APPENDIX 4 : PART 1

DRILL LOGS FOR HOLES CH88-23, CH88-38 TO CH88-58

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH87-23 1

n/a 810

20

n/a

Hole Location: 28+00 E 1+10 N

NTS: 092/B13

UTM: 5417132.2 N 430195.7 E

Azimuth: 210

Elevation: 545 m

Dip: -50

Length: 568.8 m

Started: April 18, 1988 Completed: April 22, 1988 Claim No. CHIP1

Section No.: Line 28+00 East, Chip Group

Logged By: David P. Money

Drilling Co.: Burwash Enterprises

n/a

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NQ

Purpose: To extend CHEM87-23 through the Anita gabbro DIP TESTS

	Azi-			Azi-	
Length	muth	Dip	Length	muth	Dip
80.80	210.0	-45.0	349.30	214.0	-39.0
117.70	211.0	-42.0	416.40	216.0	-38.0
199.90	212.0	-40.0	449.50	217.0	-38.0
279.20	212.0	-40.0	559.60	221.0	-38.0

From (m)	To (m)	DESCRIPTION		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba b) (ppm)
								-						
.0	4.9 OVERBURD	EN												
1.2														
4.9	33.0 FELSIC Q	UARTZ-FELDSPAR CRYSTAL TUFF												
				AB21506	9.0	10.0	1.0	n/a	11	₹5	30	(1	₹5	1000
				AB21507	10.0	11.0	1.0	n/a	15	25	117	(1	(5	1300
				AB21508	11.0	12.0	1.0	n/a	8	12	37	(1	√5	1200
				AB15457	14.1	14.2	.1	n/a	25	n/a	38	n/a	n/a	870
				AB21509 AB21510	15.1 16.1	16.1 16.6	1.0	n/a n/a	24 40	. <5	35 198	(1	₹5 ₹5	880 350
				AB21510 AB21511	16.1	17.6	1.0	n/a	45	. (5	39	<1 <1	(5	830
				AB15458	22.5	22.6	.1	n/a	12	n/a	42	n/a	n/a	1270
				VDIDADO	24.3	. 22.0		и/ а	1.6	117 a	42	11 / CL	11/ 0	1270
33.0	36.0 FELDSPAR	PORPHYRITIC MAFIC ASH TUFF												
				AB15459	33.0	33.0	.0	n/a	82	n/a	160	n/a	n/a	1410
				AB21512	33.0	34.0	1.0	n/a	22	11	79	(1		1000
				AB21513	34.0	35.0	1.0	n/a	14	5	45	K1	₹5	1300
				AB21514	35.0	36.0	1.0	n/a	4	6	34	<1	₹5	1100
36.0	126.0 CHLORITI	C FELSIC QUARTZ-FELDSPAR CRYSTI	L TUFF											
				AB15460	45.5	45.6	.1	n/a	19	n/a	31	n/a	n/a	910
				AB21515	48.0	49.0	1.0	n/a	6	.5	24	(1	₹5	1300
				AB21516 AB21517	49.0 50.5	50.5 51.5	1.5 1.0	n/a n/a	15 13	<5 .	59 37	(1	(5 (5	1500 990
				AB21517	61.3	61.4	.1	n/a	5	n/a	33	n/a	n/a	960
				AB21518	72.0	73.0	1.0	n/a	9	11 / a 6	27	(1	(5	1000
				AB15462	74.0	74.1	.2	n/a	29	n/a	52	n/a	n/a	1000
				4012407		/ 4 . 1	• 4	,		11 C	52	,	, ч	

AB15463

85.0

85.1

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH87-23 2

Sample From To (m) (m) Total Cu Pb Zn Ag Au B No. (m) (m) (m) Sulphides (ppm) (ppm	0 0 0 0
AB15464 99.3 99.4 .1 n/a 23 n/a 32 n/a 920 AB15465 112.6 112.7 .1 n/a 20 n/a 41 n/a n/a 980 AB15465 123.6 123.7 .1 n/a 29 n/a 33 n/a n/a 980 126.0 127.0 CHLORITE SCHIST AB21520 126.0 127.0 1.0 n/a 4 (5 70 (1 <5 530) 127.0 131.3 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15467 134.4 134.6 .2 n/a 72 n/a 39 n/a n/a 1160 142.8 155.9 CHLORITIC FELSIC QUARTZ EYE TUFF AB15468 148.6 148.7 .1 n/a 15 n/a 22 n/a n/a 1000 155.9 186.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15473 162.6 162.8 .2 n/a 28 n/a 28 n/a n/a 74 n/a 75 n/a 24 n/a 74 n/a 175.6 175.8 .2 n/a 20 n/a 39 n/a n/a 1000 AB15473 175.6 175.8 .2 n/a 20 n/a 39 n/a n/a 1000 AB15473 175.6 175.8 .2 n/a 20 n/a 39 n/a n/a 1000 AB15473 175.6 175.8 .2 n/a 20 n/a 39 n/a n/a 1000	0 0 0
AB15466 123.6 123.7 .1 n/a 29 n/a 33 n/a n/a 980 126.0 127.0 CHLORITE SCHIST AB21520 126.0 127.0 1.0 n/a 4 <5 70 <1 <5 530 127.0 131.3 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15467 134.4 134.6 .2 n/a 72 n/a 39 n/a n/a 1160 142.8 155.9 CHLORITIC FELSIC QUARTZ EYE TUFF AB15468 148.6 148.7 .1 n/a 15 n/a 22 n/a n/a 1000 155.9 186.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15469 165.6 165.7 .1 n/a 28 n/a 28 n/a 28 n/a 70	0
AB21520 126.0 127.0 1.0 n/a 4 <5 70 <1 <5 530 127.0 131.3 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF 131.3 142.8 INTERMEDIATE QUARTZ FELDSPAR CRYSTAL TUFF AB15467 134.4 134.6 .2 n/a 72 n/a 39 n/a n/a 1160 142.8 155.9 CHLORITIC FELSIC QUARTZ EYE TUFF AB15468 148.6 148.7 .1 n/a 15 n/a 22 n/a n/a 1000 155.9 186.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15472 157.1 157.3 .2 n/a 4 n/a 43 n/a n/a 900 AB15473 162.6 162.8 .2 n/a 28 n/a 28 n/a n/a 740 AB15469 165.6 165.7 .1 n/a 5 n/a 40 n/a n/a 1000 AB15474 169.9 170.0 .1 n/a 20 n/a 39 n/a n/a 1040 AB15475 175.6 175.8 .2 n/a 5 n/a 24 n/a n/a 470	0
127.0 131.3 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15467 134.4 134.6 .2 n/a 72 n/a 19 n/a n/a 1160 142.8 155.9 CHLORITIC FELSIC QUARTZ EYE TUFF AB15468 148.6 148.7 .1 n/a 15 n/a 22 n/a n/a 1000 155.9 186.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15472 157.1 157.3 .2 n/a 4 n/a 43 n/a n/a 900 AB15473 162.6 162.8 .2 n/a 28 n/a 28 n/a n/a 740 AB15474 169.9 170.0 .1 n/a 5 n/a 40 n/a n/a 1040 AB15474 169.9 170.0 .1 n/a 5 n/a 20 n/a 39 n/a n/a 1040 AB15475 175.6 175.8 .2 n/a 5 n/a 20 n/a 39 n/a n/a 1040	0
131.3 142.8 INTERHEDIATE QUARTZ FELDSPAR CRYSTAL TUFF AB15467 134.4 134.6 .2 n/a 72 n/a 39 n/a n/a 1160 142.8 155.9 CHLORITIC FELSIC QUARTZ EYE TUFF AB15468 148.6 148.7 .1 n/a 15 n/a 22 n/a n/a 1000 155.9 186.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15472 157.1 157.3 .2 n/a 4 n/a 43 n/a n/a 900 AB15473 162.6 162.8 .2 n/a 28 n/a 28 n/a n/a 740 AB15469 165.6 165.7 .1 n/a 5 n/a 40 n/a n/a 1000 AB15474 169.9 170.0 .1 n/a 20 n/a 39 n/a n/a 1000 AB15475 175.6 175.8 .2 n/a 5 n/a 24 n/a n/a 470	
AB15467 134.4 134.6 .2 n/a 72 n/a 39 n/a n/a 1160 142.8 155.9 CHLORITIC FELSIC QUARTZ EYE TUFF AB15468 148.6 148.7 .1 n/a 15 n/a 22 n/a n/a 1000 155.9 186.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15472 157.1 157.3 .2 n/a 4 n/a 43 n/a n/a 900 AB15473 162.6 162.8 .2 n/a 28 n/a 28 n/a n/a 740 AB15469 165.6 165.7 .1 n/a 5 n/a 40 n/a n/a 1000 AB15474 169.9 170.0 .1 n/a 20 n/a 39 n/a n/a 1040 AB15474 169.9 170.0 .1 n/a 20 n/a 39 n/a n/a 1040 AB15475 175.6 175.8 .2 n/a 5 n/a 24 n/a n/a 470	
142.8 155.9 CHLORITIC FELSIC QUARTZ EYE TUFF AB15468 148.6 148.7 .1 n/a 15 n/a 22 n/a n/a 1000 155.9 186.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15472 157.1 157.3 .2 n/a 4 n/a 43 n/a n/a 900 AB15473 162.6 162.8 .2 n/a 28 n/a 28 n/a n/a 740 AB15469 165.6 165.7 .1 n/a 5 n/a 40 n/a n/a 1000 AB15474 169.9 170.0 .1 n/a 20 n/a 39 n/a n/a 1040 AB15475 175.6 175.8 .2 n/a 5 n/a 24 n/a n/a 470	
AB15468 148.6 148.7 .1 n/a 15 n/a 22 n/a n/a 1000 155.9 186.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15472 157.1 157.3 .2 n/a 4 n/a 43 n/a n/a 900 AB15473 162.6 162.8 .2 n/a 28 n/a 28 n/a n/a 740 AB15469 165.6 165.7 .1 n/a 5 n/a 40 n/a n/a 1040 AB15474 169.9 170.0 .1 n/a 20 n/a 39 n/a n/a 1040 AB15475 175.6 175.8 .2 n/a 5 n/a 24 n/a n/a 470)
155.9 186.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF AB15472 157.1 157.3 .2 n/a 4 n/a 43 n/a n/a 900 AB15473 162.6 162.8 .2 n/a 28 n/a 28 n/a 740 AB15469 165.6 165.7 .1 n/a 5 n/a 40 n/a n/a 1000 AB15474 169.9 170.0 .1 n/a 20 n/a 39 n/a n/a 1040 AB15475 175.6 175.8 .2 n/a 5 n/a 24 n/a n/a 470	n
AB15472 157.1 157.3 .2 n/a 4 n/a 43 n/a n/a 900 AB15473 162.6 162.8 .2 n/a 28 n/a 28 n/a n/a 740 AB15469 165.6 165.7 .1 n/a 5 n/a 40 n/a n/a 1000 AB15474 169.9 170.0 .1 n/a 20 n/a 39 n/a n/a 1040 AB15475 175.6 175.8 .2 n/a 5 n/a 24 n/a n/a 470	
AB15469 165.6 165.7 .1 n/a 5 n/a 40 n/a n/a 1000 AB15474 169.9 170.0 .1 n/a 20 n/a 39 n/a n/a 1040 AB15475 175.6 175.8 .2 n/a 5 n/a 24 n/a n/a 470	
AB15475 175.6 175.8 .2 n/a 5 n/a 24 n/a n/a 470	0
	0
AB15471 184.7 184.9 .2 n/a 28 n/a 55 n/a n/a 1690)
186.0 189.5 INTERMEDIATE QUARTZ FELDSPAR CRYSTAL TUFF	
189.5 193.5 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF	
AB21521 189.5 190.4 .9 n/a 75 273 2863 <1 20 1300 AB21522 190.4 191.3 .9 n/a 1014 115 480 <1 20 1200	D
AB21523 191.3 192.2 .9 n/a 89 12 271 <1 <5 1100 AB21524 192.5 193.5 1.0 n/a 72 48 411 <1 15 1600	
193.5 202.0 CHLORITIC FELSIC FELDSPAR CRYSTAL TUFF	
AB15476 193.9 194.0 .1 n/a 14 n/a 40 n/a n/a 1300 AB15477 195.2 195.3 .1 n/a 110 n/a 130 n/a n/a 960	
202.0 220.9 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF	
AB15478 209.0 209.1 .1 n/a 15 n/a 23 n/a n/a 980 AB15479 218.1 218.2 .1 n/a 59 n/a 81 n/a n/a 960	

•

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH87-23 3

					DIAMOND DRI	LL LOG											
From (m)	To (m)			DESCRIPTIO)NN		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp)	Ba b) (ppm)
220.9	232.3	WEAKLY CH	LORITIC FE	ELSIC TUFF													
							AB15480	221.3	221.4	.1	n/a	60	n/a	67	n/a	n/a	660
							AB21525			.9	n/a	38	14	237	(1	5	860
							AB21526			. 7	n/a	24	. 8	190	(1	<5	940
							AB15481	223.9	224.0	.1	n/a	137	n/a	204	n/a	n/a	1190
232.3	248.2	2 CHLORITIC	FELSIC QU	JARTZ-FELDSPAR CRYS	TAL TUFF		101507	222.0	222.0		,						
							AB21527 AB15482			1.0	n/a n/a	45 78	8 n/a	85 73	. <1 n/a	(5	800
					•		AB15483			.1	n/a	31	n/a n/a		n/a n/a	n/a n/a	920
										••	, ~	•	, 🐱		, .	147 G	720
249.2	252.2	INTERNEDI	איים בין מער														
440.4	434.3	INIERNEDI	AID PROM:				AB21528	249 5	250.5	1.0	n/a	121	6	1610	(1	15	300
							AB15484			.1	n/a	86	n/a	180	n/a	n/a	240
							AB21529			2.2	n/a	45	6	145	.n/ u	(5	830
252 3	265 9	FELSTC OU	ART7-FELDS	PAR CRYSTAL TUFF													
	203.3	, ibboic go.	ARTE TEEDO	TAR CRIDING TOLL			AB21530	252.8	254.0	1.2	n/a	5	6	45	(1	5	1300
							AB21531		254.8	. 8	n/a	2	8	14	à		1300
							AB15485	254.8	255.0	. 2	n/a	3	n/a	26	n/a	n/a	
							AB21532		256.0	1.0	n/a	27	8	36	<1.		1100
							AB21533		257.0	1.0	n/a	1	7	25	<1		1800
							AB21534			1.0	n/a		9	18	<1		1100
							AB21535 AB21536		260.0	1.0	n/a n/a	1 1	6 5	16 24	(1		1100 990
							AB21537		261.0	1.0	n/a	9	7	34	(1		1100
							AB21538		262.0	1.0	n/a	2	8	16	ä		1400
							AB21539		264.0	2.0	n/a	12	7	105	(1		1200
							AB21540	264.0	264.9	.9	n/a	9	11	31	(1	10	1400
							AB21541	264.9	266.0	1.1	n/a	86	17	52	<1	10	₹20
265.9	270.9	FAULT ZONI	E														
	-		_														
070 0	070 4																
270.9	2/8.1	. FELSIC QUA	ARTZ-FELDS	PAR CRYSTAL TUFF			AB15486	272 6	272.0		- 4-	33	-1-	46	-/-	n/a	930
							AB13466	214.0	212.0	-1	n/a	33	n/a	46	n/a	11/4	030
278.1	279.8	FELSIC TU	FF				$(x,y) \in \mathcal{F}_{p}$										
							AB15487	278.3	278.4	.1	n/a	2 .	n/a	37	n/a	n/a	471
279.8	298.3	MAFIC TO	INTERHEDIA	TE TUFFACEOUS SEDI	HENTS											:	
							AB15488		284.6	.1	n/a	20	n/a		n/a	n/a	
							AB15489		291.6	.1	n/a	68	n/a		n/a	n/a	913
							AB21542			1.0		190	(5	130	: (1	10	870
							AB21543	431.0	470.3	1.3	n/a	433	6	147	<1	10	₹20

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH87-23 4

From	To		DHG CD T DBY OV	Sample	From	To	Width	Total	Cu	Pb	Zn	λg	Au		
(m)	(m)		DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppl	b) (ppm	1)
		•													
298.3	330.8	FELSIC QUARTZ	EYE TUFF												
				AB21544	298.3	299.0	.7	n/a	60	6	70	<1	10	730	
				AB21545	299.0	300.0	1.0	n/a	106	5	57	<1	25	990	
				AB21546	300.0	301.0	1.0	n/a	366	8	68	(1)		1200	
				AB21547	301.0	302.0	1.0	n/a	57	5	43	(1		1500	
				AB21548 AB21549	302.0 303.0	303.0	1.0	n/a	36	6 7	43	(1		1300	
				AB21549	304.0	304.0	1.0	n/a	81		49	<1		1400 1100	
				AB21557	305.0	305.0 306.0	$\frac{1.0}{1.0}$	n/a n/a	188 145	- 16 55	58 216	<1 <1		1300	
			and the second of the second o	AB21558	305.0	307.0	1.0	n/a	43	40	362	31	5	920	
				AB21559	307.0	308.0	1.0	n/a	106	8	2470	(1	-	1600	
				AB21560	308.0	310.0	2.0	n/a	249	17	202	(i	₹5	2000	
				AB21561	310.0	311.0	1.0	n/a	156	14	97	à	15	2600	
				AB21562	311.0	312.0	1.0	n/a	154	28	93	(1	30	2700	
				AB21563	312.0	313.0	1.0	n/a	226	16	90	(1	30	2800	
				AB21564	313.0	314.0	1.0	n/a	93	25	78	<1	15	2800	
				AB21565	314.0	315.0	1.0	n/a	117	15	86	<1	10	3200	
				AB21566	315.0	316.0	1.0	n/a	147	97	164	<1	40	2900	
				AB21567	316.0	317.0	1.0	n/a	433	944	1164	. 2	170	2100	
				AB21568	317.0	318.0	1.0	n/a	308	142	244	1	220	1700	
				AB21569	318.0	319.0	1.0	n/a	280	103	199	<1	80	1900	
				AB21570	319.0	320.0	1.0	n/a	326	105	274	1	100	2500	
				AB21571	320.0	321.0	1.0	n/a	296	37	1,70	<1	75	2200	
				AB21572	321.0	322.0	1.0	n/a	30	11	55	<1	25	1200	
				AB21573	322.0	323.0	1.0	n/a	18	10	37	(1	15	1100	
				AB21574	323.0	324.0	1.0	n/a	4	12	39	(1	10	1400	
				AB21575	324.0	325.0	1.0	n/a	15	16	50	<1		1300	
				AB21576	325.0	326.0	1.0	n/a	44	432	232	§1		1000	
				AB21577	326.0	327.0	1.0	n/a	46	167	444	<1 □		1200	
				AB21578	327.0	328.0	1.0	n/a	26	100	258	(1	10	2000	
				AB21579	328.0	329.0	1.0	n/a	37	95	204	<1	45	2200	
				AB21580	329.0	330.0	1.0	n/a	28	121	240	(1	25	3000	
				AB21581	330.0	330.8	. 8	n/a	31	32	30	<1	25	2400	
220 6	440 5	ALDIC THEOLOG	un.												
330.8	449.5	MAFIC INTRUSI	AR.	****	220.0	333.0		- 1-	220	-	76		10	ĒΛ	
				AB21852 AB15490	330.8	332.0	1.2	n/a	229 6	7 n/a	75 190	<1 n/a	n/a	50 161	
				AB15490 AB15491	339.6 347.8	347.9	.1 .1	n/a n/a	210	n/a	140	n/a	n/a	148	
				AB21583	385.0	386.0	1.0	n/a	165	11 / at	66	"/ 1	20	120	
				AB15492			.2	n/a	135	n/a	93	n/a	n/a	125	
				NOI JA74	400.3	100.3	. 4	μ/ α	* 7 3	a	,,	/ @	117 W	100	

449.5 480.7 FELDSPAR PORPHYRITIC GABBRO

Hole was re-entered on April 18th, plastic pipe was pulled and hole was reemed out with 0.7 m lost core and first core at 450.2.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH87-23 5

From (m)	To (m)	DESCRIPTION		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		450.2 467.2 Medium to coarse grained gab	bro with weak											
		local chloritization around												
		veins with trace chalcopyrite												
		to 4 mm, feldspars, 30 to 35												
		hornblende crystals, 2 to 4												
		2 mm, ilmenite grains and 5												
		467.2 467.8 White bull quartz vein with trace chalcopyrite.	minor chiorite and											
		467.8 472.2 Similiar to 450.2 to 467.2.												
	*	472.2 475.0 Fine-grained medium green pl	agiophyric gabbro											
		with approximately 12 %, 2 to												
		grains. There are numerous 5												
		chlorite veins.												
		475.0 475.9 Quartz - chlorite - chalcopy	rite vein with 0.5											
		to 1 % chalcopyrite clots.												
		475.9 479.1 Similiar to 472.2 to 475.0,												
		grained near the end. There												
		sphalerite or red - brown bi	otite in a quartz											
		veinlet at 476.5.												
		Core barrel did not lock at 480.7 and 1.	8 m was lost from											
		477.6 to 480.7.	3 m											
480.7	487.0	FELSIC FELDSPAR CRYSTAL TUFF												
		Massive light grey to white siliceous fe		VA01577			1.3	. n/a	60	₹5	46	(1		500
		to 15 %, (1 mm feldspar grains and loc		VA01033		487.0	6.3	n/a	23	n/a	392	n/a	n/a 1	
		486.8 there are 5 to 10 %, 2 to 3 mm, fe		VA01578			1.0	n/a	78	12 38	485 406	$\frac{\alpha}{\alpha}$	(5 1 (5 1	
		upper 2 m there are up to 2 % biotite sp		VA01579		484.0	1.0	n/a n/a	30 50	21	817	(1	(5 1	
		feldspars are altered to (?), light bro		VA01580 VA01581			1.0	n/a n/a	43	13	639	(1	(5 1	
		carbonate or sphalerite, is biotite (?) epidote group mineral. There is 1 to 2		VA01581			1.0	n/a	29	8	134	(1	₹5 1	
		fine-grained pyrite and 0.5 % fracture c		7801302	400.0	407.0	1.0	4, 4	2,	•			,,,	
		with local strong pyrite and or pyrrhot												
		pyrite bands at 482.2, 485.4 and 485.5.												
		as bands from 482.2 to 482.4, 1 %. Ther												
		fracture controlled carbonatization. Min												
		occur. There is weak thermal biotite ne												
		upper contacts.												
		Structure :.												
		Bedding :.												
		482.3 : 82 degrees to core axis.												
		Foliations:												
		481.2 : 65 degrees to core axis.												
		486.4 : 78 degrees to core axis.												
487.0	488.9	MAFIC INTRUSIVE												
	,,	Fine-grained medium green mafic sill wit	h very sharp	VA01583	487.0	488.0	1.0	n/a	349	₹5	135	(1	19	80
		contacts and silicified tuff at contacts		VA01584	488.0	488.9	9	n/a	291	₹5	127	<1	17	70
		3 to 7 %, average 5 %, disseminated and	fracture											

PI	ROPERT	Y: Chemainus J.V. FALCONBRIDGE LIMITED DIAMOND DRILL LOG					HOLE N CH87-23		e Numbe 6	er				
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)	
		controlled pyrite. There is no visible alteration. There is a 0.5 cm thick band of epidotized feldspar laths at 488.4. Is massive with no foliation.												
488.9	491.0	FELSIC FELDSPAR CRYSTAL TUFF Similiar to 480.7 to 487.0. Is more siliceous with strongly increased thermal biotite.	VA01585 VA01586			1.1	n/a	238 162	<5 8	35 264	(1 (1		1600 1700	
		There is approximately 1 % total sulphides with trace fracture controlled or banded chalcopyrite with pyrite and minor pyrrhotite from 489.5 to 489.8. There is trace sphalerite, chalcopyrite and pyrrhotite with 0.5 to 1 %												
		fracture controlled and disseminated pyrite from 490.1 to 490.4. There are trace fragments and very weak chloritization.												
		Foliation trend is at 55 degrees to core axis.												
404 0	404 0	WARTA TAMBUIATUM												
491.0	491.9	MAFIC INTRUSIVE Fine-grained contorted medium green mafic dyke or sill with 2 % fracture controlled pyrite and moderate to strong pervasive carbonatization. Blocky, highly fractured core	VA01587	491.0	491.9	. 9	n/a	288	11	135	(1	(5	230	
		with foliation at approximately 0 degrees to core axis.												
191 Q	502 2	FELSIC FELDSPAR CRYSTAL TUFF												
431.3	302.2	Similiar to 480.7 to 487.0 with trace to nil thermal	VA01588			. 5	n/a	129	6	50	<1		1500	
		biotite near upper contact. 491.9 499.6 Very sericitic with 10 to 20 %, (1 mm,	VA01589	501.7	502.2	.5	n/a	1110	(5	33	1	10	1300	
		feldspars. Is contorted and disky with very local fracture controlled silicification. From												
		493.0 to 493.5 there is 3 to 5 % pyrite parallel to foliation as bands. Average												
		pyrite is 0.5 % up to 1 % disseminated and weakly banded parallel to foliation.												
		499.6 501.7 Very siliceous tuff, appears to be either very silicified, pervasive and fracture controlled												
		or is a dyke. Is glassy massive white rock with 3 to 5 % fine-grained feldspars. 501.7 502.2 Weakly chloritic tuff with 0.5 % chalcopyrite												
		and 3 to 4 % pyrite, disseminated and parallel to foliation. There are very fine-grained feldspars.												
		Foliations: 494.1: 56 degrees to core axis.												
		495.6: 50 degrees to core axis. 496.8: 76 degrees to core axis. 501.8: 83 degrees to core axis.												
		JOI.0 . OJ MEGLEES LO COLE ANIS.												

F	ROPERT	Y: Chemainus J.V.		FALCONBRIDGE LIMI DIAMOND DRILL LO					HOLE N CH87-23		age Numb 7	er				
From (m)			DESCRIPT	ION	Samp No		om To	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)	
		brown with strong 502.2 502.3 STRON	st with chlorite an pervasive carbona G PERVASIVE CARBON grees to core axis	ATIZATION.												
502.3	521.6	Either variably s with grey siliceo wide. With a seri crystal matrix.	us 1 to 3 cm thick cite and 10 %, 1 to There is minor weak	uff or is lapilli tu k, and core width +	VA015 VA015	34 503 90 506 91 509 92 521	4 508.1	1.5	n/a n/a n/a n/a	106 441 295 403	n/a 〈5 〈5 〈5	22 25 12 21	n/a <1 <1 1	n/a 1 40 1 80 1 56 1	1300 1000	
		511.0 to 511.2, t average 0.5 % di clots and bands c quartz veins with %, 3 to 7 mm, pyr	here are trace on sseminated and band ontain chalcopyrite pyrite clots, i.e ite cubes with traces.		ite s h 5											
		521.4. At 509.5 parallel to folia stringer (?), 1. Foliations:. 505.1: 71 degree	there is 5 cm of 10 tion pyrite. At 52 5 cm of 60 % pyrites to core axis.	507.9, 516.4, 506.5 0 to 15 % banded or 1.4 there is a e and 5 % chalcopyri												
•		511.2: 75 degree 515.2: 67 degree 519.3: 84 degree Fault slips: Minor at 517.8 at displacement.	s to core axis.	e axis with 17 mm												
521.6	522.3		45 degrees to cor	e axis.												
		Similiar to 499.6	to 501.7, probabl	y is a dyke.												
522.3	524.5		of fine-grained bl	ack sulphide mud at ct. Is very sericiti			.3 523. .4 524.		n/a n/a	71 130	<5 <5	9 433	(1 (1	49 20	940 610	

VA01595 524.5 526.0 1.5

133

129

38 120

with local possible sericitized lapilli. There is 7 % fine-grained pyrite banded parallel to foliation, 35 to 70 degrees to core axis. There are numerous local faults at 20 degrees to core axis, 60 degrees to core axis and numerous other orientations. At 523.8 there is a 0.3 cm

Mafic tuff with local 0.7 to 1 cm quartz lapilli and 2 to

chalcopyrite bleb with pyrite.

524.5 527.0 MAFIC LAPILLI TUFF

522.3 524.5 STRONG PERVASIVE SERICITIZATION.

PROPERTY: Chemainus J.V.

FALCONBRIDGE LIHITED
DIAMOND DRILL LOG

553.0 568.8 INTERMEDIATE TUFFS WITH MIMOR CHERTY SEDIMENTS
Green to red - brown andesitic tuffs with 3 to 5 %, up to

HOLE No: Page Number CH87-23 8

n/a 759

		DIAMOND DRILL LOG											
From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)
		5 cm epidotized clasts. Has 2 to 5 % hornblende crystals with local mafic fragments, up to 1 mm. There is strong fracture controlled carbonatization with 1 % fracture controlled and disseminated pyrite centred on	VA01035 VA01596		527.0 527.0	2.5	n/a n/a	107 63	n/a <5	53 52	n/a <1	n/a 31	115 330
		carbonatization and epidotization.											
527.0	535.4	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION Bleached mafic flow with strong fracture controlled carbonatization and strong pervasive carbonatization.	VA01036	527.0	535.0	8.0	n/a	159	n/a	67	n/a	n/a	239
		There is 30 to 65 %, 1 to 3 mm, hornblende crystals in a fine-grained white, feldspar and carbonate (?), matrix. Is blocky, highly fractured core. There is local epidotized fragments and epidote and calcite veinlets. There is no											
		foliation. Alteration:											
		527.0 535.4 STRONG PERVASIVE CARBONATIZATION. 527.0 535.4 STRONG FRACTURE CONTROLLED CARBONATIZATION.											
535.4	535.5	FAULT ZONE Ground mafic flow as above.											
535.5	545.6	MAFIC TUFFS WITH MINOR CHERTY SEDIMENTS Cherty sediments in mafic tuff with thermal biotite. There	VA01597	525.6	537.0	1.5		47		447		20	000
		are 20 to 30 %, (1 mm, feldspar grains in the matrix. The cherts are green, red, brown, cream and white. The	VA01598 VA01599	537.0 538.5	538.5 540.0	1.5 1.5	n/a n/a n/a	47 56 48	(5 (5 (5	117 106 107	(1 (1 (1	22 14 5	980 810 800
		cherts are folded with 1 % fracture controlled pyrite. There are minor faults perpendicular to bedding. At 541.6, tops is downhole and bedding is at 38 degrees to	VA01600 VA01601 VA01602	541.5 543.0	543.0 544.5	1.5 1.5 1.5	n/a n/a n/a	44 41 44	(5 (5 (5	120 101 113	(1 (1 (1	5 8 8	890 900 790
		core axis. At 544.8 bedding is at 64 degrees to core axis. Bedding varies throughout, foliation is constant at 65 to 70 degrees to core axis.	VA01603	544.5	545.6	1.1	n/a	36	(5	139	(1	₹5	190
545.6	553.0	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION Mafic flow, very similiar to 527.0 to 535.4. Hosts 40 %, 1 to 4 mm, hornblendes, 10 % feldspar and epidotized feldspars, up to 1 mm, in fine-grained light green matrix	VA01037	546.0	553.0	7.0	n/a	188	n/a	69	n/a	n/a	304
		with local epidote spots, up to 5 mm. There is strong fracture controlled carbonatization with minor associated epidotization. At 552.4 there is											
		chalcopyrite blebs in a carbonate - quartz - chlorite vein. There is minor local biotite in veins. There is a weak foliation at 61 degrees to core axis. The flow is light to medium green and massive.											

VA01038 553.0 568.0 15.0

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH87-23 9

(m)	(m)	DESCRIPTION
		1 mm, quartz eyes and 10 %, up to 1 mm, feldspar grains. There are numerous minor fracture controlled quartz - calcite veinlets, up to 5 mm, at orientations of 0 to 90 degrees to core axis. There are dark brown cherty argillics and light brown, green, and white chert beds throughout. Bedding is at 60 to 70 degrees to core axis. Beds are cross-cut but minor faults and fracture controlled quartz veinlets. There is up to 1 % fracture controlled pyrite in the beds, averages < 0.5 %. There are conclusive tops downhole at 560.1. Majority of sediments occur from 553.0 to 560.2 and from 566.0 to 568.8. Thermal biotite is strongest with sediments and weak to nil from 560.2 to 566.

End of hole 1866 feet, Friday April 22, 1988 at 1:30 p.m.

Au Ba (ppb) (pps
7 470
9 820
21 870
₹5 790
(5 1300

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	XS 102	XAL203	XCA0	z HGO	INA20	XK20	ZFE203	21102	XP205	ОИКХ	XLO I	SUH	BA	AI	NACA
VA00567	487.90	488.00	50.40	14.30	3.95	5.36	3.04	0.13	12.30	2.30	0.41	0.14	6.23	98.56	113.	44.	7.
VA00568	494.10	494.20	70.70	14.10	1.14	1.31	2.90	2.39	2.86	0.31	0.07	0.03	2.62	98.43	1560.	48.	4.
VA00569	501.20	501.30	75.90	13.30	1.02	0.15	6.60	0.74	0.33	0.30	0.07	0.01	1.00	99.42	486.	10.	8.
VA00570	514.00	514.10	72.10	14.20	0.30	0.61	0.99	3.45	3,42	0.30	0.02	<0.01	3.39	98.78	1760.	76.	1.
VA00571	522.00	522.10	76.10	12.90	1.10	0.16	5.66	1.03	0.59	0.29	0.03	0.01	1.16	99.03	581.	15.	7.
VA00572	548.00	548.10	48.30	11.10	12.90	10.20	1.74	0,18	9.68	0.50	0.11	0.17	3.16	98.04	57.	41.	15.
VA00573	563.20	563.30	54.10	17.80	5.76	3.46	3.97	0.41	8.67	0.96	0.37	0.20	2.93	98.63	220.	28.	10.
VA00574	566.00	566.10	48.10	16.40	11.30	3.54	1.64	1.69	8.69	0.98	0.39	0.20	5.62	98.55	1200.	29.	13.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE	*********											 	 	 	CODES	
NUMBER	FROM	TO	RB (ppm)	SR (ppm)	(bbw) BV	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)			ROCK		MIN
												 		 	:	
VA00567	487.90	488.00	10.0	122.0	113.0	45.0	178.0	27.0	214.0	130.0	31.0			PMA	?	DCP
VA00568	494.10	494.20	58.0	138.0	1560.0	<10.0	112.0	(10.0	32.0	33.0	<10.0			TFAF	4 .	DBP
VA00569	501.20	501.30	26.0	239.0	486.0	16.0	106.0	12.0	<10.0	<10.0	<10.0			TEAF	.7	AA
VA00570	514.00	514.10	71.0	86.0	1760.0	13.0	107.0	19.0	38.0	<10.0	<10.0			TFAF	7	DEP
VA00571	522.00	522.10	31.0	214.0	581.0	<10.0	103.0	20,0	36.0	<10.0	<10.0			TFAE	?	AA
VA00572	549.00	548.10	30.0	191.0	57.0	<10.0	<10.0	18.0	89.0	41.0	88.0			VMB	ECS	AA
VA00573	563.20	563.30	28.0	270.0	220.0	34.0	76.0	<10.0	73.0	99.0	<10.0			TIA	? .	· AA
VA00574	566.00	566.10	40.0	279.0	1200.0	38.0	45.0	11.0	75.0	85.0	15.0			TIA	PMS	AA

:/*

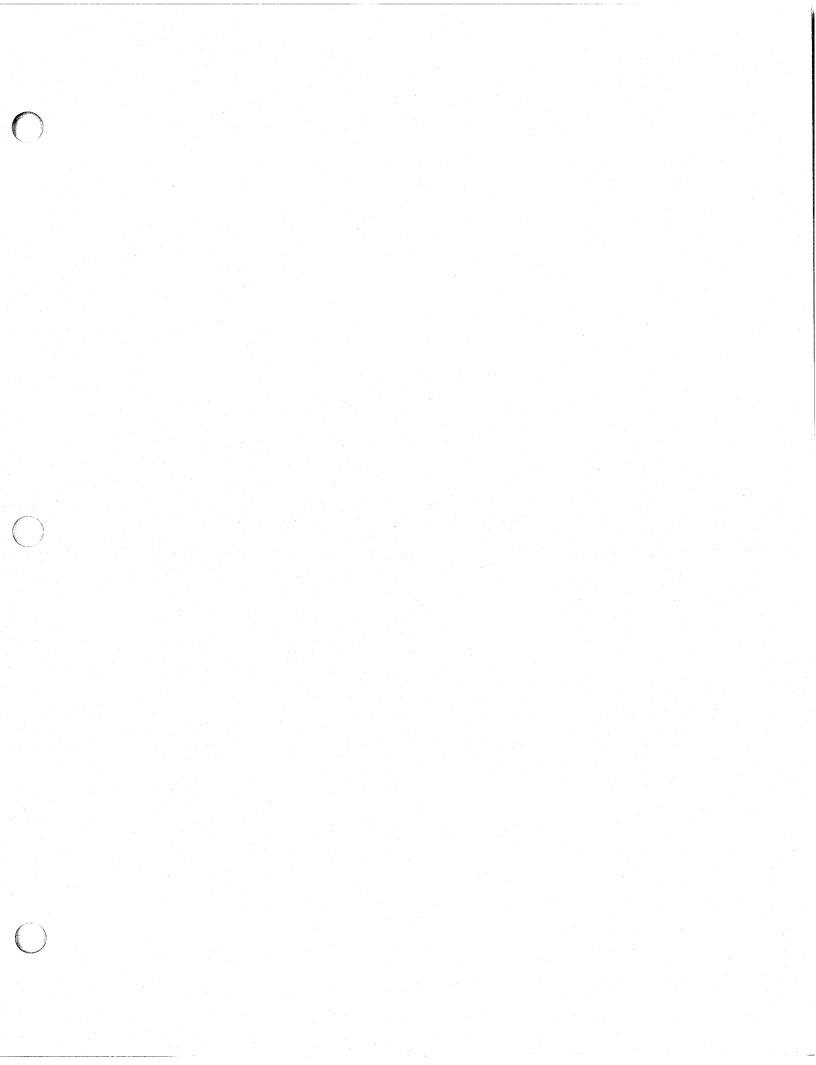
DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

NUMBEK	FROM	TO	78102	XAL203	ZCAO	ZMG0	XNA20	XK20	XFE2U3	XT 102	XP205	ZHNO	ZLOI	SUH	ВА	AI	NACA

VA01033	480.70	487.00	71.90	14.10	1.81	0.92	1.02	3.46	2.12	0.30			2.54	98.17	1380.	61.	3.
VA01034	503.00	520.00	70.30	15.50	0.72	0.71	2.37	3.04	2.81	0.35			3.08	98.88	1620.	55.	3.
VA01035	524.50	527.00	46.10	17.00	9.03	5.31	3.47	0.13	12.00	1.11			3.70	97.85	115.	30.	13.
VA01036	527.00	535.00	47.10	11.90	13.60	8.74	2.17	0.33	9.44	0.51			4.31	98.10	239.	37.	16.
VA01037	546.00	553.00	48.30	11.70	12.20	9.01	2.36	0.45	9.44	0.50			4.54	98.50	304.	39.	15.
8E010AV	553.00	568.00	50.60	17.70	5.71	4.45	3.41	1.20	9.87	1.02			3.77	97.73	759.	38.	9.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE															
NUMBER			RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZŔ (ppm)	NB (ppm)	CU (ppm.)	ZN (ppm)	NI (ppm)		ROCK	CODES	MIN
EE010AV	480.70	487.00			1380.0				23.0	392.0	<10.0				
VA01034	503.00	520.00			1620.0				106.0				TFAF	?	DCP
VA01035	524.50	527.00			115.0					22.0	12.0		TFAF	?	DCP
VA01036	527.00	535.00							107.0	53.0	52.0		TMC	PCS	DCP
VA01037					239.0				159.0	67.0	80:0		VHA	PCS	A :
	546.00	553.00			304.0				188.0	69.0	84.0		VMB	700	
VA01038	553.00	568.00			759.0				188.0	98.0	26.0			FCS	Α
										,,,,	40.0		IIA	?	A


DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	НН (ррж)	CUZN	EIS	FE
					*		*****										
UA01577	480.70	482.00	1500.0	60.0	46.0	<0.5	<5.0	5.0	2.0	<5.0	9.0	<1.0	<1.0	82.0	57.	2.	1.
VA01578	482.00	483.00	1400.0	78.0	485.0	<0.5	<5.0	7.0	3.0	12.0	18.0	4.0	<1.0	77.0	14.	4.	1.
VA01579	483.00	484.00	1200.0	30.0	406.0	<0.5	<5.0	5.0	2.0	38.0	8.0	2.0	<1.0	197.0	7.	3.	1.,
VA01580	484.00	485.00	1100.0	50.0	817.0	<0.5	<5.0	3.0	2.0	21.0	11.0	4.0	<1.0	202.0	6.	3.	1.
VA01581	485.00	486.00	1200.0	43.0	639.0	<0.5	<5.0	4.0	3.0	13.0	8.0	3.0	<1.0	134.0	6.	з.	1.
VA01582	486.00	487.00	1500.0	29.0	134.0	<0.5	<5.0	7.0	3.0	8.0	6.0	<1.0	<1.0	217.0	18.	з.	1.
VA01583	487.00	488.00	80.0	349.0	135.0	<0.5	19.0	32.0	21.0	<5.0	22.0	<1.0	<1.0	700.0	72,	5.	5.
VA01584	488.00	488.90	70.0	291.0	127.0	<0.5	17.0	29.0	22.0	(5.0	12.0	1.0	<1.0	697.0	70.	5.	4.
VA01585	488,90	490.00	1600.0	238.0	35.0	<0.5	36.0	6.0	2.0	<5.0	5.0	<1.0	<1.0	119.0	87.	1.	1.
VA01586	490.00	491.00	1700.0	162.0	264.0	<0.5	<5.0	3.0	2.0	8.0	<5.0	3.0	<1.0	73.0	38.	1.	. 1.
VA01587	491.00	491.90	230.0	288.0	135.0	<0.5	<5.0	34.0	66.0	11.0	8.0	<1.0	2.0	718.0	68.	1.	4.
VA01588	493.00	493.50	1500.0	129.0	50.0	<0.5	6.0	13.0	22.0	6.0	(5.0	<1.0	<1.0	211.0	72.	4.	2.
VA01589	501.70	502.20	1300.0	1110.0	33.0	0.8	10.0	9.0	4.0	<5.0	8.0	2.0	2.0	46.0	97.	4.	2.
VA01590	506.40	508.10	1300.0	441.0	25.0	<0.5	40.0	5.0	4.0	(5.0	<5.0	<1.0	3.0	30.0	95.	1.	2.
VA01591	509.00	510.50	1000.0	295.0	12.0	<0.5	80.0	9.0	3.0	<5.0	10.0	<1.0	2.0	31.0	96.	3.	3.
VA01592	521.10	521.60	1600.0	403.0	21.0	0.5	56.0	11.0	3.0	<5.0	7.0	<1.0	3.0	33.0	95.	2.	2.
VA01593	522.30	523.40	940.0	71.0	9.0	<0.5	49.0	6.0	3.0	<5.0	16.0	<1.0	4.0	16.0	89.	7.	2.
VA01594	523.40	524.50	610.0	130.0	433.0	<0.5	20.0	11.0	11.0	<5.0	14.0	5.0	2.0	56.0	23.	7.	2.
VA01595	524.50	526.00	120.0	133.0	129.0	<0.5	38.0	29.0	93.0	18.0	8.0	2.0	<1.0	631.0	51.	1,	4.
VA01596	526.00	527.00	330.0	63.0	52.0	<0.5	31.0	23.0	28.0	<5.0	8.0	<1.0	<1.0	572.0	55.	1.	4.
VA01597	535.50	537.00	980.0	47.0	117.0	<0.5	22.0	14.0	13.0	<5.0	- 13.0	1.0	1.0	753.0	29.	1.	4.
VA01598	537.00	538.50	810.0	56.0	106.0	<0.5	14.0	14.0	14.0	<5.0	19.0	<1.0	<1.0	838.0	35.	1.	4.
VA01599	538.50	540.00	800.0	48.0	107.0	<0.5	5.0	13.0	14.0	<5.0	5.0	<1.0	<1.0	708.0	31.	1.	4.
																-	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	10	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	. NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HQ (ppm)	нн (ррш)	CUZN	ETS	FE
VA01600	540.00	541.50	890.0	44.0	120.0	<0.5	5.0	15.0	2.0	(5.0	13.0	<1.0	<1.0	806.0	27.	1.	4.
VA01601	541.50	543.00	900.0	41.0	101.0	<0.5	8.0	13.0	3.0	<5.0	16.0	1.0	(1.0	727.0	29.	1.	4.
VA01602	543.00	544.50	790.0	44.0	113.0	<0.5	8.0	15.0	5.0	<5.0	18.0	<1.0	<1.0	847.0	28.	1.	4.
VA01603	544.50	545.60	190.0	36.0	139.0	<0.5	<5.0	9.0	21.0	<5.0	13.0	2.0	4.0	462.0	21.	1.	2.
VA01604	553.60	555.10	470.0	92.0	91.0	<0.5	7.0	16.0	15.0	<5.0	<5.0	2.0	<1.0	563.0	50.	1.	4.
VA01605	555.10	556.60	820.0	95.0	77.0	<0.5	9.0	17.0	12.0	<5.0	21.0	1.0	<1.0	519.0	55.	1.	4.
VA01606	556.60	557.80	870.0	93.0	104.0	<0.5	21.0	21.0	10.0	<5.0	8.0	2.0	<1.0	790.0	47.	1.	5.
VA01607	558.70	560.00	790.0	71.0	88.0	<0.5	<5.0	17.0	13.0	<5.0	<5.0	1.0	<1.0	826.0	45.	1.	5.
VA01608	566.10	568.00	1300.0	84.0	91.0	<0.5	<5.0	20.0	14.0	<5.0	<5.0	2.0	<1.0	1035.0	48.	1.	5.

Hole No. CH88-23

Summary Log: DDH CH88-38

436.0 - 438.0

438.0

Gabbro.

End of hole.

Location: 47+00 E, 0+38 N; Chip 1 Claim Azimuth: 210, Dip: -65 Hole Completed: April 11, 1988 Core logged by: D.P. Money 0.0 -3.7 Casing. 3.7 -31.5 Intercalated mafic and felsic ash and crystal tuffs. 31.5 -69.5 Felsic lapilli tuff. 69.5 - 102.0 Intercalated chloritic felsic crystal tuffs and hornblende-bearing mafic tuffs. 102.0 - 139.7 Felsic flow or coarse crystal tuff. 139.7 - 161.4Fine grained plagiophyric gabbro. 161.4 - 201.8 Mafic flow. 201.8 - 251.3 Intercalated felsic tuffs, dacitic tuffs and mafic flows. 251.3 - 264.9 Felsic crystal tuff, hosts two 20 to 30 cm zones of weak chalcopyrite and pyrrhotite, which are the downdip extent of the pulse E.M. anomaly. 264.9 - 269.4 Fine grained plagiophyric gabbro. 269.4 - 281.4 Mafic ash tuff. 281.4 - 288.3 Felsic crystal tuff. 288.3 - 314.5Mafic ash tuff. 314.5 - 317.9Major thrust fault, splay off the Fulford Fault. 317.9 - 319.1 Pyritic felsic tuff with 4 % pyrite. 319.1 - 332.5Andesitic crystal tuff. 332.5 - 346.4Intercalated felsic and mafic tuffs. Pyritic felsic tuff with 2 % pyrite. 346.4 - 358.8 358.8 - 373.0 Fine grained plagiophyric gabbro. 373.0 - 393.4Intercalated felsic and mafic tuffs. 393.4 - 436.0 Mafic tuffs with numerous thin chert beds.

FALCONBRIDGE LINITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 1

Hole Location: 47+00 E 0+38 S

NTS: 092B/13 UTM: 5416053.2 N 431803.0 E

Azimuth: 210 Elevation: 660 m Dip: -65 Length: 438.0 m

Started: April 4, 1988 Completed: April 11, 1988 Claim No. Chip 1 Section No.: Section 47+00 East, Chip Group

Logged By: D.P. Money

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NQ

Purpose: To test PEM anomaly downdip of Chem87-34 DIP TESTS

Azi-Length muth Dip Length muth Dip 3.70 203.0 -65.0 272.50 205.0 -55.0 91.40 202.0 -64.0 367.30 210.0 -51.0 188.10 206.0 435.90 -58.0 208.0 -51.0

From	To		Sample	From	To	Width	Total	Cu	Pb 2n	Ag	Au	Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm) (ppm)	(ppm)	(ppb) ((ppm)

- .0 3.7 OVERBURDEN

 Contains rounded chips of rusty silicified feldspar bearing tuff.
- 3.7 6.9 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF
 Grey to light blue siliceous felsic tuff with 10 to 20 %
 feldspar grains and up to 5 % quartz eyes. Locally
 oxidized with minor vugs and fractures. There are trace
 rusty pyrite cubes, up to 1.5 mm. Feldspars are variably
 sausuritized. Colour variations are due to variable
 chlorite content, nil to up to 5 %.
 3.7 4.0 WEAK PERVASIVE CHLORITIZATION.
 4.7 6.9 WEAK PERVASIVE CHLORITIZATION.
 Structure:.
 Foliations:
 3.8 M: 45 degrees to core axis.
 5.2 M: 46 degrees to core axis.
- 6.9 7.0 FAULT ZONE Blocky, highly fractured core with sheared rubble of underlying mafic unit.
- 7.0 7.3 MAFIC TUFF
 Strongly sheared mafic ash tuff with minor epidotized feldspar grains.
 7.0 7.3 STRONG PERVASIVE CARBONATIZATION.
 Foliation is at 40 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
7.3	7.5	FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF											
		Same as from 4.7 to 6.9.											
7.5	17 2	MAFIC TUFF											
	11.2	Very strongly sheared mafic tuff with dark chloritic, up	VA01001	7.5	17.2	9.7	n/a	19	n/a	62	n/a	n/a	342
		to 1 mm, layers, probably sheared lapilli or hornblende											
		crystals. There are minor zones with feldspar crystals.											
		Local blocky, highly fractured core with lost core of 0.3											
		m between 7.5 and 8.2, 1.2 m from 8.2 to 10.1, 0.3 m from											
		10.6 to 11.6, 0.5 m from 12.0 to 13.4, 0.7 m from 14.0 to 15.5 and 0.8 m from 16.0 to 17.4. There is minor blocky,											
		highly fractured core from the overlying felsic tuff											
		interspersed in this unit, maximum length of the felsic											
		pieces is 5 cm. The mafic is strongly sheared and											
		carbonatized. There are trace pyrite blebs and cubes. From											
		8.2 to 8.5 is very contorted.											
		7.5 17.2 STRONG PERVASIVE CARBONATIZATION.						. ,					
		Foliation:											
		11.1 M : 42 degrees to core axis. 15.0 M : 60 degrees to core axis.											
		15.0 n . ov degrees to tote axis.											
17 2	17 3	FAULT TONE						9					

17.2 17.3 FAULT ZONE Fault gouge with unmeasurable orientation.

17.3 28.0 FELSIC FELDSPAR CRYSTAL TUFF Light grey siliceous, possibly weakly silicified, felsic tuff with up to 10 %, < 1 mm, feldspar grains and trace 1 to 2 mm quartz eyes. Chlorite content is usually much less than 5 %, but locally exceeds 7 %, i.e. At 21.0 m. There are local calcite blebs mainly centred on the trace local quartz veinlets, which are fracture controlled. The core is locally oxidized throughout the unit and very rusty from 26.7 to 27.1. There is 10 cm fault gouge at 22.7. There appear to be local folds. Becomes weakly chloritic towards the bottom of the unit. Lost core :. 22.0 to 22.9 : 0.3 m.

25.0 to 25.8 : 0.3 m.

27.0 to 28.0 : 0.5 m.

Structure :.

Foliations :.

18.2 M : 41 degrees to core axis.

21.1 M : 37 degrees to core axis.

23.1 M : 40 degrees to core axis.

23.2 M : 18 degrees to core axis.

23.2 23.4 Contorted with foliations from 18 to 0 degrees to core axis.

n/a 1140 17 VA01002 17.3 28.0 10.7 n/a

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 3

From To Sample From To Width Total Cu Рb Au Zn λσ -----DESCRIPTION-----(m) (m) No. (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) (m) 24.5 M : 33 degrees to core axis. 27.5 M : 48 degrees to core axis.

28.0 28.3 FAULT ZONE
Chloritic clay and fault gouge.

28.3 30.8 FELSIC QUARTZ FELDSPAR CRYSTAL LAPILLI TUFF
Siliceous grey felsic tuff with on average 20 % crystals,
up to 2.5 mm, mainly 2:1 feldspar to quartz. Local
sericitized lapilli. Minor quartz - chlorite veins with
trace goethite - pyrite cubes. Tuff is rusty for first 20
cm. Oxidized to depth of 29.2 m.
28.3 28.8 WEAK FRACTURE CONTROLLED SILICIFICATION.
28.8 29.2 Quartz - chlorite - (calcite) vein.
29.2 30.8 WEAK FRACTURE CONTROLLED SILICIFICATION.
Structure:
Foliations:
28.5 : 60 degrees to core axis.
29.7 : 32 degrees to core axis.

30.8 31.5 MAFIC TUFF
Strongly sheared mafic ash tuff.
30.8 31.5 STRONG PERVASIVE CARBONATIZATION.
Foliation: 41 degrees to core axis.

31.5 44.5 FELSIC QUARTZ FELDSPAR CRYSTAL LAPILLI TUFF Felsic lapilli tuff with on average 7 to 10 %, 1 to 3 mm, feldspar grains and trace up to 2 mm quartz eyes. There are local siliceous lapilli in a sericite matrix, best at 37.0 m. The alteration is variable with silicification and chloritization. 31.5 32.1 Dark grey to green siliceous lapilli in a sericite matrix with crosscutting fracture controlled silicification. Is moderately contorted from 31.7 to 32.1. 32.1 32.5 Chlorite - quartz vein. Chlorite is contorted and is 90 % from 32.2 to 32.5. Quartz is 75 % to 32.2. 32.5 38.2 Similar to 31.5 to 32.1, with moderate fracture controlled silicification and more sericite matrix. Rare quartz - chlorite veinlets occur parallel to foliation. Lapilli are cross-cut by < 1 mm fractures filled by white quartz. 38.2 44.4 Similiar to 32.5 to 38.2, with up to 10 %

silicification.

chlorite and very weak fracture controlled

42.0 43.6 Quartz - sericite vein with minor chlorite.

VA01003 33.0 44.5 11.5 n/a 11 n/a 14 n/a n/a 988

. 2

٥

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 4

From To Sample From Width Total (ppm) (ppb) (ppm) (m) (m) ----DESCRIPTION-----(m) (m) (m) Sulphides (ppm) (ppm) (ppm) Alteration :. 31.5 32.1 STRONG FRACTURE CONTROLLED SILICIFICATION. 32.5 38.2 HODERATE FRACTURE CONTROLLED SILICIFICATION. 38.2 44.5 WEAK FRACTURE CONTROLLED SILICIFICATION. 38.2 44.5 HODERATE FRACTURE CONTROLLED CHLORITIZATION. Mineralization :. 39.3 a 6.5 mm pyrite cube. 38.2 38.3 Trace fracture controlled pyrite, associated with guartz veinlet (?). Lost core :. 39.2 to 40.8 : 0.8 m. 42.0 to 43.6 : 0.3 m. Blocky, highly fractured core :. 39.5 to 41.8. Structure :. Foliations :. 35.4: 44 degrees to core axis. 38.2: 45 degrees to core axis. 44.2 : 72 degrees to core axis. Bedding :. 34.5 : 55 degrees to core axis. 44.5 44.8 MAFIC TUFF

44.5 44.8 STRONG PERVASIVE CARBONATIZATION.
Strongly sheared at 61 degrees to core axis.

65.0 to 66.2 : 0.3 m.

44.8 68.7 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL LAPILLI TUFF Variably chloritized and silicified felsic tuff with local siliceous lapilli and sericitized lapilli. Trace quartz eyes uphole to approximately 1 %, up to 3 mm, downhole. Feldspars throughout, locally altered to sericite, 5 to 15 %, up to 1.5 mm. Minor fracture controlled quartz veinlets, perpendicular to foliation and rare quartz calcite - (chlorite) veins, 1 to 25 cm, parallel to foliation. Chlorite content varies from 10 to 25 % locally. Core transitionally changes downhole from mottled tuff, as from 31.5 to 44.5 to wavy contorted interlayered sericite and chlorite tuff with minor quartz eyes. There are areas of stronger alteration, besides the general moderate chloritization, these are:. 44.8 45.7 HODERATE FRACTURE CONTROLLED SILICIFICATION. 50.1 52.6 STRONG SPOTTY SERICITIZATION. 53.0 56.0 MODERATE FRACTURE CONTROLLED SILICIFICATION. 57.6 57.7 STRONG PERVASIVE CHLORITIZATION. Lost core:. 45.7 to 46.6 : 0.3 m. 53.3 to 54.9 ; 0.3 m. 59.0 to 60.0 : 0.2 m.

VA01004 45.0 65.0 20.0 n/a (10 n/a (10 n/a n/a 1160

3

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG.

HOLE No: Page Number Ch88-38 5

(m) -----DESCRIPTION-----(m) 67.4 to 68.4 : 0.3 m. Structure :.. Foliations :. 48.5 : 47 degrees to core axis. 55.4: 51 degrees to core axis. 62.0: 50 degrees to core axis. 68.0 68.2 Fault gouge. Whole rock samples :. 47.3 47.4 Felsic tuff with weak chloritization, moderate fracture controlled silicification.

60.8 60.9 Strong chloritization with weak carbonatization.

- 68.7 68.8 MAFIC TUFF Very chloritic fine-grained mafic ash tuff with no crystals
- 68.8 69.5 CHLORITIC FELSIC FELDSPAR CRYSTAL LAPILLI TUFF Siliceous lapilli in chloritized felsic matrix with 10 to 15 %, up to 1 mm, variably epidotized feldspar crystals. There are local calcite - quartz veinlets sub- parallel to foliation. Foliation: 33 degrees to core axis at 69.0. 68.8 69.5 WEAK PERVASIVE CHLORITIZATION.
- 69.5 70.1 MAFIC PORPHYRITIC MAFIC ASH TUFF Mafic ash tuff with local epidotized feldspar rich layers and a downhole hornblende, 3 to 5 %, up to 2 mm, rich layer. Locally sheared. Very sharp upper and lower contacts with felsic, may be a flow.
- 70.1 73.6 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Variably chloritic felsic tuff with 5 to 25 % chlorite, on average 3 to 5 % quartz eyes, more, up to 7 %, in more sericite rich zones and 10 to 15 %, 1 to 2 mm feldspar grains. Quartz eyes are up to 1.5 mm. There are minor quartz - calcite veinlets that cross-cut and are parallel to to foliation, foliation is at 50 to 55 degrees to core axis and is locally contorted. 70.1 73.6 STRONG PERVASIVE CHLORITIZATION.
- 73.6 76.2 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Similiar to 70.1 to 73.6, but is less chloritic, there are weakly chloritized and non-chloritized bands of 1 to 30 cm. Bands are possibly representing original composition as sericite rich zones have 5 to 7 %, 1 to 2 mm, quartz eves and chlorite rich zones have 1 to 2 %, up to 1 mm. 10 % feldspar grains in chlorite and 5 % in sericite. From 73.6 to 74.0 there is carbonatized fault gouge and clay

From Width Total Рb λg Αu No. (m) (m) (m.) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 6

From To (m) (m) ------DESCRIPTION-----

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

at 60 degrees to core axis. The core is mostly blocky, highly fractured core. The compositional changes parallel the foliation at 40 to 50 degrees to core axis and are locally weakly to moderately contorted.

- 76.2 77.2 FELSIC QUARTZ EYE TUFF
 Weakly bleached siliceous felsic tuff with minor blocky, highly fractured core and 10 to 12 %, 2 to 4 mm, quartz eyes in a light grey to white quartz sericite matrix with a foliation at 45 degrees to core axis.

 Lost core: 76.0 to 77.1: 0.2 m.
- 77.2 78.8 CHLORITIC FELSIC QUARTZ EYE TUFF

 Very weakly locally chloritized felsic tuff, similiar to

 76.2 to 77.2, with a colour difference and less large
 quartz eyes and more small ones, 1 to 2 %, 3 to 5 mm, and

 10 %, up to 1 mm. Foliation is at 46 degrees to core axis
 with cleavage at 24 degrees to core axis in the opposite
 direction.
- 78.8 79.2 FAULT ZONE

 Carbonatized mafic flow fault gouge and blocky, highly fractured core with minor competent pieces. Fault at approximately 66 degrees to core axis.
- 79.2 81.5 MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION
 Mafic flow, massive medium to dark green, with 15 to 20 %
 variably chloritized hornblende crystals, 1 to 3.5 mm in
 size. There are local zones of epidotization, possibly
 fragments. There are minor quartz chlorite (calcite
) veinlets. The lower contact has 40 cm of blocks and
 fragments and may represent the base of the flow.
- 81.5 86.5 FELSIC FLOW?

 Possibly a felsic flow or may be a tuff. Upper part of unit appears to be a flow and lower appears tuffaceous. Upper 1.0 m hosts 15 to 20 % sausuritized feldspar crystals and 3 %, 1 to 3 mm, quartz eyes and is massive and glassy, silicified (?). Lower 4 m is similiar to at 78.0 m. It is medium grey to light grey and siliceous with 10 to 15 %, 2 to 4 mm, quartz eyes and local epidotized feldspar 1 to 5 mm thick layers. The foliation is at 44 degrees to core axis.

VA01005 82.0 97.0 15.0 n/a 11 n/a <10 n/a n/a 1030

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

No.

From

(m)

(m)

HOLE No: Page Number Ch88-38 7

Сu

РЪ

Aσ

(ppm) (ppm) (ppm) (ppm)

(m) (m) -----DESCRIPTION-----Weakly chloritized quartz eye bearing felsic tuff with local 10 to 20 cm zones of strong chloritization and strong contortions. There is on average 20 % quartz eyes and feldspar grains, most are (1 mm, locally quartz eye up to 3 mm occur. There are minor quartz - calcite veinlets which mostly cross-cut. Alteration :. 86.5 99.6 WEAK PERVASIVE CHLORITIZATION. Structure :. Fault gouge :. 88.4: 10 to 12 cm , strongly contorted. 89.8 : 2 cm , at 44 degrees to core axis. Lost core :. 92.0 to 93.6 : 0.4 m. 94.0 to 95.4 : 0.3 m. Blocky, highly fractured core :. 96.0 to 99.6. Foliations :. 87.4: 58 degrees to core axis. 87.8 to 89.3 : strongly contorted. 94.8: 46 degrees to core axis.

99.6 102.0 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS

Mafic flow with red to white ribbon chert beds, up to 5 mm thick. Mafic flow or possibly tuff hosts 5 to 7 % epidotized feldspar grains and locally up to 5 % chloritized hornblende. There is minor brecciation with quartz vein filling. Bedding is at 53 degrees to core axis.

102.0 139.7 FELSIC FLOW?

Intermixed coarse siliceous and feldspar porphyritic flow and chloritized felsic tuff with feldspar, quartz and mafic crystals. Colour ranges from white where bleached, to brown, locally caused by thermal biotite to light grey to green in the massive flow. In places the core roughly resembles Abermin's dome and is locally cross-cut by quartz - { chlorite } veins, up to 30 cm thick.

102.0 110.0 Mixed felsic tuffs and flows interlayered in up to 1 m thick sub-units.

110.0 111.4 Quartz - chlorite veins in coarse bleached flow, trace chalcopyrite at 110.6.

111.4 117.7 Coarse siliceous light brown and green flow with 7 to 10 % epidotized feldspars.

117.7 119.1 Stongly bleached flows with perpendicular fracture controlled chlorite.

119.1 128.0 STRONG PERVASIVE CHLORITIZATION.

119.1 139.7 Thermal biotite throughout, mixed tuff and flow with local spotty silicification.

Foliations :.

Total

Sulphides (ppm)

Vidth

(m:)

VA01006 102.0 138.0 36.0 n/a 62 n/a 17 n/a n/a 974 VA01501 110.1 111.4 1.3 1 87 <5 15 <1 10 720

HOLE No: Page Number

	PF	OPERT	Y: Chemainus J.V.	EN CONDENDED I THEMPS					HOLE N		ige Numbi	er			
				FALCONBRIDGE LIMITED DIAMOND DRILL LOG					Ch88-38		8				
1	From	To			Sample	From	To	Width	Total	Cu	Pb	Zn	λg	λu	Ba
	(m)	(m)	DESCRIPT	rion	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)
			106.7 : 40 degrees to core axis.												
			114.9 : 50 degrees to core axis.												
			120.1: 41 degrees to core axis.												
			132.4 : 56 degrees to core axis.												
			133.4 : 60 degrees to core axis.												
139	9.7	161.4	FELDSPAR PORPHYRITIC GABBRO												
			Gabbro dyke, fine-grained green mat												
			4 mm, feldspar grains. There are l												
			to 8 cm thick with minor pyrite clo												
			0 to 90 degrees to core axis. There												
			controlled carbonatization. There i												
			margin at the upper contact and a												
			calcite vein at the lower contact												
			and trace chalcopyrite over 20 cm.												
			appear to have been fractured and	refilled in several											
			(3+) events, i.e. at 149.2 m.												
161	. i	201 0	MAFIC FLOW												
101	1.4	201.0	Massive green mafic flow with local	I alteration Contains	VA01007	162 0	102 0	20.0	n/a	84	n/a	97 1	n/a	n/a !	574
			20 to 30 %, 1 to 2 mm, epidotized		VA01502		-	.7	1	116	(5		1/ a ⟨1		220
			grains. There are local chloritized		VA01008				n/a	112	n/a				335
			up to 3 mm, in zones of coarse epi		VA01503			1.5	1 1	141	11/a (5	70	(1		390
			rusty oxidized fractures throughout		VA01504			.5	. 3	471	(5	55	1	30 2	
			at 165.8 and there was 0.9 m of cor				202.0	•••	•		• •		•		
			bit was used to drill through. The												
			loss at this location, there may be												
			161.4 161.6 Strongly bleached and s												
			gabbro dyke.												
			161.6 164.4 Strongly silicified and	weakly epidotized											
			mafic flow or mixture	of felsic and mafic											
			thin flow lobes.												
			164.4 167.7 Fine-grained flow with	minor fracture											
			controlled quartz veinl						ing Kabupatèn Salah Sala						
			controlled chloritized.	. Medium green in colour											
			as is 167.7 to 181.8.												
			167.7 181.8 Hedium to coarse graine	ed mafic flow with											
			approximately 30 % feld												
			grains. Local spotty e												
			to 0.5 % epidotized fra	igments, of lapilli											

size. Minor coarse bleached (?) zones as from

light green to white. Up to 7 mm epidote grains, up to 5 mm magnetite crystals and trace chloritized 2 mm hornblende. Sharp lower contact and gradational upper contact.

epidote and feldspar, approximately 20 % and

181.8 to 182.5 at 178.7 and 180.2. 181.8 182.5 Coarse magnetite bearing bleached (?) flow,

182.5 198.4 Similiar to 167.7 to 181.8 with decreased

PROPERTY: Chemainus J.V.

FALCONBRIDGE LIMITED
DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 9

From To Sample Width Total Cu From To λσ (m) -----DESCRIPTION-----(m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) increased chloritized hornblende, approximately 3 to 5 %. There is very local pervasive silicification. 198.4 200.0 Moderate to strong pervasive epidotization with trace to 1 % disseminated pyrite blebs. 200.0 201.8 Same as 182.5 to 198.4. Mineralization :. 161.4 164.2 Trace to 1 % fine-grained disseminated pyrite. 164.2 Speck of malachite in a quartz vein. 164.2 164.4 3 to 5 % pyrite in epidotization, silicification and chloritization, pyrite as blebs. 164.4 181.8 Trace disseminated pyrite with local bleb concentrateds of up to 1.5 % over 10 cm. 181.8 182.5 Coarse and bleached with 4 to 6 % magnetite, trace to 2 % pyrite and trace chalcopyrite. 182.5 201.8 As from 164.4 to 181.8. Major alteration :. 161.8 164.2 MODERATE PERVASIVE SILICIFICATION. 198.4 200.0 STRONG PERVASIVE EPIDOTIZATION. Structure :. Lost core :. 163.0 to 163.4 : 0.2 m. Cleavages :. 171.3: 22 degrees to core axis. 176.9: 21 degrees to core axis. 199.9: 52 degrees to core axis. Foliations :. 178.8: 63 degrees to core axis. 191.1: 36 degrees to core axis. 201.8 201.9 BLACK ARGILLITE Very fine-grained black argillite with 7 to 10 % fracture controlled and disseminated pyrite. Bedding at 29 degrees to core axis.

201.9 209.5 MAFIC FLOW

Massive medium to dark green mafic flow with 3 to 7 %, 1 to 3 mm, chloritized hornblende and approximately 20 %, 2 mm, epidotized feldspars. There are rare epidotized fragments, up to 5 cm. Weak foliation varies from 30 to 45 degrees to core axis.

209.5 210.9 QUARTZ-FELDSPAR PORPHYRITIC FLOW

Very siliceous medium black to grey felsic flow with 15 to
25 k, 2 to 6 mm, quartz eyes and 3 to 7 5, 2 to 3 mm,

epidotized feldspar crystals. Quartz eyes are often
fractured and clear to blue. Very sharp contacts. At

VA01505 209.9 210.9 1.0 1 146 (5 49 (1 15 1120

FALCONBRIDGE LIMITED

HOLE No: Page Number Ch88-38 10

DIAMOND DRILL LOG From To Sample From To Width Total Cù Pb 2.n λu (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) 210.5 there is trace chalcopyrite in epidote rich band. Foliation is at 42 degrees to core axis. 210.9 211.7 MAFIC FLOW Mafic flow as from 201.9 to 209.5 with trace chalcopyrite at 211.5. 211.7 212.5 FELDSPAR PORPHYRITIC FELSIC FLOW Massive light green to yellow felsic flow with 10 %, 1 to 3 mm, epidotized feldspars. Blocky, highly fractured core. 212.5 234.0 FELDSPAR PORPHYRITIC MAFIC FLOW Mafic flow with 15 to 20 %, 1 to 4 mm, epidote and VA01009 212.5 234.0 21.5 n/a 110 n/a 59 n/a n/a 193

feldspar grains. Massive , except for 212.5 to 215.5 which is blocky, highly fractured core. May be a tuff, from 222.5 appears to be a mafic ash tuff, but upper portion is a flow with minor epidotized fragments or a lapilli tuff. Upper part is massive, lower is schistose. Medium greyish green in colour. There is minor local spotty silicification and carbonatization. There is trace local disseminated pyrite. Foliations :.

215.8: 36 degrees to core axis.

221.1: 34 degrees to core axis.

226.4: 38 degrees to core axis.

229.7: 42 degrees to core axis.

234.0 234.7 FELSIC FLOW?

Massive siliceous yellow to brown felsic, flow (?), strong to moderate thermal biotite, blocky, highly fractured core with quartz veins.

234.7 235.9 MAFIC FLOW

Chloritized mafic flow with local zones of thermal biotite. There are 15 %, up to 1 mm feldspar grains. Massive. . byt may be a ash tuff. 234.7 235.9 HODERATE PERVASIVE CHLORITIZATION.

235.9 238.0 FELSIC FLOW? Light green siliceous massive flow with 20 to 25 %, 1 to 3 mm, epidotized feldspar grains to crystals. There are sharp lower and upper contacts with fine-grained 10 to 20 cm margins. There is 1 to 2 % fracture controlled pyrite. There are minor quartz veins and weak to moderate fracture controlled silicification. Probably is dacitic to

VA01506 236.0 237.0 1.0 33 46 ₹1 15 630 VA01507 237.0 238.0 1.0 10 270

EXICONDUINCE LIMITED

HOLE No: Page Number Ch88-18

			DIAHOND DRILL LOG					CD88-38		11				
	From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
			rhyo-dacitic in composition. 235.9 238.0 HODERATE FRACTURE CONTROLLED SILICIFICATION.											
2	38.0	242.6	INTERMEDIATE QUARTZ FELDSPAR CRYSTAL TUFF Dacitic to rhyo-dacitic massive light green tuff with local weak thermal biotite tinge. Contains 25 to 30 % crystals and grains of epidotized feldspar and quartz.	VA01508	239.7	240.2	.5	1	326	₹5	103	(1	15	460
			both vary from 5 % to 25 %, with constant crystal total. There is trace local fracture controlled chloritization, which at 239.95 hosts trace chalcopyrite. There are minor quartz - (calcite) veinlets. There is a weak foliation at 40 to 60 degrees to core axis.											
2	42.6	248.4	FELSIC TUFF Strong thermal biotite and moderate chloritization in											

- mainly blocky, highly fractured core with local brown siliceous flow (?) material with approximately 10 % epidotized fragments or may be silicified lapilli tuff. There is strong band or (?) bedding at 30 degrees to core axis at 243.2. There is trace chalcopyrite in chlorite at 248.2. More tuffaceous portion is similiar to 238.0 to 246.2.
- 248.4 251.3 INTERHEDIATE QUARTZ FELDSPAR CRYSTAL TUFF Same as 238.0 to 242.6. 248.9 249.0 White quartz vein with 1 % pyrite blebs, hydraulic fracture spur (?).
- 251.3 264.9 FELSIC TUFF Mixed and variably altered felsic tuffs containing the downdip extension of the P.E.M. Edge type anomaly first located in the 1987 drilling program. 251.3 252.2 Felsic tuff with moderate to nil chloritized and thermal biotite, decreasing downhole. Contains 5 to 10 %, 1 to 2 mm, quartz eyes and approximately 7 % feldspar grains. There is trace fracture controlled pyrite. 252.2 252.4 18 cm of 7 % pyrrhotite and 0.5 % chalcopyrite in chloritic matrix. Sulphides are parallel to foliation and bedding (?).
 - 252.4 253.7 Light green feldspar rich tuff with chalcopyrite, 0.5 to 1 % over 2 cm and 2 cm scale sphalerite clots on the margin of a chlorite rimmed quartz vein at 253.7.
 - 253.7 259.4 Thermal biotite altered tuff with minor fracture controlled silicification perpendicular to foliation. There is local

n/a 452 VA01010 251.5 264.0 12.5 n/a. 118 n/a n/a 15 1210 VA01509 252.0 252.5 . 5 3 263 (5 61 <1 30 1550 VA01510 264.4 264.9 .5 2428 253

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 12

Au

Width From To Sample From Tο Total Cu Pb Zn λg (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) epidotization and minor bleached fragments, lapilli sized. 259.4 261.2 Bleached siliceous white to light green massive with fracture controlled blue chlorite and silicification, minor grey to white quartz veinlets. 261.2 264.6 Local thermal biotite and blue chlorite streaks, hosts approximately 15 %, < 1 mm feldspar grains and minor micro- quartz eyes. There are numerous quartz - calcite veins, up to 2 cm, at 264.4 there is minor sphalerite in the vein. 264.6 264.9 P.E.M. ANOMALY zone 2, 30 cm of 1.5 to 2 % chalcopyrite in a medium green siliceous matrix, with chalcopyrite surrounding lapilli, there is trace pyrrhotite. Structure :. Lost core :. 261.2 to 262.0 : 0.1 m. Foliations :. 251.5: 44 degrees to core axis. 256.8: 32 degrees to core axis. 262.5: 50 degrees to core axis. Bedding :. 257.1: 42 degrees to core axis. Alteration :. 251.3 264.9 HODERATE SPOTTY CHLORITIZATION. 264.9 269.4 FELDSPAR PORPHYRITIC GABBRO

Fine-grained medium green plagiophyric gabbro with local quartz +/- calcite veins and veinlets, approximately 5 to 7 %, 2 to 3 mm epidotized feldspar grains.

269.4 281.4 FELDSPAR PORPHYRITIC MAFIC ASH TUFF

Massive medium to dark green mafic tuff with minor felsic tuff pieces in the blocky, highly fractured core from 276.7 to 281.5. There is minor weak pervasive and fracture controlled carbonatization. Hosts 15 to 20 % epidotized feldspar grains, 1 to 2 mm. There are minor calcite clots and minor calcite in pressure shadows around the epidote grains. Minor quartz veinlets occur. There is trace pyrite associated with carbonatization.

Foliations :.

273.2: 57 degrees to core axis. 279.0: 30 degrees to core axis.

Lost core :.

277.0 to 278.0 : 0.4 m. 281.0 to 281.3 : 0.2 m.

n/a 376 126 87 n/a VA01011 270.0 280.0 10.0 n/a

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 13

Width Total From To Sample From To Cu Рb (ppm) (ppm) (m.) (m) -----DESCRIPTION-----No. (m) (m) (m.) Sulphides (ppm) (ppm) (ppb) (ppm) 281.4 288.3 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericite schist with 10 to 15 %, 1 to 3 mm, quartz eyes VA01012 282.0 288.0 22 n/a n/a 1230 6.0 34 n/a n/a and 10 % 1 mm feldspar grains. There are minor ash tuff beds. There are minor rusty fracture controlled calcite veinlets. Nil sulphides were observed. There are minor weak crenulations. Structure :. Lost core :. 284.0 to 284.7 : 0.1 m. Blocky, highly fractured core :. 284.2 to 284.7. 285.2 to 285.6. 286.0 to 286.3. 287.0 to 288.5. Foliations :. 283.4: 41 degrees to core axis. 285.8: 32 degrees to core axis. Bedding :. 282.8: 66 degrees to core axis. 288.3 301.1 MAFIC TUFF Mafic to andesitic light to medium green ash tuff with VA01013 290.0 314.0 24.0 n/a 512 82 n/a approximately 10 %, (1 mm, feldspar grains. 288.3 301.1 STRONG PERVASIVE CARBONATIZATION. There is strong carbonatization with white calcite streaks, (< 1 mm, throughout, strong reaction with HCl. There is trace pyrite with the calcite. Minor quartz fracture controlled veins occur which host fragments of wall rock. Weakly sheared towards bottom by Fulford fault or a major splay off it. There are minor ash tuff beds at 289.6 at 57 degrees to core axis. Foliations :. 291.2: 28 degrees to core axis. 299.5: 42 degrees to core axis. Lost core: 292.0 to 292.3: 0.2 m. 301.1 302.8 FELSIC TUFF Light coloured, white to green siliceous felsic ash tuff with 5 to 10 %, (1 mm, feldspar grains. There is local thermal biotite. There are local fracture controlled

302.8 314.5 MAFIC TUFF

Bedding :.

Mafic ash tuff with strong foliation (probably shearing due to fault) and strong pervasive carbonatization. 10 to

quartz veinlets. There is trace fracture controlled pyrite.

(?) varies locally from 60 to 90 degrees to core axis.

to 70 degrees to core axis and is probably due to

faulting. There are numerous minor fault slips with fault gouge trending at 35 to 65 degrees to core axis. There is

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 14

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	2n (ppm)	Ag (ppm)	Au (ppl	Ba (ppm)
		15 %, 1 mm, epidotized feldspar grains are visible. There are numerous < 1 mm fracture controlled calcite veinlets. At 308.7 there is approximately 10 cm of pyritic siliceous											
		felsic ash tuff with 2 % pyrite. 302.8 314.5 STRONG PERVASIVE CARBONATIZATION. Foliations:											
		303.5 : 42 degrees to core axis. 304.9 : 60 degrees to core axis. 310.1 : 58 degrees to core axis.											
314.5	317.9	FAULT ZONE The Fulford fault or a major splay fault off it. 314.5 315.3 Dark grey clay with pebble sized pieces of	VA01511 VA01512	316.4	317.4	1.0	2 3	83 177	(5 (5	47 48	(1	35	1010 1880
		<pre>quartz and calcite, approximately 90 degrees to core axis.</pre>	VA01513	317.4	318.4	1.0	5	115	12	401	₹1	55	2870
		315.3 316.4 Mixed felsic and mafic rubble with minor carbonatization and approximately 2 % pyrite. Orientation at 70 to 80 degrees to core axis.											
		316.4 316.8 Mafic ash tuff with strong pervasive carbonatization.											
		316.8 316.9 Minor fault gouge at approximately 90 degrees to core axis.											
		316.9 317.9 Contorted active tuff at 0 to 50 degrees to core axis. Hosts 2 to 3 % fine-grained pyrite,											
		<pre>may contain sphalerite as in overlying Chem87-34 and Chem87-36.</pre>											
317.9	319.1	FELSIC QUARTZ EYE TUFF Active tuff.	VA01514	318.4	319.1	· .	3	34	6	55	· (1	30	2020
		Highly contorted quartz - sericite schist with 4 to 5 % fine-grained pyrite parallel to foliation, which trends											
		at 35 degrees to core axis. There is very local weak fracture controlled carbonatization. There are minor cross faults. There is local fracture controlled sericitic											
		alteration.											
319.1	332.5	INTERMEDIATE TUFF Very strongly altered andesitic tuff. Tuff hosts trace to	VA01014	320.0	330.0	10.0	n/a	86	n/a	50	n/a	n/a	766
		5 %, average 2 %, 1 mm, quartz eyes and approximately 10 % sausuritized, < 1 mm, feldspar grains. The colour varies from light to dark green. There are numerous	VA01515 VA01516	321.1	322.4	1.3	2 2	66 140	(5 (5	35 64	(1	10	1520 1310
		fractures filled with any combination of quartz, calcite, chlorite, and pyrite. Fractures occur at 0 to 90 degrees to core axis, cross-cut and vary from < 1 mm to 2 cm											
		thick. Foliation appears to vary almost at random from 0											

sub-units are described below:.

335.7 340.4 Brecciated tuff with bedding and foliation

sub-parallel to parallel to the core axis. Is weakly to moderately contorted. Ash to crystal tuff beds are 5 mm to 2 cm thick and disrupted by the brecciation. There are minor

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 15

Au

n/a 1800

Вa

From Sample From To Width Total Cu PЪ Zn λq -----DESCRIPTION-----(m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) (m) (m.) No. (m.) minor local fault breccia. Alteration and mineralization :. 319.1 321.1 MODERATE FRACTURE CONTROLLED CARBONATIZATION with on average 0.5 to 1 % fracture controlled pyrite. 321.1 321.9 WEAK FRACTURE CONTROLLED CARBONATIZATION and strongly bleached, S.G.E.'s early mafic dyke, intermediate tuff with 5 % quartz eyes in light pistachio green siliceous rock with foliation at 0 degrees to core axis and is weakly contorted. There is 2 % fracture controlled and disseminated pyrite. 321.9 322.1 Minor piece of felsic ash tuff. 322.1 322.4 Same as 321.1 to 321.9. 322.4 332.5 Weak alteration as from 321.1 to 321.9 in combination with the fracture controlled carbonatization, on average < 1 % pyrite. 322.4 332.5 HODERATE PERVASIVE CARBONATIZATION. 332.5 332.5 FAULT ZONE Virtually invisible fault with negligible gouge, located by obvious lithological change and sharp change in foliation. 332.5 335.3 FELSIC QUARTZ EYE TUFF VA01015 333.0 343.0 10.0 25 54 n/a Felsic tuff with 3 to 5 %, 1 to 2 mm, quartz eyes and n/a n/a minor ash tuff beds. There is minor local spotty silicification and sericitization. There is also weak fracture controlled carbonatization. Foliation and bedding varies locally from 0 to 20 degrees to core axis. There is trace pyrite. 335.3 335.7 MAFIC TUFF Dark green mafic ash tuff with 3 % 1 mm feldspar grains. Foliation is at 29 degrees to core axis. Contacts are very sharp. 335.7 346.2 FELSIC QUARTZ EYE TUFF White to light grey to light green felsic tuff with variably local siliceous and sericitic zones. Rock is quite variable, but is a consistent unit and the local

FALCONBRIDGE LIMITED DIAHOND DRILL LOG

HOLE No: Page Number Ch88-38 16

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	 Ag (ppm)	Au (ppb)	Ba (ppm)
			cross-cutting faults at 30 to 40 degrees to core axis and foliation. There are local feldspar rich tuff beds. There is trace local disseminated pyrite.										
		340.4 343.	8 Very sericitic, white to light grey with 5 %, 1 to 2 mm, quartz eyes on average, locally up to 10 %. There is approximately 0.5 % disseminated pyrite. Foliation and (?) bedding is at 0 to 20 degrees to core axis and is locally weakly contorted.										
			9 Fault gouge, 2 cm at 33 degrees to core axis. 2 Moderate sericitic with approximately 5 % 2 mm quartz eyes and 0.5 % disseminated fine-grained pyrite, foliation is at approximately 20 degrees to core axis.										

346.2 346.4 FAULT ZONE Ground up fels tuff fault gouge at (?) degrees to core axis

346.4 358.8 FELSIC TUFF Quartz - sericite schist to siliceous felsic ash tuff. There are local small crystals of quartz and feldspar, up to 3 %, < 1 mm. Foliation locally varies from 0 to 50 degrees to core axis. All observed beds were at 0 to 10 degrees to core axis. There is 1 to 2 % disseminated and fracture controlled pyrite, local pyrite bands of up to 50 % over 3 to 4 cm occur. There are minor cross-cutting

VA01517	346.4	348.0	1.6	2	30	5	54	<1.	35	1700	
VA01016	347.0	358.0	11.0	n/a	66	n/a	92	n/a	n/a	2000	
VA01518	348.0	349.5	1.5	2	31	12	36	<1	25	1350	
VA01519	349.5	351.0	1.5	2	108	309	351	<1	110	1570	
VA01520	351.0	352.5	1.5	2	51	133	438	<1	65	1560	
VA01521	352.5	354.0	1.5	2	39	246	389	(1	45	1780	
VA01522	354.0	355.5	1.5	2	38	97	138	<1	20	1720	
VA01523	355.5	357.0	1.5	2	40	58	86	(1	45	1310	
VA01524	357.0	358.8	1.8	2	53	94	168	<1	25	1630	

358.8 358.8 FAULT ZONE Chloritization clay over 3 mm at 21 degrees to core axis.

faults at no dominant orientation.

373.0 FELDSPAR PORPHYRITIC GABBRO

Fine-grained medium green gabbro with 5 to 12 %, 1 to 3

mm, feldspars locally. There are numerous fracture
controlled calcite, epidote and quartz veinlets at
orientations of 0 to 90 degrees to core axis. Base is
marked by sheared gabbro and quartz - chlorite veins. The
lower veins have trace chalcopyrite.

373.0 373.5 FAULT BRECCIA

Chloritization fault breccia with 0.3 m lower contact.

Angular quartz clasts in chlorite.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 17

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

- 373.5 375.0 INTERMEDIATE TUFF
 Chloritization intermediate tuff with quartz pink
 calcite veinlets and minor felsic tuff pieces. There is
 trace to 1 % fracture controlled pyrite. Foliation is
 variable from 0 to 50 degrees to core axis.
- 375.0 381.3 CHLORITIC FELSIC QUARTZ EYE TUFF
 Felsic tuff with on average 7 to 10 %, 1 to 3 mm, quartz
 eyes, locally up to 6 mm. Foliation and minor ash tuff
 beds are at 10 to 20 degrees to core axis. There are
 quartz chlorite veins throughout, with trace local
 chalcopyrite at 378.9. There is trace to 0.5 %
 disseminated and fracture controlled pyrite.
- 381.3 382.5 INTERMEDIATE QUARTZ EYE TUFF
 Andesitic tuff with 3 %, 1 to 3 mm, quartz eyes in medium
 green chloritization matrix. Is strongly sheared at 47
 degrees to core axis.
 381.3 382.5 STRONG PERVASIVE CARBONATIZATION.
- 382.5 384.3 FELSIC QUARTZ EYE TUFF
 Siliceous medium green to grey tuff with 5 to 7 %, 2 mm,
 quartz eyes. Foliation varies from 20 to 30 degrees to
 core axis locally. There is trace disseminated pyrite and
 one local chalcopyrite speck.
 382.5 384.3 WEAK PERVASIVE CHLORITIZATION, chlorite
 visible on fractures and as weak green tint.
- 384.3 384.7 CHLORITE SCHIST

 Chlorite schist with moderate fracture controlled carbonatization. Foliation is at 50 degrees to core axis.
- 384.7 391.4 CHLORITIC FELSIC QUARTZ EYE TUFF
 Felsic tuff with 5 to 7 %, 1 to 2 mm, quartz eyes and
 numerous << 1 mm feldspar and quartz crystals. Is locally
 contorted with fracture controlled quartz veins. Medium to
 dark green to grey. Is locally contorted with foliation
 trend at 35 to 40 degrees to core axis and locally at 0
 degrees to core axis. There is trace to 0.5 % disseminated
 and fracture controlled pyrite locally.
 384.7 391.4 MODERATE PERVASIVE CHLORITIZATION.
- 391.4 394.3 FELSIC QUARTZ EYE TUFF
 Active tuff.
 3 to 5 % fracture controlled and disseminated fine-grained VA01525 391.4
 VA01526 392.4

VA01525 391.4 392.4 1.0 5 98 34 1014 1 75 2080 VA01526 392.4 393.4 1.0 4 65 142 280 1 85 1840 2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-38 18

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
		pyrite in white sericite schist with no visible crystals.	VA01527	393.4	394.3	. 9	3	172	314	643	1	70	2890
		There are small approximately 10 cm mafic tuff or dyke											
		inclusions, chlorite schist at 392.7, 392.9 and 393.2.											
		Tuff is locally contorted. Foliation trend is at 50											
		degrees to core axis.											
394.3	436.0	MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS											
0,1.0	*****	Dark green fine-grained, mafic ash tuff (?), rock with	VA01017	395.0	409.0	14.0	n/a	115	n/a	57	n/a	n/a	712
		minor fragments of red, green and white chert beds, best	VA01018	410.0			n/a	78	n/a		n/a	n/a	1140
		example at 403.1 and numerous beds from 411 to 436.	VA01528			. 4	2	98	6	80	<1	20	1080
		Bedding and foliation are at 0 to 20 degrees to core axis											
		to 411.0. Tuff contains approximately 5 to 7 % biotite,											
		with increase downhole. There appears to be approximately											
		10 %, < 1 mm feldspar grains and 3 %, 3 mm long and << 1										•	
		mm thick chloritized crystals or fragments. Very locally				• 1							
		there are 5 to 10 mm epidote knots. There are minor quartz											

trace disseminated pyrite.
391.4 436.0 MODERATE FRACTURE CONTROLLED CHLORITIZATION,
green chlorite veinlets, << 1 mm at all
orientations.

+/- calcite +/- epidote +/- biotite veins and veinlets that cross-cut and are parallel to foliation. There is

Tops appears to be uphole, 425.3, 434.4, most beds are contorted or at too low angles to the core axis for tops to be measurable. From 411 to 436 there are numerous seemingly random changes in foliation from 0 to 50 degrees to core axis, this is likely due to faults and folding. The beds are weakly to strongly contorted and have micro- faults every 5 to 10 mm that cross-cut bedding at 90 to 60 degrees. There is minor cherty argillic with 2 % fracture controlled pyrite from 434.7 to 435.1. There is a plagiophyric fine-grained green gabbro dyke from 434.2 to 434.4.

436.0 438.0 FELDSPAR PORPHYRITIC GABBRO

Medium to fine-grained gabbro with 5 to 25 %, 2 to 4 mm, feldspar grains. There are minor local fracture controlled calcite - quartz - calcite veinlets.

