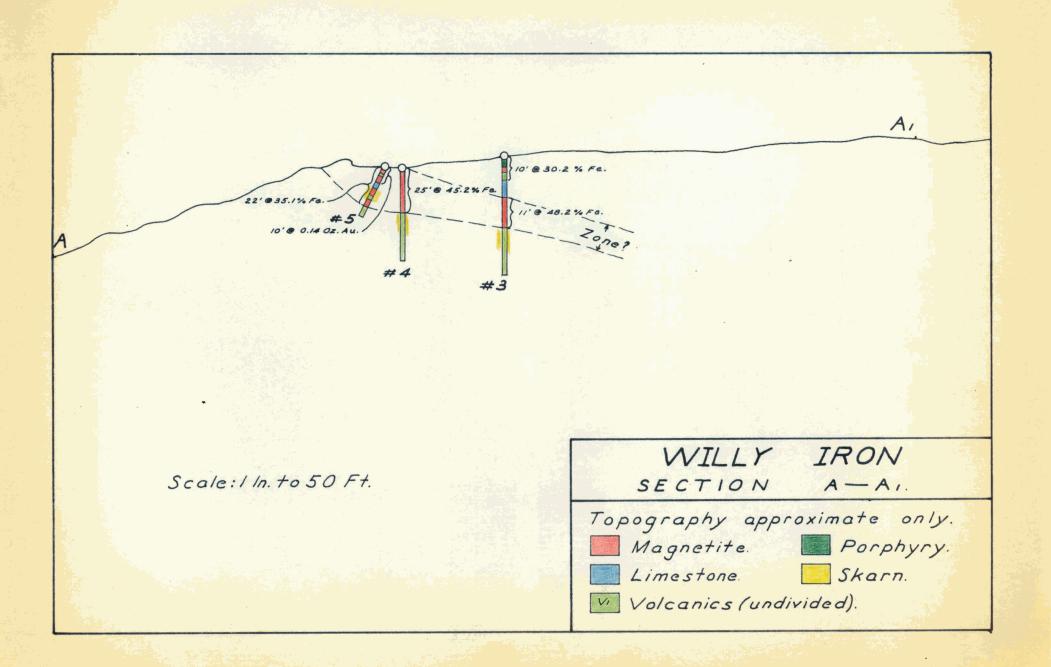
DEPTH FEET	FORMATION	FROM TO	WIDTH OF SAMPLE	% Iron	Au	Ag	Cu
0 + 7	F. g. arg. limestones; occ sl mag	48 - 53	5.0 ft	38.82	tr	tr	tr
A MANAGEMENT OF THE PROPERTY O		53 - 63	10.0	4.94	tr	tr_	0.01
7 - 8	Chlor mag						
8 - 20	Mottled sil porph						
20 - 27	Dk, sl brece., amyg. tuff;						
	Co3 strgs, occ sl mag @ 65°.						
27 - 48	F. g. sl arg dk lms.						
48 - 51	Pyr. mag.						
51 - 62	Epidotized, sl py tuff as prev in hole #1.						
62 - 76	Sl tuffaceous amyg. Vl, sl epid.						
02 - 70	or currectors amy g. vr, or epita.						
	(E N D)						
š.'	(E N U)						
	a D Ard						
·	C. R. 85%	. :					
<u> </u>				1			
			x ,	1 141			
							4