438.0 End of hole CH88-38 at 1437 feet on April 11, 1988 at 4:30 p.m.

											4.3						
SAMPLE NUMBER	FROM	10	18102	ZAL203	ZCAO	z HGO	ŽNA20	XK20	ZFE203	ZT 102	XP205	ZHNO	2L01	SUM	BA	AI	NACA
VA00501	5.30	5.40	70.70	14.30	1.93	0.81	3.79	2.60	2.84	0.29	0.07	0.05	2.77	100.15	1120.	37.	6.
VA00502	7.10	7.20	46.20	19.50	7.25	2.45	2.99	3.87	8.20	0.81	0.13	0.18	8.54	100.12	1080.	38.	10.
VA00503	14.90	15.00	45.90	16.10	9.24	4.08	1.68	2.19	9.53	0.68	0.11	0.27	10.60	100.38	412.	36.	11.
VA00504	21.20	21.40	69.20	12.70	4.03	1.18	3.51	1.81	2.68	0.26	0.06	0.10	4.93	100.46	685.	28.	8.
VA00505	31.70	31.80	70.10	11.90	3.99	1.12	3.94	1.24	3.30	0.25	0.07	0.12	3.85	99.88	749.	23.	8.
VA00506	47.30	47.40	76.10	9.67	3.23	1.28	0.98	1.52	3.26	0.20	0.05	0.04	3.85	100.18	939.	40.	4.
VA00507	60.80	60.90	56.50	17.80	5.24	1.92	1.32	3.99	5.82	0.57	0.31	0.06	6.47	100.00	2160.	47.	7.
VA00508	69.60	69.70	42.50	15.40	10.60	5.45	1.01	0.10	14.50	2.61	0.26	0.20	6.93	99.56	64.	32.	12.
VA00509	80.40	80.50	45.50	16.10	7.07	9.18	2.88	0.04	12.30	0.93	0.24	0.24	4.39	98.87	83.	48.	10.
VA00510	85.60	85.70	69.90	13.60	4.11	0.78	2.06	2.79	1.91	0.24	0.06	0.02	4.62	100.09	1020.	37.	6.
VA00511	100.00	100.20	49.40	16.90	10.30	4.28	2.57	0.29	9.57	0.80	0.15	0.19	5.77	100.22	135.	26.	13.
VA00512	105.30	105.50	70.80	13.60	2.84	2.04	3.13	1.77	3.21	0.31	0.07	0.04	2.31	100.12	994.	39.	6.
VA00513	113.30	113.40	63.60	18.10	2.15	2.37	4.05	2.94	3.80	0.41	0.08	0.05	2.39	99.94	1590.	46.	6.
VA00514	122.60	122.70	66.30	16.30	2.91	2.80	3.95	2.14	3.44	0.36	0.09	0.06	1.70	100.05	1620.	42.	7.
VA00515	130.40	130.50	71.80	13.80	1.17	2.34	5.86	0.85	2.58	0.29	0.07	0.06	1.23	100.05	847.	31.	7.
VA00516	144.10	144.20	49.20	13.70	11.10	6.02	1.93	0.36	12.40	1.79	0.17	0.20	2.16	99.03	100.	33.	13.
VA00517	170.10	170.30	52.00	18.20	5.52	5.30	5.64	0.49	8.58	0.72	0.16	0.22	2.54	99.37	286.	34.	11.
VA00518	179.80	180.00	55.90	17.60	3.70	4.47	7.14	0.40	7.54	0.69	0.12	0.14	2.08	99.78	332.	31.	11.
VA00519	189.30	189.40	54.20	17.40	4.06	5.07	6.62	0.50	8.16	0.67	0.15	0.16	2.16	99.15	344.	34.	11.
VA00520	202.90	203.00	51.60	18.10	5.98	5.28	4.09	1.57	9.52	0.69	0.15	0.17	2.39	99.54	689.	40.	10.
VA00521	209.50	209.60	74.50	12.80	1.96	0.83	4.72	1.63	2.39	0.25	0.06	0.05	0.62	99.81	1390.	27.	7.
VA00522	217.90	218.00	52.20	17.10	7.39	4.84	5.44	0.33	8.63	0.71	0.14	0.19	3.00	99.97	180.	29.	13.
VA00523	229.90	230.00	55.80	17.50	4.66	3.97	6.45	0.84	6.34	0.67	0.14	0.15	2.70	99.22	231.	30.	. 11.

SAMPLE NUMBER	FROM	TO	XS 102	1AL203	XCA0	XHG0	ZNA20	XK20	XFE203	X1 103	XP205	2440	ZLOI	SUM	BA	AI	NACA
						· .											
VA00524	238.70	238.90	53.60	17.70	5.28	5.79	4.68	1.55	6.99	0.69	0.14	0.25	2.93	99.60	503.	42.	10.
VA00525	251.40	251.50	56.40	17.90	5.06	4.38	2.57	2.20	7.38	0.69	0.13	0.16	2.93	99.80	804.	46.	8.
VA00526	258.20	258.30	54.70	17.80	6.13	4.86	2.64	2.05	7.59	0.68	0.13	0.22	2.93	99.73	591.	44.	9.
VA00527	266.50	266.60	48.30	13.60	11.60	5.5 5	1.13	0.17	13.00	1.88	0.17	0.21	3.23	98.84	<10.	31.	13.
VA00528	271.10	271.20	49.30	17.20	9.84	2.97	0.77	1.28	12.20	0.68	0.13	0.24	4.85	99.46	414.	29.	11.
VA00529	283.80	283.90	67.90	13.30	3.84	1.66	2.63	1.85	4.38	0.26	0.06	0.09	3.00	98.97	811.	35.	6.
VA00530	296.20	296.30	50.80	16.30	7.36	4.32	2.67	1.26	9.25	0.67	0.13	0.18	6.16	99.10	579.	36.	10.
VA00531	308.20	308.30	49.90	15.10	7.95	5.13	2.19	1.21	8.94	0.63	0.11	0.16	8.16	99.48	415.	38.	10.
VA00532	321.50	321.60	49.30	19.00	8.25	4.27	3.22	0.96	7.58	1.40	0.17	0.13	4.00	98.28	1630.	31.	11.
VA00533	328.50	328.60	44.80	15.70	13.30	7.24	1.82	0.35	9.60	1.04	0.13	0.18	4.00	98.16	521.	33.	15.
VA00534	334.20	334.30	72.00	14.30	1.02	1.31	2.52	3.11	2.33	0.29	0.08	0.03	1.93	98.92	2510.	56.	. 4.
VA00535	340.60	340.70	79.10	12.50	0.81	0.58	1.98	2.87	0.67	0.29	0.07	0.03	1.47	100.37	1480.	55.	3.
VA00536		354.40	75.00	12.80	0.64	1.32	1.03	3.31	2.47	0.26	0.07	0.05	2.31	99.26	1830.	73.	2.
VA00537		383.00	71.70	12.60	1.61	1.88	1.08	2.40	4.82	0.30	0.08	0.05	3.00	99.52	2580.	61.	3.
VA00538		437.30	46.00	14.10	12.10	6.86	2.24	0.29	10.40	1.19	0.11	0.16	4.00	97.45	4790.	33.	. 14.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

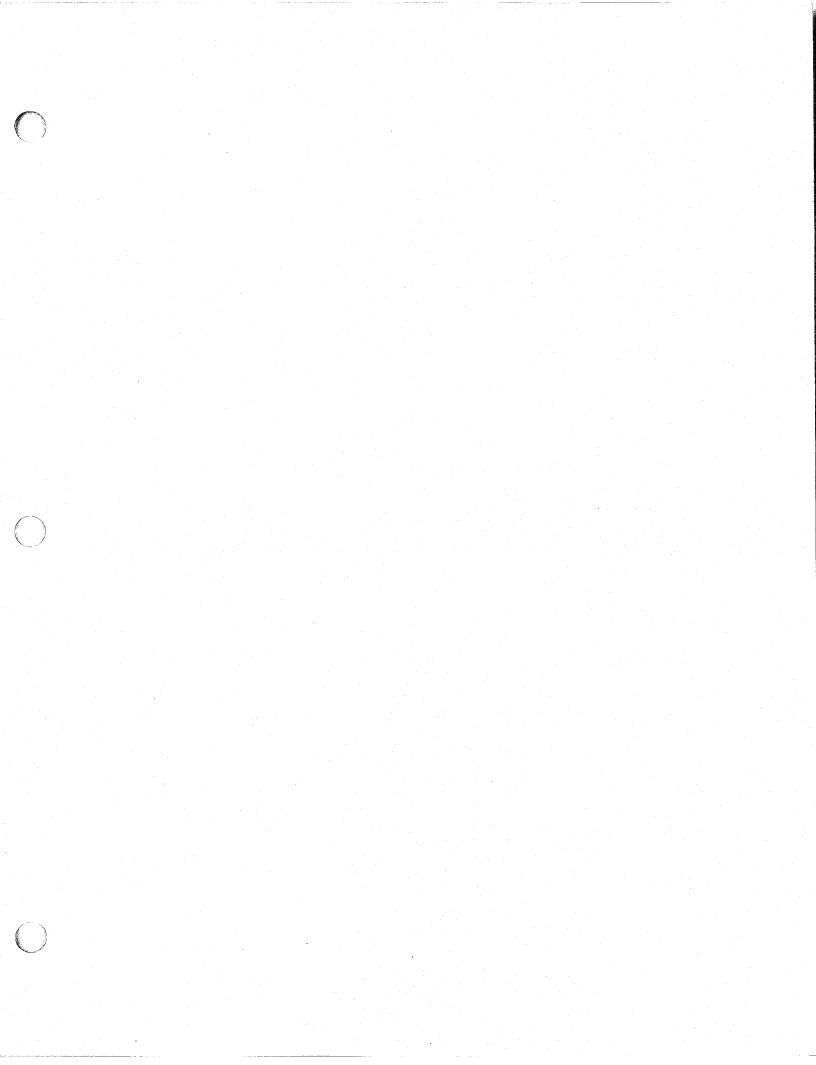
SAMPLE NUMBER	FROM	T O	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ΩK (ppm)	NR (ppm)	(65m)	ZN (ppm)	NI (ppm)		коск	CODES	MIN
							,								
VA00501	5.30	5.40	62.0	213.0	1120.0	19.0	123.0	19.0	27.0	44.0	<10.0		TF		A "
VA00502	7.10	7.20	64.0	296.0	1080.0	10.0	30.0	10.0	73.0	92.0	15.0		IM		A
VA00503	14.90	15.00	48.0	214.0	412.0	26.0	<10.0	<10.0	43.0	92.0	35.0		TH		À
VA00504	21.20	21.40	43.0	243.0	685.0	14.0	36.0	<10.0	10.0	35.0	<10.0		TF		A
VA00505	31.70	31.80	35.0	190.0	749.0	33.0	94.0	38.0	:10.0	13.0	<10.0		IF		A
VA00506	47.30	47.40	30.0	102.0	939.0	16.0	57.0	19.0	24.0	<10.0	<10.0		TF		A
VA00507	60.30	50.90	72.0	194.0	2160.0	19.0	79.0	<10.0	<10.0	<10.0	<10.0		TF		A
VA00508	69.60	69.70	<10.0	421.0	64.0	33.0	145.0	28.0	341.0	81.0	66.0		VM		Α.,
VA00509	30.40	30.50	16.0	.933.0	83.0	20.0	15.0	19.0	77.0	95.0	29.0		VM .		4
VA00510	85.60	85.70	42.0	169.0	1020.0	17.0	85.0	<10.0	13.0	<10.0	<10.0		TF		4
VA00511	100.00	199.29	18.0	391.0	135.0	13.0	16.0	<10.0	16.0	26.0	18.0		IM		Α .
VA00512	105.30	105.50	34.0	168.0	994.0	16.0	114.0	15.0	<10.0	<10.0	<10.0		TF		A
VA00513	113.30	113.40	65.0	165.0	1590.0	28.0	161.0	<10.0	(10.0	<10.0	<10.0		٧F		A ·
VA00514	122.60	122.70	38.0	266.0	1620.0	18.0	124.0	21.0	<10.0	<10.0	<10.0		VF		A
VA00515	130.40	130.50	22.0	115.0	847.0	33.0	117.0	<10.0	17.0	14.0	<10.0		VF		A
VA00516	144.10	144.20	15.0	219.0	100.0	19.0	80.0	19.0	176.0	77.0	77.0		PMA		A
VA00517	170.10	170.30	<10.0	335.0	286.0	15.0	27.0	21.0	63.0	154.0	18.0		VH		DPP
VA00518	179.80	180.00	<10.0	301.0	332.0	21.0	39.0	<10.0	98.0	70.0	12.0		VH		DRP
VA00519	189.30	189.40	29.0	380.0	344.0	15.0	28.0	<10.0	130.0	80.0	20.0		VM		DBP
VA00520		203.00	34.0	400.0	689.0	36.0	22.0	10.0	61.0	68.0	27.0		VH		DRP
VA00521	209.50		25.0	237.0	1390.0	12.0	82.0	18.0	20.0	<10.0	<10.0		VF		DBP
VA00522		218.00	20.0	466.0	180.0	13.0	27.0	15.0	108.0	82.0	19.0		VH		DBP
71100022	447.00														

Hole No. CH88-38 WHOLE ROCKS SAMPLES

Page No.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	(55w) 48	CU (ppm)	ZN (ppm)	NI (med)		 	ROCK	CODES	MIN
VA00523	229.90	230.00	18.0	302.0	231.0	15.0	30.0	<10.0	76.0	66.0	17.0			vн		DBP
VA00524	238.70	238.90	34.0	223.0	503.0	27.0	30.0	31.0	64.0	68.0	<10.0			TI		A
VA00525	251.40	251.50	48.0	204.0	804.0	19.0	46.0	12.0	16.0	75.0	15.0			TF		Α
VA00526	258.20	258.30	50.0	170.0	591.0	15.0	47.0	<10.0	20.0	96.0	22.0			11		A
VA00527	266.50	266.60	21.0	271.0	<10.0	<10.0	76.0	15.0	281.0	98.0	55.0			PMA		Α
VA00528	271.10	271.20	40.0	375.0	414.0	22.0	<10.0	20.0	23.0	77.0	30.0			IM		A .
VA00529	283.80	283.90	38.0	210.0	911.0	<10.0	36.0	<10.0	18.0	24.0	<10.0			TEAG		A
VA00530	296.20	296.30	39.0	224.0	579.0	17.0	22.0	17.0	133.0	61.0	24.0			TMA		A
VA00531	308.20	309.30	32.0	193.0	415.0	12.0	29.0	<10.0	22.0	67.0	23.0			TMA		A
VA00532	321.50	321.60	30.0	411.0	1630.0	21.0	54.0	17.0	55.0	46.0	94.0			TIA	PBS	DCP
EEECOAV	328.50	328.60	11.0	279.0	521.0	<10.0	26.0	16.0	50.0	38.0	98.0			TIA	FCM	DBP
VA00534	334.20	334.30	80.0	100.0	2510.0	<10.0	113.0	₹10.0	22.0	<10.0	12.0			TFAG	?	DRP
VA00535	340.60	340.70	65.0	94.0	1480.0	<10.0	95.0	14.0	19.0	13.0	<10.0			TFAQ	?	DBP
VA00536	354.30	354.40	56.0	47.0	1830.0	12.0	101.0	21.0	39.0	171.0	<10.0			TFAO	?	DCF.
VA00537	382.90	383.00	39.0	108.0	2580.0	27.0	92.0	13.0	137.0	42.0	<10.0			TFA	?	Á
VA00538	437.20	437.30	<10.0	293.0	4790.0	17.0	45.0	<10.0	35.0	188.0	91.0			PMB	?	A


DIAMOND DRILL CORE LITHUGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	28103	X AL203	TCAO	2HG0	XNA20	XK20	ZFE203	27102	ZP205	ZHNO	žLOI	Sun	ВА	AI	NACA

VA91001	7.50	17.20	39.10	13.70	13.30	5.14	1.15	1.73	10.10	1.26	0.29	0.32	14.20	100.29	342.	32.	14.
VA01002	17.30	28.00	69.60	14.00	2.86	1.05	3.23	2.36	2.73	0.30	0.07	0.08	3.70	99.98	1140.	36.	6.
VA01003 .	33.00	44.50	69.30	13.40	3,68	1.09	3.19	2.20	2.65	0.29	0.07	0.08	4.08	100.03	988.	32.	7.
VA01004	45.00	65.00	66.80	14.60	4.04	0.97	3.37	2.00	3.12	0.34	0.09	0.05	4.62	100.00	1160.	29.	7.
VA01005	82.00	97.00	64.70	14.80	4.75	1.61	2.05	2.60	3.88	0.37	0.14	0.05	5.23	100.18	1030.	38.	7.
VA01006	102.00	138.00	62.60	15.80	5,13	2.87	3.56	1.60	5.75	0.44	0.12	0.10	2.08	100.05	974.	34.	9.
VA01007	162.00	182.00	53.70	17.30	5.83	4.99	5.33	0.88	8.40	0.69	0.15	0.18	2.70	100.15	574.	34.	11.
VA01008	185.00	205.00	52.00	17.50	7.79	4.38	4.85	0.77	8.74	0.75	0.12	0.18	3.08	100.15	335.	29.	13.
VA01009	212.50	234.00	54.90	16.70	6.80	4.09	5.48	0.61	7.19	0.68	0.12	0.18	3.39	100.14	193.	28.	12.
VA01010	251.50	264.00	55.00	16.70	7.37	4.63	1.70	1.56	8.71	0.64	0.12	0.22	3.77	100.43	452.	41.	9.
VA01011	270.00	280.00	49.60	16.60	10.30	3.32	2.12	1.24	9.57	0.85	0.14	0.22	5.85	99.81	376.	27.	12.
VA01012	282.00	288.00	70.00	14.10	2.58	1.09	3.17	2.66	3.43	0.27	0.07	0.07	2.70	100.14	1230.	39.	6.
7A01013	290.00	314.00	49.00	16.40	8,78	4.37	2.07	1.60	9.49	0.66	0.12	0.21	7.39	100.09	512.	35.	11.
VA01014	320.00	330.00	46.50	15.90	10.20	6.7 6	2.96	0.36	10.10	1.16	0.14	0.18	4.00	98.26	766.	35.	13.
VA01015	333.00	343.00	68.50	15.30	2.08	1.88	2.66	2.83	2.79	0.41	0.07	0.07	2.77	99.35	1800.	50.	5.
VA01016	347.00	358.00	72.20	13.60	0.65	1.30	0.61	3.98	2.79	0.28	0.07	0.05	3.08	98.61	2000.	81.	1.
VA01017	395.00	409.00	48.50	15.60	6.80	8.61	2.65	2.49	9.20	0.70	0.18	0.19	3.54	98.46	712.	54.	9.
VA01018	410.00	430.00	51.40	17.30	3.81	5.85	3.72	3.60	8.73	0.84	0.24	0.15	2.47	98.11	1140.	56.	8.

SAMPLE												 	 		CODES	
NUMBER	FROM	TO	RB ∴ (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)			ROCK	ALT	MIN
VA01001	7.50	17.20	48.0	268.0	342.0	18.0	55.0	38.0	19.0	62.0	71.0			TM	?	DBP
VA01002	17.30	28.00	46.0	212.0	1140.0	28.0	123.0	19.0	17.0	24.0	<10.0			IF	?	A
VA01003	33.00	44.50	54.0	151.0	988.0	32.0	114.0	<10.0	11.0	14.0	<10.0			TF	3	Α
UA01004	45.00	65.00	42.0	239.0	1160.0	<10.0	95.0	12.0	. <10.0	<10.0	<10.0			TF	?	A
VA01005	82.00	97.00	46.0	220.0	1030.0	19.0	82.0	17.0	11.0	<10.0	<10.0			TF	?	A
VA01006	102.00	138.00	40.0	254.0	974.0	20.0	93.0	<10.0	62.0	17.0	<10.0			VF	?	A
VA0100?	162.00	182.00	18.0	408.0	574.0	20.0	22.0	10.0	94.0	97.0	18.0		**	. VM	?	DCP
90010AV	185.00	205.00	18.0	473.0	335.0	23.0	41.0	<10.0	112.0	48.0	30.0			VM	?	DCP
VA01009	212.50	234.00	12.0	412.0	193.0	16.0	12.0	13.0	110.0	59.0	18.0			VM ·	? .	DCP
VA01010	251.50	264.00	30.0	201.0	452.0	15.0	36.0	20.0	115.0	83.0	14.0			TF	?	DBP
VA01011	270.00	280.00	32.0	366.0	376.0	14.0	25.0	16.0	126.0	37.0	55.0			TM	?	DBP
VA01012	282.00	288.00	46.0	118.0	1230.0	23.0	94.0	17.0	34.0	22.0	<10.0			TF	?	A
VA01013	290.00	314.00	39.0	279.0	512.0	<10.0	23.0	<10.0	40.0	82.0	29.0			IM	?	DBP
VA01014	320.00	330.00	14.0	289.0	766.0	22.0	51.0	17.0	86.0	50.0	107.0			TI	?	DCP
VA01015	333.00	343.00	63.0	184.0	1800.0	26.0	119.0	17.0	25.0	54.0	11.0			TFAQ	7	DBP
VA01016	347.00	358.00	86.0	77.0	2000.0	<10.0	108.0	<10.0	66.0	92.0	<10.0			TFAO	?	PCP
VA01017	395.00	409.00	29.0	221.0	712.0	<10.0	17.0	14.0	115.0	57.0	51.0			IM	7	- A -
VA01018	410.00	430.00	44.0	228.0	1140.0	27.0	33.0	16.0	78.0	59.0	31.0			TM	. ?	Α

SAMPLE																	
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZH (ppm)	AB (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	НО (ppm)	нн (pp≡)	CUZN	ETS	FE
VA01501	110.10	111.40	720.0	87.0	15.0	⟨0.5	10.0	5.0	3.0	(5.0	6.0	<1.0	1.0	249.0	85.	1.	1.
VA01502	181.80	182.50	220.0	116.0	32.0	<0.5	10.0	14.0	9.0	⟨5.0	<5.0	<1.0	<1.0	281.0	78.	1.	1.
VA01503	199.30	200.80	390.0	141.0	70.0	<0.5	10.0	26.0	24.0	(5.0	6.0	<1.0	<1.0	668.0	67.	. 1.	4.
VA01504	201.50		2190.0	471.0	55.0	0.5	30.0	64.0	28.0	< 5.0	15.0	<1.0	2.0	496.0	90.	э.	3.
VA01505	209.90	210.90	1120.0	146.0	49.0	<0.5	15.0	7.0	4.0	<5.0	11.0	<1.0	<1.0	288.0	75.	1.	1.
VA01506	236.00	237.00	630.0	33.0	46.0	<0.5	15.0	7.0	11.0	<5.0	7.0	<1.0	<1.0	553.0	42.	2.	2.
VA01507	237.00	238.00	270.0	50.0	40.0	<0.5	10.0	8.0	9.0	<5.0	16.0	<1.0	<1.0	528.0	56.	2.	2,
VA01508	239.70	240.20	460.0	326.0	103.0	<0.5	15.0	18.0	15.0	<5.0	<5.0	<1.0	<1.0	1041.0	76.	1.	3.
VA01509	252.00	252.50	1210.0	263.0	61.0	<0.5	15.0	21.0	12.0	(5.0	(5.0	<1.0	<1.0	635.0	81.	3.	4.
VA01510	264.40	264.90	1550.0	2428.0	253.0	1.3	30.0	22.0	30.0	⟨5.0	15.0	2.0	<1.0	802.0	91.	1.	5.
VA01511	315.40	316.40	1010.0	83.0	47.0	₹0.5	15.0	15.0	22.0	<5.0	17.0	<1.0	3.0	514.0	64.	2.	3.
VA01512	316.40		1880.0	177.0	48.0	<0.5	35.0	16.0	30.0	⟨5.0	17.0	<1.0	2.0	478.0	79.	з.	3.
VA01513	317.40		2870.0	115.0	401.0	<0.5	55.0	4.0	3.0	12.0	8.0	2.0	2.0	152.0	22.	5.	2.
VA01514	318.40	319.10	2020.0	34.0	55.0	<0.5	30.0	7.0	13.0	6.0	(5.0	<1.0	2.0	330.0	38.	3.	2.
VA01515	321.10		1520.0	66.0	35.0	⟨0.5	10.0	20.0	80.0	<5.0	26.0	<1.0	<1.0	570.0	65.	2.	4.
VA01516	322.40	323.40	1310.0	140.0	64.0	⟨0.5	15.0	47.0	149.0	⟨5.0	21.0	<1.0	1.0	890.0	69.	2.	6.
VA01517	346.40	348.00	1700.0	30.0	54.0	<0.5	35.0	8.0	6.0	5.0	14.0	(1.0	2.0	194.0	36.	2.	1.
VA01518	348.00		1350.0	31.0	36.0	<0.5	25.0	4.0	5.0	12.0	12.0	<1.0	<1.0	173.0	46.	2.	1.
VA01519	349.50	351.00	1570.0	108.0	351.0	<0.5	110.0	3.0	2.0	309.0	13.0	2.0	2.0	152.0	24.	2.	. 1.
VA01520	351.00	352.50	1560.0	51.0	438.0	<0.5	65.0	4.0	2.0	133.0	17.0	2.0	2.0	134.0	10.	2.	1.
VA01521	352.50	354.00	1780.0	39.0	389.0	<0.5	45.0	3.0	2.0	246.0	<5.0	1.0	2.0	176.0	. 9.	2.	1.
VA01522	354.00	355.50	1720.0	38.0	138.0	⟨0.5	20.0	5.0	2.0	97.0	12.0	(1.0	2.0	209.0	22.	2.	1.
VA01522	355.50		1310.0	40.0	86.0	(0.5	45.0	2.0	2.0	58.0	13.0	<1.0	1.0	157.0	32.	2.	1.
AMATOTO	233.30	337.00	10.10.0	10.0			10.0										

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	(ppm)	NI (ppm)	PB (ppm)	AS (ppm)	(ppm)	MO (ppm)	ММ (ррм)	CUZN	ETS	FE
VA01524	357.00	358.80	1630.0	53.0	168.0	<0.5	25.0	3.0	2.0	94.0	13.0	<1.0	2.0	158.0	24.	2.	1.
VA01525	391.40	392.40	2080.0	98.0	1014.0	0.6	75.0	6.0	4.0	34.0	17.0	5.0	2.0	423.0	9.	5.	2.
VA01526	392.40	393.40	1840.0	65.0	280.0	1.2	85.0	13.0	24.0	142.0	17.0	2.0	1.0	1197.0	19.	4.	2.
VA01527	393.40	394.30	2890.0	172.0	643.0	0.9	70.0	6.0	4.0	314.0	19.0	3.0	2.0	289.0	21.	3.	2.
VA01528	434.70	435.10	1080.0	98.0	80.0	<0.5	20.0	22.0	31.0	6.0	14.0	<1.0	<1.0	744.0	55.	2.	5.

Summary Log: DDH CH88-39

Location: 48+00 E, 1+00 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: April 11, 1988 Core logged by: J. Pattison

0.0 - 3.6 Casing.

3.6 - 34.6 Chloritic felsic quartz-feldspar crystal tuff

34.6 - 46.9 Feldspar porphyritic gabbro

46.9 - 52.7 Chloritic felsic quartz-feldspar crystal lapilli tuff

52.7 - 78.1 Feldspar porphyritic gabbro

78.1 - 79.2 Felsic quartz-feldspar crystal tuff

79.2 - 80.8 Gabbro dyke

80.8 - 102.0 Chloritic felsic quartz-feldspar crystal tuff
1-2 % disseminated pyrite over most of the interval.

102.0 - 117.1 Feldspar porphyritic gabbro

117.1 - 122.5 Chloritic felsic feldspar crystal tuff

122.5 - 127.6 Mafic tuff

127.6 - 147.4 Chloritic felsic ash and lapilli crystal tuffs

147.4 - 160.6 Mafic ash tuff

160.6 - 163.1 Felsic lapilli tuff

Hosts 20 % pyrrhotite and 7 % chalcopyrite over a 1.0 m interval. The sulphides envellope felsic ash and lapilli fragments and may be syngentic. The tuffs above and below the mineralized horizon do not appear to be strongly altered.

163.1 - 167.0 Chloritic felsic feldspar crystal tuff

167.0 - 174.4 Mafic tuff

174.4 - 188.0 Chloritic felsic ash and crystal tuffs

188.0 - 210.0 Mafic tuff

210.0 - 223.4 Gabbro with several fault gouges (Fulford fault splay)

223.4 - 255.3 Felsic quartz feldspar crystal lapilli tuff
Moderately to strongly sericitic with 1 to 5 % pyrite

as disseminations and thin (< 1.0 cm) bands parallel

to foliation.

255.3 - 300.7 Mafic to intermediate tuffaceous sediments

300.7 - 308.8 Feldspar porphyritic gabbro

EOH @ 308.8 m

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39 1

Hole Location: 48+00 E 1+00 S

NTS: 92813 UTM: 5415951.0 N 431863.3 E

Azimuth: 210 Elevation: 653 m Dip: -50 Length: 308.8 m

Started: 6-April-88 Completed: 11-April-88

Elevation: 653 m

Purpose: To test eastern edge of PEM anomaly.

Claim No. Chip 1 Section No.: 48+00 E

Logged By: J. Pattison

Drilling Co.: Burwash Enterprises Assayed By: Bondar-Clegg & XRAL

Core Size:

DIP TESTS

Azi~ Azi-Length muth Díp Length Díp muth 207.0 53.60 -47.5 250.00 209.0 -45.5 173.70 207.0 -46.5

From	To		Sample	From	To	Width	Total Co	u	Рb	Zn	λg	Au	Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides (p	pma)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)

- .0 3.6 OVERBURDEN
- 3.6
 7.5 FELSIC TUFF
 Light grey with streaky brown appearance due to moderate
 Fe-carbonate alteration. Rock is blocky and broken over
 entire section. Foliation is well developed at 65 degrees
 to core axis. In less deformed and altered sections of the
 core the tuff is comprised of 10% (1.0 mm feldspar
 crystals in a very fine-grained siliceous matrix. Nil
 sulphides. Lower contact is gradational.
 - 3.6 7.5 MODERATE PERVASIVE CARBONATIZATION.
 - 5.0 5.2 Bull quartz vein. Not possible to measure orientation.
- 7.5 34.6 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF

 Medium grey well foliated at 65 degrees to core axis. Rock
 contains up to 10 % (3 mm quartz eyes, 10-20 % ash-sized,
 epidotized feldspar crystals, occasional ash to
 lapilli-sized light grey felsic clasts and very rare dark
 green to black mafic (?) clasts. Clasts are streched 8:1
 parallel to foliation. Quartz eyes have a crushed highly
 fractured appearance and are rare below 16.4 m. Lower
 contact is sharp at 40 degrees to core axis.

STRUCTURE:

Foliation is at 70 degrees to core axis at 10.2 m. Bedding is at 60 degrees to core axis at 14.8 m. Irregular bedding plane or fracture at 67 degrees to core

VA02751 5.9 17.4 11.5 n/a (10 n/a (10 n/a n/a 1220

VA02752 17.4 34.6 17.2 n/a (10 ⟨10 n/a n/a 1440 n/a 33.1 1.0 10 1270 VA03251 32.1 49 ₹5 27 <1 1 25 2630 VA03252 33.1 33.5 5 187 ₹5 50 <1 . 4 10 2120 VA03253 33.5 34.5 1.0

2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39

Cu

Рb

Zn

(ppm)

(ppb) (ppm)

(ppm) (ppm)

From To (m) (m.) -----DESCRIPTION-----

Bedding is at 70 degrees to core axis at 20.7 m.

Bedding is at 75 degrees to core axis at 25.2 m.

Bedding is at 65 degrees to core axis at 31.5 m. Bedding is at 60 degrees to core axis at 32.9 m.

Foliation is at 61 degrees to core axis at 22.1 m. 1 Cm fault gouge at 60 degrees to core axis at 28.1 m. From To

(m)

(m)

Width

(m)

Total

Sulphides (ppm)

Sample

No.

ALTERATION:.

axis at 20.6 m.

7.5 34.6 WEAK PERVASIVE CHLORITIZATION.

SULPHIDES:.

- 33.1 33.5 5 % fracture controlled pyrite. Pyrite fills hairline fractures and gashes most of which are oriented parallel to foliation at 60 degrees to core axis.
- 14.1 14.2 Irregular quartz vein or pod.
- 15.3 16.2 Feldspar crystal rich beds are recognizable at 70 degrees to core axis. Also, there are several light grey lapilli-sized felsic fragments.
- 16.1 16.4 Mafic ash tuff. Contacts are at 70 degrees to core axis.
- 19.5 888.8 Chlorite-carbonate rich band at 60 degrees to core axis.
- 20.6 20.7 Finely bedded interval.
- 20.7 23.7 Feldspar crystals are coaser (up to 2 mm).
- 26.3 27.1 Weak to moderate fracture controlled thermal biotite alteration gives rock brownish caste.
- 34.0 34.6 Weak patchy thermal biotite alteration.
- 34.6 46.9 FELDSPAR PORPHYRITIC GABBRO Massive, medium green, fine-grained with 10 % (1 to 4 mm white feldspar phenocrysts. Rock is weakly magnetic due to <1-2% disseminated and fracture controlled pyrrhotite. 10 Cm chill margin at upper and lower contacts. 10 cm inclusion of quartz-feldspar crystal tuff. Broken core at lower contact.
- 46.9 52.7 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL LAPILLI TUFF

FALCONBRIDGE LIMITED DIAHOND DRILL LOG

Sample

From

To

Vidth

HOLE No: Page Number CH88-39 3

Light green with slight brownish tinge due to weak thermal biotite alteration. Up to 20 % light grey felsic clasts in a siliceous, feldspar crystal rich (15-25%) matrix with up to 5 % (4mm quartz eyes. Felsic lapilli are most common over first 0.2 m of unit and have hazy indistinct margins. Nil sulphides. Thermal biotite alteration increases towards lower contact. Lower contact is at 42 degrees to core axis.

STRUCTURE:.

Locally, intensely microfractured.

Bedding is at 60 degrees to core axis at 48.5 m.

ALTERATION:.

46.9 52.7 WEAK PERVASIVE CHLORITIZATION.

52.7 78.1 FELDSPAR PORPHYRITIC GABBRO

As 34.6 to 46.9 m. Fine-grained chill margin with quartz +/- carbonate veins and pods over first 1.0 m. Nil-1% disseminated and fracture controlled pyrrhotite. Rock is weakly magnetic. Occasional quartz-carbonate vein <1.0 cm wide. Up to 5% very finely diss ilmenite altered to leucoxene. Lower contact is at 80 degrees to core axis. A very irregular block of fine-grained gabbro runs along the core axis for 10 cm below the lower contact.

STRUCTURE:.

- ??.?-68.2 FAULT ZONE. Rusty rubble over entire section.
 0.3 m of lost core. Not possible to measure orientation.
 May just be weathered out quartz-carbonate vein running parallel to core axis.
- 68.2 69.2 Blocky, highly fractured core. 0.3 m of lost core
- 53.7 53.8 Fractured quartz-carbonate vein at 60 degrees to core axis. No sulphides.
- 69.0 69.2 Inclusion of crystal tuff.
- 73.5 888.8 Spot of chalcopyrite pyrrhotite 0.3 mm long.
- 77.0 77.3 Quartz-carbonate vein with irregular upper contact and lower contact at 45 degrees to core axis.
- 78.1 79.2 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF
 Light grey-brown and composed of 25-30% (3 mm feldspars and (5% 1-2 mm quartz eyes in a fine-grained siliceous

No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)
VAO2753 46.9 52.7 5.8 n/a 21 n/a 102 n/a n/a 2050

Total

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39

Zn

(ppm)

(ppb) (ppm)

From To Sample From To Width Total Pb (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) thermal biotite altered matrix. Lapilli-sized siliceous patches, which may be clasts, give rock a mottled appearance. Nil sulphides. Broken core at lower contact. ALTERATION:. 78.1 79.2 WEAK PERVASIVE SERICITIZATION. 79.2 80.8 MAFIC INTRUSIVE As 34.6 46.9 m. 20 cm chill margin at upper contact. Core

is blocky over entire section. Especially between 79.4 and 80.7 m where there is 0.5 m of lost core. Fracture surfaces are rusty throughout the interval. Lower contact is irregular but appears to be at 40 degrees to core axis.

80.8 102.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Light green-brown to grey and quite massive (no bedding recognizable and only weakly foliated) suggesting that it may be a flow. Composed of 10% 1-4 mm anhedral to subhedral feldspar crystals and <5% <2 mm quartz eyes in a weakly to moderately thermal biotite and chlorite altered fine-grained to very fine-grained siliceous matrix. Weak to moderate patchy thermal biotite alteration and weak to very weak pervasive chlorite alteration. Rusty patches between 80.7 and 81.2 m and between 82.8 and 83.5 m and between 89.8 and 90.7 m. Lower contact is irregular but appears to be at 70 degrees to core axis. STRUCTURE:. Weak foliation at 65 degrees to core axis at 89.8 m. Bedding (?) is at 70 degrees to core axis at 99.8 m. Bedding (?) is at 60 degrees to core axis at 101.3 m.

VA02754 80.8 84.2 3.4 n/a 16 n/a 118 n/a n/a 1300 VA02755 84.2 102.0 17.8 n/a 44 n/a 30 n/a n/a 1140 VA03254 84.5 85.5 1.0 98 <5 70 <1 10 750 1 VA03255 85.5 86.5 1.0 2 45 ₹5 23 <1 20 720 87.5 45 ₹5 13 <1 30 820 VA03257 86.5 1.0 2 87.5 88.5 42 ₹5 32 <1 5 1330 VA03256 1.0 2 88.5 ₹1 20 1340 89.0 61 15 45 VA03258 . 5 2 <1 980 VA03259 89.0 90.0 1.0 1 19 ₹5 22 5 VA03260 95.7 96.7 1.0 18 ₹5 40 <1 (5 1020 1 VA03261 96.7 97.7 2 31 (5 33 <1 15 1020 1.0 97.7 ₹5 35 <1 **<5** 1060 VA03262 98.7 2 17 1.0 98.7 99.7 86 ₹5 39 ₹1: 5 860 VA03263 1.0 VA03264 99.7 100.4 12 ₹5 26 <1 10 1650 .7 (5 VA03265 100.4 101.3 48 15 (1) (5 1310 . 9 95 (5 31 ₹1 5 1140 VA03266 101.3 102.0 .7

ALTERATION:.

80.6 85.7 WEAK PERVASIVE CHLORITIZATION. 85.7 88.0 WEAK PERVASIVE SERICITIZATION. 88.0 100.2 WEAK PERVASIVE CHLORITIZATION and weak to moderate patchy thermal biotite alteration. 100.2 101.4 MODERATE PERVASIVE SERICITIZATION. 101.4 102.0 WEAK PERVASIVE CHLORITIZATION.

84.5 85.5 1% fracture controlled and disseminated pyrite. 85.5 89.0 1-2% fracture controlled pyrite. 96.7 100.4 2% disseminated and fracture controlled pyritewith minor pyrrhotite. Sulphides occur in hairline fractures.

100.4 101.3 4% pyrrhotite with minor pyrite as spots up to 4 mm long and fracture fillings rock is weakly magnetic.

101.3 102.0 2% disseminated and fracture controlled pyrite.

DUODEDTV.	Chemainus	71/

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39 5

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
		84.2 84.8 MAFIC DYKE. Light green, fine-grained and feldspar porphyritic in the centre. Upper contact is at 65 degrees to core axis and lower contact is at 60 degrees to core axis.											
		99.8 100.4 Feldspar crystal rich bed. Rock has distinct brownish caste due to thermal biotite alteration and contains 25-30% 2-4 mm feldspar crystals. Upper and lower bedding contacts are sharp at 70 degrees to core axis.											
		101.3 102.0 Brownish weathered altered section similiar to 99.0 to 100.4 m except fewer feldspar crystals											
102.0 11	17.1	FELDSPAR PORPHYRITIC GABBRO As 34.6 46.9 m. Gabbro is bleached for approximately 1.8 m from lower contact. Lower contact is at 86 degrees to core axis.	VA03267	102.0	103.0	1.0	1	186	∢5	81	(1	5	60
		106.7 107.0 Irregular quartz-carbonate pod. No sulphide.											
		107.2 888.8 4.0 cm wide quartz-carbonate vein at 50 degrees to core axis with patchy pyrrhotite and minor chalcopyrite along vein margins.											
117.1 12	22.5	CHLORITIC FELSIC FELDSPAR CRYSTAL TUFF Light grey green with a brownish tint due to patchy, streaky thermal biotite alteration. Rock has a banded appearance. Bands are at 60 to 70 degrees to core axis. Rock is composed of 10 % epidotized feldspar crystals and an occasional lapilli-sized felsic fragment in a	VA02756	117.1	122.5	5.4	n/a	32	n/a	81 1	n/a	n/a 1	.080
		fine-grained felsic to intermediate matrix. For the most part the tuff is felsic in composition but locally it ranges into intermediate compositions. Nil to 1 % disseminated pyrite. Lower contact is gradational over 10											
		cm. STRUCTURE:. Bedding is at 65 degrees to core axis at 117.3 m. FAULT GOUGE at 65 degrees to core axis between 117.6 and 117.7 m. Foliation is at 60 degrees to core axis at 118.3 m. Bedding is at 70 degrees to core axis at 119.6 m.											
		Bedding is at 60 degrees to core axis at 121.7 m. ALTERATION:. 117.1 122.8 WEAK PERVASIVE CHLORITIZATION and weak to moderate thermal biotite. 121.8 122.0 STRONG PERVASIVE SILICIFICATION.											

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39 6

(m) (m) ------DESCRIPTION-----

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

122.0 122.5 WEAK PERVASIVE CHLORITIZATION.

120.9 888.8 Felsic lapilli with 2 mm thick bleached reaction rim.

121.8 122.0 Very siliceous bed of crystal tuff. Upper and lower contacts are sharp at 60 degrees to core axis.

122.5 126.4 HAFIC TUFF

From To

Medium green massive (no bedding recognizable) moderate epidotization centred on feldspar crystals (1-3 mm in diameter which comprise up to 15 % of the rock. Occasional vague, poorly defined lapilli-sized mafic clast. Lower contact is gradational into hornblende bearing tuff below and is placed where hornblende crystals become conspicuous. STRUCTURE:.

Bedding is at 42 degrees to core axis at 126.1 m.

ALTERATION:.

122.5 126.4 WEAK SPOTTY EPIDOTIZATION.

126.1 888.8 5.0 cm thick bed of thermal biotite altered felsic crystal tuff at 42 degrees to core axis.

126.4 127.6 MAFIC PORPHYRITIC MAFIC LAPILLI TUFF
Slightly darker green than unit above. Rock consists of
20-25% epidotized feldspars in a chloritic matrix. Up to
5 % thin, wispy chlorite spots (1.5 cm long which may be
fiamme. Nil to trace disseminated pyrite. Very
fine-grained for 8.0 cm at lower contact. Lower contact
is sharp at 45 degrees to core axis.
ALTERATION:

126.4 127.6 WEAK SPOTTY EPIDOTIZATION.

127.6 139.3 CHLORITIC FELSIC FELDSPAR CRYSTAL LAPILLI TUFF
Light grey to green-grey with a variable brownish tint
depending on the intensity of the thermal biotite
alteration. Composed of 5-10% weakly epidotized feldspar
crystals < 3 mm long in a fine-grained weakly to
moderately foliated siliceous matrix. Occasional light
grey lapilli-sized felsic clast. Best example of these
clasts is between 129.0 and 129.5 m where there are
clasts up to 2 cm wide with bleached reaction rims 2-3 mm
thick (see skeletal core). Nil to trace fracture
controlled pyrite. 10.0 cm mafic dyke at 60 degrees to
core axis at lower contact. Broken core at contact between

VA02757 122.5 127.6 5.1 n/a 115 n/a 141 n/a n/a 477

VA02758 127.6 139.3 11.7 n/a <10 n/a 29 n/a n/a 3120

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39 7

		DIAMOND DRILL LOG												
From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)	
		dyke and felsic ash tuff below. STRUCTURE:												
*.		Foliation is at 40 degrees to core axis at 129.8 m. Minor fault gouge at 40 degrees to core axis at 130.5 m. Bedding is at 60 degrees to core axis at 135.7 m.												
		ALTERATION: . 127.6 130.5 WEAK PERVASIVE CHLORITIZATION and weak spotty												
		epidotization. 130.5 139.3 WEAK PERVASIVE CHLORITIZATION and moderate thermal biotite alteration.												
139.3	141.0	FELSIC TUFF												
		Light grey fine-grained moderately well foliated at 50-55 degrees to core axis (foliation is often kinked). Composed almost entirely of quartz and sericite with	VA02759 VA03268			8.1	n/a 2	44 18	n/a 7	15 14	n/a <1	n/a :		
		ash-sized feldspar crystals and minor wispy chlorite. Trace to 1 % fracture controlled pyrite-pyrrhotite. Lower contact is arbitrarily placed where feldspar crystals												
		become conspicuous. STRUCTURE:. Foliation is at 50 degrees to core axis at 139.6 m.												
		Foliation is at 55 degrees to core axis at 139.0 m. ALTERATION:												
		139.3 141.0 WEAK PERVASIVE SERICITIZATION and very weak patchy chlorite.												
		SULPHIDES:. 139.3 139.8 2 % fracture controlled pyrite-pyrrhotite.												
141.0	143.2	CHLORITIC FELSIC FELDSPAR CRYSTAL LAPILLI TUFF Similiar to 127.6 to 139.3 m. None of the clasts have reaction rims. Trace to 1 % fracture controlled	VA03270	142.3	143.2	. 9	• 1	22	₹5	9	(1	10	2440	
		pyrrhotite-pyrite. STRUCTURE:.												
		Foliation is at 50 degrees to core axis at 141.3 m.												
		ALTERATION:. 141.0 143.2 WEAK PERVASIVE CHLORITIZATION and weak pervasive sericitization.												
		SULPHIDES:. 142.3 143.0 1 % fracture controlled pyrrhotite.												
		142.4 143.2 Rusty fractures run parallel to core axis.												
143.2	147 4	FELSIC TUFF												
143.2	147.4	Light grey, sericitic, well foliated and rusty fractures parallel to core axis are common. Rock is meakly magnetic due to weak pyrrhotite mineralization. Lower contact is	YA03271 YA03273 YA03275	144.2	145.2	1.0 1.0 1.0	2 1 2	13 16 26	5 (5 9	7 9 4	(1 (1 (1	50 1 - 75 1 65 1		

PROPER	RTY: Chemainus JV	FALCONBRIDGE LIMITED DIAMOND DRILL LOG					HOLE N CH88-39		age Numbe 8	er		
From To		CRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au Ba (ppb) (ppm)
	gradational. STRUCTURE:. Foliation is at 50 degrees to	core axis at 146.1 m.	VA03276	146.2	147.4	1.2	2	41	9	7	(1	75 1700
	ALTERATION:. 143.2 147.4 MODERATE PERVASIVE	SERICITIZATION.										
	SULPHIDES:. 3 % fracture controlled pyrrho	tite-pyrite.										
	144.0 144.2 Blocky, highly fra rusty.	ctured core. Fractures are										
147.4 160	.6 MAFIC TUFF Medium green with a variable be intensity of thermal biotite a bedding not recognizable, alth banded appearance below 158.5 biotite-rich layers < 1.0 cm the developed. Rock is composed of epidotized feldspar crystals in rich thermal biotite altered munit contains many quartz-carb overall composition is intermintermediate to felsic lapilli locally. STRUCTURE: Band is at 55 degrees to core Band is at 60 degrees to core	lteration. Quite massive, ough rock does have a vague m. Banding is defined by hick. Foliation is poorly up to 25 % < 3 mm n a fine-grained chlorite atrix. Upper 0.6 m of the onate veins and pods and its ediate. Vague, fine-grained -sized fragments occur	VA02760 VA03278 VA03279 VA03280 VA03282 VA03283	156.8 157.8 158.8 159.5	157.8 158.8 159.5 160.2	13.2 1.0 1.0 .7 .7	n/a 1 1 2 2 4	84 290 204 446 718 5100	n/a <5 <5 <5 <5 <5 <5	44 90 74 73 70 164	n/a	n/a 1210 95 770 45 1250 30 1570 60 1490 100 1120
	weak epidotization crystals.	ORITIZATION , weak to ermal biotite alteration and centred on feldspar										

160.6 163.1 FELSIC LAPILLI TUFF Medium grey, composed of 5 % ash-sized feldspar crystals and up to 10 % lapilli-sized fine-grained felsic fragments in a weakly sericitic fine-grained matrix. Lower contact

147.4 158.8 Trace to 1% disseminated and fracture controlled pyrrhotite and pyrite. 158.8 160.2 1 to 2 % disseminated and fracture controlled

disseminated chalcopyrite. 160.2 160.6 2 % disseminated pyrrhotite and pyrite and 1 %

chalcopyrite.

pyrrhotite and pyrite and trace very finely

15 1930 <5 51 (1) . 4 1139 VA03269 160.6 161.0 45 2630 11 871 ₹5 36 (1 YA03272 161.0 161.5 . 5 110 1670 . 5 22 12900 31 618 VA03274 161.5 162.0

167.0 174.4 HAFIC TUFF

Medium green, fine-grained with 10-15% 1-3 mm weakly epidotized feldspars. Very massive between 168.2 and

170.0 m and is likely a flow. Less homogenious in

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39 9

280

76 n/a

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphid	Cu les (ppm)	Pb (ppm	Zn n) (ppm)	Ag (ppm	A u 191	Ba b) (ppm)
		is at 78 degrees to core axis.	VA03277	162.0	162.5	.5	30	80700	42	5800	. 33	280	910
		STRUCTURE:.	VA03281	162.5	163.1	.6	13	8100	< 5	437	3	150	1120
		Foliation is kinked through most of the unit.											
		Foliation is at 60 degrees to core axis at 161.3 m.											
		Bedding (?) is at 60 degrees to core axis at 162.6 m.											
		ALTERATION:.											
		160.6 163.1 WEAK PERVASIVE SERICITIZATION.											
		SULPHIDES:.											
		160.6 161.0 5% pyrrhotite, 1% pyrite and trace											
		chalcopyrite. Sulphides occur along foliation											
		planes and as fracture fillings.											
		161.0 161.5 10% pyrrhotite and 1% chalcopyrite as above.											
		161.5 162.0 15-20% pyrrhotite and 4% chalcopyrite.											
		Sulphides are associated with quartz-carbonate											
		veins and pods up to 4 cm wide at 70-90											
		degrees to core axis and along foliation											
		planes and as fracture fillings.											
		162.0 162.5 20% pyrrhotite and 8-10% chalcopyrite.											
		Sulphides envellope ash and lapilli fragments											
		forming a net texture.											
		162.5 163.1 10% pyrrhotite and 3% chalcopyrite. Sulphides											
		surround clasts and occur along foliation											
		planes, as fracture fillings and disseminations											
		France, as Italians, and allocations											
163.1	167.0	CHLORITIC FELSIC FELDSPAR CRYSTAL TUFF											
		Light grey green with up to 10 % ash-sized feldspar	VA02761			3.9	n/a	34	n/a	58	n/a	n/a	826
		crystals. Bedding recognizable in a couple of places. May	VA03284			6.0	1 .	124	: <5	68	<1	75	860
		be intermediate in composition over the first 0.3 m.	VA03285			1.0	1	.31	(5	69	<1		1120
		Lower contact is at 40 degrees to core axis.	VA03286			.5	1	42	. <5	107	<1		1630
		STRUCTURE:.	VA03287	166.5	167.5	1.0	1	279	₹5	68	<1	70	1800
		Bedding is at 55 degrees to core axis at 163.8 m.											
		Bedding is at 50 degrees to core axis at 164.5 m.											
		Foliation is at 50 degrees to core axis at 165.3 m.											
		AUTERATION:.											
		163.1 167.0 WEAK PERVASIVE CHLORITIZATION.											
		SULPHIDES:.											
		166.0 166.5 Trace sphalerite. Sphalerite occurs as a 2 mm											
		wide band along the edge of 2.5 cm wide											
		quartz-carbonate vein at 40 degrees to core											
		axis.											

VA02762 167.0 174.4 7.4

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39 10

46 n/a

n/a 1040

From To
(m) (m) ------DESCRIPTION------

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

n/a

VA02763 174.4 188.0 13.6

appearance below 170.0 m but no firm evidence that it is tuffaceous. Foliation very poorly developed. Nil sulphides. Lower contact is gradational over $10.0~\rm cm$.

174.4 176.2 WEAKLY CHLORITIC FELSIC TUFF
Grey-green fine-grained, weakly foliated at 40-50 degrees to core axis. With rare quartz eyes (1 mm in diameter. Felsic in composition throughout most of the interval but minor chloritic zones near the top may be intermediate in composition. Blocky, highly fractured core throughout. Nil sulphides. Lower contact arbitrarily placed where quartz eyes become conspicuous.

ALTERATION:.

174.4 176.2 WEAK PERVASIVE CHLORITIZATION.

176.2 181.3 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Lighter green than above unit. Composed of 5-10% 1-2 mm feldspar crystals and 2 to 5% 1-3 mm quartz eyes in a very fine-grained, almost aphanitic matrix. Most feldspar crystals are epidotized. Rock is moderately microfractured. Microfractures filled with sericite. Rock is relatively massive bedding is not recognizable and foliation is only weakly developed at 65 degrees to core axis. Lower contact is gradational.

176.2 181.3 WEAK PERVASIVE CHLORITIZATION.

181.3 188.0 WEAKLY CHLORITIC FELSIC TUFF

Green-grey to brown due to weak to moderate thermal biotite alteration. Unit is a mixture of ash, feldspar crystal, quartz eye and lapilli tuffs and may range into intermediate compositions. Bedding only recognized in one place. Nil sulphides. Lower contact is gradational. STRUCTURE:

Blocky, highly fractured core between 185.4 and 185.9 m. 0.2 m of lost core. Probably a fault at a low angle to the core axis.

Bedding (?) is at 52 degrees to core axis at 186.3 m.
1.0 Cm wide fault gouge or fracture runs along core axis between 186.7 and 187.3 m. Gouge is filled with a mustard yellow clay.

ALTERATION:.

181.3 188.0 WEAK PERVASIVE CHLORITIZATION.

188.0 210.0 MAFIC TUFF
Massive medium green feldspar crystal tuff or flow.

VA02764 188.0 210.0 22.0 n/a 164 n/a 172 n/a n/a 1290

П

FALCONBRIDGE LIMITED DIAHOND DRILL LOG

HOLE No: Page Number CH88-39 11

Comprised of up to 15 % 1-2 mm epidotized feldspars in a fine-grained chloritic matrix. Massive non bedded nature of rock suggests that it is a flow, but the variable feldspar content and weak thermal biotite alteration indicates that it is tuffaceous. Below 198.0 m feldspars become much less conspicuous, thermal biotite alteration increases and the rock takes on a definite tuffaceous appearance. 10.0 Cm bed of massive light green cherty siltstone at lower contact. Upper contact of this bed is at 78 degrees to core axis and core is broken at lower contact. STRUCTURE:.

1.0 Cm fault gouge at 35 degrees to core axis at 188.1 m. Gouge is filled with mustard yellow clay.
0.5 Cm fault gouge runs parallel to core axis between 190.8 and 191.0 m. Fault is filled with mustard yellow clay. Several inclusions of felsic crystal tuff up to 20 cm long. Lower contact is a 10 cm fault gouge at 70 degrees to core axis.
ALTERATION:.

188.0 210.0 WEAK PERVASIVE CHLORITIZATION and weak to

moderate thermal biotite alteration.
199.5 199.9 Quartz-carbonate flooded zone with associated chlorite clots. Nil sulphides.

205.5 206.0 Two fine-grained lapilli-sized felsic fragments

210.0 223.4 MAFIC INTRUSIVE

Dark green, fine-grained and crushed with up to 3 % finely disseminated ilmenite. Not feldspar porphyritic. If not for the ilmenite and hematite alteration it might be a mafic tuff or flow.

STRUCTURE:.

20 Cm fault gouge at 60 degrees to core axis at 212.9 m. Rock is broken and blocky and there are numerous minor fault gouges for 1.0 m $\,$ below the fault.

Rock has crushed tectonized appearance and there are numerous fracture and gashes filled with a milky white mineral that does not fizz in RCl between 212.9 and 219.0 m.

Fault breccia at 50 degrees to core axis between 219.8 and 220.2 m. Breccia is composed of angular clasts of quartz +/- carbonate and felsic crystal tuff (1-40 mm wide in a grey-green clay-rich matrix.

Minor fault gouge at 50 degrees to core axis at 222.8 m and rock is crushed from here to lower contact.

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

2

4

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39 12

Total Cu

(m)	(m)		DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm) (pp	ь) (р	
		ALTERATION:													
			WEAK PERVASIVE CHLORITIZATION and local weak												
			fracture controlled Fe-carbonate alteration.												
		214.0 888.8	WEAK FRACTURE CONTROLLED HEMATIZATION and												
			local weak fracture controlled Fe-carbonate												
			alteration.												
		214.3 214.7	Inclusion of felsic crystal tuff. Upper												
			contact is a slip at 50 degrees to core axis												
			and lower contact is a slip at 85 degrees to												
			core axis.												
		218 8 219 0	Inclusion of felsic crystal tuff. Lower												
		210.0 217.0	contact is a slip at 65 degrees to core axis												
			core is broken at upper contact.												
			The second secon												
		223.2 223.3	Inclusion of felsic crystal tuff. Upper												
			contact is a slip at 37 degrees to core axis												
			and lower contact is slip at 60 degrees to												
			core axis.												
000 4															
223.4	255.3		TZ FELDSPAR CRYSTAL LAPILLI TUFF												
			moderately to strongly sericitic with (5% 1-3	VA03288		224.4	1.0	. 1	16	(5	38	ς 1	60	470	
			yes, (5% ash-sized feldspar crystals and nil to	VA02765			31.9	n/a	119	. n/a	444	n/a	n/a	2030	
			o lapilli-sized fine-grained felsic fragments. crushed, sheared appearance and foliation is	VA03289 VA03290		225.4	1.0 1.0	2 3	27 14	< 5 - 22	23 58	` <1 ' <1	760	710	
			ver the entire interval. Quartz eyes are	VA03291			1.0	. 3	12	16	100	1		1080	
			e 226.7 m and are rare below 230.0 m. Lower	VA03292			1.0	. 1	10	17	33	(1		1190	
			sharp but irregular at about 62 degrees to core	VA03293			1.0	3	8		35	(1		1290	
		axis.		VA03294			1.0	3	18	10	75	ī		1690	
				VA03295	230.4	231.4	1.0	. 4	17	9	83	1	95	2340	
		STRUCTURE:.		VA03296	231.4	232.4	1.0	4	29	41	76	1	85	2920	
			at 30 to 80 degrees to core axis between 225.0	VA03297	232.4	233.4	1.0	3	19	22	81	<1		2590	
		and 226.0 m		VA03298			1.0	3	18	17 .	33	<1		2690	
				VA03299			1.0	3	41	14	37	1	130	2040	
			nor fault gouges at 40 to 90 degrees to core	VA03300			1.0	3	39	21	43	1		2240	
			n 226.0 and 227.7 m. Largest is 10 cm wide at	VA03301			1.0	4	18	22	50	1		2200	
		60 degrees	to core axis at 227.6 m.	VA03302			1.0	3	75	15	58	2	200		
		Paliation i	s at 20 degrees to core axis at 228.3 m.	VA03303 VA03304			1.0	3	21 29	21 43	55 256	<1 1	200	1440	
			s at 37 degrees to core axis at 228.7 m.	VA03304			.8		21	32	96	(1	110		
			is at 40 degrees to core axis at 220.7 m.	VX03305			1.0		26	40	192	(1		1210	
			gouge at 60 degrees to core axis at 230.7 m.	VA03308			1.0	5	43	74	319	1	125		
			uns nearly parallel to (ie. (25) to core axis	VA03307			1.0	ď	44	. 21	370	⟨1̂		1310	
			.7 and 236.3 m.	VA03309			1.0	5	27	18	218	à		1360	
			bed of very fine-grained ash with tiny quartz	VA03310			1.0	10	73	50	664	î		1340	
			10 degrees to core axis at 235.3 m.	VA03311			1.0	6	25	18	184	(1		1380	
		Several min	or fault gouges at 35 to 65 degrees to core	VA03312	247.0	248.0	1.0	5	32	15	181	(1	- 25	2000	
			n 236.3 and 236.6 m.	VA03313	248.0	249.0	1.0	. 5	22	17	181	<1	50	2650	
		5.0 Cm faul	t gouge at 40 degrees to core axis at 237.4 m.	VA03314	249.0	250.0	1.0	7	38	59	790	(1	5.5	3850	

Sample From To

Width

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39 13

From (m)	To (m)		DESCRIPTION		Sample No.	From (m)	To	Width (m)	Total Sulphides	Cu	Pb (nnm)	Zn (ppm)	Ag (ppm)	Au (nnh	Ba
_,	. ''					, , , , ,	****	12.7	Daiphiacs	(,,,,,,	(,,,,,,,		())		
			ck pyrite bands or beds are at	40 degrees to	VA03315		251.0	1.0	6	27	49	427	1	110	
		core axis a		030 3	VA03316			1.0	8 6	96	81	963	1		2910
			is at 55 degrees to core axis		VA03317			1.0		207		5200	1	130	
			t at 40 degrees to core axis a		VA03318 VA03321			1.0	7 5	167 117		1854 1269	1 1		2060 2070
			is at 25 degrees to core axis a		VAU3321	254.0	255.5	7.3	3	117	71	1403	1	60	2070
			it gouge at 50 degrees to core												
			it 30 degrees to core axis at												
			is at 38 degrees to core axis												
		ALTERATION:	· -	7.4											
		223.4 225.0	WEAK FRACTURE CONTROLLED CHL	ORITIZATION and											
			moderate sericitization.												
		225.0 236.5	STRONG PERVASIVE SERICITIZAT												
			chloritization plus occasion	al spot of											
		226 5 245 6	mariposite.	TOV 1 1											
		236.5 245.0) STRONG PERVASIVE SERICITIZAT chloritization plus occasion												
			mariposite.	ai spot of											
		245 0 250 0) HODERATE PERVASIVE SERICITIZ	ATTON UTAK											
		243.0 230.0	PERVASIVE CHLORITIZATION. Se												
			mariposite up to 2 cm long a												
			planes.	20119 20111111011											
		250.0 255.3	MODERATE PERVASIVE SERICITIZ	ATION WEAK											
			PERVASIVE CHLORITIZATION.												
		SULPHIDES:.													
			1 % fracture controlled and												
		224.4 230.0	2-3 % disseminated and bande	d pyrite. Bands											
			are parallel to foliation.												
			3-4 % pyrite as above.												
		241.5 245.0) 5 % pyrite in thin 1-2mm ban												
			foliation and in ash to lapi and disseminated.	III-sized clasts											
		245 0 246 0	8 % pyrite as above.												
			8 % pyrice as above. 8 2.0 cm felsic clast with sem	i-massiva nurita											
			1.0 cm wide band (bed?) of s												
		443.7 000.0	at 20 degrees to core axis.	emr messive bline											
		246.0 255.3	5-6% pyrite disseminated, in	thin bands											
			parallel to foliation and as												
			lapilli-sized clasts.												

255.3 300.7 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Fine-grained, moderately well foliated, medium green with brownish tint due to moderate thermal biotite alteration. Ripped up beds of light grey-green siltstone < 1.0 cm wide occur over the first 0.5 m of the unit and dark green chloritic mud clasts up to 4 mm long occur throughout the first 1.7 m of the unit. Then the rock becomes more massive but occasional beds of silt (in some

VA02766 255.3 280.0 24.7 n/a 848 n/a 198 n/a 64 n/a VA03323 255.3 256.3 1.0 75 (1 20 1040 135 11 1 VA03319 272.4 273.4 1.0 0 106 14 69 <1 ₹5 740 (1 VA03320 273.4 274.0 . 6 195 15 64 10 990 9 60 (1 25 910 VA03322 274.0 275.0 1.0 0 159 59 VA02767 280.0 300.7 20.7 85 n/a n/a n/a 1670 n/a

HOLE.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-39 14

From To
(m) (m) ------DESCRIPTION-----

contact is a slip at 20 degrees to core axis.
STRUCTURE:.
Foliation is at 53 degrees to core axis at 256.9 m.
Foliation is at 43 degrees to core axis at 258.2 m.
Minor fault at 30 degrees to core axis at 259.0 m.
Bedding is at 10 degrees to core axis at 261.3 m.
Bedding is at 16 degrees to core axis at 270.0 m.
Silt beddings run close to core axis ((10) between 277.5 and 278.3 m. Beds are offset by numerous microfaults at 50-60 degrees to core axis. One bed appears to FINE DOWN

cases they are laminated) < 2.0 cm thick occur at low angles to the core axis, throughout the unit. Lover

Soft sediment deformation at 277.3 m.
Slip at 30 degrees to core axis at 278.5 m.
Bedding parallel to core axis at 284.4 m.
Minor fault gouge at 60 degrees to core axis at 285.2 m.
Minor fault at 40 degrees to core axis at 288.0 m.
1.0 Cm fault gouge at 44 degrees to core axis at 290.0 m.
Slip runs parallel to degrees to core axis between 291.4
292.0 m.

Bedding is parallel to core axis at 292.0 m.

Bedding is at 30 degrees to core axis at 294.8 m. Scour mark on uphole margin of bed indicates TOPS DOWNHOLE.

Bedding is at 37 degrees to core axis at 296.0 m.

Bedding is at 60 degrees to core axis at 297.5 m.

Bedding runs parallel to core axis at 299.4 m.

Blocky, highly fractured core over last 50 cm of unit. 1.0 cm fault gouge 30 cm to core axis.

ALTERATION:

255.3 WEAK PERVASIVE CHLORITIZATION and weak pervasive thermal biotite alteration.

SULPHIDES:.

273.4 274.0 0.25 % chalcopyrite and trace sphalerite in two quartz-carbonate veins (1.0 cm thick at 20 to 25 degrees to core axis.

Specks of chalcopyrite in quartz-carbonate veinlet at 290.6 m.

300.7 308.8 FELDSPAR PORPHYRITIC GABBRO Dark green, blocky fine-grained feldspar porphyritic over first 3.5 m but becomes medium-grained and massive with depth. 1-2 % disseminated ilmenite.

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

.

.

SAMPLE NUMBER	FROH	TO	25102	ZAL203	% CAO	ZHG0	ZNA20	XK20	ZFE203	21103	XP205	ZHNO	ZLOI	SUM	BA	ΑI	NACA
							,										
VA02251	12.20	12.40	72.60	13.70	1.33	1.17	3.78	2.51	2.33	0.24	0.06	0.03	2.08	99.83	1130.	42.	5.
VA02252	25.40	26.00	69.30	14.80	2.08	2.16	3.60	2.08	3.53	0.35	0.08	0.07	2.31	100.36	1130.	43.	6
VA02253	48.00	48.30	67.60	15.50	3.41	2.52	0.73	3.19	3.92	0.34	0.07	0.17	2.39	99.84	1780.	58.	·. 4.
VA02254	85.10	85.40	68.10	15.80	1.04	2.20	4.06	3.08	3.25	0.36	0.07	0.09	2.23	100.28	1690.	51.	5.
VA02255	95.40	95.60	69.50	14.90	2.18	1.40	4.89	2.02	3.51	0.34	0.08	0.07	1.47	100.36	987.	33.	7.
VA02256	122.30	122.40	69.20	14.40	1.96	1.95	4.59	2.09	3.35	0.34	0.09	0.08	1.70	99.75	2340.	38.	7.
VA02257	123.60	123.80	53.40	17.50	4.30	5.73	3.93	1.29	9.13	0.68	0.14	0.22	3.47	99.79	639.	46.	8.
VA02258	126.80	126.90	53.30	16.60	7.01	5.55	3.60	0.63	9.64	0.66	0.15	0.24	3.16	100.54	381.	37.	11.
VA02259	132.90	133.20	70.20	15.20	2.65	0.98	2.69	3.20	2.91	0.32	0.09	0.06	1.77	100.15	2980.	44.	5.
VA02260	140.50	140.60	73.80	12.60	2.98	1.36	2.52	2.40	1.62	0.27	0.06	0.06	2.54	100.21	1410.	41.	6.
VA02261	150.90	151.30	55.20	18.60	4.63	3.64	1.96	2.66	9.16	0.75	0.13	0.16	3.08	99.97	1140.	49.	7.
VA02262	159.10	159.20	54.50	18.00	4.37	2.98	0.99	3.62	9.55	0.72	0.14	0.14	3.54	98.55	1670.	55.	5.
VA02263	164.50	165.00	74.60	11.50	2.70	1.36	2.17	1.93	3.34	0.27	0.07	0.08	2.39	100.41	1380.	40.	5.
VA02264	171.70	171.90	51.90	18.00	6.55	5.19	1.94	0.79	10.70	0.73	0.11	0.21	4.08	100.20	438.	41.	8.
VA02265	180.50	180.70	70.40	13.90	2.66	1.61	2.90	2.13	3.11	0.29	0.07	0.06	2.47	99.60	1020.	40.	6.
VA02266	193.60	193.90	56.20	17.50	6.06	3.28	2.52	1.24	8.77	0.65	0.12	0.18	3.08	99.60	758.	35.	. 9.
VA02267	210.60	211.00	49.80	11.30	9.58	7.00	2.16	0.14	14.60	1.83	0.15	0.24	3.70	100.50	67.	38.	12.
VA02268	221.20	221.40	46.20	12.30	5.84	3.80	2.15	0.60	16.40	2.97	0.23	0.19	7.77	98.45	322.	36.	8.
VA02269	231.60	231.80	74.20	12.40	0.26	0.55	0.11	3.40	3.67	0.29	0.08	0.01	3.77	98.74	3410.	91.	0.
VA02270	240.10	240.20	69.80	13.90	1.29	1.50	0.11	3.72	3.71	0.32	0.09	0.06	4.00	98.50	1320.	79.	1.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	RB (ppm	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NH (mqq)	(Sbw)	ZN (ppm)	NI (ppm)		ROCK	CODES	мім

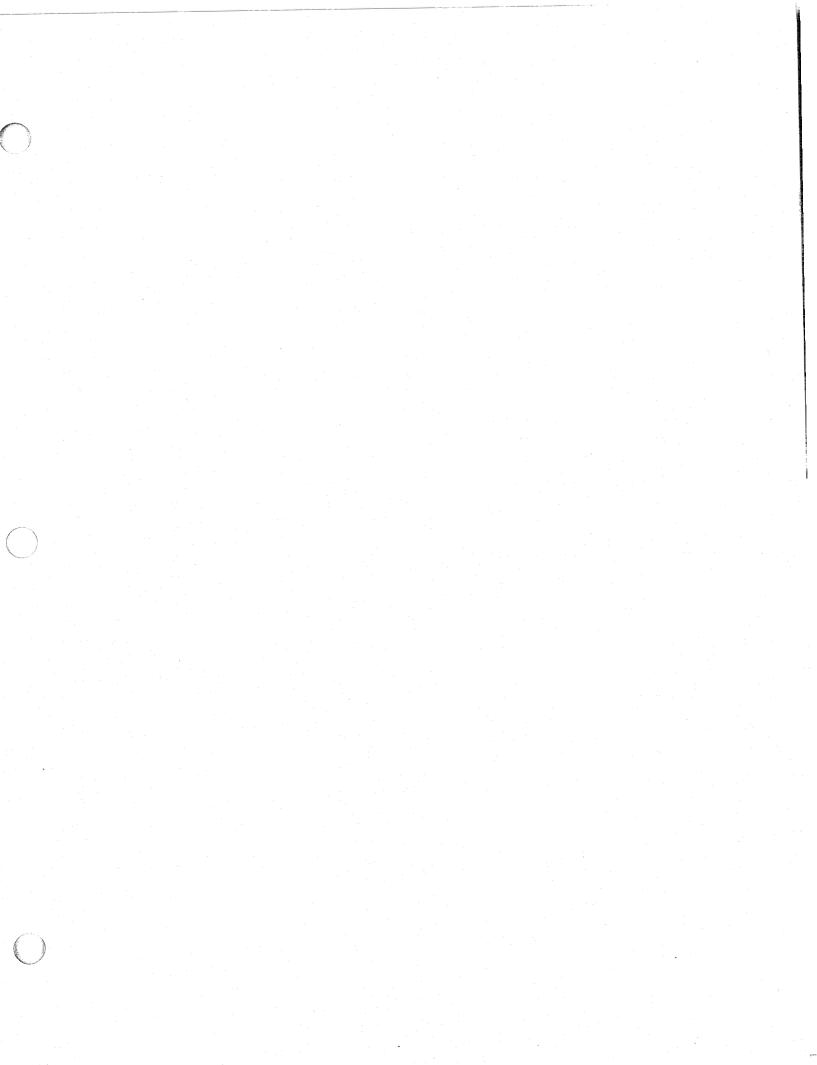
VA02251	12.20	12.40	36.0	133.0	1130.0	<10.0	97.0	(10.9	24.0	<10.0	<10.3		TEAGEY	PSW	Α
VA02252	25.40	26.00	35.0	203.0	1130.0	32.0	125.0	17.0	24.0.	<10.0	<10.0		TEREY	PSW	AA
VA02253	48.00	48.30	59.0	153.0	1780.0	30.0	147.0	<10.0	<10.0	114.0	<10.0		TEBEY	PHW	AA
VA02254	85.10	85.40	61.0	54.0	1690.0	25.0	152.0	18.0	<10.0	29.0	<00.0		TFAE	PHW	DBP
VA02255	95.40	95.60	25.0	144.0	987.0	38.0	121.0	<10.0	12.0	11.0	<10.0		TEBEY	SEW	AΛ
VA02256	122.30	122.40	36.0	154.0	2340.0	24.0	122.0	11.0	31.0	35.0	15.0		TEAFY	PSW	AA
VA02257	123.60	123.80	24.0	160.0	639.0	19.0	31.0	21.0	83.0	167.0	29.0		TMAM	PHW .	AA .
VA02258	126.80	126.90	12.0	190.0	381.0	26.0	33.0	<10.0	351.0	118.0	26.0		TMA	PHW	AA
VA02259	132.90	133.20	42.0	259.0	2980.0	17.0	98.0	15.0	38.0	19.0	16.0		TEBEY	PSW.	AA .
VA02260	140.50	140.60	42.0	228.0	1410.0	31.0	105.0	210.0	<10.0	24.0	<10.0		TFAT	PSM	AA
VA02261	150.90	151.30	49.0	369.0	1140.0	32.0	31.0	<10.0	62.0	67.0	52.0		IMAM	PHW	AΛ
VA02262	159.10	159.20	58.0	321.0	1670.0	19.0	48.0	<10.0	443.0	58.0	37.0		TMAM	PHW	AA
VA02263	164.50	165.00	37.0	144.0	1380.0	22.0	94.0	11.0	34.0	54.0	<10.0		ĪFAI	PHW	DBP
VA02264	171.70	171.90	11.0	263.0	438.0	21.0	19.0	26.0	12.0	110.0	19.0		IMAFM	SEW	AA
VA02265	180.50	180.70	34.0	214.0	1020.0	<10.0	.83:0	<10.0	52.0	34.0	16.0		TEAEQY	PHW	AA
VA02266	193.60	193.90	37.0	280.0	758.0	15.0	26.0	12.0	129.0	79.0	27.0		THAN	PHW	AA
VA02267	210.60	211.00	26.0	174.0	67.0	14.0	71.0	20.0	153.0	73.0	66.0		PMAH	FCW	AA
VA02268	221.20	221.40	20.0	188.0	322.0	43.0	149.0	33.0	323.0	99.0	198.0		PMAN	FCW	AA
VA02269	231.60	231.80	61.0	17.0		<10.0	73.0	12.0	50.0	28.0	<10.0		TFBT	PSS	DCP
VA02270	240.10	240.20	85.0	23.0	1320.0	<10.0	89.0	12.0	55.0	131.0	239.0		TFBT	PSS	DCP
									. 00.0	101.0	207,0		1101	F33	DLT

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	15102	7AL203	ZCAO	ZHGO	ZNACO	XK20	ZFE203	XT 102	zP205	ZHNO	XL01	SUn	BA	AI	NACA
VA02751	5.90	17.40	72.90	12.90	1.84	1.25	2.96	2.41	2.70	0.27	0.06	0.04	2.39	99.72	1220.	43.	5
VA02752	17.40	34.60	71.30	14.20	1.47	2.01	3.91	1.81	2.82	0.33	0.07	0.07	1.77	99.76	1440.	42.	5
VA02753	46.90	52.70	71.90	14.10	2.30	1,35	3.34	2.37	2.59	0.32	0.07	0.11	1.23	99.58	2050.	39.	6.
VA02754	80.80	84.20	71.00	14.30	1.19	1.00	5.43	1.91	3.20	0.33	0.07	0.07	1.77	100.27	1300.	31.	7
VA02755	64.20	102.00	70.70	13.90	3.02	0.89	3.56	2.22	2.92	0.31	0.06	0.06	2.00	99.64	1140.	32.	7
VA02756	117.10	122.50	67.90	14.40	3.39	1.93	4.52	1.21	4.28	0.39	0.11	0.11	1.93	100.17	1080.	28.	8
VA02757	122.50	127.60	52.80	16.90	5.43	5.65	3.65	0.87	9.55	0.68	0.11	0.23	3.70	99.57	477.	42.	9
VA02758	127.60	139.30	65.90	15.50	3.57	1.73	2.27	2.93	4.05	0.35	0.09	0.08	2.93	99.40	3120.	44.	6
VA02759	139.30	147.40	71.30	12.90	3.29	1.07	1.38	≎.96	2.97	0.26	0.06	0.07	2.70	98.96	1330.	46.	5
VA02760	147.40	160.60	56.40	18.20	6.04	2.38	2.93	2.67	7,02	0.54	0.13	0.14	2.93	99.38	1210.	36.	9
VA02761	163.10	167.00	71.70	12.00	3.55	1.53	2.28	1.50	4.30	0.31	0.07	0.11	2.08	99.43	826.	34.	6
VA02762	167.00	174.40	49.10	15.80	11.90	2.53	2.58	1.82	6.83	0.56	0.12	0.19	8.85	100.28	974.	23.	14
VA02763	174.40	188.00	66.30	15.50	4.22	1.70	3.33	1.87	4.39	0.35	0.10	0.10	2.31	100.17	1040.	32.	. 8
VA02764	188.00	210.00	54.20	18.00	6.96	2.92	1.99	2.80	7.67	0.60	0.12	0.15	3.70	99.11	1290.	39.	9
VA02765	223.40	255.30	70.20	13.20	0.79	1.40	0.10	3.47	4.65	0.36	0.10	0.05	4.62	98.94	2030.	85.	1
VA02766	255.30	280.00	47.90	16.00	5.57	9.27	2.33	2.57	9.51	0.68	0.17	0.20	4.00	98.20	848.	60.	8
VA02767	280.00	300.70	49.10	15.80	6.39	7.60	2.20	3.69	9.56	0.80	0.18	0.19	3.65	99.36	1670.	57.	9

SAMPLE														 		CODES	
NUMBER	FROM	TO	(RB (ppm)	Sk (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU	ZN (ppm)	NI (ppm)			ROCK	ALT	MIN
VA02751	5.90	17.40	5	54.0	128.0	1220.0	26.0	104.0	17.0	<10.0	<10.0	<10.0					
VA02752	17.40	34.60		31.0	144.0	1440.0	24.0	126.0	18.0	<10.0	<10.0	<10.0					
VA02753	46.90	52.70	. 4	49.0	189.0	2050.0	26.0	124.0	19.0	21.0	102.0	<10.0					
VA02754	80.80	84.20	3	30.0	79.0	1300.0	39.0	129.0	<10.0	16.0	118.0	<10.0					
VA02755	84.20	102.00	4	47.0	152.0	1140.0	20.0	114.0	11.0	44.0	30.0	14.0					
VA02756	117.10	122.50	3	0.88	223.0	1080.0	22.0	91.0	13.0	32.0	81.0	22.0			TFAFY	PHW	AA
VA02757	122.50	127.60	. 2	20.0	179.0	477.0	<10.0	34.0	21.0	115.0	141.0	31.0			THBM	SEW	AA
VA02758	127.60	139.30		46.0	272.0	3120.0	33.0	97.0	16.0	<10.0	29.0	11.0			TEBEY	PHW	AA
VA02759	139.30	147.40		48.0	250.0	1330.0	15.0	79.0	<10.0	44.0	15.0	14.0			TFAT	PSĦ	DCP
VA02760	147.40	160.60	(60.0	352.0	1210.0	<10.0	64.0	<10.0	84.0	44.0	23.0			TMAFY	SEW	DBO
VA02761	163.10	167.00	3	37.0	213.0	826.0	13.0	93.0	<10.0	34.0	58.0	<10.0			TEAEY	PSW	DBP
VA02763	167.00	174.40		29.0	223.0	974.0	23.0	30.0	12.0	280.0	76.0	28.0			IMAEM	SEW	AA
VA02763	174.40	188.00		34.0	219.0	1040.0	19.0	79.0	14.0	58.0	46.0	14.0			TFA	PHW	AA
VA02764	198.00	210.00		44.0	308.0	1290.0	18.0	57.0	19.0	164.0	172.0	21.0	: .		IMAM	?	AA
VA02765	223.40	255.30		68.0	21.0	2030.0	15.0	94.0	35.0	119.0	444.0	20.0			TEBT	PSS	DCP
VA02766	255.30	280.00		44.0	228.0	848.0	16.0	16.0	17.0	198.0	64.0	69.0			TMAT	PHW	AA
VA02767	280.00			59.0		1679.0	<10.0	28.0	21.0	85.0	59.0	45.0			TMAT	PHW	- AA

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	HH (ppm)	CUZN	ETS	PE
VA03251	32.10	33.10	1270.0	49.0	27.0	<0.5	10.0	6.0	7.0	<5.0°	(5.0	<1.0	<1.0	384.0	64.	1.	1. 1.
VA03252	33.10	33.50	2630.0	187.0	50.0	<0.5	25.0	11.0	1.0	<5.0	14.0	<1.0	1.0	545.0	79.	5.	3.
VA03253	33.50	34.50	2120.0	51.0	54.0	<0.5	10.0	5.0	3.0	₹5.0	<5.0	<1.0	<1.0	476.0	49.	1.	1.
VA03254	84.50	85.50	750.0	98.0	70.0	<0.5	10.0	21.0	40.0	<5.0	8.0	<1.0	<1.0	903.0	58.	1.	4.
VA03255	85.50	86.50	720.0	45.0	23.0	<0.5	20.0	5.0	4.0	<5.0	10.0	<1.0	<1.0	243.0	66.	2.	2.
VA03257	86.50	87.50	820.0	45.0	13.0	(0.5	30.0	4.0	3.0	<5.0	19.0	<1.0	1.0	230.0	78.	2.	1.
VA03256	87.50	88.50	1330.0	42.0	32.0	<0.5	5.0	4.0	3.0	<5.0	12.0	<1.0	<1.0	326.0	57.	2.	2.
VA03258	88.50	89.00	1340.0	61.0	45.0	<0.5	20.0	7.0	3.0	15.0	18.0	<1.0	<1.0	311.0	58.	2.	2.
VA03259	89.00	90.00	980.0	19.0	22.0	<0.5	5.0	3.0	2.0	<5.0	12.0	<1.0	<1.0	241.0	46.	1.	1.
VA03260	95.70	96.70	1020.0	18.0	40.0	<0.5	(5.0	6.0	3.0	<5.0	16.0	<1.0	1.0	422.0	31.	1.	2.
VA03261	96.70	97.70	1020.0	31.0	33.0	<0.5	15.0	5.0	3.0	<5.0	9.0	<1.0	<1.0	335.0	48.	2.	2.
VA03262	97.70	98.70	1060.0	37.0	35.0	<0.5	<5.0	6.0	4.0	⟨5.0	12.0	<1.0	1.0	398.0	51.	2.	2.
VA03263	98.70	99.70	860.0	86.0	39.0	<0.5	5.0	10.0	7.0	<5.0	8.0	<1.0	1.0	351.0	69.	2.	2.
VA03264	99.70	100.40	1650.0	12.0	26.0	<0.5	10.0	3.0	3.0	⟨5.0	10.0	<1.0	1.0	230.0	32.	2.	1.
VA03265	100.40	101.30	1310.0	48.0	15.0	<0.5	<5.0	5.0	3.0	<5.0	7.0	<1.0	2.0	186.0	76.	4.	1.
VA03266	101.30	102.00	1140.0	95.0	31.0	<0.5	5.0	8.0	5.0	<5.0	6.0	<1.0	1.0	220.0	75.	2.	1.
VA03267	102.00	103.00	60.0	186.0	81.0	<0.5	5.0	31.0	69.0	<5.0	13.0	<1.0	<1.0	706.0	70.	1.	4.
VA03268	139.30	139.80	1320.0	18.0	14.0	(0.5	30.0	4.0	3.0	7.0	15.0	<1.0	2.0	257.0	56.	2.	1.
VA03270	142.30	143.20	2440.0	22.0	9.0	<0.5	10.0	4.0	3.0	<5.0	9.0	<1.0	3.0	185.0	71.	- 1.	1.
VA03271	143.20	144.20	1750.0	13.0	7.0	<0.5	50.0	5.0	1.0	5.0	125.0	<1.0	1.0	144.0	65.	2.	1.
VA03273	144.20	145.20	1410.0	16.0	9.0	<0.5	75.0	7.0	3.0	<5.0	326.0	<1.0	2.0	190.0	64.	1.	1.
VA03275	145.20	146.20	1810.0	26.0	4.0	(0.5	65.0	4.0	2.0	9.0	14.0	<1.0	2.0	96.0	87.	2.	1.
VA03276	146.20	147.40	1700.0	41.0	7.0	<0.5	75.0	5.0	2.0	9.0	14.0	<1.0	4.0	145.0	85.	2.	1.
										7.7	7.115						


Hole No. CH88-39

SAMPLE	FROM	TO	BA	CU	71	AC	Ali	co	w r	0.0	A C	C.D.	Υ0	-	CUZN	ETE	PH
HOHBER	EKON	10	(ррж	CU) (ppm)	ZH (ppm)	AG (ppm)	AU (ppb)	(bbs)	HI (ppm)	PB (ppm)	AS (ppm)	(ppm)	HO (ppm)	MM (ppm)	CUZN	ETS	FE
													1 1 1				
VA03278	156.80	157.80	770.0	290.0	90.0	<0.5	95.0	22.0	16.0	<5.0	20.0	<1.0	2.0	876.0	76.	1.	4.
VA03279	157.80	158.80	1250.0	204.0	74.0	<0.5	45.0	22.0	16.0	⟨5.0	8.0	<1.0	<1.0	787.0	73.	1.	4.
VA03280	158.80	159.50	1570.0	446.0	73.0	<0.5	30.0	23.0	21.0	<5.0	12.0	<1.0	<1.0	790.0	86.	2.	5.
VA03282	159.50	160.20	1490.0	718.0	70.0	0.6	60.0	17.0	15.0	<5.0	11.0	<1.0	1.0	788.0	91.	2.	4.
VA03283	160.20	160.60	1120.0	5100.0	164.0	2.0	100.0	24.0	17.0	<5.0	15.0	<1.0	9.0	1045.0	97.	4.	5.
VA03269	160.60	161.00	1930.0	1139.0	51.0	<0.5	15.0	32.0	18.0	<5.0	13.0	<1.0	3.0	496.0	96.	6.	5.
VA03272	161.00	161.50	2630.0	871.0	36.0	<0.5	45.0	22.0	16.0	<5.0	13.0	<1.0	4.0	365.0	96.	11.	5.
VA03274	161.50	162.00	1670.0	12900.0	618.0	4.7	110.0	90.0	24.0	31.0	7.0	6.0	45.0	855.0	95.	22.	9.
VA03277	162.00	162.50	910.0	80700.0	5800.0	33.3	280.0	68.0	36.0	42.0	13.0	44.0	40.0	249.0	93.	30.	>10.
VA03281	162.50	163.10	1120.0	8100.0	437.0	3.1	150.0	37.0	15.0	<5.0	7.0	3.0	24.0	457.0	95.	13.	5.
VA03284	163.10	169.10	860.0	124.0	68.0	<0.5	75.0	8.0	10.0	<5.0	13.0	<1.0	2.0	602.0	65.	1.	2.
VA03285	165.00	166.00	1120.0	31.0	69.0	<0.5	30.0	4.0	2.0	(5.0	13.0	<1.0	1,.0	359.0	31.	1.	1.
VA03286	166.00	166.50	1630.0	42.0	107.0	<0.5	75.0	11.0	7.0	⟨5.0	16.0	<1.0	1.0	624.0	28.	1.	2.
VA03287	166.50	167.50	1800.0	279.0	68.0	⟨0.5	70.0	12.0	8.0	<5.0	10.0	<1.0	<1.0	535.0	80.	1.	2.
VA03288	223.40	224.40	470.0	16.0	39.0	<0.5	60.0	1.0	(1.0	<5.0	21.0	(1.0	2.0	266.0	30.	1.	1.
VA03289	224.40	225.40	710.0	27.0	23.0	<0.5	760.0	2.0	1.0	(5.0	7.0	(1.0	2.0	267.0	54.	2.	1.
VA03290	225.40	226.40	1070.0	14.0	58.0	<0.5	50.0	3.0	2.0	22.0	13.0	<1.0	5.0	120.0	19.	3.	1.
VA03291	226.40	227.40	1080.0	12.0	100.0	0.5	65.0	2.0	<1.0	16.0	14.0	<1.0	5.0	103.0	11.	3.	. 1.
VA03292	227.40	228.40	1190.0	10.0	33.0	₹0.5	50.0	1.0	<1.0	17.0	10.0	<1.0	4.0	96.0	23.	3.	1.
VA03293	228.40	229,40	1290.0	8.0	35.0	<0.5	90.0	3.0	1.0	7.0	18.0	<1.0	5.0	103.0	19.	3.	. 1.
VA03294	229.40	230.40	1690.0	18.0	75.0	0.5	100.0	3.0	2.0	10.0	17.0	<1.0	5.0	115.0	19.	3.	1.
VA03295	230.40	231.40	2340.0	17.0	83.0	0.6	95.0	4.0	2.0	9.0	14.0	<1.0	5.0	107.0	17.	4.	2.
VA03296	231.40	232.40	2920.0	29.0	76.0	0.8	85.0	4.0	2.0	41.0	9.0	<1.0	5.0	108.0	28.	4.	2.

Hole No. CH88-39

SAMPLE NUMBER	FROM	TO	BA	cu	ZH	AG	AU	CO	NI	PB	AS	CD	но	нн	CUZN	ETS	FE
			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)			
VA03297	232.40	233,40	2590.0	19.0	81.0	<0.5	80.0	6.0	1.0	22.0	8.0	<1.0	1.0	105.0	19.	3.	2
VA03298	233.40	234.40	2690.0	18.0	33.0	⟨0.5	95.0							92.0			2.
VA03299	234.40		2040.0					6.0	2.0	17.0	14.0	<1.0	3.0		35.	3.	2.
				41.0	37.0	0.8	130.0	6.0	3.0	14.0	12.0	<1.0	3.0	94.0	53.	3.	3.
VA03300	235.40	236.40	2240.0	39.0	43.0	0.6	90.0	6.0	2.0	21.0	12.0	<1.0	4.0	90.0	48.	3.	2.
10EE0AV	236.40	237.40	2200.0	18.0	50.0	0.8	70.0	6.0	2.0	22.0	<5.0	<1.0	2.0	168.0	26.	4.	2.
VA03302	237.40	238.40	1650.0	75.0	58.0	1.6	200.0	5.0	2.0	15.0	<5.0	<1.0	2.0	254.0	56.	3.	2.
VA03303	238.40	239.40	1440.0	21.0	55.0	<0.5	60.0	4.0	<1.0	21.0	8.0	<1.0	<1.0	192.0	28.	3.	2.
VA03304	239.40	240.20	1280.0	29.0	256.0	0.6	200.0	5.0	5.0	43.0	₹5.0	<1.0	(1.0	193.0	10.	3.	2.
VA03305	240.20	241.00	1220.0	21.0	96.0	<0.5	110.0	6.0	4.0	32.0	8.0	<1.0	<1.0	229.0	18.	4.	2.
VA03306	241.00	242.00	1210.0	26.0	192.0	<0.5	55.0	8.0	4.0	40.0	7.0	<1.0	<1.0	203.0	12.	4.	2.
VA03307	242.00	243.00	1210.0	43.0	319.0	1.0	125.0	7.0	4.0	74.0	6.0	1.0	2.0	182.0	12.	5.	2.
VA03308	243.00	244.00	1310.0	44.0	370.0	<0.5	85.0	8.0	7.0	21.0	11.0	2.0	<1.0	191.0	11.	4.	з.
VA03309	244.00	245.00	1360.0	27.0	218.0	<0.5	40.0	13.0	8.0	18.0	(5.0	<1.0	3.0	287.0	11.	5.	3.
VA03310	245.00	246.00	1340.0	73.0	664.0	0.8	75.0	18.0	11.0	50.0	13.0	5.0	3.0	262.0	10.	10.	5.
VA03311	246.00	247.00	1380.0	25.0	184.0	<0.5	15.0	13.0	9.0	18.0	<5.0	<1.0	<1.0	399.0	12.	6.	3.
VA03312	247.00	248.00	2000.0	32.0	181.0	<0.5	25.0	10.0	6.0	15.0	⟨5.0	2.0	<1.0	441.0	15.	5.	3.
VA03313	248.00	249.00	2650.0	22.0	181.0	<0.5	50.0	11.0	8.0	17.0	(5.0	1.0	2.0	271.0	11.	5.	з.
VA03314	249.00	250.00	3850.0	38.0	790.0	<0.5	55.0	12.0	10.0	59.0	<5.0	5.0	<1.0	221.0	5.	7.	3.
VA03315	250.00	251.00	3240.0	27.0	427.0	0.5	110.0	8.0	8.0	49.0	6.0	2.0	2.0	105.0	6.	6.	3.
VA03316	251.00	252.00	2910.0	96.0	963.0	1.4	130.0	10.0	7.0	81.0	8.0	6.0	3.0	140.0	9.	8.	3.
VA03317		253.00	3230.0	207.0	5200.0	1.4	130.0	10.0	7.0	191.0	(5.0	16.0	5.0	186.0	4.	6.	2.
VA03317		254.00															
			2060.0		1854.0	0.9	75.0	6.0	3.0	142.0	<5.0	7.0	6.0	225.0	8.	7.	2.
VA03321	254.00	255.30	2070.0	117.0	1269.0	0.5	60.0	8.0	5.0	91.0	<5.0	5.0	1.0	187.0	8.	5.	2.

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU.	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	НН (рра)	CUZN	EIS	FE
VA03323	255.30	256.30	1040.0	135.0	75.0	<0.5	20.0	38.0	101.0	11.0	<5.0	3.0	<1.0	1157.0	64.	1.	6.
VA03319	272.40	273.40	740.0	106.0	69.0	<0.5	<5.0	35.0	66.0	14.0	<5.0	3.0	<1.0	1019.0	61.	0.	6.
VA03320	273.40	274.00	990.0	195.0	64.0	<0.5	10.0	46.0	68.0	15.0	<5.0	3.0	<1.0	1229.0	75.	1.	7.
VA03322	274.00	275.00	910.0	159.0	60.0	<0.5	25.0	32.0	58.0	9.0	<5.0	2.0	<1.0	920.0	73.	0.	5.

Summary Log: DDH CH88-40

Location: 46+00 E, 1+00 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: April 15, 1988 Core Logged By: D.P. Money

0.0 - 9.1 Casing.

9.1 - 22.9 Intercalated chlorite and sericite - chlorite schists.

22.9 - 56.4 Felsic crystal tuffs with minor thin gabbro dykes.

56.4 - 69.2 Fine grained plagiophyric gabbro.

69.2 - 116.1 Felsic flow or coarse crystal tuff.

116.1 - 126.3 Felsic lapilli tuff.

126.3 - 134.5 Intercalated felsic and mafic tuffs.

134.5 - 156.4 Mafic lapilli tuff.

156.4 - 173.1 Felsic tuffs. From 171.0 to 173.1 there is weak pyrrhotite - chalcopyrite - pyrite mineralization with 2.5 % chalcopyrite from 172.6 to 173.1. This mineralization corresponds to the pulse E.M. anomaly.

173.1 - 177.5 Fine grained plagiophyric gabbro.

177.5 - 202.3 Intercalated mafic and felsic tuffs.

202.3 - 206.9 Major thrust fault, probably splay off the Fulford Fault.

206.9 - 247.4 Pyritic felsic quartz eye bearing tuff with on average 4 % disseminated and banded fine grained pyrite, trace chalcopyrite and mariposite.

247.4 - 249.5 Mafic sill.

249.5 - 252.0 Felsic tuff.

252.0 - 263.0 Fine grained plagiophyric gabbro.

263.0 - 281.0 Mafic tuffs with minor chert interbeds.

281.0 End of hole.

FALCONBRIDGE LIMITED

DIAMOND DRILL LOG

Hole Location: 46+00 E 1+00 S

NTS: 092B/13 UTM: 5416049.6 N 431685.9 E

Azimuth: 210 Elevation: 640 m Dip: -50 Length: 281.0 m

Started: April 11, 1988 Completed: April 15, 1988

Purpose: To test western extent of PEM anomaly

DIP TESTS

Claim No. Chip 1

Section No.: Section 46+00 East, Chip Group

HOLE No: Page Number

Logged By: D.P. Money

Drilling Co.: Burwash Enterprises

Ch88-40

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NO

				Length	Azi- muth	Dip		Length	Azi- muth	Dip							
				9.10 99.10	203.0 202.0	-51.0 -50.0		188.10 275.10	206.0 206.0	-45.0 -43.0							
From (m)	To (m)		 · .	DESCRIPTIO	N		-	Sam N		on To n) (n)	Width (m)	Total Sulphides	Cu s (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)

- 9.1 OVERBURDEN
- 9.1 15.5 FELSIC QUARTZ EYE TUFF Quartz eye bearing, 5 to 7 %, 2 to 3 mm, with 5 to 7 %, < 1 mm epidotized feldspar grains. Tuff is sericitic with local strong spotty sericitization and very local weak to strong chloritization. Blocky, highly fractured core and oxidized with lost core: 0.9 m from 10.0 to 11.3 1.0 m from 11.3 to 14.3 and 0.5 m from 14.3 to 15.7. Foliation trend is at 46 degrees to core axis. There is trace disseminated pyrite.
- 15.5 16.0 CHLORITE SCHIST Chlorite schist with strong kinking. 15.5 16.0 STRONG PERVASIVE CARBONATIZATION.
- 16.0 19.9 CHLORITIC FELSIC QUARTZ EYE TUFF Blocky, highly fractured core, mainly chloritized felsic ash tuff to quartz - sericite - chlorite schist with locally up to 5 %, 2 mm, quartz eyes. Lost core :. 16.0 to 16.9 : 0.1 m. 18.0 to 18.6 : 0.2 m. Alteration :. 16.0 19.9 WEAK PERVASIVE CHLORITIZATION.
- 19.9 21.5 CHLORITE SCHIST Strongly sheared chloritic mafic with calcite veinlets.

FALCONBRIDGE LIMITED
DIAMOND DRILL LOG

HOLE No: Page Number Ch88-40 2

15

n/a

18 n/a

n/a 1170

From To From Width Total Sample To Cu Рb Zn λg Αu Ba (m) -----DESCRIPTION-----(m) No. (m) Sulphides (ppm) (m) (m) (ppm) (ppm) (ppm) (ppb) (ppm)

VA01019 23.0 36.3 13.3

19.9 21.5 STRONG PERVASIVE CARBONATIZATION. Foliation: approximately 47 degrees to core axis.

- 21.5 22.9 WEAKLY CHLORITIC FELSIC TUFF

 Chloritic felsic tuff with minor sericitized lapilli, up to 2 cm long and 3 mm thick. Approximately 10 to 15 % chlorite. Foliation is at approximately 65 degrees to core axis. Minor up to 1 mm quartz and feldspar crystals occur. 21.5 22.9 WEAK PERVASIVE CHLORITIZATION.
- 22.9 36.4 FELSIC QUARTZ EYE TUFF

 White to light grey quartz sericite schistose matrix
 hosts 5 to 12 %, 7 % average, 1 to 3 mm, quartz eyes and
 7 to 10 %, 1 mm, feldspar grains. Is competent and almost
 massive with weak to moderate foliation at 55 to 60
 degrees to core axis locally. Is rusty with fractured
 quartz eyes from 28.5 to 30 degrees to core axis. There
 are rare mafic ash tuff beds and trace local quartz calcite veinlets. Is locally blocky, highly fractured core
 with 0.3 m of lost core from 32.0 to 32.9.
- 36.4 36.8 MAFIC INTRUSIVE
 Fine-grained dark green mafic sill, probably gabbro with
 sharp contacts parallel to foliation, 42 degrees to core
 axis.
- 36.8 39.8 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF
 Felsic tuff or flow, coarse abundant crystals in quartz sericite matrix. There are approximately 10 %, 3 to 6 mm,
 quartz eyes and 10 %, 2 mm, feldspar grains. Is
 fine-grained from 39.6 to 39.8. Fractures are rusty.
 Foliation is at 59 to 60 degrees to core axis.
- 39.8 40.1 MAFIC INTRUSIVE
 Fine-grained dark green mafic, dyke (?).
- 40.1 42.7 FELSIC FELDSPAR CRYSTAL TUFF

 Sericitic to siliceous light grey felsic tuff, massive and fine-grained with approximately 5 %, 2 to 3 mm, feldspar crystals. Foliation is at approximately 35 to 40 degrees to core axis. There is minor crystal rich beds, no tops indicators are present.
- 42.7 43.3 HAFIC INTRUSIVE

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-40 3

From To Sample From To Width Total Pb Cu Zn λq Àυ (m) (m) -----DESCRIPTION------No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) As from 39.8 to 40.1.

- 43.3 49.9 CHLORITIC FELSIC FELDSPAR CRYSTAL TUFF
 Rusty fractured feldspar crystal tuff with 10 to 15 %, 2
 to 4 mm, feldspar grains and crystals. There are minor
 vuggy quartz veins. Foliation varies locally from 50 to 70
 degrees to core axis. Locally there are up to 4 %, 1 to 2
 mm, quartz eyes. There are trace 2 cm siliceous feldspar
 crystal tuff lapilli. No sulphides occur.
 43.3 49.9 WEAK PERVASIVE CHLORITIZATION, locally medium
 green, up to 3 % chlorite.
- 49.9 56.4 FELSIC TUFF

 Blocky, highly fractured core. Felsic ash tuff and crystal tuffs. Highly fractured and oxidized. Hixed blocky, highly fractured core, felsic ash tuff with 3 to 5 %, 1 mm, quartz eyes at foliation of approximately 45 degrees to core axis from 49.9 to 51, and local pieces of massive tuff with 10 %, 2 mm, feldspar grains.

 Lost core:

 50.0 to 50.9: 0.1 m.
 50.9 to 52.0: 0.5 m.
 53.9 to 54.4: 0.4 m.
 54.4 to 55.8: 0.9 m.
 55.8 to 56.4: 0.5 m.
- Feldspar PORPHYRITIC GABBRO
 Feldspar porphyritic gabbro with on average 10 %, 1 to 3
 mm, feldspars. Is locally fine-grained and sheared, i.e.
 From 66.5 to 68.7 at foliation of 51 degrees to core axis.
 There numerous local quartz calcite chlorite trace
 pyrite veinlets at 30 to 70 degrees to core axis. Is
 oxidized and locally blocky, highly fractured core, with
 no lost core.

69.2 79.0 FELDSPAR PORPHYRITIC FELSIC FLOW

Felsic flow (?) or coarse siliceous crystal tuff. Hosts 10 %, 3 mm, feldspar grains and up to 15 %, < 1 mm, epidote grains. Massive with local rusty fractures.
69.2 79.0 STRONG SPOTTY SILICIFICATION as local quartz flooding and pervasive silicification. Is very locally weakly epidotized and chloritized. From 71.9 to 77.0 there is locally up to 4 % fracture controlled fine-grained pyrite over 10 cm with an average of approximately 1 % pyrite except for 71.9 to 72.2 and 72.9 to 73.8 with approximately 2 % pyrite in moderate to strongly

VA01020 69.2 79.0 9.8 n/a 36 n/a 79 n/a n/a 1300 VA01529 71.9 72.9 1.0 2 47 6 236 <1 10 1060 VA01530 72.9 74.0 1.1 71 6 83 <1 (5 2040 74.0 ₹5 73 (1 (5 1070 VA01531 75.0 1.0 1 23 ₹5 VA01532 75.0 76.0 44 <1 (5 1260 1.0 1 21 VA01533 76.0 ₹5 35 (1 77.0 1.0 (5 960

4

PROPERTY: Chemainus J.V.	PROPERTY:	Chemainus	J.V.
--------------------------	-----------	-----------	------

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-40 4

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		contorted and weakly bleached flow.											
		Weak foliation trend at 60 to 70 degrees to core axis.											
													
79.0	87.5	FELSIC FELDSPAR CRYSTAL TUFF											
		More fine-grained than 69.2 to 79.0, but may be part of the flow. 79.0 87.5 STRONG SPOTTY SILICIFICATION as local	VA01021	79.0	87.5	8.5	n/a	33	n/a	29	n/a	n/a 1	.610
		white quartz flooding over up to 10 cm locally. Is strongly fractured and oxidized from 79.0 to 80.2 and from											
		85.0 to 87.5. There is trace disseminated pyrite. Locally											
		is same or similiar to 69.2 to 79.0 with 10 to 15 %, 2 to											
		4 mm, feldspar grains. Mainly is siliceous, medium grey.											
		with 2 to 3 %, 1 to 2 mm, quartz eyes and 5 to 7 %, 1 to											
		3 mm, feldspar grains. Has weak to moderate schistosity											
		at 50 to 52 degrees to core axis.											
87.5	101.5	FELDSPAR PORPHYRITIC FELSIC FLOW											
	101.5	Felsic flow similiar to 69.2 to 79.0. There is weak to	VA01022	88.0	95.0	7.0	- /-	34	- /-	26	_ ,:		
		strong fracture controlled chloritized and the flow is	VA01022	88.0	95.0	7.0	n/a	31	n/a	26	n/a	n/a 1	080
		locally massive and moderately schistose. The flow is											
		medium to dark green - grey with 10 to 15 %, 2 to 4 mm,											
		feldspar crystals and grains, which are locally strongly											
		epidotized. Is rusty and fractured. There is local very											
		spotty quartz flooding. There is nil sulphides.											
		Alteration:.											
		87.5 101.5 HODERATE FRACTURE CONTROLLED CHLORITIZATION.											
		87.5 101.5 QUARTZ FLOODING.					•						
		87.5 101.5 WEAK PERVASIVE EPIDOTIZATION. Lost core :.											
		99.0 to 100.0 : 0.2 m.											
		100.5 to 100.9 : 0.2 m.											
		100.9 to 101.5 : 0.3 m.											
101.5	111.6	FELDSPAR PORPHYRITIC FELSIC FLOW											
		Similiar to 87.5 to 101.5, has no rusty fractures. There are 10 to 20 %, 2 to 4 mm, feldspar and completely	VA01023	101.5	111.6	10.1	n/a	78	n/a	20	n/a i	n/a	740
		epidotized feldspar laths and grains. Is very massive and											
		siliceous and is medium grey to green. Could be a lapilli											
		tuff if quartz flooding and spotty epidotized is											
		preferential replacement of 5 to 15 cm lapilli. There is											
		minor local fracture controlled quartz veinlets, up to 1 mm and trace disseminated and fracture controlled pyrite.											
		Very weak foliation from 50 to 75 degrees to core axis											
		occurs.											
		Lost core :.											
		111.0 to 111.6 : 0.6 m, mis latch.											
		Alteration:.											
		101.5 111.6 STRONG SPOTTY SILICIFICATION.											
		101.5 111.6 WEAK PERVASIVE EPIDOTIZATION.											

From

(22)

To

 $\{m\}$

PALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample From

To

(m)

(m)

Width

(m.)

HOLE No: Page Number

Cu

Aα

(mag) (mag) (mag) (mag) (mag)

111.6 126.3 FELSIC LAPILLY TUFF Locally weakly chloritized felsic lapilli tuff with approximately 5 % lapilli, 1 to 3 cm. lapilli are either quartz or epidote rich. There are approximately 7 to 10 %. up to 1 mm, epidotized feldspar grains. There are local minor, (1%, quartz and calcite veins and veinlets. There is very local epidotization with trace associated fracture controlled pyrite. From 123.3 to 123.5 there is minor white siliceous papery schist with epidote grains and lapilli. Is light to medium green with local chlorite up to 5 %. Foliations :. 114.6: 49 degrees to core axis. 116.0: 65 degrees to core axis. 119.3: 43 degrees to core axis. 123.5 : 50 degrees to core axis. 125.8: 56 degrees to core axis. Bedding :.

-----DESCRIPTION-----

126.3 129.1 FELDSPAR PORPHYRITIC INTERHEDIATE FLOW
Andesitic tuff or fine-grained flow with medium to light
green salt and pepper texture. There is approximately 20
to 30 % fine-grained feldspars and trace quartz. Is
massive with local fracture controlled calcite - epidote
veinlets, < 1 mm. There is trace pyrite at the lower
contact and up to 20 cm above it.

122.0: 47 degrees to core axis.

129.1 130.6 FELSIC LAPILLI TUFF
Felsic tuff with 1 to 3 cm epidote and chloritized tuff
lapilli in a siliceous matrix. There is thermal biotite
and 0.5 % disseminated pyrite associated with epidote.
Bedding is at 48 to 53 degrees to core axis. Lower contact
is sharp, upper is hazy.

130.6 133.5 FELDSPAR PORPHYRITIC MAFIC ASH TUFF
Mafic tuff with 15 to 20 %, 1 to 2 mm, epidotized feldspar
grains. There are local 1 cm felsic ash tuff beds with
thermal biotite at approximately 70 degrees to core axis.
From 130.9 to 131.1 there is strong epidotization or a
large clast. Weak foliation at 70 degrees to core axis.
There is trace fracture controlled chlorite with trace
pyrite.

VA01024 112.0 126.0 14.0 n/a 21 n/a 28 n/a n/a 1630

Sulphides (ppm)

Total

133.5 134.5 FELSIC TUFF

PROPERTY:	Chemainus	J.V.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-40 6

From	To		Sample	From	To	Width	Total	Cu	Pb	Zn	Ασ	Au	Вa	
(m.)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(pp	o) (ppm)
							-						-	
		Siliceous felsic tuff with 7 % 1 mm epidote grains with												
		bedding at 55 degrees to core axis. There is 30 %												
		fracture controlled quartz - chlorite veins.												
134.5	156.4	FELDSPAR PORPHYRITIC MAFIC LAPILLI TUFF												
		Massive medium to dark green lapilli tuff with 5 to 20 %,	VA01025	135.0	155.6	20.6	n/a	93	n/a	131	n/a	n/a	351	
		average 15 %, 1 to 2 mm, feldspar to epidotized feldspar												
		grains. There are 1 to 2 % epidotized 1 cm lapilli with up												
		to 3 % chloritized hornblende crystals. There are local												
		quartz, calcite and chlorite veins and veinlets. There is												
		trace chalcopyrite at 156.2 and at 142.8 in a calcite												
		veinlet. There are trace hornblende, up to 7 mm, i.e. At												
		139.1, there is a 7 mm hornblende with 2 %, , 1.5 mm												
		hornblendes, unit average (0.5 % hornblendes.												
		Foliations:.												
		139.1: 69 degrees to core axis.												
		145.6 : 51 degrees to core axis.												
		149.6: 64 degrees to core axis.												
		155.1: 47 degrees to core axis.												
156.4	173.1	FELSIC TUFF												
		This interval is a mixture of several tuff layers that	VA01026				n/a	394	n/a		n/a		1250	
		contain the sulphide mineralization that produces the	VA01534			.5	3	273	(5	41	(1		1680	
		pulse E.M. Anomaly.	VA01535			1.4	3	137	< 5	63	<1		1020	
		156.4 156.6 WEAK PERVASIVE CHLORITIZATION , weakly	VA01536			. 9	4	333	. (5	778	(1		1450	
		chloritic felsic tuff with approximately 10 %	VA01537			.5	2	621	₹5 -	108	1		1010	
		fine-grained feldspars and trace to 0.5 %	VA01538			1.3	1	827	(5	208	. 1		1180	
		fracture controlled pyrite.	VA01539	171.0	171.8	.8	0	990	₹5	89	1	10	980	
		156.6 156.9 Sericitic fine-grained siliceous light green	VA01540	171.8	172.6	. 8		1218	₹5	67	1		1920	
		lapilli tuff with fracture controlled quartz	VA01552	172.6	173.1	.5	18	9700	16	248	4	35	850	
		veins perpendicular to bedding. Bedding is at												
		approximately 65 degrees to core axis.												
		156.9 157.1 Fine-grained dark green mafic flow or sill.												
		Lower contact at fault at 41 degrees to core												
		axis.												
		157.1 157.5 Blocky, highly fractured core. Strongly						*						
		contorted felsic tuff with minor thermal												
		biotite and 3 % fracture controlled pyrite and												
		trace to 0.25 % chalcopyrite.												
		157.5 159.9 WEAK PERVASIVE CHLORITIZATION , chloritic												
		felsic similiar to 156.4 to 156.6 with local												
		quartz lapilli over last 1 m and 2 % fracture												
		controlled pyrrhotite, 1 % fracture controlled												
		pyrite and minor sphalerite clots in a quartz												
		vein at 158.9. Sulphides are slightly												
		stronger from 159 to 159.9 than from 157.5 to												
		159.0.												
		159.9 160.0 Quartz vein with minor chlorite, pyrrhotite												
		and pyrite, trace sulphides.												
									10 to 10 to					

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-40 7

From To (m) (m) -----DESCRIPTION-----160.0 161.0 Bleached felsic tuff, light green to grey, with minor up to 5 mm chloritic grains and approximately 5 %, 2 mm, epidote grains. There is trace quartz eyes. There is trace to 0.5 % fracture controlled pyrrhotite and pyrite. Fracture controlled pyrite is at approximately O degrees to core axis and fracture controlled pyrrhotite is parallel to to foliation. There is a very strong foliation at 43 degrees to core axis. 161.0 161.2 Quartz - chlorite - calcite fracture spur veins 161.2 162.1 As from 160 to 161, but is blocky, highly fractured core. At 162.1 there is rust and strongly contorted sericite, fault (?), orientation is at 57 degrees to core axis. 162.1 171.0 STRONG PERVASIVE CHLORITIZATION. 162.1 171.0 WEAK FRACTURE CONTROLLED CHLORITIZATION strongly chloritic felsic tuff with 15 to 20 %, 1 mm, feldspar grains and trace to 2 %, 1 mm, quartz eyes. Is brown to green due to strong chlorite and thermal biotite. May be andesitic. There are local green and tan felsic ash tuff or cherty beds locally, up to 2 %, at 50 to 60 degrees to core axis. Foliation is at 44 degrees to core axis. There is trace local disseminated pyrite and chalcopyrite. At 162.1 there is 2 cm of 60 % pyrite as 3 to 7 mm clots. At 169.5 there is minor pyrite with pyrrhotite wrapped around 1 cm quartz lapilli in a 5 mm zone with black chlorite at 73 degrees to core axis. There is a minor fault slip at 169.0 at 80 degrees to core axis. There is 0.5 to 1.5 % fracture controlled pyrrhotite and 0.5 % chalcopyrite from 169.8 to 170.1, fracture controlled (?). 171.0 171.1 6 cm of 25 % pyrite, 10 % pyrrhotite and 5 % chalcopyrite deformed around quartz in strong fracture controlled chloritization. 171.1 173.1 Dark green siliceous felsic with minor lapilli surrounded by sulphides. 171.1 171.8 Weak sulphides zone with 2 to 3 % pyrrhotite, 1 to 2 % pyrite and 0.5 to 1 % chalcopyrite. sulphides are wispy and possibly are fracture controlled. 171.8 172.6 Strongly chloritic with 4 to 5 % pyrite, 2 % pyrrhotite and trace chalcopyrite, is parallel to foliation, which is at 76 degrees to core axis. Strongest pyrite is around 1 to 1.5 cm

quartz lapilli.

172.6 173.1 Strong sulphides. Weakly chloritic at start

and becomes siliceous. Hosts 15 % pyrrhotite,

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

PROPERTY.	Chamainus	J V

199.3 202.3 FELDSPAR PORPHYRITIC MAFIC LAPILLI TUFF
199.3 202.3 MODERATE FRACTURE CONTROLLED CARBONATIZATION.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-40 8

From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		2 to 3 % chalcopyrite and trace to 1 % pyrite, pyrite occurs in chlorite. Pyrrhotite is locally massive over 2 cm at 2 locations.											
173 1	177 5	FELDSPAR PORPHYRITIC GABBRO											
173.1	177.5	Strange gabbro, 173.1 to 173.4 has 2 to 3 % pyrrhotite and trace to 0.5 % chalcopyrite, parallel to to foliation.	VA01551	173.1	173.6	.5	2	464	(5	100	1	20	20
		Locally is sheared with fine-grained 5 to 10 mm epidote layers that look like beds and there are 1 to 2 %, 1 to 2 mm, quartz eyes and local thermal biotite in these											
		strange zones. Mostly looks like standard gabbro with 5 % 2 to 3 mm epidotized feldspars in a fine-grained green matrix with numerous quartz - chlorite veins.											
		Foliations: 50 degrees to core axis.											
177 6	102 0	PRICES MINE											
177.5	102.0	FELSIC TUFF Light green siliceous ash tuff with 5 to 15 %, < 1 mm, sausuritized feldspars throughout. There are trace local sericitic lapilli and quartz eyes. There is 1 pyrite clot											
		at 178.4. Bedding is at approximately 55 degrees to core axis. There is minor local fracture controlled silicification.											
		Silicification.											
182.8	191.8	FELDSPAR PORPHYRITIC MAFIC LAPILLI TUFF Dark green mafic tuff with 15 to 25 %, 2 mm, epidotized feldspars and local epidotized lapilli. Tuff is massive	VA01027	182.8	191.8	9.0	n/a	520	n/a	99	n/a	n/a	496
		with very weak local banding or bedding at 183.1 at 55 degrees to core axis. There are minor local quartz -											
		(calcite) - (chlorite) veins. There is minor local carbonatization with trace associated pyrite. There is a weak foliation at 52 degrees to core axis.											
191.8	199 3	WEAKLY CHLORITIC FELSIC TUFF											
171.0	133.3	Weakly chloritic felsic tuff, siliceous, light to medium green. There is minor local thermal biotite. Variable crystal content with on average 5 %, 3 to 4 mm, quartz	VA01028	191.8	199.3	7.5	n/a	63	n/a	33	n/a	n/a 1	170
		eyes and 5 to 10 %, 1 to 2 mm, feldspar and epidotized feldspars. Is locally contorted and foliation starts at approximately 50 degrees to core axis and ends at											
		approximately 0 degrees to core axis. There is minor local fracture controlled silicification and quartz veinlets.											
		There is blocky, highly fractured core from 194.2 to 196.3. Lower contact is a fault.											

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

to 2 % pyrite clots.
233.4 246.4 1 % disseminated pyrite and 2 to 3 % banded

HOLE No: Page Number Ch88-40 9

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppa	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (pp	
		Weakly brecciated mafic tuff with moderate fracture												
		controlled carbonatization and 10 to 15 % on average, 1 to												
		2 mm, epidotized feldspars and local epidote lapilli.												
		There are local quartz - chlorite veins. Foliation is not												
		developed.												
202.3	206.9	FAULT ZONE												
		Fulford thrust fault or splay thereof.	VA01542	202.3	203.3	1.0	0	139	130	601	(1	20	2650	
		Mafic fault gouge to 203.3 and felsic from 203.3 to 206.9.	VA01543	203.3	204.3	1.0	. 3	140	155	1345	1	60	2950	
		There are kinks and chevron folds in the fault. Fault	VA01544	204.3	205.3	1.0	3	124	38	1106	1	70	3160	
		trends at 64 degrees to core axis. Felsic fault gouge is	VA01545	205.3	206.9	1.6	3	65	110	976	1	60	1830	
		sericitic with 2 to 3 % fine-grained disseminated and												
		banded pyrite.												
206.9	247.4	FELSIC QUARTZ EYE TUFF												
		ACTIVE TUFF - PYRITIC QUARTZ EYE BEARING QUARTZ - SERICITE	VA01029	210.0	230.0	20.0	n/a	211	n/a	472	n/a	n/a	1670	
		SCHIST.	VA01546		212.0	1.6	2	176	127	3200	1	30	1480	
		Light grey to white quartz - sericite schist with 1 to 5	VA01547		213.5	1.5	. 2	300	419	1085	1		1540	
		%, 1 mm, quartz eyes and 0 to 5 % .0 2.0 to 3 mm, quartz	VA01548		215.0	1.5	2	224	517	1044	. 1		1190	
		eyes. Quantity and size of quartz eyes increases downhole.	VA01549			1.5	2	124	139	487	<1		1380	
		There are local siliceous felsic ash tuff beds, quartz	VA01550		218.5	1.0	4	635	61	751	1		1550	
		veins, fault gouge and minor mafic sills.	VA01553		223.0	1.5	4	187	9	50	<1	30	1680	
		Mineralization :.	VA01554		224.0	1.0	11	305	. 8	16	<1	95	1150	
		206.9 210.4 0.5 % disseminated fine-grained pyrite.	VA01555		225.0	1.0	7	108	. 5	16	1	65	860	
		210.4 216.5 1 to 1.5 % banded pyrite parallel to foliation	YA01556		226.0	1.0	5	78	(5	6	(1	50	700	
		and 0.5 % disseminated pyrite, fine-grained up	VA01557		227.0	1.0	4	187	16	186	<1	50	1410	
		to 1 mm.	VA01558		228.0	1.0	4	739	25	230	1	65	1790	
		216.5 223.0 Approximately 1 * disseminated and foliation	VA01559		229.0	1.0	4	306	32	356	1	50	1610	
		parallel fine-grained pyrite with 5 to 7 %	VA01560		230.0	1.0	4	343	32	849	1	150 50	1640 1800	
		banded pyrite from 217.5 to 218.2, 221.6 to	VA01561 VA01030	230.0	231.0 245.0	1.0	4	214	16	928	1		2240	
		222.2, and 222.5 to 222.6.			232.0	15.0	n/a	232	n/a	754	n/a	n/a	1580	
		223.0 223.4 3 to 5 % banded pyrite parallel to foliation, bands are 1 to 3 mm.	VA01562 VA01563		233.0	$\frac{1.0}{1.0}$	4	643	25 68	356 1077	1 3		1710	
		223.4 223.6 20 % banded fine-grained pyrite parallel to	VA01564		234.4	1.0	4	968 312	71	383	1		1650	
		the contorted bedding and foliation.	VA01565		235.4	1.0	4	526	11	690	1		1820	
		223.6 225.8 Approximately 5 % disseminated and foliation		235.4	236.9	1.5		69	7	34	(1)		1180	
		parallel banded fine-grained pyrite.	VA01567		238.4	1.5	7	20	17	70	<1	-	1050	
		225.8 233.0 3 to 5 % banded fine-grained pyrite parallel		238.4	239.9	1.5	7	93	212	407	.5	200	2400	
		to foliation with local trace chalcopyrite.	VA01569		241.4	1.5	7	100	241	448	5	210		
		231.2 7.0 Mm quartz veinlet parallel to foliation with on	VA01570		242.9	1.5	1	127	358	876	6		1770	
		average 2 mm of chalcopyrite on uphole side.	VA01571		244.4	1.5	4	66	221	316	5		1290	
		231.7 2.0 Hm mariposite rich band.	VA01572			2.0	4	119	530	1290	5		1010	
		232.3 2.0 Nm chalcopyrite band parallel to foliation with	VA01573			1.0	2	475	64	1279	3	-	2700	
		minor pyrite.									-		-,	
		232.5 1.0 Mm chalcopyrite band parallel to foliation.												
		233.0 233.4 S.G.E.'s early mafic sill, andesitic sill with												
		strong fracture controlled quartz veins and 1												
		to 2 % nurite clots.												

FALCONBRIDGE LIHITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-40 11

 Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

263.0 281.0 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS
Dark to medium green mafic lapilli tuff with 10 %, 1 to 20
cm epidotized lapilli. There are 15 cm of 1 to 10 mm
green chert beds at 263.2 with minor quartz filled faults
perpendicular to bedding with up to 0.5 mm offsets. Tops
appears to be uphole. There is weak local fracture
controlled carbonatization. Tuff has up to 2 %, up to 1
mm, chloritized hornblende crystals in the matrix on
average. Likely has komatitic chemistry. Foliation is not
developed. From 266.0 to 266.8 there is 5 to 7 %, 1 to 2
mm, chloritized hornblendes. From 267.5 to 268.2 there
are cherts similiar to at 263.2 with bedding at 58 degrees
to core axis at 267.7 and at 50 degrees to core axis at

Alteration :.

268.0.

263.0 281.0 STRONG SPOTTY EPIDOTIZATION.
263.0 281.0 MODERATE FRACTURE CONTROLLED CARBONATIZATION.

End of hole: 922 feet, Friday April 15, 1988 at 1:30 p.m.

Total lost core: 7.7 m % recovery = 97.3 %.

VA01031 263.0 281.0 18.0 n/a 156 n/a 52 n/a n/a 259

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number Ch88-40 10

λσ

(ppm)

Au

(mqq) (dqq)

From To Sample Width Total Cu Zn (m) -----DESCRIPTION-----(m) No. Sulphides (ppm) (ppm) (ppm) parallel to foliation fine-grained pyrite with local 1 cm pyrite with trace chalcopyrite bands every 10 to 50 cm. Chalcopyrite specks at: 242.7, 244.8. Mariposite or fuchsite at 239.5, 246.4. 246.4 247.4 Chloritic with epidotized feldspars and chalcopyrite blebs at 246.5 and 2 % disseminated pyrite. Alteration :. 206.9 247.4 STRONG PERVASIVE SERICITIZATION. Structure :. Lost core : 211 to 212 : 0.3 m. Fault gouge :. 209.1 209.2 Approximately 60 degrees to core axis. 225.4 226.2 At 59 degrees to core axis. 237.1 237.2 At (?) degrees to core axis. Foliations :. 215.2: 48 degrees to core axis. 221.4: 52 degrees to core axis. 232.2: 38 degrees to core axis. 234.0 : 22 degrees to core axis. 243.8: 38 degrees to core axis. Bedding :. 226.8; 48 degrees to core axis.

247.4 249.5 MAFIC INTRUSIVE

Strange margined mafic sill. Core of sill is fine-grained dark green with 10 %, 1 mm chloritized hornblendes and epidotized feldspars. Is 20 % quartz - yellow calcite chlorite. Chlorite and yellow calcite persists into active tuff for 10 to 20 cm.

249.5 252.0 FELSIC QUARTZ EYE TUFF Weakly active tuff with trace chalcopyrite, fuchsite and I * disseminated and banded parallel to foliation fine-grained pyrite. There are 5 to 7 %, 2 mm, quartz eyes 249.5 252.0 HODERATE PERVASIVE SERICITIZATION. Foliation: 45 to 55 degrees to core axis locally.

VA01574 249.5 251.0 1.5 203 1140 91 3000 VA01575 251.0 252.0 1.0 254 36 2047 29 2100

252.0 263.0 FELDSPAR PORPHYRITIC GABBRO Medium to fine-grained gabbro with 10 to 20 %, 1 to 4 mm, feldspar grains. Locally weakly magnetic due to minor ilmenite. Upper contact at 50 cm white bull quartz vein. There is spotty epidotization throughout with local moderate fracture controlled carbonatization. Is 50 % blocky, highly fractured core with 0.3 m of lost core from 253.0 to 253.9, 0.3 m from 255 to 256 and 0.4 m from

261.5 to 261.7.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	XS 102	XAL203	ZCAO	ZMGO	ZHA20	XK20	ZFE203	21102	ZP205	ZHHO	XLO I	SUM	ВА	AI	NACA
																-	
VA00539	9.10	9.20	64.20	14.60	5.50	1.25	1.46	3.32	3.19	0.26	0.06	0.04	5.31	99.19	1350.	40.	7.
VA00540	15.80	15.90	61.40	12.30	8.39	1.58	0.48	2.50	4.59	0.22	0.06	0.08	8.31	99.91	825.	32.	9.
VA00541	25.40	25.50	69.30	13.30	3.84	1.58	1.33	2.87	2.38	0.27	0.07	0.03	4.62	99.59	1160.	46.	5.
VA00542	29.30	29.40	66.90	15.70	3.02	1.17	2.91	3.31	1.66	0.29	0.06	0.02	5.00	100.04	1130.	43.	6.
VA00543	38.50	38.60	73.30	13.90	1.55	0.67	4.11	2.29	1.89	0.24	0.06	0.04	1.62	99.67	1020.	34.	6.
VA00544	39.90	40.00	50.40	17.90	6.18	4.48	2.82	0.61	12.00	0.82	0.13	0.19	4.47	100.00	229.	36.	9.
VA00545	48.20	48.30	71.20	13.50	3.33	1.20	3.75	1.38	3.56	0.31	0.07	0.04	1.70	100.04	761.	27.	7.
VA00546	76.40	76.50	70.70	14.20	1.67	0.91	5.87	1.60	2.97	0.35	0.10	0.08	1.39	99.84	1120.	25.	8.
VA00547	81.40	81.50	69.70	14.70	1.52	0.95	5.14	2.13	2.76	0.33	0.07	0.07	1.62	98.99	1300.	32.	7.
VA00548	94.70	94.80	67.50	16.60	2.68	0.95	7.14	0.91	3.06	0.34	0.08	0.09	0.93	100.28	912.	16.	10.
VA00549	107.30	107.40	70.00	15.10	2.34	0.61	6.25	1.40	2.37	0.35	0.07	0.05	1.31	99.85	1410.	19.	9.
VA00550	119.10	119.20	63.00	17.30	3.64	2.25	3.35	2.76	4.47	0.48	0.15	0.09	2.70	100.19	2130.	42.	7.
VA00552	121.60	121.70	71.60	13.60	3.03	0.64	4.26	1.77	2.61	0.33	0.12	0.06	1.23	99.25	1860.	25.	7.
VA00551	127.10	127.20	52.90	17.50	7.98	4.88	2.14	0.47	10.40	0.64	0.12	0.28	3.16	100.47	198.	35.	10.
VA00553	139.10	139.20	52.70	16.00	5.45	7.13	4.83	0.28	9.88	0.68	0.15	0.23	2.70	100.03	251.	42.	10.
VA00554	149.90	150.00	52.90	17.50	4.89	6.25	4.01	0.56	9.99	0.69	0.13	0.24	3.31	100.47	387.	43.	9.
VA00555	164.60	164.70	50.30	17.90	7.09	4.04	0.66	2.41	11.80	0.80	0.12	0.25	3.08	98.45	852.	45.	8.
VA00556	174.20	174.30	44.30	12.90	10.60	5.41	2.10	0.31	12.20	1.75	0.17	0.24	9.47	99.45	146.	31.	13.
VA00557	174.70	174.80	48.70	13.70	11.90	5.63	1.44	0.20	13.20	1.86	0.18	0.21	2.31	99.33	80.	30.	13.
VA00558	181.30	181.40	62.30	16.60	5.29	2.57	1.66	2.56	5.24	0.48	0.13	0.11	2.77	99.71	1410.	42.	7.
VA00559	183.90	184.00	55.40	16.70	5.74	3.76	3.46	0.58	9.59	0.68	0.15	0.19	3.16	99.41	311.	32.	9.
VA00560	247.80	247.90	35.30	21.20	10.60	11.50	<0.01	0.03	12.30	0.58	0.08	0.19	6.93	98.72	82.	52.	11.
VA00561	266.40	266.50	48.40	16.60	8.11	6.18	4.13	0.48	10.20	0.85	0.16	0.18	3.93	99.22	574.	35.	12.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	10	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)		ROCK	CODES ALT	MIN
VA00539	9.10	9.20	59.0	191.0	1350.0	<10.0	98.0	19.0	28.0	16.0	<10.0		TFAQ	PHM	nnn
VA00540	15.80	15.90	44.0	173.0	825.0	13.0	76.0	11.0	38.0	16.0	<10.0		TMA	PCS	DRP
VA00541	25.40	25.50	46.0	147.0	1160.0	23.0	110.0	14.0	<10.0	15.0	<10.0		TFAQ	?	A
VA00542	29.30	29.40	52.0	172.0	1130.0	31.0	103.0	18.0	<10.0	<10.0	<10.0		TFAO	?	Α
VA00543	38.50	38.60	45.0	234.0	1020.0	17.0	102.0	11.0	24.0	<10.0	<10.0		TFBD	?	A
VA00544	39.90	40.00	16.0	375.0	229.0	18.0	24.0	15.0	246.0	46.0	38.0		PM	?	Α
VA00545	48.20	48.30	31.0	272.0	761.0	25.0	118.0	21.0	. 19.0	16.0	<10.0		TEBE	PHW	Α .
VA00546	76.40	76.50	26.0	110.0	1120.0	25.0	127.0	15.0	12.0	29.0	16.0		VFBF	?	DBP
VA00547	31.40	81.50	34.0	99.0	1300.0	26.0	105.0	<10.0	42.0	23.0	<10.0		TFAD	?	A
VA00548	94.70	94.80	26.0	183.0	912.0	21.0	118.0	<10.0	20.0	35.0	<10.0		VFBF	?	Á
VA00549	107.30	107.40	29.0	195.0	1410.0	33.0	145.0	<10.0	41.0	30.0	<10.0		UEBE	7	A
VA00550	119.10	119.20	56.0	348.0	2130.0	14.0	105.0	<10.0	30.0	54.0	18.0		TF	.∵ •?	Α :
VA00552	121.60	121.70	46.0	206.0	1860.0	29.0	88.0	16.0	34.0	21.0	<10.0		TFA	?	DDD
VA00551	127.10	127.20	<10.0	210.0	198.0	<10.0	35.0	<10.0	131.0	107.0	18.0		TMAF	· 1 ₇	A
VA00553	139.10	139.20	18.0	244.0	251.0	21.0	25.0	<10.0	114.0	126.0	27.0		TFA	FHS	A
VA00554	149.90	150.00	26.0	164.0	387.0	20.0	34.0	18.0	164.0	133.0	26.0		IMAF	? .	A
VA00555	164.60	164.70	41.0	296.0	852.0	19.0	34.0	<10.0	382.0	102.0	28.0		TFA	EHS	A ·
VA00556	174.20	174.30	17.0	104.0	146.0	22.0	88.0	24,0	217.0	101.0	69.0		0	?	A
VA00557	174.70	174.80	<10.0	326.0	90.0	14.0	88.0	28.0	217.0	76.0	67.0		PMAE	?	A .
VA00558	181.30	181.40	52.0	426.0	1410.0	25.0	96.0	10.0	38.0	51.0	11.0		TFAF	?	Α .
VA00559	183,90	184.00	22.0	269.0	311.0	15.0	16.0	19.0	172.0	107.0	15.0		TMBE	,	. [.]
VA00560	247.80	247.90	30.0	484.0	80.0	<10.0	<10.0	<10.0	161.0	476.0	233.0		PM	7	A

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE												 ,	 			
NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	(ppm)	3R (ppm)	NB (ppm)	(#Ç#) CU	ZN (ppm)	ΝΙ (mg¢)			ROCK	CODES	мім
VA00561	266.40	266.50	13.0	348.0	574.0	<10.0	<10.0	18.0	39.0	61.0	33.0			IMA	3	

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	70	2 S 102	XAL203	ZCAU	zngo	ZNA20	ΣK20	ZFE203	XI 102	XP205	ZHNO	X L O I	SUM	 BA	AI	NACA
VA01019	23.00	36.30	71.80	13.80	2.72	1.07	2.93	2.59	2.02	0.28	0.07	0.03	2.54	99.85	1170.	39.	6.
VA01020	69.20	79.00	70.00	14.50	1.78	0.93	5,13	1.87	3.00	0.34			1.54	99.09	1300.	29.	3.
VA01031	79.00	87.50	67.60	15.50	1.11	0.80	5.22	2.72	3.34	0.33			2.09	98.70	1610.	36.	7. 6.
VA01022	88.00	95.00	70.40	14.90	1.78	1.11	6.20	1.04	3.22	0.36				100.17	1080.	21.	8.
VA01023	101.50	111.60	74.50	12.10	3.25	0.46	4.86	0.79	3.77	0.26				100.07	740.	13.	8.
VA01024	112.00	126.00	69.70	14.40	3.47	1.35	3.24	1.96	3.47	0.37			1.93	99.89	1630.	33.	7.
VA01025	135.00	155.60	52.00	16.50	5.80	6.07	4.19	0.55	9.49	0.68			2.85	98.13	351.	40.	10.
VA01026	156.40	170.00	52.30	18.10	5.93	3.53	0.85	3.06	10.30	0.68			3.39	98.14	1250.	49.	7.
VA01027	182.80	191.80	53.30	16.80	7.15	3.73	2.56	1.09	9.97	0.66			3.23	98.49	496.	33.	10.
VA01028	191.80	199.30	71.00	14.10	2.59	1.29	2.85	2.31	3.41	0.29			2.39	100.23	1170.	40.	5.
VA01029	210.00	230.00	68.10	14.60	1.63	0.74	0.85	2.52	5.54	0.35			5.23	99.56	1670.	57.	2.
VA01030	230.00	245.00	72.40	13.10	1.29	1.24	0.39	2.98	4.02	0.28			4.00	99.60	2240.	73.	2.
VA01031	263.00	281.00	45.50	16.30	13.50	4.75	3.06	0.49	10.20	0.78			5.23	99.81	259.	24.	17.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	~~~~	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	(ppm)	ZN (ppm)	NI (ppm)			ROCK	CODES	MIN
PICTORV	23.00	36.30		47.0	180.0	1170.0	26.0	105.0	16.0	15.0	18.0	<10.0			TFAQ		A
VA01020	69.20	79.00				1300.0				36.0	79.0	10.0			VFPF		DCP
VA01021	79.00	97.50				1610.0				33.0	29.0	12.0			TFAD		DBP
VA01022	88.00	95.00				1080.0				31.0	26.0	11.0			VFRE		Α
VA01023	101.50	111.60				740.0				78.0	20.0	<10.0			VFBE		Α
VA01024	112.00	126.00				1630.0				21.0	28.0	13.0			TF		A
VA01025	135.00	155.60				351.0				93.0	131.0	16.0			THCE		À
VA01026	156.40	170.00				1250.0				394.0	83.0	29.0			TFA		DBP
VA01027	182.80	191.80				496.0				520.0	99.0	31.0			TMBF		A
VA01028	191.80	199.30				1170.0				63.0	33.0	12.0			TFAD		Á
VA01029	210.00	230.00				1670.0				211.0	472.0	13.0			TFAQ		DCP
VA01030	230.00	245.00				2240.0				232.0	754.0	<10.0			TFAD		DCP
VA01031	263.00	281.00				259.0				156.0	52.0	51.0			TH		A

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	но	HH (nn-)	CUZN	ETS	FE
									.,,,,,			(ppm)	(ppm)	(ppm)			
VA01529	71.90	72.90	1060.0	47.0	236.0	<0.5	10.0	6.0	3.0	6.0	9.0	2.0	<1.0	267.0	17.	2.	2.
VA01530	72.90	74.00	2040.0	71.0	83.0	<0.5	<5.0	10.0	3.0	6.0	13.0	<1.0	2.0	401.0	46.	2.	3.
VA01531	74.00	75.00	1070.0	23.0	73.0	<0.5	<5.0	4.0	3.0	<5.0	8.0	1.0	<1.0	324.0	24.	1.	1.
VA01532	75.00	76.00	1260.0	21.0	44.0	<0.5	<5.0	3.0	9.0	⟨5.0	<5.0	<1.0	<1.0	291.0	32.	1.	1.
VA01533	76.00	77.00	960.0	16.0	35.0	<0.5	<5.0	5.0	4.0	<5.0	9.0	<1.0	1.0	301.0	31.	1.	1.
VA01534	157.10	157.60	1680.0	273.0	41.0	<0.5	10.0	23.0	24.0	⟨5.0	⟨5.0	1.0	2.0	334.0	87.	3.	4.
VA01535	157.60	159.00	1020.0	137.0	63.0	<0.5	<5.0	26.0	25.0	<5.0	6.0	1.0	<1.0	815.0	69.	3.	5.
VA01536	159.00	159.90	1450.0	333.0	778.0	<0.5	10.0	21.0	15.0	(5.0	(5.0	9.0	15.0	377.0	30.	4.	5.
VA01537	162.00	162.50	1010.0	621.0	108.0	0.7	15.0	35.0	17.0	<5.0	<5.0	2.0	11.0	678.0	85.	2.	5.
VA01538	169.70	171.00	1180.0	827.0	208.0	0.7	5.0	27.0	20.0	⟨5.0	(5.0	2.0	4.0	1311.0	80.	1.	6.
VA01539	171.00	171.80	980.0	990.0	89.0	0.5	10.0	18.0	11.0	<5.0	<5.0	2.0	6.0	627.0	92.	0.	5.
VA01540	171.80	172.60	1920.0	1218.0	67.0	0.6	10.0	25.0	12.0	₹5.0	<5.0	1.0	3.0	754.0	95.	6.	6.
VA01552	172.60	173.10	850.0	9700.0	248.0	3.8	35.0	39.0	37.0	16.0	₹5.0	4.0	32.0	896.0	98.	18.	>10.
VA01551	173.10	173.60	20.0	464.0	100.0	0.6	20.0	32.0	63.0	(5.0	<5.0	<1.0		1017.0	82.	2.	6.
VA01542	202.30	203.30	2650.0	139.0	601.0	<0.5	20.0	22.0	64.0	130.0	32.0	4.0		1483.0	19.	0.	4.
VA01543	203.30	204.30	2950.0	140.0	1345.0	1.2	60.0	8.0	8.0	155.0	9.0	6.0	2.0	723.0	9.	3.	3.
VA01544	204.30	205.30	3160.0	124.0	1106.0	0.7	70.0	6.0	4.0	38.0	<5.0	6.0	3.0	627.0	10.	3.	2.
VA01545	205.30	206.90	1830.0	65.0	976.0	0.8	60.0	5.0	4.0	110.0	(5.0	4.0	2.0	480.0	6.	3.	2.
VA01546	210.40	212.00	1480.0	176.0	3200.0	0.7	30.0	7.0	4.0	127.0	6.0	16.0	2.0	980.0	5.	2.	2.
JA01547	212.00	213.50	1540.0	300.0	1085.0	0.6	20.0	7.0	4.0	419.0	69.0	6.0	3.0	729.0	22.	2.	2.
JA01548	213.50	215.00	1190.0	224.0	1044.0	0.9	15.0	6.0	4.0	517.0	86.0	6.0		1007.0	18.	2.	2.
JA01549	215.00	216.50	1380.0	124.0	487.0	⟨0.5	15.0	8.0	5.0	139.0	<5.0	3.0		1123.0	20.	2.	2.
JA01550	217.50	218.50	1550.0	635.0	751.0	1.4	85.0	9.0	5.0	61.0	16.0	3.0	4.0	165.0	46.	4.	3.
															10.	**	٠.

Hole No. CH88-40

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	ММ (ppm)	CUZN	ETS	FE
:	· .																
VA01553	221.50	223.00	1680.0	187.0	50.0	<0.5	30.0	10.0	9.0	9.0	33.0	<1.0	4.0	48.0	79.	4.	4.
VA01554	223.00	224.00	1150.0	305.0	16.0	<0.5	95.0	14.0	5.0	8.0	58.0	<1.0	3.0	38.0	95.	11.	5.
VA01555	224.00	225.00	860.0	108.0	16.0	0.6	65.0	9.0	4.0	5.0	32.0	(1.0	3.0	39.0	87.	7.	з.
VA01556	225.00	226.00	700.0	78.0	6.0	<0.5	50.0	7.0	4.0	<5.0	19.0	<1.0	3.0	38.0	93.	5.	2.
VA01557	226.00	227.00	1410.0	187.0	186.0	<0.5	50.0	9.0	8.0	16.0	22.0	1.0	4.0	130.0	50.	4.	2.
VA01558	227.00	228.00	1790.0	739.0	230.0	1.0	65.0	7.0	5.0	25.0	9.0	1.0	3.0	267.0	76.	4.	3.
VA01559	228.00	229.00	1610.0	306.0	356.0	0.8	50.0	6.0	3.0	32.0	<5.0	2.0	3.0	304.0	46.	4.	2.
VA01560	229.00	230.00	1640.0	343.0	849.0	1.2	150.0	5.0	4.0	32.0	<5.0	5.0	3.0	266.0	29.	4.	2.
VA01561	230.00	231.00	1800.0	214.0	928.0	0.8	50.0	5.0	2.0	16.0	<5.0	7.0	3.0	279.0	19.	4.	2.
VA01562	231.00	232.00	1580.0	643.0	356.0	1.4	95.0	10.0	6.0	25.0	15.0	3.0	3.0	312.0	64.	4.	3.
VA01563	232.00	233.00	1710.0	968.0	1077.0	2.5	260.0	12.0	8.0	68.0	<5.0	7.0	4.0	369.0	47.	4.	э.
VA01564	233.40	234.40	1650.0	312.0	383.0	1.2	190.0	6.0	5.0	71.0	<5.0	3.0	4.0	213.0	45.	. 4.	2.
VA01565	234.40	235.40	1820.0	526.0	690.0	0.8	120.0	5.0	4.0	11.0	16.0	3.0	4.0	140.0	43.	4.	3.
VA01566	235.40	236.90	1180.0	69.0	34.0	<0.5	170.0	3.0	3.0	7.0	13.0	<1.0	3.0	78.0	67.	4.	1.
VA01567	236.90	238.40	1050.0	20.0	70.0	<0.5	25.0	3.0	5.0	17.0	10.0	<1.0	2.0	103.0	22.	4.	1.
VA01568	238.40	239.90	2400.0	93.0	407.0	5.1	200.0	6.0	4.0	212.0	39.0	2.0	7.0	62.0	19.	4.	2.
VA01569	239.90	241.40	2630.0	100.0	448.0	5.3	210.0	5.0	6.0	241.0	36.0	3.0	6.0	61.0	18.	4.	3.
VA01570	241.40	242.90	1770.0	127.0	876.0	5.6	280.0	4.0	5.0	358.0	17.0	3.0	9.0	60.0	13.	4.	3.
VA01571	242.90	244.40	1290.0	66.0	316.0	4.5	120.0	4.0	6.0	221.0	<5.0	1.0	8.0	77.0	17.	4.	2.
VA01572	244.40	246.40	1010.0	119.0	1290.0	4.8	130.0	4.0	5.0	530.0	15.0	6.0	7.0	86.0	8.	4.	3.
VA01573	246.40	247,40	2700.0	475.0	1279.0	2.6	133.0	11.0	7.0	64.0	23.0	6.0	7.0	118.0	27.	2.	. 3.
VA01574	249.50	251.00	3000.0	203.0	1140.0	1.7	91.0	4.0	4.0	75.0	6.0	5.0	5.0	36.0	15.	1.	2.
VA01575	251.00	252.00	2100.0	254.0	2047.0	0.5	29.0	6.0	3.0	36.0	15.0	8.0	2.0	197.0	11.	1.	2.

Page No.

Summary Log: DDH CH88-41

Location: 28+00 E, 4+97 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: April 16, 1988 Core logged by: J. Pattison

0.0 - 3.6 Casing.

3.6 - 55.6 Gabbro

55.6 - 68.9 Chloritic felsic ash tuffs

68.9 - 98.9 Chloritic felsic quartz-feldspar crystal tuff

98.9 - 101.8 Gabbro

101.8 - 165.0 Chloritic felsic ash tuff

Trace to 2 % disseminated pyrite over much of the interval

165.0 - 210.5 Chloritic felsic lapilli tuff

Trace to 2 % disseminated pyrite over much of the interval

210.5 - 226.2 Chloritic felsic quartz eye tuff

226.2 - 257.8 Chloritic felsic lapilli tuff

257.8 - 258.2 Chlorite schist

258.2 - 272.0 Chloritic felsic quartz eye tuff

272.0 - 318.1 Quartz carbonate altered mafic tuffs and argillaceous sediments. Carbonate +/- quartz fills fractures and

gashes which are roughly parallel to foliation.

318.1 - 321.0 Chloritic felsic ash tuff

321.0 - 325.0 Quartz-carbonate altered mafic tuffs and argillaceous

sediments

325.0 - 327.3 Chloritic felsic quartz eye tuff

327.3 - 346.3 Quartz-carbonate altered mafic tuffs and argillaceous sediments

346.3 m EOH

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Hole Location: 28+00 E 4+97 N

NTS: 92B13 UTM: 5417474.3 N 430380.6 E

Azimuth: 210 Elevation: 608 m Dip: -50 Length: 346.3 m

Started: 11-April-88 Completed: 16-April-88

Purpose: Determine geology north of the Anita area.

DIP TESTS

Claim No. Chip 1 Section No.: 28+00 E

Logged By: J. Pattison

Drilling Co.: Burwash Enterprises Assayed By: Bondar-Clegg & XRAL

CH88-41

HOLE No: Page Number

Core Size:

AziLength muth Dip Length muth Dip

129.80 209.0 -48.0 239.60 208.0 -46.0

From To Sample From To Width Total Cu PЪ Zn Àσ (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

- .0 3.6 OVERBURDEN
- 3.6 4.9 FELSIC FELDSPAR CRYSTAL TUFF Light grey-green fine-grained. Broken and blocky over entire section. 0.5 M of lost core. Rusty fracture surfaces but no sulphides. Broken core at lower contact.
- 4.9 6.5 MAFIC TUFF
 Green-brown fine-grained with < 5 % ash to lapilli-sized black mud clasts. Moderate thermal biotite alteration. Broken and blocky over entire unit. Limonite stained fractures thoroughout. Broken core at lower contact.</p>
- 6.5 55.6 MAFIC INTRUSIVE

Grey-green to medium green fine to medium-grained with 2-4% interstitial ilmenite. Massive over most of section but upper 1.5 m is sheared, quartz+carbonate has flooded in along foliation planes and the rock is fine-grained. Occasional quartz +/- carbonate +/- chlorite veins and veinlets. Occasional speck of chalcopyrite often associated with quartz veins. Lower contact is at 50 degrees to core axis.

STRUCTURE:
Foliation is at 30 degrees to core axis at 7.4 m.
Foliation is kinked, folded and contorted.

Foliation is at 30 degrees to core axis at 7.4 m.
Foliation is kinked, folded and contorted.
Blocky, highly fractured core and 0.3 m of lost core between 34.7 and 37.2 m.
10 Cm fault zone at 40 degrees to core axis at 37.4 m.
Fault between 44.2 and 44.5 m. Rock is broken and rubbly.
Appears to be oriented at 90 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-41 2

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

- 49.7 51.8 m blocky, highly fractured core.
 At 54.5 m at 25 degrees to core axis.
 15.5 16.2 MAFIC TUFFACEOUS SEDIMENTS. Sediments are finely bedded near upper and lower contacts and are moderately to strongly thermal biotite altered.
 Both upper and lower contacts with the gabbro are conformable with bedding and suggest that
 - are conformable with bedding and suggest that the gabbro may actually be a flow. The upper and lower contacts are at 40 degrees to core axis. A 1.0 cm bed of chery siltstone occurs at the lower contact.
- 17.9 18.3 MAFIC TUFFACEOUS SEDIMENTS. Similiar to above but core is broken and blocky and contacts have not been preserved.
- 20.4 20.7 Fine-grained chloritic zone with 10% disseminated ilmenite and no feldspar phenocrysts
- 21.8 22.7 Fine-grained chloritic zone with 10% disseminated ilmenite and no feldspar phenocrysts. Rock is strongly magnetic. Upper contact is sharp at 40 degrees to core axis and lower contact is at 55 degrees to core axis.
- 26.0 27.9 MAFIC TUFF. Minor fault at 80 degrees to core axis at upper contact. Tuff is finely bedded at lower contact and lower contact is parallel to to it at 35 degrees to core axis.
- 55.6 57.9 CHLORITIC FELSIC QUARTZ EYE TUFF
 Light grey-green well foliated ash tuff with 1-3 % < 3 mm
 quartz eyes. Chlorite alteration is variable giving rock
 a banded appearance. Grey sericitic bands alternate with
 light green chloritic bands. The bands are less than 10 cm
 thick, parallel to foliation and likely represent
 original bedding. Nil sulphides. Broken core at lower
 contact but it appears to be conformable with bedding.

STRUCTURE: .

Bedding is parallel to foliation at 58 degrees to core axis at 56.7 m.

ALTERATION:.

55.6 57.9 WEAK PERVASIVE CHLORITIZATION and WEAK PERVASIVE SERICITIZATION.

VA02768 55.6 75.0 19.4 n/a 346 n/a 21 n/a n/a 1700

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-41

> Αu (ppb) (ppm)

5 2040

5 1730

<5 1010

(5 1440 (5 1310

₹5 750

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	
		Similiar to 55.6 to 57.9 m except quartz eyes are rare. Rock has a banded appearance in most places due to differences in chlorite content. Broken core at lower contact.	VA03324 VA03325 VA03326 VA03327 VA03328	61.9 62.9 63.3 64.5	62.9 63.3 64.5 65.5	1.0 .4 1.2 1.0	0 2 0 1	21 109 33 337	10 6 <5 7	25 14 97 98	(1 (1 (1 1	
		STRUCTURE:. Bedding is at 55 degrees to core axis at 62.3. Fault at 40 degrees to core axis at 68.9 m. 2.0 Cm fault gouge at 65 degrees to core axis at 62.9 m. Minor fault at 40 degrees to core axis at 68.9 m.	VA03328 VA03329	65.5 66.0	66.0 67.0	.5 1.0	1	112	14	19 14	(1) (1)	
		ALTERATION:. 57.9 68.9 WEAK PERVASIVE CHLORITIZATION and MODERATE PERVASIVE SERICITIZATION.										
		SULPHIDES:. 3 % fracture controlled pyrite-pyrrhotite from 62.9 to 63.4 m. 2 % fracture controlled pyrite from 65.5 to 66.0 m.										
		59.6 60.0 5 % ash to lapilli-sized chlorite spots (mafic fragments ?) stretched parallel to foliation.										
		63.5 64.5 Very massive section, no bedding recognizable.										
		64.8 65.0 Bed of MAFIC TUFF at 60 degrees to core axis.										
		67.4 67.7 Brecciated fractured zone. Fractures are healed with quartz.										
68.9	98.9	CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF 10-15% (3 mm feldspar crystals and up to 5 % 1-4 mm quartz eyes in a siliceous, moderately sericitic, weakly chloritic matrix. Rock has a banded appearance and in	VA02769 VA03330 VA03331	75.0 78.7 79.5	98.9 79.5 80.2	23.9 .8 .7	n/a 3 2	49 150 37	n/a 33 9	49 61 12	n/a <1 <1	n

STRUCTURE:. Bedding is at 55-60 degrees to core axis at 72.5 m. Foliation is kinked between 77.7 and 78.7 m. Bedding is at 67 degrees to core axis at 78.9 m. Bedding is at 60 degrees to core axis at 81.6 m. Beds are offset 1.0 cm by a minor fault at 20 degrees to core axis. Bedding is at 60 degrees to core axis at 84.6 m. Bedding is at 58 degrees to core axis at 89.0 m. Bedding is at 57 degrees to core axis at 90.9 m. Foliation is kinked. 3 Mm fault gouge at 25 degrees to core axis at 91.1 m.

slight differences in chlorite and silica content. Broken

most places bands likely represent original bedding.

Bands are generally (2.0 cm wide and are produced by

core at lower contact.

ı/a n/a 1190 <1 25 1510 5 1080 <1 VA03332 80.2 81.2 24 27 <1 10 1040 1.0 VA03333 85.0 ₹5 **<5** 1270 84.0 1.0 2 38 21 ∢1 VA03334 85.0 86.0 1.0 16 5 16 (1 5 1090 VA03335 86.0 87.0 1.0 13 < 5 18 ₹1 ₹5 810 VA03336 17 ₹1 ₹5-690 87.0 88.4 11 VA03337 71 8 31 <1 15 660 88.4 88.6 VA03338 61 ₹5 60 <1 10 600 88.6 89.5 .9 2 VA03339 89.5 90.2 . 7 25 5 37 ∢1 5 520 VA03340 27 493 35 940 94.5 95.0 .5 341 <1 VA03341 95.3 95.5 . 2 3 ₹1 104 569 <1 10 760 VA03342 95.9 96.9 1.0 3 233 10 431 <1 20 1200 VA03343 96.9 97.5 . 6 2 382 11 1464 (1 15 1230 VA03344 97.5 98.5 1.0 40 (5 47 <1 (5 1630

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample From

(m)

No.

Τo

(m)

Vidth

Total

(m) Sulphides (ppm)

HOLE No: Page Number CH88-41 4

Рb

Zn

(ppm) (ppm)

Αg

(ppm)

Cu

Au Ba

(ppb) (ppm)

From To (m) ------DESCRIPTION------

Foliation is kinked, folded and contorted between 93.3 and 94.0 m.
Foliation is at 50 degrees to core axis at 94.7 m.
0.5 Cm fault gouge at 65 degrees to core axis at 95.3 m.
Foliation is kinked and contorted between 96.5 and 98.9 m.

ALTERATION: .

68.9 98.9 WEAK PERVASIVE CHLORITIZATION and MODERATE PERVASIVE SERICITIZATION.

95.3 95.5 Weak mariposite alteration.

SULPHIDES:.

- 78.7 80.2 1-2% pyrite disseminated in discrete beds 2 to 10 mm thick at 60-70 degrees to core axis.
- 94.5 95.0 2 % pyrite and trace chalcopyrite disseminated along foliation planes.
- 95.3 95.5 4 % pyrite disseminated along foliation planes.
- 95.9 97.5 2 % pyrite and trace sphalerite/biotite disseminated and pyrite sometimes occurs in spots (3 mm in diameter which may be clasts.

 Pyrrhotite-chalcopyrite occasional in a 1.0 cm quartz vein at 50 degrees to core axis at 97.4 m.
- 83.1 84.0 MAFIC DYKE: massive pale green fine-grained weakly feldspar porphyritic upper contact is sharp at 70 degrees to core axis while lower contact is very irregular.
- 84.0 86.0 1-2% fracture controlled pyrite.
- 88.4 88.6 Cherty silt beds < 2.0 cm thick at 58 degrees to core axis. 2 % fracture controlled pyrite. One bed contains a 1.0 cm wide clast of felsic crystal tuff.
- 88.6 89.5 Felsic ash tuff, no quartz eyes. 2-3% pyrite along foliation planes.
- 90.2 90.5 MAFIC DYKE. Medium green fine-grained moderately carbonatized no feldspar phenocrysts and moderately well foliated. Upper contact is at 58 degrees to core axis and lower contact is at 60 degrees to core axis.
- 92.1 92.3 MAFIC DYKE. As above. Upper and lower contacts are conformable with bedding and foliation at 55-60 degrees to core axis.
- 92.3 98.9 Quartz eyes are very rare.
- 95.0 95.3 MAFIC DYKE. As 90.2 to 90.5 m. Upper and lower

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-41 5

From (m)	To (m)			DESCRI	PTION		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba) (ppm)	
			contacts ar	e at 55-60 d	egrees to co	re axis.												
		95.5 95.9		As 90.2 to grees to cor		acts are at												
98.9	101.8	ilmenite volcanic	een, fine-gr and trace di but is logge	ained with 1 sseminated p d as gabbro l act is at 47	rite. May pased on the	be a mafic presence of	VA03345	100.8	101.3	.5	4	48	<5	199	<1	25	1580	
		99.4 99.5	degrees to	r bed of fel: core axis. Up 3.0 cm by a	per and lo													
		100.8 101	pyrite co in hairli degrees t	of felsic concentrated or ne fractures or core axis as to core axis	foliation Upper containd lower co	planes and act is at 42												
			on dogree	z to core un.														
101.8	165.0	Light grey foliated.	Moderately	IC TUFF enish tint fi to strongly is kinked o	sericitized	and weakly	VA03346 VA02770 VA03347	101.8	131.0	1.0 29.2 1.0	4 n/a 3	568 72 157	123 n/a 45	945 81 686	9 n/a 1	n/a	1230 1460 1450	
			fic dyke at	the lower cor			VA03348 VA03349 VA03350	103.8 107.0	104.6 108.0	1.0	2 1 4	34 41 633	27 7 118	198 138 507	<1 <1 3	22 71	1280 2070 5340	
		wide at 40 kinked, p	0 to 52 degr tygmatically	E. Several fa ees to core a folded and o	xis. Folia	•	VA03351 VA03352 VA03353	110.8 111.8	111.8 112.8	1.0 1.0 1.0	1 1 2	23 33 27	6 17 13	285 401 604	1 1 1		1260	
		108.7 - 10	n 0.5 cm fau 09.3 m FAULT	lt gouge at 6 ZONE at 50-6 at 70 degree	0 degrees to	core axis.	VA03354 VA03355 VA03356 VA03357	113.3 128.0	114.3 128.5	.5 1.0 .5 1.0	1 3	25 28 17 19	6 12 10 10	1335 64 290 58	1 (1 (1	37	1250 1290 950 1070	
		At 111.6 r lost core	n FAULT ZONE	at 50 degree	s to core a	(is. 0.4 m of	VA03358 VA02771 VA03359	130.8 131.0	132.0 163.9	1:2 32.9 1.0	5 n/a 3	28 104 88	10 n/a 7	79 38 67	(1 n/a 1	23 n/a	960	
		117.4-118 At 120.5	.0 m 10.0 cm n foliation		it 50 degree: ees to core	to core axis axis.	VA03360 VA03361 VA03362	133.0 134.0	134.0 135.0	1.0 1.0 1.0	2 2 2	16 14 14	8 9 9	37 47 80	(1 (1 1	5 (5	1150	
		5.0 Cm fat At 103.0 a	ult gouge at n 10 cm faul	75 degrees to tat 40 degrees to core	o core axis	at 129.8 m. axis.	VA03363 VA03364 VA03365	136.0 137.0	136.0 138.0	.0 1.0 1.0	2 1 2	14 19 17	6 9	51 56 88	(1 1 1	29 25	1220 1090 1090	
		Foliation	is at 66 de	grees to core	axis at 140).6 ns.	VA03366 VA03367 VA03368	141.0 142.0	142.0 143.0	1.0 1.0 1.0	2 2 2	18 18 17	6 9 6	130 71 39	(1 (1	26 7		
			s at 50 degr	ees to core a	xis at 147.) m.	VA03369		145.0	1.0	2	21	9	58	1		1010	

FALCONBRIDGE LIMITED

HOLE No: Page Number

		DIAHOND DRILL LOG					CH88-41		6					
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)	
		Bedding is at 60 degrees to core axis at 153.0 m.	VA03370	145.0	146.3	1.3	2	30	9	88	<1	30	870	
		3.0 Cm fault gouge at 70 degrees to core axis at 154.0 m.	VA03371	146.8	147.5	.7	2	45	. 8	42	<1	25 1	1000	
		Foliation is at 50 degrees to core axis 158.0 m.	VA03372	147.7	148.7	1.0	3	50	8	59	1	40	960	
		Foliation is at 40 degrees to core axis at 162.6 m.	VA03373	148.7	149.7	1.0	2	17	11	32	<1	20 1	1070	
		3.0 Cm fault gouge at 90 degrees to core axis at 166.3 m.	VA03374	149.7	150.7	1.0	2	21	9	60	<1	25 1	1020	
		Foliation is at 42 degrees to core axis at 169.0 m.	VA03375	150.7	151.7	1.0	3	16	(5	28	<1	30 1	1040	
		Banding (bedding?) is at 42 degrees to core axis at 169.6	VA03376	151.7	152.7	1.0	3	18	9	32	<1	35 1	1040	
		m. Bands are <0.5 cm wide and are the result of	VA03377	152.7	153.5	. 8	1	24	8	32	<1	20	920	
		differences in chlorite/sericite content.	VA03378	153.8	154.8	1.0	3	17	7	40	<1		1100	
		105.1-105.2 M fault gouge at 40-60 degrees to core axis.	VA03379			1.0	3	15	6	219	<1 .		1250	
			VA03380			1.0	3	16	8	78	<1		1310	
		ALTERATION.	VA03381			1.0	2	6	₹5	30	<1	_	990	
		101.8 165.0 STRONG PERVASIVE SERICITIZATION and WEAK	VA03382	157.8	159.0	1.2	2	- 4	9	31	<1	35 1	1020	
		PERVASIVE CHLORITIZATION. Several spots of												
		mariposite at 147.8 m.												
		SULPHIDES:.												
		101.8 104.6 2 % pyrite, disseminated and in (2 mm bands												
		parallel to foliation.												
		104.6 108.0 (1% pyrite in spots (clasts?) up to 4 mm in												
		diameter.												
		108.0 108.7 2 % disseminated pyrite and trace chalcopyrite.												
		108.7 111.8 1 % disseminated pyrite.												
		111.8 113.3 3 % disseminated pyrite.												
		113.3 129.8 (1% disseminated pyrite.												
		129.8 130.0 2 % pyrite disseminated along foliation												
		planes. Trace chalcopyrite associated with a												

132.6 m. 138.0 140.0 1 % disseminated pyrite.

140.0 157.0 2 % pyrite disseminated and in 1-2 mm bands parallel to foliation.

3.0 cm irregular quartz-carbonate vein at

157.0 163.9 1 % disseminated pyrite.

124.3 124.4 Fine-grained MAFIC DYKE at 66 degrees to core axis.

128.2 128.4 Cherty beds (0.5 cm thick at 65 degrees to core axis. 5 % disseminated pyrite.

129.8 132.0 0.8 m of lost core due to problems with the core barrel.

146.3 146.8 MAFIC DYKE/TUFF/STRONGLY CHLORITIZED ZONE. Dark green, fine-grained strongly chloritic. Upper and lower contacts are parallel to to foliation at 40 degrees to core axis. Moderate fracture controlled carbonatization and trace disseminated pyrite.

147.5 147.7 Chlorite-carbonate alteration zone.

FALCONBRIDGE LIMITED

HOLE No: Page Number CH88-41

			DIAHOND DRILL LOG											
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
		153.5 153.6	HAFIC DYKE/FLO!TUFF. As 146.3 to 146.8 m. Upper and lower contacts are conformable with bedding at 60 degrees to core axis.											
		156.8 163.9	0 <2% ash-sized quartz eyes.											
		160.6 888.8	3 0.5 cm band of finely laminated, cherty tuff at 51 c/ with lamelli of pyrite.											
		163.9 165.0	MAFIC DYKE. Medium green, fine-grained, massive with 3 % moderately magnetic ilmenite as subhedral crystals up to 3 mm in diameter and trace chalcopyrite. Broken core at upper contact. Lower contact is at 48 degrees to core axis.											
											,			
165.0	210.5	Similiar to grey fine- <1.0 cm) so the fragmen the matrix Rock is well roughly par original be	ash-sized quartz eyes. Mafic ash tuff occurs	VA02772 VA03384 VA03385 VA02773 VA03383 VA03386 VA03387 VA03388		188.0 179.5 182.1 210.5 190.1 199.4 200.4	23.0 .5 .5 22.5 .7 1.0 1.0	n/a 3 2 n/a 3 0	42 19 879 44 20 665 110 271	n/a 12 142 2 21	54 87 2213 177 108 2902 253 490	n/a <1 3 n/a <1 2 <1 1	140 n/a 20 55 45	1200 1040
		STRUCTURE: Banding (be	edding?) is at 40-50 degrees to core axis at		•									

171.5 m. 5.0 Cm fault gouge at 90 degrees to core axis. Foliation is at 50 degrees to core axis at 175 m. 175.9-179.0 FAULT ZONE at 30-60 degrees to core axis. Rock is crushed, there are many fault gouges and foliation runs

nearly parallel to core axis over much of the interval. Bedding is at 50 degrees to core axis at 181.8 m. 186.0-186.3 M: fold nose (?). Foliation changes from 50 to O back to 50 degrees to core axis. Rock is very crushed in centre of nose (?) and similiar in appearance to what have previously been logged as fault gouges.

186.9-187.7 M: crushed zone.

At 188.0 m banding (bedding?) is at 50 degrees to core axis At 189.9 banding is sharply kinked (folded) along edge of a slip at 50 degrees to core axis.

193.4-193.9 M: fault gouge runs parallel to core axis. At 195.0 m foliation is at 50 degrees to core axis. 195.3 195.6 M FAULT ZONE: at 20 degrees to core axis. At 205.0 m foliation is at 50 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-41 8

From To (m)

-----DESCRIPTION-----

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

At 206.7 m bedding is at 55 degrees to core axis.

ALTERATION:.

165.0 210.5 WEAK PERVASIVE CHLORITIZATION and MODERATE PERVASIVE SERICITIZATION to STRONG PERVASIVE SERICITIZATION.

SULPHIDES:

165.0 179.0 Trace-1% pyrite.

179.0 179.5 2 % disseminated pyrite.

179.5 187.8 Trace-1 % disseminated pyrite. 5.0 cm silicified zone at 45 degrees to core axis.

187.8 189.4 1 % pyrite as spots up to 3 mm in diameter.

189.4 190.1 3 % pyrite in 1-2 mm bands parallel to to foliation.

At 182.0 with 10 % pyrite and 2 % chalcopyrite.

190.1 198.4 1 % disseminated pyrite.

198.4 201.4 2 % pyrite and nil-trace chalcopyrite.
Sulphides are disseminated and occur in chlorite-carbonate alteration zones and in bands up to 1.0 cm wide.

201.4 210.5 1 % disseminated pyrite as spots < 2 mm in diameter.

166.3 167.0 MAFIC DYKE. Fine-grained, sheared medium green with weak spotty hematite. Core is broken and blocky throughout. Upper contact is a 3.0 cm fault gouge at 90 degrees to core axis and the lower contact is at 30 degrees to core axis.

173.6 174.0 Up to 10 % 1-5 mm quartz eyes.

180.4 181.3 MAFIC DYKE. Dark green, fine-grained and moderately carbonatized. Upper contact is at 58 degrees to core axis and lower contact is at 50 degrees to core axis.

182.0 183.0 5 % 1-5 mm quartz eyes. Quartz eyes fine downhole.

188.7 189.4 5 % 1-4 mm quartz eyes.

199.8 200.4 MAFIC TUFF (?). Dark green, fine-grained well banded. Banding is folded and contorted. Hoderate carbonate chlorite alteration and several quartz-carbonate veins up to 2.0 cm wide.

210.1 210.5 MAFIC ASH TUFF. Medium green, finely bedded with 4 % pyrite. Contacts are at 45-50 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-41 9

 Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

210.5 226.2 CHLORITIC FELSIC QUARTZ EYE TUFF Light grey-green moderately to strongly sericitic very weakly to weakly chloritic, fine-grained with up to 5 % 1-4 mm quartz eyes. Hazy, poorly defined lapilli-sized felsic fragments are common.

STRUCTURE: .

At 212.0 m foliation is at 40 degrees to core axis. At 214.0 m FAULT ZONE at 42 degrees to core axis. 0.3 m of lost core.
At 224.1 m bedding is at 42 degrees to core axis.

At 224.1 m bedding is at 42 degrees to core axis. 225.0-226.2 M FAULT ZONE at 50 degrees to core axis. 0.8 m of lost core. 254.0-255.0 M foliation is kinked and folded.

ALTERATION:

210.5 226.2 WEAK PERVASIVE CHLORITIZATION, MODERATE PERVASIVE SERICITIZATION to STRONG PERVASIVE SERICITIZATION and nil to very weak brown carbonate alteration.

SULPHIDES:.

210.5 226.2 Nil-trace disseminated pyrite.

210.9 211.1 MAFIC ASH TUFF. Contacts are at 45 degrees to core axis.

218.1 218.2 MAFIC ASH TUFF. Wavey banding at 30-50 degrees to core axis.

226.2 257.8 CHLORITIC FELSIC LAPILLI TUFF

As 165.0 210.5. Distinctive light brown stain along foliation planes above 242.0 m. Foliation is kinked over most of the unit. Lower contact is at 60 degrees to core axis.

STRUCTURE.

228.9 to 229.0 m fault gouge at 60 degrees to core axis.
229.7 to 230.1 m fault gouge at 50 degrees to core axis.
230.6 to 230.9 m fault gouge at 50 degrees to core axis.
At 234.0 m foliation is at 55 degrees to core axis.
236.7 238.1 Banding/foliation is kinked and folded.
Foliation runs parallel to core axis between
237.2 and 237.5 m.

At 245.1 m 1.0 cm fault gauge at 68 degrees to core axis. At 246.7 m foliation is at 57 degrees to core axis.

At 252.5 m bedding is at 60 degrees to core axis.

VA02774 210.5 226.2 15.7 n/a 87 n/a 48 n/a n/a 1190

VA02775 226.2 257.8 31.6 n/a 54 n/a 40 n/a n/a 1020

FALCONBRIDGE LIMITED DIAHOND DRILL LOG

HOLE No: Page Number CH88-41 10

From To Sample From To Width Total Ag: (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (mqq) (dqq) (mqq)

ALTERATION:.

226.2 257.8 MODERATE PERVASIVE SERICITIZATION , WEAK PERVASIVE CHLORITIZATION and weak beige carbonate alteration.

SULPHIDES:.

226.2 257.8 Nil-1 % disseminated pyrite.

252.5 253.9 2 % quartz eyes up to 5 mm in diameter.

257.8 258.2 CHLORITE SCHIST

Dark green, well foliated, chloritic mafic tuff or flow. VAO2776 257.8 272.0 14.2 n/a 77 n/a 11 n/a n/a 1340 Weak carbonatization.
Nil sulphides. Broken core at lower contact.

258.2 261.6 CHLORITIC FELSIC QUARTZ EYE TUFF

More strongly chloritic than the felsic units above. Up to 7 % 2-6 mm quartz eyes. Rock is crushed over the entire interval but foliation is not contorted. Rock is silicified for 0.7 m from the lower contact. Trace chalcopyrite associated with a 2.0 cm quartz-carbonate vein along the lower contact. Lower contact is at 50 degrees to core axis. Quartz eyes are relatively rare below 268.0 m. STRUCTURE:

At 260.5 m foliation is at 58 degrees to core axis.

ALTERATION:.

258.2 261.6 MODERATE PERVASIVE CHLORITIZATION and MODERATE PERVASIVE SERICITIZATION.

261.6 262.8 CHLORITE SCHIST

As 257.8 to 258.2 m. Nil sulphides. Lower contact is sharp but irregular at about 50 degrees to core axis.

262.8 272.0 CHLORITIC FELSIC QUARTZ EYE TUFF

Light green-grey, moderately chloritic well foliated crushed matrix with <2 % 2-4 mm quartz eye and up to 20 % light grey felsic fragments <2 cm wide. Lower contact is at 56 degrees to core axis.

 VA03389
 268.0
 269.0
 1.0
 2
 13
 <5</td>
 30
 <1</td>
 14
 1000

 VA03390
 269.0
 270.3
 1.3
 2
 19
 6
 36
 <1</td>
 10
 960

 VA03391
 270.3
 271.4
 1.1
 2
 10
 <5</td>
 20
 <1</td>
 25
 1000

STRUCTURE:.

At 263.3 m foliation is at 66 degrees to core axis. 264.0-264.3 Fault gouge at 68 degrees to core axis. 265.9-270.0 Foliation is kinked and folded. Foliation is parallel to core axis from 266.7 m to 267.1 m (fold nose?). 266.5-266.7 FAULT ZONE at 35 degrees to core axis. 2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-41 11

From	To		Sample	From	To	Width	Total	Cu	Рb	Zn	Aσ	Àu	Ва
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)

ALTERATION:

262.8 272.0 MODERATE PERVASIVE CHLORITIZATION and MODERATE PERVASIVE SERICITIZATION.

SULPHIDES:.

268.0 269.0 2 % pyrite in patches up to 1.0 cm in diameter associated with quartz-carbonate veins.

270.3 271.4 Numerous quartz-carbonate veins up to 15 cm wide at 50-60 degrees to core axis. 2 % pyrite within the veins.

272.0 318.1 MAFIC TUFFS AND ARGILLACEOUS SEDIMENTS

Streaky dark green to black, strongly chloritic with many white carbonate +/- quartz filled fractures and gashes roughly parallel to foliation. Likely a mix of mafic ash tuff and argillaceous sediments. Occasional (1.0 cm bed of feldspar crystal tuff recognizable. Occasional very rare quartz eve up to 4 mm in diameter. Ouite different in appearance from MAFIC TUFFACEOUS SEDIMENTS south of the Active Tuff. This rock has a high argillaceous sedimentary component but no thermal biotite alteration and cherty beds are very rare. Sediment component increases below 309.0 m, rock is finely bedded (beds (0.5 cm) and cherty beds are common. Lower contact is a 1.0 cm fault gouge at 55 degrees to core axis.

273.0-273.7 FAULT ZONE at 45 degrees to core axis. 0.2 m of lost core. 276.1-276.2 Foliation is folded. Fold axes are at 40 degrees to core axis. At 279.0 m foliation is at 60 degrees to core axis. 282.0-282.2 FAULT ZONE at 70 degrees to core axis. 284.5-285.3 M FAULT ZONE. Foliation is nearly parallel to core axis. 0.5 m of lost core. At 286.5 m foliation is at 60 degrees to core axis. At 295.2 m foliation is at 50 degrees to core axis. 299.0-299.1 M two 1.0 cm fault gouge at 50-55 degrees to At 303.4 bedding is at 58 degrees to core axis. At 309.2 fine bedding at 45 degrees to core axis. At 312.4 foliation is at 55 degrees to core axis.

ALTERATION:.

272.0 MODERATE FRACTURE CONTROLLED CARBONATIZATION and STRONG PERVASIVE CHLORITIZATION.

295.6 296.2 2 % (2 mm black anhedral mafic crystals

VA02777 272.0 295.0 23.0 n/a 68 n/a 67 n/a n/a 245 VA03392 278.0 279.0 1.0 1 15 (5 109 <1 190 VA02778 295.0 320.0 25.0 76 70 n/a 307 n/a n/a n/a VA03393 317.7 318.0 30 117 (1 28 690

FALCONBRIDGE LIMITED

HOLE No: Page Number 12 CH88-41

Cu

Pb Zn

Ασ

(ppm) (ppm) (ppm) (ppm)

Au

DIAMOND DRILL LOG From To Sample From To -----DESCRIPTION-----(m) (m) (m) No: (hornblende ?). SULPHIDES: . 278.2 888.8 Few specks of sphalerite (?) associated with quartz-carbonate alteration. 317.7 318.1 2 % pyrite associated with strong pervasive carbonate alteration. 293.5 294.7 3 % paper thin black chloritic fragments smeared along foliation planes. 303.5 304.0 3 % black lapilli-sized mud clasts stretched 1:10 parallel to foliation. 318.1 321.0 WEAKLY CHLORITIC FELSIC TUFF Light grey-green finely bedded ash tuff. Cherty siliceous beds of ash tuff up to 5.0 cm thick (most (5 mm) alternate with more chloritic bands. Nil sulphides. Lower contact is at 60 degrees to core axis. STRUCTURE: . At 318.1 m bedding is at 50 degrees to core axis. ALTERATION: . 318.1 321.0 MODERATE PERVASIVE CHLORITIZATION and MODERATE FRACTURE CONTROLLED CARBONATIZATION. 318.7 319.4 MAFIC-INTERMEDIATE SEDIMENTS. As 272.0 to 318.7 m. 320.7 320.8 MAFIC ASH TUFF bed at 60 degrees to core axis. 321.0 325.0 MAFIC TUFFS AND ARGILLACEOUS SEDIMENTS As 272.0 to 318.7 m. Nil sulphides. Lower contact is gradational over 5.0 cm. ALTERATION: . 321.0 325.0 MODERATE FRACTURE CONTROLLED CARBONATIZATION and STRONG PERVASIVE CHLORITIZATION.

VA02779 320.0 346.3 26.3 80 n/a 150 n/a n/a 754

Width

(m)

Total

(m) Sulphides (ppm)

1.0 cm wide.

axis.

322.3 888.8 5.0 cm felsic ash tuff at 70 degrees to core

323.6 323.8 Bedding is contorted (soft sediment deormation

?) and there are clasts of cherty tuff up to

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-41 13

From To (m)

-----DESCRIPTION-----

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

axis. Nil sulphides. Lower contact is at 64 degrees to core axis.
325.0 325.7 WEAK PERVASIVE CHLORITIZATION.

325.7 327.3 CHLORITIC FELSIC QUARTZ EYE TUFF
Medium grey-green crushed appearance with 2 % 1-3 mm
quartz eyes. Interfingers with mafic ash tuff below 326.2
m and its overall composition is probably intermediate.
Nil sulphides. Lower contact is sharp at 65 degrees to
core axis and a 3 mm band of cherty felsic ash tuff occurs
along the contact.

ALTERATION: .

325.7 327.3 MODERATE PERVASIVE CHLORITIZATION and WEAK PERVASIVE CARBONATIZATION.

327.3 346.3 MAFIC TUFFS AND ARGILLACEOUS SEDIMENTS
As 272.0 to 318.1 m but contains 1-5 % disseminated magnetite above 335.0 m. .
STRUCTURE:

329.4-330.5 FAULT ZONE at 30 to 70 degrees to core axis. 334.6-334.9 Bedding is kinked and folded. 338.2-338.9 Foliation runs nearly parallel to core axis. 339.6 339.9 Folding clearly displayed by thin (<4 mm)

cherty felsic ash tuff beds.
At 343.2 foliation is at 55 degrees to core axis.

ALTERATION:.

327.3 346.3 MODERATE FRACTURE CONTROLLED CARBONATIZATION and MODERATE PERVASIVE CHLORITIZATION.

329.4 330.5 FELSIC ASH TUFF in a fault zone, rock is crushed over most of the interval. Lower contact is sharp at 35 degrees to core axis.

330.6 330.7 Finely bedded FELSIC ASH TUFF. Bedding is at 50-70 degrees to core axis.

342.7 344.0 Up to 10 % black lapilli-sized clasts flattened along foliation planes. This could be the BLACK LAPILLI TUFF (BLT).