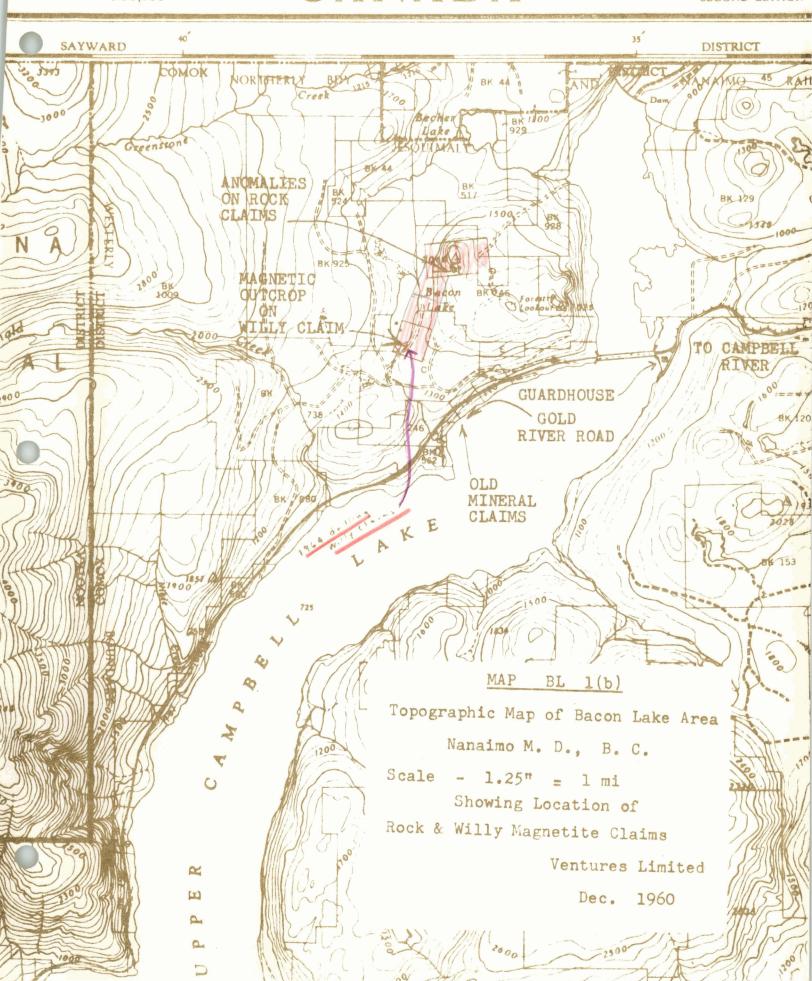
PROPERTY	BACON	LAKE

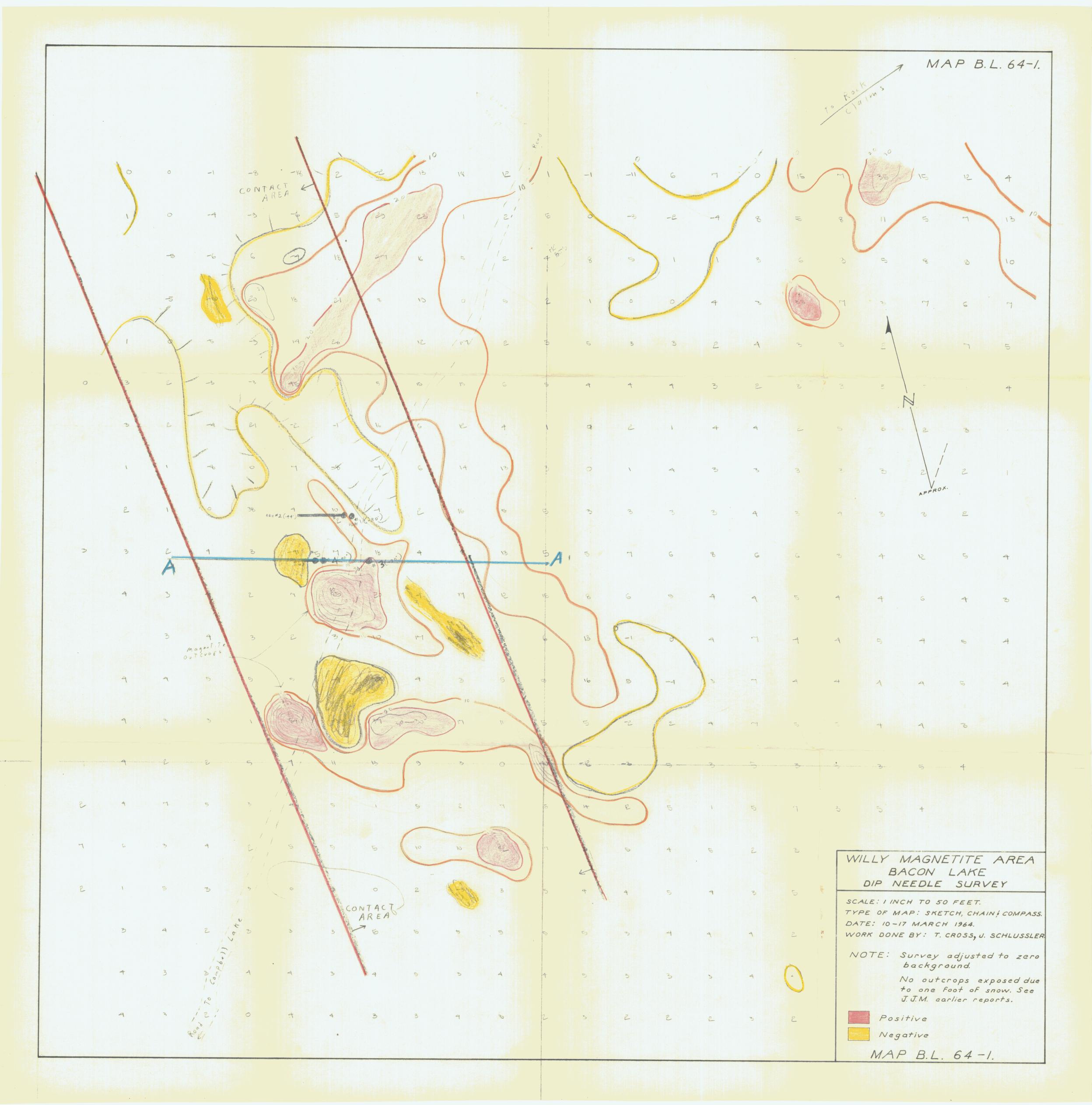
HOLE NUMBER		
SHEET NUMBER	1	_

LOCATION: DEP Hole #1 and 200 feet in from claim line.	STARTED	March 12th, 1964	:,
ELEVATION OF COLLAR as #1	COMPLETED	March 16th, 1964	·
DATUM	ULTIMATE DEPTH	60 ft.	
DIRECTION AT START: DIP 900	PROPOSED DEPTH		

DEPTH FEET	FORMATION	FROM TO	WIDTH OF SAMPLE	% Iron	Au	Ag	Cu
0 - 3	Mottled sil porph	0 - 10	10.0 ft.	30.20	tr	tr	0.01
3 - 4	Mag; ctet @ 40°	20 - 31	11.0	48.21	0.01	t,r	tr
		31 - 41	10.0	9.29	tr	tr	0.01
4 - 5	F.g. V1						
5-8	Sl mag in brece, Co3 Vl						
8 - 20.5	F. g. lms.	e		-			
20.5-37	60% pyr mag in brecc, skarnified tuff.						:
37 - 45	Epid., sl py Vl; sl amyg.						
45 - 60	Py V1, f.g. sl Co3						-
	(E N D)						
						-	!
	C. R. 70%.			_			
						. '	
							:
*							
			,	,			
					-		


PROPERTY BACON LAKE (Willy)


HOLE NUMBER	<u> </u>
SHEET NUMBER	1
SECTION FROM	


					1			
LOCATION: LAT 55 f	STARTED		March 17th, 1					
ELEVATION OF COLLAR	COMPLETED March 20th, 1964							
DATUM		ULTIMATE DEF	PTHHT	51 feet				