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	XS 102	ZAL203	ZCAO	ZHGO	ZNA20	XK20	ZFE203	11102	XP205	ZHNO	2 L O I	SUM	BA	AI	NACA

VA02271	11.00	11.40	49.00	13.70	11.20	5.59	1.47	0.45	14.30	1.91	0.16	0.22	2.16	100.16	130.	32.	13.
VA02272	56.80	57.00	75.60	14.60	0.78	0.61	<0.01	4.66	1.34	0.26	0.06	0.02	2.39	100.32	2200.	87.	1.
VA02273	66.50	66.70	70.30	15.60	2.10	0.92	4.80	1.93	1.83	0.30	0.07	0.03	1.85	99.73	1310.	29.	7.
VA02274	73.60	73.80	73.40	14.50	2.10	0.95	1.96	2.99	1.56	0.25	0.06	0.02	2.08	99.87	2010.	49.	4.
VA02275	92.60	93.00	70.50	14.00	3.12	1.11	2.09	2.73	2.41	0.24	0.06	0.08	3.54	99.88	927.	42.	5.
VA02277	99.20	99.40	46.50	15.70	8.26	6.10	2.61	0.04	11.80	1.55	0.14	0.21	6.62	99.53	139.	36.	11.
VA02276	106.20	106.40	67.00	12.60	4.98	1.70	0.11	2.91	3.40	0.31	0.07	0.14	5.70	98.92	1290.	48.	5.
VA02278	126.40	126.70	65.90	12.50	6.47	1.22	0.59	2.50	2.60	0.29	0.07	0.09	7.47	99.70	1070.	35.	7.
VA02279	144.50	144.90	66.80	13.00	4.08	2.06	0.52	2.94	3.08	0.33	0.08	0.13	6.31	99.33	1020.	52.	5.
VA02280	171.30	171.60	67.40	13.00	4.11	1.26	1.93	2.66	2.90	0.33	0.08	0.11	5.08	98.86	887.	39.	6.
VA02281	184.20	184.60	65.00	13.10	4.80	2.53	0.20	3.32	3.63	0.35	0.08	0.14	6.54	99.69	1150.	54.	5.
VA02282	192.60	192.80	67.20	13.70	4.01	1.39	2.01	2.48	2.85	0.32	0.08	0.10	5.31	99.45	987.	39.	6.
VA02283	202.00	202.30	66.20	13.40	3.92	1.48	0.43	3.40	2.14	0.23	0.07	0.11	7.39	98.77	1290.	53.	4.
VA02284	219.40	219.70	67.50	13.40	3.68	1.63	0.64	2.95	2.74	0.27	0.07	0.07	6.08	99.03	1040.	51.	4.
VA02285	231.80	232.00	64.00	12.50	5.86	2.81	0.72	2.37	2.79	0.22	0.06	0.16	8.39	99.88	829.	44.	7.
UA02286	255.00	255.20	71.10	14.30	2.52	1.21	0.60	3.23	1.61	0.21	0.06	0.06	4.85	99.75	1130.	59.	3.
VA02287	260.00	260.30	70.60	12.90	3.35	0.91	3.15	2.01	2.59	0.25	0.06	0.10	4.23	100.15	917.	31.	7.
VA02288	274.60	274.80	52.50	16.70	7.84	1.92	2.97	1.06	7.82	0.67	0.18	0.14	8.54	100.34	280.	22.	: 11.
VA02289	295.60		45.90	15.70	8.88	4.19	3.37	0.96	8.22	0.75	0.16	0.16	12.10	100.39	279.	30.	12.
VA02290	310.80	311.00	59.30	15.10	5.85	2.04	4.49	0.98	5.43	0.47	0.17	0.12	6.08	100.03	371.	23.	10.
VA02291	323.00		53.30	18.70	4.65	2.32	2.72	0.76	9.98	1.11	0.43	0.13	5.54	99.64	718.	29.	7.
VHU2271	323.00	043.4V	33.30	10.,0													

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO		RB (mec)	SR (բրա)	BA (ppm)	(ppm)	ZR (ppm)	MB (ppm)	(bow) Uii	ZN (ppm)	MI (ppm)		ROCK	CODES ALT	MIN
			~~~~													
VA02271	11.00	11.40		28.0	233.0	130.0	25.0	93.0	21.0	250.0	79.0	45.0				
VA02272	56.80	57.00		98.0	<10.0	2200.0	19.0	109.0	15.0	59.0	(10.0	<10.0		IFAT	PSh	Á
7A02273	66.50	66.70		52.0	3,32.0	1310.0	<10.0	112.0	<10.0	50.0	<10.0	<10.0		TFAT -	PHW	. A .
VA02274	73.60	73.80		58.0	1777.0	2010.0	<10.0	95.0	18.0	48.0	11:0	:10.0		TEAFQY	PSH	A
VA02275	92.60	93.00		58.9	74.0	927.0	<10.0	115.0	14.0	27.0	53.0	<10.0		TEAEGY	PSM	186
VA02277	99.20	99.40		10.0	224.0	139.0	11.0	77.0	24.0	155.0	91.0	77.0		PMAT	РНШ	<b>4</b>
VA02276	106.20	106.40		63.0	52.0	1290.0	25.0	10.4.0	<10.0	57.0	135.0	14.0		PmAT	PHW	A
VA02278	126.40	126.70		49.0	157.0	1070.0	31.0	105.0	<10.0	50.0	65.0	10.0		TEAT	PHW	DEF
VA02279	144.50	144.30		54.0	41.0	1020.0	40.0	126.0	13.0	50.0	56.0	210.0		TFAT	рны	DCP
VA02280	171.30	171.60		46.0	55.0	887.0	37.0	121.0	12.0	· "5,0	40.0	<.10.0		TFET	्रमुसन्	DEF
VA03281	154.20	184.50		59.0	70.9	1150.0	38.0	109.0	<10.0	60.0	73.0	10.0		TEBT	ьни	DB9
VA02282	192.60	192.80		42.0	88.0	997.0	38.0	117.0	13.0	55.0	54.0	G::0		0	Ţ	ê.
VA02283	202.00	202.30		74.0	55.0	1290.0	<10.0	25.0	12.0	36.0	23.0	0.015		TEPOT	P.4M	DOF
UA02284	219.40	219.70		49.0	£2.0	1040.0	19.0	104.0	11.0	30.0	32.0	<30.0		TERRT	PPW	0.64
VA02285	231.80	232.00		5:10	91.0	328.0	12.0	68.0	<10.0	39.0	53.0	<10.0		TERT	१५ <b>८</b>	ppp
VA02286	255.00	255.20		62.0	· · · · · · · · · · · · · · · · · · ·	1130.0	17.0	105.0	19.0	21.0	18.0	9.01		TFET	РНЫ	5.57
VA02287	260.00	260.30		42.0	97.6	917.0	21.0	35.0	13.0	63.0	30.0	14.0		TEBOT	PHM	ع د
VA02288	274.60	274.90		19.0	1":.0.	. 40.0	33.0	46.0	15.0	21.0	76.0	16.0		Inal	FOM	ć,
VA02289		295,30		26.0	present as	379 <b>.0</b> .	18.0	40.0	<10.0	52.7	59.0	21.0		TMAT	ECM	A
VA02290		311.00		40.0	295.60	371.0	19.0	89.0	28.0	25.0	44.0	17.0		TMAT	FCM	. Á
VA02091		323.20		139.0	402.0	118.0	23.0	22.0	<10.0	35.0	207.0	30.0		ThaT	548	£.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	<b>28103</b>	ZAL203	ZCAO	zngo	XNA20	xK20	ZEE203	X1102	XP205	2mn0	XLO1	SUM	BA	AI	NACA
		**********													•		
VA02768	55.60	75.00	69.40	14.10	3.62	1.37	1.52	2.56	4.20	0.33			2.70	99.80	1700.	43.	5.
VA02769	75.00	98.90	72.10	14.00	2.62	1.04	2.07	2.65	2.43	0.28			2.70	99.88	1190.	44.	5.
VA02770	101.80	131.00	65.70	13.30	5.08	1.23	0.33	3.12	3.59	0.32			5.39	98.06	1460.	45.	5.
VA02771	131.00	163.90	66.20	13.10	4.95	1.74	0.56	2.96	3.04	0.29			6.23	99.07	1180.	46.	6.
VA02772	165.00	188.00	69.00	13.60	3.77	1.49	0.81	3.14	2.61	0.29			5.31	100.02	1200.	50.	5.
VA02773	188.00	210.50	68.40	13.40	3.56	1.58	0.81	2.97	2.99	0.25			5.31	99.27	1310.	51.	4.
VA02774	210.50	226.20	69.10	12.90	3.83	1.48	0.61	2.83	2.71	0.28			5.62	99.36	1190.	49.	4.
VA02775	226.20	257.80	67.70	13.80	3.89	1.83	0.61	2.86	2.62	0.21			6.47	99.99	1020.	51.	5.
VA02776	257.80	272.00	70.60	13.40	2.70	0.69	1.96	2.56	2.78	0.35			3.39	98.33	1340.	41.	5.
VA02777	272.00	295.00	46.70	14.30	11.90	2.62	1.79	1.07	7.88	0.68			12.10	99.54	245.	21.	14.
VA02776	295.00	320.00	43.30	14.40	12.60	3.48	1.72	1.08	8.99	0.76			12.90	99.23	307.	24.	14.
VA02779	320.00	346.30	43.80	14.90	12.50	3.37	1.63	1.46	8.42	0.80			11.80	98.68	754.	25.	14.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

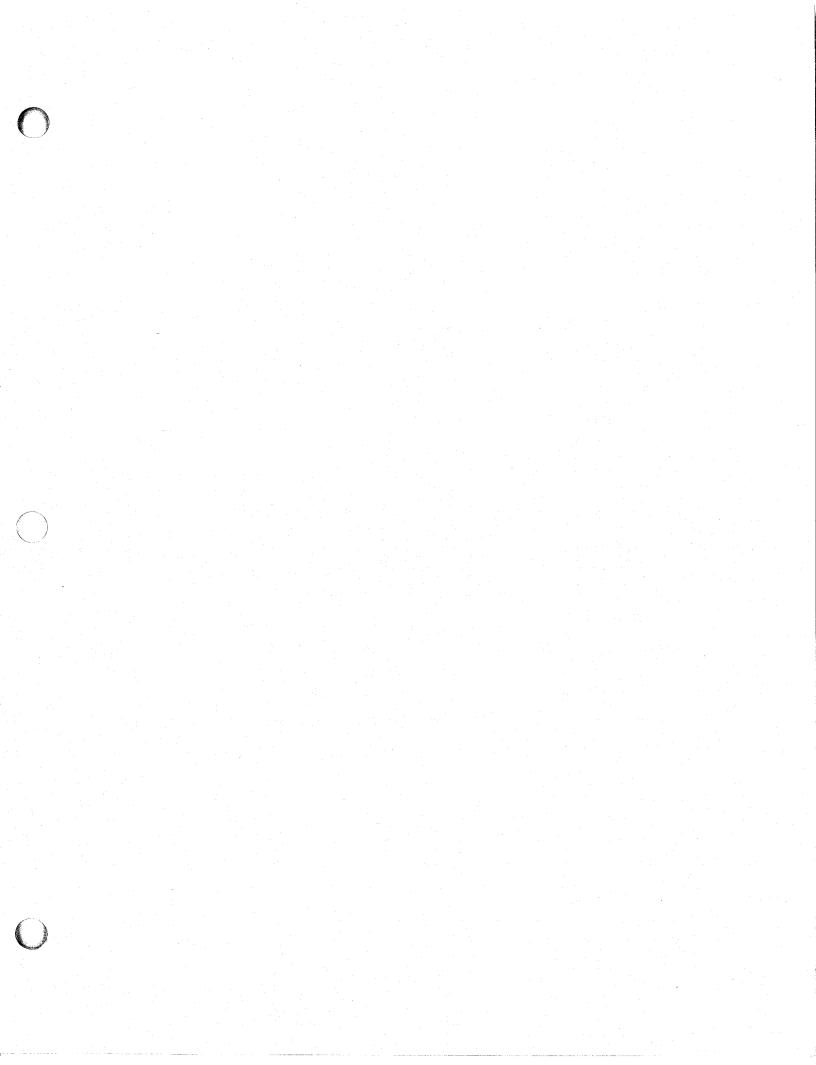
SAMPLE YUMBER	FROM	TO	RB (ppm)	Sk (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)	 	 <del></del>	ROCK	CODES	MIN
VA02768	55.60	75.00			1700.0				346.0	21. 6						
VA02769	75.00	98.90			1190.0					21.0	13.0			TFAT	PHW	DBP
VA02770	101.80	131.00							49.0	49.0	<10.0			TEAFOY	PHW	DBP
					1460.0				72.0	81.0	<10.0			TFAT	7	DBP
VA02771	131.00	163.90			1180.0				104.0	38.0	<10.0					
VA02772	165.00	188.00			1200.0				42.0	54.0				TFAT	?	DBP
JA02773	188.00	210.50			1310.0						<10.0			TFBT	PHW	DBP
/A02774	210.50	226 . 20							44.0	177.0	<10.0			TFBT	PHW	DRP
					1190.0				37.0	48.0	<10.0			TFAQY	PHW	DBP
	226.20	257.80			0.000				54.0	40.0	<10.0					
A02776 1	257.80	272.00		1	340.0				77.0	11.0				IFBT	PHW	DBP
A02777 2	272.00	295.00			245.0					11.0	<10.0			TEBI	PHM	DBP
	295.00								68.0	67.0	19.0			TMAT	FCM	A .
					307.0				76.0	70.0	75.0			0	ECM	
402779 g	320.00	346.30			754.C.				80.0	150.0	83.0			IMAI	FOR	A

### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	НО (ppm)	НН (ppm)	CUZN	ETS	FE
VA03324	61.90	62.90	2040.0	21.0	25.0	<0.5	5.0	7.0	7.0	10.0	(5.0	<1.0	<1.0	239.0	46.	0.	2.
VA03325	62.90	63.30	1730.0	109.0	14.0	<0.5	5.0	17.0	10.0	6.0	<5.0	<1.0	<1.0	164.0	89.	2.	2.
VA03326	63.30	64.50	1010.0	33.0	97.0	<0.5	<5.0	6.0	5.0	<5.0	<5.0	<1.0	5.0	399.0	25.	0.	2.
VA03327	64.50	65.50	750.0	337.0	98.0	0.5	⟨5.0	22.0	29.0	7.0	29.0	2.0	2.0	682.0	77.	1.	4.
VA03328	65.50	66.00	1440.0	112.0	19.0	<0.5	<5.0	7.0	9.0	14.0	20.0	<1.0	<1.0	204.0	86.	4.	2.
VA03329	66.00	67.00	1310.0	14.0	14.0	<0.5	<5.0	4.0	4.0	6.0	9.0	<1.0	<1.0	128.0	50.	1.	1.
VA03330	78.70	79.50	1510.0	150.0	61.0	<0.5	25.0	4.0	5.0	33.0	7.0	<1.0	3.0	88.0	71.	3.	1.
VA03331	79.50	80.20	1080.0	37.0	12.0	<0.5	5.0	2.0	4.0	9.0	<5.0	<1.0	1.0	91.0	76.	2.	1.
VA03332	80.20	81.20	1040.0	24.0	27.0	<0.5	10.0	8.0	10.0	5.0	14.0	<1.0	<1.0	319.0	47.	1.	2.
VA03333	84.00	85.00	1270.0	38.0	21.0	<0.5	<5.0	5.0	8.0	⟨5.0	7.0	<1.0	<1.0	274.0	64.	2.	1.
VA03334	85.00	86.00	1090.0	16.0	16.0	<0.5	5.0	4.0	3.0	5.0	< <b>5.0</b>	<1.0	<1.0	228.0	50.	1.	1.
VA03335	86.00	87.00	810.0	13.0	18.0	⟨0.5	<5.0	3.0	3.0	⟨5.0	<5.0	<1.0	<1.0	257.0	42.	1.	1.
VA03336	87.00	88.40	690.0	11.0	17.0	<0.5	<5.0	2.0	5.0	6.0	⟨5.0	<1.0	<1.0	295.0	39.	1.	1.
VA03337	88.40	88.60	660.0	71.0	31.0	<0.5	15.0	7.0	5.0	8.0	13.0	<1.0	1.0	506.0	70.	4.	з.
VA03338	98.60	89.50	600.0	61.0	60.0	<0.5	10.0	10.0	7.0	<5.0	13.0	<1.0	2.0	646.0	50.	2.	3.
VA03339	89.50	90.20	520.0	25.0	37.0	<0.5	5.0	5.0	7.0	5.0	6.0	1.0	<1.0	55.0	40.	1.	0.23
VA03340	94.50	95.00	940.0	341.0	493.0	<0.5	35.0	10.0	9.0	27.0	<5.0	3.0	4.0	493.0	41.	2.	2.
VA03341	95.30	95.50	760.0	0.5	569.0	<0.5	10.0	3.0	26.0	104.0	⟨5.0	4.0	<1.0	25.0	0.1	3.	0.23
		96.90	1200.0	233.0	431.0						15.0	4.0	2.0	171.0	35.	3.	1.
VA03342	95.90					<0.5	20.0	2.0	3.0	10.0						2.	1.
VA03343	96.90	97.50	1230.0	382.0	1464.0	⟨0.5	15.0	7.0	9.0	11.0	12.0	8.0	<1.0	173.0	21.		2.
VA03344	97.50	98.50	1630.0	40.0	47.0	<0.5	<5.0	10.0	13.0	<5.0	8.0	<1.0	1.0	478.0	46.	1.	
VA03345	100.80	101.30	1580.0	48.0	199.0	(0.5	25.0	4.0	2.0	(5.0	<5.0	2.0	1.0	263.0	19.	4.	1.
VA03346 .	101.80	102.80	1230.0	568.0	945.0	9.1	220.0	10.0	18.0	123.0	47.0	7.0	27.0	226.0	38.	4.	3.

SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZH (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MG (ppm)	HH (ppm)	CUZN	ETS	FE
							-										
VA03347	102.80	103.80	1450.0	157.0	686.0	0.6	16.0	5.0	3.0	45.0	9.0	6.0	6.0	312.0	19.	3.	1.
VA03348	103.80	104.60	1280.0	34.0	198.0	<0.5	22.0	5.0	4.0	27.0	<5.0	1.0	<1.0	343.0	15.	2.	2.
VA03349	107.00	108.00	2070.0	41.0	138.0	<0.5	71.0	5.0	1.0	7.0	<5.0	1.0	2.0	504.0	23.	1.	1.
VA03350	108.00	108.70	5340.0	633.0	507.0	3.1	104.0	6.0	7.0	118.0	7.0	3.0	17.0	212.0	56.	4.	1.
VA03351	108.70	109.70	930.0	23.0	285.0	0.7	12.0	6.0	6.,0	6.0	<5.0	2.0	2.0	433.0	7.	1.	1.
VA03352	110.80	111.80	1320.0	33.0	401.0	0.6	31.0	4.0	4.0	17.0	41.0	2.0	<1.0	353.0	8.	1.	1.
VA03353	111.80	112.80	1260.0	27.0	604.0	0.5	13.0	5.0	<1.0	13.0	20.0	3.0	2.0	378.0	4.	2.	1.
VA03354	112.80	113.30	1250.0	25.0	1335.0	0.8	24.0	4.0	4.0	6.0	15.0	6.0	2.0	569.0	2.	4.	1.
VA03355	113.30	114.30	1290.0	28.0	64.0	<0.5	9.0	5.0	10.0	12.0	14.0	<1.0	4.0	243.0	30.	1.	1.
VA03356	128.00	128.50	950.0	17.0	290.0	0.6	37.0	4.0	4.0	10.0	(5.0	1.0	3.0	1443.0	6.	3.	2.
VA03357	129.80	130.80	1070.0	19.0	58.0	<0.5	15.0	4.0	<1.0	10.0	<b>(5.0</b>	<1.0	2.0	441.0	25.	3.	1.
VA03358	130.80	132.00	960.0	28.0	79.0	<0.5	23.0	5.0	5.0	10.0	<5.0	(1.0	3.0	362.0	26.	5.	1.
VA03359	132.00	133.00	1140.0	88.0	67.0	0.6	24.0	4.0	3.0	7.0	(5.0	<1.0	2.0	459.0	57.	3.	ı.
09EE0AV	133.00	134.00	1150.0	16.0	37.0	<0.5	5.0	4.0	2.0	8.0	<5.0	<1.0	<1.0	272.0	30.	ź.	1.
VA03361	134.00		1050.0	14.0	47.0	(0.5	<5.0	4.0	3.0	9.0	6.0	<1.0	2.0	451.0	23.	2.	1.
VA03362		136.00	1070.0	14.0	80.0	1.0	7.0	4.0	3.0	9.0	⟨5.0	<1.0	<1.0	994.0	15.	2.	2.
VA03363		136.00	1220.0	14.0	51.0	<0.5	29.0	3.0	3.0	6.0	<5.0	<1.0	<1.0	575.0	22.	2.	1.
																	1.
VA03364	137.00		1090.0	19.0	56.0	0.8	25.0	3.0	4.0	9.0	<5.0	<1.0	<1.0	569.0	25.	1.	
VA03365		141.00	1090.0	17.0	88.0	0.6	26.0	5.0	3.0	<5.0	10.0	<1.0	2.0	615.0	16.	2.	1.
VA03366	141.00	142.00	1210.0	18.0	130.0	<0.5	26.0	3.0	5.0	6.0	16.0	<1.0	<1.0	638.0	12.	2.	1.
VA03367	142.00	143.00	1150.0	18.0	71.0	<0.5	7.0	4.0	4.0	9.0	7.0	<1.0	1.0	734.0	20.	2.	2.
VA03368	143.00	144.00	1020.0	17.0	39.0	<0.5	24.0	7.0	4.0	6.0	8.0	<1.0	<1.0	551.0	30.	2.	1.
VA03369	144.00	145.00	1010.0	21.0	58.0	0.5	40.0	3.0	5.0	9.0	8.0	<1.0	<1.0	701.0	27.	2.	2.

Page No.


### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAHPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	MH (ppm)	CUZN	ETS	FE
							. *		4.1								
VA03370	145.00	146.30	870.0	30.0	88.0	<0.5	30.0	10.0	49.0	9.0	11.0	<1.0	<1.0	837.0	25.	2.	2.
VA03371	146.80	147.50	1000.0	45.0	42.0	<0.5	25.0	14.0	19.0	8.0	10.0	<1.0	2.0	1041.0	52.	2.	2.
VA03372	147.70	148.70	960.0	50.0	59.0	0.6	40.0	18.0	24.0	8.0	21.0	<1.0	<1.0	1335.0	46.	3.	з.
VA03373	148.70	149.70	1070.0	17.0	32.0	<0.5	20.0	4.0	4.0	11.0	5.0	<1.0	<1.0	639.0	35.	2.	. 1.
VA03374	149.70	150.70	1020.0	21.0	60.0	<0.5	25.0	6.0	7.0	9.0	6.0	<1.0	4.0	534.0	26.	2.	2.
VA03375	150.70	151.70	1040.0	16.0	28.0	<0.5	30.0	4.0	5.0	<5.0	<5.0	<1.0	<1.0	539.0	36.	3.	1.
VA03376	151.70	152.70	1040.0	18.0	32.0	<0.5	35.0	4.0	5.0	9.0	<5.0	<1.0	<1.0	602.0	36.	3.	i.
VA03377	152.70	153.50	920.0	24.0	32.0	<0.5	20.0	6.0	7.0	8.0	7.0	<1.0	2.0	606.0	43.	1.	1.
VA03378	153.80	154.80	1100.0	17.0	40.0	<0.5	20.0	5.0	7.0	7.0	6.0	<1.0	<1.0	512.0	30.	3.	1.
VA03379	154.80	155.80	1250.0	15.0	219.0	<0.5	25.0	2.0	4.0	6.0	<5.0	2.0	<1.0	468.0	. 6.	3.	ı.
VA03380	155.80	156.80	1310.0	16.0	78.0	<0.5	30.0	4.0	5.0	8.0	<5.0	<1.0	<1.0	639.0	17.	3.	1.
JA03381	156.80	157.80	990.0	6.0	30.0	<0.5	15.0	3.0	5.0	<5.0°	<5.0	<1.0	<1.0	523.0	17.	2.	1.
VA03382	157.80	159.00	1020.0	4.0	31.0	<0.5	35.0	2.0	4.0	9.0	⟨5.0	<1.0	<1.0	404.0	11.	2.	1.
VA03384	179.00	179.50	1200.0	19.0	87.0	<0.5	15.0	4.0	7.0	14.0	7.0	<1.0	<1.0	412.0	18.	3.	1.
VA03385	181.60		1040.0	879.0	2213.0	2.8	140.0	8.0	8.0	20.0	7.0	21.0	2.0	839.0	28.	2.	2.
VA03383	189.40		1590.0	20.0	108.0	⟨0.5	20.0	4.0	6,0	12.0	⟨5.0	1.0	<1.0	500.0	16.	3.	1.
JA03386		199.40	1320.0	665.0	2902.0	1.5	55.0	4.0	6.0	142.0	14.0	18.0	<1.0	669.0	19.	0.	1.
VA03387	199.40		1520.0	110.0	253.0	(0.5	45.0	34.0	22.0	21.0	18.0	1.0	: <1.0	1398.0	30.	0.	4.
88EE0AV		201.40	1200.0	271.0	490.0	0.8	24.0	5.0	2.0	480.0	19.0	3.0	3.0	861.0	36.	. 0.	. 1.
VA03389	268.00	269.00	1000.0	13.0	30.0	<0.5	14.0	6.0	2.0	<5.0	<5.0	<1.0	<1.0	413.0	30.	2.	2.
VA03390	269.00	270.30	960.0	19.0	36.0	<0.5	10.0	4.0	<1.0	6.0	<5.0	<1.0	<1.0	496.0	35.	2.	2.
VA03391	270.30	271.40	1000.0	10.0	20.0	<0.5	25.0	5.0	<1.0	⟨5.0	6.0	<1.0	<1.0	319.0	33.	2.	1.
VA03392	278.00	279.00	190.0	15.0	109.0	<0.5	20.0	29.0	26.0	<5.0	14.0	2.0	<1.0	1076.0	12.	1.	5.

Hole No. CH88-41

### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	70	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	HN (ppm)	CUZN	ETS	FE
VA03393	317.70	318.00	690.0	30.0	117.0	(0.5	28.0	14-0	я. о	C5 - 0	<b>(5-0</b>	1_0	1.0	1268.0	20.	1.	4.



Summary Log: DDH CH88-42

Location: 30+00 E, 4+80 N; Chip 1 Claim

Azimuth: 030, Dip: -50

Hole Completed: April 18, 1988 Core Logged By: D.P. Money

0.0 - 4.8 Casing.

4.8 - 29.0 Intercalated felsic and mafic tuffs.

29.0 - 40.9 Felsic quartz eye tuff.

40.9 - 196.9 Gabbro, fine grained plagiophyric to coarse grained, with local occurences of 1 to 2 % chalcopyrite over intervals up to 0.7 m. There are two small, up to 1.8 m, inclusions:

one of argillite and one felsic tuff.

196.9 End of hole.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Hole Location: 30+00 E 4+80 N

NTS: 092B/13 UTM: 5417347.1 N 430548.8 E

Azimuth: 30 Elevation: 600 m Dip: -50 Length: 196.9 m

Started: April 15, 1988 Completed: April 18, 1988

Purpose: Test Powerline Anomaly, combined soil geochem and I.P. anomaly

Claim No. Chip 1

Section No.: Section 30+00 East, Chip Group

HOLE No: Page Number

Logged By: D.P. Money

Drilling Co.: Burwash Enterprises

ch88-42

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NQ

		Azi-			Azi-	
	Length	muth	Dip	Length	muth	Dip
	11.30	29.0	-46.5	191.10	27.0	-46.0
	105.80	29.0	-46.0			

From Sample From Vidth To Total Cu Рb Żn Вa λg Αu (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppb) (ppm) (ppm) (ppm)

- .0 4.8 OVERBURDEN

  No chit marked start of coring. Coarse grained gabbro pebbles.
- 4.8 8.3 FELSIC QUARTZ EYE TUFF
  Quartz sericite schist with 5 %, 2 mm, quartz eyes. Is locally chloritic, up to 5 % chlorite. At end of unit is minor pyrite blebs and mariposite. There is 0.3 m of lost core from 5.0 to 6.1 and 1.1 m from 6.1 to 8.2. Foliation is strongly contorted.
- 8.3 10.4 MAFIC TUFF

  Mafic ash tuff with minor felsic tuff. Sheared at 55 degrees to core axis. There is 0.9 m of lost core from 8.2 to 10.0.
- 10.4 10.6 WEAKLY CHLORITIC FELSIC TUFF Weakly chloritic felsic tuff with approximately 7 %, 2 mm, quartz eyes.
- 10.6 12.7 FELDSPAR PORPHYRITIC MAFIC ASH TUFF
  Hassive dark green felsic tuff with approximately 10 to 12
  %, 1 to 2 mm, epidotized feldspars. There are local ash tuffs at 62 degrees to core axis.
- 12.7 16.4 VEAKLY CHLORITIC FELSIC TUFF
  Weakly chloritic quartz sericite chlorite schist with

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number ch88-42 2

From To (m) (m) ------DESCRIPTION------

10 to 15 %, 1 to 3 mm, quartz eyes and local chlorite rich bands with 10 %, 1 mm, epidote grains at 57 degrees to core axis, probably are beds. There is local strong sericitization. Foliation is at 50 to 52 degrees to core

- 16.4

  29.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL LAPILLI TUFF
  Chloritic felsic tuff, weakly to strongly chloritized with
  3 to 20 % chlorite. There are locally 3 to 7 % 1 to 3 mm
  quartz eyes and 10 to 20 %, 1 to 3 mm, epidote and
  feldspar grains. There are local fracture controlled
  quartz veinlets. There are minor mafic ash tuff beds and
  is very locally sericitic for 5 cm, lapilli (?). There is
  trace local disseminated pyrite from 26.7 to 27.1. There
  is 0.7 m of lost core from 27 to 28.7. Oxidized to 24.3.
  The lapilli are mainly epidotized.
- 29.0 40.9 FELSIC QUARTZ EYE TUFF

  Variably altered felsic tuff with 5 %, 3 to 6 mm, quartz
  eyes and numerous, 5 to 20 %, << 1 mm, quartz eyes.

  Alteration:
  29.0 31.3 WEAK PERVASIVE CHLORITIZATION.
  31.3 35.0 MODERATE PERVASIVE SERICITIZATION.
  35.0 40.9 MODERATE PERVASIVE CHLORITIZATION.
  35.0 40.9 MODERATE PERVASIVE CHLORITIZATION.
  Chloritization occurs as 10 to 15 % chlorite with sericite. Silicification is characterised by glassy appearance and very siliceous tuff. Sericitic tuff is white and 'flaky'. Tuff is locally contorted with trace fracture controlled sericite veinlets. No sulphides occur. Foliations:.

30.4 : 50 degrees to core axis.

32.4: 46 degrees to core axis.

36.9 : 51 degrees to core axis.

38.1 : 64 degrees to core axis.

Lower contact: 41 degrees to core axis with strongly foliated fine-grained gabbro at contact.

41.0 42.8 Strong quartz - chlorite - epidote veining.

40.9 80.2 MEDIUM TO COARSE-GRAINED GABBRO

Dark green medium to fine-grained gabbro with on average
15 to 25 %, 1 to 4 mm, feldspar grains, 3 to 7 %
fine-grained, up to 1.5 mm, ilmenite with purple.5 mm rims
of sphene (?). Matrix is chlorite, probably after
hornblende. Is massive with weak local foliations in zones
of shearing and at contacts.

40.9 41.0 Fine-grained foliated gabbro at contact,
foliation is at 41 degrees to core axis.

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

VA01032 29.0 40.0 11.0 n/a 49 n/a 24 n/a n/a 1890

2

PROPERTY.	Chemainus	J V
rrorerii.	CHEMAINUS	U.Y.

FALCONBRIDGE LIHITED DIAMOND DRILL LOG

HOLE No: Page Number ch88-42 3

(ppm) (ppb) (ppm)

**<5** 190

<1

		DIAMOND DRILL LOG									
From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	
		41.9 42.1 1 to 2 % chalcopyrite in veins. 48.0 49.0 Blocky, highly fractured core. 68.4 80.2 Moderately foliated at 45 degrees to core axis									
		with strong chloritization and approximately 10									
		71.5 to 72.2 strong fracture controlled quartz veining with 1 % chalcopyrite.									
80.2	82.0	BLACK ARGILLITE Argillite or greywacke, mafic with approximately 10 %	VA01576	80.2	82.0	1.8	1	44	<b>(5</b> )	150	
		fine-grained calcite and 0.5 to 1 % disseminated pyrite. Is black with cherty grey upper contact. Foliation at 23					Ţ.,				
		degrees to core axis parallel to bedding (?).									
82.0	99.5	MEDIUM TO COARSE-GRAINED GABBRO  Fine-grained at lower and upper contacts. Hosts epidote, quartz and calcite veins at 0 to 80 degrees to core axis.  Grains are 2 to 6 mm in size, 40 % chloritic hornblendes,									
		10 % feldspars and up to 2 % fine-grained ilmenite. Is fine-grained and sheared chlorite from 90.9 to 91.3 and 92.2 to 93.0 at 47 degrees to core axis. There is trace									
		chalcopyrite at 87.7.									
99.5	100.1	FELSIC TUFF Dark grey contorted siliceous felsic ash tuff with minor chloritic mafic ash tuff layers. Is locally contorted.									
		Bedding and foliation are at 32 degrees to core axis.									
1											
100.1	127.8	MEDIUM TO COARSE-GRAINED GABBRO Multi-phased gabbro with large porphyritic feldspar									
		crystals. 100.1 100.4 Fine-grained weakly carbonatized with strong foliation at 43 degrees to core axis.									
		100.4 101.0 Strongly magnetic gabbro with 15 to 20 %, 2 to 4 mm, ilmenite crystals in dark matrix with up to 3 % feldspars.									
		101.0 101.1 Quartz - chlorite vein with trace chalcopyrite. 101.1 102.1 Coarse grained gabbro with 30 % of both 3 to 4 mm feldspars and altered hornblendes with									
		trace ilmenite.  102.1 112.2 10 to 15 %, 1 to 5 mm, feldspar laths and									
		102.1 112.2 10 to 15 4, 1 to 5 mm, leiuspat latits and									

approximately 2 % fine-grained ilmenite, is

112.2 115.6 Fine-grained dark green non-magnetic gabbro with hornblendes and trace ilmenite and

115.6 118.3 Feldspar phyric with 10 to 15 %, 1 to 4 am, in

not magnetic.

purple sphene.

FALCONBRIDGE LIMITED
DIAMOND DRILL LOG

HOLE No: Page Number ch88-42 4

fine-grained medium to light green matrix with trace fine-grained ilmenite.

118.3 118.9 White bull quartz - chlorite vein.

118.9 127.8 As from 115.6 to 118.9 with minor local epidotization.

- 127.8 133.0 MAFIC INTRUSIVE

  Strongly sheared gabbro with strong pervasive
  carbonatization, white calcite streaks with local brown
  carbonate specks. A piece of faulted felsic ash tuff
  occurs at 130.5. Is sheared at 45 degrees to core axis.
  There is 1 to 2 %, < 1 mm, fine-grained ilmenite with
  purple rims.
- 133.0 137.4 MEDIUM TO COARSE-GRAINED GABBRO

  Fine-grained gabbro with local epidote veins, at 60 to 90 degrees to core axis, 0.5 to 4 cm.
- 137.4 142.3 MEDIUM TO COARSE-GRAINED GABBRO

  Coarse grained gabbro with up to 1 cm chloritized hornblendes, 40 %, 5 to 10 % purple sphene rimmed ilmenite (?). Epidote is in matrix with local feldspar clots. There is trace chalcopyrite with clots at 140.0 and 141.4. There is 0.2 m lost core from 142.0 to 142.6.
- 142.3 196.9 FELDSPAR PORPHYRITIC GABBRO

  Medium green gabbro with 5 to 20 %, averages 12 to 15 %, 1
  to 4 mm, feldspar grains. Has trace to 2 % ilmenite and
  minor local fine-grained leucoxene. There are numerous
  local 0.5 to 2 cm fracture controlled quartz calcite
  veinlets. Strongly sheared from 169.6 to 170.6 at 31
  degrees to core axis. Is massive with trace blocky, highly
  fractured core. Minor chloritic clay fault gouge at 192.3
  and 193.5. At 193.5 is at 24 degrees to core axis for the
  2 cm of fault gouge. From 167 to 168 there are minor
  fault slips at angles near to the core axis.

End of Hole: 646 feet, 9:00 a.m. On Monday April 18, 1988.

Total Lost Core: 3.2 m % Recovery = 98.4%.

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

2

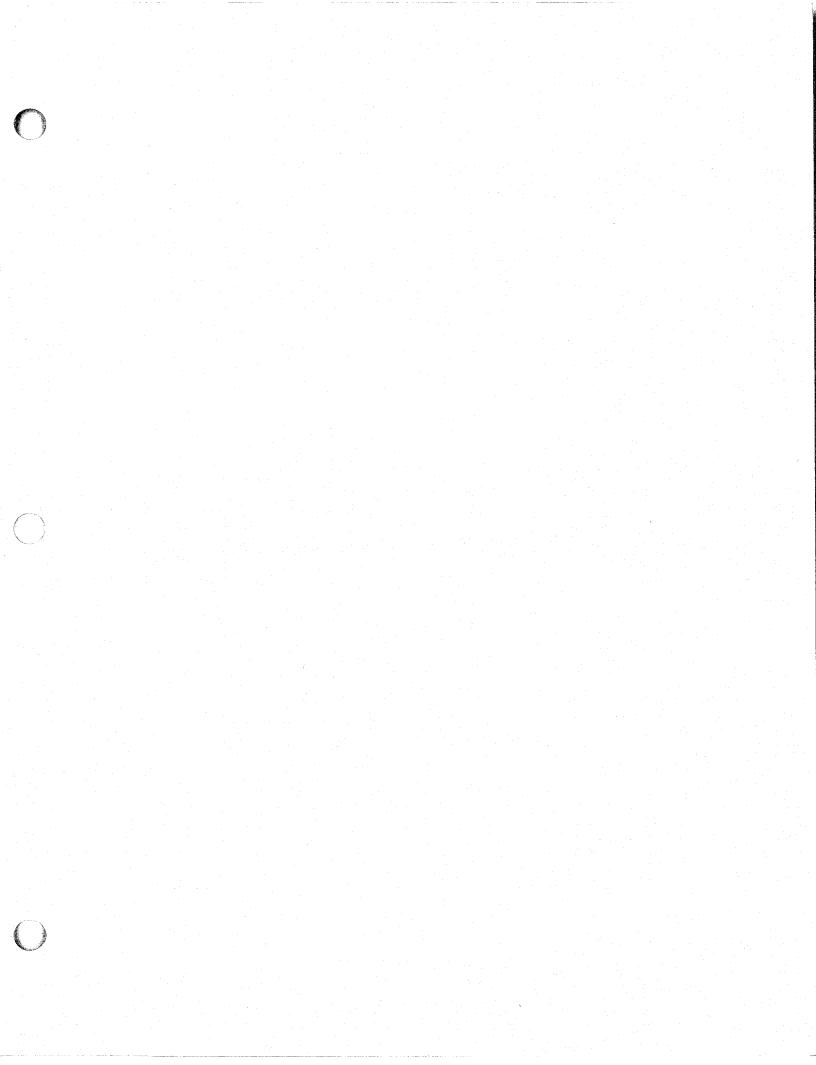
# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

											<u></u>						
SAMPLE NUMBER	FROM	το	<b>25102</b>	XAL203	ICAO	IHGO	ZNA20	XK20	XFE203	27 102	ZP205	ONKI	TLOI	SUM	BA	AI	NACA
		<del></del>		· .			<del></del>										
VA00562	14.10	14.20	73.70	13.90	1.85	1.02	2.17	2.65	2.36	0.27	0.07	0.04	2.00	100.03	1380.	48.	4.
VA00563	32.40	32.50	71.60	14.80	2.88	0.40	5.00	1.89	0.49	0.24	0.05	0.02	2.93	100.30	2880.	23.	8.
VA00564	38.00	38.10	73.10	12.60	2.68	0.79	3.70	1.43	2.27	0.23	0.06	0.03	3.00	99.89	598.	26.	6.
VA00565	81.00	81.10	53.20	13.40	6.35	2.41	4.00	1.71	11.30	1.51	0.55	0.20	5.54	100.17	218.	28.	10.
VA00566	99.50	99.60	66.80	14.60	4.03	0.74	6.24	0.78	3.76	0.22	0.03	0.07	3.08	100.35	493.	13.	10.

### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	(opm) 88	Sk (ppm)	BA (ppm)	Y (ppm)	2R (ppm)	NB (ppm)	CU ∢ppm)	ZN (ppm)	NI (ppm)			ROCK	CODES	MIN
											******		 			
VA00562	14.10	14.20	56.0	110.0	1380.0	25.0	91.0	<10.0	49.0	12.0	<10.0			TEAG	ŗ	A
VA00563	32.40	32.50	38.0	237.0	2880.0	15.0	89.0	<10.0	28.0	<10.0	<10.0			TEAU	?	A
VA00564	38.00	38.10	30.0	39.0	598.0	17.0	92.0	11.0	12.0	<10.0	<10.0			TFAG	?	A
VA00565	81.00	81.10	68.0	83.0	218.0	68.0	232.0	44.0	51.0	156.0	<10.0			SA	3	DBP
VA00566	99.50	99.60	13.0	104.0	493.0	152.0	535.0	63.0	33.0	60.0	<10.0			TFA .	?	A

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)


SAMPLE						******											
NUMBER	FROM	ro	<b>%S 102</b>	ZAL203 ZCAO	ZHGO	INA20	XK20	XFE203	21102	XP205	OHKI	XLOI	SUH	BA	ΑI	NACA	
VA01032	29.00	40.00	71.70	13.60 3.28	0.79	3.45	2.05	1.73	0.24			3.33	100.07	1890	30	7	

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	88 (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	(bbw)	ZN (ppm)	NI (mgq)		 ROCK	CODES	MIN
VA01032	29.00	40.00		1	890.0				49.0	24.0	17.0		TEAQ		Α

### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU ZN (ppm)	AG AU (ppm) (ppb)	CO HI PB (ppm) (ppm)	AS (ppm)	CD (ppm)	но ни (ррж) (рр		EIS	PE
UA01576	80.20	R2_00	190.0	44.0 150.0	(0.5 (5.0	17.0 6.0 (5.0	17.0	1.0	3.0 807.	0 23.	1.	5.



Summary Log: DDH CH88-43

Location: 28+00 E, 3+30 N; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: April 21, 1988 Core logged by: J. Pattison

0.0 - 15.7 Casing.

15.7 - 45.3 Weakly chloritic felsic tuffs

45.3 - 85.5 Quartz-carbonate altered mafic tuffs and argillaceous sediments

85.5 - 134.2 Weakly chloritic felsic quartz eye tuffs

134.2 - 146.6 Argillaceous volcanic wacke

146.6 - 162.9 Quartz-carbonate altered mafic tuffs and argillaceous sediments

162.9 - 173.5 Volcanic wacke

173.5 - 196.0 Weakly chloritic felsic quartz eye tuff

196.0 - 198.1 Mafic tuffaceous sediments

198.1 - 207.0 Tuffaceous conglomerate

Up to 20 % pebble-sized, fine-grained magnetite-rich clasts one of which contains jasper and several boulders. or beds of massive feldspar +/- quartz porphyritic felsic flow or tuff.

207.0 - 220.8 Mafic tuffaceous sediments

220.8 - 222.5 Epidote-carbonate altered intermediate (?) ash tuff 5 % finely disseminated pyrite

222.5 - 232.1 Mafic tuffaceous sediments

232.1 - 269.8 Weakly chloritic felsic quartz eye tuff

269.8 - 291.8 Feldspar porphyritic gabbro

291.8 - 298.2 Weakly chloritic felsic quartz eye tuff

298.2 - 358.0 Chloritic felsic quartz-feldspar crystal tuff

358.0 - 368.3 CHLORITIC FELSIC QUARTZ EYE TUFF

368.3 - 385.2 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF

385.2 - 386.2 MAFIC TUFF

386.2 - 391.0 WEAKLY CHLORITIZED FELSIC TUFF

391.0 - 391.4 CHLORITIC FELSIC QUARTZ EYE TUFF

391.4 End of Hole

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-43

n/a

Hole Location: 28+00 E 3+30 N

NTS: 92B13 UTM: 5417328.7 N 430301.5 E

Azimuth: 210 Elevation: 568 m Dip: -50

Length: 391.4 m

Started: 16-April-88 Completed: 22-April-88

Purpose: To outline geology north of the Fulford Fault splay.P TESTS

Claim No. Chip 1 Section No.: 28+00 E

Logged By: J. Pattison

Drilling Co.: Burwash Enterprises Assayed By: Bondar-Clegg & XRAL

Core Size: NQ

		Length	muth	Dip	Length	Az1- muth	Dip								
		23.20 123.70	212.0 211.0	-51.0 -47.0	215.20 337.10	211.0 207.0	-43.0 -36.0								
From (m)	To (m)	DESCRIPTIO	N		Samp No		om To m) (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)

VA02780 15.7 45.3 29.6

15.7 OVERBURDEN

15.7 23.0 CHLORITIC FELSIC QUARTZ EYE TUFF

Light green moderately sericitic and weakly chloritic with 2-3 % 1-4 mm quartz eyes. Chlorite occurs in spots and patches. Nil to trace pyrite in bands < 2 mm wide parallel to foliation. Lower contact is arbitrarily placed where quartz eyes dissappear.

STRUCTURE:.

17.2-17.6 M FAULT ZONE at 60 degrees to core axis. 0.1 m of lost core.

At 18.1 foliation is at 68 degrees to core axis.

19.0-20.0 M foliation is contorted.

At 21.1 m foliation is tightly folded. Fold axis is at 60 degrees to core axis.

ALTERATION: .

15.7 23.0 WEAK PERVASIVE CHLORITIZATION and MODERATE PERVASIVE SERICITIZATION.

23.0 27.6 CHLORITIC FELSIC LAPILLI TUFF

Similiar to 15.7 to 23.0 m but only trace ash-sized quartz eyes. Light grey lapilli-sized felsic fragments are common. Foliation is contorted over most of the interval. 3.0 Cm quartz vein at 70 degrees to core axis.

STRUCTURE:.

At 25.0 foliation is at 60 degrees to core axis. 23.0 27.6 WEAK PERVASIVE CHLORITIZATION and MODERATE

n/a 1040

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-43

17 980

From To Sample From To Width Total Cu Pb Zn (m) (m) -----DESCRIPTION-----No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

VA03395

29.7

30.5

#### PERVASIVE SERICITIZATION.

27.6 28.6 CHLORITE SCHIST

Dark green, strongly chloritic with many carbonate +/quartz filled gashes and fractures. Occasional quartz eye 4 mm in diameter. Nil sulphides. Broken core at lower

27.6 28.6 MODERATE FRACTURE CONTROLLED CARBONATIZATION.

28.6 30.5 WEAKLY CHLORITIC FELSIC TUFF Light green, fine-grained well foliated with (1 % 1-3 mm quartz eyes. Minor fault gouge at 70 degrees to core axis

at the lower contact.

STRUCTURE: .

At 29.7 bedding is at 60 degrees to core axis.

28.6 30.5 WEAK PERVASIVE CHLORITIZATION and HODERATE PERVASIVE SERICITIZATION.

29.7 30.5 Finely bedded cherty fine ash tuffs with 2 % pyrite in bands up to 4 mm thick.

30.5 888.8 5.0 cm band of chlorite schist at 76 degrees to core axis.

30.5 45.3 CHLORITIC FELSIC QUARTZ EYE TUFF

As 15.7 to 23.0 m. Dark green, chloritic mafic tuff occurs from 31.9 to 32.0 m and from 32.3 to 33.1 m. 4.0 cm quartz-carbonate vein at 30 degrees to core axis at the lower contact.

STRUCTURE: .

33.1-36.7 FAULT ZONE. Difficult to measure orientation but it appears to be at 40-50 degrees to core axis. Foliation runs parallel to core axis for much of the interval. 1.8 M of lost core.

37.5-38.5 Blocky, highly fractured core. 0.2 m of lost core 38.5-42.4 FAULT ZONE at 20 degrees to core axis. 1.3 m of lost core.

At 45.1 2.0 cm fault gouge at 45 degrees to core axis.

ALTERATION:.

30.5 42.5 WEAK PERVASIVE CHLORITIZATION and HODERATE PERVASIVE SERICITIZATION.

42.5 45.3 MODERATE PERVASIVE CHLORITIZATION.

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-43

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)	
45.3	85.5	MAFIC TUFFS AND ARGILLACEOUS SEDIMENTS												
		Streaky, dark green to black, strongly chloritic moderate	VA02781	45.3		19.7	n/a	159	n/a	63	n/a	n/a	249	
		fracture controlled carbonate +/- quartz alteration. Thin	VA02782	65.0		20.5	n/a	113	n/a	64	n/a	n/a	337	
		(< 4 mm) bands of black argillaceous material are	VA03394	77.2		1.0	1	133	<b>&lt;</b> 5	73	<1		190	
		intercalated with dark green chloritic mafic ash tuff and	VA03396	78.2	78.6	. 4	- 5	156	<b>(5</b>	71	<1	39	220	
		finely bedded light brown cherty sediment. Thin ((2 mm)	VA03397	78.6	81.2	2.6	1	70	₹5	146	<1 ⋅	48	460	
		black mud clasts are common. Very similiar to the MAFIC												
		TUFFACEOUS SEDIMENTS at the bottom of hole CHEM88-41.												
		Bedding is wavy, contorted and broken up throughout unit.												
		Probably a slump deposit of some sort. A pale brown												
		mineral (biotite ?) occurs throughout the unit.  Trace disseminated pyrite. Major fault zone at 30 degrees												
		to core axis at lower contact.												
		STRUCTURE:.												
		At 46.3 foliation is at 40 degrees to core axis.												
		59.1-59.6 M FAULT ZONE at 40 degrees to core axis. 0.4 m												
		of lost core.												
		At 62.5 m foliation is at 45 degrees to core axis.												
		68.5-71.0 M FAULT ZONE at 50 degrees to core axis. 0.5 m												
		of lost core.												
		At 72.6 m bedding is at 49 degrees to core axis.												
		73.7-74.4 FAULT ZONE at 40 degrees to core axis. 0.1 m of												
		lost core.				1000								
		74.9-75.9 FAULT ZONE at 45 degrees to core axis. 0.5 m of												
		lost core.												
		78.7-81.2 FAULT ZONE at 35 degrees to core axis. 1.7 m of												
		lost core.												
		At 82.3 m foliation is at 34 degrees to core axis.												
		83.0-85.5 M FAULT ZONE at 30 degrees to core axis. 1.5 m												
		of lost core.												

ALTERATION:.

45.3 85.5 MODERATE FRACTURE CONTROLLED CARBONATIZATION.

78.2 78.6 5 % disseminated pyrite associated with carbonate alteration.

71.0 73.0 Trace to 3 % disseminated magnetite as grains up to 2 mm in diameter.

72.6 72.7 Bed of MAFIC ASH TUFF at 49 degrees to core axis.

73.1 888.8 1.0 cm bed of felsic ash tuff.

85.5 89.9 CHLORITIC FELSIC QUARTZ EYE TUFF Mottled light green-grey, well foliated, siliceous, fine-grained matrix with 2-5 % 2-5 mm clear quartz eyes and an occasional cherty lapilli-sized clast. Lower

VA02783 85.5 115.0 29.5 70 (5 1000 n/a 15 <1

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-43 4

From To
(m) (m) -------DESCRIPTION------

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

52

51

n/a

34 n/a

n/a

55

17 530

n/a 907

VA03398 89.9 91.0 1.1

VA02784 115.0 135.9 20.9

contact is a minor slip at 72 degrees to core axis.

STRUCTURE: .

At 85.8 m bedding is at 50 degrees to core axis. At 89.6 m 5 cm fault gouge. Not possible to measure orientation.

ALTERATION:.

85.5 89.9 WEAK PERVASIVE CHLORITIZATION and MODERATE PERVASIVE SERICITIZATION.

85.6 888.8 5.0 cm bed of chloritic mafic ash at 52 degrees to core axis.

87.6 87.9 MAFIC TUFFACEOUS SEDIMENTS at 40 degrees to core axis. As 45.3 to 85.5 m.

89.8 888.8 5.0 cm band of chlorite schist (mafic ash tuff ?) at 60 degrees to core axis.

89.9 94.4 WEAKLY CHLORITIC FELSIC TUFF

Light grey-green, fine-grained well foliated. Quartz eye bearing between 91.6 and 93.0 m. Lower contact is a minor slip at 53 degrees to core axis.

STRUCTURE:.

At 93.6 m foliation is at 30 degrees to core axis.

ALTERATION: .

89.9 94.4 WEAK PERVASIVE CHLORITIZATION and HODERATE PERVASIVE SERICITIZATION.

SULPHIDES:.

89.9 91.0 2 % pyrite in hairline fractures.

94.4 132.8 CHLORITIC FELSIC QUARTZ EYE TUFF

Light green-grey, composed of 1-7 % light grey 1-5 mm quartz eyes in a moderately sericitic, weakly chloritic siliceous matrix. Occasional light grey to white felsic fragments up to 1.0 cm wide are recognizable below 100.6 m and two sulphide-rich clasts occur. Quartz eyes have a crushed appearance.

Up to 5 % lapilli-sized felsic fragments below 107.5 m.

Up to 5 % lapilli-sized felsic fragments below 107.5 m. Tuff becomes heterolithic (ie felsic, cherty felsic and chloritic mafic fragments) below 112.5 m. Mafic ash tuff beds up to 1.3 m thick (most (0.2 m) occur below 123.5 m. Lower contact is at 60 degrees to core axis.

STRUCTURE:.

#### FALCONBRIDGE LIMITED DIAHOND DRILL LOG

HOLE No: Page Number CH88-43

From To -----DESCRIPTION-----(m) (m)

At 96.4 m foliation is at 45 degrees to core axis. At 101.1 bedding is at 50 degrees to core axis. 103.5-103.8 0.5 M fault gouge runs parallel to core axis. At 104.0 m foliation is at 30 degrees to core axis. 106.3-106.6 Fault gouge runs parallel to core axis. At 107.4 foliation is at 43 degrees to core axis. At 111.3 bedding is at 46 degrees to core axis. At 119.3 foliation is at 50 degrees to core axis. At 122.4 foliation is at 50 degrees to core axis.

At 129.7 bedding is at 40 degrees to core axis.

#### ALTERATION:.

94.4 132.8 WEAK PERVASIVE CHLORITIZATION and HODERATE PERVASIVE SERICITIZATION.

- 97.2 98.0 Bands (beds ?) of light brown very fine-grained material up to 5 mm occur.
- 101.3 888.8 2.0 cm bed of felsic ash tuff with thin (1 mm) bands of pyrite.
- 107.5 112.5 Light grey, fine-grained lapilli-sized felsic fragments are common (but still comprise < 1% of the core).
- 107.7 107.9 Moderately carbonatized MAFIC ASH TUFF bed at 48 degrees to core axis.
- 108.2 888.8 4 mm thick bed or clast of very fine-grained cherty ash tuff with finely disseminated sulphides at 60 degrees to core axis.
- 112.5 119.7 Wispy chloritic patches ( mafic fragments ?) and chloritic bands < 1.0 cm in diameter are common and felsic fragments are rare.
- 119.7 120.1 Fine-grained green MAFIC DYKE. Upper contact is very sharp at 60 degrees to core axis. 10 cm zone of assimilation at the lower contact.
- 123.0 123.6 Lapilli-sized chloritic mafic fragments are common.
- 123.6 125.0 MAFIC ASH TUFF. Weakly thermal biotite altered, bedding not recognizable but rock has a banded appearance. Core is broken and blocky. Upper contact is at 50 degrees to core axis. Broken core at lower contact.
- 129.7 129.9 MAFIC ASH bed at 40 degrees to core axis.

Vidth Total Zn λg (ppm) (ppb) (ppm) No. (m) (m) Sulphides (ppm) (ppm) (ppm)

П

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-43 6

 Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

130.9 132.2 MAFIC ASH TUFF / WACKE. Hedium green, fine-grained bedding not recognizable, up to 5 % disseminated magnetite. Rock is strongly magnetic. Upper and lower contacts are sharp at 40 degrees to core axis.

132.8 134.2 IMMATURE VOLCANIC WACKE

Medium grey with medium green chloritic streaks, finely
banded parallel to foliation at 40-50 degrees to core
axis. 2-3 % disseminated magnetite, rock is moderately
magnetic. Weak hematite alteration along fracture surfaces
Lover contact is at 50 degrees to core axis.

134.2 135.9 CHLORITIC FELSIC QUARTZ EYE TUFF
As 94.4 to 132.8 m. Felsic lapilli fragments are common.
Nil sulphides. Broken core at lower contact.
132.2 135.9 WEAK PERVASIVE CHLORITIZATION.

135.9 146.6 ARGILLACEOUS VOLCANIC WACKE

Dark grey with a slight green tint due weak chlorite
alteration. Finely bedded and locally weakly graphitic.

Trace to 3 % finely disseminated magnetite above 141.0 m.
Nil sulphides.

STRUCTURE:.

138.7-139.4 Major FAULT ZONE at 30 degrees to core axis.
2.4 m of lost core.
At 140.0 m 3.0 cm fault gouge at 47 degrees to core axis.
At 142.0 m bedding is at 45 degrees to core axis.
At 143.7 m 2.0 cm fault gouge at 57 degrees to core axis.
At 146.1 minor fault gouge at 56 degrees to core axis.

ALTERATION:.
135.9 146.6 WEAK PERVASIVE CARBONATIZATION.

146.6 162.9 MAFIC TUFFS AND ARGILLACEOUS SEDIMENTS
Light to dark grey volcanic wacke beds (30-80%) alternate
with green mafic tuff beds (20-60%), light green felsic
ash tuff (<5%) and black argillaceous beds (<5%). Beds
are generally < 4 mm thick and are often offset slightly
by microfaults. Up to 20 % lapilli-sized lithic and
chloritic mafic clasts. Trace-3% disseminated magnetite
between 146.6 and 150.0 m. Overall composition of the
rock varies from mafic to intermediate. Below 151.5 m the
rock becomes strongly carbonatized, bedding is harder to
recognize, argillite beds are rare and rock takes on a
fragmental appearance. Nil sulphides.

VA02785 135.9 162.9 27.0 n/a 155 n/a 85 n/a n/a 180

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-43 7

From To (m) (m) ------DESCRIPTION-----

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

STRUCTURE: .

At 149.0 m bedding is at 50 degrees to core axis. At 158.9 m foliation is at 50 degrees to core axis.

ALTERATION:.

146.6 151.5 WEAK PERVASIVE CARBONATIZATION.

151.5 162.9 MODERATE FRACTURE CONTROLLED CARBONATIZATION and MODERATE PERVASIVE SERICITIZATION. Very weak spotty epidote alteration below 153.0 m.

162.9 173.5 IMMATURE VOLCANIC WACKE

Medium green, fine-grained relatively massive (bedding is rare). Up to 10 % dark green, thin lapilli-sized wispy chloritic fragments stretched parallel to foliation. Occasional lapilli-sized felsic fragment and rare quartz eye. Trace to 1 % disseminated magnetite. Below 168.1 m rock becomes strongly carbonatized. Carbonate +/- quartz occurs in bands (4 mm wide parallel to foliation giving rock a streaky appearance.
Lower contact is gradational.

STRUCTURE:.

At 167.5 m foliation is at 45 degrees to core axis.

ALTERATION:.

162.9 168.1 WEAK PERVASIVE CARBONATIZATION.
168.1 173.5 STRONG FRACTURE CONTROLLED CARBONATIZATION.

173.5 196.0 CHLORITIC FELSIC QUARTZ EYE TUFF

Light green, weakly to moderately chloritic, moderately sericitic matrix with up to 5 % 1-3 mm quartz eyes. Dark green chloritic tuff beds up to 10.0 cm thick are common over the first 5.5 m. Occasional fine cherty bed < 2.5 cm thick. Cherty lapilli-sized fragments are common. Trace very finely disseminated pyrite. Lower contact arbitarily placed where rock appears to become intermediate in composition and quartz eyes become much less conspicuous.

STRUCTURE: .

At 173.8 m 10 cm fault gouge at 60 degrees to core axis. 175.0-176.2 Blocky, highly fractured core. 0.2 m of lost core. Possible fault at 50 degrees to core axis. At 182.1 m bedding is at 46 degrees to core axis. 184.3-185.0 FAULT ZONE. Core is broken, difficult to measure orientation but appears to be at 50 degrees to core axis. 0.3 m of lost core. At 191.0 m 10 cm fault zone at 75 degrees to core axis.

VA02786 162.9 173.5 10.6 n/a 116 n/a 93 n/a n/a 324

VA02787 173.5 196.0 22.5 n/a 33 n/a 54 n/a n/a 93

-

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-43 8

From To (m)

-----DESCRIPTION-----

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

ALTERATION:.

173.5 196.0 WEAK PERVASIVE CHLORITIZATION.

186.1 186.6 MAFIC TUFF / WACKE with trace disseminated magnetite. Upper contact is gradational.

Lower contact is at 55 degrees to core axis.

190.3 190.4 Band of CHLORITE SCHIST is at 50 degrees to core axis.

191.2 191.3 Bed of MAFIC ASH TUFF at 50 degrees to core axis.

196.0 198.1 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS
Composed of <5-10 % lapilli-sized clasts (felsic tuff,
quartz eye tuff and cherty tuff) and 1-3% < 2mm quartz
eyes in a moderately chloritic, weakly carbonatized
fine-grained matrix which appears to be intermediate in
composition. Fragments are stretched parallel to
foliation. Locally trace disseminated magnetite. Several
pyrite clasts up to 1.0 cm long and 2-3 mm wide at 196.3
m. Lower contact is irregular and crosscuts bedding.

#### STRUCTURE:.

At 196.7 foliation is at 50 degrees to core axis. At 198.0 3.0 cm fault gouge at 25 degrees to core axis. At 200.0 m foliation is at 30 degrees to core axis.

#### ALTERATION:.

196.0 198.1 WEAK PERVASIVE CARBONATIZATION.

### 198.1 207.0 TUFFACEOUS CONGLOHERATE

Dark grey-green fine-grained with up to 30 % sand to granule-size rounded quartz grains. Up to 20 % medium grey pebble-sized fine-grained magnetite-rich clasts supported by a moderately chloritic and carbonatized matrix. Trace to 5 % finely disseminated magnetite. A pebble-sized clast at 202.3 m contains jasper. Nil to weak hematite alteration along fractures. Several possible cobble-size clasts of massive feldspar +/- quartz porphyritic siliceous flow or tuff. The feldspars are 1-3 mm long and are very pristine. The edges of the clasts (?) are somewhat hazy, and not as sharp as might be expected suggesting they might actually be thin flows or crystal tuffs. Lower contact is a 0.5 cm fault gouge at 80 degrees to core axis.

#### STRUCTURE:

At 206.1 206.6 FAULT ZONE at 70 degrees to core axis.

VA02788 196.0 220.8 24.8 n/a 123 n/a 56 n/a n/a 263

2

DRADERTY.	Champinus	.10

FALCONBRIDGE LIMITED

HOLE No: Page Number

Ba

Αu

29

CH88-43 DIAMOND DRILL LOG From To Sample Width From To Total Cu Pb Αđ (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) Blocky, highly fractured core. 207.0 220.8 NAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Strongly carbonatized over most of the interval. VA03399 219.8 220.8 1.0 121 78 <1 Carbonate +/- quartz has flooded rock along foliation planes forming white bands 2-5 mm wide. These bands alternate with chloritic bands. Very trace amounts of finely disseminated pyrite. Lower contact is gradational. 200.9 201.0 FELSIC FELDSPAR PORPHYRITIC FELSIC CLAST (?) at 50-60 degrees to core axis. Composed of 15 % 2-3 mm subhedral feldspar crystals in a massive very fine-grained to aphyric siliceous weakly chloritic matrix. 203.2 203.4 FELSIC FELDSPAR-QUARTZ PORPHYRITIC FELSIC CLAST (?) at 60 degrees to core axis. Similiar to 200.9 to 201.0 m except also contains an occasional quartz eye. 203.5 888.8 FELSIC FELDSPAR-QUARTZ PORPHYRITIC FELSIC CLAST at 60 degrees to core axis. As 203.2 to 203.4 m. At 208.1 minor fold is clearly outlined by foliation. Fold axis is parallel to the core axis. At 208.4 minor fault gouge at 80 degrees to core axis. At 208.9 5.0 cm fault gouge at 80 degrees to core axis. At 209.5 foliation is at 40 degrees to core axis. 210.5-211.6 Foliation is kinked. 211.6-213.9 Foliation is wavey and runs nearly parallel to core axis. Several minor folds. 213.9-215.0 Foliation is very contorted and kinked. At 217.5 foliation is at 30 degrees to core axis. ALTERATION: .

207.0 216.2 STRONG PERVASIVE CARBONATIZATION and STRONG FRACTURE CONTROLLED CARBONATIZATION. 216.2 217.6 MODERATE FRACTURE CONTROLLED CARBONATIZATION. 217.6 220.8 STRONG PERVASIVE CARBONATIZATION and STRONG FRACTURE CONTROLLED CARBONATIZATION. 216.2 217.7 Less carbonatized, 3 % thin black chloritic

216.8 888.8 3.0 cm bed of cherty felsic ash tuff at 30 degrees to core axis.

foliation planes.

fragments up to 10 mm long flattened along

PRO	OPERTY	f: Chemainus JV  FALCONBRIDGE LIMITED  DIAMOND DRILL LOG					HOLE N CH88-43		age Numb 10	er			
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba ) (ppm)
		219.0 219.5 CHLORITIC MAGNETITE-BEARING FELSIC TUFF at 50-60 degrees to core axis.											
220.8		INTERMEDIATE FELDSPAR CRYSTAL LAPILLI TUFF Mottled grey-olive green moderately carbonatized and moderate pervasive epidote alteration. 3 % thin (<1.5 mm) dark green chloritic fragments flattened along foliation planes. Several of these fragments have swallow tails which indicates they may be fiamme. 5% Finely disseminated pyrite. Foliation is at 40 degrees to core axis. Lower contact is gradational.	VA02789 VA03400 VA03401	220.8	222.5 221.8 222.5	1.7 1.0 .7	n/a 5 5	158 108 123	n/a <5 <5	7 <b>4</b> 59 57	n/a 〈1 〈1	n/a 37 50	337 380 370
		220.8 222.5 HODERATE PERVASIVE CARBONATIZATION and HODERATE PERVASIVE EPIDOTIZATION.											
222.5 2		MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Medium grey-green, moderately to strongly carbonatized. Varies from mafic to intermediate in composition. Nil to 3 % disseminated magnetite. Slip at 62 degrees to core axis at the lower contact.	VA02790 VA03402 VA03403 VA03404	222.5 225.0		9.6 1.0 .9	n/a 1 1 1	121 120 114 89	n/a <5 <5 <5	76 116 77 108	n/a <1 <1	n/a 8 11 10	196 300 620 510
		STRUCTURE:											
		225.8-226.3 Foliation is parallel to to degrees to core axis.											
		227.7-230.4 FAULT ZONE at 65 degrees to core axis. Rock is broken and blocky over the entire interval 0.5 m of lost core.											
		ALTERATION:.  222.5 232.1 MODERATE PERVASIVE CARBONATIZATION , MODERATE FRACTURE CONTROLLED CARBONATIZATION and locally weak hematization along foliation planes.											
		225.3 225.6 Irregular quartz-carbonate vein with 3 % pyrite runs parallel to core axis.											
		225.7 888.8 1.0 cm thick ripped up cherty, carbonatized magnetite+jasper bearing sediment.											
		226.7 227.0 Irregular quartz-carbonate pods or veins. Trace pyrite.											

VA02791 232.1 269.8 37.7

VA03405 237.0 237.5 .5

n/a

30

n/a

(5

27 n/a

- (1

107

n/a 1040

13 780

232.1 251.8 CHLORITIC FELSIC QUARTZ EYE TUFF

Light grey-green, fine-grained with ( 2% 1-3 mm quartz

eyes. Occasional bed of chloritic mafic ash tuff up to

0.5 m thick. Rock is quite massive, only weakly foliated and bedding is rarely observed. Occasional pyrite cube up

2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

No.

From

(m)

To

(m)

HOLE No: Page Number CH88-43 11

Cu

PЪ

Zn

(ppm) (ppm) (ppm)

Width

(m)

Total

Sulphides (ppm)

to 4 mm in width. Nil to 1 % disseminated magnetite below 238.0 m. Very weak thermal biotite alteration. Lower contact is gradational.

#### STRUCTURE:.

At 241.7 bedding is at 70 degrees to core axis. At 258.1 bedding is at 52 degrees to core axis.

#### ALTERATION: .

- 232.1 258.1 WEAK PERVASIVE CHLORITIZATION and WEAK PERVASIVE SERICITIZATION.
- 234.0 234.2 Dark green mafic tuff bed at 60 degrees to core axis.
- 236.5 237.0 Dark green mafic tuff. Broken core at upper and lower contacts.
- 237.3 237.4 Quartz-chlorite-carbonate vein at 60 degrees to core axis with trace pyrite and chalcopyrite
- 237.4 237.6 Chloritic mafic tuff at 65 degrees to core axis
- 238.2 238.4 Mafic tuff bed at 65-70 degrees to core axis.
- 240.0 240.4 Chloritic band at 70 degrees to core axis.
- 246.0 888.8 Light green cherty clast 1.0 cm wide.
- 246.3 246.7 Several quartz-carbonate veins and pods, no sulphides.

#### 251.8 269.8 WEAKLY CHLORITIC FELSIC TUFF

Similiar to 232.1 to 251.8 m but quartz eyes are rare. More chloritic sections may range into intermediate compostions weak thermal biotite alteration. Trace disseminated pyrite. Lower contact is a 3.0 cm fault gouge at 70 degrees to core axis.

### STRUCTURE: .

At 262.0 m bedding is at 45 degrees to core axis. At 266.2 m foliation is at 40 degrees to core axis.

#### ALTERATION.

251.8 269.8 WEAK PERVASIVE CHLORITIZATION, MODERATE PERVASIVE SERICITIZATION and WEAK FRACTURE CONTROLLED CARBONATIZATION.

Αġ

(ppb) (ppm)

2

.

.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

No.

From

(m)

(m)

HOLE No: Page Number CH88-43 12

Рb

(ppm) (ppm)

Αg

(ppm) (ppb) (ppm)

From To -----DESCRIPTION-----(m) (m)

> 259.5 888.8 5.0 cm banded chlorite-carbonate alteration at 50 degrees to core axis.

264.0 264.4 Quartz-carbonate altered MAFIC DYKE at 60 degrees to core axis.

261.0 261.3 MAFIC DYKE at 60 degrees to core axis. Fine-grained, intruded by irregular quartz-carbonate veins up to 1.0 cm thick.

262.0 888.8 5.0 cm band of magnetite bearing MAFIC TUFF at 45 degrees to core axis. 4 % disseminated magnetite.

269.2 269.4 10 % 2-10 mm light grey fine-grained felsic fragments.

269.5 269.6 Quartz-carbonate altered chlorite schist at 60 degrees to core axis. Nafic dyke (?).

#### 269.8 291.8 FELDSPAR PORPHYRITIC GABBRO

Medium green, fine to medium-grained and massive with up to 30 % 2-3 mm white feldspar phenocrysts. Quartz-carbonate veins and veinlets are common. Trace to 3 % disseminated ilmenite. Much of the ilmenite has been altered to leucoxene. Nil to trace disseminated chalcopyrite. 3.0 cm zone of assimilation at lower contact. Lower contact is at 40 degrees to core axis.

291.8 298.2 CHLORITIC FELSIC QUARTZ EYE TUFF Grey, moderately sericitic with 2-5 % 2-5 mm quartz eyes. Quartz eyes have a crushed highly fractured appearance. In situ brecciation over the first 2.2 m. Lower contact is a minor fault gouge at 70 degrees to core axis.

STRUCTURE: .

At 295.0 foliation is at 45 degrees to core axis.

ALTERATION: .

291.8 298.2 HODERATE PERVASIVE SERICITIZATION.

297.5 298.0 Rusty zits ( 1 mm in diameter centred on silver coloured metallic specks. They are likely core barrel material.

298.0 888.8 7.0 cm dark brown dyke (?) at 70-90 degrees to core axis. Contacts are sharp but irregular and appear to be intrusive.

Width

(m)

Total

Sulphides (ppm)

VA03406 297.5 298.0 . 5

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-43 13

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba ) (ppm)
298.2	358.0	CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF											
		Up to 25 % 1-3 mm (most are ash-sized) subhedral feldspar	VA03407	338.0	339.0	1.0	1	9	<5	17	₹1	5	920
		crystals and 2-5 % 2-5 mm quartz eyes in a grey-green	VA03408	350.2	351.0	. 8	1	9	(5	38	- €1	29 1	1200
		weakly to moderately sericitized weakly chloritized	VA03409	351.0	352.0	1.0	1	10	27	169	<1	5	1300
		fine-grained (locally aphyric) matrix. Lower contact is a	VA03410	352.0	353.0	1.0	. 2	22	9	153	(1	20	1200
		fault at 60 degrees to core axis.	VA03411	353.0	354.0	1.0	2	65	15	427	1	27	1200

#### STRUCTURE: .

At 302.1 3.0 cm fault gouge at 60 degrees to core axis.

At 304.7 bedding is at 50 degrees to core axis.

At 316.4 foliation is at 45 degrees to core axis.

At 322.5 bedding is at 40 degrees to core axis. Bed has been offset 2.5 cm by a minor fault at 30 degrees to core axis.

At 336.0 1.0 cm fault gouge at 50 degrees to core axis.

At 340.7 bedding is at 65 degrees to core axis.

At 348.6 m 1.0 cm fault gouge at 60 degrees to core axis.

At 351.0 m bedding is at 50-60 degrees to core axis.

357.5-358.0 M FAULT ZONE at 60 degrees to core axis. 0.2 m of lost core.

#### ALTERATION:.

298.2 358.0 WEAK PERVASIVE CHLORITIZATION chlorite occurs as discrete spots < 2 mm in diameter between 335.1 and 340.0 m.

312.2 358.0 Weak epidotization centred on feldspar crystals

#### SULPHIDES:.

Locally trace fracture controlled pyrite.

338.0 339.0 Possibly trace sphalerite or biotite along fractures.

343.5 344.0 1-2% disseminated and fracture controlled pyrite.

350.2 353.0 Trace to 1 % disseminated pyrite.

353.0 354.0 2 % disseminated and banded pyrite. Bands are parallel to foliation and are up to 3 mm thick.

359.0 360.0 2 % fracture controlled pyrite.

298.9 888.8 5 cm fine-grained mafic dyke/tuff at 50 degrees to core axis.

300.3 300.5 Fine-grained MAFIC DYKE at 50 degrees to core axis. Weak spotty epidote alteration. Lower contact is offset 0.5 cm by a microfault at 50 degrees to core axis.

300.5 301.2 5 % light grey felsic lapilli.

301.4 301.8 Fine-grained MAFIC DYKE at 70 degrees to core axis.

PROPERTY: Chemainus JV

FALCONBRIDGE LIMITED

CH88-43

DIAMOND DRILL LOG

Sample From To Width Total Cu Pb

No.

VA03412 359.0 360.0 1.0

304.7 888.8 5 cm feldspar crystal rich bed at 50 degrees to core axis.

-----DESCRIPTION-----

From

(m)

(m)

305.4 888.8 5.0 cm chlorite rich band at 60 degrees to core axis with trace pyrite.

311.8 312.0 Fine-grained MAFIC DYKE at 50 degrees to core axis with 2 % fracture controlled pyrite.

317.0 334.0 Vague, light grey felsic lapilli are common (5 %).

319.5 319.9 Fine-grained MAFIC DYKE at 50-60 degrees to core axis.

331.2 333.0 MAFIC ASH TUFF / FINE-GRAINED DYKE. Medium green, moderately chloritic and moderately carbonatized with a banded appearance near the top of the unit suggesting it is tuffaceous. 1 % disseminated pyrite. Upper contact is at 40 degrees to core axis and lower contact is at 60 degrees to core axis.

334.0 335.1 FINE-GRAINED MAFIC DYKE / ASH TUFF. Similiar to 331.2 to 333.0 m except no banding upper contact is at 70 degrees to core axis and lower contact is at 50 degrees to core axis.

340.7 340.9 Several beds of fine felsic ash tuff ( 1.0 cm thick. Some have been offset by minor faults.

349.9 350.2 FINE-GRAINED MAFIC DYKE. Upper and lower contacts are sharp but irregular.

358.0 368.3 CHLORITIC FELSIC QUARTZ EYE TUFF
Up to 5 % 1-5 mm quartz eyes and 10 % ash-sized feldspar
crystals in very fine-grained weakly chloritic siliceous
matrix. Nil to trace disseminated pyrite. Irregular
quartz-carbonate pod at the lower contact.

TRUCTURE:.

At 366.2 foliation is at 40 degrees to core axis.

366.5 368.0 Hazy, light grey felsic fragments.

368.3 385.2 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF
As 298.2 to 358.0 m. Lower contact is at 58 degrees to

VA03413 376.5 377.5 1.0 1 6 (5 31 (1 (5 1100

Sulphides (ppm)

(ppm) (ppm) (ppm)

(ppb) (ppm)

18 1200

(m)

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample From

(m)

VA03415 383.1 384.1 1.0

VA03416 384.1 385.2 1.1

VA03414 380.8 381.5

No.

Width

(m)

Total

Sulphides (ppm)

2

2

To

(m)

HOLE No: Page Number CH88-43 15

Cu

4

(1

λσ

(ppm)

(1

(1

(ppb) (ppm)

840

5 910

10

9 750

(ppm) (ppm)

20

(5

From (m)	To (m)	DESCRIPTION
		core axis.
		STRUCTURE:.
		At 374.7 m bedding is at 60 degrees to core axis.
		At 379.3 m bedding is at 37 degrees to core axis.
		381.5-381.9 FAULT ZONE at 40 degrees to core axis.
		ALTERATION:.
		368.2 385.2 WEAK PERVASIVE CHLORITIZATION and WEAK PERVASIVE SERICITIZATION.
		SULPHIDES:.
		383.1 384.1 1 % pyrite.
		384.1 385.2 2 % disseminated pyrite.
		368.3 369.0 Several dark green to black chlorite+biotite rich bands at 40-50 degrees to core axis.
		374.3 888.8 Chloritic ash tuff or mafic dyke at 42 degrees to core axis.
		375.0 375.5 Up to 5 % lapilli-sized fragments of quartz feldspar porphyritic material.
		377.0 888.8 Two chloritic bands < 3.0 cm wide at 50 degrees to core axis. Also a carbonate-filled
		fracture with a reddish brown mineral, possibly sphalerite.
		380.9 383.1 Beds and clasts of cherty salmon pink coloured ash tuff $<$ 2.0 cm thick are common.

385.2 386.2 MAFIC TUFF
Fine-grained moderately chloritic, bedding not recognized
(may be a dyke). 2-3 % disseminated magnetite, nil
sulphides. Lower contact is at 58 degrees to core axis.
385.2 386.2 WEAK PERVASIVE CARBONATIZATION.

386.2 391.0 WEAKLY CHLORITIC FELSIC TUFF
Fine bedding, quite cherty in places, microfractured.
Trace fracture controlled pyrite. Several chlorite rich bands of fine-grained chloritic magnetite-bearing mafic tuff up to 20 cm thick.
Bedding is at 68 degrees to core axis at 388.6 m.
386.2 391.0 WEAK PERVASIVE CHLORITIZATION.

391.0 391.4 CHLORITIC FELSIC QUARTZ EYE TUFF Light grey-green with 5 % 2-4 mm quartz eyes and an

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-43 16

From To (m) -----DESCRIPTION-----(m)

occasional light green cherty fragment up to 1.0 cm long. Trace disseminated pyrite.
391.0 391.4 WEAK PERVASIVE CHLORITIZATION.

Width Total Cu Sample From To Pb Zn λg (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) (m)

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE	FROM	TO	25102	ZAL203	ICAO	zhGO	ZNAZO	XK20	XFE203	21102	ZP205	2440	rLOI	SUN	BA	AI	NACA
	<del>-</del>															· 	
VA02292	18.20	18.40	74.10	14.50	1.12	0.99	0.88	2.59	1.83	0.18	0.06	0.06	3.23	99.54	1430.	64.	2.
VA02293	50.70	50.80	47.30	16.30	8.27	3.87	2.52	0.85	8.78	0.80	0.17	0.15	11.10	100.11	230.	30.	11.
VA02294	67.10	67.90	47.30	15.30	11.30	2.41	1.91	0.98	8.05	0.73	0.15	0.16	11.90	100.19	211.	20.	13.
VA02295	88.10	88.40	67.00	14.30	3.43	1.60	0.56	3.11	2.87	0.20	0.05	0.07	4.93	98.12	1210.	54.	4.
VA02296	103.00	103.40	69.80	15.60	2.26	. 1.14	2.61	2.94	1.87	0.25	0.08	0.05	3.31	99.91	1170.	46.	5.
VA02297	116.30	116.60	69.90	13.30	1.98	1.64	2.23	2.29	3.56	0.18	0.04	0.06	3.39	98.57	1010.	48.	4.
VA02298	142.30	142.60	49.20	19.80	3.39	1.79	5.61	2.86	11.10	0.99	0.56	0.05	3.54	98.89	320.	34.	9.
VA02299	149.00	149.30	46.20	20.00	5.57	2.20	2.40	4.63	9.37	1.46	0.14	0.06	6.47	98.50	663.	46.	8.
VA02300	159.40	159.70	58.80	16.00	5.06	0.90	4.21	3.54	4.99	0.33	0.22	0.11	4.77	98.93	1820.	32.	9.
VA02301	172.40	172.50	39.70	13.30	14.40	4.11	2.25	0.73	10.00	0.71	0.15	0.18	14.00	99.53	159.	23.	17.
VA02302	180.60	180.70	68.20	15.00	2.50	0.96	2.51	3.49	1.97	0.36	0.11	0.05	3.62	98.77	1420.	47.	5.
VA02303	216.40	216.70	41.20	9.84	15.40	7.34	0.89	0.48	7.59	0.54	0.06	0.16	15.30	98.80	92.	32.	16.
VA02304	236.00	236.40	67.50	14.20	3.00	1.11	2.88	3.04	2.79	0.27	0.07	0.08	3.70	98.64	1250.	. 41.	6.
VA02305	254.00	254.20	69.70	13.90	1.95	0.94	4.09	2.52	2.63	0.27	0.07	0.07	2.70	98.84	796.	36.	6.
VA02306	300.00	300.30	68.10	13.70	3.15	1.24	2.05	3.62	2.40	0.23	0.06	0.06	4.00	98.61	1720.	48.	5.
VA02307	314.00	314.30	71.70	11.90	3.28	0.67	3.23	3.12	1.35	0.12	0.04	0.07	2.77	98.25	863.	37.	7.
VA02308	322.20	322.70	69.60	14.40	2.65	0.77	3.47	- 3.01	1.84	0.24	0.06	0.06	2.54	98.64	1210.	38.	6.
VA02309	337.00	337.40	69.60	14.10	2.18	0.84	2.86	3.21	2.52	0.25	0.06	0.05	2.77	98.44	1130,	45.	5.
VA02310	347.60	347.90	69.10	14.10	2.67	0.67	3.44	3.31	2.26	0.25	0.07	0.07	2.54	98.48	1190.	39.	6.
VA02311	361.50	361.90	72.10	13.10	1.09	0.83	3.30	3.93	1.61	0.14	0.04	0.07	2.23	98.44	1370.	52.	4.
VA02312	375.00	375.40	69.40	13.60	2.91	1.81	2.13	2.87	2.84	0.24	0.06	0.07	2.93	98.86	1070.	48.	5.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

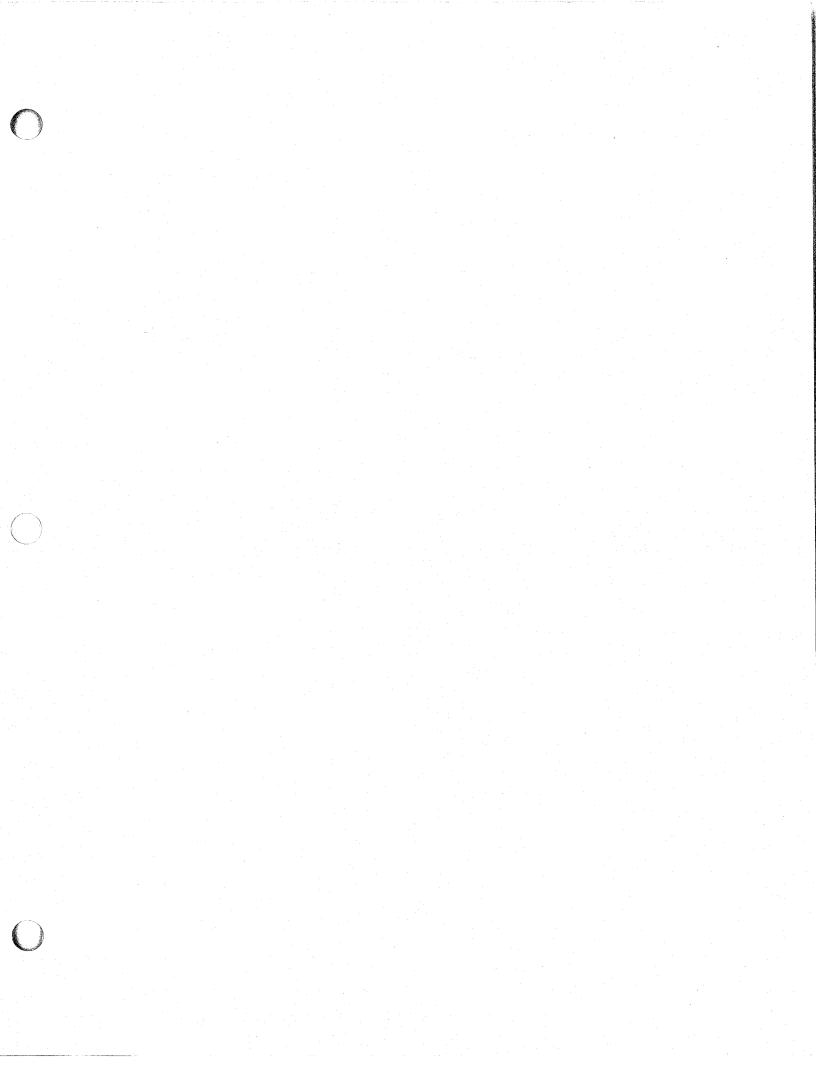
SAMPLE NUMBER	FROM	то	RB (mgc)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU 	ZN (ppm)	NI (ppm)		ROCK	CODES	MIN
													·		
VA02271	11.00	11.40	28.0	223.0	130.0	25.0	83.0	21.0	250.0	79.0	45.0				
VA02272	56.80	57.00	88.0	<10.0	2200.0	19.0	109.0	15.0	59.0	<10.0	<10.0		TFAT	PSm	A.
VA02273	66.50	56.70	52.0	222.0	1310.0	<10.0	112.0	<10.0	50.0	<10.0	<10.0		TFAT	РНЫ	- A .
VA02274	73.60	73.80	58.0	177.0	2010.0	<10.0	95.0	18.0	48.0	11.0	<10.0		TFAFDY	PSM	A
VA02275	92.60	93.00	58.0	74.0	927.0	<10.0	115.0	14.0	27.0	53.0	<10.0		TEAEGY	PSM	DBP
VA02277	99.20	99.40	13.0	224.0	139.0	11.0	27.0	24.0	155.0	91.0	77.0		PMAT	РНЫ	· A
VA02276	106.20	106.40	63.0	52.0	1290.0	25.0	104.0	<10.0	67.0	135.0	14.0		PMAT	PHW	A. I
VA02278	126.40	126.70	49.0	137.0	1070.0	31.0	105.0	<10.0	50.0	65.0	<10.0		TFAT	PH₩	DBP
VA02279	144.50	144.90	54.0	41.0	1020.0	40.0	126.0	13.0	52.0	56.0	<10.0		TFAT	PHW	DCP
VA02280	171.30	171.60	46.0	55.0	887.0	37.0	121.0	12.0	75.0	40.0	<10.0		TFBT	PHW	DBP
VA02281	184.20	194.60	69.0	70.0	1150.0	28.0	109.0	<10.0	60.0	72.0	<10.0		TFBT	PHW	DBP
VA02282	192.60	192.80	42.0	88.0	987.0	38.0	117.0	13.0	55.0	54.0	<10.0		0	?	A
VA02283	202.00	302.30	74.0	58.0	1290.0	<10.0	85.0	13.0	36.0	23.0	<10.0		TFBGT	PHW	DCP
VA02284	219.40	219.70	49.0	82.0	1040.0	19.0	104.0	11.0	30.0	32.0	<10.0		TERQT	PHW	DBP
VA02285	231.80	232.00	57.0	31.0	829.0	12.0	98.0	<10.0	39.0	53.0	<10.0		TFBT	PHW	DBP
VA02286	255.00	255.20	62.0	84.0	1130.0	17.0	105.0	19.0	21.0	18.0	<10.0		TFBT	PHW.	DBP
VA02287	260.00	260.30	42.0	97.0	917.0	21.0	95.0	13.0	63.0	30.0	14.0		TFROT	PHM	A
VA02288	274.60	274.80	19.0	175.0	280.0	33.0	46.0	15.0	31.0	76.0	16.0		TMAT	ECH	A
VA02289	295.60	295.80	26.0	177.0	279.0	18.0	40.0	<10.0	52.0	59.0	21.0		TMAT	FCW	À
VA02290	310.80	311.00	40.0	235.0	371.0	18.0	89.0	28.0	25.0	44.0	17.0		TMAT	FCM	Α .
VA02291	323.00	323.20	29.0	403.0	718.0	23.0	32.0	<10.0	38.0	207.0	20.0		THAT	PHS	Α .

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (mgm)	.du (ppm).	ZN (ppm)	NI (ppm)			ROCK	CODES	MIN
VA02292	18.20	18.40	60.0	87.0	1430.0	25.0	146.0	<10.0	(10.0	18.0	11.0			TEPT	SHW	DCP
VA02293	50.70	50.80	24.0	149.0	230.0	13.0	41.0	25.0	88.0	98.0	41.0			THAT	FCM	AA
VA02294	67.10	67.90	24.0	259.0	211.0	16.0	38.0	17.0	33.0	57.0	17.0			IMAI	FCM	AA .
VA02295	88.10	88.40	62.0	294.0	1210.0	<10.0	82.0	<10.0	17.0	159.0	12.0			TFAQY	PHW	AA
VA02296	103.00	103.40	67.0	245.0	1170.0	<10.0	101.0	16.0	34.0	28.0	<10.0			TFAQY .	PHM	AA
VA02297	116.30	116.60	60.0	137.0	1010.0	<10.0	67.0	<10.0	40.0	43.0	<10.0			TERQY	PHW	DBP
VA02298	142.30	142.60	82.0	273.0	320.0	35.0	40.0	14.0	62.0	152.0	25.0			Thai	?	AA
VA02299	149.00	149.30	107.0	145.0	663.0	<10.0	29.0	15.0	198.0	143.0	42.0			IMAI	7 - 1	AA .
VA02300	159.40	159.70	98.0	101.0	1820.0	23.0	144.0	<10.0	63.0	37.0	18.0			TMAT	?	AA
VA02301	172.40	172.50	17.0	194.0	159.0	15.0	19.0	19.0	168.0	121.0	66.0			IMAI	?	AA '
VA02302	130.50	180.70	60.0	100.0	1420.0	<10.0	73.0	14.0	36.0	11.0	<10.0			TEARY	PHW	AA
VA02303	216.40	216.70	20.0	240.0	92.0	<10.0	12.0	<10.0	52.0	36.0	137.0			TMAT	PCS	AA
VA02304	236.00	236.40	74.0	151.0	1250.0	23.0	89.0	<10.0	51.0	30.0	<10.0			TFAO	PHW	AA
VA02305	254.00	254.20	63.0	194.0	796.0	14.0	91.0	19.0	22.0	25.0	<10.0			TFAQ	PHW	AA
VA02306	300.00	300.30	77.0	52.0	1720.0	20.0	99.0	<10.0	42.0	38.0	<10.0			TFB	PHW	AA
VA02307	314.00	314.30	43.0	136.0	863.0	<10.0	54.0	<10.0	29.0	21.0	<10.0			TFB	PHW	AA
VA02308	322.20	322.70	56.0	154.0	1210.0	14.0	89.0	16.0	18.0	57.0	<10.0			TEBECY	PHW	AA .
VA02309	337.00	337.40	59.0	134.0	1130.0	<10.0	111.0	19.0	19.0	28.0	<10.0			TEBEQY	PHW	AA
VA02310	347.60	347.90	61.0	141.0	1190.0	<10.0	94.0	12.0	30.0	133.0	<10.0			TFA	PHW	DBP
VA02311	361.50	361.90	47.0	147.0	1370.0	14.0	71.0	10.0	<10.0	32.0	<10.0			TFAQT	PHW	DCP
VA02312	375.00	375.40	49.0	277.0	1070.0	<10.0	88.0	17.0	17.0	75.0	<10.0			TFBQT	PHW	DBP

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	10	xs 102	XAL203	XCAO	XHG0	ZNA20	zK20	XFE203	27102	XP205	ZHNO	XL01	SUH	BA	ΑI	NACA
											*						
VA02780	15.70	45.30	70.70	13.50	2.47	0.98	1.71	2.40	2.44	0.22			4.08	98.50	1040.	45.	4.
VA02781	45.30	65.00	44.80	15.70	11.40	2.90	1.73	1.07	7.79	0.74			12.50	98.63	249.	23.	13.
VA02782	65.00	85.50	44.80	14.70	12.70	2.58	1.80	1.49	8.57	0.74			12.10	99.48	337.	22.	15.
VA02783	85.50	115.00	68.40	13.00	4.27	1.33	1.26	2.72	2.83	0.28			5.16	99.24	1120.	42.	6.
VA02784	115.00	135.90	65.30	13.80	4.80	1.02	2.11	2.54	3.48	0.31			4.85	98.21	907.	34.	7.
VA02785	135.90	162.90	40.90	13.70	15.10	4.38	2.80	1.79	7.47	0.78			12.40	99.32	180.	26.	19.
VA02786	162.90	173.50	33.30	12.40	18.80	3.18	1.27	1.73	9.65	0.62			17.50	98.45	324.	20.	20.
VA02787	173.50	196.00	67.20	13.90	3.78	0.98	3.19	2.74	2.94	0.23			4.39	99.35	936.	35.	7.
VA92788	196.00	220.80	41.00	10.40	17.30	5.26	1.62	1.27	6.64	0.49			15.90	99.88	263.	26.	19.
VA02789	220.80	222.50	40.20	8.98	13.90	4.65	0.02	2.51	10.00	0.50			9.31	90.07	337.	34.	14.
VA92790	222.50	232.10	41.10	11.00	13.00	7.16	1.32	0.76	8.86	0.58			14.80	98.58	196.	36.	14.
VA02791	232.10	269.80	68.80	13.50	3.12	0.89	3.11	2.71	2.75	0.26			3.62	98.76	1040.	37.	6.
VA02792	291.80	321.00	69.20	13.20	3.25	0.88	3.17	2.73	2.15	0.23			3.54	98.35	988.	36.	6.
VA02793	321.00	351.00	69.60	13.50	3.03	0.83	3.04	2.81	2.18	0.23			3.23	98.45	1040.	37.	6.
VA02794	351.00	371.00	69.10	13.10	3.07	1.15	3.40	3.11	2.07	0.18			3.39	98.57	1040.	40.	6.
VA02795	371.00	391.40	69.30	13.50	2.97	1.18	3.66	2.44	2.30	0.21			3.62	99.03	963.	35.	7.


## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	2N (ppm)	NI (ppm)		 	ROCK	CODES	MIN
VA02780	15.70	45.30			1040.0				48.0	<10.0	<10.0			TFAT	PHU	AA
VA02781	45.30	65.00			249.0				159.0	63.0	31.0			THAT	РНН	DBP
VA02782	65.00	85.50			337.0				113.0	64.0	47.0			THAT	FCM	DBP
VA02783	85.50	115.00			1120.0				30.0	53.0	<10.0			TFAQY	PHW	DBP
VA02784	115.00	135.90			907.0				51.0	34.0	14.0			TFAQY	PHW	DBP
VA02785	135.90	162.90			180.0				155.0	85.0	105.0			IMBI	FCM	AA
VA02786	162.90	173.50			324.0				115.0	93.0	86.0			TMBT	ECM	AA .
VA02787	173.50	196.00			936.0				33.0	54.0	<10.0			TFB0	PHW	AA
VA02788	196.00	220.80			263.0				122.0	56.0	90.0			IMBT	PCS	DBP
VA02789	220.80	222.50			337.0				158.0	74.0	226.0			TIAT	PEM	DDP
VA02790	222.50	232.10			196.0				121.0	76.0	168.0			THAT	PCM	DBP
VA02791	232.10	269.80			1040.0				30.0	27.0	<10.0			TFAR	PHU	AA
VA02792	291.80	321.00			988.0				60.0	30.0	10.0					
VA02793	321.00	351.00			040.0				17.0	73.0	<10.0					
VA02794	351.00	371.00			040.0				30.0	57.0	<10.0					
VA02795	371.00	391.40			963.0				20.0	59.0	<10.0					

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	10	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	мн (ppm)	CUZN	EIS	FE
							<del></del>	************		<del></del>							
VA03395	29.70	30.50	980.0	85.0	63.0	<0.5	17.0	6.0	17.0	<5.0	48.0	<1.0	12.0	789.0	57.	2.	2.
VA03394	77.20	78.20	190.0	133.0	73.0	<0.5	10.0	31.0	63.0	<5.0	(5.0	2.0	<1.0	1395.0	65.	1.	4.
VA03396	78.20	78.60	220.0	156.0	71.0	<0.5	39.0	57.0	73.0	<5.0	<5.0	2.0	1.0	790.0	69.	5.	. 5.
VA03397	78.60	81.20	460.0	70.0	146.0	<0.5	48.0	22.0	29.0	<5.0	<5.0	<1.0	<1.0	1024.0	32.	1.	5.
98EE0AV	89.90	91.00	530.0	52.0	84.0	<0.5	17.0	12.0	13.0	55.0	19.0	<1.0	18.0	787.0	38.	1.	2.
VA03399	219.80	220.80	60.0	121.0	78.0	<0.5	29.0	35.0	162.0	<5.0	<5.0	2.0	<1.0	1248.0	61.	1.	4.
VA03400	220.80	221.80	380.0	108.0	59.0	<0.5	37.0	57.0	195.0	<5.0	9.0	2.0	3.0	903.0	65.	5.	5.
VA03401	221.80	222.50	370.0	123.0	57.0	<0.5	50.0	55.0	159.0	(5.0	<5.0	2.0	2.0	1009.0	68.	5.	4.
VA03402	222.50	223.50	300.0	120.0	116.0	<0.5	8.0	40.0	200.0	<5.0	7.0	2.0	(1.0	1080.0	51.	1.	5.
VA03403	225.00	225.90	620.0	114.0	77.0	(0.5	11.0	29.0	77.0	(5.0	<5.0	1.0	<1.0	1377.0	60.	1.	4.
VA03404	225.90	227.00	510.0	89.0	108.0	<0.5	10.0	31.0	125.0	<5.0	<5,.0	2.0	2.0	1165.0	45.	1.	5.
VA03405	237.00	237.50	780.0	44.0	107.0	<0.5	13.0	26.0	89.0	<5.0	13.0	<1.0	2.0	1250.0	29.	1.	14.
VA03406	297.50	298.00	980.0	1.0	24.0	<0.5	11.0	2.0	3:0	<5.0	<5.0	<1.0	2.0	446.0	4.	1.	1.
VA03407	338.00	339.00	920.0	9.0	17.0	<0.5	5.0	2.0	<1.0	<5.0	9.0	<1.0	(1.0	290.0	35.	. 1.	1.
VA03408	350.20	351.00	1200.0	9.0	38.0	<0.5	29.0	4.0	2.0	<5.0	<5,.0	<1.0	1.0	567.0	19.	1.	1.
VA03409	351.00	352.00	1300.0	10.0	169.0	<0.5	5.0	3.0	<1.0	27.0	₹5.0	<1.0	<1.0	642.0	6.	1.	1.
VA03410	352.00	353.00	1200.0	22.0	153.0	<0.5	20.0	3.0	4.0	9.0	12.0	<1.0	(1.0	560.0	13.	2.	1.
VA03411	353.00	354.00	1200.0	65.0	427.0	1.3	27.0	4.0	3.0	15.0	<5.0	<1.0	<1.0	450.0	13.	2.	1.
VA03412	359.00	360.00	1200.0	5.0	43.0	<0.5	18.0	1.0	3.0	<5.0	11.0	<1.0	<1.0	432.0	10.	2.	1.
VA03413	376.50	377.50	1100.0	6.0	31.0	<0.5	<5.0	3.0	1.0	<5.0	<5.0	<1.0	: <1.0	235.0	16.	1.	1.
VA03414	380.80	381.50	910.0	7.0	23.0	<0.5	5.0	2.0	3.0		7.0	<1.0	2.0	303.0	23.	1.	1.
VA03415	383.10	384.10	840.0	4.0	20.0	<0.5	10.0	2.0	2.0	<5.0	7.0	<1.0	1.0	395.0	17.	2.	1.
VA03416	384.10	385.20	750.0	0.5	9.0	<0.5	9.0	2.0	1.0	<5.0	9.0	(1.0	<1.0	230.0	5.	2.	1.

Page No.



Summary Log: DDH CH88-44

Location: 27+90 E, 2+40 S; Chip 1 Claim

Azimuth: 210, Dip: -45

Hole Completed: April 25, 1988 Core logged by: J. Pattison

0.0 - 4.3 Casing.

4.3 - 30.3 Feldspar porphyritic gabbro

30.3 - 58.7 Mafic flows

58.7 - 60.6 Mafic ash tuff

60.6 - 72.5 Mafic to intermediate tuffaceous sediments.

A graded bed fines downhole (ie south)

72.5 - 98.2 Feldspar phorphyritic gabbro

98.2 - 110.1 Mafic to intermediate tuffaceous sediments

110.1 - 127.7 Feldspar porphyritic gabbro

127.7 - 132.1 Cherty felsic tuff/tuffite

Several 3 mm bands of argillite and others of pyrite.

132.1 - 137.2 Mafic to intermediate tuffaceous sediments

137.2 - 144.0 Black argillite, cherty with 4 % fracture controlled pyrite.

144.0 - 150.3 Mafic to intermediate tuffaceous sediments

150.3 - 176.2 Black argillite with 5 % fracture controlled pyrite

176.2 - 184.7 Siltstone

Several graded beds of fine downhole

184.7 - 186.0 Conglomerate

Probably deposited at the base of a debris flow. Rip-up clasts are common.

186.0 - 196.6 Greywacke

196.0 - 197.9 Siltstone

197.9 - 203.3 Greywacke

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-44 1

n/a

10

10

44

29

6 310

20

20

25

₹5

₹5

121

90

120

310

210

370

240

270

620

200

Hole Location: 27+90 E 2+40 S

NTS: 92B13 UTM: 5416831.7 N 430015.0 E

Azimuth: 210 Elevation: 519 m Dip: -45 Length: 203.3 m

Started: 22-April-88 Completed: 25-April-88

Purpose: To unravel the complex geology in the Anita Showing AreaSTS

Claim No. Chip 1 Section No.: 28+00 E

Logged By: J. Pattison

Drilling Co.: Burwash Enterprises
Assayed By: Bondar-Clegg & XRAL

Core Size:

Length	Azi- muth	Dip	Length	Azi- muth	Dip
35.30	213.0	-46.5	203.00	217.0	-45.0
132.90	216.0	-46.0			

From To Sample From To Width PЪ Total Cu Zn Aσ Αu (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

- .0 4.3 CASING
  Only several metres of overburden then into GABBRO.
- 4.3 30.3 FELDSPAR PORPHYRITIC GABBRO

  Massive medium green with up to 25 % 1-3 mm white feldspar phenocrysts. Rock is broken and blocky over most of the interval (0.2 m of lost core). Up to 4 % interstitial ilmenite. Fracture controlled quartz +/- carbonate veinlets are common difficult to pinpoint the lower contact but it appears to be a slip at 55 degrees to core axis.

STRUCTURE:.
17.6 18.0 FAULT ZONE at 50 degrees to core axis.

47.4-47.8 M FAULT ZONE. Core is broken over entire interval, 0.1 m of lost core. Not possible to measure

30.3 44.3 MAFIC FLOW Fine-grained, medium green with epidote+calcite alteration VA02796 30.3 57.7 27.4 n/a 59 n/a n/a 148 patches up to 0.4 m long. Beds and ripped up beds of VA03417 32.5 33.5 1.0 0 58 ₹5 37 <1 cherty tuffaceous sediments < 1.0 cm thick occur VA03418 33.5 34.0 . 5 146 (5 35 (1 (5 54 occasionally. Upper contact with the gabbro is difficult VA03419 34.0 35.0 1.0 3 81 <1 ₹5 38 to recognize and ilmenite mineralization continues for 3 (1 VA03420 35.0 36.0 1.0 30 1.7 m below the gabbro. Locally weakly feldspar 37.0 (5 66 ⟨1 VA03421 36.0 1.0 1 119 porphyritic. Lower contact is a flow contact (?) at 50 VA03422 38.0 39.0 1.0 195 ₹5 55 <1 degrees to core axis. VA03423 39.0 40.0 1.0 279 ⟨5 48 ⟨1 VA03424 254 ₹5 55 (1 40.0 41.0 1.0 (5 75 STRUCTURE:. VA03425 43.0 44.0 1.0 145 <1 ۲5 51 (1 At 31.4 m bedding is at 60 degrees to core axis. VA03426 44.0 45.0 124 40.4-40.8 M bedding runs parallel to the core axis.

PROPERTY: Chemainus JV

FALCONBRIDGE LIMITED

CH88-44 2

DIAMOND DRILL LOG

Sample From To Width Total Cu Pb

From To Sample From To Width Total Cu Pb Zn Ag Au Ba (m) (m) ------DESCRIPTION------- No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

orientation.

ALTERATION: .

30.3 44.3 MODERATE SPOTTY EPIDOTIZATION , WEAK PERVASIVE
CARBONATIZATION, WEAK FRACTURE CONTROLLED
CARBONATIZATION and WEAK PERVASIVE CHLORITIZATION

SULPHIDES:

33.5 36.0 2-5% fracture controlled pyrite, 1 % pyrrhotite and trace chalcopyrite and sphalerite associated with epidote+calcite alteration patches.

39.0 40.0 5 % pyrite, trace-1 % pyrrhotite and trace chalcopyrite and sphalerite associated with epidote+calcite patches.

44.3 58.7 MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION
Similiar to 30.3 to 44.3 m but contains up to 5 % 1-3 mm
anhedral to euhedral chlorite spots (chlorite replacing hornblende/pyroxene?).
Lower contact is a 3.0 cm fault gouge at 55 degrees to core axis.

210 VA03427 45.0 46.0 1.0 ₹5 56 ⟨5 230 VA03428 46.0 47.0 1.0 1 59 ₹5 <1 ₹5 VA03429 52.2 53.0 . . 8 2 101 ₹5 40 190 VA02797 57.7 72.5 14.8 n/a 85 n/a 120 n/a n/a 1290 123 (5 300 VA03430 58.0 59.0 1.0 178

STRUCTURE: .

At 52.3 m flow contact at 55 degrees to core axis. Rock is fine-grained and non porphyritic (ie. Chilled) for about 1.0 m uphole of the contact. 1.0 cm thermal biotite rich band at the contact. Minor flow breccia on downhole side of the contact (flow base?). 55.0-57.8 M blocky, highly fractured core. At 57.8 m fault gouge at 15 degrees to core axis.

ALTERATION: .

44.3 58.7 WEAK SPOTTY EPIDOTIZATION and WEAK PERVASIVE CHLORITIZATION.

SULPHIDES:.

45.0 46.0 (1 % biotite or sphalerite along edges of irregular quartz +/- carbonate veins (1.0 cm thick.

52.5 53.0 2 % biotite or sphalerite along edges of minor guartz veins (1.0 cm thick.

58.7 60.6 MAFIC TUFF
Dark green, ash tuff. Bedding is broken up and there is abundant soft sediment deformation. Lower contact is gradational.

YA03431 59.0 60.0 1.0 1 127 (5 80 (1 (5 280

STRUCTURE: .

PRO	PERTY	: Chemainu	s JV				NBRIDGE LIMITED OND DRILL LOG		
From (m)	To (m)				DESCRIPTIO	)N	<del></del>	Sample No.	From (m)
		At 58.8 m	bedding	is at 4	degrees to	core	axis.		

ALTERATION: .

58.7 60.6 WEAK FRACTURE CONTROLLED CARBONATIZATION.

SULPHIDES:.

At 59.5 m trace biotite or sphalerite associated with a carbonate-filled fractures.

60.6 72.5 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Green with a brownish tint due to moderate patchy thermal biotite alteration. Dominately a mafic ash tuff with finely bedded to laminated bands of light brown cherty sediments ( 5 cm wide. Becomes medium brown below 68.0 m and very cherty below 71.2 m. Lower contact is at 40 degrees to core axis.

#### STRUCTURE:.

At 61.7 m bedding is at 40 degrees to core axis. At 65.2 m bedding is at 50 degrees to core axis. At 67.6 m slip or crosscutting erosional contact at 10 degrees to core axis. At 70.4 m bedding is at 47 degrees to core axis. A 2.0 cm thick bed FINES DOWNHOLE.

#### ALTERATION:.

60.6 68.0 Moderate patchy thermal biotite. 68.0 72.5 Strong thermal biotite.

### SULPHIDES:.

At 61.7 m 2 mm bed of pyrite.

68.0-72.5 H trace pyrite in hairline fractures.

64.0 65.0 Massive MAFIC FLOW ?. Medium green, no thermal biotite alteration and no bedding.

65.5 65.7 Unsorted bed of volcanic wacke at 60 degrees to core axis.

72.5 98.2 FELDSPAR PORPHYRITIC GABBRO Massive, medium green with up to 10 % 1-3 mm white feldspar phenocrysts. Although sections up to 2.0 m long are non porphyritic trace to 3 % disseminated ilmenite. May be a flow. Evidence for this is the possible bedding observed at 89.1 m. Broken core at the lower contact.

79.0 81.5 Weakly carbonatized non porphyritic section.

89.1 89.4 Beds of fine, cherty light green sediment ?!?!

HOLE No: Page Number CH88-44

118

101

87

132

76

125

1

< 5

5

8

₹5.

18

116

103

103

83

104

72

92

<1

<1.

To

VA03432 67.0

68.0

69.0

70.0

71.0

72.0

VA03433

VA03434

VA03435

VA03436

VA03437

(m.)

68.0 1.0

1.0

1.0

1.0

1.0

. 5

69.0

70.0

71.0

72.0

72.5

Width

Total

(m) Sulphides (ppm)

Pb Àσ

(ppm) (ppm)

(ppm) (ppb) (ppm)

(5 830

⟨5 1200

⟨5 1800

194 1300

14 1800

₹5 2300

VA02798 92.8 110.1 17.3 n/a 34 n/a 66 n/a n/a 1080

P	ROPERT	Y: Chemain	us JV			BRIDGE LIMITE	D				HOLE N CH88-44	o: Pa	ige Numb	er			
From (m)				DESCRI			Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba (ppm)
			at 40 degreen xenolith.	ees to core a	xis. May b	e part of an											
98.2	103.0	common. flooding	light gree Several ble	ched zones o	f quartz-ca	herty beds ar rbonate pyrite. Lowe	VA03439	100.5		1.0 .5 1.0	1 1 1	51 93 105	<5 <5 <5	48 246 52	1 1 1	(5 (5 (5	1300 410 560
		STRUCTURE At 99.1 m		at 50 degree	s to core a	xis.											
		SULPHIDES 100.5 100	.9 3 % frac	ure controll													
103.0	110.1	As 60.6 t discrete	o 72.5 m. Topatches. Li		e alteratio green 3-30	n occurs in mm chert bed e at the lowe					1 1	113 92	<5 6	67 70	1 1	9 6	830 1900
		STRUCTURE At 109.5		s at 45 degre	es to core	axis.											
		ALTERATIO 103.0 110 SULPHIDES	.1 Moderate	thermal biot	ite alterat	ion.											
		109.0-110	.1 Trace fr		lled pyrite	and sphaleri	te										
110.1	127.7	As 72.5 t veinlets.		race pyrite i		l calcite											

23 n/a 80 n/a n/a 41 3 29 7 <1 3 56 53 1 62

lower contact.

Lower contact appears to be an intrusive one and is at 45 degrees to core axis. No evidence suggesting that it might be a flow.

127.7 132.1 CHERTY FELSIC TUFF / TUFFITE

Well bedded cherty felsic tuffite. Beds are 2-40 mm thick (most ( 10 mm). Sediments vary in colour from light grey to light grey-green to salmon pink. Bedding is wavey and is frequently microfaulted. Several beds of argillite < 3mm thick. Bands of pyrite up to 5 mm thick parallel to bedding are common. Epidote+carbonate alteration patch at

(5. 3300 VA03443 127.7 128.7 1.0 61 52 3 1 VA02799 127.7 132.1 4.4 n/a 4750 (5 4200 VA03444 128.7 129.8 1.1 (5 4400 VA03445 129.8 130.9 1.1 (5 6000 VA03446 130.9 132.1 1.2

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-44 5

Рb

(m)		DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(pp)	) (ppm)
		STRUCTURE:. At 128.2 m bedding is at 45 degrees to core axis. At 130.6 fault at 76 degrees to core axis. At 131.8 m bedding is at 60 degrees to core axis.											
		ALTERATION:. 132.1 127.7 Unknown.											
		SULPHIDES:.											
		127.7-132.1 m 3 % pyrite in beds ( 5 mm thick and in hairline fractures.									-		
132.1	137.2	MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS											
		Medium green-grey, bedding is not as pronounced as in the	VA02800	132.1	137.2	5.1	n/a	76	n/a	82	n/a	n/a	418
		unit above, beds are up to 0.2 m thick and the sediments	VA03447			1.0	0	90	₹5	68	1		1300
		are coarser (ie sand to silt). Argillaceous beds are very	VA03448	136.2	137.2	1.0	0	91	₹5	60	1	<5	2000
		rare. 3 % angular lapilli-sized felsic clasts throughout											
		the last 0.7 m of the unit. Nil to trace disseminated											
		pyrite. Lower contact is conformable at 60 degrees to core axis											
		STRUCTURE:.											
		133.2 133.5 Cherty bed at 70 degrees to core axis with 2 %											
		fracture controlled pyrite.											
		140.3-140.6 M bedding is at 50-58 degrees to core axis.											
		Several (1.0 cm beds FINE DOWNHOLE.											
		At 141.4 m a 5.0 cm bed FINES DOWNHOLE.											
137.2	142 4	BLACK ARGILLITE											
20,12		Very fine-grained black to dark grey, moderately cherty	VA03449	137.2	138.2	1.0	4	59	12	105	1	1 (5	4000
		over most of the interval and weakly to moderately	VA03450	138.2	139.3	1.1	4	40	13	100	1		6600
		graphitic. Weakly to moderately microfractured, fractures	VA03451			1.1	4	33	11	85	1		3500
		are filled with calcite+quartz and / or pyrite. Rock is	VA03452			1.0	4	22	8	87	1		2800
		blocky over the entire interval. Lower contact is at 55	VA03453	141.4	142.4	1.0	4	33	10	140	1	⟨5	2400
		degrees to core axis.											
		STRUCTURE:. Bedding is often offset by < 3 cm by minor faults at 0-70											
		degrees to core axis. At 139.6 m bedding is at 50 degrees to core axis.											
		ALTERATION:. 137.2 142.4 WEAK FRACTURE CONTROLLED CARBONATIZATION.											
		CILL PUZZ DOG.											

Sample From To

Width

Total

137.2-142.4 m 4 % fractures controlled pyrite.

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-44 6

From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm)
		20 % ash-sized feldspar crystals in a very fine-grained cherty light green, massive siliceous matrix. Several blocks of black argillite near the upper contact. Lower contact is very sharp but irregular (errosional ?) at	VA02801 VA03454 VA03455	142.4	143.2	1.6	n/a 1 1	52 26 46	n/a <5 <5	125 63 70	n/a 1 1	n/a (5 (5	99 1700 100
		about 30 degrees to core axis ALTERATION:. 142.4 144.0 MODERATE FRACTURE CONTROLLED CARBONATIZATION.											
		SULPHIDES:. 142.4 144.0 Trace fracture controlled pyrite.											
144.0	149.1	MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Medium green with a brownish tint due to weak to moderate patchy thermal biotite alteration. Mafic to intermediate in composition and grain size varies from sand to granule.  10 to 25 % replacing subhedral 2-4 mm hornblende/pyroxene between 144.4 and 146.0 m. Quite massive, bedding rarely observed. Occasional ripped-up cherty bed. Lower contact is sharp at 72 degrees to core axis.	VA02802 VA03456 VA03457 VA03458 VA03459 VA03460	144.0 145.0 146.0 147.0	145.0 146.0 147.0 148.0	5.1 1.0 1.0 1.0 1.0	n/a 2 2 2 2 2 2	57 55 91 63 88 106	n/a 5 <5 <5 <5 8	148 101 133 105 101 314	n/a 1 1 1 1 1	<5 <5 <5 <5	2430 1600 3300 2600 2400 2600
		ALTERATION:. 144.0 149.1 WEAK SPOTTY EPIDOTIZATION.											
		SULPHIDES:. 144.0 2.0 % fracture controlled pyrite.											
149.1	150.3	WEAKLY CHLORITIC FELSIC TUFF As 142.4 to 144.0 m. Argillaceous over the first 0.1 m's. Massive, no bedding. Broken core at the lower contact.	VA03461	149.1	150.3	1.2	0	43	33	209	1	₹5	310
		149.1 150.3 WEAK FRACTURE CONTROLLED CARBONATIZATION.											
150.3	176.2	BLACK ARGILLITE Black, very fine-grained, weakly to moderately graphitic	VA03462	150 2	151 2	1.0	5	42	16	106	1	· (5	390
		and cherty. Beds of felsic ash tuff, volcanic wackes and cherty sediments (0.1 m thick are common. Rock is blocky throughout most of the section. Lower contact is sharp at 10 degrees to core axis.	VA03463 VA03465 VA03464 VA03466	151.3 153.3 154.3	153.3 154.3 155.1	2.0 1.0 .8 1.6	0 5 5 5	29 23 20 33	16 10 14 11	85 23 63 206	1 1 1 1	(5 5 (5 (5	660 8400 9100 2500
		STRUCTURE:. At 151.7 m bedding is at 50 degrees to core axis. 151.8-153.9 M FAULT ZONE at 40-50 degrees to core axis.	VA03467 VA03468 VA03469 VA03470	159.1 160.5	159.1 160.5 161.5 162.8	2.4 1.4 1.0 1.3	5 5 5 5	31 29 25 31	11 11 11 16	140 83 74 96	1 1 1	15 (5 5 8	2900 3100 2600 2900
		1.7 m of lost core. 155.1-159.1 M FAULT ZONE at 20-45 degrees to core axis. 2.0 m of lost core. Moderately to strongly graphitic.	VA03471 VA03472 VA03473	162.8 163.8	163.8 164.8	.5 1.0 1.0	5 5 5	19 21 20	(5 7 5 (5	69 71 77 71	1 1	144 (5 (5	4100 2700 3000 2400
		At 161.5 m bedding is at 50 degrees to core axis. 162.3-162.8 M FAULT ZONE at 60 degrees to core axis. Rock is very broken and blocky over entire interval.	VA03474 VA03475 VA03476	165.8	165.8 166.8 167.8	1.0 1.0 1.0	5 5	20 29 18	7	96 86	1 1 1	<5 <5 <5	3800 3000

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-44 7

	on (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (no)	Ba (ppm.)
		, ,,			,,	,-,	,,	ourphilado.	(,,,,,	( , , , , , , , , , , , , , , , , , , ,	(PP)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, (FF-)
			At 167.5 m 1.0 cm wacke bed is nearly parallel to the core	VA03477	167.8	168.8	1.0	5	17	5	65	1 .	7	2400
			axis.	VA03478	168.8	170.4	1.6	5	37	7	114	1	5	3100
			169.6-172.5 M FAULT ZONE at 20-40 degrees to core axis.	VA03479			2.1	5	34	10	101	1 .		2200
			Moderately graphitic. 0.6 m of lost core.	VA03480			1.0	5	27	. 7	93	1	(5	3400
			At 174.0 m bedding is at 15 degrees to core axis.	VA03481			1.0	5	28	9	89	1		3500
				VA03482			1.0	5	24	8	101	1		3200
			ALTERATION:	VA03483	175.5	176.2	.7	5.	20	9	53	. 1	13	2600
			150.3 176.2 WEAK FRACTURE CONTROLLED CARBONATIZATION.											
			SULPHIDES:.											
			5 % fracture controlled, bedded and disseminated pyrite.											
			5 % If acture controlled, bedded and disseminated pyrite.											
			160.0 161.6 Beds of light green intermediate ash tuff up											
			to 0.1 m thick comprise 50 % of the core.											
			Bedding is often offset by brittle microfaults.											
			beauting is order orises by sirecte microrautes.											
			175.4 888.8 Two light grey rounded pebbles of											
			carbonate-rich wacke.											
176.	. 2	184.7	SILTSTONE											
			Medium to light grey with black argillite beds up to 5.0	VA03484	176.2	177.2	1.0	3	23	7	78	1	(5	3400
			cm thick and light brown biotite altered greywacke beds	VA03485	177.2	178.2	1.0	3	19	5	73	1	<5	4900
			up to 2.0 cm thick at low angles to the core axis. Lower	VA03486	178.2	179.2	1.0	3	23	9	65	1	₹5	4200
			contact is sharp errosional (?) at 20 degrees to core axis.	VA03487	179.2	180.2	1.0	3	21	7	68	1	(5	4400
				VA03488	180.2	181.2	1.0	3	19	7	85	1 .	<5	3100
			STRUCTURE:.	VA03489	181.2	182.2	1.0	3	18	6	61	. 1	(5	3500
			At 176.2 m bedding is at bedding is at 10 degrees to core	VA03490	182.2	183.2	1.0	3	23	. 7	70	1	₹5	3700
			axis and beds appear to FINE DOWNHOLE.	VA03491	183.2	184.3	1.1	. 3	23	9	71	1	<5	4800
			At 179.4 m bedding is at 24 degrees to core axis.											
			At 180.0 m 1.0 cm bed of greywacke at 21 degrees to core											
			axis. Bed FINES DOWNHOLE.											
			ALTERATION:.											
			176.2 184.7 WEAK FRACTURE CONTROLLED CARBONATIZATION.											
			SULPHIDES:											

184.7 186.0 CONGLOMERATE

thick beds) pyrite.

Probably deposited at the base of a debris flow.

Comprised of 30 % angular pebble-sized clasts and rip-up clasts of argillite (40%), siltstone (15%), greywacke (15%) and carbonatized sediments (30%) in a coarse, quartz granule and biotite rich matrix. Many clasts have a ripped-up appearance. Clasts are poorly sorted but overall clast content decreases rapidly downhole (eg 40 %

At 176.2-184.7 m 3 % fracture controlled and bedded (<5 mm

At 183.0 m 5.0 cm greywacke bed with 20 % pyrite and 5 % sphalerite or biotite at 16 degrees to core axis.

2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

From

VA03492 200.3 201.3 1.0

HOLE No: Page Number CH88-44 8

12

Zn

From To (m) (m) ------DESCRIPTION------

No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

Total

clasts at 185.0 m and only 20 % at 185.9 m). Lower contact is gradational.

ALTERATION: .

184.7 186.0 Moderate thermal biotite alteration.

SULPHIDES:.

184.7 186.0 2 % pyrrhotite disseminated throughout the

### 186.0 196.6 GREYWACKE

Medium brown, quite massive, occasional beds of argillite up to 1.0 cm thick and an occasional angular pebble of argillite or siltstone. Comprised of subrounded quartz grains and subangular volcanic and chert fragments. See thin section sample AB?????. Trace disseminated magnetite and pyrite in the matrix.

Occasional dark grey cherty clasts up to 4.0 cm in diameter below 191.4 m. Clasts have distinctive light green or brown reaction rims up to 1.0 cm wide. Lower contact is at 20 degrees to core axis.

### 196.6 197.9 SILTSTONE

Medium grey, massive, no bedding, very cherty but no sulphides. Lower contact is at 18 degrees to core axis.

### 197.9 203.3 GREYWACKE

As 186.0 to 196.6 m. Massive and quite coarse-grained with occasional clast or bed of dark grey cherty siltstone. Trace disseminated pyrite.

STRUCTURE:.

At 201.2 m bedding is at 24 degrees to core axis.

200.3 201.2 CHERTY SILTSTONE: trace fracture controlled pyrite.

7 94 (1 (5 3000

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	15102	1AL203	ZCAO	ZHGO	XNA20	XK20	XFE203	<b>11102</b>	XP205	ZHNO	ZLOI	SUM	ВА	AI	NACA
			· .												 		
VA02313	28.30	28.70	47.40	14.70	12.30	5.64	2.16	0.17	11.70	1.47	0.14	0.20	3.70	99.58	104.	29.	14.
VA02314	32.10	32.30	50.10	16.50	11.00	5.13	3.72	0.11	9.97	0.78	0.15	0.17	2.23	99.86	75.	26.	15.
VA02315	54.40	54.70	50.90	14.00	9.79	7.67	3.33	0.33	10.10	0.58	0.14	0.18	2.39	99.41	226.	38.	13.
VA02316	62.70	63.00	50.20	14.90	8.50	8.69	2.01	2.53	9.85	0.71	0.19	0.20	2.47	100.25	1020.	52.	11.
VA02317	73.00	73.50	51.20	14.00	7.61	5.82	2.47	0.59	13.10	1.87	0.18	0.20	3.00	100.04	341.	39.	10.
VA02318	101.40	101.60	50.80	15.60	4.44	7.81	4.00	0.89	9.02	0.64	0.21	0.12	4.70	98.23	463.	51.	8.

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	ԸՄ (արգա)	ZN (ppm)	NI (ppm)			ROCK	CODES	мім
VA02313	28.30	28.70	13.0	281.0	104.0	23.0	52.0	22.0	199.0	127.0	120.0			PMAEM	?	AA