DIRECTION AT START: DIP	PROPOSED DEPTH							
DEPTH FEET	FORMATION	FROM TO		OTH %		A		

	-90					· · · · · · · · · · · · · · · · · · ·	
DEPTH FEET	FORMATION	FROM TO	WIDTH OF SAMPLE	% Iron	Au	Ag	Cu
0 - 25	60% pyr. mag replacement of epidotized Vl and Co3	0 - 10	10.0	36.98	0.01	tr	tr
	skarmified tuff.	10 - 20	10.0	48.11	0.01	tr	tr
		20 - 25	5.0	55.95	0.01	tr	tr
25 - 35	Epid Vl, sl skarn, sl py	25 - 35	10.0	6.49	0.01	tr	0.01
35 - 51	- Co3 Vl, occ epid, py.						
: '		-					:
	(E N D)						·
Na							
	80% C. R.						
			a				
en 1							
4. 1. 3.						-	
		1 A					

PROPE	BAGON LAKE DIAMOND DRILL	RECOR	D	SHEET NUMB	er Ber DM	1	
ELEVATION OF CO	Same as Hole #4 OLLAR " BEARING N750W ART: DIP —64	STARTED COMPLETED ULTIMATE DEPTH PROPOSED DEPTI	Mai	cch 20th, cch 21st, 30 feet	1964		
DEPTH FEET	FORMATION	FROM TO	WIDTH OF SAMPLE	% Iron	Au	Ag	Ca
0 - 22 22 - 30	50% mag repl of lms and Vl, skarn; pyritic Ctct and Banding at 70° pyritic Vl	0 = 10 10 = 22 22 = 27	10.0 12.0 5.0	26.23 42.50 8.03	0.14 0.01 0.01	0.1 tr tr	tr 0,01 0,05
	(E N D) 90% C. R.		33				