VA02314	32.10	32.30	28.0	522.0	75.0	15.0	<10.0	12.0	231.0	89.0	43.0			VMAM	PHW	AA
7A02315	54.40	54.70	22.0	273.0	226.0	26.0	<10.0	13.0	18.0	89.0	39.0			Vmam	PEW	AA
VA02316	62.70	63.00	48.0	317.0	1020.0	<10.0	<10.0	21.0	92.0	76.0	105.0			TMAT	?	AA .
VA02317	73.00	73.50	38.0	200.0	341.0	12.0	91.0	32.0	199.0	126.0	99.0			PMAEM	?	AA ·
VA02318	101.40	101.60	34.0	129.0	463.0	31.0	60.0	<10.0	151.0	149.0	135.0			TMAM	PHW	FBP

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE	FROM	TO	<b>XS102</b>	%AL203	ZCA0	x MGO	ZNA20	žK20	ZFE203	ZI 102	XP205	хиио	XL01	SUM	BA	AI	NACA
VA02796	30.30	57.70	44.40	17.50	16.20	4.46	2.03	0.22	10.80	0.59			3.93	100.13	121.	20.	18.
VA02797	57.70	72.50	47.50	16.00	6.62	7.68	2.62	2.67	10.50	0.81			5.23	99.63	1290.	53.	9.
VA02798	92.80	110.10	43.50	14.20	19.80	5.57	0.94	1.16	7.23	0.49			6.39	99.28	1080.	25.	21.
VA02799	127.70	132.10	74.10	11.10	1.24	1.68	2.03	2.47	3.07	0.26			2.00	97.95	4750	56.	3.
VA02800	132.10	137.20	51.90	15.60	6.57	6.05	5.42	0.24	7.55	0.61			5.47	99.41	418.	34.	
VA02801	142.40	144.00	42.50	15.00	7.84	8.53	3.24	0.10	11.20	1.76			7.85	98.02	99.	44.	11.
VA02802	144.00	149.10	43.50	16.30	9.98	6.91	2.13	1.37	11.60	1.98			3.47	97.24	2430.	41.	12.

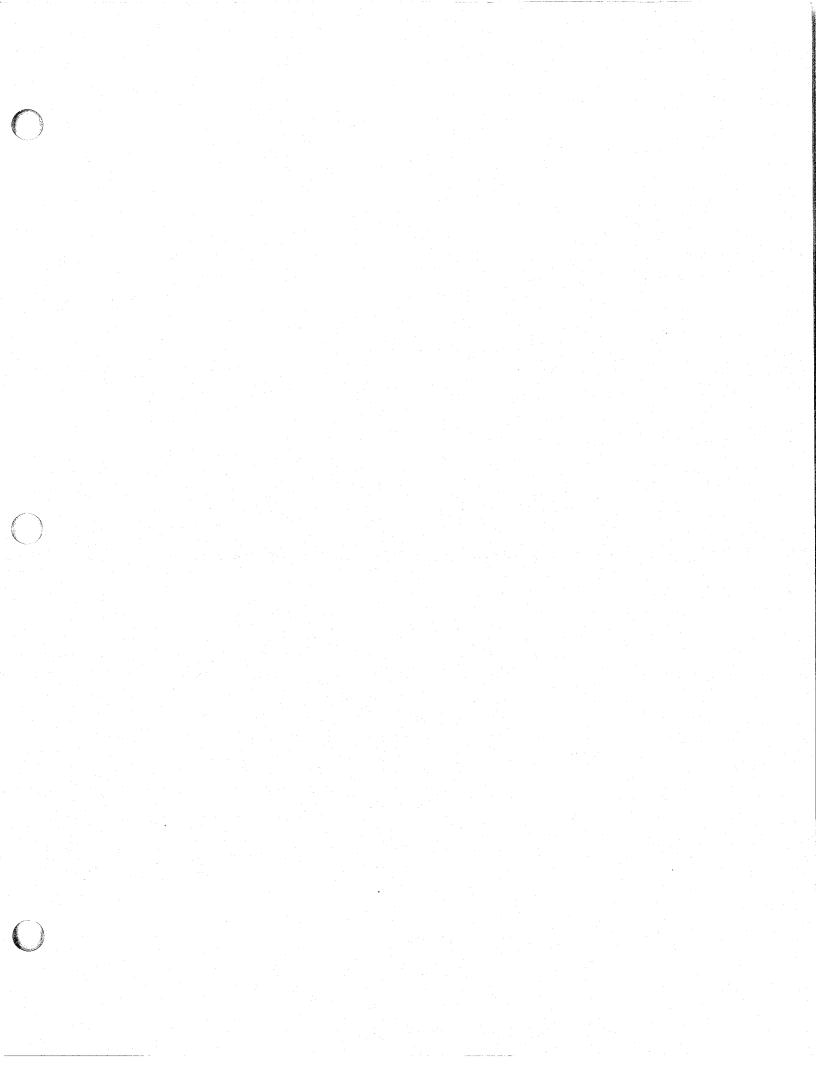
# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE			 <del></del>			~~~~~						 	 			
NUMBER	FROM	10	 RB (ppm)	SR (ppm)	RA (ppm)	Y (ppm)	ZR (ppm)	(ppm)	CU (ppm)	3N (ppm)	NI (ppm)			ROCK	CODES	MIN
VA02796	30.30	57.70			121.0				148.0	59.0	35.0			VMAH	SEW	A
VA02797	57.70	72.50			1290.0				- 85.0	120.0	59.0			TMAT	?	FBP
VA02798	92.80	110.10			1080.0				34.0	66.0	32.0			TMAT	?	FBP
VA02799	127.70	132.10			4750.0				23.0	80.0	22.0			TEAR	?	A
VA02800	132.10	137,20			418.0				76.0	82.0	65.0			TMAT	ECW	A
VA02801	142.40	144.00			99.0				52.0	125.0	252.0			TEAM	PHW	A
VA02802	144.00	149.10			2430.0				57.0	148.0	131.0			ImaI	PMM	Α

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENIS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (pp∎)	(bbm) br	AS (ppm)	CD (ppm)	HO (ppm)	HN (ppm)	CUZN	ETS	FE
VA03417	32.50	33.50	90.0	58.0	37.0	<0.5	10.0	17.0	23.0	⟨5.0	<5.0	1.0	<1.0	401.0	61.	0.	2.
VA03418	33.50	34.00	120.0	146.0	35.0	<0.5	10.0	15.0	21.0	<5.0	16.0	1.0	<1.0	514.0	81.	1.	3.
VA03419	34.00	35.00	310.0	81.0	54.0	<0.5	44.0	28.0	34.0	₹5.0	9.0	2.0	<1.0	684.0	60.	3.	5.
VA03420	35.00	36.00	210.0	30.0	38.0	<0.5	29.0	17.0	28.0	<5.0	6.0	<1.0	<1.0	556.0	44.	3.	3.
VA03421	36.00	37.00	310.0	119.0	66.0	<0.5	6.0	26.0	34.0	<5.0	<5.0	2.0	<1.0	722.0	64.	1.	4.
VA03422	38.00	39.00	370.0	195.0	55.0	<0.5	20.0	26.0	34.0	₹5.0	<5.0	2.0	<1.0	801.0	78.	1.	4.
VA03423	39.00	40.00	240.0	279.0	48.0	<0.5	20.0	49.0	37.0	<5.0	20.0	2.0	1.0	627.0	85.	6.	4.
VA03424	40.00	41.00	270.0	254.0	55.0	(0.5	25.0	29.0	31.0	⟨5.0	7.0	1.0	<1.0	536.0	82.	1.	4.
VA03425	43.00	44.00	620.0	145.0	75.0	<0.5	<5.0	31.0	36.0	⟨5.0	<5.0	<1.0	<1.0	835.0	66.	1.	5.
VA03426	44.00	45.00	200.0	124.0	51.0	<0.5	<5.0	23.0	38.0	<5.0	<5.0	1.0	<1.0	621.0	71.	1.	4.
VA03427	45.00	46.00	210.0	47.0	43.0	<0.5	6.0	28.0	38.0	<5.0	(5.0	<1.0	<1.0	728.0	52.	1.	4.
VA03428	46.00	47.00	230.0	59.0	56.0	<0.5	<5.0	35.0	43.0	<5.0	⟨5.0	1.0	<1.0	1087.0	51.	1.	5.
VA03429	52.20	53.00	190.0	101.0	40.0	<0.5	<5.0	23.0	29.0	<5.0	<5.0°	<1.0	<1.0	549.0	72.	2.	3.
VA03430	58.00	59.00	300.0	178.0	123.0	0.6	<5.0	37.0	58.0	<b>(5.0</b>	<5.0	<1.0	<1.0	1207.0	59.	1.	6.
VA03431	59.00	60.00	280.0	127.0	80.0	<0.5	<5.0	36.0	62.0	<5.0	<5.0	<1.0	<1.0	1140.0	61.	1.	6.
VA03432	67.00	68.00	830.0	118.0	103.0	<0.5	<5.0	26.0	27.0	<5.0	<5.0	1.0	<1.0	1079.0	53.	1.	6.
VA03433	68.00	69.00	1200.0	101.0	103.0	<0.5	<5.0	21.0	20.0	5.0	<5.0	<1.0	<1.0	788.0	50.	1.	5.
VA03434	69.00	70.00	1800.0	87.0	83.0	0.5	14.0	19.0	31.0	8.0	<5.0	<1.0	1.0	920.0	51.	1.	5.
VA03435	70.00	71.00	2300.0	132.0	104.0	0.6	<5.0	26.0	39.0	<5.0	15.0	1.0	<1.0	1015.0	56.	1.	6.
VA03436	71.00	72.00	1800.0	76.0	72.0	<0.5	<5.0	22.0	42.0	18.0	11.0	<1.0	<1.0	666.0	51.	1.	6.
VA03437	72.00	72.50	1300.0	125.0	92.0	1.0	194.0	8.0	43.0	116.0	19.0	1.0	5.0	337.0	58.	1.	3.
VA03438	99.50	100.50	1300.0	51.0	48.0	0.5	(5.0	22.0	81.0	(5.0	<5.0	<1.0	<1.0	613.0	52.	1.	3.
VA03439	100.50	101.00	410.0	93.0	246.0	0.6	<5.0	27.0	44.0	<5.0	12.0	2.0	1.0	838.0	27.	1.	3.

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)


SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	€0 (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	НО (ррм)	HN (ppm)	Cu	EN I	ETS	FE
*					<del></del>										**			
VA03440	101.00	102.00	560.0	105.0	52.0	0.7	<5.0	26.0	103.0	<5.0	<5.0	<1.0	<1.0	627.0	67	·.	1.	5.
VA03441	108.00	109.00	830.0	113.0	67.0	0.7	9.0	24.0	60.0	<5.0	6.0	<1.0	<1.0	565.0	63	r.	1.	5.
VA03442	109.00	110.10	1900.0	92.0	70.0	0.6	6.0	14.0	35.0	6.0	6.0	<1.0	3.0	472.0	57		1.	3.
VA03443	127.70	128.70	3300.0	61.0	52.0	0.8	<5.0	7.0	20.0	8.0	5.0	<1.0	1.0	317.0	54	ı.	з.	2.
VA03444	128.70	129.80	4200.0	29.0	41.0	<0.5	(5.0	4.0	14.0	7.0	<5.0	<1.0	<1.0	259.0	41		3.	2.
VA03445	129.80	130.90	4400.0	56.0	53.0	0.7	<5.0	6.0	17.0	8.0	<5.0	<1.0	1.0	295.0	51		3.	2.
VA03446	130.90	132.10	6000.0	48.0	62.0	0.8	<5.0	7.0	21.0	6.0	<b>&lt;5.0</b>	<1.0	1.0	565.0	44		3.	3.
VA03447	132.10	133.10	1300.0	90.0	68.0	0.7	7.0	21.0	72.0	<5.0	10.0	<1.0	2.0	764.0	57		Ò.	4.
VA03448	136.20	137.20	2000.0	91.0	60.0	0.6	<5.0	23.0	95.0	<5.0	<5.0	1.0	<1.0	1109.0	60		٥.	4.
VA03449	137.20	138.20	4000.0	59.0	105.0	0.7	<5.0	6.0	23.0	12.0	16.0	<1.0	1.0	445.0	36		4.	3.
VA03450	138.20	139.30	6600.0	40.0	100.0	0.7	<5.0	3.0	18.0	13.0	8.0	<1.0	2.0	317.0	29		4.	2.
VA03451	139.30	140.40	3500.0	33.0	85.0	1.0	7.0	2.0	17.0	11.0	₹5.0	(1.0	4.0	278.0	28		4.	2.
VA03452	140.40	141.40	2800.0	22.0	87.0	0.7	12.0	<1.0	14.0	8.0	⟨5.0	<1.0	4.0	335.0	20		4.	1.
VA03453	141.40	142.40	2400.0	33.0	140.0	0.8	<5.0	3.0	22.0	10.0	<5.0	<1.0	3.0	488.0	19	•	4.	2.
VA03454	142.40	143.20	1700.0	26.0	63.0	0.7	<5.0	3.0	11.0	<5.0	8.0	<1.0	2.0	390.0	29		1.	2.
VA03455	143.20	144.00	100.0	46.0	70.0	0.7	(5.0	22.0	117.0	<5.0	27.0	<1.0	2.0	777.0	40		1.	4.
VA03456	144.00	145.00	1600.0	55.0	101.0	0.5	<5.0	35.0	227.0	5.0	8.0	<1.0	2.0	870.0	35		2.	4.
VA03457	145.00	146.00	3300.0	91.0	133.0	0.6	⟨5.0	31.0	14.0	<5.0	11.0	(1.0	5.0	855.0	41		2.	4.
VA03458	146.00	147.00	2600.0	63.0	105.0	0.5	<b>(5.0</b>	26.0	35.0	<5.0	5.0	<1.0	3.0	718.0	38	•	2.	4.
VA03459	147.00	148.00	2400.0	88.0	101.0	0.6	(5.0	25.0	26.0	₹5.0	<5.0	<1.0	5.0	870.0	47		2.	4.
VA03460	148.00	149.10	2600.0	106.0	314.0	0.8	<5.0	29.0	54.0	8.0	<5.0	3.0	8.0	1382.0	25		2.	5.
VA03461	149.10	150.30	310.0	43.0	209.0	0.7	<5.0	4.0	21.0	33.0	6.0	<1.0	2.0	670.0	17		0.	2.
VA03462	150.30	151.30	390.0	42.0	106.0	0.7	<5.0	4.0	29.0	16.0	<5.0	<1.0	2.0	626.0	28	_	5.	з.

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CD (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	HN (ppm)	CUZN	ETS	FE
											· .				<del></del>		
VA03463	151.30	153.30	660.0	29.0	85.0	0.6	<5.0	4.0	23.0	16.0	10.0	<1.0	3.0	428.0	25.	0.	2.
VA03465	153.30	154.30	8400.0	23.0	23.0	0.9	5.0	1.0	18.0	10.0	14.0	<1.0	58.0	286.0	50.	5.	١.
VA03464	154.30	155.10	9100.0	20.0	63.0	1.1	(5.0	1.0	7.0	14.0	<5.0	<1.0	13.0	380.0	24.	5.	1.
VA03466	155.10	156.70	2500.0	33.0	206.0	0.8	⟨5.0	2.0	20.0	11.0	13.0	<1.0	5.0	302.0	14.	5.	2.
VA03467	156.70	159.10	2900.0	31.0	140.0	1.0	15.0	3.0	24.0	11.0	17.0	<1.0	3.0	362.0	18.	5.	2.
VA03468	159.10	160.50	3100.0	29.0	83.0	0.7	⟨5.0	2.0	14.0	11.0	20.0	<1.0	31.0	331.0	26.	5.	2.
VA03469	160.50	161.50	2600.0	25.0	74.0	0.6	5.0	2.0	6.0	11.0	5.0	<1.0	13.0	380.0	25.	5.	2.
VA03470	161.50	162.80	2900.0	31.0	96.0	0.9	8.0	4.0	17.0	16.0	9.0	<1.0	7.0	309.0	24.	5.	2.
VA03471	162.30	162.80	4100.0	19.0	69.0	(0.5	144.0	2.0	9.0	<5.0	(5.0	<1.0	2.0	305.0	22.	5.	1.
VA03472	162.80	163.80	2700.0	21.0	71.0	0.6	<5.0	2.0	11.0	7.0	<b>(5.0</b>	<1.0	<1.0	424.0	23.	5.	2.
VA03473	163.80	164.80	3000.0	20.0	77.0	0.5	<5.0	1.0	8.0	5.0	<5.0	<1.0	1.0	351.0	21.	5.	2.
VA03474	164.80	165.80	2400.0	20.0	71.0	0.7	⟨5.0	2.0	9.0	<5.0	⟨5.0	<1.0	<1.0	376.0	22.	5.	2.
VA03475	165.80	166.80	3800.0	29.0	96.0	0.8	<5.0	2.0	8.0	7.0	⟨5.0	<1.0	11.0	415.0	23.	5.	2.
VA03476	166.90	167.80	3000.0	18.0	86.0	0.5	(5.0	2.0	5.0	6.0	8.0	<1.0	3.0	1164.0	17.	5.	2.
VA03477	167.80	168.80	2400.0	17.0	65.0	0.6	7.0	2.0	5.0	5.0	<5.0	<1.0	1.0	391.0	31.	5.	1.
VA03478	168.80	170.40	3100.0	37.0	114.0	0.7	5.0	3.0	19.0	7.0	⟨5.0	<1.0	3.0	339.0	25.	5.	2.
VA03479	170.40	172.50	3200.0	34.0	101.0	1.0	<5.0	2.0	24.0	10.0	27.0	<1.0	3.0	293.0	35.	- 5.	2.
VA03480	172.50	173.50	3400.0	27.0	93.0	0.8	⟨5.0	2.0	20.0	7.0	⟨5.0	<1.0	2.0	206.0	23.	5.	2.
VA03481	173.50	174.50	3500.0	28.0	89.0	0.8	12.0	3.0	18.0	9.0	9.0	<1.0	1.0	253.0	24.	5.	2.
VA03482	174.50		3200.0	24.0	101.0	0.7	6.0	1.0	16.0	8.0	10.0	<1.0	3.0	381.0	19.	5.	2.
VA03483	175.50		2600.0	20.0	53.0	0.6	13.0	2.0	13.0	9.0	(5.0	<1.0	2.0	242.0	27.	5.	1.
VA03484	176.20		3400.0	23.0	78.0	0.6	(5.0	2.0	9.0	7.0	<b>&lt;5.0</b>	<1.0	<1.0	373.0	23.	3.	1.
VA03485	177.20		4900.0	19.0	73.0	0.7	⟨5.0	1.0	8.0	5.0	⟨5.0	<1.0	<1.0	304.0	21.	3.	ί.

Page No. 3

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (HINOR ELEMENTS)

				<del></del>											·		
SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	HN (ppm)	CUZN	ETS	FE
		-															
VA03486	178.20	179.20	4200.0	23.0	65.0	0.5	(5.0	2.0	11.0	9.0	(5.0	(1.0	<1.0	261.0	26.	3.	2.
VA03487	179.20	180.20	4400.0	21.0	68.0	0.6	<5.0	1.0	8.0	7.0	<5.0	<1.0	4.0	398.0	24.	3.	2.
VA03488	180.20	181.20	3100.0	19.0	85.0	0.5	<5.0	3.0	11.0	7.0	<5.0	<1.0	1.0	320.0	18.	3.	2.
VA03489	181.20	182.20	3500.0	18.0	61.0	0.6	<5.0	3.0	9.0	6.0	<b>&lt;5.0</b>	<1.0	<1.0	326.0	23.	3.	1.
VA03490	182.20	183.20	3700.0	23.0	70.0	0.7	<5.0	4.0	9.0	7.0	<5.0	<1.0	1.0	394.0	25.	3.	2.
VA03491	183.20	184.30	4800.0	23.0	71.0	0.6	<5.0°	2.0	7.0	9.0	8.0	<1.0	1.0	389.0	24.	э.	2.
VA03492	200.30	201.30	3000.0	12.0	94.0	<0.5	<5.0	1.0	8.0	7.0	⟨5.0	<1.0	<1.0	326.0	11.	1.	2.



Summary Log: DDH CH88-45

Location: 28+00 E, 1+10 N; Chip 1 Claim

Azimuth: 210, Dip: -58

Hole Completed: April 28, 1988 Core Logged By: D.P. Money

0.0 - 5.1 Casing.

5.1 - 196.3 Chloritic felsic crystal and lapilli tuffs.

196.3 - 202.4 Fault Zone.

202.4 - 218.6 Felsic crystal tuff with 1 % pyrite and trace chalcopyrite.

218.6 - 222.5 Fault Zone.

222.5 - 250.5 Chloritic feldspar porphyritic felsic flow.

250.5 - 345.7 Intercalated felsic and mafic tuffs.

345.7 - 350.7 Mafic sill.

350.7 - 374.0 Felsic ash tuff and minor sediments with up to 5 % banded and disseminated pyrite over 1 m, pyrite content averages 1 to 2 %.

374.0 - 439.5 Gabbro.

439.5 End of hole.

PROPERTY: Chemainus J.V. HOLE No: Page Number FALCONBRIDGE LIMITED CH88-45 DIAMOND DRILL LOG Hole Location: 28+00 E 1+10 N Claim No. CHIP1 NTS: 092/B13 UTM: 5417131.9 N 430195.6 E Section No.: Line 28+00 East, Chip Group Azimuth: 210 Elevation: 545 m Dip: ~58 Length: 439.5 m Logged By: David P. Money Drilling Co.: Burwash Enterprises Started: April 22, 1988 Assayed By: Bondar-Clegg and X-Ray Assay Completed: April 28, 1988 Core Size: NQ Purpose: To test for mineralization dyked out by DIP TESTS the Anita Gabbro. Azi-Azimuth Length Dip Length muth Dip 185.00 210.0 -51.0 297.80 210.0 -49.0 From To Sample From Width Total Рb To Cu Zn Ag Aπ Ba (m) -----DESCRIPTION------No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 5.1 OVERBURDEN 5.1 14.2 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Variably chloritic tuff with 5 to 12 %, up to 1.5 mm, n/a 903 VA01039 5.1 14.2 9.1 41 95 n/a n/a quartz eyes and 15 to 25 %, 1 to 2 mm, feldspars and epidotized feldspars. Chlorite is nil to 15 %, averages 10 %. Is sericitic from 10.3 to 11.0 with up to 5 %, 3 to 4 mm, quartz eyes. There is trace disseminated fine-grained pyrite cubes and weak local fracture controlled carbonatization. There is a quartz vein from 5.8 to 6.2. Is locally contorted by folds. 5.1 14.2 MODERATE SPOTTY CHLORITIZATION. Foliations. 9.0: 28 degrees to core axis. 10.5: 48 degrees to core axis. 11.6: 38 degrees to core axis. 14.2 15.2 INTERHEDIATE QUARTZ EYE TUFF Dark green chloritic tuff with 3 to 5 %, 2 to 4 mm, quartz VA01040 15.0 35.0 20.0 n/a 16 n/a n/a eyes. There is medium fracture controlled carbonatization. There are minor local faults and folds at numerous orientations. There are trace 1 to 3 mm pyrite cubes. Foliation trend is at approximately 30 degrees to core axis 15.2 58.7 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Variably chloritic felsic tuff with 10 to 25 % quartz and 34 n/a 1160 VA01041 35.0 55.0 20.0 n/a 27 n/a n/a feldspar crystals and local mafic tuff beds. ₹5 93 (1 <5 1200 VA01609 35.4 27 36.0 .6 1 15.2 58.7 HODERATE SPOTTY CHLORITIZATION. VA01610 40.7 41.0 85 **(5** 127 <5 1400 . 3 15.2 17.4 Weakly chloritic with trace 3 mm quartz eyes and 10 to 15 %, 1 mm, feldspars. There is trace to

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45 2

From То -----DESCRIPTION-----(m) (m) 0.5 % fine-grained disseminated pyrite. Foliation is at 37 degrees to core axis. 17.4 18.5 Similiar to 15.2 to 17.4 in crystal content, but is dark green with approximately 25 % chlorite. There are minor quartz - calcite veinlets. 18.5 20.8 Sericitic with weak local chloritization, has 3 %, 3 mm, quartz eyes and 5 to 10 %, < 1 mm, feldspar and quartz grains. Foliation is at 28 degrees to core axis. 20.8 21.2 Thin 2 to 5 cm alternating mafic and felsic tuff beds with bedding at 33 degrees to core axis. 21.2 21.4 Quartz - chlorite vein with trace 1 to 3 mm chalcopyrite blebs. 21.4 21.9 Sheared mafic tuff with strong pervasive carbonatization. Foliation at 36 degrees to core 21.9 27.7 Strongly chloritic felsic tuff with on average 10 %, 2 mm, quartz eyes and 10 %, 1 mm, feldspars. Medium green to black with 15 to 30 % chlorite. Foliation is at 41 degrees to core axis. There is local weak pervasive carbonatization. 27.7 29.6 Dark green to light black massive siliceous felsic with trace pyrite cubes and on average 5 %, 3 to 5 mm, quartz eyes and 15 to 20 %, 2 to 3 mm, feldspars. There is minor quartz veins and no foliation. 29.6 30.5 Rusty blocky, highly fractured core. Quartz feldspar crystal felsic tuff, sericitic not chloritic. 30.5 31.2 0.2 m lost core. 30.5 31.2 Quartz - chlorite - calcite vein. 31.2 32.2 Similiar to 27.7 to 29.6, but is foliated as from 29.6 to 30.5 at 36 degrees to core axis. 32.2 35.4 Chloritic tuff with 5 %, 1 to 2 mm; quartz eyes and 10 to 20 %, ( 1 mm crystals. There is nil carbonatization, except as 3 to 5 mm veinlets parallel to foliation. There is on average 15 to 20 % chlorite, with local nil. There is trace fine-grained disseminated pyrite. Dark to medium light green in colour. Weakly contorted with foliation from 30 to 50 degrees to core axis. average from 35 to 45 degrees to core axis. 35.4 36.0 Mafic with strong carbonate bands parallel to foliation. Lower contact at 31 degrees to core axis and upper contact at 37 degrees to core axis. Is locally contorted with trace disseminated 3 to 5 mm pyrite cubes. 36.0 37.7 Very sericitic tuff with 2 to 3 %, 5 mm, quartz eyes. Foliation at approximately 20 degrees to

core axis.

Total Width Cu Sample From To Pb λg Αu No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm). (ppm) (ppb) (ppm)

2

.

. 4

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45 3

			DIAMOND DRILL LOG											
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphide:	Cu s (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)
		37.7 37.8	Mafic tuff bedding with strong pervasive											
			carbonatization as bands.											
		37.8 38.6	Weakly chloritic felsic tuff with trace											
			disseminated pyrite, weak pervasive											
			carbonatization and 5 to 7 %, 2 to 3 mm, quartz											
			eyes.											
		38.6 38.8	Sheared mafic at 53 degrees to core axis with 1											
			% carbonatization and 1 % pyrite in streaks											
			parallel to foliation.											
		38.8 38.9	Sericitic felsic tuff with 5 %, 1 to 3 mm,											
			quartz eyes and, 15 %, < 1 mm feldspar grains.											
			Same as 38.6 to 38.9.											
		39.0 40.7	Similiar to 38.8 to 38.9 with minor 5 cm mafic and medium chlorite from 40.2 to 40.7, after											
			the mafic. Foliation is at 52 degrees to core											
		40 7 41 0	axis.											
		40.7 41.0	Dark black to green chlorite with 10 % calcite											
			bands and 0.5 % pyrite. 45 degrees to core axis.											
		41.0 45.2	Contorted tuff with 10 to 15 % contorted white											
			quartz - k feldspar veins in chloritic tuff											
			with 20 %, 1 to 3 mm, feldspars and											
		45 0 50 5	approximately 5 %, 2 mm, quartz eyes.											
		45.2 58.7	Weakly chloritic tuff with minor chlorite -											
			carbonate mafics with 0.5 % pyrite from 48.5 to					100						
			48.6, 49.6 to 49.7, 50.3 to 50.4, 51.5 to 51.9											
			and from 56.2 to 56.4. Is locally sericitic											
			with no chlorite, chlorite averages											
			approximately 3 %. There is on average 5 %, 1											
			to 3 mm, quartz eyes and 10 %, up to 1 mm.											
			feldspars. Foliation averages 50 degrees to core											
			axis. There is trace fine-grained disseminated											
			pyrite locally. At 56.5 there is a ash tuff											
			bedding or lapilli at 44 degrees to core axis.											
			There is trace mariposite (?) at 57.4.											
•••			ADMC DUP MUEP											
58.7	63.4		ARTZ EYE TUFF	VA01042	60.0	63.0	3.0	n/a	31	n/a	16	n/a	n/a	1360
		Siliceous	light grey felsic tuff with 10 %, 1 to 2 mm,	7701042	00.0	03.0	3.0	117 4						
			es in a fine-grained matrix. There are numerous											
			controlled 1 to 2 cm quartz veins at 70 to 85											
			o core axis. There is trace to nil disseminated			*****								
			s weakly contorted.											
		Foliation												
			degrees to core axis.											
		03.2 : 39	degrees to core axis.											
63.4	.04 0	CHLORITIO	FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF											
03.4	74.3		eakly chloritic felsic tuff with quartz and	VA01043	65.0	85.0	20.0	n/a	⟨10	n/a	<10	n/a	n/a	992
			crystals. There are local mafic tuff beds.	VA01044		105.0		n/a	22	n/a	20	n/a	n/a	1290
			WEAK SPOTTY CHLORITIZATION.		<del>-</del>									
		V3.1 31.												

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45 4

From	То			
(m)	(m)			DESCRIPTION
			63.5	
		63.4	63.5	Carbonatized sheared mafic with 9 cm of white
				quartz vein and trace pyrite.
		63.5	66.4	Weakly chloritic with 3 to 5 % chlorite, hosts 5
				%, 2 to 5 mm, and 10 %, up to 1.5 mm, quartz
				eyes and approximately 10 % up to 1 mm
				feldspars. There is a white quartz - ( chlorite
				) vein from 64.8 to 64.9. Foliation varies and
				trends at 45 degrees to core axis.
				Same as from 58.7 to 63.4.
		67.5	67.6	Carbonatized mafic chlorite shear at 44 degrees
				to core axis.
				As from 66.4 to 67.5.
				As from 63.5 to 66.4.
		67.9	68.4	Carbonatized mafic with approximately 1 % pyrite
				at 36 degrees to core axis.
		68.4	77.8	Schistose tuff with 5 to 7 %, 1 to 3 mm, quartz
				eyes and 10 to 15 %, up to 1 mm, feldspar
				grains. Is variably weakly chloritic with up to
				7 % chlorite. There are 1 mm parallel to
				foliation pyrite bands at 72.5, 72.6, and 73.8.
				There is trace to nil disseminated pyrite.
				Foliation is at 41 to 50 degrees to core axis
				locally.
		77.8	78.1	Carbonatized mafic at 47 degrees to core axis
				with trace to 0.5 % pyrite cubes.
		78.1	93.0	5 cm to 2 m beds of weakly chloritic tuff and
				sericitic. Sericitic tuff is approximately 15 %
				and may locally be lapilli as bands are not
				continuous. There are 10 %, 1 to 4 mm, average
				2 mm, quartz eyes and 10 % up to 1 mm feldspar
				and epidote grains. There is a 7 mm epidote
				knot at 87.5. There is a mafic from 90.8 to 91.1
				as before. There are minor fault zones at 90
				degrees to core axis. Foliation and bedding are
				sub-parallel at 50 degrees to core axis. 85.0
				86.5 0.3 m lost core.
		85 7	86 3	Blocky, highly fractured core with hematite on
			50.5	fractures.
		93.0	94 9	HODERATE PERVASIVE SILICIFICATION along
			,,,,	selective beds in chloritic felsic tuff with
				crystal content similar to 78.1 to 93.0.
				Foliation is at 35 to 62 degrees to core axis,
				rough trend at 50 degrees to core axis. Bedding
				is parallel to to foliation and is locally
				contorted.
		94.0	01 2	
		34.0	74.5	0.2 m lost core with 3.5 cm fault gouge and

mple From To Width Total Cu Pb 2n Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

Blocky, highly fractured core. Mafic ash tuff (?). Strong

minor fracture controlled hematite.

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

No.

From

(m)

To

(m)

Width

(m)

HOLE No: Page Number CH88-45

Z.n

Aσ

(ppm) (ppm) (ppm) (ppb) (ppm)

(m) (m) -----DESCRIPTION----foliation at 52 to 55 degrees to core axis with weak cross-cut foliation at 31 degrees to core axis. There is

minor quartz - calcite veins parallel to strong foliation. There is trace to nil pyrite cubes, up to 4 mm. There is minor felsic tuff from 95.9 to 96.1. 94.9 97.7 STRONG PERVASIVE CARBONATIZATION.

- 97.7 98.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Felsic tuff with 15 % quartz and feldspar crystals, up to 1.5 mm. Foliation at 55 degrees to core axis.
- 98.7 102.3 CHLORITE SCHIST Dark green to black chlorite with calcite streaks (10 %) and 5 % quartz - calcite veins with trace pyrite. Is contorted with foliation trend at 55 degrees to core axis. There are minor pyrite cubes, up to 6 mm, trace, throughout. Is strongly magnetic. 98.7 102.3 STRONG PERVASIVE CARBONATIZATION.
- 102.3 152.4 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL LAPILLI TUFF Weakly chloritic felsic tuff with 3 to 10 % chlorite, averages 5 %. There are local sericitic tuff lapilli or beds with similiar crystal contents to the chloritic tuff. Colour varies from medium green to light grey. There are 5 to 10 %, 1 to 3 mm, quartz eyes and up to 20 %, average 5 to 10 %, 1 to 2 mm, feldspar grains and laths. There are local quartz veins, fracture controlled, and parallel to foliation, up to 2 cm thick. There are minor chlorite calcite schists, mafic tuffs (?), from 136.4 to 137.5, 142.7 to 143.8 and from 147.3 to 148.1. There is trace to nil disseminated and fracture controlled pyrite. Mafics are locally weakly magnetic. 102.3 152.4 WEAK PERVASIVE CHLORITIZATION.

Structure :.

Bedding :.

110.0: 58 degrees to core axis.

122.6: 56 degrees to core axis.

131.9: 55 degrees to core axis.

Foliations :.

115.3: 52 degrees to core axis.

125.3: 49 degrees to core axis.

138.8 : 44 degrees to core axis.

140.4: 34 degrees to core axis.

149.7: 50 degrees to core axis, locally contorted.

134.9: 45 degrees to core axis, 2 to 4 mm fault gouge. 119.2 120.0 (?) degrees to core axis, 0.3 m lost core.

152.4 Lower contact blocky, highly fractured core and

Total

Sulphides (ppm)

n/a 1030 VA01045 105.0 125.0 20.0 15 27 n/a n/a n/a VA01046 125.0 150.0 25.0 30 29 n/a 1190 n/a n/a

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

No.

From

(m)

To

(m)

Width

(ms)

HOLE No: Page Number CH88-45 6

Çu

Рb

Zn

Aσ

(ppm) (ppm) (ppm) (ppb) (ppm)

(m) (m) -----DESCRIPTION----minor fault gouge. 152.4 172.5 INTERMEDIATE QUARTZ FELDSPAR CRYSTAL TUFF May be andesitic, not mafic as from 154.4 there is minor sericite and 3 to 7 %, 1 to 2 mm, quartz eyes and 5 to 10 %, 1 mm, feldspar grains. There is strong black chlorite with moderate pervasive carbonatization from 152.4 to 154.4. Foliation varies locally from 54 to 0 degrees to core axis. Is blocky, highly fractured core or disky. Carbonatization is pervasive as streaks parallel to foliation. There are minor quartz - calcite veins. Very chloritic zone is locally weakly magnetic, other part isn't. Lost core :. 152.2 152.7 0.2 m lost core. 152.7 153.8 0.4 m lost core. 155.0 156.5 0.3 m lost core. 164.6 165.2 0.2 m lost core. Alteration :. 152.4 172.5 WEAK PERVASIVE CARBONATIZATION. 152.4 172.5 MODERATE FRACTURE CONTROLLED CARBONATIZATION. Foliations :. 157.9: 37 degrees to core axis. 166.1: 41 degrees to core axis. 171.8: 45 degrees to core axis. There are minor kinks throughout.

172.5 175.8 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL LAPILLI TUFF
Hassive dark green siliceous tuff with 5 to 7 %, 1 to 3.5
mm, quartz eyes and 10 to 20 %, 1 to 2 mm, feldspar
grains. There are local chlorite lapilli, 1 to 5 mm thick
and core width long. Cross-cut by numerous (1 to 7 cm
quartz - feldspar veins. There is trace disseminated
pyrite in the veins and tuff, up to 3 mm cubes. There is
0.4 m of lost core from 174.0 to 175.3. There is on
average approximately 20 % chlorite in the tuff.
172.5 175.8 MODERATE PERVASIVE CHLORITIZATION.
Foliations:.
173.5: 43 degrees to core axis.
175.6: 55 degrees to core axis.

175.8 180.4 WEAKLY CHLORITIC FELSIC TUFF

Blocky, highly fractured core. Lost core of 0.7 m from 176.0 to 177.1, 0.3 m from 177.7 to 178.6 and 0.4 m from 178.6 to 180.1. There is minor intercalated mafic ash tuff. Felsic tuff is chloritic with approximately 10 %, 2 to 4 mm, quartz eyes and 15 %, 2 mm, feldspar crystals. There are minor drag folds and boudinaged quartz

VA01047 160.0 170.0 10.0 n/a 34 n/a 58 n/a n/a 702

Sulphides (ppm)

Total

202.4 218.6 FELSIC FELDSPAR CRYSTAL TUFF

Variable felsic tuff with local quartz eyes and on average 15 %, 1 to 2 mm, feldspar crystals.

202.4 203.9 White to light grey sericitic tuff with 10 %,

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45 7

17 1100

n/a 886

Fro	m To		Sample	From	To	Vidth	Total	Cu	Pb	2 n	Αq	Au	Ba
(m		DESCRIPTION	No.	(m)	(m)	(m)	Sulphides		(ppm)	(ppm)	(ppm)		(ppm)
		feldspar veins. There is a rough foliation trend at 40											
		degrees to core axis.											
180 4	185.6	FELSIC QUARTZ EYE TUFF											
100.4	103.0	Sericitic felsic tuff with up to 10 %, up to 6 mm, average	VA01048	180.4	185.6	5.2	n/a	14	n/a	46	n/a	n/a	825
		7 % 4 mm, quartz eyes. There are 10 to 15 %, 1 or 3 mm,											
		feldspars. Is light green - grey or bleached white, colour											
		varies locally. There are minor faults or crenulations at											
		30 degrees to core axis that cross-cut the foliation at											
		46 degrees to core axis. There are very minor fault slips parallel to foliation locally.											
		parallel to idilation locally.											
185.6	186.3	CHLORITE SCHIST											
		Strongly magnetic black to dark green chlorite schist with	VA01611	185.6	186.3	. 7	1	23	<5	130	<1	₹5 1	.300
		minor local fracture controlled hematite, numerous											
		fracture controlled quartz - feldspar veins and strong											
		fracture controlled carbonatization. There is trace											
		fracture controlled pyrite. Upper contact is sharp at 30										* 1	
		degrees to core axis and lower contact is at a fault slip											
		at 37 degrees to core axis. There is 10 cm of chloritic felsic tuff at 186.0 parallel to foliation.											
		reisic turn at 100.0 paramet to forfactor.											
186.3	196.3	FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF											
		Light grey felsic tuff with 7 %, 1 to 3 mm, quartz eyes	VA01049	187.0	196.0	9.0	n/a	17	n/a	47	n/a	n/a	734
		and 15 %, 1 mm, sausuritized feldspar grains. There is											
		weak fracture controlled silicification, tuff is											
		moderately schistose. There are local quartz - (yellow											
		feldspar ) veins parallel to to foliation. There are local beds with bedding at 46 degrees to core axis at											
		192.8. Foliation is at 45 to 50 degrees to core axis. At											
		195.9 there is trace pyrite in chlorite parallel to											
		bedding.											
196.3	202.4	FAULT ZONE											
		Chloritic felsic tuff and sericitic felsic tuff in fault											
		breccia or lapilli tuff. From 199.2 to 202.4 there is											
		blocky, highly fractured core. There is 2.4 m of lost core from 199.6 to 202.4. There are minor faults that											
		cross-cut. There is minor local 2 in the blocky, highly											
		fractured core. Approximately 50 to 55 degrees to core											
		axis.											

VA01612 202.4 203.9 1.5 VA01050 205.0 215.0 10.0 3 1522

44

n/a

304 1044 n/a 310

310 n/a

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45

From (m)	To (m)			DESCRIPTION	\$ No.	From (m)	To (m)	Width (m)	Total Sulphides		Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)	
				1 to 2 mm, and 5 % up to 1 mm feldspars.												
				There is approximately 1 % fine-grained												
				disseminated pyrite. There is 1 % 1 to 3 mm												
				pyrite bands parallel to foliation and minor												
				chalcopyrite at 203.0. There is 4 cm of 7 to												
				10 % chalcopyrite with pyrite at 203.55.												
				Foliation is at 40 degrees to core axis.												
		203.9	208.	8 Medium to light grey - green sericitic with												
				trace to 2 %, 1 to 3 mm, quartz eyes and 15						5 T 1 T						
				%, 1 to 2 mm, feldspars. There is trace very												
				fine-grained disseminated pyrite. Minor pyrite												
				stringer at 204.8. Foliation is at 40 to 55												
				degrees to core axis locally.												
		208.8	218.	MODERATE SPOTTY SILICIFICATION.												
				5 Similiar to 203.9 to 208.8 with silicification												
				of lapilli or spotty silicification. There is												
				fault gouge with at 75 degrees to core axis												
				and minor local mafic ash tuffs with												
				associated strong pervasive carbonatization.												
				There is blocky, highly fractured core from												
				215.5 to 218.6.												
		Lost	COTA													
				 О 0.2 m.												
				0 0.6 m.												
				0 0.7 m.												
				0.7 m.												
		417.0	410.	L V.J M.												

### 218.6 219.0 CHLORITE SCHIST

Dark green chloritic mafic ash tuff, strongly magnetic with 2 to 3 % magnetite. There is 5 % calcite with minor quartz and trace to 1 % pyrite. Is very contorted with foliation from 0 to 40 degrees to core axis.

### 219.0 222.5 FAULT ZONE

Blocky, highly fractured core and fault gouge. Units present are WEAKLY CHLORITIC FELSIC TUFF and local 2. There is one 20 cm quartz vein. Foliation is at 30 degrees to core axis and fault gouge is at 70 degrees to core axis.

222.5 250.5 FELDSPAR PORPHYRITIC FELSIC FLOW Chloritic felsic flow with 12 to 20 %, average 15 %, 3 to 7 mm, average 5 mm feldspar crystals or weakly chloritic felsic tuff with numerous 5 to 15 cm quartz - feldspar veins. There is strong pervasive spotty silicification or selective alteration of lapilli. There is trace local disseminated pyrite. There is local medium fracture controlled carbonatization with trace associated pyrite.

VA01051 225.0 240.0 15.0 71 n/a n/a 681 n/a 29 n/a VA01052 240.0 250.0 10.0 25 n/a 99 n/a n/a 992 n/a

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45 9

There is trace local weak thermal biotite. Is dominantly massive siliceous medium to light grey - green rock. Near upper contact chlorite is interstitial to silicification and flow appears to have siliceous lapilli in chloritic matrix. There is strong kinking above lower contact. Over the last 8 m there is minor fault gouge and carbonate veinlets at 60 to 80 degrees to core axis. There is minor dark chlorite and carbonatization at a fault at 241.5. Alteration:

222.5 250.5 STRONG SPOTTY SILICIFICATION.

222.5 250.5 WEAK FRACTURE CONTROLLED CARBONATIZATION.

Foliations :.

222.5 : 36 degrees to core axis.

223.7: 46 degrees to core axis.

224.5 : 51 degrees to core axis.

227.8 : 62 degrees to core axis.

232.4: 46 degrees to core axis.

236.2: 63 degrees to core axis.

244.0: 67 degrees to core axis, parallel to fault slip

with 1 mm fault gouge.

247.0 250.5 Strong kinks with minor mafics, in 15 cm from 250.25 to 250.40 goes from 70 degrees to core axis to 0 degrees to core axis to 70 degrees to core axis in the other direction.

Lost core :.

233.3 234.1 0.3 m.

239.0 240.0 0.3 m.

240.0 240.8 0.3 m.

240.8 242.0 0.5 m.

#### 250.5 251.2 CHLORITE SCHIST

Dark green to black chlorite schist with strong pervasive carbonatization as white calcite streaks and 5 % brown, (1 mm, carbonate specks. Contorted with minor faults and foliation trend at approximately 60 degrees to core axis. 250.5 251.2 STRONG PERVASIVE CARBONATIZATION.

#### 251.2 251.7 FELSIC QUARTZ EYE TUFF

Siliceous light green schist with strong to moderate kinking and trace disseminated pyrite. There are minor fracture controlled quartz - calcite veinlets. There are up to 2 %, 2 mm, quartz eyes. Foliation trends at 66 degrees to core axis.

### 251.7 252.3 CHLORITE SCHIST

Very similiar to 250.5 to 251.2 with slightly lighter green. There is felsic dyke or block from 251.9 to 252.0. As above is not magnetic.

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

PROPERTY: Chemainus J.V.	PROPERTY:	Chemainus	J.V.
--------------------------	-----------	-----------	------

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45 10

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba ) (ppm)
252.3	269 5	FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF											
256.5	200.3	Siliceous contorted tuff, light to medium green to grey,	VA01053	255.0	265.0	10.0	n/a	22	n/a	80	n/a	n/a	939
		with trace to 15 % crystals, averages 5 %, 3 to 5 mm,					, -	22	, u	00	11, 4	117 a	737
		feldspars and 1 to 2 %, 3 mm, quartz eyes. There is trace											
		to 0.5 % disseminated pyrite locally. Is darker over last											
		2 m. There are numerous fracture controlled quartz - calcite veinlets and there is moderate to strong											
		pervasive carbonatization. Is kinked throughout with											
		trends at 0 and 60 degrees to core axis.											
		Alteration :.											
		252.3 268.5 STRONG PERVASIVE CARBONATIZATION.											
260 E	220 2	CHIODITE CONTER											
400.5	410.3	CHLORITE SCHIST  Argillic sediments or mafic ash tuff with strong pervasive											
		carbonatization parallel to foliation. Is black chlorite											
		with 20 % calcite. From 269.0 to 269.3 there is a felsic											
		with 0.5 % fine-grained disseminated pyrite, similiar to											
		mafic pyrite quantity. Upper contact at fault at 31											
		degrees to core axis and lower contact at fault at 63											
		degrees to core axis. Is very strongly contorted with											
		numerous folds and micro-faults. Foliation trend at 56 degrees to core axis.											
		degrees to core axis.											
270.3	287.8	HAFIC LAPILLI TUFF											
		Mafic lapilli tuff with siliceous bleached felsic crystal	VA01613			1.1	2	31	6	99	. <1	5	990
		tuff from 270.3 to 271.0, 272.3 to 275.2 and 283.8 to	VA01614	271.4	272.3	. 9		133	₹5	140	<b>(1</b>	5	650
		285.0. The felsic tuff may be a strongly bleached lapilli	VA01054			15.0	n/a	20	n/a		n/a	n/a	850
		poor zone of the mafic. The mafic is medium green with 20 %, 2 to 3 mm, epidote crystals and 10 % epidotized	VA01615 VA01616	273.3	273.3	1.0	3	13 13	<5 <5	22 15	(1		1500
		lapilli. There is strong pervasive carbonatization	VA01616 VA01617		275.3	1.0	3	10	5	15 35	<1 <1		1300 1300
		throughout both the felsic and mafics. From 271.5 to	VA01618		276.3	1.0	3	10	9	46	(1		1500
		272.2 there is strong fracture controlled silicification	VA01619	276.3		9	3	22	⟨5	27	(1		1100
		in a bleached and carbonatized mafic with 2 to 3 %	VA01620	277.2	278.2	1.0	1	116	₹5	207	<b>(1</b>	<b>&lt;</b> 5	100
		pyrite. Rock is massive with minor fault slips and very	VA01621	278.2	279.2	1.0	1	62	< 5	143	(1	₹5	470
		weak foliation trend at 60 degrees to core axis.	VA01622	279.2	280.2	1.0		121	₹5	153	<1	₹5	530
		Alteration:	VA01623	280.2	280.8	.6		146	<b>&lt;5</b>	151	1	<5	700
		270.3 287.8 STRONG PERVASIVE CARBONATIZATION.	VA01624	280.8	281.8	1.0		122	< 5	204	- (1	9	430
		271.5 272.2 STRONG FRACTURE CONTROLLED SILICIFICATION. Sulphides:.	VA01625 VA01626	281.8 282.8	282.8 283.8	1.0	3	90 130	<5 - <5	186 166	<1 <1	₹5 ₹5	250 230
		270.3 271.4 2 % fine-grained disseminated pyrite	VA01625	283.8	284.8	1.0	3	11	(5	45	(1		1000
		concentrated in zones parallel to the	VA01628	284.8	285.8	1.0	. 3	32	<b>(5</b>	52	₹1		1300
		contorted foliation.	VA01629		286.8	1.0	3	34	(5	42	(1	-	1100
		271.4 272.3 Trace to 1 % disseminated pyrite in massive	VA01630		287.8	1.0	3	36	<5	88	(1	(5	890
		mafic lapilli tuff.											
		272.3 277.2 On average 3 % disseminated and fracture											
		controlled pyrite in bleached carbonatized tuff											
		277.2 279.2 Trace to 1 % pyrite.											

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

from 34 to 50 degrees to core axis from upper contact to

lower contact.

HOLE No: Page Number CH88-45 11

From To Pb Sample From To Width Total Cu Ra 7n λq A 11 -----DESCRIPTION-----(m) (m) No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 279.2 280.5 2 % fine-grained disseminated and 1 % fracture controlled in epidote lapilli. 280.5 280.7 15 to 17 % pyrite in fracture controlled carbonatization. 280.7 287.8 Approximately 2 to 3 % disseminated and fracture controlled pyrite with minor 1 cm pyrite blebs. Pyrite is concentrated on epidotized lapilli. 287.8 298.7 FAULT ZONE Blocky, highly fractured core and fault gouge. Core is matic to 291.1, felsic from 291.1 to 297.8 and matic as below lower contact to the lower contact. Strong fault gouge at 65 degrees to core axis to 289.0 with very strong local hematite. There are slips at 15 degrees to core axis within the fault zone. Lost core :. 288 0 289 9 0 2 m. 290.0 291.1 0.7 m. 291.1 292.3 0.4 m. 293.5 294.7 0.3 m. 294.7 296.0 0.9 m. 296.0 297.8 0.7 m. 298.7 300.0 CHLORITE SCHIST Dark green to black non-magnetic chlorite schist with 10 %. < 1 mm. carbonate specks and minor fracture controlled quartz, calcite and chlorite veins. Schistosity is at 51 degrees to core axis. 300.0 309.6 CHLORITIC FELSIC QUARTZ EYE TUFF Dark green tuff with on average 5 %, 3 mm, quartz eyes. VA01055 300.0 309.6 9.6 n/a 663 72 n/a There are 10 %, 2 mm, feldspar and epidote grains. There is 5 to 15 % chloritization and minor biotite. There are local quartz veins that cross-cut the foliation. There is cleavage at 30 degrees to core axis and foliation at 40 and 60 degrees to core axis. 300.0 309.6 MODERATE PERVASIVE CHLORITIZATION. 309.6 313.2 FELSIC QUARTZ EYE TUFF Sericitic medium grey felsic tuff with 5 to 7 %, up to 7 VA01056 309.6 313.2 3.6 n/a 16 mm, average 3 mm, quartz eyes. There are minor fracture controlled quartz - calcite veinlets. Foliation varies

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45 12

WEAKLY CHLORITIC FELSIC TUFF
Weakly chloritic felsic tuff. Is siliceous and has well
developed foliation. Has a glassy appearance from 320.7
to 323.7 and is probably a 9 with associated
silicification from approximately 318 to 320.7. There is
minor fracture controlled quartz - carbonate veins at
approximately 0 to 30 degrees to core axis. There is
approximately 10 to 15 % mixed feldspars and quartz eyes,
1 to 4 mm. In the dyke (?) there are 10 %, 4 mm,
feldspars. Foliation is at 46 degrees to core axis. There
is trace pyrite.
313.2 323.7 WEAK PERVASIVE CHLORITIZATION.

- 323.7 325.4 CHLORITIC FELSIC QUARTZ EYE TUFF

  Dark green siliceous schist with 3 or 4 to 1 sericite to chlorite ratio. Core is disky with foliation at 60 degrees to core axis.

  323.7 325.4 MODERATE PERVASIVE CHLORITIZATION.
- 325.4 338.7 WEAKLY CHLORITIC FELSIC TUFF

  Medium to light grey green silicified felsic tuff with
  local weak chloritization. There are numerous silicified
  beds and minor siliceous ash tuff beds. There is strong
  chloritization or mafic tuffs, chloritic schists between
  330.4 and 334.4. On average there is 15 %, 1 to 2 mm,
  quartz, feldspar, and epidote crystals. There is weak to
  moderate thermal biotite. From 332.0 to 333.5 there is
  0.7 m of lost core. There is trace local pyrite in the
  more chloritic zones.
  Bedding:

Bedding:.
327.5 : 34 degrees to core axis.
331.4 : 59 degrees to core axis.
337.2 : 49 degrees to core axis.
Foliations:.
330.0 : 40 degrees to core axis.
337.3 : 44 degrees to core axis.
Alteration:.
325.4 338.7 STRONG FRACTURE CONTROLLED SILICIFICATION.

325.4 338.7 STRONG FRACTURE CONTROLLED SILICIFICATION
330.4 334.4 MODERATE PERVASIVE CHLORITIZATION.
338.6 338.7 STRONG PERVASIVE SILICIFICATION, very strongly silicified lower contact.

338.7 345.2 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS
Andesitic to rhyo-dacitic (?) tuffaceous material mixed
with chert. Unit is green with local rainbow colouring.
There is local biotite rich zones and minor biotite in
quartz veins. The are minor slumps and local faults. The
unit may be a debris flow. Foliation and bedding average

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

VA01057 314.0 338.0 24.0 n/a 25 n/a 66 n/a n/a 966

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45 13

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppma)
		about 60 degrees to core axis.											
345.2	350.7	MAFIC INTRUSIVE											
		Mafic sill (?) with sharp contacts parallel to foliation.  Is not magnetic. There are numerous quartz, calcite and epidote veins and veinlets at all orientations. Is blocky,	VA01058 VA01631	350.5 350.5		8.3	n/a 1	- 78 53	n/a 73	323 464	n/a (1	n/a 15	
		highly fractured core with 0.2 m lost core from 346.6 to 347.5 and 0.2 m from 349.0 to 350.0. There is moderate											
		fracture controlled and pervasive carbonatization. Alteration:. 345.2 350.7 MODERATE FRACTURE CONTROLLED CARBONATIZATION.											
		345.2 350.7 WEAK PERVASIVE CARBONATIZATION.											
350.7	250.0												
350.7	358.8	FELSIC TUFF Siliceous light grey felsic ash tuff with trace to 1 %, up	VA01632	352.1	354.0	1.9	1	81	23	89	(1		1600
		to 3 mm, average 1.5 mm, quartz eyes and trace to 5 %, 1 mm, feldspar crystals. Pyrite is fine-grained and	VA01633 VA01634		355.5 357.0	1.5	1	163 40	17 11	59 51	(1	15	
		disseminated with minor concentrations in less siliceous beds. There is minor thermal biotite for approximately 50	VA01635	357.0	358.8	1.8	-1	55	18	297	<b>&lt;1</b>	₹5	2000
		cm at 355.4. There is weak fracture controlled carbonatization below the thermal biotite and moderate										٠.	
		fracture controlled silicification throughout. Pyrite averages 1 %. There is a 10 cm quartz vein 2 cm above the											
		lower contact, which has been disrupted by cross- faults. Bedding:.											
		350.6: 50 degrees to core axis. 351.8: 52 degrees to core axis.											
		358.6 : 69 degrees to core axis. Foliations :.											
		351.9: 52 degrees to core axis. 357.2: 42 degrees to core axis.											
		Alteration :. 350.7 358.8 MODERATE FRACTURE CONTROLLED SILICIFICATION.											
		356.0 358.8 WEAK FRACTURE CONTROLLED CARBONATIZATION.											
360 a	174.0	CHERTY FELSIC TUFF / TUFFITE											
330.0	3/4.0	Felsic crystal lapilli tuff with minor cherty and sediment	VA01636		360.0	1.2	3	120	14	113	1		4000
		beddings. There is also mafic ash tuff or sills from 365.1 to 367.3, and 367.6 to 369.5. There is minor thermal	VA01637 VA01638		361.0 362.0	1.0	3 5	340 240	109 114	549 269	38 6	718 1 373 1	
		biotite in local beds. The lapilli are mainly 1 to 3 cm epidote clasts. Is rainbow hued with red, green, yellow	VA01639 VA01640	362.0 363.0	363.0 364.0	1.0	2 2	219 253	6 28	131 196	1 3	27 126	1800 5000
		and white beds, ( 1 to 3 cm thick. There are numerous quartz eyes, 5 to 7 %, 1 to 2 mm, and locally up to 5 %,	VA01641 VA01642		365.0 366.1	1.0 1.1	3 4	350 530	270 50	670 207	4 .		5300 3900
		1 mm, feldspar grains. There is 2 to 3 % pyrite in beds of cubes, up to 4 mm, and fine-grained pyrite and locally	VA01643 VA01059	369.0		1.0		114 129	60 n/a	129 507	(1 n/a	14 n/a	5000 2290
		there is disseminated pyrite. Pyrite beds average 5 mm thick and occur on average 30 cm apart. There are more	VA01644	370.0	371.5 373.0	1.5	4	144 165	16 20	77 211	1	<5	2200 1500
		above the mafic. The mafic has trace to 1 % pyrite cubes,	VA01646			1.5	-	135	26	125	1	21	

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-45 14

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm	)
		up to 3 mm.												
		Bedding :.												
		364.2 : 31 degrees to core axis.												
		364.6 : 53 degrees to core axis.												
		369.8 : 57 degrees to core axis.												
		Foliations :.												
		370.2 : 66 degrees to core axis.												
		372.7 : 50 degrees to core axis.												
		Faults:												
		362.0 and 363.3 with 0.5 cm fault gouge at 65 degrees to												
		core axis.												
374.0	382.3	FELSIC QUARTZ EYE LAPILLI TUFF												
		Light grey siliceous tuff with siliceous and chloritic	VA01647	374.5	376.0	1.5	2	65	28	108	1	2.2	1800	
		lapilli. There are 5 to 10 %, average 7 %, 1 to 7 mm,	VA01648	376.0	378.0		2	96		2734	ī		2400	
		average 3 mm, quartz eyes. Feldspars and epidotized	VA01649	378.0	380.0		2	170		3200	1		2900	
		feldspars occur very locally. There is approximately 1 %	VA01650			2.3	2	93	7	397	₹1	14	2700	
		disseminated pyrite, fine-grained. There are fracture												
		controlled quartz - calcite veinlets at orientations of 0												
		to 90 degrees to core axis. Minor local fault slips occur												
		parallel to foliation.												
		Foliations:.				100								
		377.0 : 59 degrees to core axis.												
		381.4 : 66 degrees to core axis.												

#### 382.3 439.5 FELDSPAR PORPHYRITIC GABBRO

Anita Gabbro.

382.3 384.8 Sheared and fine-grained contact.

384.8 439.5 Is medium to fine-grained with trace to 20 %,

1 to 4 mm, feldspar laths in a chloritic
matrix with 1 to 3 %, < 1 mm to 2 mm ilmenite
grains. There are numerous, quartz, chlorite
carbonatization and epidote veins, +/- each
other at all orientation. No sulphides were
observed. Is massive and blocky with no
foliation.

439.5 End of hole, 1442 feet on Thursday April 28, 1988 at approximately 1:30 p.m.. Lack of tests due to broken Sperry-Sun and unavailabity of acid tests.

Total lost core: 13.7 m % Recovery = 96.9.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	XS 102	XAL203	ZCAO	ZHGO	ZNA20	XK20	XFE203	21102	XP205	ZHHO	XL0 I	SUM	ВА	AI	NACA
							- <del></del>	· <del></del>					··		 	**********	
VA00575	9.10	9.20	67.40	13.80	4.05	0.98	3.12	2.41	2.88	0.28	0.07	0.09	3.93	99.01	943.	32.	7.
VA00576	22.70	22.80	44.10	15.20	10.70	5.42	2.51	1.23	7.53	0.80	0.20	0.27	10.20	98.16	444.	33.	13.
VA00577	28.30	28.40	70.80	13.80	1.61	0.62	4.93	2.21	2.02	0.28	0.07	0.04	2.47	98.85	1070.	30.	7.
VA00578	41.40	41.50	69.00	13.20	2.71	1.04	4.61	2.95	2.15	0.23	0.06	0.07	2.62	98.64	1350.	35.	7.
VA00579	53.60	53.70	72.20	10.80	4,42	0.73	2.43	2.48	1.06	0.19	0.05	0.08	4.08	98.52	1010.	32.	7.
VA00580	59.10	59.20	75.10	12.90	1.29	0.39	4.41	2.44	1.03	0.13	0.04	0.03	1.62	99.38	876.	33.	6.
18200AV	68.30	68.40	56.80	15.70	6.05	1.76	3.00	2.59	7.05	0.26	0.22	0.17	6.23	99.83	698.	32.	9.
VA00582	75.70	75.80	69.50	13.00	3.94	0.54	2.71	2.93	1.68	0.22	0.06	0.07	4.39	99.04	945.	34.	7.
VA00583	86.50	86.60	72.60	12.20	3.17	0.84	1.88	2.46	2.43	0.21	0.05	0.07	2.54	98.45	1120.	40.	5.
VA00584	97.00	97.10	45.10	14.70	6.25	8.65	2.81	0.23	10.50	0.66	0.11	0.24	9.08	98.33	82.	50.	9.
VA00585	103.40	103.50	71.00	13.20	2.61	1.36	2.71	2.69	2.09	0.23	0.06	0.08	3.23	99.26	873.	43.	5.
VA00586	111.20	111.30	73.30	13.60	1.48	1.15	4.82	1.50	2.33	0.24	0.06	0.07	1.77	100.32	641.	30.	6.
VA00587	122.10	122.20	74.50	12.30	2.58	0.95	2.73	2.46	1.63	0.20	0.05	0.08	3.08	100.56	941.	39.	5.
VA00588	132.10	132.20	70.30	12.80	3.46	1.16	1.87	3.19	1.56	0.22	0.06	0.08	4.23	98.93	1070.	45.	5.
VA00589	141.20	141.30	67.20	14.20	4.50	0.96	1.94	3.24	1.51	0.23	0.06	0.11	5.39	99.34	1060.	39.	6.
VA00590	150.90	151.00	69.60	15.60	1.29	1.13	1.81	3.97	2.09	0.27	0.06	0.04	3.16	99.02	1280.	62.	3.
VA00591	157,10	157.20	62.20	13.20	2.93	4.50	2.56	2.39	4.24	0.33	0.07	0.11	6.47	99.00	648.	56.	5.
VA00592	171.10	171.20	64.30	13.30	3.05	2.88	3.99	1.86	4.45	0.31	0.07	0.08	5.39	99.68	720.	40.	7.
VA00593	174.10	174.20	65.40	14.20	1.46	3.56	3.89	1.64	4.50	0.36	0.07	0.08	3.70	98.86	665.	49.	5.
VA00594	185.40	185.50	73.10	13.10	1.91	0.87	3.62	2.39	1.90	0,.23	0.06	0.06	3.16	100.40	879.	37.	6.
VA00595	194.20	194.30	71.80	14.00	1.21	0.47	5.03	2.20	1.90	0.24	0.06	0.05	2.16	99.12	954.	30.	6.
VA00596	212.60	212.70	69.40	12.30	2.75	1.41	4.34	1.64	2.52	0.22	0.06	0.14	4.23	99.01	656.	30.	7.
VA00597	218.90	219.00	36.60	21.70	4.33	4.60	1.33	3.66	16.80	1.52	0.58	0.19	8.47	99.78	1020.	59.	6.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	10	<b>XSIO</b> 2	ZAL203	ICAU	ZMGO	ZNA20	XK20	%FE203	XT 102	XP205	хино	ZLOI	sun	BA	AI	NACA
VA00598	223.60	223.70	67.70	13.80	2.49	1.16	5.57	1.32	3.70	0.32	0.08	0.13	3.70	99.97	490.	24.	8.
VA00599	232.30	232.40	71.50	13.50	1.53	0.76	4.88	1.70	2.56	0.33	0.07	0.07	2.70	99.60	848.	28.	6.
VA00600	249.80	249.90	64.40	13.40	5.37	1.44	0.82	3.59	3.04	0.26	0.07	0.16	5.85	98.40	1040.	. 45.	6.
VA00601	261.50	261.60	71.50	13.70	2.38	1.23	1.71	3.21	2.90	0.25	0.06	0.10	3.08	100.12	1020.	52.	4.
VA00602	269.70	269.80	44.40	16.20	8.16	6.62	0.25	2.58	10.80	0.70	0.12	0.43	9.31	99.57	810.	52.	8.
VA00603	274.90	275.00	72.30	12.60	3.00	1.16	4.33	1.28	2.44	0.21	0.05	0.07	2.08	99.52	1980.	25.	7.
VA00604	283.70	283.80	54.90	14.80	7.05	5.80	2.08	0.70	8.40	0.54	0.11	0.30	4.16	98.84	1280.	42.	9.
VA00605	298.90	299.00	43.70	18.20	2.24	5.79	2.38	2.07	16.30	3.20	0.33	0.19	5.70	100.10	500.	63.	5.
VA00606	304.40	304.50	70.10	14.80	0.84	1.42	3.45	2.78	3.94	0.39	0.10	0.06	2.00	99.88	750.	49.	4.
VA00607	316.90	317.00	68.10	15.00	0.91	1.27	3.84	2.98	3.84	0.35	0.10	0.04	2.08	98.51	1210.	47.	5.
VA00608	321.00	321.00	74.30	12.60	1.94	0.26	5.36	1.53	1.56	0.29	0.10	0.02	1.77	99.73	635.	20.	7.
VA00609	329.10	329.20	74.40	12.90	0.90	0.31	5.40	2.44	2.35	0.28	0.07	0.02	0.85	99.92	893.	30.	6.
VA00610	340.60	340.70	69.00	16.10	0.59	1.99	3.71	3.04	2.53	0.35	0.09	0.03	2.16	99.59	1150.	54.	. 4.
VA00611	348.20	348.30	48.40	13.80	8.42	7.50	2.44	0.31	14.60	2.04	0.18	0.22	2.23	100.14	126.	42.	11.
VA00612	352.00	352.10	70.10	13.40	2.83	2.60	1.54	2.48	3.09	0.29	0.07	0.25	2.85	99.50	1380.	54.	4.
VA00613	366.60	366.70	49.40	14.40	6.94	6.51	2.03	0.07	13.90	2.36	0.33	0.24	3.70	99.88	89.	42.	9.
VA00614	370.80	370.90	67.30	14.90	3.55	1.98	2.43	1.84	3.70	0.35	0.08	0.09	2.23	98.45	1670.	39.	6.
VA00615	381.10	381.20	73.30	13.00	1.22	1.75	0.65	3.43	2.71	0.28	0.08	0.09	2.77	99.28	2750.	73.	2.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO		RB (opm)	SR (ppm)	RA (ppm)	Y (ppm)	ZÆ .(ppm)	(ppsi)	CU (ppm)	ZN (ppm)	NI (ppm)		 *.	ROCK	CODES	мім
							· .						 				
VA00575	9.10	9.20		67.0	196.0	943.0	<10.0	37.0	17.0	30.0	30.0	11.0			TEAU	?	AA
VA00576	22.70	22.80		31.0	495.0	444.0	28.0	18.0	<10.0	(10.0	135.0	154.0			TMA	PCS	DBP
VA00577	28.30	28.40		50.0	169.0	1070.0	11.0	96.0	14.9	24.0	13.0	<10.0			TFAU	?	DPP
VA00578	41.40	41.50	. :	38.0	240.0	1350.0	<10.0	92.0	<10.0	42.0	23.0	<10.0			TEAU	?	AA
VA00579	53.60	53.70	:	52.0	223.0	1010.0	<10.0	95.0	<10.0	<10.0	<10.0	<10.0			TFAD	?	AA
VA00580	59.10	59.20	. :	33.0	180.0	876.0	27.0	70.0	11.0	20.0	19.0	<10.0			TFA0	?	DBP
VA00581	68.30	68.40		51.0	205.0	698.0	28.0	104.0	22.0	60.0	139.0	19.0			TMA	PCS	DBP
VA00582	75.70	75.80	;	55.0	130.0	945.0	<10.0	94.0	<10.0	31.0	<10.0	<10.9			TFAD	?	AA
VA00593	86.50	96.60	(	50.0	445.0	1120.0	14.0	73.0	<10.0	15.0	19.0	<10.0			TEAD	?	AA
VA00584	97.00	97.10		15.0	181.0	82.0	<10.0	<10.0	<10.0	203.0	90.0	67.0			TNA	PCS	DPP
VA00585	103.40	103.50		19.0	199.0	873.0	23.0	85.0	15.0	33.0	34.0	<10.0			TFAD	?	AA
VA00586	111.20	111.30	•	39.0	494.0	641.0	19.0	72.0	12.0	20.0	18.0	<10.0			TFAD	?	AA
VA00587	122.10	122.20		12.0	189.0	941.0	25.0	78.0	<10.0	43.0	23.0	13.0			TFAU	?	AA
VA00588	132.10	132.20		51.0	244.0	1070.0	14.0	101.0	<10.0	<10.0	21.0	<10.0			TFAD	?	AA
VA00589	141.20	141.30		56.0	287.0	1060.0	35.0	97.0	19.0	12.0	14.0	<10.0			TFAD	?	AA
VA00590	150,90	151.00		57.0	119.0	1280.0	11.0	111.0	14.0	19.0	<10.0	<10.0			TFAD	?	AA
VA00591	157.10	157.20		36.0	130.0	648.0	21.0	70.0	19.0	28.0	41.0	<10.0			TIAD	PCM	AA
VA00592	171.10	171.20	:	31.0	198.0	720.0	11.0	68.0	21.0	22.0	72.0	<10.0			TIAD	PCW	AA
VA00593	174.10	174.20		13.0	147.0	665.0	20.0	76.0	<10.0	65.0	112.0	10.0			TFAD	?	DBP
VA00594	185.40			56.0	98.0	879.0	<10.0	99.0	10.0	18.0	43.0	<10.0				; ?	
VA00595		194.30		34.0	142.0	954.0	17.0	109.0	17.0						TFAQ		DBP
										25.0	45.0	<10.0			TFAD	? 	DBP
VA00596	212.60	414./V	•	53.0	242.0	656.0	<10.0	90.0	15.0	21.0	109.0	<10.0			TFAD	?	DBP

Hole No. CH88-45 WHOLE ROCKS SAMPLES

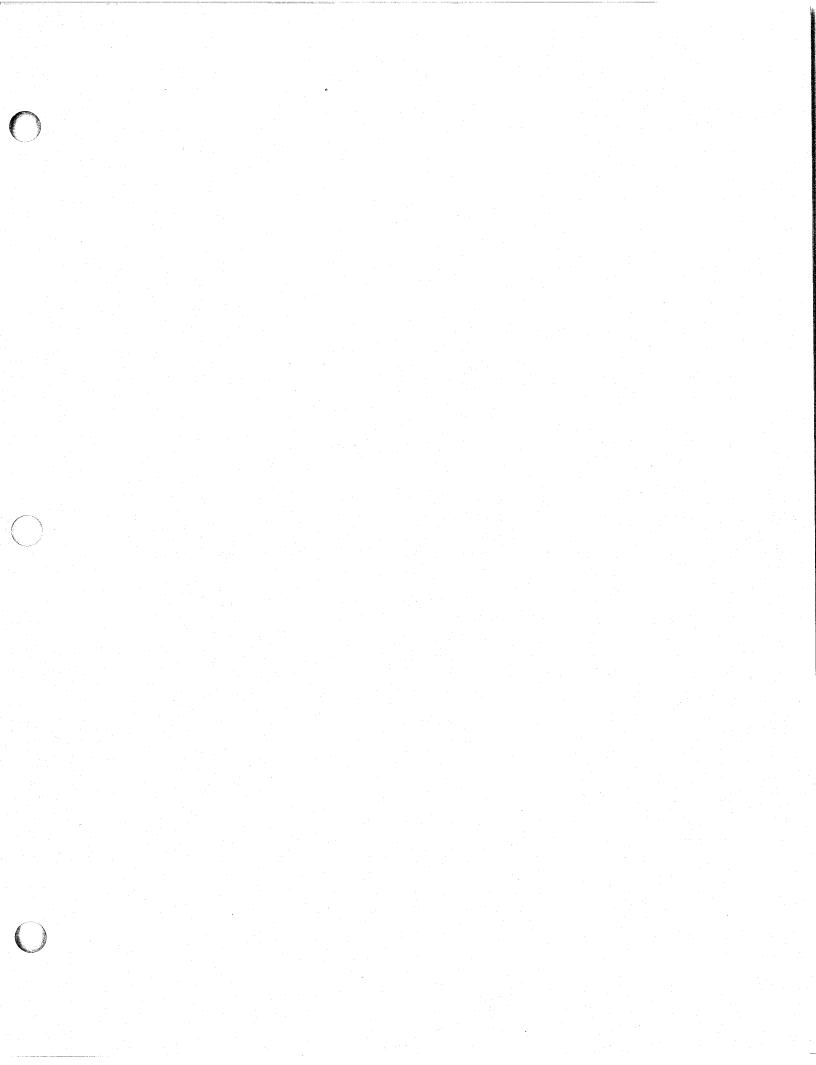
DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM		RB (ppm)	Sk (ppm)	BA (opm)	Y (mgq)	2k (ppm)	NB (ppm)	.CU (ppm)	ZN (ppm)	(ūbw) WI		ROCK	CODES	MIN
VA00597	218.90	219.00	85.0	153.0	1020.0	36.0	69.0	11.0	36.0	399.0	13.0		TMA	PCS	DBP
VA00598	223.60	223.70	37.0	200.0	490.0	20.0	118.0	17.0	20.0	124.0	<10.9		VEAD	· • ·	DBP
VA00599	232.30	232.40	49.0	193.0	848.0	23.0	120.0	<10.0	20.0	77.0	<10.0		VEAD .	?	DBP
VA00600	249.80	249.90	77.0	66.0	1040.0	24.0	92.0	<10.0	21.0	94.0	<10.0		VFAD	<del>3</del>	DEP
VA00601	261.50	261.60	46.0	28.0	1020.0	42.0	98.0	<10.0	23.0	73.0	<10.0		TEAD	?	DBP
VA00602	269.70	269.80	57.0	55.0	810.0	<10.0	31.0	<10.0	56.0	305.0	35.0		TMA	PCS	BBP
VA00603	274.90	275.00	36.0	194.0	1980.0	<10.0	75.0	15.0	16.0	65.0	<10.0		TMC	PCS	DCP
VA00604	283.70	293.80	23.0	232.0	1280.0	16.0	30.0	14.0	26.0	189.0	33.0		TMC	PCS	DCP
VA00605	298.90	299.00	56.0	245.0	500.0	26.0	160.0	39.0	35.0	155.0	105.0		TMA	PCS	AA
VA00606	304.40	304.50	57.0	132.0	750.0	26.0	157.0	19.0	19.0	84.0	<10.0		TFAD	PHS	AA
VA00607	316.90		53.0	221.0	1210.0	42.0	170.0	21.0	20.0	72.0	<10.0		TFAD	PHS	AA
VA00608	321.00		34.0	254.0	635.0	17.0	112.0	18.0	26.0	33.0	<10.0		PEAD	Fau	AA
VA00609	329.10		42.0	198.0	893.0	20.0	133.0	<10.0	12.0	61.0	<10.0		TEAD	7	AA
VA00610	340.60		75.0	184.0	1150.0	39.0	180.0	15.0	68.0	73.0	12.0		TIA	?	AA
VA00611	348.20		<10.0	202.0	126.0	29.0	105.0	21.0	76.0	135.0	113.0				
													PMA	PCM	AA
VA00612	352.00		48.0	142.0	1380.0	18.0	104.0	16.0	41.0	93.0	<10.0		TFA	EOM	DBP
VA00613		366.70	15.0	254.0	89.0	34.0	139.0	28.0	46.0	118.0	22.0		TMA	?	DBP
VA00614	370.80		39.0	240.0	1670.0	12.0	93.0	10.0	71.0	86.0	<10.0		TFA	?	DCP
VA00615	381.10	381.20	60.0	89.0	2750.0	14.0	92.0	19.0	44.0	71.0	<10.0		TFAQ	?	DBP

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	то	28102	<b>%AL203</b>	ZCAO	ZHGO	ZNA20	XK20	XEE203	21102	ZP205	2HN0	ZLO I	SUM	BA	AI	NACA
															********	<del></del>	
VA01039	5.10	14.20	62.20	14.30	5.63	1,-38	2.33	2.88	4.71	0.58			5.39	99.40	903.	35.	8.
VA01040	15.00	35.00	69.20	13.20	2.82	0.99	3.47	2.53	2.34	0.26			3.23	98.03	997.	36.	6.
VA01041	35.00	55.00	67.50	13.90	3.22	1.18	2.96	2.87	2.65	0.25			3.77	98.30	1160.	40.	6.
VA01042	60.00	63.00	70.60	14.30	1.71	0.50	2.29	4.35	1.59	0.13			2.93	98.39	1360.	55.	4.
VA01043	65.00	85.00	70.10	13.40	3.39	0.72	2.52	3.04	1.82	0.22			3.70	98.91	992.	39.	6.
VA01044	85.00	105.00	69.40	14.30	2.52	0.95	3.16	3.13	1.85	0.25			2.93	98.49	1290.	42.	6.
VA01045	105.00	125.00	69.40	14.10	2.30	1.10	4.08	2.51	2.34	0.25			2.77	98.85	1030.	36.	6.
VA01046	125.00	150.00	68.50	14.80	2.26	1.09	2.24	3.39	2.37	0.26			3,39	98.30	1190.	50.	5.
VA01047	160.00	170.00	65.00	14.20	2.21	2.44	3.55	2.60	4.03	0.32			3.93	98.28	702.	47.	6.
VA01048	180.40	185.60	68.20	13.20	2.65	1.60	2.00	3.42	2.51	0.32			4.39	98.19	825.	52.	5.
VA01049	187.00	196.00	71.60	13.00	1.94	0.79	4.63	2.05	2.06	0.23			2.70	99.00	734.	30.	7.
JA01050	205.00	215.00	68.70	13.10	2.39	1.34	3.46	2.39	2.53	0.23			3.77	97.91	886.	39.	6.
/A01051	225.00	340.00	70.80	12.80	2.27	0.80	4.73	1.64	2.61	0.29			2.77	98.71	681.	26.	7.
'A01052	240.00	250.00	67.40	13.10	4.08	1.23	1.56	3.03	2.99	0.26			4.31	97.96	992.	43.	6.
A01053	255.00	265.00	70.80	13.70	2.52	1.30	2.02	3.01	2.87	0.25			3.00	99.47	939.	49.	5.
A01054	272.00	287.00	59.80	16.00	5.76	2.90	2.71	1.56	6.80	0.49			3.39	99.41	850.	34.	8.
A01055	300.00	309.60	68.00	15.60	1.64	1.32	4.44	2.56	3.46	0.41			1.85	99.28	663.	39.	6.
A01056	309.60	313.20	72.70	13.20	0.78	0.72	3.93	3.02	2.55	0.30			1.62	98.82	986.	44.	5.
A01057	314.00	338.00	70.70	14.10	0.93	0.76	4.64	2.57	2.71	0.31			1.70	98.42	966.	37.	6.
A01058	350.50	350.80	72.10	13.70	1.75	1.46	2.18	2.53	2.43	0.29			2.47	98.91	1930.	50.	
A01059	370.00	382.00	71.20	13.20	1.68	1.30	1.14	3.30	3.51	0.31			3.31	98.95	2290.	62.	4. 3.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)


AMPLE UMBER	FROM	TO	(ppm	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)			ROCK	CODES	мім
A01039	5.10	14.20			903.0				41.0	95.0	22.0			TFAD	7	AA
A01040	15.00	35.00			997.0				24.0	16.0	<10.0			TFAD	?	DRP
A01041	35.00	55.00			1160.0				27.0	34.0	11.0			TFAD	?	DBP
A01042	60.00	63.00			1360.0				31.0	16.0	<10.0			TFAO	?	DBP
A01043	65.00	85.00			992.0				<10.0	<10.0	<10.0			FAU	?	AA
A01044	85.00	105.00			1290.0				22.0	30.0	<10.0			TFAD	? :	AA
A01045	105.00	125.00			1030.0				.15.0	27.0	<10.0			(FAD	?	AA
401046	125.00	150.00			190.0				30.0	29.0	<10.0			FAD	?	AA
01047	160.00	170.00			702.0				34.0	50.0	<10.0			IAD .	PCW	AA
01048	180.40	185.60			825.0				14.0	46.0	<10.0			FAD	?	AA
401049	187.00	196.00			734.0				17.0	47.0	<10.0			FAD	?	DBP
01050	205.00	215.00			896.0				44.0	310.0	<10.0			FAD	?	AA
01051	225.00	240.00			681.0				29.0	71.0	<10.0			FAD	?	099
01052	240.00	250.00			992.0				25.0	99.0	<10.0			FAD	7	DBP
01053	255.00	265,00			939.0				32.0	90.0	<10.0			FAD	; ;	DBP
01054	272.00	287.00			850.0				20.0	93.0	11.0		1	MC ·	PCS	DCP
01055	300.00	309.60			663.0				40.0	72.0	<10.0		1	FAD	PHS	AA
01056	309.60	313.20			986.0				16.0	54.0	<10.0		1	FAD	?	AA
01057	314.00	338.00			966.0				25.0	66.0	<10.0		T	FAD	?	AA
01058	350.50	358.80		1	930.0				78.0	323.0	<10.0			FÁ	FOM	DBP
01059	370.00	882.00		2.	290.0				129.0	507.0	<10.0			FA	?	DCP

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

Sample Number	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	нн (рра)	CUZN	ETS	' FE
,			<del></del>			~~~~~~											
VA01609	35.40	36.00	1200.0	27.0	93.0	<0.5	<5.0	19.0	3.0	<5.0	<5.0	1.0	<1.0	1231.0	23.	1.	5.
VA01610	40.70	41.00	1400.0	85.0	127.0	<0.5	<5.0	32.0	19.0	(5.0	17.0	1.0	1.0	1470.0	40.	1.	5.
VA01611	185.60	185.30	1300.0	23.0	130.0	<0.5	<5.0	15.0	<1.0	<5.0	<5.0	3.0	<1.0	1122.0	15.	ı.	- 4.
VA01612	202.40	203.90	1100.0	1522.0	1044.0	2.0	17.0	1.0	<1.0	304.0	(5.0	6.0	9.0	266.0	59.	3.	2.
VA01613	270.30	271.40	990.0	31.0	99.0	<0.5	5.0	8.0	4.0	6.0	<b>(5.0</b>	1.0	<1.0	646.0	24.	2.	2.
VA01614	271.40	272.30	650.0	133.0	140.0	<0.5	5.0	23.0	26.0	<5.0	<5.0	2.0	<1.0	1546.0	49.	1.	5.
VA01615	272.30	273.30	1500.0	13.0	22.0	<0.5	<5.0	3.0	<1.0	. <5.0	₹5.0	1.0	<1.0	112.0	37.	3.	2.
VA01616	273.30	274.30	1300.0	13.0	15.0	<0.5	<5.0	2.0	<1.0	(5.0	<b>(5.0</b>	<1.0	<1.0	173.0	46.	3.	2.
VA01617	274.30	275.30	1300.0	10.0	35.0	<0.5	<5.0	2.0	<1.0	5.0	<5.0	<1.0	<1.0	219.0	22.	3.	2.
VA01618	275.30	276.30	1500.0	10.0	46.0	(0.5	<5.0	6.0	(1.0	9.0	(5.0	<1.0	<1.0	424.0	18.	з.	2.
VA01619	276.30	277.20	1100.0	22.0	27.0	<0.5	<5.0	2.0	<1.0	<5.0	<b>(5.0</b>	<1.0	(1.0	386.0	45.	3.	2.
VA01620	277.20	278.20	100.0	116.0	207.0	<0.5	<5.0	23.0	34.0	<b>45.0</b>	(5.0	2.0	<1.0	1404.0	36.	1.	. 4.
VA01621	278.20	279.20	470.0	62.0	143.0	<0.5	<5.0	25.0	22.0	⟨5.0	₹5.0	2.0	<1.0	1233.0	30.	l.	4.
VA01622	279.20	280.20	530.0	121.0	153.0	₹0.5	<b>&lt;5.0</b>	27.0	29.0	<5.0	₹5.0	2.0	<1.0	1217.0	44.	з.	5.
VA01623	280.20	280.80	700.0	146.0	151.0	0.5	<5.0	25.0	31.0	₹5.0	<5.0	1.0	<1.0	1235.0	49.	7.	5.
VA01624	280.80	281.80	430.0	122.0	204.0	<0.5	9.0	26.0	35.0	<b>(5.0</b>	⟨5.0	1.0	<1.0	1711.0	37.	3.	5.
VA01625	281.80	282.80	250.0	90.0	186.0	<0.5	<5.0	25.0	34.0	<5.0	₹5.0	2.0	<1.0	1553.0	33.	3.	5.
VA01626	282.80	283.80	230.0	130.0	166.0	<0.5	<5.0	26.0	31.0	<5.0	<5.0	1.0	<1.0	1750.0	44.	3.	5.
VA01627	283.80	284.80	1000.0	11.0	45.0	<0.5	<5.0	6.0	4.0	<5.0	6.0	<1.0	<1.0	504.0	20.	3.	3.
VA01628	284.80	285.80	1300.0	32.0	52.0	⟨0.5	<b>&lt;5.0</b>	.10.0	4.0	<5.0	<5.0	<1.0	<1.0	556.0	38.	3.	3.
VA01629	285.80	286.80	1100.0	34.0	42.0	<0.5	<5.0	12.0	1.0	₹5.0	23.0	<1.0	<1.0	473.0	45.	3.	2.
VA01630	286.80	287.80	890.0	36.0	88.0	<0.5	<5.0	12.0	<1.0	<b>(5.0</b>	14.0	2.0	<1.0	752.0	29.	3.	3.
VA01631	350.50	352.00	1800.0	53.0	464.0	<0.5	15.0	3.0	(1.0	73.0	8.0	4.0	2.0	537.0	10.	1.	2.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENIS)

SAMPLE NUMBER	FROM	το	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	НN (ppm)	CUZN	ETS	FE
									· · · · · · · · · · · · · · · · · · ·							<del></del>	
VA01632	352.10	354.00	1600.0	81.0	89.0	<0.5	19.0	3.0	<1.0	23.0	6.0	<1.0	<1.0	514.0	48.	1.	2.
VA01633	354.00	355.50	1100.0	163.0	59.0	<0.5	18.0	3.0	1.0	17.0	₹5.0	<1.0	2.0	422.0	73.	1.	2.
VA01634	355.50	357.00	1600.0	40.0	51.0	<0.5	15.0	3.0	<1.0	11.0	<5.0	<1.0	2.0	378.0	44.	1.	2.
VA01635	357.00	358.80	2000.0	55.0	297.0	<0.5	<b>&lt;5</b> 10	4.0	4.0	18.0	₹5.0	3.0	<1.0	305.0	16.	1.	1.
VA01636	358.80	360.00	4000.0	120.0	113.0	0.8	114.0	32.0	126.0	14.0	6.0	<1.0	<1.0	585.0	52.	3.	5.
VA01637	360.00	361.00	14000.0	340.0	549.0	38.4	718.0	16.0	12.0	109.0	12.0	4.0	7.0	227.0	38.	з.	4.
VA01638	361.00	362.00	13000.0	240.0	269.0	5.9	373.0	12.0	10.0	114.0	28.0	3.0	4.0	227.0	47.	5.	4.
VA01639	362.00	363.00	1900.0	219.0	131.0	0.6	27.0	25.0	13.0	6.0	<5.0	2.0	1.0	548.0	63.	2.	6.
VA01640	363.00	364.00	5000.0	253.0	196.0	2.8	126.0	16.0	9.0	28.0	7.0	2.0	2.0	420.0	56.	2.	5.
VA01641	364.00	365.00	5300.0	350.0	670.0	4.3	131.0	12.0	9.0	270.0	<5.0	5.0	3.0	305.0	34.	з.	3.
VA01642	365.00	366.10	3900.0	530.0	207.0	1.9	61.0	16.0	8.0	50.0	<5.0	2.0	4.0	242.0	72.	4.	3.
VA01643	369.00	370.00	5000.0	114.0	129.0	<0.5	14.0	12.0	28.0	60.0	16.0	<1.0	2.0	418.0	47.	2.	3.
VA01644	370.00	371.50	2200.0	144.0	77.0	0.6	<5.0	6.0	4.0	16.0	<5.0	<1.0	5.0	350.0	65.	4.	3.
VA01645	371.50	373.00	1500.0	165.0	211.0	0.8	23.0	9.0	5.0	20.0	<5.0	2.0	3.0	548.0	44.	3.	3.
VA01646	373.00	374.50	1500.0	135.0	125.0	0.7	21.0	11.0	14.0	26.0	9.0	1.0	4.0	743.0	52.	2.	3.
VA01647	374.50	376.00	1800.0	65.0	108.0	0.6	22.0	6.0	7.0	28.0	6.0	1.0	2.0	523.0	38.	2.	3.
VA01648	376.00	378.00	2400.0	96.0	2734.0	0.6	18.0	3.0	4.0	20.0	13.0	13.0	2.0	305.0	3.	2.	2.
VA01649	378.00	380.00	2900.0	170.0	3200.0	0.6	19.0	3.0	4.0	<5.0	<5.0	16.0	1.0	290.0	5.	2.	1.
VA01650	380.00	382.30	2700.0	93.0	397.0	<0.5	14.0	5.0	4.0	7.0	7.0	2.0	4.0	400.0	19.	2.	2.



Summary Log: DDH CH88-46

Location: 29+00 E, 1+48 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: April 28, 1988 Core logged by: J. Pattison

0.0 - 19.2 Casing.

19.2 - 33.2 Nanaimo Group sediments

33.2 - 91.5 Felsic lapilli tuff

Several 4 to 6 cm thick beds of massive pyrite over 1.9 m.

91.5 - 109.3 Felsic crystal tuffs

103.9 - 113.1 Feldspar porphyritic gabbro

113.1 - 122.5 Felsic lapilli tuff

6 % pyrite, 2.5 % sphalerite and 1 % chalcopyrite over 1.0 m. Sulphides are disseminated and fracture

controlled.

122.5 - 139.6 Mafic porphyritic flow/intrusion

139.6 - 168.9 Massive mafic flow

168.9 - 208.2 Mafic porphyritic flow/intrusion

208.2 - 219.2 Mafic porphyritic mafic lapilli tuff

219.2 - 253.1 Mafic to intermediate tuffaceous sediments

253.1 - 257.9 Feldspar porphyritic gabbro

FALCONBRIDGE LIMITED

DIAMOND DRILL LOG

Hole Location: 29+00 E 1+48 S

NTS: 92B13 UTM: 5416852.8 N 430157.1 E

Azimuth: 210 Elevation: 517 m Dip: -50 Length: 257.9 m

Started: 25-April-88 Completed: 28-April-88

Purpose: To test the Active Tuff 100 m along strike DIP TESTS

of CHEM87-37.

Azi-

Length muth Dip Length muth Dip

29.30 212.0 -52.0 129.60 211.0 -46.0

From To (m) (m) Sample From To Width Total Cu Рb Zn λg Au No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

CH88-46

Claim No. Chip 1

Core Size:

Azi-

Section No.: 29+00 E

Logged By: J. Pattison Drilling Co.: Burwash

Assayed By: Bondar-Clegg & XRAL

HOLE No: Page Number

#### 19.2 OVERBURDEN

#### 19.2 22.0 NANAIMO CONGLOMERATE

Subangular to rounded pebble to granule-size clasts of quartz, argillite, cherty sediments and tuffs comprise 60 to 30 % of the rock. Clast supported over most of the interval. 3-5 % pyrite in the matrix and as granule-sized clasts. Broken core at the lower contact.

-----DESCRIPTION-----

#### STRUCTURE:.

19.8-20.0 M fault gouge at 10 degrees to core axis. 1.1 m of lost core.

#### ALTERATION:.

19.2 22.0 WEAK FRACTURE CONTROLLED CARBONATIZATION.

#### 22.0 29.8 NANAIMO GREYWACKE

Medium brown, massive with 5 % granule-sized, subangular to subrounded quartz, felsic volcanics, argillite, cherty sediments and rare sulphide clasts. 3-5% disseminated pyrite. Becomes coaser below 28.3 m and could be classified as a granule conglomerate. Broken core at the lower contact.

#### STRUCTURE.

23.0-26.1 M FAULT ZONE. Upper contact is at 40 degrees to core axis and lower contact is at 70 degrees to core axis. 1.3 m of lost core. At 28.3 bedding is at 60 degrees to core axis. Bed FINES UP HOLE.

FALCONBRIDGE LIMITED DIAHOND DRILL LOG

HOLE No: Page Number CH88-46 2

From	To		Sample	From	То	Width	Total	Cu	Pb	Zn	λg	Au	Ba	
· (m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm,)	(ppm)	(ppm)	(ppm)	(ppb	) (ppm)	
		ALTERATION:.												
		22.0 29.8 WEAK FRACTURE CONTROLLED CARBONATIZATION.												
29.8	31.4	NANAINO CONGLOMERATE												
		Locally clast supported, composed of 50 % pebble to												
		cobble-sized subangular to subrounded felsic volcanics												
		(35 %), cherty green sediments (40%), black argillite (15%) in a coarse quartz rich matrix. Lower contact is at												
		65 degrees to core axis.											,	
		To degrees to core unis.												
31.4	33.2	NANAIHO GREYWACKE												
		As 22.0 to 29.8 m. Less than 5 % round pale brown clasts												
		of approximately the same composition as the matrix above		•										
		32.0 m. The unit COARSENS DOWNHOLE. 10.0 cm PEBBLE												
		CONGLOMERATE at the lower contact. Lower contact is an												
		unconformity at 22 degrees to core axis.												
33.2	54.9	CHLORITIC FELSIC LAPILLI TUFF												
		5 to 20 % dark green chloritic lapilli in a light grey	VA02803	33.2	54.9	21.7	n/a	46	n/a	60 . :	n/a	n/a	1210	
		moderately sericitic matrix. Occasional quartz eye. In	VA03493	33.2	34.0	. 8	1	15	5	43	1		1900	
		less sericitic intervals matrix is rich in ash-sized	VA03494	34.0	35.0	1.0	1	12	6	43	ī		1800	
		feldspar crystals. Some lapilli have quartz-filled	VA03495	35.0	36.0	1.0	. 1	19	5	35	1	₹5	2000	
		amygdales. Hairline fractures filled with reddish brown	VA03496	36.0	37.0	1.0	1	31	6	25	<1	15	1900	
		biotite are common. In some places difficult to tell	VA03497	37.0	38.0	1.0	1	55	₹5	53	<1		1800	
		whether the fractures are filled with biotite or	VA03498	38.0	39.0	1.0	2	37	11	50	1	11	890	
		sphalerite. Pyrite sometimes occurs in the fractures. Lower contact is gradational.	VA03499	39.0	40.0	1.0	. 2	33	8 .	59	1	8	930	
		nower contact is gradactonal.	VA03500 VA03501	40.0 41.0	41.0	$\frac{1.0}{1.0}$	2 2	32 28	7	60 39	1 1	5 28	920 1300	
		STRUCTURE:	VA03501	42.0	43.0	1.0	1	16	15	34	1		1300	
		Foliation is contorted and the rock has a crushed	VA03502	43.0	44.0	1.0	1	14	13	42	<b>(1</b>		100	
		appearance in many places.	VA03504	44.0	45.0	1.0	ī	26	11	30	1		100	
		At 34.6 foliation is at 60 degrees to core axis.	VA03505	45.0	46.0	1.0	1	25	7	33	1	₹5	970	
		At 40.9 m 5.0 cm fault gouge at 50 degrees to core axis.	VA03506	46.0	47.0	1.0	1 .	13	10	27	1 .	9	1300	
		At 42.2 m 0.5 cm fault gouge at 45 degrees to core axis.	VA03507	47.0	48.0	1.0	1	24	11	25	1	27	1000	
		At 44.0 m foliation is nearly parallel to the core axis.	VA03508	48.0	49.0	1.0	. 1	8	8	22	<1 □		100	
		At 48.0 m 0.5 cm fault gouge at 30 degrees to core axis.	VA03509	49.0	50.0	1.0	1	22	6	28	1		100	
		At 48.3 m 0.5 cm fault gouge at 40 degrees to core axis.	VA03510	50.0	51.0	1.0	1	50	6	31	1		100	
		At 53.6 m 0.3 cm fault gouge at 35 degrees to core axis.	VA03511	51.0	52.0	1.0	1	76	(5	36	1	19	800	
		ALTERATION:.	VA03512	52.0	53.0 54.0	1.0	1	73	. 6 	37 30	1	.6 10	780	
		33.2 40.8 WEAK SPOTTY CHLORITIZATION and MODERATE	VA03513 VA03514	53.0 54.0	55.0	1.0	1 1	61 18	(5 6	15	1	10 <5 1	980 1000	
		DEDUCATE CERTAINMENT AND ROLLING CERTAIN TRANSPORTER	1403314	34.0	55.0	1.0	1	10	0	13	ī	(3)	.000	

40.8 54.9 MODERATE SPOTTY CHLORITIZATION , WEAK PERVASIVE

CHLORITIZATION MODERATE PERVASIVE SERICITIZATION and weak to moderate thermal biotite alteration.

PERVASIVE SERICITIZATION.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-46 3

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)	)
		fracture controlled sphalerite. 38.0 42.2 2-3% disseminated pyrite and possible trace to 1												
		% fracture controlled sphalerite. 42.2 54.9 1 % disseminated pyrite and possible trace sphalerite.												
		54.0 54.7 2.0 cm barren quartz-carbonate vein runs parallel to the core axis.												
54.9	91.5	FELSIC LAPILLI TUFF												
		Similiar to 33.2 to 54.9 m but lapilli are less chloritic	VA02804	54.9	74.9	20.0	n/a	45	n/a	55	n/a	n/a	1720	
		and overall chlorite content of the rock is less.	VA03515	55.0	56.0	1.0	0	96	< 5	19	<1	₹5	740	
		Lapilli are felsic in composition, light green to grey,	VA03516	56.0	57.0	1.0	0	28	7	21	(1	₹5	920	
		have hazy outlines and comprise 5-10 % of the rock.	VA03517	57.0	58.0	1.0	2	20	· (5	21	(1	. 7	950	
		Chloritic lapilli disappear below 60.0 m. Rock is crushed	VA03518	58.0	59.0	1.0	2	10	₹5	.17	<1	₹5	1000	
		and there are many fractures and gashes which cross cut	VA03519	59.0	59.9	. 9	8	19	<b>(5</b>	19	(1	. 10	1200	
		the fabric of the rock and are filled with a milky white	VA03520	59.9	60.3	. 4	45 1	814	5	. 17	. 2	200	1200	
		medium hard mineral which does not fizz in HCl	VA03521	60.3	61.3	1.0	6	83	₹5	16	<1	12	1400	
		(anhydrite, barite ?) between 74.9 and 85.8 m. Matrix	VA03522	61.3	61.8	5	30	437	. <5	19	1	66	850	
		contains up to 10 % ( 1 mm feldspar crystals.	VA03523	61.8	62.8	1.0	6	158	₹5	17	(1	22	1400	
		Lower contact is arbitrarily placed where lapilli become	VA03524	62.8	64.0	1.2	6	51	(5	24	<1	30	1100	
		less conspicuous and rock is less sericitic.	VA03525	64.0	65.0	1.0	12	112	₹5	15	<b>(1</b> )	59	1400	
			VA03526	65.0	66.0	1.0	12	85	₹5	25	(1	25	1500	
		STRUCTURE:.	VA03527	66.0	67.0	1.0	6	35	(5	31	<1	9	1400	
		At 56.3 m foliation is at 35 degrees to core axis.	VA03528	67.0	68.0	1.0	6	105	(5	33	<1	20	1600	
		56.7-57.0 M FAULT ZONE at 40 degrees to core axis.	VA03529	68.0	69.0	1.0	6	83	₹5 -	40	(1	11	1500	
		At 59.0 m 1.0 cm fault gouge at 30 degrees to core axis.	VA03530	69.0	70.0	1:0	6	85	(5	39	(1	16	1400	
		At 59.7 m 1.0 cm fault gouge at 50 degrees to core axis.	VA03531	70.0	71.0	1.0	10	131	₹5	29	<1	33	1300	
		At 63.6 m foliation is at 20 degrees to core axis.	VA03532	71.0	72.0	1.0	6	68	₹5 .	30	<1	17	1200	
		At 67.5 m foliation is at 35 degrees to core axis.	VA03533	72.0	73.0	1.0	6	53	(5	19	<1	12	1200	
		At 73.0 m bedding is at 35 degrees to core axis.	VA03534	73.0	74.0	1.0	6	21	₹5	19	<1	<b>(5</b>	1000	
		At 82.3 m foliation is at 40 degrees to core axis.	VA03535	74.0	74.9	. 9	- 6	13	< 5	11	<1	(5	1300	
		At 83.7 m 2.0 cm fault gouge at 40 degrees to core axis.	VA02805	74.9		16.6	n/a	60	n/a	47	n/a	n/a	2020	
		At 85.3 m foliation is at 38 degrees to core axis.	VA03536	74.9	76.0	1.1		174	5	31	(1	14	1600	
		At 88.6 m foliation is at 55 degrees to core axis.	VA03537	76.0	77.0	1.0		106	14	95	₹1	46	3200	
		At doing in tolicion to de an anguesta to tolic anila	VA03538	77.0	77.5	. 5	12	856	35	309	1	40	4700	
		ALTERATION:,	VA03539	77.5	78.0	. 5		400	29	459	4	148	3800	
		54.9 74.9 MODERATE PERVASIVE SERICITIZATION and WEAK	VA03540	78.0	79.0	1.0	2	72	9	25	(1	18	2300	
		SPOTTY CHLORITIZATION.	VA03541	79.0	80.0	1.0	2	12	(5	10	(1	15	1700	
		74.9 91.5 STRONG PERVASIVE SERICITIZATION and occasional	VA03542	80.0	81.0	1.0	2	18	5	13	(1)	(5	1400	
		spot of mariposite.	VA03543	81.0	81.7	.7	2	15	(5	15	(1	₹5	1500	
			VA03544	81.7	82.7	1.0	2	26	(5	16	<1	7	2200	
		SULPHIDES:.	VA03545	82.7	84.0	1.3	5	147	17	311	<1 □	88	2300	
		57.0-59.0 m 2 % disseminated pyrite as spots up to 3 mm in	VA03546	84.0	85.0	1.0	5	12	17	47	₹1	17	1800	
		diameter.	VA03547	85.0	86.0	1.0	10	52	19	19	(1	34	2700	
		59.0-59.9 m 8 % pyrite as clasts up to 3 cm in diameter	VA03548	86.0	87.0	1.0	3	28	8	15	(1	14	2500	
		and disseminated.	VA03549	87.0	88.0	1.0	5	17	(5	13	<1	7	2100	
		59.9-60.3 m 45 % pyrite concentrated in two beds 6 and 4	VA03550	88.0	89.0	1.0	3	32	6	17	₹1	19	1800	
		cm thick at 30 degrees to core axis. Both beds are weakly	VA03551	89.0	89.5	. 5	3	64	<b>&lt;</b> 5	72	<1	13	1800	
		carbonatized and one contains a 1.0 cm long angular	VA03552	89.5	90.2	.7	9	136	8	240	(1	153	2000	

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-46 4

		To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm	λι (p ₁	i Ва	
			felsic fragment.	VA03553	90.2	90.6	. 4	40	241	11	15	<b>(1</b>	90	1600	
			60.3-61.3 m 6 % pyrite disseminated and as lapilli-sized	VA03554		91.5	. 9	9	35	₹5	9	(1		1700	
			clasts.												
			61.3-61.8 m 30 % pyrite and 0.5 % chalcopyrite concentrated in two massive pyrite beds 1 and 4 cm thick												
			at 30 degrees to core axis. Beds are slightly offset by												
			minor microfaults.												
			61.8-64.0 m 6 % coarsely disseminated pyrite.												
			64.0-66.0 m 12 % pyrite in beds up to 2.0 cm thick at												
			20-30 degrees to core axis and clasts up to 3.0 cm wide.												
			66.0-70.0 m 5-6 % pyrite and nil-trace chalcopyrite,												
			disseminated and in bands ( 1.0 cm thick at 30 degrees to												
			core axis.												
			70.0-71.0 m 10 % pyrite in bands/beds up to 2.0 cm thick												
			at 30 degrees to core axis, lapilli-sized clasts and												
			disseminated.												
			71.0-74.9 m 6-7 % disseminated and fracture controlled												
			pyrite.												
			74.9-77.5 m 10-15 % black, crushed, fracture controlled												
			pyrite trace chalcopyrite and sphalerite (?) and												
			occasional speck of galena. 77.5-78.0 m 12 % disseminated pyrite and 0.8 % chalcopyrite												
			78.0-82.7 m 2-3 % disseminated pyrite and 0.8 % charcopyrite												
			82.7-85.0 m 5 % pyrite, disseminated in matrix and in												
			felsic lapilli.												
			85.0-86.0 m 10 % pyrite, disseminated and fracture												
			controlled.												
			86.0-87.0 m 3 % pyrite as spots < 2 mm in diameter.												
			87.0-88.0 m 5 % pyrite in heavily mineralized lapilli and												
			disseminated through the matrix.												
			88.0-89.5 m 3 % disseminated pyrite, trace chalcopyrite.												
			89.5-91.5 m 8-10 % pyrite in massive to semi-massive												
			bands. Best mineralization is between 90.2 and 90.6 m												
			where there is a 7.0 cm bed of semi-massive pyrite at 52												
			degrees to core axis immediately uphole of a 5 cm thick												
			fine cherty tuff bed.												
01	<b>5</b> 10	3 0	FELSIC FELDSPAR CRYSTAL TUFF												
71.	5 10.		Light grey with a slight green tint due to very weak	VA02806	91.5	109.3	17 8	n/a	25	n/a	33	n/a	n/a	1560	
			pervasive chlorite alteration. Quite massive bedding	VA03555		92.5	1.0	3	13	(5	17	(1		1000	
			rarely recognizable. Comprised of 10-20 % 1-3 mm white	VA03556		93.5	1.0	3	41	₹5	19	(1	9	920	
			feldspar crystals in a very siliceous, weakly to	VA03557		94.5	1.0	3	25	(5	12	(1	₹5	810	
			moderately fine-grained, sericitic matrix. Less than 5.%			95.5	1.0	3	15	(5	7	⟨1	16	1500	
			light grey lapilli frag and rare lapilli-sized sulphide	VA03559		96.5	1.0	3	15	₹5	7	(1	(5	1100	
			clast.	VA03560	96.5	97.5	1.0	3	30	(5	9	(1	8	1500	
			Lower contact is at 52 degrees to core axis.	VA03561	97.5	98.5	1.0	3	56	<5	12	(1		1200	
				VA03562	98.5	99.5	1.0	3	18	(5	13	<1	(5	910	
			STRUCTURE:.	VA03563		100.5	1.0	3	16	(5	14	(1	₹5	940	
			At 93.0 m foliation is at 40 degrees to core axis.	VA03564		101.5	1.0	3	33	₹5	15	(1	(5	990	
			At 103.9 m bedding is at 52 degrees to core axis.	VA03565	101.5	102.5	1.0	3	41	< 5	11	<1	5	1200	

113.8-114.2 m 10 % disseminated and fracture controlled

113.1-113.8 m 2 % disseminated pyrite.

SULPHIDES:.

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-46 - 5

16

522 5500

6 5400 1584 24200

			DIAMOND	DRILL LOG												
From (m)			DESCRIPTION		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm)	
		ALTERATION.			VA03566 VA03567	102.5 103.5		1.0	3	27 64	<5 <5	10 10	(1		1500 1600	
			IVE SERICITIZATION to MO ERICITIZATION very rare									<del></del> -				
		SULPHIDES:. 91.5 103.9 3 % pyrite, lapilli-size	disseminated and as rar	е												
103.9	109.3	FELSIC FELDSPAR CRYSTAI Feldspar crystal tuff i	LAPILLI TUFF with 5-10 % light green,	weakly to	VA03568	104.5	105.5	1.0	3	18	6	15	(1	9	1600	
			pilli stretched parall not recognizable. 2-4 %		VA03569 VA03570		106.5	1.0	3 : 3 :	27 19	10 6	10 9	(1) (1	5 (5	1600 1600	
		disseminated and as ran		pyrice,	VA03570			1.0	3	12	9	7	<b>(1</b>		1900	
		Lower contact is at 50	degrees to core axis.		VA03572	108.5	109.3	.8	3	16	6	22	<1	< 5	1800	
		STRUCTURE:. At 105.3 foliation is a	at 50 degrees to core ax	is.												
		ALTERATION:. 103.9 109.3 MODERATE PI	ERVASIVE SERICITIZATION.													
109.3	113.1	FELDSPAR PORPHYRITIC GA	ABBRO l and massive with 5 % 1	-3 mm												
			% interstitial ilmeni													
			e upper and lower conta	cts.												
		Several irregular quart pyrite+pyrrhotite +/- o	z veins and pods with halcopyrite. Trace dis	seminated												
		chalcopyrite. Lower co	ontact is at 40 degrees	to core axis.												
113.1	122.5	FELSIC LAPILLI TUFF														
			ost (10 mm) grey felsic to foliation in a seri		VA03573 VA02807			9.4	2 n/a	327 387	28 n/a	144 886			1400 2540	
			over contact is at 40 d		VA02501			. 4	117 a	304	18	70	1		1400	
		core axis.			VA03575			1.0	2	209	. 9	25	<b>&lt;1</b>		2700	
		ampuamun D			VA03576			1.0	0	601	30	196	1		7500	
		STRUCTURE:. At 115.5 m foliation is	at 40 degrees to core	axis	VA03577 VA03578			.6 1.0	0	601 155	9 1 10	1413 41	<1: <1		6400 3400	
			at 50 degrees to core		VA03579			1.0	2	630	6	70	₹1	₹5	3100	
		11 mmn s mr out			VA03580			1.0	3	752		1500	1		2900	
		ALTERATION: .	RVASIVE SERICITIZATION.		VA03581 VA03582			1.0	3	506 2037		5000 2537	3		4000 3800	
		115.0 122.5 STRONG PERV			VA03583	121.0	122.0	1.0	7	1299	139	2848	4		4000	

VA03584 122.0 122.5

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

The unit appears to contain several massive mafic flows

with minor intercalated mafic tuffs and tuff breccias.

HOLE No: Page Number CH88-46 6

41 1700

n/a 223

n/a

From To Sample From To Width Total Рb Αď (m) (m) -----DESCRIPTION-----Sulphides (ppm) No. (m) (m) (ppm) (ppm) (ppm) (ppb) (ppm) pyrite associated with an epidote+calcite alteration patch 114.2-115.2 m 2 % disseminated pyrite. 115.2-116.8 m 10 % coarsely disseminated pyrite and 0.5-1.0 % chalcopyrite. 116.8-118.8 m 2 % disseminated pyrite. 118.8-121.0 m 3 % disseminated pyrite and trace to 2 % sphalerite or biotite (?) smeared along foliation planes giving rock a slight reddish brown tint. 121.0-122.0 m 7 % pyrite, 0.5 % chalcopyrite and trace sphalerite, disseminated and fracture controlled. 122.0- 122.5 M 6 % pyrite, 5 % sphalerite 2 % chalcopyrite and trace galena, disseminated and in bands ( 4 mm wide roughly parallel to foliation. 116.8 117.3 Tuff has a brecciated appearance. Very siliceous angular clasts in a sericitic matrix 122.5 126.2 MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION Medium green very massive (ie no foliation and no VA02808 122.5 139.6 17.1 n/a 126 n/a n/a 225 bedding), medium-grained with 20 and 40 cm chill margins at the upper and lower contacts. Up to 20 % ( 3 mm anhedral chloritized mafic phenocrysts. May be a flow or dyke. No ilmenite and nil sulphide. Lower contact is very sharp and somewhat irregular at 80 degrees to core axis. 126.2 127.6 GREYWACKE Dark brown, sand to silt grainsize with ( 5 % granules of quartz and cherty lithics. Trace pyrite. Lower contact is at 75 degrees to core axis. 127.6 139.6 MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION As 122.5 to 126.2 m. Very massive. VA03585 138.6 139.6 1.0 (5 1600 92 18 .177 <1 10 Cm long xenolith or rip-up clast of dark brown greywacke. Margins are very sharp and irregular. Lower contact is a slip at 80 degrees to core axis. STRUCTURE:. At 129.0 m 1.0 cm fault gouge. Not possible to measure the orientation. ALTERATION:. 127.6 139.6 WEAK PERVASIVE CHLORITIZATION. 139.6 168.9 MAFIC FLOW

VA03586 139.6 140.0

VA02809 139.6 168.9 29.3

n/a

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-46 7

From	То	Sample	From	To	Vidth	Total	Cu	Pb	Zn	λg	Àu	Ba
(m)	(m)DESCRIPTION	- No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)
	Dark green fine-grained (finer grained than unit abov	e) VA03587	140.0	141.0	1.0	1	207	38	135	<1	6	80
	locally mafic porphyritic. Contorted and deformed bed	ding VA03588	155.7	156.7	1.0	1	118	<5	53	(1	< 5	540
	is recognizable above 140.0 m but below this depth t	he VA03589	156.7	157.7	1.0	2	178	₹5	56	1	< 5	380
	rock becomes very massive and only rarely contains occasional lapilli to block-sized mafic clasts. 5 %	VA03590 mafic	158.5	159.5	1.0	4	240	- (5	74	1		420
	lapilli between 161.8 and 163.0 m. Lower contact											

#### STRUCTURE .

At 157.3 m possible bedding plane at 68 degrees to core axis.

arbitrarily placed where rock becomes medium-grained.

At 162.2 m 0.1 m fault zone at 35-42 degrees to core axis. 163.8- M locally rock is brecciated. Angular breccia clasts are separated by 2-5 mm fractures filled with slightly lighter coloured chlorite+sericite+epidote.

#### ALTERATION: .

139.6 144.7 WEAK PERVASIVE CHLORITIZATION.

144.7 161.0 MODERATE SPOTTY EPIDOTIZATION and WEAK SPOTTY CARBONATIZATION. Approximately 5 % epidote+calcite patches up to 0.2 m long.

161.0 168.9 WEAK PERVASIVE EPIDOTIZATION.

159.0 168.9 Rock is lighter in colour (slightly bleached?).

#### SULPHIDES:.

At 139.9 m 1.5 cm band of massive chalcopyrite-pyrite. Mineralization surrounds dark grey lapilli but it appears to be associated with a quartz-carbonate veining. 156.7-158.5 m 1-2% fracture controlled pyrite and trace sphalerite. 158.5-161.5 m 4 % fracture controlled pyrite and trace sphalerite and chalcopyrite.

167.2 888.8 5 mm black argillite bed at 65 degrees to core axis.

168.9 208.2 MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION

Very massive, no bedding or clasts. Fine to medium-grained but local fine-grained with up to 20 % 2-3 mm chlorite spots (chlorite replacing pyroxene/hornblende).

Quartz-carbonate veins and pods up to 4.0 cm wide are common. In areas of more intense veining rock becomes more chloritic, darker and fine-grained. Quartz-carbonate veins often contain dark brown biotite (?). Lower contact is placed where bedding becomes recognizable. No sharp intrusive type of contact suggesting that it is likely a volcanic.

VAO2810 168.9 208.2 39.3 n/a 58 n/a 69 n/a n/a 218

ALTERATION: .

PROPERTY:	C	nemainu	IV

FALCONBRIDGE LIMITED

HOLE No: Page Number

CH88-46 DIAMOND DRILL LOG From To Sample From To Width Total Pb Zn Ag λu (m) (m) -----DESCRIPTION-----(m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 168.9 208.2 WEAK PERVASIVE EPIDOTIZATION and WEAK SPOTTY EPIDOTIZATION. 192.3 193.3 Weak fractures controlled hematization associated with quartz-carbonate veinlets up to 5 mm wide. SULPHIDES: . Trace chalcopyrite in quartz-carbonate veins up to 2 cm wide at 80 to 0 degrees to core axis. 171.9 172.1 Strongly mafic porphyritic. 40 % 2-3 mm black subhedral chloritized mafic phenocrysts. 181.7 182.2 Several irregular wispy veins of biotite (?) + carbonate up to 4.0 cm wide. One contains trace disseminated pyrite. 208.2 217.2 MAFIC PORPHYRITIC MAFIC LAPILLI TUFF Similiar to above unit but tuffaceous. Finely bedded over VA02811 208.2 219.2 11.0 112 n/a n/a 863 the first 0.2 m. Contains 5 % ash to lapilli-sized epidotized fragment, and cherty clasts and occ mud clasts. A cherty fragment at 209.9 m has a 2 mm reaction rim. Lower contact arbitrarily placed where amygdales first appear. STRUCTURE: . At 208.3 bedding is at 70 degrees to core axis. At 215.2 bedding is at 48 degrees to core axis. 215.3 215.4 Bed of chloritic quartz-feldspar crystal tuff at 50 degrees to core axis. 215.4 216.0 Green cherty siltstone. Finely bedded but core is too broken and blocky to measure core axis angles. 217.2 219.2 HAFIC FLOW

Medium green, fine-grained with 5 % white quartz-carbonate filled amygdales up to 5 mm long. 6.0 cm ripped up bed of cherty tuffaceous siltstone with 3 % fracture controlled pyrite at 218.8 m.

219.2 253.1 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Medium green mafic ash tuffs with beds of light green, cherty tuffaceous siltstones and wackes up to 3.0 cm thick. Some beds are graded and most fine downhole. Some sections up to 2.0 m long of massive mafic tuff or flow. Becomes increasingly cherty towards the lower contact. Lower contact is somewhat irregular at 45-55 degrees to

VA02812 219.2 239.0 19.8 n/a 107 n/a 137 n/a n/a 799 VA02813 239.0 283.1 44.1 n/a n/a 112 n/a n/a 1370

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-46 9

From To (m)

-----DESCRIPTION-----

Sample From To Width Total Cu Рb Zn λu No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

core axis.

STRUCTURE:.

At 219.5 m bedding is at 40 to 25 degrees to core axis. Beds FINE DOWNHOLE and are offset by microfaults at 75-85 degrees to core axis.
219.8-220.0 Redding is nearly parallel to the core axis.

219.8-220.0 Bedding is nearly parallel to the core axis (may be a ripped-up bed). Flame structures are common but not possible to determine top direction because bedding is parallel to core axis.

At 220.7 m bedding is at 45 degrees to core axis. At 224.1 m bedding is at 50 degrees to core axis. 226.0-227.0 Well bedded interval. Beds are from 3 to 40 mm thick at 42 to 55 degrees to core axis. Graded beds FINE DOWNHOLE. This interval will be sawn.

At 231.2 m bedding is at 44 degrees to core axis. At 236.6 m bedding is at 42 degrees to core axis.

At 251.1 m bedding is at 70 degrees to core axis.

#### ALTERATION:.

219.5 221.0 WEAK PERVASIVE CHLORITIZATION.
221.0 243.1 Weak to moderate thermal biotite alteration.

#### SULPHIDES:

219.2-250.8 M trace pyrite in thin bands (beds?) up to 2 mm thick and fracture controlled. Trace fracture controlled chalcopyrite at 247.7 m. 250.8-243.1 m 1 % fracture controlled py in cherty tuffaceous siltstone.

233.7 888.8 6.0 cm ripped-up bed of light green cherty siltstone.

236.6 237.2 MAFIC PORPHYRITIC MAFIC TUFF / FLOW. Weak thermal biotite alteration and 5 % 2-4 mm black, subhedral phenocrysts.

#### 253.1 257.9 FELDSPAR PORPHYRITIC GABBRO

Massive, medium green, fine-grained with 10 % 2-4 mm white feldspar phenocrysts and 2 % finely disseminated ilmenite.

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	X5 102	XAL203	ZCAO	ZHGO	XNA20	XK20	XFE203	21102	ZP205	ZHNO	XL0 I	SUM	BA	AI	NACA
VA02319	34.60	34.90	69.30	14.20	2.91	1.29	0.12	3.96	2.44	0.28	0.04	0.08	4.70	99.32	1750.	63.	3.
VA02320	47.00	47.20	65.40	15,10	2.39	2.34	2.24	2.69	4.80	0.36	0.09	0.04	3.39	98.84	1050.	52.	
VA02321	57.10	57.50	67.50	13.30	4.06	1.60	0.15	3.76	3.83	0.31	0.08	0.03	3.77	98.39	1120.	56.	
VA02322	71.20	71.50	67.00	14.20	2.40	2.19	1.69	2.65	3.97	0.33	0.08	0.05	3.77	98.33	1190.	54.	
VA02323	86.60	86.70	68.80	15.00	5.39	0.85	2.18	1.77	1.39	0.36	0.11	0.02	3.39	99.26	1730.	26.	
VA02324	96.30	96.60	68.50	16.20	4.77	1.06	1.83	1.69	1.65	0.30	0.08	0.01	3.08	99.17	1220.	29.	7.
VA02325	118.40	118.70	71.30	15.20	0.69	0.76	1.89	3.25	2.21	0.29	0.11	0.01	2.31	98.02	4720.	61.	3.
VA02326	123.20	123.50	44.40	13.80	12.00	12.70	0.89	0.13	9.67	0.42	0.07	0.17	4.31	98.56	148.	50.	13.
VA02327	143.80	144.50	48.00	14.30	8.80	7.32	2.89	0.19	14.10	1.97	0.19	0.24	2.08	100.08	153.	39.	12.
VA02328	157.30	157.50	50.00	16.60	6.53	6.48	4.24	0.52	11.10	0.92	0.18	0.17	3.08	99.82	434.	39.	11.
VA02329	168.30	168.60	50.20	14.30	10.70	8.32	2.81	0.32	10.10	0.60	0.15	0.16	2.16	99.82	169.	39.	14.
VA02330	178.00	178.30	48.30	11.20	12.90	11.20	1.73	0.17	9.55	0.50	0.11	0.15	3.23	99.04	120.	44.	15.
VA02331	187.00	187.30	49.90	13.70	11.50	8.82	2.62	0.15	10.20	0.56	0.12	0.17	2.31	100.05	130.	39.	14.
VA02332	200.70	200.90	50.50	14.60	9.69	8.47	3.22	0.15	10.40	0.59	0.13	0.16	2.31	100.22	99.	40.	13.
VA02333	211.80	212.00	46.90	17.00	5.98	7.83	3.57	0.99	10.30	0.71	0.13	0.20	4.77	98.38	539.	48.	10.
VA02334	225.00	225.40	50.00	16.10	9.30	6.56	3.25	1.04	10.50	0.83	0.20	0.20	2.08	100.06	443.	38.	13.
VA02335	246.10	246.30	52.20	17.30	3.77	6.68	5.62	0.66	8.39	0.71	0.23	0.13	3.70	99.39	511.	44.	9.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	(ppm)	2R (ppm)	NB (mgg)	CU (ppm)	ZN (ppm)	(mdc)	 	 	ROCK	CODES	мім
VA02319	34.60	34.90	96.0	68.0	1750.0	11.0	113.0	10.0	17.0	66.0	<10.0			TEBT	SHW	A
VA02320	47.00	47.20	69.0	151.0	1050.0	<10.0	105.0	19.0	13.0	49.0	10.0			TFBT	SHM	A
VA02321	57.10	57.50	83.0	73.0	1120.0	<10.0	92.0	<10.0	37.0	42.0	<10.0			TFPT	PSM	DCP
VA02322	71.20	71.50	53.0	162.0	1190.0	<10.0	115.0	<10.0	63.0	72.0	<10.0			TERT	PSH	DDP
VA02323	96.60	86.70	44.0	391.0	1730.0	<10.0	114.0	17.0	50.0	37.0	<10.0			TFBT	PSM	DCP
VA02324	96.30	96.60	32.0	313.0	1220.0	16.0	88.0	16.0	43.0	28.0	<10.0			TFAFY	PSW .	DCP
VA02325	113.40	118.70	65.0	138.0	4720.0	<10.0	90.0	<10.0	515.0	1210.0	<10.0			TFBT	₽S₩	DCP
VA02326	123.20	123.50	14.0	234.0	148.0	14.0	<10.0	15.0	105.0	82.0	412.0		٠.	VMAM	PHW	A
VA02327	143.80	144.50	<10.0	118.0	153.0	34.0	90.0	15.0	137.0	119.0	105.0			Tham	PHM	A
VA02328	157.30	157.50	29.0	207.0	434.0	26.0	19.0	28.0	57.0	108.0	37.0			TMAM	PHU	 A
VA02329	168.30	168.60	15.0	345.0	169.0	23.0	<10.0	11.0	143.0	75.0	52.0			TMAM	ECM	A
VA02330	178.00	178.30	26.0	165.0	120.0	13.0	<10.0	<10.0	105.0	70.0	73.0			VMAM	PEW	A
VA02331	187.00	187.30	<10.0	293.0	130.0	15.0	<10.0	<10.0	106.0	76.0	54.0			VHAM	PEW	
VA02332	200.70	200.90	16.0	410.0	99.0	19.0	<10.0	12.0	139.0	82.0	52.0					A
VA02333	211.90	212.00	24.0	302.0	539.0	13.0	<10.0	13.0	76.0	113.0				MAMV	PHW	Α
VA02334	225.00		10.0	278.0	443.0	38.0	25.0				51.0			IMAT	PHW	A
VA02335	246.10			196.0				17.0	117.0	95.0	49.0			THAT	PHW	A
vnV433J	40.10	440.30	21.0	196.0	511.0	20.0	57.0	<10.0	87.0	201.0	43.0			THAT	FCW	A

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE	FROM	TO	18102	XAL203	ZCAO	zHGO	ZNA20	XK20	XFE203	71102	XP205	znno	XL01	SUM		BA	ΑI	NACA
																		<del></del> -
VA02803	33.20	54.90	66.60	14.30	3.15	1.77	1.84	2.87	3.77	0.33			4.08	98.71		1210.	48.	5.
VA02804	54.90	74.90	68.50	15.60	1.69	1.65	1.40	3.71	2.96	0.34			3.39	99.24		1720.	63.	3.
VA02805	74.90	91.50	72.00	13.90	3.12	1.18	1.73	1.95	2.31	0.32			3.23	99.74		2020.	39.	5.
VA02806	91.50	109.30	71.40	15.30	2.39	1.56	1.41	2.09	2.26	0.32			2.93	99.65		1560.	49.	4.
VA02807	113.10	122.50	60.40	14.00	6.73	1.25	2.16	1.62	8.59	0.42			3.23	98.40		2540.	24.	9.
80820AV	122.50	139.60	45.30	14.20	12,10	11.90	1.13	0.14	9.78	0.41			4.31	99.27		225.	48.	13.
VA02809	139.60	168.90	45.40	17.00	15.50	4.35	2.31	0.37	10.50	0.71			3.85	99.99		223.	21.	18.
VA02810	168.90	208.20	46.90	11.90	13.10	7.70	2.02	0.31	9.10	0.50			6.93	98.46		218.	35.	15.
VA02811	208.20	219.20	45.60	16.40	11.40	4.79	3.35	1.17	9.24	0.71			6.39	99.05		863.	29.	15.
VA02812	219.20	239.00	48.20	16.50	5.99	8.33	3.09	2.03	10.90	0.79			4.16	99.99		799.	53.	9.
VA02813	239.00	283.10	51.40	16.10	4.96	6.87	3.63	2.11	9.06	0.75			4.39	99.27	1	370.	51.	9.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER		TO	RB (ppm)	SR (ppm)	ВА (рран)	Y (ppm)	ZR (ppm)	NB (nom)	CU (car)	ZN	NI	 		ROCK	CODES	 MIN
								(ppm)	(ppm)	(ppm)	(ppm)	 	 			11114
VA02803	33.20	54.90			1210.0				45.0							
VA02804	54.90	74.90			1720.0				46.0	60.0	<10.0			TFBT	SHM	DBP
VA02805	74.90								45.0	55.0	<10.0			TFBT	PSH	DCP
		91.50			2020.0				60.0	47.0	<10.0			TFBT	PSM	DDP
VA02806	91.50	109.30			1560.0				25.0	33.0	<10.0			TERFY		
VA02807	113.10	122.50			2540.0				387.0	386.0	19.0				PSW	DCP
VA02808	122.50	139.60			225.0									TFBT	PSS	DDP
VA02809	139.60	168 90							88.0	126.0	396.0			VMAM	PHW	A
					223.0				87.0	63.0	29.0			THAM	SEM	DPP
VA02810	168.90	208.20			218.0				58.0	69.0	57.0			VMAH	CEU	
VA02811	208.20	219.20			863.0				83.0	112.0	20.4			VIIHI	SEW	DBP
VA02812	219.20	239-00			9000 0				00.0	110.0	29.0			TMAT	PHW	DPP
VA02813					799.0				107.0	137.0	66.0			THART	?	FBP
*HA7019	239.00	203.10			370.0				98.0	112.0	53.0			TMART	?	EBP

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	P8 (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	нн (pp≡)	CUZN	EIS	FE
VA03493	33.20	34.00	1900.0	15.0	43.0	0.6	<5.0	3.0	3.0	5.0	<5.0	<1.0	1.0	213.0	26.	1.	1.
VA03494	34.00	35.00	1800.0	12.0	43.0	0.5	(5.0	3.0	2.0	6.0	<5.0	<1.0	<1.0	270.0	22.	1.	1.
VA03495	35.00	36.00	2000.0	19.0	35.0	0.6	<5.0	2.0	1.0	5.0	<5.0	<1.0	1.0	223.0	35.	1.	1.
VA03496	36.00	37.00	1900.0	31.0	25.0	<0.5	15.0	3.0	4.0	6.0	<5.0	<1.0	<1.0	196.0	55.	1.	1.
VA03497	37.00	38.00	1800.0	55.0	53.0	⟨0.5	14.0	7.0	5.0	<5.0	<5.0	<1.0	<1.0	448.0	51.	1.	1.
VA03497	37.00	38.00	1800.0	55.0	53.0	<0.5	14.0	7.0	5.0	<5.0	<5.0	<1.0	<1.0	448.0	51.	1.	1.
VA03498	38.00	39.00	890.0	37.0	50.0	0.6	11.0	14.0	10.0	11.0	<5.0	<1.0	1.0	268.0	43.	2.	1.
VA03499	39.00	40.00	930.0	33.0	59.0	0.6	8.0	8.0	5.0	8.0	₹5.0	<1.0	2.0	305.0	36.	2.	2.
VA03500	40.00	41.00	920.0	32.0	60.0	0.6	5.0	8.0	6.0	7.0	<5.0	<1.0	2.0	330.0	35.	2.	2.
VA03501	41.00	42.00	1300.0	28.0	39.0	0.7	28.0	5.0	10.0	10.0	<5.0	<1.0	<1.0	265.0	42.	2.	2.
VA03502	42.00	43.00	1300.0	16.0	34.0	0.5	<5.0	9.0	10.0	15.0	<5.0	<1.0	<1.0	281.0	32.	1.	1.
VA03503	43.00	44.00	1100.0	14.0	42.0	<0.5	8.0	10.0	11.0	13.0	⟨5.0	<1.0	<1.0	294.0	25.	1.	2.
VA03504	44.00	45.00	1100.0	26.0	30.0	0.5	7.0	7.0	10.0	11.0	<5.0	1.0	<1.0	269.0	46.	1.	2.
VA03505	45.00	46.00	970.0	25.0	33.0	0.5	<5.0	7.0	11.0	7.0	7.0	<1.0	<1.0	244.0	43.	1.	2.
VA03506	46.00	47.00	1300.0	13.0	27.0	0.6	9.0	4.0	7.0	10.0	<5.0	<1.0	<1.0	229.0	33.	1.	1.
VA03507	47.00	48.00	1000.0	24.0	25.0	0.5	27.0	6.0	8.0	11.0	<5.0	<1.0	<1.0	228.0	49.	1.	2.
VA03508	48.00	49.00	1100.0	8.0	22.0	<0.5	39.0	4.0	5.0	6.0	<5.0	<1.0	<1.0	245.0	27.	1.	1.
VA03509	49.00	50.00	1100.0	22.0	28.0	0.6	<5.0	4.0	4.0	6.0	<5.0	<1.0	1.0	190.0	44.	1.	2.
VA03510	50.00	51.00	1100.0	50.0	31.0	0.8	9.0	5.0	5.0	6.0	11.0	1.0	<1.0	192.0	62.	1.	2.
VA03511	51.00	52.00	0.00	76.0	36.0	0.5	19.0	4.0	3.0	<5.0	6.0	(1.0	2.0	369.0	68.	1.	2.
VA03512	52.00	53.00	780.0	73.0	37.0	0.6	6.0	6.0	4.0	6.0	<5.0	<1.0	3.0	261.0	66.	. 1.	2.
VA03513	53.00	54.00	980.0	61.0	30.0	0.5	10.0	4.0	3.0	<5.0	<b>(5.0</b>	<1.0	2.0	215.0	67.	1.	2.
VA03514	54.00	55.00	1000.0	18.0	15.0	0.6	<5.0	2.0	3.0	6.0	16.0	<1.0	2.0	138.0	55.	1.	1.
VHU3514	37.00	33.00	1000.0	10.0	13.0	V.0	. 3.0	2.0	3.0	0.0	10.0		3.0				

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	ИО (ppm)	НИ (ррж)	CUZN	ETS	FE
WARRAN	55.00																
VA03515	55.00	56.00	740.0	96.0	19.0	<0.5	<5.0	5.0	3.0	<5.0	16.0	<1.0	3.0	256.0	83.	0.	1.
VA03516	56.00	57.00	920.0	28.0	21.0	<0.5	<5.0	3.0	3.0	7.0	19.0	<1.0	2.0	134.0	57.	0.	1.
VA03517	57.00	58.00	950.0	20.0	21.0	<0.5	7.0	4.0	3.0	<5.0	12.0	<1.0	2.0	172.0	49.	2.	1.
VA03518	58.00	59.00	1000.0	10.0	17.0	<0.5	<5.0	3.0	2.0	<5.0	<5.0	<1.0	<1.0	134.0	37.	2.	1.
VA03519	59.00	59.90	1200.0	19.0	19.0	<0.5	10.0	6.0	2.0	<5.0	<5.0	<1.0	<1.0	130.0	50.	8.	1.
VA03520	59.90	60.30	1200.0	1814.0	17.0	1.7	200.0	52.0	30.0	5.0	22.0	4.0	3.0	109.0	99.	45.	>10.
VA03521	60.30	61.30	1400.0	83.0	16.0	<0.5	12.0	8.0	3.0	<5.0	<5.0	<1.0	1.0	118.0	84.	6.	2.
VA03522	61.30	61.80	850.0	437.0	19.0	0.6	66.0	18.0	11.0	⟨5.0	22.0	3.0	<1.0	134.0	96.	30.	>10.
VA03523	61.80	62.80	1400.0	158.0	17.0	<0.5	22.0	10.0	4.0	<5.0	<5.0	1.0	1.0	135.0	90.	6.	4.
VA03524	62.80	64.00	1100.0	51.0	24.0	<0.5	30.0	6.0	4.0	<b>(5.0</b>	<5.0°	<1.0	1.0	134.0	68.	6.	2.
VA03525	64.00	65.00	1490.0	112.0	15.0	<0.5	59.0	9.0	7.0	<5.0	<5.0	2.0	5.0	106.0	88.	12.	3.
VA03526	65.00	66.00	1500.0	85.0	25.0	<0.5	25.0	7.0	3.0	⟨5.0	<b>(5.0</b>	1.0	2.0	124.0	77.	12.	3.
VA03527	66.00	67.00	1400.0	35.0	31.0	<0.5	9.0	5.0	1.0	<5.0	<5.0	<1.0	<1.0	122.0	53.	6.	2.
VA03528	67.00	68.00	1600.0	105.0	33.0	<0.5	20.0	6.0	4.0	<b>&lt;5.0</b>	<5.0	<1.0	3.0	116.0	76.	6.	з.
VA03529	68.00	69.00	1500.0	83.0	40.0	<0.5	11.0	5.0	2.0	<5.0	<5.0	<1.0	1.0	126.0	67.	6.	2.
VA03530	69.00	70.00	1400.0	85.0	39.0	<0.5				<5.0	⟨5.0		2.0	150.0	69.	6.	2.
VA03530							16.0	6.0	4.0			(1.0					
	70.00	71.00	1300.0	131.0	29.0	<0.5	33.0	11.0	6.0	<5.0	₹5.0	<1.0	2.0	144.0	82.	10.	3.
VA03532	71.00	72.00	1200.0	68.0	30.0	<0.5	17.0	8.0	3.0	⟨5.0	<5.0	<1.0	3.0	172.0	69.	6.	2.
VA03533	72.00	73.00	1200.0	53.0	19.0	<0.5	12.0	5.0	2.0	√5.0	<5.0	<1.0	2.0	103.0	74.	6.	1.
VA03534	73.00	74.00	1000.0	21.0	19.0	(0.5	<5.0	5.0	<1.0	<5.0	<5.0	<1.0	2.0	118.0	53.	6.	1.
VA03535	74.00	74.90	1300.0	13.0	11.0	<0.5	<5.0	6.0	<1.0	<5.0	<5.0	<1.0	2.0	100.0	54.	6.	1.
VA03536	74.90	76.00	1600.0	174.0	31.0	<0.5	14.0	7.0	3.0	5.0	14.0	<1.0	3.0	151.0	85.	13.	2.
VA03537	76.00	77.00	3200.0	106.0	95.0	<0.5	46.0	7.0	3.0	14.0	6.0	1.0	4.0	92.0	53.	13.	3.

Hole No. CH88-46

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	HH (ppm)	CUZN	ETS	PE
VA03538	77.00	77.50	4700.0	856.0	309.0	1.0	40.0	6.0	3.0	35.0	<5.0	2.0	5.0	104.0	73.	12.	2.
VA03539	77.50	78.00	3800.0	4400.0	459.0	3.5	148.0	6.0	3.0	29.0	8.0	2.0	3.0	116.0	91.	12.	2.
VA03540	78.00	79.00	2300.0	72.0	25.0	<0.5	18.0	5.0	<1.0	9.0	<5.0	<1.0	2.0	154.0	74.	2.	1.
VA03541	79.00	80.00	1700.0	12.0	10.0	<0.5	15.0	2.0	<1.0	<5.0	<5.0	<1.0	2.0	106.0	55.	2.	1.
VA03542	80.00	81.00	1400.0	18.0	13.0	<0.5	<5.0	2.0	<1.0	5.0	<5.0	<1.0	2.0	113.0	58.	2.	1.
VA03543	81.00	81.70	1500.0	15.0	15.0	(0.5	<5.0	2.0	<1.0	<5.0	<5.0	<1.0	2.0	128.0	50.	2.	1.
VA03544	81.70	82.70	2200.0	26.0	16.0	<0.5	7.0	6.0	<1.0	<5.0	<5.0	<1.0	2.0	110.0	62.	2.	. 1.
VA03545	82.70	84.00	2300.0	147.0	311.0	<0.5	88.0	10.0	6.0	17.0	14.0	4.0	5.0	121.0	32.	5.	3.
VA03546	84.00	85.00	1800.0	12.0	47.0	<0.5	17.0	3.0	<1.0	17.0	₹5.0	<1.0	2.0	89.0	20.	5.	1.
VA03547	85.00	86.00	2700.0	52.0	19.0	⟨0.5	34.0	7.0	4.0	19.0	14.0	<1.0	2.0	122.0	73.	10.	2.
VA03548	86.00	87.00	2500.0	26.0	15.0	<0.5	14.0	5.0	2.0	8.0	6.0	<1.0	2.0	141.0	65.	3.	1.
VA03549	87.00	88.00	2100.0	17.0	13.0	<0.5	7.0	3.0	2.0	<5.0	<b>(5.0</b>	<1.0	3.0	127.0	57.	5.	1.
VA03550	88.00	B9.00	1800.0	32.0	17.0	(0.5	19.0	5.0	3.0	6.0	(5.0	<1.0	3.0	130.0	65.	3.	1.
VA03551	89.00	89.50	1800.0	64.0	72.0	<0.5	13.0	4.0	<1.0	⟨5.0	<5.0	<1.0	3.0	116.0	47.	3.	1.
VA03552	89.50	90.20	2000.0	136.0	240.0	<0.5	153.0	7.0	3.0	8.0	22.0	<1.0	3.0	93.0	36.	9.	3.
UA03553	90.20	90.60	1600.0	241.0	15.0	<0.5	90.0	11.0	5.0	11.0	28.0	<1.0	4.0	110.0	94.	40.	4,
VA03554	90.60	91.50	1700.0	35.0	9.0	<0.5	12.0	4.0	3.0	<5.0	6.0	<1.0	4.0	111.0	80.	9.	1.
VA03555	91.50	92.50	1000.0	13.0	17.0	<0.5	<5.0	2.0	2.0	⟨5.0	7.0	<1.0	3.0	121.0	43.	3.	1.
VA03556	92.50	93.50	920.0	41.0	19.0	<0.5	9.0	3.0	3.0	<5.0	<5.0	<1.0	6.0	141.0	68.	3.	1.
VA03557	93.50	94.50	810.0	25.0	12.0	<0.5	<5.0	2.0	3.0	(5.0	₹5.0	(1.0	3.0	124.0	68.	3.	1.
VA03558	94.50	95.50	1500.0	15.0	7.0	<0.5	16.0	2.0	2.0	<5.0	<5.0	<1.0	2.0	113.0	68.	3.	1.
VA03559	95.50	96.50	1100.0	15.0	7.0	<0.5	⟨5.0	3.0	2.0	<5.0	⟨5.0	<1.0	2.0	101.0	68.	3.	1.
VA03560	96.50	97.50	1500.0	30.0	9.0	<0.5	8.0	4.0	2.0	₹5.0	⟨5.0	<1.0	3.0	107.0	77.	3.	1.
AH03760	70.30	77.30	1300.0	30.0	7.0		0.0	. 4.0	4.V	13.0		(1.0	3.0	10/10	***	••	

Page No. 3

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA	CU	Z N	AG	AU	co	NI	PB	AS	CD	HO		CUZN	ETS	FE
	~		(ppm)		(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)			
VA03561	97.50	98.50	1200.0	56.0	12.0	<0.5	21.0	2.0	2.0	<5.0	<5.0	<1.0	3.0	117.0	82.	3.	1.
VA03562	98.50	99.50	910.0	18.0	13.0	<0.5	<5.0	3.0	2.0	⟨5.0	<5.0	<1.0	3.0	123.0	58.	3.	1.
VA03563	99.50	100.50	940.0	16.0	14.0	<0.5	<5.0	2.0	3.0	<b>(5.0</b> )	<5.0	<1.0	2.0	130.0	53.	3.	1.
VA03564	100.50	101.50	990.0	33.0	15.0	<0 ₀ .5	<5.0	4.0	3.0	<5.0	(5.0	<1.0	3.0	122.0	69.	3.	1.
VA03565	101.50	102.50	1200.0	41.0	11.0	<0.5	5.0	3.0	2.0	<5.0	<5.0	<1.0	4.0	115.0	79.	3.	1.
VA03566	102.50	103.50	1500.0	27.0	10.0	<0.5	5.0	2.0	1.0	<5.0	<5.0	<1.0	2.0	114.0	73.	3.	1.
VA03567	103.50	104.50	1600.0	64.0	10.0	<0.5	43.0	3.0	1.0	<5.0	6.0	<1.0	2.0	102.0	86.	3.	1.
VA03568	104.50	105.50	1600.0	18.0	15.0	<0.5	9.0	3.0	2.0	6.0	<5.0	<1.0	2.0	104.0	55.	3.	. 1.
VA03569	105.50	106.50	1600.0	27.0	10.0	<0.5	5.0	4.0	2.0	10.0	<5.0	<1.0	2.0	99.0	73.	3.	1.
VA03570	106.50	107.50	1600.0	19.0	9.0	<0.5	<5.0	2.0	<1.0	6.0	₹5.0	<1.0	2.0	99.0	68.	3.	1.
VA03571	107.50	108.50	1900.0	12.0	7.0	<0.5	56.0	1.0	<1.0	9.0	<5.0	<1.0	2.0	103.0	63.	3.	1.
VA03572	108.50	109.30	1800.0	16.0	22.0	⟨0.5	⟨5.0	3.0	3.0	6.0	(5.0	<1.0	2.0	171.0	42.	3.	1.
VA03573	113.10	113.80	1400.0	327.0	144.0	<0.5	40.0	14.0	14.0	28.0	₹5.0	<1.0	3.0	182.0	69.	2.	1.
VA03574	113.80	114.20	1400.0	304.0	70.0	0.6	55.0	65.0	51.0	18.0	45.0	1.0	2.0	578.0	81.	0.	5.
VA03575	114.20	115.20	2700.0	209.0	25.0	<0.5	10.0	5.0	4.0	9.0	7.0	<1.0	4.0	151.0	89.	2.	1.
VA03576	115.20	116.20	7500.0	601.0	196.0	0.9	288.0	7.0	8.0	30.0	14.0	<1.0	15.0	99.0	75.	0.	3.
VA03577	116.20	116.80	6400.0	601.0	1413.0	<0.5	260.0	7.0	7.0	9.0	14.0	6.0	13.0	93.0	30.	. 0.	2.
VA03578	116.80	117.80	3400.0	155.0	41.0	<0.5	7.0	2.0	1.0	10.0	⟨5.0	<1.0	3.0	112.0	79.	2.	1.
VA03579	117.80	118.80	3100.0	630.0	70.0	<0.5	<5.0	3.0	1.0	6.0	<5.0	<1.0	3.0	114.0	90.	2.	1.
VA03580	118.80	119.80	2900.0	752.0	11500.0	1.1	45.0	3.0	1.0	<5.0	(5.0	55.0	3.0	95.0	6.	3.	1.
VA03581	119.80	120.80	4000.0	506.0	6000.0	3.3	316.0	4.0	3.0	129.0	9.0	21.0	4.0	92.0	8.	3.	1.
VA03582	120.80	121.00	3800.0	2037.0	2537.0	5.8	68.0	5.0	3.0	14.0	(5.0	12.0	4.0	101.0	45.	3.	2.
VA03583	121.00	122.00	4000.0	1299.0	2848.0	4.4	98.0	3.0	3.0	139.0	14.0	12.0	4.0	117.0	31.	7.	1.

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	НІ (ррш)	PB (ppm)	AS (ppm)	CD (ppm)	НО (ррж)	НН (рря)	CUZN	ETS	FE
VA03584	122.00	122.50	5500.0	5400.0	24200.0	15.5	522.0	7.0	5.0	1584.0	(5.0	110.0	6.0	140.0	18.	6.	2.
VA03585	138.60	139.60	1600.0	92.0	177.0	<0.5	<5.0	35.0	345.0	18.0	33.0	1.0	3.0	626.0	34.	1.	3.
VA03586	139.60	140.00	1700.0	8800.0	500.0	5.8	41.0	41.0	205.0	14.0	26.0	5.0	4.0	1397.0	95.	1.	7.
VA03587	140.00	141.00	80.0	207.0	135.0	<0.5	6.0	22.0	60.0	38.0	<5.0	2.0	3.0	710.0	61.	1.	3.
VA03588	155.70	156.70	540.0	118.0	53.0	<0.5	⟨5.0	37.0	39.0	₹5.0	13.0	5.0	<1.0	1104.0	69.	1.	6.
VA03589	156.70	157.70	380.0	178.0	56.0	0.7	<5.0	36.0	34.0	√5.0	<5.0	3.0	<1.0	757.0	76.	2.	5.
VA03592	157.70	158.50	430.0	223.0	104.0	0.5	16.0	52.0	37.0	7.0	36.0	5.0	<1.0	877.0	68.	0.	5.
VA03590	158.50	159.50	420.0	240.0	74.0	1.1	6.0	56.0	44.0	(5:0	(5.0	4.0	<1.0	925.0	76.	4.	5.
VA03591	159.50	160.50	460.0	174.0	84.0	₹0.5	19.0	36.0	39.0	⟨5.0	14.0	5.0	<1.0	867.0	67.	4.	5.
VA03593	160.50	161.50	290.0	155.0	65.0	1.0	18.0	30.0	35.0	⟨5.0	16.0	4.0	<1.0	653.0	70.	4.	4.
VA03594	181.70	182.20	550.0	201.0	46.0	9.7	<5.0	32.0	37.0	₹5.0	18.0	3.0	<1.0	853.0	81.	1.	4.
VA03595	192.30	193.30	190.0	146.0	40.0	0.6	13.0	33.0	41.0	<5.0	6.0	3.0	<1.0	725.0	78.	1.	4.
VA03596	206.00	206.60	410.0	329.0	55.0	0.8	20.0	37.0	44.0	<5.0	<5.0	4.0	1.0	1059.0	86.	1.	5.
VA03597	247.00	248.00	2200.0	122.0	88.0	1.0	10.0	30.0	71.0	10.0	11.0	5.0	<1.0	1048.0	58.	1.	6.
VA03598	250.80	251.80	1000.0	126.0	62.0	0.9	<5.0	20.0	41.0	30.0	23.0	4.0	1.0	593.0	67.	1.	. 4.
VA03599	251.80	253.10	1700.0	68.0	72.0	0.8	45.0	36.0	85.0	7.0	28.0	5.0	1.0	1232.0	49.	1.	6.

Summary Log: DDH CH88-47

Location: 29+00 E, 2+10 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: May 2, 1988 Core logged by: J. Pattison

0.0 - 9.6 Casing.

9.6 - 17.3 Feldspar porphyritic gabbro

17.3 - 20.4 Mafic to intermediate tuffaceous sediments

20.4 - 27.7 Massive mafic flow

27.7 - 50.5 Feldspar porphyritic gabbro

50.5 - 62.5 Massive mafic flow

62.5 - 79.7 Mafic porphyritic mafic flow or sill

79.7 - 92.4 Mafic to intermediate tuffaceous sediments

92.4 - 96.0 Tuffaceous conglomerate

96.0 - 122.9 Mafic to intermediate tuffaceous sediments

122.9 - 154.8 Feldspar porphyritic gabbro

154.8 - 170.8 Mafic to intermediate tuffaceous sediments

170.8 - 188.0 Feldspar porphyritic gabbro

188.0 - 193.5 Cherty felsic tuffite

193.5 - 206.8 Cherty black argillite

with 3-5 % fracture controlled py

206.8 - 210.1 Tuffaceous sediments

210.1 - 214.6 Mafic porphyritic mafic flow or sill

214.6 - 236.4 Cherty black argillite

with 3 % fracture controlled pyrite

236.4 - 247.1 Felsic volcanic wacke

247.1 - 260.0 Cherty felsic tuff/tuffite

260.0 - 264.0 Cherty black argillite

264.0 - 294.4 Felsic lithic tuff with felsic ash tuff beds
Up to 30 % ash to lapilli-sized clasts of cherty

sediments, quartz and very rarely pyrite.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

CH88-47

HOLE No: Page Number

Hole Location: 29+00 E 2+10 S

NTS: 92B13 UTM: 5416799.6 N 430125.5 E

Azimuth: 210 Elevation: 519 m Dip: -50 Length: 294.4 m

Started: 28-April-88 Completed: 2-May-88

Claim No. Chip 1 Section No.: 29+00 E

Logged By: J. Pattison

Drilling Co.: Burwash Enterprises Assayed By: Bondar-Clegg & XRAL

Core Size:

Purpose: To outline stratigraphy south of the active tuff. DIP TESTS

Length	Azi- muth	Dip	Length	Azi~ muth	Dir
18.60	212.0	-50.0	294.40	215.0	-49.0
152.70	214.0	-50.0			

Sample From To Total Cu Рb Zn Au From To (ppm) (ppm) (ppm) (ppb) (ppm) -----DESCRIPTION-----No. (m) Sulphides (ppm) (m) (m)

- 9.6 OVERBURDEN
- 9.6 17.3 FELDSPAR PORPHYRITIC GABBRO Medium green, medium to fine-grained with up to 25 % 1-3 mm feldspar phenocrysts and trace to 1 % finely disseminated ilmenite. Weakly glomeroporphyritic. Fine-grained and non porphyritic below 13.7 m. Broken core at the lower contact but it appears to be at 50 degrees to core axis.
  - 11.0 12.7 Xenolith of fine-grained FELSIC TUFF. Medium brown-green moderate spotty chloritization and weak pervasive thermal biotite alteration. Trace disseminated pyrite. Broken core at the upper contact. Lower contact is at 50 degrees to core axis.
- 17.3 20.4 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Light green to medium brown, weakly to moderately cherty. Generally intermediate in composition but ranges into felsic compositions. Lower contact is at 55 degrees to core axis.

STRUCTURE:.

At 18.3 m bedding is at 65 degrees to core axis. 19.3-19.7 M bed is nearly parallel to the core axis.

ALTERATION:.

17.3 20.4 WEAK PERVASIVE CHLORITIZATION.

n/a 128 n/a 62 n/a VA02814 17.3 27.7 10.4

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-47 2

From To (m) (m) ------DESCRIPTION-----

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

17.6 17.8 Finely bedded section. Beds are deformed (soft sediment deformtion?) and run at 0-60 degrees to core axis.

20.4 27.7 MAFIC FLOW

Massive, medium grey-green with 5 % pale yellow epidote+carbonate alteration patches up to 15 cm wide. Lower contact is difficult to pinpoint. There appears to be some assimilation with the gabbro below.

ALTERATION:.

20.4 27.7 WEAK SPOTTY EPIDOTIZATION, WEAK SPOTTY
EPIDOTIZATION, WEAK FRACTURE CONTROLLED
CARBONATIZATION and weak fracture controlled
hematization.

27.7 50.5 FELDSPAR PORPHYRITIC GABBRO

As 9.6 to 17.3 m. Quartz +/- carbonate filled fractures are common. Broken core at lower contact but it appears to be at 75 degrees to core axis.

STRUCTURE:

At 32.0 m 3.0 cm fault gouge at 50 degrees to core axis. 33.3-33.5 M two fault gouges < 2.0 cm wide at 30 to 50 degrees to core axis.

45.1 45.9 Xenolith of MAFIC TUFFACEOUS SEDIMENT. Medium green-brown, fine-grained and massive. Upper contact is sharp but irregular at 50-60 degrees to core axis and lower contact is sharp at 45 degrees to core axis.

50.5 62.5 MAFIC FLOW

Similiar to 20.4 to 27.7 m. Finely bedded ash tuffs over the first 0.2 m. Locally wkly mafic porphyritic. Tuffaceous in appearance between 55.0 and 56.7 m and between 62.0 and 62.5 m. Lower contact arbitrarily placed where mafic phenocrysts become conspicuous.

STRUCTURE:

At 50.6 m bedding is at 48 degrees to core axis. At 55.0 m bedding is at 50 degrees to core axis.

ALTERATION: .

50.5 62.5 WEAK SPOTTY EPIDOTIZATION. Epidote+carbonate patches up to 0.1 m wide.

VA02815 50.5 62.5 12.0 n/a 103 n/a 67 n/a n/a 170

4

## FALCONBRIDGE LIHITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-47 3

Ag Au Ba (ppm) (ppb) (ppm)

n/a 182

n/a 218 13 <20 <5 30 <5 490

	From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm
6	2.5	79.7	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION Similiar to 50.5 to 62.5 m but slightly darker green and	VA02816	62.5	70.0	17.4	n/a	41	n/a	87	- / -
			up to 25 % 1-3 mm subhedral chloritic mafic (chlorite	VAU2816	02.3	13.3	17.4	. 11/4	41	11/d	0,1	n/a
			replacing hornblende/pyroxene) phenocrysts. Lower contact is sharp at 65 degrees to core axis.									
			STRUCTURE:									
			At 66.2 m bedding is at 30 degrees to core axis. At 67.0 m bedding is at 52 degrees to core axis.									
			ALTERATION:.									
			62.5 79.7 WEAK SPOTTY EPIDOTIZATION to MODERATE SPOTTY EPIDOTIZATION.									
			66.2 67.0 Dark brown TUFFACEOUS SEDIMENTS with 3.0 cm block of mafic flow.									
7	9.7	92.4	MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Mafic ash tuff, medium grey-green, volcanic wackes with light pinkish grey cherty beds up to 5.0 cm thick. Nil to moderate thermal biotite alteration. Thermal biotite alteration appears to be related to the original composition of the rock because the intensity of alteration changes from bed to bed. Lower contact is a bedding contact at 45 degrees to core axis.	VA02817 VA03600 VA03601 VA03602	79.9 84.0 85.0 92.0	100.0 85.0 86.0 92.5	20.1 1.0 1.0 .5	n/a 1 1 2	68 68 22 202	n/a (5 (5 (5	84 18 11 78	n/a 1 <1 1
			STRUCTURE:.  At 82.4 m bedding is at 55 degrees to core axis and is offset 1.0 cm by a microfault at 30 degrees to core axis.  At 89.0 m bedding is at 25 degrees to core axis.  At 92.2 m bedding is at 50 degrees to core axis.									
			ALTERATION:. 79.7 92.4 WEAK PERVASIVE CHLORITIZATION and nil to weak thermal biotite alteration.									
			83.1 83.7 Broken, ripped up beds of cherty sediments throughout the interval.									
			SULPHIDES:. 92.0-92.4 m 2 * pyrrhotite and pyrite in fractures and									
			fine (<2 mm) bands parallel to bedding.  84.5 86.0 Bleached, silicified altered zone. Alteration									

appears to be fracture controlled. Trace

fracture controlled pyrite.

To

From

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample From

(m)

VA02818 100.0 122.9 22.9

VA03603 117.5 118.5 1.0

No.

To

(m)

Width

(m)

HOLE No: Page Number

-----DESCRIPTION-----(m) (m) 10 % subangular to angular light green to grey granule to pebble-sized clasts of quartz, chert and epidotized

mafics (?) in a grey-brown moderately carbonatized matrix. Epidote spots are rare above 93.6 m. Lower contact is at 45 degrees to core axis.

ALTERATION:.

92.4 96.0 HODERATE PERVASIVE CARBONATIZATION.

96.0 122.9 HAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Intercalated mafic ash tuffs and cherty mafic to intermediate tuffaceous sediments. Similiar to 79.7 to 92.4 m except cherty beds are less common and are light green to brown. Dark brown cherty beds become thicker and more common below 105.0 m. Lower contact is at 70 degrees to core axis.

#### STRUCTURE:.

100.2-100.4 m 2.0 cm fault gouge at 10 degrees to core axis At 100.9 m bedding is at 55 degrees to core axis. Bedding is offset by many microfaults at 20 degrees to core axis. At 104.8 m bedding is at 55 degrees to core axis. 109.4-111.0 M bedding is broken up, contorted and runs at all angles degrees to core axis (soft sediment deformation ?). At 111.3 bedding is at 50 degrees to core axis.

At 117.6 m bedding is at 60 degrees to core axis.

At 121.0 m bedding is at 54 degrees to core axis.

#### SULPHIDES:.

117.5-118.5 m 1 % fracture controlled pyrite.

- 113.0 113.4 Cherty tuff is moderately microfractured, microfractures and gashes are filled with chlorite.
- 117.5 118.1 Cherty, finely bedded interval with 1 % fracture controlled pyrite.
- 119.1 120.0 Bleached altered zone: many quartz +/carbonate filled fractures. Nil thermal biotite alteration.
- 120.0 122.8 Medium brown, thermal biotite altered bands of tuffaceous sediments up to 18 cm thick alternate with green weakly bleached ash tuff beds up to 22 cm thick.

122.9 154.8 FELDSPAR PORPHYRITIC GABBRO

CH88-47

Sulphides (ppm)

Total

Zn

(ppm) (ppm) (ppm)

(ppb) (ppm)

n/a

99

93 n/a 73

n/a 1720 17

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

No.

From

(m)

To

(m)

Width

(m)

Total

Sulphides (ppm)

HOLE No: Page Number CH88-47 5

Zn

(ppm) (ppm)

Aσ

(ppm)

Au

(ppb) (ppm)

As 9.6 to 17.3 m. 5.0 cm zone of assimilation at the upper contact. Up to Several fine-grained non porphyritic weakly to moderately sheared zones up to 1.3 m long. Finer grained and less than 5 % feldspar phenocrysts below 138.3 m. Lower contact is vague due to assimilation.

#### STRUCTURE: .

131.0-132.3 M rock is weakly sheared at 30 degrees to core axis and carbonatized.

124.3 888.8 7.0 cm biotite rich band (xenolith?) at 57 degrees to core axis.

136.1 136.3 Non porphyritic moderately carbonatized zone at 65-70 degrees to core axis.

154.8 170.8 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS

Unit consists of medium green mafic ash to lapilli tuffs
(above 162.5 m) and green-brown weakly to moderately
thermal biotite altered weakly to moderately cherty
volcanic wacke with minor amounts of pale green to brown
cherty sediments.

#### STRUCTURE:.

At 155.3 m foliation is at 55 degrees to core axis.

At 155.6 bedding is at 47 degrees to core axis.

At 158.0 bedding is at 55 degrees to core axis.

At 165.8 bedding is at 50 degrees to core axis.

At 170.4 bedding is at 55 degrees to core axis.

At 170.5 m 0.3 cm fault gouge at 25 degrees to core axis.

#### SULPHIDES:.

154.8 158.0 2-3% pyrite in hairline fractures.

At 164.4 m few specks of chalcopyrite.

163.8-164.9 M bedding is contorted, broken up and offset up to 1.0 cm by numerous microfaults.

170.0-170.8 m 2 % pyrite in 2 mm beds and fracture

controlled.

158.0 158.7 MAFIC LAPILLI TUFF: 5 % dark green, chloritic 3-30 mm fragments stretched 3:1 or more parallel to foliation. Occasional cherty clast. Upper and lower contacts are parallel to bedding at 45 degrees to core axis.

#### 170.8 188.0 FELDSPAR PORPHYRITIC GABBRO

As 9.6 to 17.3 m. Non feldspar porphyritic, weakly to moderately carbonatized zones are common. Broken core at the lower contact.

VA02819 154.8 170.8 16.0 n/a n/a 1350 106 n/a 102 n/a VA03604 154,8 156.0 - 4 101 80 27 540 1.2 1 VA03605 156.0 157.0 104 75 22 440 3 6 1.0 1 VA03606 157.0 158.0 101 65 47 300 1.0 3 1 6 VA03607 158.0 159.0 90 - 5 92 31 980 1.0 1 1 VA03608 159.0 160.0 ₹5

2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-47 6

		DIAMOND DRILL LOG											
From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp)	Ba o) (ppm)
		172.0 174.3 Fine-grained slightly, sheared, moderately											
		carbonatized, non feldspar porphyritic section. The zone has sharp upper and lower											
		contacts at 60-70 degrees to core axis.											
188 0	193.5	CHERTY FELSIC TUFF / TUFFITE											
100.0	1,,,,,	Mottled light pink to green to brown, finely bedded cherty	VA02820	188.0	193.5	5.5	n/a	115	n/a	74	n/a	n/a	3130
		felsic ash tuff above 190.5 m. Becomes a coarser (ie sand		188.0		1.0	1	60	₹5	33	1		2900
		to granule) volcanic wacke / tuffite below this depth.	VA03610			1.0	1	43	6	51	(1	-	3700 2700
		Bedding is less recognizable, rock is green-grey and ranges into intermediate compositions. Two intermediate	VA03611 VA03612			1.0	. 1	144	₹5 ₹5	102 81	<1 1		1800
		feldspar crystal tuff beds ( 0.2 m thick. Broken core at	VA03613			1.0	ī	152	₹5	79	⟨1 .		1900
		the lower contact.	VA03614			. 5	1	131	<5	86	1	<5	2600
		STRUCTURE:.											
		At 188.4 bedding is at 70 degrees to core axis. Bedding is											
		offset an unknown ammount by slips at 15 degrees to core											
		axis.											
		At 192.3 bedding is at 65 degrees to core axis.											
193.5	203.7	BLACK ARGILLITE										,	
		Black, cherty moderately graphitic argillite with 3 %	VA03615	193.5	194.5	1.0	. 3	88	8	110	<1		2900
		fracture controlled and disseminated pyrite. Soft	VA03616			1.0	3	46 .	8	108	1		5100
		sediment deformation is common.	VA03617			1.0	3	44 30	10	105 108	1		5400 6000
		Light grey beds of tuffaceous sediment up to 0.1 m thick are common. The lower contact is gradational over 5.0 cm.	VA03618 VA03619			1.0	3	29	7	80	1		2900
		are common. The lower contact is graductional over 5.0 cm.	VA03620			1.0	3	39	8	124	i		4200
		STRUCTURE:.	VA03621		200.5	1.0	3	31	. 8	116	1		1800
		At 193.7 m bedding is at 67 degrees to core axis.	VA03622	200.5	201.5	1.0	3	32	8	114	1		2900
		At 194.0 m 0.5 cm graphitic fault gouge at 30 degrees to	VA03623		202.5	1.0	3	59	22	138	1		3300
		core axis.	VA03624	202.5	203.7	1.2	3	18	6	71	<b>&lt;1</b>	(5	1300
		At 194.3 1.0 cm fault gouge at 40 degrees to core axis. 200.1-202.0 M FAULT ZONE at 20-30 degrees to core axis.											
		Rock is crushed over entire interval and there are											
		numerous fault gouges the largest of which is 0.1 m long											
		at 201.4 m.											
		ALTERATION:. 193.5 203.7 WEAK FRACTURE CONTROLLED CARBONATIZATION.											
		SULPHIDES:.											
		193.5-203.7 m 3 % fracture controlled pyrite.											
		At 196.3 m fracture controlled chalcopyrite.											
203.7	205.5	GREYWACKE											
		Light grey-brown, massive with 30 % 1-2 mm biotite flakes.	VA03625	203.7	204.7	1.0	1	76	₹5	98	(1	-	1300
		Biotite flakes have creamy brown reaction rims. Cherty	VA03626	204.7	205.7	1.0	1	50	(5	90	<1	<5	1600

214.6 215.2 GREYWACKE

Coarse thermal biotite altered greywacke. Cherty for 0.1 m above the lower contact. Lower contact is at 45 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-47 7

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)
		light green siltstone over the first 0.3 m. Broken core at lower contact.											
		ALTERATION:. 193.5 203.7 Moderate spotty biotite alteration.											
205.5	206.8	BLACK ARGILLITE Similiar to 193.5 to 203.7 m except somewhat more cherty. Trace fracture controlled pyrite. Lower contact is at 30	VA03627	205.5	206.8	1.3	1	17	<b>(5</b>	50	(1	<b>&lt;5</b>	1300
		degrees to core axis. STRUCTURE:.											
		At 206.0 bedding is at 45 degrees to core axis and is offset by numerous microfaults at 30-40 degrees to core axis.											
		206.0 888.8 14 mm bed of felsic ash tuff with 5 % pyrite.											
		ALTERATION:. 205.6 206.8 WEAK FRACTURE CONTROLLED CARBONATIZATION.											
206.8	208 8	CHERTY FELSIC TUFF / TUFFITE											
200.0	200.0	bight green, cherty, moderately microfractured felsic tuff. 10 % white hazy 2-10 mm felsic lapilli at 208.0 m.  Lower contact is irregular at 70-80 degrees to core axis.	VA03628	206.8	207.8	1.0	1	26	<b>7</b> ·	68	<b>(1</b> )	(5	210
		STRUCTURE:. At 207.7 m bedding is at 30 degrees to core axis. 206.8 208.8 WEAK PERVASIVE CHLORITIZATION.											
208.8	210.1	MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Medium green-brown coarse volcanic wacke. Occasional pale cherty bed or rip-up clast up to 1.0 cm thick. Broken core at the lower contact.											
		STRUCTURE:. At 210.0 m bedding is at 50 degrees to core axis.											
		TO DESCRIPT AN AN AN ANYANDA NO NATO MAIS!											
210.1	214.6	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION  Fine to medium-grained with up to 30 % 2-3 mm biotitic and chloritic mafic phenocrysts (pyroxene?). Mil sulphides.	VA03629	214.2	215.2	1.0	1	62	<b>&lt;</b> 5	95	<b>(1</b>	(5 3	1800
		3.0 cm wide carbonate+chlorite+biotite vein at 40 degrees to core axis at the lower contact.											

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

bedding is rare. Locally microfractured.
Minor fault gouge at 35 degrees to core axis at the lower

HOLE No: Page Number CH88-47 8

From	To	DECCRIPTION	Sample	From	To	Width	Total	Cu	Pb	Zn	Ag	Au Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb) (ppm
215.2 2	36.4	BLACK ARGILLITE										
		As 193.5 to 203.7 m. Weakly to moderately microfractured	VA03630	215.2	216.2	1.0	3	27	7	79	<b>(1</b>	(5 3300
		and locally brecciated.	VA03631			1.0	3	40	7	86	1	₹5 2000
		Core is blocky over most of the interval. Lower contact	VA03632			1.0	3	54	9	105	1	<5 1600
		is irregular, possibly errosional, at 10 degrees to core	VA03633			1.0	3	141	41	247	1	9 2200
		axis.	VA03634			1.0	3	53	8	105	1	₹5 2300
			VA03635			1.0	3	37	6	75	1	<b>(5 2000</b>
		STRUCTURE:.	VA03636			. 8	3	36	(5	84	<1	<5 1500
		216.4-217.2 M rock is blocky, 0.2 m of lost core.	VA03637			1.0	3	46	8	81	1	(5 2100
		At 217.6 m bedding is at 35 degrees to core axis.	VA03638			1.0	3	40	6	85	1	<5 2200 5 1500
		219.0-219.4 m 3 mm fault gouge runs at 10 degrees to core	VA03639			1.0	3	46	7	91	1	5 1500
		axis. Fault breccia on downhole side of the flt.	VA03640 VA03641			1.0	3	48 41	7 7	152 111	1 1	(5 1300     (5 1200     )     ]     ]     ]
		At 200.0 m 3 mm fault gouge at 30 degrees to core axis.					3	32	7	93	1	(5 1400
		At 222.0 m 5 mm ptygmatically folded bed of felsic ash	VA03642			1.0	3	26		93	_	(5 1200
		tuff with 10 % pyrite.	VA03643			1.0	3	40	(5 7	71	. <b>₹1</b> 1	(5 1900
		At 222.8 m bedding is at 50 degrees to core axis.	VA03644			1.0	•		(5	92	(1	(5 1400
		222.1-226.0 M blocky, highly fractured core. 0.3 m of lost	VA03645			1.0	. 3	23 38	. 9	90	1	(5 720
		core.	VA03646			1.0	-	33	5	90	1	(5 1900
		230.5-230.8 M bedding is nearly parallel to the core axis. 232.0-235.8 M blocky, highly fractured core, 1.4 m of lost	VA03647 VA03648			2.0	3 3	17	7	70	<b>1</b>	(5 3300
		core.										
		At 234.0 m bedding is at 20 degrees to core axis.										
		ALTERATION:.										
		215.2 WEAK FRACTURE CONTROLLED CARBONATIZATION.										
		SULPHIDES:.										
		215.2 236.4 3% pyrite fracture controlled and rarely in										
		beds up to 3 mm thick.										
236 4 5	17 1	IMMATURE VOLCANIC WACKE										
230.4 2		Composed of 70 % sand to granule-sized subrounded quartz	VA03649	236.4	237.4	1.0	3	9	40	83	<b>&lt;1</b>	(5*****
		grains and 10% pebble-sized cherty lithic clasts in a										
		biotite rich matrix. Massive, bedding is rare. Lower										
		contact is at 20 degrees to core axis.										
		ALTERATION:.										
		215.2 247.1 Moderate pervasive thermal biotite alteration.										
		238.0 888.8 Two 2-4 cm long clasts of argillite.										
		month opera ting a 4 cm would exceed or ardeverter.										
247.1 2	260.0	CHERTY FELSIC TUFF / TUFFITE										
		Light green felsic ash tuff with minor siltstone beds and	VA02821	247.1	260.0	12.9	n/a	13	n/a	99	n/a	n/a 2510
		argillaceous clasts. 5.0 Cm of argillite at the upper										
		contact and an argillaceous sediment runs parallel to to		.*								
		the core axis between 248.0 and 248.6 m. Quite massive,										

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-47 9

From To (m)

-----DESCRIPTION-----

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

contact.

STRUCTURE:.

At 247.1 m bedding is at 15-20 degrees to core axis. 249.0 250.2 M blocky, highly fractured core. 0.2 m of lost core. 256.7-256.8 M fault gouge at 35 degrees to core axis.

ALTERATION:.

247.1 260.0 WEAK PERVASIVE SERICITIZATION.

260.0 264.0 BLACK ARGILLITE

Black cherty moderately graphitic argillite with 3 % fracture controlled pyrite.
Black argillite and greywacke over the first 0.9 m.
Bedding is nearly parallel to the core axis.
Minor quartz-carbonate filled fractures. Becomes a light grey argillaceous siltstone below 162.6 m.
Lower contact is at 15 degrees to core axis.

STRUCTURE: .

At 263.2 m 0.3 cm fault gouge at 40 degrees to core axis.

264.0 266.8 FELSIC TUFF

Composed of 5 % <1 mm feldspar crystals is a very fine-grained siliceous light grey-green matrix. Rock is darker grey above 265.5 m due to argillite contamination. Ripped up beds of argillite are common. Nil sulphides. Lower contact is at 30 degrees to core axis.

ALTERATION: .

264.0 266.8 WEAK PERVASIVE SERICITIZATION.

266.8 273.9 FELSIC LITHIC TUFF

30 % ash to lapilli-sized (most < 3 mm in diameter ) subangular lithic fragments (cherty sediments and quartz) and epidotized feldspar crystals in light grey-green, fine-grained siliceous matrix. Felsic to intermediate in overall composition and massive (bedding rarely observered). Lower contact appears to be gradational but occurs along in a fault zone at 20 degrees to core axis.

STRUCTURE: .

273.4-273.9 M FAULT ZONE at 20 degrees to core axis.

ALTERATION:.

266.8 274.9 WEAK PERVASIVE SERICITIZATION and locally WEAK SPOTTY EPIDOTIZATION.

VA02822 264.0 278.0 14.0 n/a 19 n/a 128 n/a n/a 2950

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-47 10

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

273.6 273.9 FELSIC ASH TUFF BED AT 15 degrees to core axis.

273.9 278.0 FELSIC TUFF

Up to 10 % < 1 mm feldspar crystals in a massive, fine-grained light grey-green quartz rich matrix with < 2 % lapilli-sized cherty lithic clasts. Nil to trace fracture controlled pyrite. Lower contact is gradational over 0.1 m.

ALTERATION:.

273.9 278.0 WEAK PERVASIVE SERICITIZATION.

278.0 294.4 FELSIC LITHIC TUFF

Similiar to 266.8 to 273.9 m except somewhat finer grained. Up to 20 % 2-4 mm cherty, fine-grained lithic and quartz clasts and 10 % ash-sized feldspar crystals in a quartz rich fine-grained matrix. Barren of sulphides except for a 2.0 cm pyrite clast at 279.6 m. Nil to trace disseminated pyrite. 0.5 X 4.0 cm pyrite clasts at 289.0 m and 293.0 m. Grades into an ash tuff at the bottom of the hole.

STRUCTURE:.

At 292.7 1.0 cm fault gouge at 25 degrees to core axis.

ALTERATION:.

278.0 294.4 WEAK PERVASIVE SERICITIZATION.

VA02823 278.0 294.4 16.4 n/a 24 n/a 131 n/a n/a 1760

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	τo	XS 102	XAL203	XCA0	z HGO	ZNA20	XK20	XEE203	11102	XP205	ZHNO	ILOI	SUM	BA	AI	NACA
	···		<del></del>														
VA02336	15.70	15.90	51.90	14.10	11.30	4.97	0.24	0.03	12.30	1.50	0.15	0.16	3.47	100.12	53.	30.	12.
VA02337	23.70	24.00	47.90	17.90	6.64	6.66	4.12	0.26	11.90	0.95	0.18	0.20	3.39	100.10	208.	39.	11.
VA02338	53.20	53.50	50.00	17.80	6.02	6.59	4.61	0.61	10.10	0.94	0.18	0.19	3.08	100.12	435.	40.	11.
VA02339	64.00	64.50	49.10	14.70	11.70	7.78	2.70	0.24	10.20	0.59	0.14	0.18	2.00	99.33	93.	36.	14.
VA02340	74.00	74.50	49.70	14.30	10.20	7.54	3.19	0.26	9.69	0.58	0.14	0.14	2.47	98.21	183.	37.	13.
VA02341	86.40	86.90	58.60	15.80	5.77	3.37	7.36	0.17	5.87	0.85	0.23	0.11	1.23	99.36	149.	21.	13.
UA02342	94.50	95.00	48.40	17.20	8.52	6.28	4.26	0.74	8.71	0.67	0.16	0.22	4.31	99.47	805.	35.	13.
VA02343	111.00	111.30	53.10	18.00	2.43	6.77	4.43	2.59	9.10	0.78	0.22	0.09	2.93	100.44	1160.	58.	7.
VA02344	160.50	161.00	51.30	16.20	4.17	8.04	4.68	0.56	9.62	0.68	0.23	0.16	3.47	99.11	686.	49.	9.
VA02345	208.00	208.20	68.40	9.69	6.87	1.78	4.58	0.14	2.85	0.44	0.11	0.07	5.31	100.24	178.	14.	11.
VA02346	210.70	211.20	45.00	13.70	12.80	9.12	1.15	1.07	11.60	1.85	0.42	0.20	3.16	100.07	1940.	42.	14.
VA02347	256.00	256.40	69.70	14.50	1.12	2.99	0.68	3.57	3.23	0.39	0.09	0.11	3.31	99.69	2710.	78.	2.
VA02349	266.00	266.40	70.90	13.90	1.49	2.52	1.06	2.40	2.85	0.33	0.06	0.10	3.16	98.77	2770.	66.	3.
VA02349	273.10	273.30	68.00	13.90	3.82	2.10	3.90	0.40	4.31	0.55	0.14	0.15	2.16	99.43	675.	24.	8.
VA02350	277.00	277.40	68.90	15.30	1.81	2.35	1.17	2.65	3.44	0.41	0.06	0.11	2.77	98.97	3210.	63.	3.
VA02351	287.70	288.00	66.50	15.90	2.79	2.29	2.00	2.01	3.83	0.51	0.09	0.14	2.77	98.83	1970.	47.	5.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	<b>T</b> O	88 (ppm)	SR (ppm)	FA (ppm)	(pom)	2k (ppm)	8N (mgq)	(១១៣)	ZN (ppm)	NI (ppm)			ROCK	CODES	MIN
VA02336	15.70	15.90	<10.0	716.0	53.0	24.0	59.0	26.0	135.0	103.0	96.0			PMAT	PHW	A
VA02337	23.70	24.00	<10.0	293.0	208.0	18.0	18.0	<10.0	51.0	101.0	41.0			VMAT	PHW	Α.
VA02338	53.20	53.50	16.0	258.0	435.0	14.0	28.0	<10.0	35.0	101.0	38.0			- VHAH	PEW	
VA02339	64.00	64.50	10.0	347.0	93.0	<10.0	<10.0	18.0	76.0	78.0	48.0			VMARW	PEW	A A
VA02340	74.00	74.50	21.0	232.0	183.0	12.0	13.0	<10.0	53.0	96.0	47.0					
VA02341	86.40	86.90	19.0	173.0	149.0	41.0	87.0	11.0	26.0	51.0	15.0			VHAM	SEM	A
VA02342	94.50	95.00	28.0	386.0	805.0	<10.0	<10.0	11.0	101.9	177.0	40.0			TIAM	. ? "	A
VA02343	111.00	111.30	36.0	202.0	1150.0	12.0	46.0	19.0	98.0	63.0				TIBM	?	A
VA02344	160.50	161.00	21.0	224.0	686.0	10.0	35.0	18.0			56.0			MALT	PHM	A ·
VA02345	208.00								75.0	164.0	133.0			TMBW .	7	A
			22.0	129.0	178.0	20.0	84.0	13.0	29.0	67.0	20.0			TFBM	PHW	FPP .
VA02346	210.70	211.20	22.0	498.0	1940.0	19.0	92.0	72.0	21.0	101.0	185.0			VMBMW	PHW	A
VA02347	256.00	256.40	93.0	106.0	2710.0	42.0	169.0	23.0	15.0	108.0	11.0			TFAM	PSW	Α .
VA02348	266.00	266.40	77.0	206.0	2770.0	75.0	176.0	<10.0	19.0	95.0	<10.0			TFAH	PSW	A
VA02349	273.10	273.30	23.0	393.0	675.0	32.0	58.0	17.0	27.0	106.0	<10.0			TFBL	PSW	A
VA02350	277.00	277.40	57.0	200.0	3210.0	66.0	188.0	18.0	23.0	129.0	11.0			TEAM	PSW	
VA02351	287.70	288.00	63.0	355.0	1970.0	47.0	165.0	<10.0	28.0	139.0	<10.0			TERLM	PSW	Α .

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE																	
NUMBER	FROM	10	XS 102	XAL203	ZCAO	2860	ZNA20	XK20	XEE303	21103	XP205	XHNO	TLOI	SUH	BA	AI	NACA
					***************************************										 		
VA02814	17.30	27.70	47.00	17.40	13.90	3.71	2.47	0.17	11.20	0.74			3.47	100.06	109.	19.	16
VA02815	50.50	62.50	44.30	18.70	13.30	3.48	2.53	0.30	11.20	0.78			3.54	96.12	170.	19.	16.
VA02816	62.50	79.90	49.90	14.70	9.92	7.84	3.38	0.28	9.92	0.61			3.39	99.94	182.	38.	- 13
VA02817	79.90	100.00	49.40	15.80	10.70	5.80	4.18	0.32	8.99	0.82			3.77	99.78	218.	29.	. 15
VA02818	100.00	122.90	47.80	15.70	9.00	6.61	2.25	2.91	8.97	0.74			4.23	98.21	1720.	46.	11
VA02819	154.80	170.80	48.20	14.50	9.82	7.25	1.99	1.90	9.42	0.65			3.93	97.66	1350.	44.	12.
VA02820	188.00	193.50	61.90	13.10	4.26	4.74	1.74	1.63	7.22	0.62			4.39	99.60	3130.	52.	6.
VA02821	247.10	260.00	70.90	13.40	2.17	2.35	1.27	3.17	2.92	0.34			3.00	99.52	2510.	62.	3.
VA02823	264.00	278.00	66.50	15.30	2.70	2.41	2.03	2.00	3.97	0.49			3.39	98.79	2950.	. 48.	5.
VA02823	278.00	294.40	69.80	13.40	2.69	2.13	2.33	1.34	3.63	0.44			2.39	98.15	1760.	<b>41.</b>	5.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	(ppm)	CU (ppm)	ZN (ppm)	NI (ppm)			ROCK	CODES	MIN
			 									 	 		*	
VA02814	17.30	27.70			109.0				128.0	62.0	36.0			TMAT	PH#	<b>'</b> A
VA02815	50.50	62.50			170.0				103.0	67.0	27.0			VHAH	?	A
VA02816	62.50	79.90			182.0				41.0	97.0	44.0			WMAMW	SEW	Α
VA02817	79.90	100.00			218.0				68.0	84.0	45.0			TMAR	?	FBP
VA02818	100.00	122.90			1720.0				64.0	93.0	43.0			TMAB	?	FBP
VA02819	154.80	170.80			1350.0				106.0	102.0	43.0			THAE	?.	FBP
VA02820	188.00	193.50			3130.0				115.0	74,0	28.0			TFAB	?	DCP
VA02821	247.10	260.00			2510.0				13.0	99.0	10.0			TFAP	?	DBP
VA02822	264.00	278.00			2950.0				19.0	128.0	(10.0			TEAM	7	A
VA02823	278.00	294.40			1750.0				24.0	131.0	11.0			IFALM	?	A

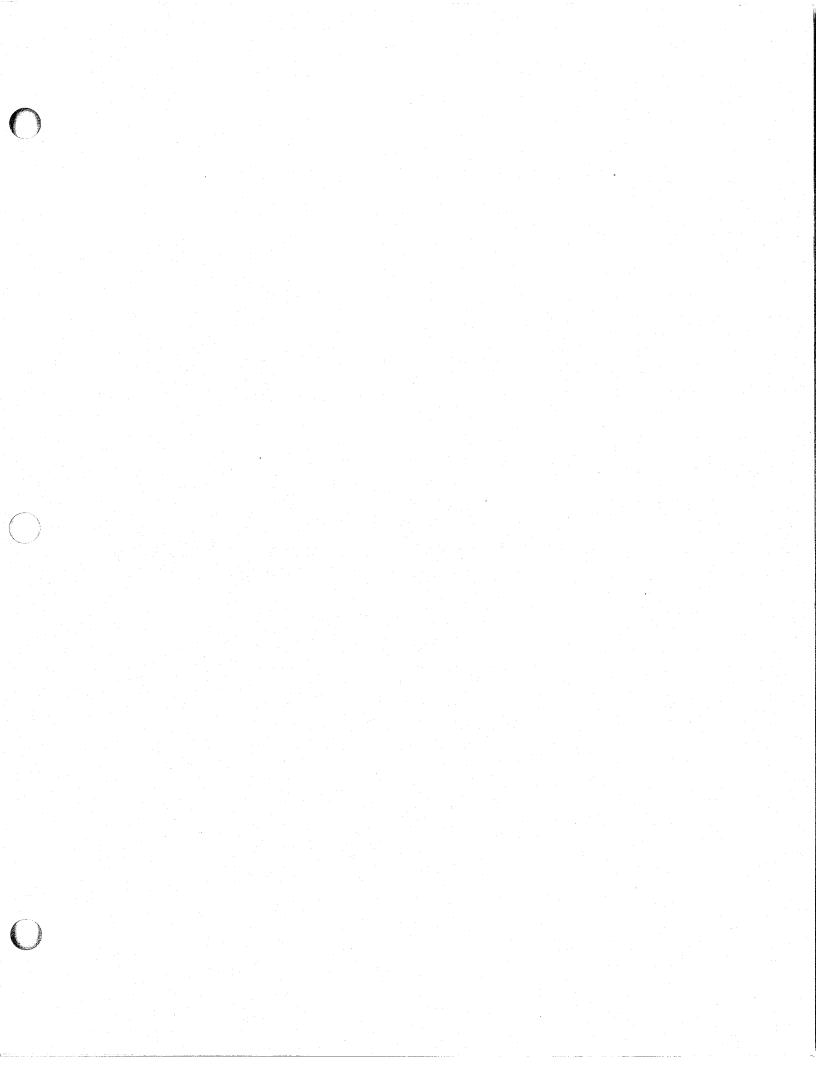
DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE	E		. 8		:										<b></b>		
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	(ppm)	HI (ppm)	PB (ppm)	AS (ppm)	(ppm)	MO (ppm)	(ppm)	CUZN	ETS	FE
VA03600	84.00	85.00	<20.0	68.0	18.0	0.7	13.0	10.0	18.0	<5.0	<5.0	2.0	<1.0	404.0	79.	1.	2.
VA03601	85.00	86.00	30.0	22.0	11.0	<0.5	(5.0	4.0	8.0	<5.0	15.0	2,0	<1.0	170.0	67.	1.	1.
VA03602	92.00	92.50	490.0	202.0	78.0	0.8	<5.0	36.0	20.0	<5.0	7.0	4.0	<1.0	1090.0	72.	2.	7.
E09E0AA	117.50	118.50	990.0	99.0	73.0	0.9	17.0	25.0	38.0	7.0	12.0	1.0	1.0	565.0	58.	1.	5.
VA03604	154.80	156.00	540.0	101.0	80.0	0.8	27.0	25.0	43.0	7.0	42.0	5.0	1.0	692.0	56.	3.	5.
VA03605	156.00	157.00	440.0	104.0	75.0	0.8	22.0	25.0	39.0	6.0	44.0	3.0	1.0	523.0	58.	3.	4.
VA03606	157.00	158.00	300.0	101.0	65.0	1.0	47.0	22.0	32.0	6.0	34.0	3.0	1.0	491.0	61.	3.	5.
VA03607	158.00	159.00	980.0	90.0	92.0	1.1	31.0	32.0	88.0	5.0	18.0	5.0	<1.0	959.0	49.	1.	6.
80360AV	159.00	160.00	230.0	88.0	91.0	1.0	5.0	16.0	37.0	<5.0	35.0	4.0	1.0	676.0	49.	1.	5.
VA03609	183.00	189.00	2900.0	60.0	33.0	0.6	5.0	8.0	16.0	 (5.0	18.0	2.0	1.0	462.0	65.	i.	3.
VA03610	189.00	190.00	3700.0	13.0	51.0	<0.5	<5.0	3.0	15.0	6.0	<5.0	<1.0	4.0	362.0	46.	1.	2.
VA03611	190.00	191.00	2700.0	144.0	102.0	(0.5	12.0	23.0	32.0	⟨5.0	16.0	2.0	2.0	1174.0	59.	1.	5.
VA03612	191.00	192.00	1800.0	184.0	81.0	0.5	<5.0	34.0	36.0	<5.0	13.0	3.0	2.0	1512.0	69.	1.	7.
E19E0AA	192.00	193.00	1900.0	153.0	79.0	⟨0.5	<5.0	31.0	40.0	<b>(5.0</b>	5.0	4.0	(1.0	1371.0	66.	1.	6.
VA03614	193.00		2600.0	131.0	86.0	0.6	<5.0	30.0	53.0	<5.0	23.0	3.0	1.0	1710.0	60.	1.	6.
VA03615		194.50	2900.0	88.0	110.0	⟨0.5	(5.0	9.0	32.0	8.0	11.0	2.0	2.0	601.0	44.	з.	4.
VA03616	194.50	195.50	5100.0	46.0	108.0	0.7	<5.0	2.0	24.0	8.0	⟨5.0	<1.0	3.0	250.0	30.	3.	3.
VA03617		196.50	5400.0	44.0	105.0	0.9	<5.0	2.0	23.0	10.0	27.0	1.0	4.0	349.0	30.	3.	3.
VA03618	196.50	197.50								7.0		<1.0	3.0	328.0	22.	3.	3.
			6000.0	30.0	108.0	0.5	14.0	<1.0	18.0		10.0						2.
VA03619		198.50	2900.0	29.0	80.0	0.6	₹5.0	<1.0	20.0	7.0	7.0	<1.0	4.0	420.0	27.	3.	
VA03620	198.50	199.50	4200.0	39.0	124.0	1.1	9.0	2.0	26.0	8.0	<5.0	1.0	5.0	306.0	24.	3.	3.
VA03621	199.50	200.50	1800.0	31.0	116.0	0.7	7.0	<1.0	28.0	8.0	13.0	<1.0	5.0	304.0	21.	3.	2.
VA03622	200.50	201.50	2900.0	32.0	114.0	0.6	64.0	<1.0	21.0	8.0	16.0	1.0	4.0	563.0	22.	3.	2.

Page No.

Hole No. CH88-47

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)


SAMPLE NUMBER	EROM	TO	BA (ppm)	CU (ppm)	ZH. (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (pp⊪)	НН (ppm)	CUZN	ETS	FE
VA03623	201.50	202.50	3300.0	59.0	138.0	1.0	41.0	10.0	40.0	22.0	24.0	<1.0	2.0	593.0	30.	3.	4.
VA03624	202.50	203.70	1300.0	18.0	71.0	<0.5	(5.0	<1.0	8.0	6.0	9.0	(1.0	1.0	360.0	20.	3.	2.
VA03625	203.70	204.70	1300.0	76.0	98.0	<0.5	<5.0	43.0	212.0	<5.0	25.0	3.0	2.0	1257.0	/ 44.	1.	6.
VA03626	204.70	205.70	1600.0	50.0	90.0	<0.5	<5.0	48.0	216.0	<5.0	7.0	3.0	2.0	1324.0	36.	1.	6.
VA03627	205.50	206.80	1300.0	17.0	50.0	<0.5	<5.0°	<1.0	9.0	<5.0	<5.0	<1.0	<1.0	381.0	25.	1.	2.
VA03628	206.80	207.80	210.0	26.0	68.0	<0.5	(5.0	10.0	54.0	7.0	7.0	<1.0	<1.0	654.0	28.	1.	3.
VA03629	214.20	215.20	3800.0	62.0	95.0	<0.5	<5.0	27.0	58.0	<5.0	16.0	3.0	3.0	1018.0	39.	1.	5.
0EDECAV	215.20	216.20	3300.0	27.0	79.0	<0.5	<5.0	<1.0	13.0	7.0	⟨\$.0	1.0	26.0	437.0	25.	3.	2.
VA03631	216.20	217.20	2000.0	40.0	86.0	0.6	<5.0	2.0	23.0	7.0	25.0	<1.0	8.0	262.0	32.	3.	3.
VA03632	217.20	218.20	1600.0	54.0	105.0	0.7	<5.0	2.0	31.0	9.0	₹5.0	<1.0	3.0	292.0	34.	3.	3.
VA03633	218.20	219.20	2200.0	141.0	247.0	1.3	9.0	6.0	28.0	41.0	11.0	1.0	2.0	318.0	36.	3.	3.
VA03634	219.20	220.20	2300.0	53.0	105.0	0.8	<5.0	6.0	26.0	8.0	⟨5.0	1.0	1.0	305.0	34.	3.	3.
VA03635	220.20	221.20	2000.0	37.0	75.0	0.6	<5.0	4.0	20.0	6.0	<5.0	<1.0	1.0	212.0	33.	3.	2.
0E0E0AV	221.20	222.00	1500.0	36.0	84.0	(0.5	<5.0	2.0	17.0	<5.0	<5.0	<1.0	1.0	229.0	30.	. 3.	2.
VA03637	222.00	223.00	2100.0	46.0	61.0	0.6	<5.0	5.0	19.0	8.0	6.0	(1.0	<1.0	373.0	36.	3.	2.
8E2E0AV	223.00	224.00	2200.0	40.0	85.0	0.6	₹5.0	4.0	21.0	6.0	<5.0	(1.0	<1.0	235.0	32.	3.	. 2.
VA03639	224.00	225.00	1500.0	46.0	91.0	0.7	5.0	3.0	27.0	7.0	7.0	<1.0	2.0	223.0	34.	3.	2.
VA03640	225.00	226.00	1300.0	48.0	152.0	0.7	(5.0	3.0	36.0	7.0	<5.0	<1.0	2.0	240.0	24.	3.	2.
VA03641	226.00	227.00	1200.0	41.0	111.0	0.7	<5.0	3.0	25.0	7.0	6.0	<1.0	2.0	093.0	27.	3.	3.
VA03642	227.00	228.00	1400.0	32.0	93.0	0.6	<5.0	2.0	20.0	7.0	<5.0	1.0	1.0	267.0	26.	3.	2.
VA03643	228.00	229.00	1200.0	26.0	93.0	<0.5	<5.0	<1.0	20.0	<5.0	<b>(5.0</b>	<1.0	1.0	279.0	22.	3.	2.
VA03644	229.00	230.00	1900.0	40.0	71.0	0.7	<5.0	2.0	21.0	7.0	15.0	<1.0	2.0	387.0	36.	3.	3.
VA03645	230.00	231.00	1400.0	23.0	92.0	<0.5	<b>&lt;5.0</b>	1.0	17.0	<5.0	₹5.0	<1.0	1.0	308.0	20.	3.	2.

Hole No. CH88-47

Page No.

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE				******							<del></del>	<del></del>			<del></del>		
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	HI (ppm)	PB (ppm)	AS (ppm)	CB (ppm)	МО (ррш)	HN (ppm)	CUZN	ETS	PE
																	********
VA03646	231.00	232.00	720.0	38.0	90.0	0.6	<5.0	<1.0	22.0	9.0	11.0	<1.0	3.0	398.0	30.	3.	2.
VA03647	232.00	234.00	1900.0	33.0	92.0	0.5	<5.0	3.0	19.0	5.0	(5.0	<1.0	2.0	358.0	26.	3.	2.
VA03648	234.00	236.40	3300.0	17.0	70.0	<0.5	<5.0	2.0	7.0	7.0	<5.0	(1.0	2.0	412.0	20.	3.	2.
VA03649	236.40	237.40	3500.0	9.0	83.0	<0.5	<5.0	3.0	10.0	40.0	<5.0	(1.0	3.0	562.0	10.	3.	2.



Summary Log: DDH CH88-48

Location: 27+00 E, 1+61 S; Chip 1 Claim

Azimuth: 210, Dip: -45

Hole Completed: May 1, 1988 Core Logged By: D.P. Money

0.0 - 6.7 Casing.

6.7 - 50.1 Gabbro.

50.1 - 94.6 Pyritic felsic crystal lapilli tuff with 1.8 m of semi-massive to massive pyrite from 90.5 to 92.3 m.

94.6 - 98.3 Gabbro.

98.3 - 109.6 Felsic crystal lapilli tuff with 1.1 m of 6 % pyrrhotite, 3 % pyrite and 1 % chalcopyrite from 106.3 to 107.4 m.

109.6 - 112.8 Gabbro.

112.8 - 128.2 Mafic crystal tuff.

128.2 - 152.1 Mafic hornblende bearing flow.

152.1 - 178.1 Andesitic tuffs and cherty sediments.

178.1 - 195.8 Mafic hornblende bearing flow.

195.8 - 242.6 Mafic crystal and lapilli tuffs with cherty sediments intercalated.

242.6 - 246.6 Gabbro.

246.6 - 256.3 Andesitic tuffs and cherty sediments.

256.3 End of hole.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-48 1

Section No.: Line 27+00 East, Chip Group

Assayed By: Bondar-Clegg and X-Ray Assay

Claim No. CHIP1

Core Size: NO

Logged By: David P. Money Drilling Co.: Burwash Enterprises

Hole Location: 27+00 E 1+61 S

NTS: 092/B13 UTM: 5416951.4 N 429985.6 E

Azimuth: 210 Elevation: 473 m Dip: -45 Length: 256.3 m

Started: April 28, 1988 Completed: May 1, 1988

Purpose: To test for PEM anomaly located in CHEM87-28 DIP TESTS

under the Anita Showing.

Azi-Azi-Length muth Dip Length muth Dip 15.20 211.0 -46.0 185.00 217.0 -44.0 91.40 210.0 -45.0 255.10 220.0 -45.0

.0 6.7 OVERBURDEN

6.7 50.1 MEDIUM TO COARSE-GRAINED GABBRO

6.7 31.7 Medium grained gabbro with approximately 60 % chloritized hornblendes, 35 % feldspars and 3 % ilmenite. There are numerous local feldspar rich 10 cm zones. There are minor quartz, calcite, epidote and chlorite veinlets. Ilmenite is disseminated, up to 3 mm crystals, purple in colour and is not magnetic. Is blocky, highly fractured core to 8.8 and locally throughout. Is oxidized to 10.7 m.

14.4 14.8 45 cm quartz -( chlorite ) vein with 0.5 to 1 % chalcopyrite as up to 3 cm blebs.

31.7 34.8 Fine-grained dark green chloritic gabbro with 3 to 5 % ilmenite and 1 to 2 % chalcopyrite disseminated and as clots, up to 7 cm. The large chalcopyrite clot also has pyrite.

34.8 47.6 Coarse grained gabbro with up to 8 or 9 mm crystals. There is local epidotization. There is a white bull quartz vein from 46.0 to 46.6. Ilmenite locally is up to 7 to 10 % over 10 to 20 cm.

47.6 50.1 Fine-grained chilled margin phase with on average 7 %, 1 to 3 mm, feldspars and local fracture controlled epidotization and calcite veinlets.

Lost core :.

6.7 8.2 0.7 m lost core.

8.2 9.0 0.4 m lost core.

#### FALCONBRIDGE LIMITED

HOLE No: Page Number CH88-48 2

		PADCORDRIDGE DINIED					CH88-48		2					
		DIAMOND DRILL LOG												
From	To			_ :		1								
(m)	(m)	DESCRIPTION	Sample	From	To	Width	Total	Cu	Pb	2n	λσ	Au		
( m )	\щ;	DESCRIPTION	No.	(n)	(m)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(pp)	b) (ppm	)
50.1	94.6	FELSIC QUARTZ FELDSPAR CRYSTAL LAPILLI TUFF												
		ACTIVE TUFF - PYRITIC QUARTZ - SERICITE SCHIST.	VA01060	50.1	60.0	9.9	n/a	201	n/a	82	n/a	n/a	1700	
			VA01651	52.3	54.3	2.0	2	277	17	191	(1		1800	
		Sericitic felsic tuff, medium grey to light grey - white	VA01652	54.3	56.3	2.0	2	517	15	378	1		1400	
		with up to 5 to 10 % crystals, , 2 mm, feldspars and	VA01653	56.3	58.3	2.0	. 2	348	25	361	1		1700	
		quartz eyes. Locally no crystals are observed. Lapilli are	VA01654	58.3	59.8	1.5	. 2	23	12	37	<b>1</b>		1100	
		up to 3 cm and are best observed when surrounded by	VA01655	59.8	61.3	1.5	3	120	-6	807	₹1		2600	
		pyrite or more sericitic matrix. Lapilli are usually	VA01061	60.0	70.0	10.0	n/a	70	n/a	50	n/a		2260	
		medium grey and siliceous. Thermal biotite occurs from	VA01656	61.3	62.8	1.5	5	104	8	141	(1	17	300	
		50.1 to 52.3, the tuff is brown with local 1 to 6 mm	VA01657	62.8	64.3	1.5	2	127	(5	74	(1		2100	
		biotite layers parallel to foliation. Pyrite content	VA01062	70.0	80.0	10.0	n/a	52	n/a	42	n/a		1850	
		increases downhole. There are local sphalerite bands	VA01063	80.0	89.0	9.0	n/a	166	n/a	190	n/a		3700	
		uphole with pyrite. Chalcopyrite is associated with the	VA01658	81.2	82.7	1.5	1 1	125	46	463	2		3700	
		strong pyrite. Minor early maf sills occur at 73.7, and	VA01659	82.7	83.7	1.0	15	224	53	221	1		4100	
		79.3 and see sulphides for others, these are questionable	VA01660	83.7	85.2	1.5	1	87	18	34	1		5000	
		10 cm sills.	VA01661	85.2	86.5	1.3	1	291	6	12	ξÎ.		3700	
		Alteration :.	VA01662	86.5	88.0	1.5	î	52	(5	1	₹1		3900	
		56.7 61.3 MODERATE FRACTURE CONTROLLED CARBONATIZATION.	VA01663	88.0	89.0	1.0		46	6	2	(1		3600	
		58.5 60.0 MODERATE PERVASIVE SILICIFICATION.	VA01664	89.0	90.1	1.1	2	64	8	1	(1		2400	
		64.1 66.6 WEAK FRACTURE CONTROLLED SILICIFICATION.	VA01665	90.1	90.5	. 4	6	419	8	6	1		2000	
		69.0 82.1 WEAK FRACTURE CONTROLLED CARBONATIZATION.	VA01666	90.5	90.9	. 4	40	1173	- 15	20	1		1200	
		81.1 84.1 STRONG FRACTURE CONTROLLED CARBONATIZATION.	VA01667	90.9	91.7	. 8		1389	14	22	2	257	820	
		Fracture controlled carbonatization occurs as white	VA01668	91.7	92.3	. 6		1281	17	18	2		1600	
		fracture controlled calcite veins and veinlets.	VA01669	92.3	92.8	.5	12	343	6	7	1		2800	
		Fracture controlled silicification occurs as weak	VA01670	92.8	93.8	1.0	12	398	7	11	⟨1 ⋅		4700	
		pervasive silicification with quartz filled fractures	VA01671	93.8	94.2	.4		5800	10	116	5		4400	
		throughout silicification.	VA01672	94.2	94.6	. 4		3300	8	83	2	-	1600	
		Sulphides :.	VAULU12	. 34.2	74.0	• •	10	3300	٥	6.0	4	1/3	1000	
		50.1 52.3 Trace to nil pyrite.												
		52.3 61.3 2 % pyrite banded or bedded parallel to												
		foliation with trace sphalerite (?) or very fine-grained pyrite at 52.5, 54.1 and 56.3.												
		61.3 62.8 S.G.E.'s early mafic sill with moderate												
		pervasive carbonatization and 3 to 5 % pyrite												
		clots, probably associated with carbonatization.												
		62.8 82.7 0.5 % disseminated pyrite with local up to 5 cm												

62.8 82.7 0.5 % disseminated pyrite with local up to 5 cm zones of 10 to 20 % pyrite, comprising up to 1 % of the tuff.

82.7 83.7 Very strong fracture controlled carbonatization with 12 to 15 % pyrite as semi- massive 5 to 10 cm layers parallel to foliation. There is 1 speck of mariposite at 82.6. Trace galena (?) in calcite.

83.7 83.8 Early Mafic Sill with 5 to 7 % fine-grained disseminated pyrite.

83.8 88.0 0.5 % disseminated with trace 1 cm zones massive pyrite parallel to foliation.

88.0 90.1 Approximately 2 % disseminated fine-grained pyrite.

90.1 90.5 5 % pyrite and 0.5 % chalcopyrite as stringers

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-48 3

From	To			Sample	From	To	Width	Total	Cu	. Pb	Zn	Ag	Au	, Ba	
(m)	(m)		DESCRIPTION	No.	(m)	(m.)	(m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	
			(2)												
		00 5 00 0	(?).												
		90.5 90.9	Semi- massive pyrite, approximately 40 % pyrite in sericite, pyrite is fine-grained.												
		00 0 01 7	Massive pyrite, 60 to 70 % with trace to 0.5 %												
		30.3 31.7	chalcopyrite as up to 3 mm, blebs.												
		91 7 92 3	Semi- massive pyrite, 25 to 30 %.												
			12 % fine-grained pyrite with local 3 to 4 mm												
		72.3 73.0	cubes.												
		93 8 94 2	20 to 25 % fine-grained pyrite with 1 to 2 %												
		73.0 74.2	chalcopyrite clots.												
		94 2 94 6	7 to 10 % pyrite and 1 % chalcopyrite in												
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	silicified tuff with 2 cm of semi- massive												
			pyrite at lower contact with the gabbro at 20												
			degrees to core axis.												
		Structure													
		Faults :.													
			0.3 m lost core with minor fault gouge at 42												
			degrees to core axis.												
		77.4 at 8	5 to 90 degrees to core axis with minor dragging												
			displacement.												
			r fault slip at 81 cm with minor 3 cm fault												
		breccia.													
		Foliation	S .												
			degrees to core axis.												
		66.8 : 60	degrees to core axis.												
		75.4 : 46	degrees to core axis.												
			Strongly contorted and kinked.												
		86.4 : 42	degrees to core axis.												
		92.0 : 67	degrees to core axis.												
		Bedding :													
		51.0 : 71	degrees to core axis.												
		67.9 : 63	degrees to core axis.												
94.6	98.3	FELDSPAR	PORPHYRITIC GABBRO												
		Fine-grai	ned medium to light green gabbro dyke with	VA01673	94.6	96.0		- 0	260	< 5	80	<b>&lt;1</b>		170	
		irregular	lower contact. Is plagiophyric with on average	VA01674	97.3	98.3	1.0	0	273	6	73	1	48	610	
			1 to 3 mm, feldspar to weakly epidotized												
		feldspar	laths. There is weak local fracture controlled												
		epidotiza	tion with trace associated pyrite in core of												
		epidote.													
98.3	109.6	_	ARTZ FELDSPAR CRYSTAL LAPILLI TUFF		100		_								
			felsic tuff with fine-grained crystals,	VA01675	98.3	99.2		15	543	. 11	34	1	69		
			tely 10 %, up to 2 mm, feldspar and quartz	VA01676		100.1		15	392	10	20	(1	47		
			There are up to 3 %, 2 to 5 cm, lapilli (?)	VA01677					1646	<b>(5</b>	28	1		000	
			d by pyrite, or pyrite filled fractures. There	VA01678		101.9			2200	9	98	8	329 1 116	600	
			fracture controlled silicification with white	VA01679		103.0			3800	. 8	87	4		1510	
			inlets throughout silicified tuff. There are	VA01064				n/a	366	n/a	134	n/a		5000	
		minor vu	ggy fracture controlled calcite veinlets. There	VA01680	103.0	104.5	1.5	4	841	. 8	22	1.	96	.000	

PROPERTY: Chemainus J.V. FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-48

From (m)	To (m)	DESCRIPTION
		13 6
		are minor small fine-grained sheared gabbro sills from 98.57 to 98.65 and from 101.9 to 102.2.
		Alteration:. 98.3 101.6 WEAK FRACTURE CONTROLLED CARBONATIZATION.
		98.3 101.0 MODERATE FRACTURE CONTROLLED SILICIFICATION.
		104.0 109.6 Weakly bleached with strong foliation.
		Sulphides:.
		98.3 100.1 15 % stringer pyrite or pyrite encapsulating 4
		to 5 cm lapilli, which are very similiar to
		the host tuff. Pyrite is as 1 to 3 mm broken
		cubes with trace 1 to 2 mm chalcopyrite blebs.
		100.1 101.4 5% fine-grained disseminated pyrite with trace
		to 0.5 % chalcopyrite blebs.
		101.4 101.9 Approximately 10 % stringer (?) pyrite and 1
		to 1.5 % chalcopyrite as blebs concentrated
		with pyrite.
		102.2 103.0 As from 101.4 to 101.9.
		103.0 104.5 3 to 5 % fine-grained pyrite around lapilli or
		as stringers with 0.5 %, 1 to 2 mm, blebs.
		104.5 106.3 7 % pyrite, 3 % is fine-grained disseminated
		and 4 % is as two 5 to 10 cm pyrite rich
		bands parallel to foliation.
		106.3 107.4 P.E.M. Anomaly zone. Contorted tuff with
		moderate black chlorite and locally 10 to 15
		% pyrrhotite, 10 % pyrite and 2 % chalcopyrite
		over 10 to 20 cm. Average sulphide content is
		5 to 7 % pyrrhotite, 3 to 4 % pyrite and
		approximately 1 % chalcopyrite. Pyrrhotite and
		chalcopyrite are ductilely deformed and
		pyrite has suffered minor brittle failure.
		All sulphides are intermixed with no zoning.
		107.4 109.6 2 % disseminated pyrite with 1 cm pyrite rich
		bed at 109.0 and 1 cm chalcopyrite rich bed
		at 109.3.
		Structure:.
		Foliations:.
		99.7: 46 degrees to core axis.
		102.7 : 67 degrees to core axis.
		105.2 : 53 degrees to core axis.
		108.3 : 70 degrees to core axis.
		Bedding:
		108.4: 67 degrees to core axis.
		108.8 : 90 degrees to core axis.

Sample No.	From (m)	To (m)	Width (m)	Total Sulphide:	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba (ppm)
VA01681	104.5	105.5	1.0	7	1662	7	30	2	58	5100
VA01682	105.5	106.3	. 8	7	1148	7	62	2	119	5700
VA01683	106.3	107.0	.7	10	2906	10	209	. 4	264	5700
VA01684	107.0	107.5	. 5	10	435	24	968	<1	60	3600
VA01685	107.5	109.0	1.5	2	344	38	1241	1	42	2000
VA01686	109.0	110.0	1.0	2	906	10	1395	1	72	1200

109.6 112.8 MAFIC INTRUSIVE Very fine-grained aphanitic gabbro with 2 to 3 % (< 1 mm ilmenite grains with (?) leucoxene or sphene rims. There is weak fracture controlled epidote and carbonate veinlets. Foliation is at 38 degrees to core axis.

107 VA01687 110.0 111.0 1.0 0 159

(5 110

DDODFDTV.	Chamainue	.1 V

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Medium to dark green to brown intermediate tuffs with local pervasive thermal biotite. On average there is 10 to 15 % sediments, white to dark brown cherty sediments. There are minor crystal rich and supported beds. At 162.6 there is a 15 cm bed with downhole tops and at 162.8 there is a similiar 10 cm bed with tops uphole, i.e. Fining direction. Cherty sediments offer no clear tops directions and bedding is very variable. There are

HOLE No: Page Number CH88-48 5

n/a 628

rom (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (pp
. 8	128.2	MAFIC TUFF											
		Mafic rock with moderate fracture controlled	VA01065				n/a	140	n/a	33	n/a	n/a	509
		carbonatization. There are up to 30 cm epidotized and	VA01688			1.5	. 1	71	<5	49	<b>&lt;1</b>	₹5	410
		bleached zones with 1 to 2 % associated pyrite. Matrix	VA01689			1.0	1	36	(5	40	1	< 5	400
		has 10 to 15 %, < 1 mm, feldspar and epidotized feldspars	VA01690	120.0	121.0	1.0	1	122	₹5	77	1	₹5	480
		with up to 3 %, 1 mm, chloritized hornblendes locally.											
		There are epidote beds (?) locally. From 123.0 to 126.3											
		there is weak thermal biotite and locally up to 1 % fracture controlled pyrite with minor (?) sediment beds.											
		From 126.3 to 127.8 there is very strong thermal biotite											
		with brown colour and increased crystal content with											
		minor quartz eyes and fining of beds downhole.											
		Foliations:											
		120.4 : 60 degrees to core axis.											
		124.3 : 48 degrees to core axis.											
		127.1 : 61 degrees to core axis.											
		Bedding:.											
		127.0 : 63 degrees to core axis.											
. 2	152.1	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION											
		Mafic flow or sill. Is variably fine-grained to medium	VA01066	140.0	150.0	10.0	n/a	227	n/a	41	n/a	n/a	464
		grained, may be sill to 133.4 and flow after 133.4. From											
		128.2 to 128.7 is fine-grained with 20 %, < 1 mm feldspars											
		and minor calcite fracture controlled veinlets. From											
		128.7 to 133.4 is medium grained with salt and pepper											
		texture of 2 mm hornblende, feldspar and (?) quartz, in 2											
		: 2 : 0.5 to 1 ratios. In sill (?) there are numerous											
		fracture controlled epidote and carbonatization veinlets											
		and trace disseminated pyrite occurs. From 133.4 to 133.7											
		there is strong biotite and calcite veinlets with 2 %, 2											
		mm, round quartz eyes. After is medium green, as opposed											
		to a darker green with up to 15 %, 2 to 4 mm, hornblendes											
		and 10 %, up to 1 mm, feldspars in a massive matrix with											
		local moderate fracture controlled epidotization.											
		Foliations are weak at 30 to 60 degrees to core axis.											
		There is weak fracture controlled chloritization. Lower											
		contact is at fault at 45 degrees to core axis with minor											
		fault gouge.											

VA01067 155.0 175.0 20.0

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-48 6

(m) (m) -----DESCRIPTION----numerous quartz and calcite veinlets, often hosting red to brown biotite. Intermediate tuff locally, 172.6 to 177.2, hosts greater than 10 %, up to 5 mm, quartz clasts, and is there probably andesitic. Average tuff matrix hosts 15 %, 1 to 3 mm, chloritized hornblendes and 5 % epidote grains in green tuff and approximately 5 % hornblende, 10 % feldspar to epidote and 5 to 7 %, 1 to 2 mm, quartz eyes in thermal biotite altered tuff. Foliation is subparallel or parallel to bedding. There is trace to nil disseminated and fracture controlled pyrite locally. Structure :. Foliations :. 162.3: 53 degrees to core axis. 165.5 : 54 degrees to core axis. 171.2: 43 degrees to core axis.

177.2: 47 degrees to core axis. Bedding:.
161.0: 57 degrees to core axis.

165.3: 36 degrees to core axis.

174.4: 63 degrees to core axis.

178.1 195.8 MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION
Mafic flow with 15 to 20 %, 1 to 2 mm, chloritized
hornblende crystals and moderate epidotization from 188.0
to the lower contact. Epidotization is spotty from 189.0
to 190.0 with carbonatized - biotite fracture controlled
veins and veinlets. Epidote after 190.0 is 5 to 10 %, 1
to 2 mm, grains, (?) alteration of feldspars. Flow is
light grey at upper contact and dark green at lower
contact. There are minor quartz - calcite - (biotite) (chlorite) veins, up to 2 cm thick at numerous
orientations. Flow is massive with no well developed
foliations.

195.8 197.9 INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS
Dark brown tuff with minor sediments and 2 to 3 % quartz
eyes. Foliation at 65 degrees to core axis.

197.9 202.9 MAFIC PORPHYRITIC MAFIC LAPILLI TUFF
Mafic tuff or flow with 10 to 15 %, up to 1 mm,
hornblendes and 5 %, 1 to 4 mm, round epidote. There is
weak fracture controlled pyrite and numerous 1 to 3 mm
calcite - quartz veins. From 201.0 to 202.9 there are 10
%, 1 to 3 mm, eye to spherical calcite +/- quartz lapilli
or amygdules. There are < 1 % chloritization clasts or
lapilli, up to 2 cm long and 5 mm wide, elongation
parallel to foliation. Mafic is massive with weak
foliation at 70 to 80 degrees to core axis.

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

VA01068 180.0 195.0 15.0 n/a 16 n/a 26 n/a n/a 34

VAO1069 197.9 202.9 5.0 n/a 163 n/a 29 n/a n/a 150

.

FALCONBRIDGE LIMITED
DIAMOND DRILL LOG

HOLE No: Page Number CH88-48 7

Ba (ppm)

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppno
202.9	242.6	MAFIC TUFFS WITH MINOR CHERTY SEDIMENTS											
		Dark brown to green mafic ash tuff with cream to green to	VA01691	205.0	207.0	2.0	1	168	₹5.	105	1	(5 1	1000
		brown cherty sediments. There is local blue fracture	VA01070	205.0	225.0	20.0	n/a	108	n/a	62	n/a		734
		controlled chlorite and quartz - biotite veins and is	VA01692	207.0	209.0	2.0	1	112	(5	95	1		820
		locally feldspar crystal rich up to 20 %, up to 1 mm.	VA01693	209.0	211.0	2.0	1	138	<5	72	1	12	730
		From 205.0 to 213.0 there is trace fracture controlled	VA01694	211.0	213.0	2.0	1	153	<b>(5</b>	72	1	123	680
		pyrite with sediments. At 205.1 tops is downhole, bedding	VA01071	225.0	240.0	15.0	n/a	128	n/a	65	n/a	n/a	772
		is at 67 degrees to core axis. From 217.9 there is very	VA01695	236.5	238.0	1.5	1	105	6	72	1	103	470
		strong thermal biotite to approximately 236 with minor	VA01072	240.0	256.3	16.3	n/a	155	n/a	39	n/a	n/a	716
		sediments and trace to 0.25 % fracture controlled pyrite											
		and trace to 2 % 1 mm quartz eyes locally. From 236.8 to											
		237.5 there is white and grey chert with 1 % fracture											
		controlled pyrite and bedding at 60 degrees to core axis.											
		From 240 to 242.6 is light grey mafic with hornblende and											
		5 cm biotite filled fractures. At 218.7 and 219.5 tops is											
		uphole, bedding is 58 degrees to core axis. Foliation is											
		at 60 to 80 degrees to core axis locally.											

- 242.6 246.6 FELDSPAR PORPHYRITIC GABBRO
  Light green fine-grained gabbro dyke with fracture
  controlled calcite veinlets and average of 5 %, 2 mm,
  feldspar grains. At 246.5 there is 10 cm quartz vein with
  4 mm thick chalcopyrite. Lower contact at 51 degrees to
  core axis and at 46 degrees to bed in underlying unit.
- 246.6 256.3 INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS
  Andesitic medium green to brown tuff with 10 %, 1 mm,
  feldspar grains and up to 5 %, 1 mm, quartz eyes locally.
  There are minor cherty sediment beds, at 252.7, tops is
  downhole with bedding at 70 degrees to core axis. There is
  minor quartz biotite veining. Foliation averages
  approximately 60 degrees to core axis, locally 45 to 80.

End of hole: 841 feet, 256.3 m, on May 1, 1988 at 12:30 pm

Total lost core: 1.4 m % Recovery = 99.5%.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	<b>XS 102</b>	1AL203	ZCAO	XMGO	ZNA20	XK20	XFE203	XT 102	XP205	ZHHO	ZLOI	SUM	BA	AI	NACA
																	·
VA01060	50.10	60.00	67.80	14.50	2.39	1.35	1.75	2.95	4.32	0.36			3.39	98.81	1700.	51.	4.
VA00616	51.00	51.10	70.60	13.70	2.77	1.81	1.77	3.32	1.82	0.29	0.07	0.05	3.16	99.36	1690.	53.	5.
VA00617	56.60	56.70	68.40	14.50	0.28	0.54	0.37	3.89	5.73	0.37	0.07	<0.01	4.16	98.32	1680.	87.	1.
VA01061	60.00	70.00	70.50	14.10	0.93	0.95	1.14	3.46	3.44	0.30			3.54	98.36	2260.	68.	2.
VA00618	66.70	66.80	70.90	14.70	0.94	0.99	1.44	3.35	2.88	0.31	0.05	0.01	2.70	98.27	2280.	65.	2.
VA00619	80.00	B0.10	71.00	14.80	0.18	1.17	0.48	3.75	3.76	0.32	0.05	0.01	3.54	99.06	3690.	88.	1.
VA00620	103.60	103.70	80.70	8.41	0.25	0.21	0.88	1.66	4.45	0.23	0.04	<0.01	2.93	99.76	2180.	62.	1.
VA00621	111.50	111,.60	49.20	13.50	8.37	7.24	3.26	0.22	14.00	2.07	0.19	0.23	1.93	100.21	225.	39.	12.
VA00622	116.40	116.50	49.80	17.00	6.19	7.55	4.32	0.59	10.60	0.93	0.17	0.16	2.70	100.01	663.	44.	11.
VA00623	127.60	127.70	48.10	16.50	6.18	8.12	2.72	2.22	11.20	0.90	0.22	0.21	2.70	99.07	1360.	54.	9.
VA00624	130.00	130.10	47.60	11.70	11.80	11.60	1.65	0.25	12.10	0.72	0.17	0.22	2.23	100.04	83.	47.	13.
VA00625	146.30	146.40	49.40	13.90	12.00	9.11	1.98	0.44	10.60	0.56	0.13	0.18	2.08	100.38	271.	41.	14.
VA00626	162.20	162.30	49.10	18.50	5.61	6.06	1.49	2.43	12.40	1.29	0.38	0.23	2.93	100.42	1140.	54.	7.
VA00627	175.80	175.90	48.00	18.60	8.38	5.15	3.63	0.63	9.72	0.99	0.28	0.20	4.31	99.89	507.	32.	12.
VA00628	184.80	184.90	50.60	13.90	13.50	7.56	1.28	0.29	9.95	0.55	0.13	0.17	2.08	100.01	179.	35.	15.
VA00629	200.90	201.00	49.80	12.80	9.43	9.75	3.11	0.29	10.80	0.72	0.19	0.22	3.31	100.42	103.	44.	13.

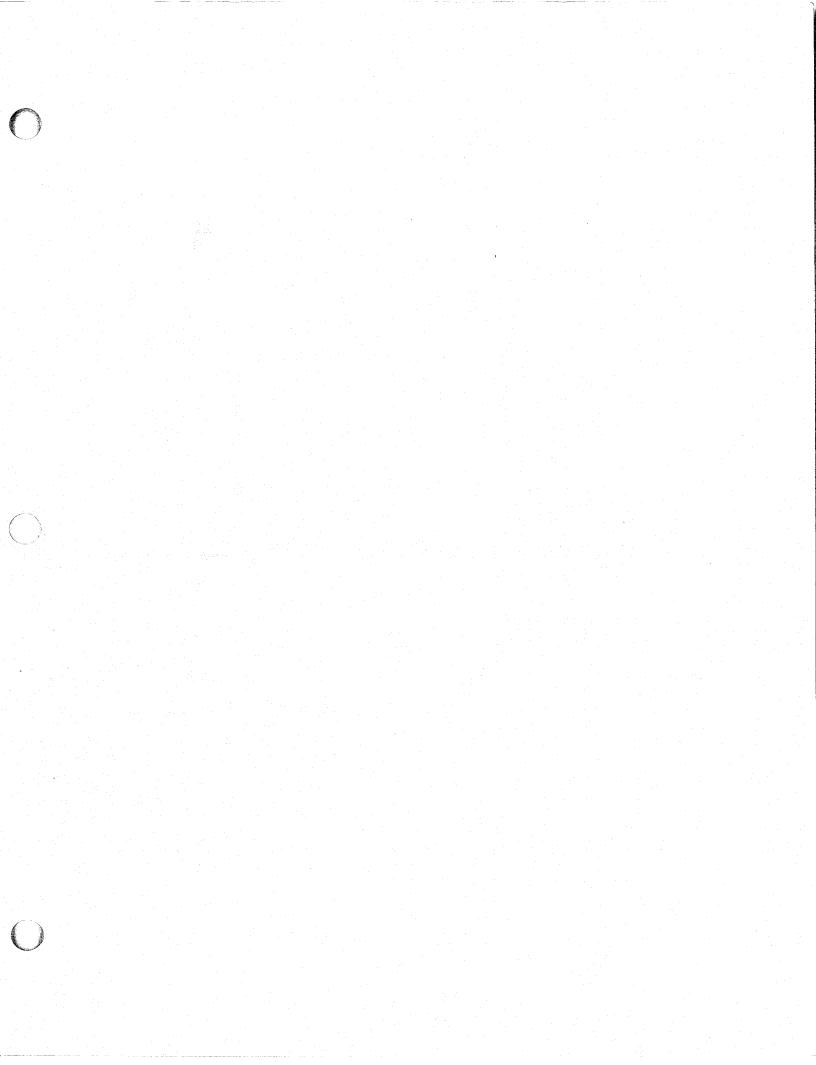
DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	KB	SR (ppm)	BA (ppm)	Υ (mga)	ZR (ppm)	(ppm) NB	.CU (ppm)	2N (ppm)	NI (mqq)			коск	CODES	мім
VA01060	50.10	60.00			1700.0				201.0	82.0	<10.0			TECD	7	Α
VA00616	51.00	51.10	64.0	108.0	1690.0	19.0	107.0	17.0	26,0.	68.0	<10.0			TECD	?	A
VA00617	56.60	56.70	78.0	38.0	1680.0	15.0	101.0	15.0	304.0	35.0	<10.0			TECD	?	BCF
VA01061	60.00	70.00			2260.0				70.0	50.0	<10.0			TFCD	?	Α.
VA00618	66.70	66.80	75.0	107.0	2280.0	<10.0	113.0	17.0	127.0	52.0	<10.0			TECD	PQW	099
VA00619	80.00	80.10	79.0	50.0	3690.0	21.0	138.0	<10.0	69.0	64.0	<10.0			TFCP	?	DBP
VA00620	103.60	103.70	39.0	62.0	2180.0	<10.0	64.0	11.0	432.0	30.0	<10.0			TFCD	7	DCP
VA00621	111.50	111.60	19.0	113.0	225.0	29.0	97.0	17.0	225.0	124.0	106.0			PMA	?	A
VA00622	116.40	116.50	29.0	213.0	663.0	<10.0	18.0	17.0	<10.0	91.0	39.0			TMAE	?	Α
VA00623	127.60	127.70	47.0	190.0	1360.0	24.0	41.0	11.0	192.0	45.0	25.0			IMAF	?	A
VA00624	130.00	130.10	10.0	287.0	83.0	11.0	11.0	<10.0	<10.0	57.0	168.0			PMB	?	A
VA00625	146.30	146.40	15.0	391.0	271.0	14.0	<10.0	<10.0	127.0	39.0	79.0			VMA	?	A
VA00626	162,20	162.30	46.0	298.0	1140.0	32.0	60.0	12.0	133.0	92.0	30.0			TIA	?	A
VA00627	175.80		28.0	395.0	507.0	<10.0	25.0	23.0	96.0	42.0	45.0			TIA	7	A
VA00628	184.80		<10.0	453.0	179.0	19.0	<10.0	16.0	113.0	21.0	56.0			VMA	?	A
VA00629	200.90		24.0	170.0	103.0	<10.0	<10.0	21.0	172.0	43.0	105.0			THA	?	A

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	10	<b>XS</b> 102	XAL203	XCAO	zHGO	ZHA20	XK20	XFE203	XT102	XF205	2HNO	XLOI	SUM	BA	ΑI	NACA
		*********		************								*******		~~~~~		<del></del> -	
VA01062	70.00	80.00	71.20	13.80	0.85	0.80	1.36	3.20	3.79	0.32			3.70	99.02	1850.	64.	2.
VA01063	80.00	89.00	71.60	13.50	1.65	0.69	0.64	2.81	3.93	0.33			4.31	99.46	3700.	60.	2.
VA01064	103.00	109.00	75.20	10.90	0.28	0.32	0.72	2.29	5.41	0.33			3.62	99.07	3510.	72.	1.
VA01065	114.00	128.00	48.00	16.70	8.64	6.17	3.78	0.80	10.30	0.75			2.93	98.07	509.	36.	12.
VA01066	140.00	150.00	50.00	13.70	12.20	8.40	2.22	0.48	9.68	0.56			1.93	99.17	464.	38.	14.
VA01067	155.00	175.00	52.20	17.10	6.31	4.83	3.48	1.20	9.42	0.94			3.39	98.87	628.	38.	10.
VA01068	180.00	195.00	46.70	15.10	12.40	7.14	2.62	0.63	9.17	0.57			5.70	100.03	341.	34.	15.
VA01069	197.90	202.90	46.80	14.10	10.50	8.00	3.10	0.40	10.70	0.73			4.77	99.10	150.	38.	14.
VA01070	205.00	225.00	50.30	16.70	4.36	8.55	3.78	2.18	9.85	0.85			3.31	99.88	734.	57.	8.
VA01071	225.00	240.00	50.90	16.10	4.66	7.11	3.67	2.58	9.59	0.77			3.23	98.61	772.	54.	θ.
VA01072	240.00	256.30	48.40	16.70	5.63	8.27	2.47	2.66	10.60	0.89			3.39	99.01	716.	57.	8.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)


SAMPLE NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppma)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)			ROCK	CODES	MIN
								4.5.					 			
VA01062	70.00	80.00			1850.0				52.0	42.0	<10.0			TECD	?	Α .
VA01063	80.00	99.00			3700.0				166.0	190.0	<10.0			TFCD	?	A
VA01064	103.00	109.00			3510.0				366.0	134.0	<10.0			TECD	?	Α
VA01065	114.00	128.00			509.0				140.0	33.0	46.0			THAD	?	BBP
VA01066	140.00	150.00			464.0				227.0	41.0	53.0			VHA	<b>?</b>	Α
VA01067	155.00	175.00			628.0				72.0	68.0	28.0			TIA	?	À
VA01068	180.00	195.00			341.0				16.0	26.0	52.0			VMA	₹ ¹	A
VA01069	197.90	202.90			150.0				163.0	29.0	60.0			TMA	?	A
VA01070	205.00	225.00			734.0				109.0	62.0	63.0			TMA	?	Α .
VA01071	225.00	240.00			772.0				128.0	-65.0	45.0			TMA	?	A ·
VA01072	240.00	256.30			716.0				155.0	39.0	55.0			TMA	?	A

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

		<u>.</u>														
FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	(ppm)	HO (ppm)	HH (ppm)	CUZN	ETS	FE
52.30	54.30	1800.0	277.0	191.0	<0.5	33.0	11.0	6.0	17.0	<5.0	2.0	6.0	200.0	59.	2.	2.
54.30	56.30	1400.0	517.0	378.0	0.8	27.0	10.0	10.0	15.0	₹5.0	4.0	4.0	189.0	58.	2.	з.
56.30	58.30	1700.0	348.0	361.0	0.6	8.0	4.0	4.0	25.0	8.0	3.0	4.0	129.0	49.	2.	2.
58.30	59.80	1100.0	23.0	37.0	<0.5	8.0	2.0	2.0	12.0	<5.0	<1.0	2.0	136.0	38.	2.	1.
59.80	61.30	2600.0	120.0	807.0	<0.5	37.0	5.0	4.0	6.0	25.0	5.0	5.0	119.0	13.	3.	2.
61.30	62.80	300.0	104.0	141.0	<0.5	17.0	33.0	14.0	8.0	<5.0	3.0	1.0	1156.0	42.	5.	6.
62.80	64.30	2100.0	127.0	74.0	<0.5	26.0	5.0	3.0	<5.0	<5.0	2.0	5.0	152.0	63.	2.	3.
81.20	82.70	3700.0	125.0	463.0	1.5	139.0	6.0	4.0	46.0	20.0	4.0	3.0	136.0	21.	., <b>1.</b>	3.
82.70	83.70	4100.0	224.0	221.0	0.5	44.0	9.0	5.0	53.0	11.0	2.0	4.0	236.0	50.	15.	. 4.
83.70	85.20	5000.0	87.0	34.0	0.8	62.0	5.0	7.0	18.0	<5.0	<1.0	4.0	166.0	72.	1.	2.
85,20	86.50	3700.0	291.0	12.0	<0.5	51.0	6.0	6.0	6.0	<5.0	<1.0	4.0	61.0	96.	1.	1.
86.50	88.00	3900.0	52.0	1.0	<0.5	17.0	8.0	5.0	<b>(5.0</b>	<5.0	(1.0	3.0	65.0	98.	1.	1.
88.00	89.00	3600.0	46.0	2.0	<0.5	26.0	10.0	6.0	6.0	22.0	<1.0	4.0	59.0	96.	2.	2.
89.00	90.10	2400.0	64.0	1.0	<0.5	66.0	11.0	5.0	8.0	<5.0	<1.0	3.0	62.0	98.	2.	3.
90.10	90.50	2000.0	419.0	6.0	0.6	64.0	23.0	10.0	8.0	<5.0	3.0	4.0	68.0	99.	6.	6.
90.50	90.90	1200.0	1173.0	20.0	1.1	266.0	74.0	28.0	15.0	19.0	7.0	3.0	67.0	98.	40.	>10.
90.90	91.70	820.0	1389.0	22.0	2.3	257.0	66.0	22.0	14.0	31.0	9.0	2.0	66.0	98.	65.	>10.
91.70	92.30	1600.0	1281.0	18.0	1.7	202.0	24.0	10.0	17.0	35.0	6.0	1.0	70.0	99.	30.	>10.
92.30	92.80	2800.0	343.0	7.0	0.7	82.0	11.0	5.0	6.0	<5.0	2.0	3.0	67.0	98.	12.	5.
92.80	93.80	4700.0	398.0	11.0	<0.5	42.0	13.0	5.0	7.0	(5.0	2.0	3.0	65.0	97.	12.	6.
93.80	94.20	4400.0	5800.0	116.0	4.9	191.0	23.0	9.0	10.0	31.0	9.0	12.0	86.0	98.	25.	>10.
94.20	94.60	1600.0	3300.0	83.0	2.4	179.0	33.0	25.0	8.0	16.0	3.0	8.0	406.0	98.	10.	8.
94.60	96.00	170.0	260.0	80.0	<0.5	62.0	30.0	59.0	₹5.0	16.0	3.0	2.0	660.0	76.	٥.	4.
	54.30 56.30 58.30 59.80 61.30 62.80 81.20 82.70 83.70 85.20 86.50 89.00 90.10 90.50 90.90 91.70 92.30 92.80 93.80 94.20	52.30 54.30 54.30 56.30 56.30 58.30 58.30 59.80 59.80 61.30 61.30 62.80 62.80 64.30 81.20 82.70 83.70 85.20 85.20 86.50 86.50 88.00 89.00 90.10 90.10 90.50 90.50 90.90 91.70 91.70 92.30 92.30 92.80 93.80 94.20 94.20 94.60	\$2.30 \$4.30 \$1800.0 \$4.30 \$56.30 \$1400.0 \$56.30 \$58.30 \$1700.0 \$8.30 \$59.80 \$1100.0 \$59.80 \$61.30 \$2600.0 \$61.30 \$62.80 \$300.0 \$62.80 \$64.30 \$2100.0 \$81.20 \$82.70 \$3700.0 \$82.70 \$83.70 \$4100.0 \$83.70 \$85.20 \$5000.0 \$65.20 \$86.50 \$3700.0 \$86.50 \$88.00 \$3900.0 \$89.00 \$90.10 \$2400.0 \$90.10 \$90.50 \$2000.0 \$90.50 \$90.90 \$1200.0 \$90.90 \$91.70 \$820.0 \$91.70 \$92.30 \$1600.0 \$92.30 \$92.80 \$2800.0 \$93.80 \$94.20 \$4400.0 \$94.20 \$94.60 \$1600.0	(ppm)         (ppm)           52.30         54.30         1800.0         277.0           54.30         56.30         1400.0         517.0           56.30         58.30         1700.0         348.0           58.30         59.80         1100.0         23.0           59.80         61.30         2600.0         120.0           61.30         62.80         300.0         104.0           62.80         300.0         127.0           81.20         82.70         3700.0         125.0           82.70         83.70         4100.0         224.0           83.70         85.20         5000.0         87.0           85.20         86.50         3700.0         291.0           86.50         88.00         3900.0         52.0           88.00         89.00         3600.0         46.0           89.00         90.10         2400.0         64.0           90.10         90.50         2000.0         419.0           90.50         90.90         1200.0         1173.0           90.90         91.70         820.0         1389.0           91.70         92.30         1600.0         1281.0	(ppm)         (ppm)         (ppm)           52.30         54.30         1800.0         277.0         191.0           54.30         56.30         1400.0         517.0         378.0           56.30         58.30         1700.0         348.0         361.0           58.30         59.80         1100.0         23.0         37.0           59.80         61.30         2600.0         120.0         807.0           61.30         62.80         300.0         104.0         141.0           62.80         300.0         104.0         141.0           62.80         3700.0         125.0         463.0           81.20         82.70         3700.0         125.0         463.0           82.70         83.70         4100.0         224.0         221.0           83.70         85.20         5000.0         87.0         34.0           85.20         86.50         3700.0         291.0         12.0           86.50         88.00         3900.0         52.0         1.0           88.00         89.00         3600.0         46.0         2.0           89.00         90.10         2400.0         64.0         1.0	(ppm)         (ppm)         (ppm)         (ppm)         (ppm)           52.30         54.30         1800.0         277.0         191.0         <0.5	(ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)           52.30         54.30         1800.0         277.0         191.0         <0.5	(ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)         (ppm)           52.30         54.30         1800.0         277.0         191.0         <0.5	(ppm)         (ppm) <th< td=""><td>52.30         54.30         1800.0         277.0         191.0         (op.s)         (pps)         &lt;</td><td>52.30         54.30         1800.0         277.0         191.0         (0.5         33.0         11.0         6.0         17.0         &lt;5.0           54.30         56.30         1400.0         517.0         378.0         0.8         27.0         10.0         10.0         15.0         &lt;5.0</td>           56.30         58.30         1700.0         348.0         361.0         0.6         8.0         4.0         4.0         25.0         8.0           58.30         59.80         1100.0         23.0         37.0         &lt;0.5</th<>	52.30         54.30         1800.0         277.0         191.0         (op.s)         (pps)         <	52.30         54.30         1800.0         277.0         191.0         (0.5         33.0         11.0         6.0         17.0         <5.0           54.30         56.30         1400.0         517.0         378.0         0.8         27.0         10.0         10.0         15.0         <5.0	52.30         54.30         1800.0         277.0         191.0         (opa)         (ppa)         (ppa) <t< td=""><td>52.30         54.30         1800.0         277.0         191.0         Co.5         33.0         11.0         6.0         17.0         C5.0         2.0         6.0           54.30         54.30         1800.0         277.0         191.0         Co.5         33.0         11.0         6.0         17.0         C5.0         2.0         6.0           54.30         56.30         1400.0         517.0         378.0         0.8         27.0         10.0         10.0         15.0         C5.0         4.0         4.0           58.30         58.30         1700.0         348.0         361.0         0.6         8.0         2.0         2.0         12.0         C5.0         C1.0         2.0           59.80         61.30         2600.0         120.0         807.0         C0.5         37.0         5.0         4.0         6.0         25.0         5.0         5.0           61.30         26.80         300.0         104.0         141.0         C0.5         26.0         5.0         3.0         C5.0         25.0         5.0           81.20         82.70         370.0         125.0         463.0         1.5         139.0         6.0         4.0         4</td><td>                                     </td><td>                                     </td><td>                                     </td></t<>	52.30         54.30         1800.0         277.0         191.0         Co.5         33.0         11.0         6.0         17.0         C5.0         2.0         6.0           54.30         54.30         1800.0         277.0         191.0         Co.5         33.0         11.0         6.0         17.0         C5.0         2.0         6.0           54.30         56.30         1400.0         517.0         378.0         0.8         27.0         10.0         10.0         15.0         C5.0         4.0         4.0           58.30         58.30         1700.0         348.0         361.0         0.6         8.0         2.0         2.0         12.0         C5.0         C1.0         2.0           59.80         61.30         2600.0         120.0         807.0         C0.5         37.0         5.0         4.0         6.0         25.0         5.0         5.0           61.30         26.80         300.0         104.0         141.0         C0.5         26.0         5.0         3.0         C5.0         25.0         5.0           81.20         82.70         370.0         125.0         463.0         1.5         139.0         6.0         4.0         4			

Page No. 1

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	HN (pp≡)	CUZN	ETS	FE
VA01674	97.30	98.30	610.0	273.0	73.0	0.6	48.0	34.0	62.0	6.0	7.0	2.0	2.0	689.0	79.	0.	4.
VA01675	98.30	99.20	1400.0	543.0	34.0	0.7	69.0	10.0	28.0	11.0	24.0	4.0	7.0	162.0	94.	15.	8.
VA01676	99.20	100.10	1400.0	392.0	20.0	<0.5	47.0	15.0	6.0	10.0	28.0	2.0	6.0	102.0	95.	15.	6.
VA01677	100.10	101.40	2000.0	1646.0	28.0	1.1	71.0	2.0	5.0	<b>(5.0</b>	25.0	(1.0	6.0	88.0	98.	6.	4.
VA01678	101.40	101.90	1600.0	12200.0	98.0	8.2	329.0	4.0	9.0	9.0	12.0	4.0	7.0	111.0	99.	12.	8.
VA01679	102.20	103.00	1300.0	3800.0	87.0	3.7	116.0	14.0	75.0	8.0	48.0	3.0	3.0	261.0	98.	12.	8.
VA01680	103.00	104.50	2000.0	841.0	22.0	0.9	96.0	7.0	5.0	8.0	14.0	2.0	3.0	68.0	97.	4.	4.
VA01681	104.50	105.50	5100.0	1662.0	30.0	1.9	58.0	9.0	9.0	7.0	⟨5.0	4.0	3.0	69.0	98.	7.	7.
VA01682	105.50	106.30	5700.0	1148.0	62.0	1.5	119.0	2.0	4.0	7.0	8.0	2.0	2.0	60.0	95.	7.	. 4.
VA01683	106.30	107.00	5700.0	2906.0	209.0	3.9	264.0	5.0	3.0	10.0	12.0	5.0	2.0	62.0	93.	10.	8.
VA01684	107.00	107.50	3600.0	435.0	968.0	<0.5	60.0	3.0	4.0	24.0	11.0	6.0	6.0	84.0	31.	10.	3.
VA01685	107.50	109.00	2000.0	344.0	1241.0	0.6	42.0	12.0	24.0	38.0	<5.0	7.0	6.0	234.0	22.	2.	3.
08310AV	109.00	110.00	1200.0	906.0	1395.0	1.2	72.0	16.0	54.0	10.0	<5.0	9.0	4.0	413.0	39.	2.	_{1,} 4.
VA01687	110.00	111.00	110.0	159.0	107.0	0.6	<5.0	25.0	66.0	<5.0	25.0	3.0	2.0	562.0	60.	0.	11 4.
VA01688	114.50	116.00	410.0	71.0	49.0	⟨0.5	<5.0	25.0	29.0	<5.0	<5.0	2.0	2.0	618.0	59.	1.	5.
VA01689	117.00	118.00	400.0	36.0	40.0	0.6	⟨5.0	22.0	28.0	<5.0	19.0	3.0	<1.0	578.0	47.	1.	4.
VA01690	120.00	121.00	480.0	122.0	77.0	0.7	<5.0	28.0	60.0	<5.0	25.0	2.0	1.0	854.0	61.	1.	6.
VA01691	205.00	207.00	1000.0	168.0	105.0	0.9	<5.0	31.0	44.0	<5.0	<5.0	4.0	<1.0	1361.0	62.	1.	7.
VA01692	207.00	209.00	820.0	112.0	95.0	0.8	<5.0	29.0	54.0	<5.0	⟨5.0	4.0	<1.0	1305.0	54.	1.	6.
VA01693	209.00	211.00	730.0	138.0	72.0	0.9	12.0	35.0	53.0	<5.0	10.0	4.0	<1.0	1022.0	66.	1.	7.
VA01694	211.00	213.00	680.0	153.0	72.0	0.7	123.0	31.0	36.0	<5.0	37.0	3.0	<1.0	873.0	68.	ì.	5.
VA01695	236.50	238.00	470.0	105.0	72.0	0.7	103.0	22.0	. 41.0	6.0	5.0	3.0	1.0	610.0	59.	1.	4.



Summary Log: DDH CH88-49

Location: 26+98 E, 2+18 S; Chip I Claim

Azimuth: 210, Dip: -45

Hole Completed: May 4, 1988 Core Logged By: D.P. Money

0.0 - 5.2 Casing.

5.2 - 33.9 Felsic crystal lapilli tuff with 1 to 5 % pyrite, disseminated and banded parallel to foliation.

33.9 - 42.8 Gabbro.

42.8 - 46.7 Felsic cystal tuff with 1 to 2 % pyrite.

46.7 - 52.2 Mafic sill.

52.2 - 63.0 Altered felsic tuff with 4.9 m of strong sulphides averaging approximately 4 % chalcopyrite and 4 % sphalerite. There is 2.7 metres of semi-massive to massive pyrite - pyrrhotite - chalcopyrite - sphalerite from 56.3 to 59.0 m.

63.0 - 67.4 Gabbro.

67.4 - 84.6 Mafic tuffs with minor intercalated cherty sediments.

84.6 - 126.6 Mafic hornblende bearing flow.

126.6 - 177.5 Mafic to andesitic tuffs with intercalated cherts and argillites.

177.5 - 198.8 Gabbro.

198.8 - 202.2 Andesitic tuffs with minor cherty sediments.

202.2 - 203.4 Gabbro.

203.4 - 205.5 Andesitic tuffs with cherts.

205.5 - 209.1 Mafic sill

209.1 - 218.1 Andesitic tuffs with chert and argillite beds.

218.1 - 220.2 Black argillite with 4 % fracture controlled pyrite.

220.2 - 220.8 Gabbro.

220.8 - 250.6 Black argillite with 3 % fracture controlled pyrite.

250.6 - 252.1 Tuffaceous conglomerate.

252.1 End of hole.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Hole Location: 26+98 E 2+18 S

NTS: 092/B13 UTM: 5416897.4 N 429956.0 E

Azimuth: 210 Elevation: 485 m Dip: -45 Length: 252.1 m

Started: May 1, 1988 Completed: May 4, 1988

Purpose: To test the PEM anomaly located in CHEM87-28 DIP TESTS

under the Anita Showing.

37i-Azi-Length muth Dip muth Length Dip 14.30 208.0 -44.0 185.00 212.0 -43.0 90.50 210.0 -44.0 246.00 213.0 -43.0

From To Sample From To Width Total Cu Рb Zn (m) (m) -----DESCRIPTION-----No. (m) (m)(m)Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

.0 5.2 OVERBURDEN

5.2 33.9 FELSIC QUARTZ FELDSPAR CRYSTAL LAPILLI TUFF Pyritic felsic tuff with variable crystal content, with VA01073 5.2 21.0 15.8 n/a 34 <10 n/a 1360 strong alteration and approximately 15 % feldspar and VA01696 5.2 7.0 1.8 31 31 <1 93 1200 quartz crystals, average size 1 to 1.5 mm. At beginning of VA01697 17 104 1000 7.0 1.2 5 61 5 8.2 1 unit there is mostly, > 90 % of crystals, feldspar grains VA01698 5 27 (5 12 (1 149 1500 8.2 9.0 R with downhole transition to 3 to 5: 1 ratio of quartz to VA01699 9.0 10.5 1.5 17 5 8 1 102 1100 feldspar crystals. Lapilli are up to 1 cm, approximately 2 VA01700 10.5 12.0 1.5 22 ⟨5 13 <1 41 750 * grey siliceous lapilli in sericitic matrix. There is VA01702 12.0 13.0 23 12 42 1200 moderate variable alteration. VA01701 13.0 14.0 1.0 22 8 <1 111 1500 Alteration :. VA01703 14.0 15.0 1.0 108 14 <1 60 2100 5.2 9.5 MODERATE FRACTURE CONTROLLED SILICIFICATION , weak 254 119 2300 VA01704 15.0 16.0 1.0 14 44 pervasive silicification centred on fracture 760 VA01705 16.0 17.2 1.2 43 ₹5 17 176 controlled white fracture controlled quartz 49 224 1500 VA01706 17.2 20.2 3.0 8 17 <1 21.2 17 38 147 1900 veinlets. VA01707 20.2 1.0 10 ₹1 9.5 16.0 QUARTZ FLOODING, as strong pervasive fracture <10 n/a 1600 VA01074 21.0 33.0 12.0 n/a <10 n/a n/a controlled silicification, 30 to 40 % added white VA01708 21.2 22.7 1.5 36 20 <1 51 1400 1 6 quartz. VA01709 30.0 37 <5 12 <1 77 2200 32.0 2.0

16.0 19.8 MODERATE PERVASIVE SILICIFICATION , glassy silicified tuff.

19.8 23.3 WEAK PERVASIVE SILICIFICATION, similiar to 16.0 to 19.8 with minor 1 to 2 cm fracture controlled white quartz veins.

23.3 25.3 WEAK PERVASIVE CHLORITIZATION , light green with 3 to 5 % chlorite.

25.3 33.9 MODERATE PERVASIVE SERICITIZATION , bleached tuff, is strongly bleached from 31.9 to 33.6.

Hineralization:.5.2 10.5 5 % banded and fine-grained disseminated pyrite,banded pyrite is parallel to foliation.

HOLE No: CH88-49

Page Number

Claim No. CHIP1 Section No.: Line 27+00 East, Chip Group

Logged By: David P. Money

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NO

2

4

foliation.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Probably sill, has fine-grained sheared contacts with the tuffs. Contacts are at approximately 60 degrees to core axis and have minor fracture controlled carbonatization. Intergrown mafic crystals, hornblende (?), and feldspar laths, up to 5 mm, average 3 to 4 mm. Is massive with no

HOLE No: Page Number CH88-49 2

10.5 16.0 1 to 2 % fine-grained and banded pyrite with galena (?), grey fine-grained mineral in white quartz.  16.0 21.3 to 4 % pyrite with 2 % disseminated and local 1 to 10 ca seai-massive pyrite zones.  21.2 3 % over 10 ca locally.  31.8 33.5 Theraal biotite with 5 to 7 % fracture controlled pyrite.  Lost core: .  5.2 % 21.0 m  16.9 18.0 0.5 m  18.0 18.3 15. m  19.8 22.6 0.4 m  9.2 1 68 degrees to core axis.  13.0 : 38 degrees to core axis.  22.1 : 61 degrees to core axis.  33.5 : 61 degrees to core axis.  33.5 : 67 degrees to core axis.  42.8 46.7 FELSIC QUART2-FELDSPAR CRYSTAL TUFF sericitic light grey felsic tuff with 5 to 15 % crystals. which is a series of the core of the c	From (m)	To (m)	DESCRIPTION		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
galena (?), grey fine-grained mineral in white quartz.  16.0 21.3 3 to 4 % pyrite with 2 % disseminated and local 1 to 10 cm semi-massive pyrite rones.  21.2 31.8 Trace disseminated fine-grained pyrite with 3 to 5 % over 10 cm locally.  31.8 31.9 Thermal biotice with 5 to 7 % fracture controlled pyrite.  Lost core: 5.2 8.2 1.0 m. 14.5 16.5 0.2 m. 14.5 16.5 0.2 m. 18.0 19.8 1.5 m. 19.8 22.6 0.4 m. Foliations: 9.2 : 68 degrees to core axis. 13.0 : 38 degrees to core axis. 18.9 : 46 degrees to core axis. 29.2 : 61 degrees to core axis. 29.2 : 61 degrees to core axis. 33.5 : 67 degrees to core axis. 33.5 : 67 degrees to core axis. 42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals. WA01710 42.8 43.8 1.0 2 188 9 19 1 291 1500 up to 2 mm, swerage 1 mm, feldspars and quart cycs. WA01710 42.8 43.8 1.0 2 188 9 19 1 291 1500 up to 2 mm, swerage 1 mm, feldspars and quart cycs. WA01710 42.8 44.8 1.0 2 176 14 32 1 69 1800 compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and value of the compositional layering or variable weak silicification and valu									· .						
16.0 21.2 j to 4 % pyrite with 2 % disseminated and local 1 to 10 cm semi-massive pyrite zones. 21.2 33.8 Trace disseminated fine-grained pyrite with J to 5 % over 10 cm locally. 31.8 33.9 Thermal blotite with 5 to 7 % fracture controlled pyrite.  Lost core : 5.2 8.2 1.0 s. 14.5 16.9 0.2 s. 15.9 18.0 0.5 s. 13.0 12.1 5 s. 13.0 13.6 degrees to core axis. 13.9 .46 degrees to core axis. 25.1 : 61 degrees to core axis. 25.1 : 61 degrees to core axis. 25.1 : 61 degrees to core axis. 33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 ms, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, value of the seminary															
1 to 10 cm seai-massive pyrite zones. 21.2 31.8 Trace disseainated fine-grained pyrite with 3 to 5 % over 10 cm locally. 31.8 31.9 Thermal biotic with 5 to 7 % fracture controlled pyrite.  Lost core : 5.2 8.2 1.0 m. 14.5 16.9 0.2 m. 15.9 18.0 0.5 m. 18.0 19.8 1.5 m. 19.8 22.6 0.4 m. Foliations: 9.2 : 68 degrees to core axis. 11.0 : 138 degrees to core axis. 25.1 : 61 degrees to core axis. 27.1 : 61 degrees to core axis. 29.2 : 63 degrees to core axis. 29.2 : 64 degrees to core axis. 29.2 : 65 degrees to core axis. 29.2 : 67 degrees to core axis. 29.2 : 68 degrees to c															
21. 2 31.8 Trace disseminated fine-grained pyrite with 3 to 5 % over 10 cm locally.  31.8 31.9 Thermal biotite with 5 to 7 % fracture controlled pyrite.  Lost core:  5.2 8.2 1.0 m.  14.5 16.9 0.2 m.  18.0 19.8 1.5 m.  18.0 19.8 1.5 m.  19.8 22.6 0.4 m.  Foliations:  9.2 : 68 degrees to core axis.  13.0 : 18 degrees to core axis.  25.1 : 61 degrees to core axis.  23.1 : 67 degrees to core axis.  23.2 : 63 degrees to core axis.  24.8 **FELISTPAR PORPHYRITIC GABSRO**  10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 **46.7 FELISC QUARTZ-FELISPAR CRYSTAL TUFF**  speciatic light grey felsic tuff with 5 to 15 % crystals, up to 2 mm, average 1 mm, feldspars and quartz eyes.  There 1 to 2 % fine-grained disseminated and banded parallel to foliation pyrite. There is minor compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation.  42.8 46.7 Gegrees to core axis.  44.7 : 61 degrees to core axis.  44.7 : 61 degrees to core axis.  44.7 : 61 degrees to core axis.			16.0 21.2 3 to 4 % pyrite with 2 % disseminat	ed and local											
5 % over 10 cm locally. 33.8 31.9 Thermal biotite with 5 to 7 % fracture controlled pyrite. Lost core: 5.2 8.2 1.0 m. 14.5 16.9 0.2 m. 15.9 18.0 0.5 m. 18.0 19.8 1.5 m. 19.8 22.6 0.4 m. Foliations: 9.2: 68 degrees to core axis. 13.0: 13 degrees to core axis. 13.0: 13 degrees to core axis. 25.1: 61 degrees to core axis. 27.1: 61 degrees to core axis. 29.2: 63 degrees to core axis. 29.2: 63 degrees to core axis. 33.5: 67 degrees to core axis. 33.5: 67 degrees to core axis. 42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, up to 2 mm, average 1 mm, feldspars and quartz eyes. VADIOTS 41.0 46.0 3.0 n/a 99 n/a 410 n/a n/a 1530 There 1 to 2 % fine-grained disseminated and banded VADITII 43.8 44.8 1.0 2 175 14 32 1 69 1800 parallel to foliation pyrite. There is minor VADITII 44.8 45.8 1.0 2 175 14 32 1 69 1800 expectation. Bedding (?) is parallel to foliation. 42.8 45.7 NODERATE FERNASIVE CHLORITIZATION. Foliations: 42.9: 55 degrees to core axis. 44.7: 61 degrees to core axis.															
33.8 33.9 Thermal biotite with 5 to 7 % fracture controlled pyrite.  Lost core: . 5.2 8.2 1.0 m. 14.5 16.9 0.2 m. 14.5 16.9 0.2 m. 18.0 19.8 1.5 m. 19.8 21.6 0.4 m. Foliations: . 9.2 : 68 degrees to core axis. 13.0 : 138 degrees to core axis. 25.1 : 61 degrees to core axis. 25.1 : 61 degrees to core axis. 33.5 : 67 degrees to core axis. 33.5 : 67 degrees to core axis.  42.8 46.7 FELISIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01710 42.8 43.8 1.0 2 178 4 3 1 1 69 1800 parallel to foliation pyrite. There is minor compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 NODERATE FERNASIVE CELORITIZATION. Foliations: 44.7 : 61 degrees to core axis. 44.7 : 61 degrees to core axis.				ite with 3 to											
controlled pyrite. Lost core :															
Lost core :. 5.2 8.2 1.0 m. 14.5 16.9 0.2 m. 14.5 16.9 0.2 m. 18.0 19.8 1.5 m. 18.0 19.8 1.5 m. 19.8 22.6 0.4 m. Foliations :. 9.2 : 68 degrees to core axis. 11.0 : 38 degrees to core axis. 29.2 : 61 degrees to core axis. 29.2 : 63 degrees to core axis. 33.5 : 67 degrees to core axis. 33.5 : 67 degrees to core axis. 33.5 : 67 degrees to core axis. 42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, valiful 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartx eyes. valiful 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartx eyes. valiful 42.8 43.8 1.0 2 173 14 18 1 22 250 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 NDERATE FENANCE CLOCKTIZATION. Foliations :. 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 44.7 : 61 degrees to core axis.				ure											
5.2 8.2 1.0 m. 14.5 16.9 0.2 m. 15.9 18.0 0.5 m. 18.0 19.8 1.5 m. 19.8 22.6 0.4 m. Foliations: 9.2 : 68 degrees to core axis. 13.0 : 38 degrees to core axis. 13.0 : 38 degrees to core axis. 25.1 : 61 degrees to core axis. 25.1 : 61 degrees to core axis. 33.5 : 67 degrees to core axis. 33.5 : 67 degrees to core axis. 33.5 : 67 degrees to core axis. 42.8 46.7 FELSIC QUART2-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, up to 2 ms, average 1 ms, feldspars and quartz eyes. VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 ms, average 1 ms, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530) There 1 to 2 % fine-grained disseminated and banded vA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation prytic. There is minor vA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis.															
14.5 16.9 0.2 m. 15.9 18.0 0.5 m. 18.0 19.8 1.5 m. 19.8 22.6 0.4 m. Foliations: 9.2 : 68 degrees to core axis. 13.0 : 38 degrees to core axis. 18.9 : 46 degrees to core axis. 27.2 : 63 degrees to core axis. 28.2 : 63 degrees to core axis. 29.2 : 63 degrees to core axis. 29.2 : 63 degrees to core axis. 33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, value of the property															
16.9 18.0 0.5 m. 18.0 19.8 1.5 m. 19.8 22.6 0.4 m. Foliations: 9.2 : 68 degrees to core axis. 11.0 : 38 degrees to core axis. 12.1 : 61 degrees to core axis. 25.1 : 61 degrees to core axis. 25.1 : 61 degrees to core axis. 33.5 : 67 degrees to core axis. 33.5 : 67 degrees to core axis. 33.5 : 67 degrees to core axis. 33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, value of the control of															
18.0 19.8 1.5 m. 19.8 22.6 0.4 m. Foliations: 9.2: 68 degrees to core axis. 11.0: 18 degrees to core axis. 12.9: 46 degrees to core axis. 25.1: 61 degrees to core axis. 29.2: 63 degrees to core axis. 29.2: 63 degrees to core axis. 29.2: 63 degrees to core axis. 33.5: 67 degrees to core axis. 33.5: 67 degrees to core axis.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, valiful and the value of the va								•							
Poliations :.   9.2 : 68 degrees to core axis.   13.0 : 38 degrees to core axis.   18.9 : 46 degrees to core axis.   18.9 : 47 degrees to core axis.   18.9 : 48 degrees to co															
9.2 : 68 degrees to core axis. 13.0 : 38 degrees to core axis. 18.9 : 46 degrees to core axis. 25.1 : 61 degrees to core axis. 29.2 : 63 degrees to core axis. 33.5 : 67 degrees to core axis.  33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 wp to 2 mm, average 1 mm, feldspars and quartz eyes. VA01715 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 parallel to 5 to 15 in a minor to 2 % fine-grained disseminated and banded with the compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.			19.8 22.6 0.4 m.												
13.0 : 38 degrees to core axis. 18.9 : 46 degrees to core axis. 25.1 : 61 degrees to core axis. 27.2 : 63 degrees to core axis. 33.5 : 67 degrees to core axis. 33.5 : 67 degrees to core axis. 33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, vA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 There 1 to 2 % fine-grained disseminated and banded vA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor vA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.			Foliations :.												
18.9 : 46 degrees to core axis. 25.1 : 61 degrees to core axis. 27.2 : 63 degrees to core axis. 29.2 : 63 degrees to core axis. 33.5 : 67 degrees to core axis.  33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, up to 2 mm, average 1 mm, feldspars and quartz eyes. 70.0 There 1 to 2 % fine-grained disseminated and banded parallel to 60liation pyrite. There is minor compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations : 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.			9.2 : 68 degrees to core axis.												
25.1 : 61 degrees to core axis. 29.2 : 63 degrees to core axis. 33.5 : 67 degrees to core axis.  33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, vA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530) There 1 to 2 % fine-grained disseminated and banded vA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor vA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 44.7 : 61 degrees to core axis. 44.7 : 61 degrees to core axis.			13.0 : 38 degrees to core axis.												
29.2 : 63 degrees to core axis. 33.5 : 67 degrees to core axis.  33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a <10 n/a n/a 1530 There 1 to 2 % fine-grained disseminated and banded VA01711 41.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 176 14 32 1 69 1800 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 44.7 : 61 degrees to core axis.			18.9: 46 degrees to core axis.												
33.5 : 67 degrees to core axis.  33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530) There 1 to 2 % fine-grained disseminated and banded parallel to foliation pyrite. There is minor compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 44.7 : 61 degrees to core axis.			25.1 : 61 degrees to core axis.												
33.9 42.8 FELDSPAR PORPHYRITIC GABBRO 10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530) There 1 to 2 % fine-grained disseminated and banded VA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations :. 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 44.7 : 61 degrees to core axis.			29.2 : 63 degrees to core axis.												
10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF  Sericitic light grey felsic tuff with 5 to 15 % crystals, VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 There 1 to 2 % fine-grained disseminated and banded VA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.			33.5 : 67 degrees to core axis.												
10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF  Sericitic light grey felsic tuff with 5 to 15 % crystals, VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 There 1 to 2 % fine-grained disseminated and banded VA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.															
10 to 15 %, 1 to 3 mm, feldspars in a fine-grained medium green matrix with minor quartz - chlorite veins.  42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF  Sericitic light grey felsic tuff with 5 to 15 % crystals, VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 There 1 to 2 % fine-grained disseminated and banded VA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.															
42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Sericitic light grey felsic tuff with 5 to 15 % crystals, VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 There 1 to 2 % fine-grained disseminated and banded parallel to foliation pyrite. There is minor VA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation.  42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9: 56 degrees to core axis. 44.7: 61 degrees to core axis. 46.0: 61 degrees to core axis.	33.9	42.8													
42.8 46.7 FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF  Sericitic light grey felsic tuff with 5 to 15 % crystals, VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 There 1 to 2 % fine-grained disseminated and banded VA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 176 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation.  42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations:  42.9:56 degrees to core axis. 44.7:61 degrees to core axis. 46.0:61 degrees to core axis.															
Sericitic light grey felsic tuff with 5 to 15 % crystals, vA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 vA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 vA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.			green matrix with minor quartz - chlorite ve	ins.											
Sericitic light grey felsic tuff with 5 to 15 % crystals, vA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 vA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 vA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.															
Sericitic light grey felsic tuff with 5 to 15 % crystals, VA01710 42.8 43.8 1.0 2 188 9 19 1 293 1500 up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 YA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 Parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 Compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.															
up to 2 mm, average 1 mm, feldspars and quartz eyes. VA01075 43.0 46.0 3.0 n/a 99 n/a (10 n/a n/a 1530 There 1 to 2 % fine-grained disseminated and banded VA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.	42.8	46.7				40.0	42.0				^	4.0		202	1500
There 1 to 2 % fine-grained disseminated and banded VA01711 43.8 44.8 1.0 2 176 14 32 1 69 1800 parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and VA01713 45.8 46.7 .9 2 1361 34 10000 5 445 6500 sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.									· Z		-		-		
parallel to foliation pyrite. There is minor VA01712 44.8 45.8 1.0 2 173 14 38 1 22 850 compositional layering or variable weak silicification and VA01713 45.8 46.7 .9 2 1361 34 10000 5 445 6500 sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations:. 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.															
compositional layering or variable weak silicification and VA01713 45.8 46.7 .9 2 1361 34 10000 5 445 6500 sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations:. 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.				panded					_						
sericitization. Bedding (?) is parallel to foliation. 42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations :. 42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.												-			
42.8 46.7 MODERATE PERVASIVE CHLORITIZATION. Foliations: 42.9:56 degrees to core axis. 44.7:61 degrees to core axis. 46.0:61 degrees to core axis.					4401/13	42.0	40.7		. 4	1301	54 IO	000	Ģ	445	0300
Foliations:. 42.9:56 degrees to core axis. 44.7:61 degrees to core axis. 46.0:61 degrees to core axis.				ollation.											
42.9 : 56 degrees to core axis. 44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.															
44.7 : 61 degrees to core axis. 46.0 : 61 degrees to core axis.															
46.0 : 61 degrees to core axis.															
AC 7 E2 2 WARTE PORDUVETTIC WARTE FLOU / INTRUCTON			40.0 ; of dediess to core axis.												
AC 7 E2 2 MARTE ROBBUNSTRIE MARTE FLOW / INTRICTON															
	46.7	52 2	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION												

2

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-49 3

(ppm) (ppb) (ppm)

28

74

84

146

80

119

136

47 36

8 12 145 2500 288 3600 29 2300

634 3800

1954 7100

3051 10000

6068 7200 1885 26000

1063 32000 2571 29000

960 25000

688 30000

540 11000

1714 19000 35 1645 20000 335 17000 266 11000

From	To		Sample	From	To	Width	Total	Cu	Pb	Zn
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphide			n) (ppm.)
E2 2	63.0	PPI CTC WIET								
52.2	63.0	FELSIC TUFF Strongly altered and mineralized rock, only recognizible						701		4 2 2 4
		as felsic tuff from 58.9 to 63.0 and 52.2 to 53.1. There	VA01714 VA01715	52.2 53.1	53.1 54.1	9	. 1	721	21	1321
		is very strong silicification and local strong	VA01715 VA01716			1.0	3	367	94	535
.*		epidotization and thermal biotite from 53.1 to 56.3 with		54.1	55.1	1.0	-	203	10	106
		no carbonatization. Alteration is cream to green epidote	VA01717	55.1	56.3	1.2	3	4800	5600	1604
		to red - brown in colour. There is 2 to 3 % fracture	VA01718 VA01719	56.3 56.6	56.6 57.0	. 3			13800 : 12000	22500
		controlled pyrite and numerous minor faults in the altered	VA01719	57.0	57.4	.4				46000
		tuff, which may be a lapilli tuff. From 52.2 to 53.1 and	VA01721	57.4	57.8	.4		23900		38000
		61.2 to 63.0 there is weak to moderate thermal biotite	VA01721	57.8	58.2	. 4		20400		105500
		and 10 to 15 %, 1 mm, feldspar and quartz crystals with	VA01722	58.2	58.6	. 4		47500	1763	
		weak sulphides. From 56.3 to 61.2 there is strong	VA01724	58.6	59.0	. 4		64000	346	26000
		sulphides in dark grey silicified tuff with fracture	VA01725	59.0	59.7	.7		14900	156	4900
		controlled white quartz veinlets. Alteration is probably	VA01726	59.7	60.1	.4		14300		12200
		hornfelsing due to mafic dyke.	VA01727	60.1	60.8	. 7		13600		12200
		Sulphides :.	VA01728	60.8	61.2	. 4	. •	16000	250	1800
		52.2 53.1 Trace to 0.5 % disseminated and banded pyrite	VA01729	61.2	62.0	.8	3	1200	93	1200
		and one 2 mm chalcopyrite bleb at 52.5.	VA01730	62.0	63.0	1.0	3	2400	524	700
		53.1 56.3 2 to 3 % fracture controlled pyrite,								
		concentrated on epidotization.								
		56.3 56.6 30 % pyrite, 20 % sphalerite, as two 4 cm and								
		one 2 cm bands of 65 % red brown sphalerite and							. '	
		1 % disseminated 1 to 3 mm chalcopyrite blebs.								
		Pyrite is coarse with clots up to 12 mm and								
		cubes up to 3 mm. There is minor epidotization								
		and quartz veinlets.								
		56.6 57.4 Strong local sericitization, epidotization and								
		fracture controlled and pervasive								
		silicification. There is approximately 20 %								
		fine-grained disseminated pyrite, 5 % sphalerite								
		in local 1 to 3 cm semi- massive to massive								
		zones, and 1 to 2 % disseminated 2 to 3 mm								
		chalcopyrite blebs. Sphalerite is silica								
		encapsulated with no brown streak.								
		57.4 57.6 50 % pyrite and 5 % chalcopyrite as massive								
		sulphides encapsulating siliceous grey tuff								
		rounded clasts and with moderate epidotization.								
		57.6 57.8 5 to 7 % pyrite and 1 % chalcopyrite as blebs in								
		grey sericitic tuff.								
		57.8 58.2 30 % pyrite, 20 % sphalerite and 2 to 3 %								
		chalcopyrite, sulphides form up to 7 cm bands								
		of fine-grained massive sulphides. Sulphides								
		encapsulate felsic lapilli and quartz crystals.							· · · · · ·	
		There is post mineralization fracture								
		controlled white quartz veins.								
		58.2 58.3 Grey sericitic tuff with trace pyrite. Blocky,								
		highly fractured core.								
		58.3 59.0 Approximately 30 % pyrrhotite, 17 % chalcopyrite								
		and 5 to 10 k nurita Durita occurs as rime on								

and 5 to 10 % pyrite. Pyrite occurs as rims on the 30 % siliceous grey felsic lapilli and as 1

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-49

(mqq) (ppb) (mqq)

From Sample From Width Total -----DESCRIPTION-----(m) (m) (m) (m) (m) Sulphides (ppm) (ppm) (ppm) to 2.5 cm clots. Chalcopyrite and pyrrhotite are intergrown and pyrrhotite is strongly magnetic. There is black chlorite on fractures. 59.0 59.7 Grev strongly silicified felsic with 2 to 3 % chalcopyrite. 5 % pyrite as fine-grained disseminated and stringers (?). 59.7 60.1 Siliceous felsic lapilli surrounded by 5 to 7 % chalcopyrite and 10 to 12 % pyrite. Chalcopyrite is very variable with 5 % on one side of the core and 10 to 12 % on the other. 60.1 60.8 Silicified with 5 to 7 % pyrite and 2 % sphalerite. Sulphides may be fracture controlled or were remobilized. 60.8 61.2 Sericitic tuff with 5 % chalcopyrite as stringers with 2 to 3 % disseminated pyrite. 61.2 63.0 Sericitic tuff with trace disseminated chalcopyrite blebs and 3 % banded pyrite. Stucture :. Foliations :. 53.1 : 51 degrees to core axis. 56.6: 65 degrees to core axis. 61.9:57 degrees to core axis. Lower contact ( 63.0 ) : 57 degrees to core axis.

63.0 67.4 FELDSPAR PORPHYRITIC GABBRO Fine-grained medium green gabbro with approximately 5 %, 1 to 4 mm, feldspar grains. There is weak local fracture controlled epidote and quartz - calcite veinlets at 0 to 90 degrees to core axis.

67.4 84.6 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Mafic crystal lapilli tuff with minor cherty sediment beds. There are on average 15 %, 1 to 2 mm, mafic crystals, probably hornblende and variable feldspars. < 1 to 15 % feldspar to epidotized feldspar, 1 to 2 mm. There are local 10 cm epidote alteration spots with fracture controlled calcite and biotite veinlets and trace fracture controlled pyrite. From 71.0 to 71.7 there is a mafic phyric sill. Is locally weakly silicified and weak fracture controlled chloritization occurs, to a much lesser extent than the underlying mafic flow. Structure :. Foliations :.

69.3: 87 degrees to core axis.

72.5 : 56 degrees to core axis.

78.2 : 54 degrees to core axis.

83.7: 84 degrees to core axis.

Bedding :.

78.4: 57 degrees to core axis.

84.0: 66 degrees to core axis.

VA01076 68.0 84.0 16.0 141 n/a n/a

PROPERTY:	Chemainus	J.V.	

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-49 5

n/a

268

n/a

35 n/a

n/a 634

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)	
84.6	126.6	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION												
		Mafic flow, medium green, massive, with on average 30 %, 1	VA01077	85.0	105.0	20.0	n/a	95	n/a	19	n/a	n/a	163	
		to 3 mm, chloritized hornblende crystals and locally up	VA01078	105.0	125.0	20.0	n/a	59	n/a	37	n/a	n/a	257	
		to 5 %, average 3 %, 2 to 3 mm epidote grains. There is	VA01731	119.8	120.8	1.0	2	68	<5	92	1	14 2	000	
		weak local fracture controlled epidotization and moderate												
		fracture controlled chloritization. There is minor												
		shearing from 96.6 to 99.5 and from 115.8 to 118.5 with												
		quartz and calcite veins and 30 to 40 cm dark brown												
		siliceous sediment at end. There are numerous minor												
		fracture controlled quartz - calcite - chlorite - biotite												
		veinlets with minor pink calcite at 106.8. From 119.8 to												
		120.8 there is 1.5 % disseminated pyrite in dark												
		silicified flow.												
		Alteration:.												
		84.6 126.6 MODERATE FRACTURE CONTROLLED CHLORITIZATION.												
		96.6 99.5 WEAK FRACTURE CONTROLLED CARBONATIZATION.												
		115.8 118.5 WEAK FRACTURE CONTROLLED CARBONATIZATION.												
		121.3 123.0 WEAK FRACTURE CONTROLLED CARBONATIZATION.											•	
		119.8 120.8 MODERATE PERVASIVE SILICIFICATION.												
		Foliations:.												
		87.8 : 57 degrees to core axis.	•											
		103.5 : 61 degrees to core axis.												
		108.0 : 68 degrees to core axis.												
		117.8 : 61 degrees to core axis.												
		Lower contact : 49 degrees to core axis.												

126.6 132.6 INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS
Andesitic crystal tuffs, lapilli tuffs and cherty sediments VA01079 127.0 137.0 10.0

126.6 126.7 Green chert with bedding at 75 degrees to core axis.

126.7 127.2 Thermal biotite coloured andesitic ash tuff with bedding (?) and foliation at 56 degrees to core axis.

127.2 127.3 Green and white cherts with bedding at 55 degrees to core axis.

127.3 127.5 Andesitic brown crystal tuff with 10 %, 1 mm, feldspars and 3 to 5 %, 1 mm, quartz eyes.

127.5 128.5 Brown andesitic lapilli tuff with strong fining downhole.

128.5 131.8 Green tuff with 15 %, 1 to 4 cm, epidote - (carbonate) clots.

131.8 132.6 Dark grey cherty sediments with moderate fracture controlled carbonatization. Bedding at 50 degrees to core axis.

132.6 139.4 MAFIC LAPILLI TUFF
Fine-grained light to medium green mafic, lapilli tuff

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-49 6

		DIAMOND DRIED LOG											
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba (ppm)
		(?). There is on average 5 % mafic and 5 % epidote crystals with local carbonate, epidote and quartz lapilli,											
		up to 2 %, up to 1 cm. There is fracture controlled quartz - calcite - chlorite veins and veinlets.											
139.4	160.7	INTERHEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Brown to green andesitic tuff with chert and argillite	WAG1733	110 5	140 5			175		70			
		beds. Tuff hosts up to 25 % crystals, up to 1 mm.	VA01732 VA01080			1.0	1 n/a	175 177	<5 n/a	72 59	n/a	(5 n/a	800 622
		feldspar and quartz. There is weak fracture controlled	VA01733			1.1	1	148	/5	. 54	1		1000
		blue chloritization. Minor fracture controlled quartz -	VA01734			1.0	i	116	(5	52	1	₹5	760
		biotite veins occur. Brown to black argillite beds with 1	VA01735	153.9	154.6	. 7	1	135	₹5 [	83	1	< 5	820
		% fracture controlled pyrite occur from 139.5 to 140.5,	VA01736			.9	1	157	. (5	104	1		1100
		141.1 to 142.2 152.9 to 154.6 and 158.3 to 160.2. There	VA01737	159.2	160.2	1.0	1	134	7	63	. 1	12	2000
		are minor green and white 1 to 2 cm chert beds in the argillite and tuff.											
		Structure :.											
		Bedding :.											
		140.2 : 59 degrees to core axis.											
		144.6 : 61 degrees to core axis.											
		153.0 : 63 degrees to core axis.											
		158.6: 70 degrees to core axis.											
		Foliations:. 147.2: 66 degrees to core axis.											
		150.3 : 70 degrees to core axis.											
		157.3 : 68 degrees to core axis.											
160.7	167.6	FELDSPAR PORPHYRITIC MAFIC LAPILLI TUFF			12412	12.3				2.7	-		
		Light green mafic tuff with 5 to 10 %, 1 mm, feldspar to	VA01081	161.0	167.0	6.0	n/a	150	n/a	54	n/a	n/a	312
		epidotized feldspar crystals with minor chert clasts and epidotized lapilli. There are numerous minor fracture											
		controlled quartz - red biotite veinlets. There is a 9 cm											
		clast of hornblende bearing mafic flow at 162.1 near a											
		brecciated chert bed. There is a 2 mm speck of											
		chalcopyrite in a quartz - calcite vein at 163.6 m.											
		Foliations :.											
		161.4: 69 degrees to core axis.											
		163.1: 72 degrees to core axis.											
		166.0 : 85 degrees to core axis. Alteration :.											
		160.7 167.6 WEAK FRACTURE CONTROLLED CHLORITIZATION.											
		100.1 107.0 WEEK TRACTORY CONTROLLED CHECKTIERTION.											
167.6	177.5	MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS								4.25			
		167.6 168.6 Green, white and brown cherts with bedding at	VA01738			1.0	2	101	7	63	1		2300
		63 degrees to core axis and 1 to 2 % fracture	VA01739			1.0	1	77	12	71	(1	(5 2 g	810
		controlled pyrite with approximately 30 % mafic thermal biotite coloured tuffs.	VA01740 VA01741			.9	2 2	32 26	₹5 7	88 58	(1)		3200 2400
		168.6 169.6 Thermal biotite coloured tuff with very	VA01741			1.6	1	90	5	42	(1		1400
		fine-grained crystals, minor cherts and	VA01743			1.5	î	18	10	39	(1		1400
							-				•		

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-49

From (m)	To (m)		DESCRIPTION
		169.6 171.4	fracture controlled pyrite, up to 1 %.  Dark brown contorted tuff with augens of quartz , minor calcite and a 8 mm red - brown garnet at 170.0. There is approximately 1 to 2
		171 <i>4</i> 177 5	% fracture controlled and fine-grained disseminated pyrite. Up to Foliation trend is at 69 degrees to core axis.
			Intercalated brown cherty argillites, green and white cherts and mafic to andesitic green to brown tuffs. There is minor epidotization and local fracture controlled calcite
			veinlets. Trace fracture controlled pyrite occurs in the sediments. There is trace chalcopyrite in strong fracture controlled carbonatization at 177.3. Bedding is at 52
			degrees to core axis at 172.0 m, and 63 degrees to core axis at 176.0. Foliation is variable from 55 to 80 degrees to core axis.

177.5 198.8 FELDSPAR PORPHYRITIC GABBRO Fine-grained medium green plagiophyric gabbro dyke, with 3 to 20 %, average 10 %, 2 to 4 mm, feldspar grains. From 190.9 to 192.1 there is strong shearing with strong carbonatization and hematite. Shearing is at 84 degrees to core axis. There are minor fracture controlled quartz, epidote and carbonate veinlets at orientations of 0 to 90 degrees to core axis.

198.8 202.2 INTERNEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Brown andesitic tuffs with 20 to 30 %, < 1 mm, feldspars and trace to 2 %, < 1 mm, quartz eyes. There is red, brown, green and white cherts and cherty argillites. Minor quartz veins occur. Sediments constitute 40 % of the interval with 2 to 3 % fracture controlled pyrite or 1 to 1.5 % pyrite for the interval. Bedding :.

199.9: 50 degrees to core axis. 200.7 : 60 degrees to core axis.

200.9 : 64 degrees to core axis.

201.2 : 58 degrees to core axis.

Lower contact: 44 degrees to core axis.

202.2 203.4 FELDSPAR PORPHYRITIC GABBRO Fine-grained gabbro with 15 %, 1 to 4 mm, feldspars and 5 * fracture controlled quartz - calcite - chlorite veinlets.

203.4 205.5 INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS

Sample From To Width Total Cu PЬ Zn Ασ Au Вa No. (m) - (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) VA01744 174.5 176.0 1.5 1 11 54 <1 (5. 1500 VA01745 176.0 177.6 1.6 1 108 10 43 ₹1 **<5** 1300

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

most are perpendicular to bedding. Bedding is at 71 to 74 degrees to core axis locally. Beds are on average 3 to 5

mm thick. Tops is downhole.

HOLE No: Page Number CH88-49 8

## Prove to green andesitic tuff with J0 to 40 %, (1 ms. nod approximately 10 to 20 % light grey, green or white cherts with sinor fracture controlled pyrite. Bedding at 204.9 is at 66 degrees to core axis. Toliation is variable from 70 to 80 degrees to core axis. Toliation is variable from 70 to 80 degrees to core axis. Toliation is variable from 70 to 80 degrees to core axis. Toliation is variable from 70 to 80 degrees to core axis. Toliation is variable from 70 to 80 degrees to core axis. Toliation is variable from 70 to 80 degrees to core axis. Toliation is variable from 70 to 80 degrees to core axis. Toliation is variable from 70 to 80 degrees to core axis. Toliation and sinor fracture controlled quartz calcute - biotic veinlets. Trace to nil disseminated pyrite occurs. Alteration :  209.1 218.1 INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 10 mm. There are green to black chert and cherty argillite beds. Artix is chioritic with strong themselved quartz veinlets. Sediments are less than 5 % of total interval. Bedding:  210.8 : 53 degrees to core axis.  211.2 : 54 degrees to core axis.  212.4 : 63 degrees to core axis.  213.5 : 52 degrees to core axis.  213.1 : 55 degrees to core axis.  214.5 : 62 degrees to core axis.  215.5 : 52 degrees to core axis.  216.1 : 63 degrees to core axis.  217.1 : 60 degrees to core axis.  218.1 : 220.2 BLACK ARCILLITE  ### Black argillite with sinor clasts of INTERMEDIATE TUFFS	From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
204.9 is at \$6 degrees to core axis and at 205.34 is at 61 degrees to core axis. Foliation is variable from 70 to 80 degrees to core axis.  205.5 209.1 MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION Fine-grained medium green rock with strong quartz veins from 20.9 to 206.2. Is probably a maffe sill. Hosts 20 to 20.9 to 206.2. Is probably a maffe sill. Hosts 20 to 20.9 to 206.2. Is probably a maffe sill. Hosts 20 to 20.9 to 206.2. Is probably a maffe sill. Hosts 20 to 20.9 to 206.2. Is probably a maffe sill. Hosts 20 to 20.9 to 206.2 t				VA01746	204.5	205.5	1.0	1	78	13	59	(1	<b>(5</b>	80
61 degrees to core axis. Foliation is variable from 70 to 80 degrees to core axis.  205.5 209.1 MARIC PORPHYRITIC MARIC FLOW / INTRUSION Fine-grained medium green rock with strong quartz veins from 205.9 to 206.2. Is probably a mafic sill. Hosts 20 to 25 %, 1 to 2 mm, average up to 1 mm, mafic expensive, carbonatization and minor fracture controlled quartz calcite — biotite veinlets. Trace to nil disseminated patternation: 205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations: 208.5 : 56 degrees to core axis.  209.1 218.1 INTERHEDIATE TUFFS WITH HINOR CHERTY SEDIMENTS Grey — brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from (1 to 3 mm. There are green to black chert and cherty argillite beds. Hatrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding: 210.8 : 53 degrees to core axis. 211.2 : 54 degrees to core axis. 212.4 : 63 degrees to core axis. 212.5 : 52 degrees to core axis. 213.5 : 52 degrees to core axis. 215.5 : 52 degrees to core axis. 216.5 : 52 degrees to core axis. 217.5 to 218.0 Regrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 5 2700 MITH MINOR CHERTY SEDIMENTS to 218.6. There is ) to 5 % VA01747 218.1 219.2 1.0 4 38 26 70 (1 55 4200														
205.5 209.1 MAPIC PORPHYRITIC HAFIC FLOW / INTRUSION Fine-grained medium green rock with strong quartz veins from 205.9 to 206.2. Is probably a mafic sill. Hosts 20 to 25 %, 1 to 2 mm, average up to 1 mm, mafic crystals, (?) hornblendes. There is strong local pervasive carbonatization and minor fracture controlled quartz - calcite - biotite veinlets. Trace to nil disseminated pyrite occurs. Alteration: 205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations: 208.5: 56 degrees to core axis.  209.1 218.1 INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from (1 to 3 mm. There are green to black chert and cherty argilite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled quarts. Sediments. Pere are almost fracture controlled quarts. Sediments are less than 5 % of total interval. 10.8: 53 degrees to core axis. 211.2: 54 degrees to core axis. 212.4: 63 degrees to core axis. 217.9: 60 degrees to core axis. 217.9: 60 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with sinor clasts of INTERMEDIATE TUFFS WITH HINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 21.1 4 74 15 89 (1 65 2700 WITH HINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 21.1 4 74 15 89 (1 65 2700 WITH HINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 21.1 4 74 15 89 (1 65 2700														
205.5 209.1 MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION Fine-grained medium green rock with strong quartz veins from 205.9 to 206.2. Is probably a mafic sill. Hosts 20 to 25 %, 1 to 2 mm, average up to 1 mm, mafic crystals, (?) hornblendes. There is strong local pervasive carbonatization and minor fracture controlled quartz - calcite - biotic veinlets. Trace to mil disseminated pyrite occurs. 205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations: 208.5 : 56 degrees to core axis.  209.1 218.1 INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from (1 to 3 mm. There are green to black chert and cherty arguilite beds. Hatrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled quartz veinlets. Sediments are less than 5 % of total interval. Bedding: 210.8 : 53 degrees to core axis. 212.4 : 63 degrees to core axis. 212.5 : 60 degrees to core axis. 212.5 : 5: 2 degrees to core axis. 215.5 : 52 degrees to core axis. 216.5 : 52 degrees to core axis. 217.5 : 52 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS WITH HINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % YA01747 218.1 219.2 21.0 4 38 26 70 (1 <5 2700				•										
Fine-grained medium green rock with strong quartz veins from 205.9 to 206.2. Its probably a maics sill. Hosts 20 to 25 %, 1 to 2 mm, average up to 1 mm, maic crystals. (?) hornheides. There is strong local pervasive carbonatization and minor fracture controlled quartz - calcite - hiotite veinlets. Trace to nil disseminated pyrite occurs. Alteration:  205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations:  208.5 : 56 degrees to core axis.  209.1 218.1 INTERREDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from \$ to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from (1 to 3 mm. There are green to black chert and cherty argillite beds. Martix is chloritie with strong themal blottle from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sedients. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding:  210.8 : 53 degrees to core axis.  211.2 : 54 degrees to core axis.  212.4 : 56 degrees to core axis.  213.5 : 52 degrees to core axis.  214.5 : 62 degrees to core axis.  215.5 : 52 degrees to core axis.  216.5 : 52 degrees to core axis.  217.9 : 60 degrees to core axis.  218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERMEDIATE TUFFS VA01746 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6			80 degrees to core axis.											
Fine-grained medium green rock with strong quartz veins from 205.9 to 206.2. Its probably a maics sill. Hosts 20 to 25 %, 1 to 2 mm, average up to 1 mm, maic crystals. (?) hornheides. There is strong local pervasive carbonatization and minor fracture controlled quartz - calcite - hiotite veinlets. Trace to nil disseminated pyrite occurs. Alteration:  205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations:  208.5 : 56 degrees to core axis.  209.1 218.1 INTERREDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from \$ to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from (1 to 3 mm. There are green to black chert and cherty argillite beds. Martix is chloritie with strong themal blottle from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sedients. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding:  210.8 : 53 degrees to core axis.  211.2 : 54 degrees to core axis.  212.4 : 56 degrees to core axis.  213.5 : 52 degrees to core axis.  214.5 : 62 degrees to core axis.  215.5 : 52 degrees to core axis.  216.5 : 52 degrees to core axis.  217.9 : 60 degrees to core axis.  218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERMEDIATE TUFFS VA01746 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 38 26 70 (1 <5 2700 VITH HINDR CHERTY SEDIMENTS to 218.6														
from 205.9 to 206.2. Is probably a mafic sill. Hosts 20 to 25 %, 1 to 2 mm, average up to 1 mm, and ic crystals. (?) hornblendes. There is strong local pervasive carbonatization and minor fracture controlled quartz calcite - biotite veinlets. Trace to nil disseminated pyrite occurs. Alteration:. 205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations:. 208.5: 56 degrees to core axis. Crey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar. crystals are from < 1 to 3 mm. There are green to black chert and cherty argillite beds. Hattri is chloritic with strong themal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sedients. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval. Bedding:. 210.8: 53 degrees to core axis. 210.2: 54 degrees to core axis. 211.2: 54 degrees to core axis. 212.4: 5: 62 degrees to core axis. 215.5: 52 degrees to core axis. 216.5: 52 degrees to core axis. 217.9: 60 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 65 2700 MTH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 220.2 1.0 4 38 26 70 (1 65 4200	205.5	209.1	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION											
to 25 %, 1 to 2 mm, average up to 1 mm, mafic crystals. (?) hornblendes. There is strong local pervasive carbonatization and minor fracture controlled quartz - calcite - biotite veinlets. Trace to nil disseminated pyrite occurs. Alteration: 205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations: 208.5: 56 degrees to core axis.  209.1 218.1 INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from 4 it to 3 mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval. Bedding: 210.8: 53 degrees to core axis. 211.2: 54 degrees to core axis. 212.4: 5: 63 degrees to core axis. 215.5: 52 degrees to core axis. 216.5: 52 degrees to core axis. 217.9: 60 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS WARDITAR HONG CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VARDITAR 218.1 219.2 21.0 4 74 15 89 (1 65 2700 MITTH HINDR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VARDITAR 219.2 220.2 1.0 4 38 26 70 (1 65 4200				VA01082	205.5	209.1	3.6	n/a	199	n/a	37	n/a	n/a	249
(?) hornblendes. There is strong local pervasive carbonatization and minor fracture controlled quartz - calcite - biotite veinlets. Trace to nil disseminated pyrite occurs.  Alteration: 205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations: 208.5 : 56 degrees to core axis.  209.1 218.1 INTERHEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from (1 to 3 ma. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding: 210.8 : 53 degrees to core axis. 211.2 : 54 degrees to core axis. 212.4 : 63 degrees to core axis. 212.5 : 52 degrees to core axis. 213.5 : 52 degrees to core axis. 215.5 : 52 degrees to core axis. 215.5 : 52 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERNEDIATE TUFFS VA01748 219.2 220.2 1.0 4 38 26 70 (1 <5 2700 MITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 1.1 4 74 15 89 (1 <5 2700 MITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200														
carbonatization and minor fracture controlled quartz - calcite - hiotite veinlets. Trace to nil disseminated pyrite occurs.  Alteration: 205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations: 208.5 : 56 degrees to core axis.  209.1 218.1 INTERHEDIATE TUFFS WITH HINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from (1 to 3) mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled quartz veinlets. Sediments are less than 5 % of total interval. Bedding:. 210.8 : 53 degrees to core axis. 211.2 : 54 degrees to core axis. 212.4 : 63 degrees to core axis. 215.5 : 52 degrees to core axis. 215.6 : 62 degrees to core axis. 215.7 : 60 degrees to core axis. 215.8 : 62 degrees to core axis. 215.9 : 62 degrees to core axis. 215.1 : 62 degrees to core axis. 215.2 : 62 degrees to core axis. 215.3 : 62 degrees to core axis. 215.4 : 63 degrees to core axis. 215.5 : 52 degrees to core axis. 216.5 : 62 degrees to core axis. 217.9 : 60 degrees to core axis. 218.1 220.2 BLACK ARCILLITE Black argillite with minor clasts of INTERHEDIATE TUFFS WAD1748 219.2 220.2 1.0 4 38 26 70 (1 55 4200														
calcite - biotite veinlets. Trace to nil disseminated pyrite occurs. Alteration : 205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations : 208.5 : 56 degrees to core axis.  209.1 218.1 INTERHEDIATE TUFFS WITH HINOR CHERTY SEDIHENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from (1 to 3 mm. There are green to black chert and cherty argillite beds. Hatrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled quartz veinlets. Sediments are less than 5 % of total interval. Bedding : 210.8 : 53 degrees to core axis. 211.2 : 54 degrees to core axis. 212.4 : 63 degrees to core axis. 215.5 : 52 degrees to core axis. 215.5 : 52 degrees to core axis. 216.5 : 62 degrees to core axis. 217.9 : 60 degrees to core axis. 215.5 : 52 degrees to core axis. 215.5 : 52 degrees to core axis. 216.5 : 62 degrees to core axis. 217.5 : 63 degrees to core axis. 218.1 220.2 BLACK ARCILLITE Black argillite with minor clasts of INTERHEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 <5 2700 WITH HINOR CHERTY SEDIHENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 318 26 70 (1 <5 4200				1										
Description														
Alteration : 205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations : 208.5 : 36 degrees to core axis.  209.1 218.1 INTERHEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from < 1 to 3 mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding :. 210.8 : 53 degrees to core axis. 211.2 : 54 degrees to core axis. 211.2 : 52 degrees to core axis. 215.2 : 52 degrees to core axis. 215.5 : 52 degrees to core axis. 216.5 : 52 degrees to core axis. 217.9 : 60 degrees to core axis. 218.1 220.2 BLACK ARCILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 5 2700 MTH HINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 220.2 1.0 4 38 26 70 (1 5 4200														
205.5 209.1 STRONG PERVASIVE CARBONATIZATION. Foliations: 208.5: 56 degrees to core axis.  209.1 218.1 INTERREDIATE TUFS WITH HINOR CHERTY SEDIMENTS Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from (1 to 3 mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding: 210.8: 53 degrees to core axis. 211.2: 54 degrees to core axis. 212.4: 63 degrees to core axis. 217.9: 60 degrees to core axis. 217.9: 60 degrees to core axis. 215.5: 52 degrees to core axis. 215.5: 52 degrees to core axis. 216.5: 52 degrees to core axis. 217.7 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 <1 <5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 218.1 219.2 20.2 1.0 4 38 26 70 <1 <5 4200														
Foliations: . 208.5 : 56 degrees to core axis.  209.1 218.1 INTERHEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS  Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from < 1 to 3 mm. There are green to black chert and cherty argulite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding: . 210.8 : 53 degrees to core axis 211.2 : 54 degrees to core axis 212.4 : 63 degrees to core axis 217.9 : 60 degrees to core axis 215.2 : 62 degrees to core axis 216.5 : 52 degrees to core axis 217.9 : 60 degrees to core axis 218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERMEDIATE TUFFS VAOIT48 219.2 21.1 4 74 15 89 (1 <5 2700 NTTH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VAOIT48 219.2 220.2 1.0 4 38 26 70 (1 <5 4200														
209.1 218.1 INTERMEDIATE TUFFS WITH HINOR CHERTY SEDIMENTS  Grey - brown to grey to dark brown tuff with on average 20 to 25 A crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from < 1 to 3 mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding: 210.8: 53 degrees to core axis. 211.2: 54 degrees to core axis. 212.4: 63 degrees to core axis. 215.5: 52 degrees to core axis. 217.9: 60 degrees to core axis. 217.9: 50 degrees to core axis. 215.5: 52 degrees to core axis. 215.5: 52 degrees to core axis. 215.6: 62 degrees to core axis. 215.7: 62 degrees to core axis. 216.8: 63 degrees to core axis. 217.9: 60 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 <1 <5 2700 NTTH HINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01747 219.2 220.2 1.0 4 38 26 70 <1 <5 4200														
Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from <1 to 3 mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding:  210.8 : 53 degrees to core axis.  211.2 : 54 degrees to core axis.  215.5 : 62 degrees to core axis.  217.9 : 60 degrees to core axis.  218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 <5 2700 MITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200)			208.5 : 56 degrees to core axis.											
Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from <1 to 3 mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding:  210.8 : 53 degrees to core axis.  211.2 : 54 degrees to core axis.  215.5 : 62 degrees to core axis.  217.9 : 60 degrees to core axis.  218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 <5 2700 MITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200)														
Grey - brown to grey to dark brown tuff with on average 20 to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from <1 to 3 mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding:  210.8 : 53 degrees to core axis.  211.2 : 54 degrees to core axis.  215.5 : 62 degrees to core axis.  217.9 : 60 degrees to core axis.  218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 <5 2700 MITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200)	200.1	210 1	TUMPDUPDIAME THEFE WITH WINAD CURDMY CENTWENTS											
to 25 % crystals, variable from 5 to 1 feldspar to quartz to 3 to 1 quartz to feldspar, crystals are from < 1 to 3 mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding: 210.8:53 degrees to core axis. 211.2:54 degrees to core axis. 212.4:63 degrees to core axis. 215.2:62 degrees to core axis. 217.9:60 degrees to core axis. Foliations: 214.5:62 degrees to core axis. 215.5:52 degrees to core axis. 215.5:52 degrees to core axis. 217.9:60 degrees to core axis. 218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 <5 2700 NITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200	203.1	210.1		V101083	210 0	218 0	9 0	2012	165	n/2	45	n/a	n/a 1	470
to 3 to 1 quartz to feldspar, crystals are from < 1 to 3 mm. There are green to black chert and cherty argillite beds. Hatrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval. Bedding: 210.8: 53 degrees to core axis. 211.2: 54 degrees to core axis. 212.4: 63 degrees to core axis. 215.5: 62 degrees to core axis. 217.9: 60 degrees to core axis. 217.9: 60 degrees to core axis. 215.5: 52 degrees to core axis. 215.5: 52 degrees to core axis. 216.5: 52 degrees to core axis. 217.9: 60 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 <1 <5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 <1 <5 4200				1401003	210.0	210.0	8.0	11/ a	103	II/ a	43	11/ a	11/ a 1	.4.0
mm. There are green to black chert and cherty argillite beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval. Bedding: 210.8: 53 degrees to core axis. 211.2: 54 degrees to core axis. 212.4: 63 degrees to core axis. 215.2: 62 degrees to core axis. 217.9: 60 degrees to core axis. 501.3: 214.5: 62 degrees to core axis. 215.5: 52 degrees to core axis. 216.5: 52 degrees to core axis. 217.9: 60 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 5 4200														
beds. Matrix is chloritic with strong thermal biotite from 217.5 to 218.1. There is 1 % fracture controlled pyrite in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding: 210.8:53 degrees to core axis. 211.2:54 degrees to core axis. 212.4:63 degrees to core axis. 215.2:62 degrees to core axis. 217.9:60 degrees to core axis. 217.9:60 degrees to core axis. 214.5:62 degrees to core axis. 215.5:52 degrees to core axis. 216.5:52 degrees to core axis. 217.9:60 degrees to core axis. 218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 <5 2700 VITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200)														
in the sediments. There are minor fracture controlled quartz veinlets. Sediments are less than 5 % of total interval.  Bedding:. 210.8:53 degrees to core axis. 211.2:54 degrees to core axis. 212.4:63 degrees to core axis. 215.2:62 degrees to core axis. 217.9:60 degrees to core axis. Foliations:. 214.5:62 degrees to core axis. 215.5:52 degrees to core axis. 215.5:52 degrees to core axis. 216.5 to 20 degrees to core axis. 217.9:60 degrees to core axis. 218.1 degrees to core axis. 218.2 degrees to core axis. 218.3 degrees to core axis. 218.4 degrees to core axis. 218.5 degrees to core axis. 219.6 degrees to core axis. 219.7 degrees to core axis. 210.7 degrees to core axis. 210.8 degrees to core a														
quartz veinlets. Sediments are less than 5 % of total interval.  Bedding:. 210.8: 53 degrees to core axis. 211.2: 54 degrees to core axis. 212.4: 63 degrees to core axis. 217.9: 60 degrees to core axis. 217.9: 60 degrees to core axis. Foliations:. 214.5: 62 degrees to core axis. 215.5: 52 degrees to core axis. 215.6: 62 degrees to core axis. 215.7: 62 degrees to core axis. 215.8: 62 degrees to core axis. 216.9: 62 degrees to core axis. 217.9: 60 degrees to core axis. 218.1 degrees to core axis. 219.2 degrees to core axis. 219.2 degrees to core axis. 210.2 degrees to core axis. 210.3 degrees to core axis. 210.4 degrees to core axis. 210.5 degrees to core axis. 210.6 degrees to core axis. 210.6 degrees to core axis. 210.7 degrees to core axis. 210.8 degrees to core axis. 210.1 degrees to core axis. 210.2 degrees to core axis. 210.2 degrees to core axis. 210.3 degrees to core axis. 210.4 degrees to core axis. 210.4 degrees to core axis. 210.2 degrees to core axis. 210.2 degrees to core axis. 210.3 degrees to core axis. 210.4 degrees to core axis. 210.2			217.5 to 218.1. There is 1 % fracture controlled pyrite											
interval.  Bedding:. 210.8:53 degrees to core axis. 211.2:54 degrees to core axis. 212.4:63 degrees to core axis. 215.2:62 degrees to core axis. 217.9:60 degrees to core axis. Foliations: 214.5:62 degrees to core axis. 215.5:52 degrees to core axis. 215.5:52 degrees to core axis. 216.5:62 degrees to core axis. 217.9:60 degrees to core axis.														
Bedding :. 210.8 : 53 degrees to core axis. 211.2 : 54 degrees to core axis. 212.4 : 63 degrees to core axis. 215.2 : 62 degrees to core axis. 217.9 : 60 degrees to core axis. Foliations :. 214.5 : 62 degrees to core axis. 215.5 : 52 degrees to core axis. 215.5 : 52 degrees to core axis. 216.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 200 VA017			•											
210.8 : 53 degrees to core axis. 211.2 : 54 degrees to core axis. 212.4 : 63 degrees to core axis. 215.2 : 62 degrees to core axis. 217.9 : 60 degrees to core axis. Foliations :. 214.5 : 62 degrees to core axis. 215.5 : 52 degrees to core axis. 215.6 : 62 degrees to core axis. 216.7 : 60 degrees to core axis. 217.9 : 60 degrees to core axis. 218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERHEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2														
211.2 : 54 degrees to core axis. 212.4 : 63 degrees to core axis. 215.2 : 62 degrees to core axis. 217.9 : 60 degrees to core axis. Foliations :. 214.5 : 62 degrees to core axis. 215.5 : 52 degrees to core axis.  218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERHEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA1747 VA01748 219.2 220.2 1.0 VA01748 219.2 220.2 220.2 1.0 VA01748 219.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 220.2 22														
212.4 : 63 degrees to core axis. 215.2 : 62 degrees to core axis. 217.9 : 60 degrees to core axis. Foliations :. 214.5 : 62 degrees to core axis. 215.5 : 52 degrees to core axis.  218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERHEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 200 VA01748 219.2 200 VA01														
215.2 : 62 degrees to core axis. 217.9 : 60 degrees to core axis. Foliations : 214.5 : 62 degrees to core axis. 215.5 : 52 degrees to core axis.  218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 200 VA01748 219.2 200 VA01748														
217.9 : 60 degrees to core axis. Foliations :. 214.5 : 62 degrees to core axis. 215.5 : 52 degrees to core axis.  218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERHEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 1.0 4 200 VA01748 219.2 220.2 200 VA01748 219.2 200 VA0174														
Foliations :. 214.5 : 62 degrees to core axis. 215.5 : 52 degrees to core axis.  218.1 220.2 BLACK ARGILLITE Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 <5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 VA1748 219.2 220.2 1.0 4 200 VA1748 219.2 220.2 200 VA1748 219.2 220.2 200 VA1748 219.2 220.2 200 VA1748 219.2 220.2 200 VA1748 219.2 200 VA17														
215.5 : 52 degrees to core axis.  218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERHEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 <5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 <5 4200 c)														
218.1 220.2 BLACK ARGILLITE  Black argillite with minor clasts of INTERHEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200 C))			214.5 : 62 degrees to core axis.											
Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200			215.5 : 52 degrees to core axis.											
Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200														
Black argillite with minor clasts of INTERMEDIATE TUFFS VA01747 218.1 219.2 1.1 4 74 15 89 (1 (5 2700 WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200	218 1	220 2	BLACK ARCTLLTTE											
WITH MINOR CHERTY SEDIMENTS to 218.6. There is 3 to 5 % VA01748 219.2 220.2 1.0 4 38 26 70 (1 (5 4200	440.1	260.6		VA01747	218.1	219.2	1.1	4	74	15	89	(1	<b>(5 2</b>	700
nurity persilal to hadding and fracture controlled. There								, 4						
are numerous ( 1 mm fracture controlled quartz veinlets,			pyrite parallel to bedding and fracture controlled. There											

2 .

PROPERTY.	Chamainus	7 17
PROPERTY	Chemainus	J.V.

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-49 9

From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba o) (ppm.)	)
220.2	220.8	FELDSPAR PORPHYRITIC GABBRO												
		Fine-grained medium green gabbro with approximately 10 %,												
		3 mm, feldspars and minor fracture controlled calcite												
		veinlets.												
220.8	250 6	BLACK ARGILLITE												
220.0	230.0	Blocky, highly fractured core from 235 to lower contact.	VA01749	220.8	222.0	1.2		54	28	90	<b>/1</b> ·	₹5	3400	
		Contains minor chert beds, but is greater than 90 %	VA01749	222.0	223.0	1.0	3	30	25	89 82	<1 <1	<b>15</b>	4800	
		argillite. There is numerous fracture controlled quartz	VA01751	223.0	224.0	1.0	3	47	25	98	(1	₹5	5500	
		and calcite veinlets, up to 5 % of the argillite. There is	VA01752	224.0	225.0	1.0	3	40	28	92	<b>(1</b>	< 5	6200	
		2 to 3 % fine-grained fracture controlled pyrite in the	VA01753	225.0	226.0	1.0	3	21	29	80	(1	₹5	4300	
		argillite. There is fault gouge from 243.4 to 244.4 at 63	VA01754	226.0	227.0	1.0	3	19	30	75	<1	₹5	3100	
		degrees to core axis. Is much harder than Nanaimo	VA01755	227.0	228.0	1.0	3	18	25	69	<1	< 5	2500	
		argillite with good bedding.	VA01756	228.0	229.0	1.0	3	19	22	71	- (1	₹5	3100	
		Lost core :.	VA01757	229.0	230.0	1.0	3 .	23	28	88	$\mathbf{G}_{-}$	< 5	2700	
		236.8 238.0 0.1 m.	VA01758	230.0	232.0	2.0	3	28	29	77	<b>K1</b>		2700	
		238.0 239.9 0.6 m.	VA01759	232.0	234.0	2.0	3	23	29	65	(1 .	-	3600	
		239.9 240.8 0.3 m.	VA01760	234.0	235.0	1.0	3	21	25	59	₹1		4000	
		240.8 243.2 0.2 m.	VA01761	236.0	238.0	2.0	3	28	30	86	(1	6	2800	
		243.2 244.4 0.3 m. 245.1 247.2 0.3 m.	VA01762	238.0	240.0	2.0	3	25	31	66 72	(1	11	2200	
		245.1 247.2 0.3 m. Bedding :.	VA01763 VA01764	240.0	242.0	2.0	3	22 16	31 29	58	(1	√5 25	2400	
		221.0 : 73 degrees to core axis.	VA01764	244.0	244.0	2.0	3	20	29	56	₹1	<b>45</b>	2300	
		224.0 : 62 degrees to core axis.	VA01766	246.0	248.0	2.0	3	24	30	68	(1	(5	2600	
		226.5 : 72 degrees to core axis.	VA01767	248.0	249.6	1.6	3	9	27	43	<1		3200	
		236.1: 70 degrees to core axis.	VA01768	249.6	250.6	1.0	. 3	18	29	40	(1		2900	
		241.9 : 50 degrees to core axis.	***************************************	4-7-0	230.0						`-	. •		
		Alteration:												
		220.8 250.6 STRONG FRACTURE CONTROLLED CARBONATIZATION.												
		220.8 250.6 MODERATE FRACTURE CONTROLLED SILICIFICATION.												

#### 250.6 252.1 TUFFACEOUS CONGLOMERATE

Felsic tuff with 15 to 20 %, 2 to 3 mm, quartz and feldspar grains and 5 %, 1 to 5 mm, argillite lapilli and 10 to 15 %, 5 to 20 cm, argillite angular blocks. There is minor fracture controlled calcite veinlets. Bedding is at 40 degrees to core axis and the foliation is at 65 to 70 degrees to core axis.

End of hole: 827 feet (252.1 m) on Wednesday May 4, 1988 at 9:15 a.m.

Total lost core: 5.4 m % Recovery = 97.9 %.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	25102	1AL203	ZCAO	zHGO	ZNA20	ZK20	ZFE203	11102	ZP205	ZHNO	ZLOI	SUM	BA	AI	NACA
			<del></del>	· · · · ·											 		
VA00630	23.10	23.20	73.30	14.40	2.43	2.34	2.25	1.33	1.28	0.32	0.10	0.01	1.92	99.68	1120.	44.	5.
VA00631	33.40	33.50	71.00	15.00	2.11	1.52	1.69	3.08	1.48	0.33	0.08	0.02	3.08	99.39	2200.	55.	4.
VA00632	71.00	71.10	45.50	8.41	14.10	12.90	0.83	0.21	12.80	0.62	0.11	0.23	4.08	99.79	122.	47.	15.
VA00633	79.30	79.40	50.00	17.20	7.52	7.40	3.97	0.60	9.02	0.71	0.13	0.18	2.47	99.20	503.	41.	11.
VA00634	93.50	93.60	49.80	14.00	11.60	8.77	2.41	0.25	10.10	0.56	0.13	0.16	2.47	100.25	163.	39.	14.
VA00635	108.10	108.20	50.10	13.20	11.30	9.38	2.53	0.16	10.20	0.55	0.13	0.18	2.23	99.96	65.	41.	14.
VA00636	126.30	126.40	43.00	14.60	18.60	6.43	0.97	0.25	10.10	0.51	0.13	0.13	5.39	100.11	161.	25.	20.
VA00637	138.90	139.00	48.20	13.30	9.65	10.10	2.69	0.43	10.90	0.70	0.18	0.20	3.08	99.43	201.	46.	12.
VA00638	163.10	163.20	48.20	16.40	8.59	7.99	3.10	0.57	11.80	0.84	0.18	0.19	2.47	100.33	404.	42.	12.
VA00639	207.10	207.20	48.50	14.80	10.10	7.93	3.35	0.20	9.94	0.60	0.14	0.16	4.08	99.80	264.	38.	13.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)			ROCK	CODES	MIN
VA00630	23.10	23.20	41.0	236.0	1120.0	16.0	95.0	23.0	10.0	<10.0	<10.0			TEBD	PHW	DRP
VA00631	33.40	33.50	70.0	131.0	2200.0	32.0	96.0	<10.0	<10.0	<10.0	<10.0			TFRD	PHS	DBP
VA00632	71.90	71.10	16.0	162.0	122.0	<10.0	<10.0	17.0	<10.0	50.0	158.0			PMB	?	, A
VA00633	79.30	79.40	20.0	375.0	503.0	<10.0	<10.0	14.0	167.0	28.0	32.0			TME	?	À
VA00634	93.50	93.60	19.0	342.0	163.0	<10.0	<10.0	<10.0	178.0	30.0	62.0			UMB	EHM	A
VA00635	108.10	108.20	<10.0	298.0	65.0	23.0	<10.0	13.0	55.0	29.0	77.0			UMB	EHM	A
VA00636	126.30	126.40	20.0	651.0	161.0	13.0	<10.0	10.0	<10.0	<10.0	46.0			VHB	PEW	A
VA00637	138.90	139.00	13.0	178.0	201.0	<10.0	<10.0	10.0	283.0	50.0	94.0			TMB	?	A
VA00638	163.10	163.20	14.0	406.0	404.0	<10.0	<10.0	19.0	217.0	73.0	42.0			THA	?	A
VA00639	207.10	207.20	10.0	291.0	264.0	<10.0	<10.0	<10.0	237.0	25.0	58.0			PMA	?	Α '.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

FROM	то	15102	ZAL203	ZCAO	XMGO	ZNA20	XK20	XFE203	21102	zp205	ZHHO	XL01	sun	BA	AI	NACA
		**********									··			· · · · · · · · · · · · · · · · · · ·		·
5.20	21.00	63.50	16.40	5.43	1.82	1.39	1.51	2.78	0.34			5.23	98.40	1360.	33.	7.
21.00	33.00	70.40	15.70	2.39	2.49	2.17	.2.11	1.60	0.37			2.70	99.93	1600.	50.	5.
43.00	46.00	71.20	14.20	2.32	1.06	2.47	2.19	2.46	0.34			2.00	98.24	1530.	40.	5.
68.00	84.00	44.40	17.30	14.30	5.76	2.12	0.62	10.60	0.62			3.77	99.49	451.	28.	16.
85.00	105.00	49.20	13.80	11.10	8.60	2.68	0.30	9.84	0.56			2.62	98.70	163.	39.	14.
105.00	125.00	45.70	14.00	10.20	8.32	2.71	0.41	10.00	0.58			7.16	99.08	257.	40.	13.
127.00	137.00	46.00	15.00	10.80	7.75	2.38	1.09	10.50	0.81			3.47	97.80	634.	40.	13.
140.20	160.20	49.70	16.60	5.98	6.91	4.00	1.58	9.74	0.79			3.08	98.38	622.	46.	10.
161.00	167.00	47.10	16.20	9.68	7.33	3.07	0.40	11.00	0.80			2.85	98.43	312.	38.	13.
205.50	209.10	51.30	14.80	7.53	7.64	4.53	0.17	9.43	0.61			3.00	99.00	249.	39.	12.
210.00	218.00	48.40	16.50	5.68	8.15	3.73	0.98	10.00	0.77			5.23	99.44	1470.	49.	9.
	5.20 21.00 43.00 68.00 85.00 105.00 127.00 140.20 161.00	5.20 21.00 21.00 33.00 43.00 46.00 68.00 84.00	5.20 21.00 63.50 21.00 33.00 70.40 43.00 46.00 71.20 68.00 84.00 44.40 85.00 105.00 49.20 105.00 125.00 45.70 127.00 137.00 46.00 140.20 160.20 49.70 161.00 167.00 47.10	5.20 21.00 63.50 16.40 21.00 33.00 70.40 15.70 43.00 46.00 71.20 14.20 68.00 84.00 44.40 17.30 85.00 105.00 49.20 13.80 105.00 125.00 45.70 14.00 127.00 137.00 46.00 15.00 140.20 160.20 49.70 16.60 161.00 167.00 47.10 16.20 205.50 209.10 51.30 14.80	5.20 21.00 63.50 16.40 5.43 21.00 33.00 70.40 15.70 2.39 43.00 46.00 71.20 14.20 2.32 68.00 84.00 44.40 17.30 14.30 85.00 105.00 49.20 13.80 11.10 105.00 125.00 45.70 14.00 10.20 127.00 137.00 46.00 15.00 10.80 140.20 160.20 49.70 16.60 5.98 161.00 167.00 47.10 16.20 9.68 205.50 209.10 51.30 14.80 7.52	5.20 21.00 63.50 16.40 5.43 1.82 21.00 33.00 70.40 15.70 2.39 2.49 43.00 46.00 71.20 14.20 2.32 1.06 68.00 84.00 44.40 17.30 14.30 5.76 85.00 105.00 49.20 13.90 11.10 8.60 105.00 125.00 45.70 14.00 10.20 8.32 127.00 137.00 46.00 15.00 10.80 7.75 140.20 160.20 49.70 16.60 5.98 6.91 161.00 167.00 47.10 16.20 9.68 7.33 205.50 209.10 51.30 14.80 7.52 7.64	5.20 21.00 63.50 16.40 5.43 1.82 1.39 21.00 33.00 70.40 15.70 2.39 2.49 2.17 43.00 46.00 71.20 14.20 2.32 1.06 2.47 68.00 84.00 44.40 17.30 14.30 5.76 2.12 85.00 105.00 49.20 13.90 11.10 8.60 2.68 105.00 125.00 45.70 14.00 10.20 8.32 2.71 127.00 137.00 46.00 15.00 10.80 7.75 2.38 140.20 160.20 49.70 16.60 5.98 6.91 4.00 161.00 167.00 47.10 16.20 9.68 7.33 3.07 205.50 209.10 51.30 14.80 7.52 7.64 4.53	5.20 21.00 63.50 16.40 5.43 1.82 1.39 1.51 21.00 33.00 70.40 15.70 2.39 2.49 2.17 2.11 43.00 46.00 71.20 14.20 2.32 1.06 2.47 2.19 68.00 84.00 44.40 17.30 14.30 5.76 2.12 0.62 85.00 105.00 49.20 13.80 11.10 8.60 2.68 0.30 105.00 125.00 45.70 14.00 10.20 8.32 2.71 0.41 127.00 137.00 46.00 15.00 10.80 7.75 2.38 1.09 140.20 160.20 49.70 16.60 5.98 6.91 4.00 1.58 161.00 167.00 47.10 16.20 9.68 7.33 3.07 0.40 205.50 209.10 51.30 14.80 7.52 7.64 4.53 0.17	5.20 21.00 63.50 16.40 5.43 1.82 1.39 1.51 2.78 21.00 33.00 70.40 15.70 2.39 2.49 2.17 2.11 1.60 43.00 46.00 71.20 14.20 2.32 1.06 2.47 2.19 2.46 68.00 84.00 44.40 17.30 14.30 5.76 2.12 0.62 10.60 85.00 105.00 49.20 13.80 11.10 8.60 2.68 0.30 9.84 105.00 125.00 45.70 14.00 10.20 8.32 2.71 0.41 10.00 127.00 137.00 46.00 15.00 10.80 7.75 2.38 1.09 10.50 140.20 160.20 49.70 16.60 5.98 6.91 4.00 1.58 9.74 161.00 167.00 47.10 16.20 9.68 7.33 3.07 0.40 11.00 205.50 209.10 51.30 14.80 7.52 7.64 4.53 0.17 9.43	5.20 21.00 63.50 16.40 5.43 1.82 1.39 1.51 2.78 0.34 21.00 33.00 70.40 15.70 2.39 2.49 2.17 2.11 1.60 0.37 43.00 46.00 71.20 14.20 2.32 1.06 2.47 2.19 2.46 0.34 68.00 84.00 44.40 17.30 14.30 5.76 2.12 0.62 10.60 0.62 85.00 105.00 49.20 13.80 11.10 8.60 2.68 0.30 9.84 0.56 105.00 125.00 45.70 14.00 10.20 8.32 2.71 0.41 10.00 0.58 127.00 137.00 46.00 15.00 10.80 7.75 2.38 1.09 10.50 0.81 140.20 160.20 49.70 16.60 5.98 6.91 4.00 1.58 9.74 0.79 161.00 167.00 47.10 16.20 9.68 7.33 3.07 0.40 11.00 0.80 205.50 209.10 51.30 14.80 7.52 7.64 4.53 0.17 9.43 0.61	5.20 21.00 63.50 16.40 5.43 1.82 1.39 1.51 2.78 0.34 21.00 33.00 70.40 15.70 2.39 2.49 2.17 2.11 1.60 0.37 43.00 46.00 71.20 14.20 2.32 1.06 2.47 2.19 2.46 0.34 68.00 84.00 44.40 17.30 14.30 5.76 2.12 0.62 10.60 0.62 85.00 105.00 49.20 13.80 11.10 8.60 2.68 0.30 9.84 0.56 105.00 125.00 45.70 14.00 10.20 8.32 2.71 0.41 10.00 0.58 127.00 137.00 46.00 15.00 10.80 7.75 2.38 1.09 10.50 0.81 140.20 160.20 49.70 16.60 5.98 6.91 4.00 1.58 9.74 0.79 161.00 167.00 47.10 16.20 9.68 7.33 3.07 0.40 11.00 0.80 205.50 209.10 51.30 14.80 7.52 7.64 4.53 0.17 9.43 0.61	5.20 21.00 63.50 16.40 5.43 1.82 1.39 1.51 2.78 0.34 21.00 33.00 70.40 15.70 2.39 2.49 2.17 2.11 1.60 0.37 43.00 46.00 71.20 14.20 2.32 1.06 2.47 2.19 2.46 0.34 68.00 84.00 44.40 17.30 14.30 5.76 2.12 0.62 10.60 0.62 85.00 105.00 49.20 13.80 11.10 8.60 2.68 0.30 9.84 0.56 105.00 125.00 45.70 14.00 10.20 8.32 2.71 0.41 10.00 0.58 127.00 137.00 46.00 15.00 10.80 7.75 2.38 1.09 10.50 0.81 140.20 160.20 49.70 16.60 5.98 6.91 4.00 1.58 9.74 0.79 161.00 167.00 47.10 16.20 9.68 7.33 3.07 0.40 11.00 0.80 205.50 209.10 51.30 14.80 7.52 7.64 4.53 0.17 9.43 0.61	5.20 21.00 63.50 16.40 5.43 1.82 1.39 1.51 2.78 0.34 5.23 21.00 33.00 70.40 15.70 2.39 2.49 2.17 2.11 1.60 0.37 2.70 43.00 46.00 71.20 14.20 2.32 1.06 2.47 2.19 2.46 0.34 2.00 68.00 84.00 44.40 17.30 14.30 5.76 2.12 0.62 10.60 0.62 3.77 85.00 105.00 49.20 13.80 11.10 8.60 2.68 0.30 9.84 0.56 2.63 105.00 125.00 45.70 14.00 10.20 8.32 2.71 0.41 10.00 0.58 7.16 127.00 137.00 46.00 15.00 10.80 7.75 2.38 1.09 10.50 0.81 3.47 140.20 160.20 49.70 16.60 5.98 6.91 4.00 1.58 9.74 0.79 3.08 161.00 167.00 47.10 16.20 9.68 7.33 3.07 0.40 11.00 0.80 2.85 205.50 209.10 51.30 14.80 7.52 7.64 4.53 0.17 9.43 0.61 3.00	5.20 21.00 63.50 16.40 5.43 1.82 1.39 1.51 2.78 0.34 5.23 98.40 21.00 33.00 70.40 15.70 2.39 2.49 2.17 2.11 1.60 0.37 2.70 99.93 43.00 46.00 71.20 14.20 2.32 1.06 2.47 2.19 2.46 0.34 2.00 98.24 68.00 84.00 44.40 17.30 14.30 5.76 2.12 0.62 10.60 0.62 3.77 99.49 85.00 105.00 49.20 13.80 11.10 8.60 2.68 0.30 9.84 0.56 2.62 98.70 105.00 125.00 45.70 14.00 10.20 8.32 2.71 0.41 10.00 0.58 7.16 99.08 127.00 137.00 46.00 15.00 10.80 7.75 2.38 1.09 10.50 0.81 3.47 97.80 140.20 160.20 49.70 16.60 5.98 6.91 4.00 1.58 9.74 0.79 3.08 98.38 161.00 167.00 47.10 16.20 9.68 7.33 3.07 0.40 11.00 0.80 2.85 98.43 205.50 209.10 51.30 14.80 7.52 7.64 4.53 0.17 9.43 0.61 3.00 99.00	5.20 21.00 63.50 16.40 5.43 1.82 1.39 1.51 2.78 0.34 5.23 98.40 1360. 21.00 33.00 70.40 15.70 2.39 2.49 2.17 2.11 1.60 0.37 2.70 99.93 1600. 43.00 46.00 71.20 14.20 2.32 1.06 2.47 2.19 2.46 0.34 2.00 98.24 1530. 68.00 84.00 44.40 17.30 14.30 5.76 2.12 0.62 10.60 0.62 3.77 99.49 451. 85.00 105.00 49.20 13.80 11.10 8.60 2.68 0.30 9.84 0.56 2.62 98.70 163. 105.00 125.00 45.70 14.00 10.20 8.32 2.71 0.41 10.00 0.58 7.16 99.08 257. 127.00 137.00 46.00 15.00 10.80 7.75 2.38 1.09 10.50 0.81 3.47 97.80 634. 140.20 160.20 49.70 16.60 5.98 6.91 4.00 1.58 9.74 0.79 3.08 98.38 622. 161.00 167.00 47.10 16.20 9.68 7.33 2.07 0.40 11.00 0.80 2.85 98.43 312. 205.50 209.10 51.30 14.80 7.52 7.64 4.53 0.17 9.43 0.61 3.00 99.00 249.	5.20 21.00 63.50 16.40 5.43 1.82 1.39 1.51 2.78 0.34 5.23 98.40 1360. 33. 21.00 33.00 70.40 15.70 2.39 2.49 2.17 2.11 1.60 0.37 2.70 99.93 1600. 50. 43.00 46.00 71.20 14.20 2.32 1.06 2.47 2.19 2.46 0.34 2.00 98.24 1530. 40. 68.00 84.00 44.40 17.30 14.30 5.76 2.12 0.62 10.60 0.62 3.77 99.49 451. 28. 85.00 105.00 49.20 13.80 11.10 8.60 2.68 0.30 9.84 0.56 2.62 98.70 163. 39. 105.00 125.00 45.70 14.00 10.20 8.32 2.71 0.41 10.00 0.58 7.16 99.08 257. 40. 127.00 137.00 46.00 15.00 10.80 7.75 2.38 1.09 10.50 0.81 3.47 97.80 634. 40. 140.20 160.20 49.70 16.60 5.98 6.91 4.00 1.58 9.74 0.79 3.08 98.98 622. 46. 161.00 167.00 47.10 16.20 9.68 7.33 3.07 0.40 11.00 0.80 2.85 98.43 312. 38. 205.50 209.10 51.30 14.80 7.53 7.64 4.53 0.17 9.43 0.61 3.00 99.00 249. 39.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	<b>T</b> 0	 RB (ppm)	SR (ppm)	8A (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)		ROCK	CODES	мім
VA01073	5.20	21.00			1360.0				34.0	<10.0	<10.0		TFBD	ncu	D.O.D.
VA01074	21.00	33.00			1600.0				<10.0	<10.0	<10.0			PSM	DCP
VA01075	43.00	46.00			1530.0				99.0	<10.0			TFBD	PSW	DBP
VA01076	68.00	84.00			451.0						11.0		TFAD	?	DCP
VA01077	85.00	105.00							141.0	34.0	42.0		TMB	7	Á
					163.0				95.0	19.0	68.0		VMB	FHM	A
	105.00				257.0				59.0	37.0	65.0		VMB	FHM	A
VA01079	127.00	137.00			634.0			· .	268.0	35.0	49.0		TMB	?	A
VA01080	140.20	160.20			600.0				177.0	59.0	57.0		TIA	9	
VA01081	161.00	167.00			312.0				150.0	54.0	41.0			į	A
/A01082	205.50	209.10			249.0								THA	?	Α
	210.00								199.0	37.0	66.0		PMB	?	Α
		223400			1470.0				165.0	45.0	73.0		IMA	?	FBP

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	НН (ррњ)	CUZN	ETS	FE
*************																	
VA01696	5.20	7.00	1200.0	31.0	31.0	<0.5	93.0	7.0	2.0	6.0	28.0	3.0	2.0	188.0	50.	5.	3.
VA01697	7.00	8.20	1000.0	61.0	17.0	0.6	104.0	10.0	<1.0	5.0	30.0	2.0	5.0	132.0	78.	5.	3.
VA01698	8.20	9.00	1500.0	27.0	12.0	<0.5	149.0	5.0	<1.0	<5.0	13.0	2.0	4.0	110.0	69.	5.	3.
VA01699	9.00	10.50	1100.0	17.0	8.0	0.6	102.0	6.0	<1.0	5.0	18.0	2.0	4.0	72.0	68.	5.	2.
VA01700	10.50	12.00	750.0	22.0	13.0	<0.5	41.0	5.0	<1.0	<5.0	9.0	2.0	2.0	79.0	63.	2.	2.
VA01702	12.00	13.00	1200.0	23.0	12.0	<0.5	42.0	5.0	<1.0	7.0	12.0	<1.0	3.0	73.0	66.	2.	2.
VA01701	13.00	14.00	1500.0	22.0	8.0	<0.5	111.0	6.0	2.0	6.0	12.0	2.0	4.0	62.0	73.	2.	2.
VA01703	14.00	15.00	2100.0	108.0	14.0	<0.5	60.0	8.0	2.0	9.0	10.0	3.0	3.0	54.0	89.	2.	3.
VA01704	15.00	16.00	2300.0	254.0	44.0	0.9	119.0	10.0	4.0	14.0	24.0	4.0	7.0	43.0	85.	2.	8.
VA01705	16.00	17.20	760.0	43.0	17.0	0.5	176.0	9.0	5.0	⟨5.0	15.0	2.0	3.0	196.0	72.	5.	4.
VA01706	17.20	20.20	1500.0	49.0	17.0	<0.5	224.0	9.0	4.0	8.0	13.0	2.0	4.0	62.0	74.	4.	3.
VA01707	20.20	21.20	1900.0	17.0	38.0	<0.5	147.0	5.0	<1.0	10.0	<5.0	2.0	6.0	167.0	31.	4.	3.
VA01708	21.20	22.70	1400.0	36.0	20.0	<0.5	51.0	3.0	<1.0	6.0	20.0	<1.0	3.0	86.0	64.	1.	1.
VA01709	30.00	32.00	2200.0	37.0	12.0	<0.5	77.0	5.0	<1.0	<5.0	30.0	2.0	4.0	78.0	76.	2.	3.
VA01710	42.80	43.80	1500.0	188.0	19.0	0.7	293.0	10.0	3.0	9.0	₹5.0	1.0	4.0	103.0	91.	2.	2.
VA01711	43.80	44.80	1300.0	176.0	32.0	0.8	69.0	7.0	2.0	14.0	16.0	3.0	4.0	80.0	85.	2.	2.
VA01712	44.80	45.80	850.0	173.0	38.0	0.7	22.0	17.0	12.0	14.0	20.0	2.0	3.0	261.0	82.	2.	3.
VA01713	45.80	46.70	6500.0	1361.0	10000.0	4.9	445.0	13.0	11.0	34.0	17.0	57.0	9.0	97.0	12.	2.	2.
VA01714	52.20	53.10	2500.0	721.0	1321.0	2.0	145.0	11.0	11.0	21.0	12.0	11.0	5.0	146.0	35.	1.	3.
VA01715	53.10	54.10	3600.0	367.0	535.0	1.7	288.0	17.0	3.0	94.0	29.0	6.0	2.0	415.0	41.	3.	4.
VA01716	54.10	55.10	2300.0	203.0	106.0	1.0	29.0	22.0	4.0	10.0	11.0	3.0	<1.0	595.0	66.	3.	5.
VA01717	55.10	56.30	3800.0	4800.0	1604.0	28.0	634.0	25.0	10.0	5600.0	35.0	11.0	2.0	529.0	75.	3.	5.
VA01718	56.30	56.60	7100.0			73.7	1954.2	9.0	57.0	13800.0	368.0	1161.0	225.0	609.0	7.	51.	>10.

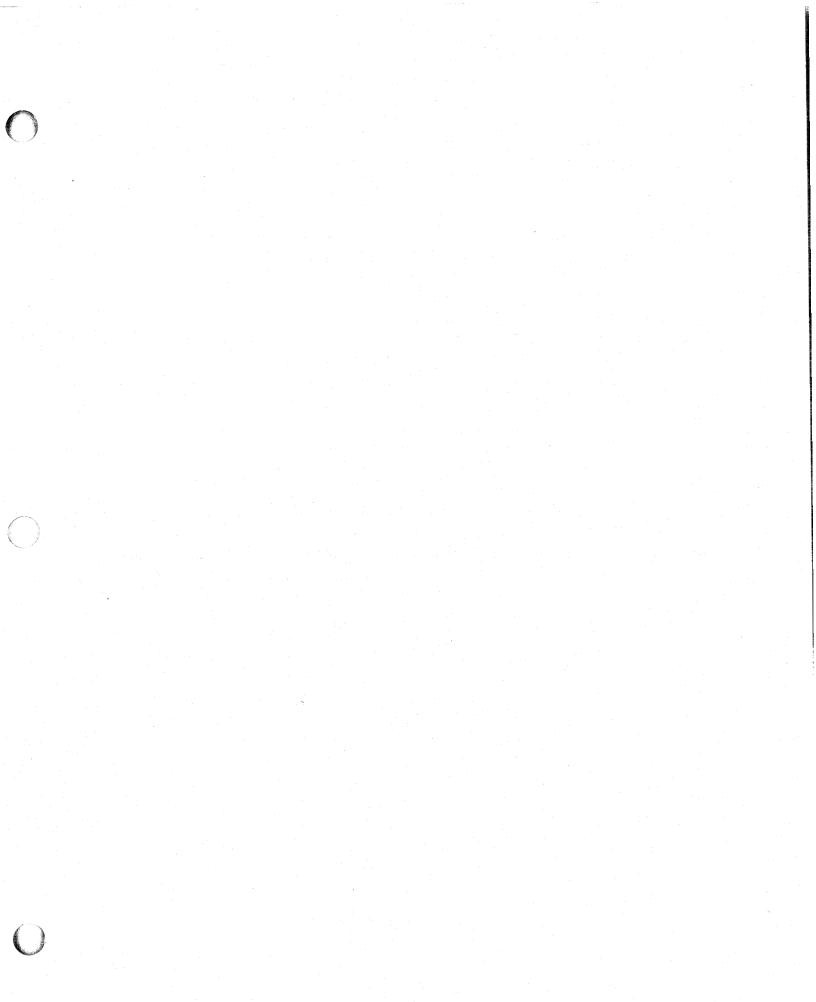
Hole No. CH88-49

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

		BA	cu	ZN	AG	AU	CO	NI	PB	AS	CD	HO	MM	CUZN	ETS	FE
		(ppm)	(ppm)	 (БЫм)	(ppm)	(ppb)	(ppm)	(ppn)	. (ppm)	(ppm)	(bbw)	(ppm)	(ենաք)			
56.60	57.00	10000.0	19200.0	22500.0	83.7	3051.4	26.0	72.0	12000.0	318.0	143.0	32.0	150.0	46.	27.	>10.
57.00	57.40	7200.0	14300.0	46000.0	145.7	6068.4	15.0	37.0	23600.0	531.0	246.0	31.0	213.0	24.	27.	7.
57.40	57.80	26000.0	23900.0	38000.0	7 <b>9.</b> 5	1885.7	7.0	31.0	6300.0	186.0	271.0	40.0	277.0	39.	33.	>10.
57.80	58.20	32000.0	20400. 1	105500.0	68.2	1062.8	4.0	28.0	2099.0	78.0	608.0	40.0	170.0	16.	52.	>10.
58.20	58.60	29000.0	47500.0	17700.0	119.3	2571.4	3.0	38.0	1763.0	132.0	125.0	41.0	149.0	73.	50.	>10.
58.60	59.00	25000.0	64000.0	26000.0	135.8	960.0	3.0	36.0	346.0	98.0	166.0	44.0	92.0	71.	50.	>10.
59.00	59.70	30000.0	14900.0	4900.0	46.6	688.0	4.0	15.0	156.0	83.0	27.0	23.0	60.0	75.	8.	5.
59.70	60.10	19000.0	14300.0	13200.0	35.7	1714.3	10.0	10.0	874.0	71.0	56.0	20.0	53.0	54.	17.	5.
60.10	60.80	20000.0	13600.0	12200.0	35.0	1645.7	13.0	12.0	952.0	84.0	66.0	24.0	76.0	53.	8.	6.
60.80	61.20	17000.0	16000.0	1800.0	32.9	335.0	26.0	6.0	250.0	136.0	18.0	8.0	40.0	90.	8.	6.
61.20	62.00	11000.0	1200.0	1200.0	8.1	266.0	8.0	2.0	93.0	139.0	10.0	4.0	31.0	50.	3.	3.
62.00	63.00	11000.0	2400.0	700.0	12.3	540.0	7.0	3.0	524.0	86.0	5.0	4.0	36.0	77.	3.	2.
19.80	120.80	2000.0	68.0	92.0	0.7	14.0	23.0	3.0	<5.0	23.0	3.0	<1.0	1376.0	43.	2.	6.
39.50	140.50	800.0	175.0	72.0	0.6	<5.0	29.0	32.0	⟨5.0	23.0	5.0	1.0	1193.0	71.	1.	6.
41.10	142.20	1000.0	148.0	54.0	0.7	<5.0	25.0	53.0	<5.0	8.0	4.0	<1.0	1006.0	73.	1.	5.
52.90	153.90	760.0	116.0	52.0	0.7	<5.0	23.0	27.0	⟨5.0	⟨5.0	5.0	1.0	896.0	69.	1.	5.
53.90	154.60	820.0	135.0	83.0	0.8	<5.0	27.0	29.0	<5.0	<5.0	5.0	1.0	1167.0	62.	1.	6.
				104.0	0.6	25.0	26.0	19.0	<5.0	31.0	4.0	1.0	773.0	60.	1.	5.
							26.0	37.0	7.0	8.0	5.0	2.0	1034.0	68.	1.	6.
											4.0	2.0	583.0	62.	2.	6.
															1.	4.
																4.
																4.
	57.00 57.40 57.40 57.80 58.20 58.60 59.00 60.10 60.30 61.20 61.20 61.20 62.00 19.80 39.50 41.10 52.90 53.90 58.30 59.20 67.60 68.60 69.60	57.00 57.40 57.40 57.80 57.80 58.20 58.20 58.60 58.60 59.00 59.70 60.10 60.10 60.80 60.80 61.20 61.20 62.00	57.00         57.40         7200.0           57.40         57.80         26000.0           57.80         58.20         32000.0           58.20         58.60         29000.0           58.60         59.00         25000.0           59.70         30000.0         59.70           60.10         60.80         20000.0           60.30         61.20         17000.0           61.20         62.00         11000.0           19.80         120.80         2000.0           39.50         140.50         800.0           41.10         142.20         1000.0           53.90         154.60         820.0           58.30         159.20         1100.0           67.60         168.60         2300.0           68.60         169.60         810.0           69.60         170.50         3200.0	57.00         57.40         7200.0         14300.0           57.40         57.80         26000.0         23900.0           57.80         58.20         32000.0         20400.0           58.20         58.60         29000.0         47500.0           58.60         59.00         25000.0         64000.0           59.70         30000.0         14900.0           59.70         60.10         19000.0         14300.0           60.10         60.80         20000.0         13600.0           61.20         62.00         11000.0         1200.0           62.00         63.00         11000.0         2400.0           41.10         142.20         1000.0         148.0           52.90         153.90         760.0         116.0           53.90         154.60         820.0         135.0           59.20         160.20         2000.0         134.0           67.60         168.60         2300.0         101.0           68.60         169.60         810.0         77.0           69.60         170.50         3200.0         32.0	57.00         57.40         7200.0         14300.0         46000.0           57.40         57.80         26000.0         23900.0         38000.0           57.80         58.20         32000.0         20400.1         105500.0           58.20         58.60         29000.0         47500.0         17700.0           58.60         59.00         25000.0         64000.0         26000.0           59.70         30000.0         14900.0         4900.0           59.70         60.10         19000.0         14300.0         13200.0           60.10         60.80         20000.0         13600.0         12200.0           60.80         61.20         17000.0         16000.0         1800.0           61.20         62.00         11000.0         1200.0         1200.0           62.00         63.00         11000.0         2400.0         700.0           19.80         120.80         2000.0         68.0         92.0           39.50         140.50         800.0         175.0         72.0           41.10         142.20         1000.0         148.0         54.0           53.90         154.60         820.0         135.0         83.0 <td>57.00         57.40         7200.0         14300.0         46000.0         145.7           57.40         57.80         26000.0         23900.0         38000.0         79.5           57.80         58.20         32000.0         20400.105500.0         68.2           58.20         58.60         29000.0         47500.0         17700.0         119.3           58.60         59.00         25000.0         64000.0         26000.0         135.8           59.00         59.70         30000.0         14900.0         4900.0         46.6           59.70         60.10         19000.0         14300.0         12200.0         35.7           60.10         60.80         20000.0         13600.0         12200.0         35.9           60.80         61.20         17000.0         16000.0         1800.0         32.9           61.20         62.00         11000.0         1200.0         1200.0         8.1           62.00         63.00         11000.0         2400.0         700.0         12.3           19.80         120.80         2000.0         68.0         92.0         0.7           52.90         153.90         760.0         116.0         52.0</td> <td>57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0           59.00         59.70         30000.0         14900.0         4900.0         46.6         688.0           59.70         60.10         19000.0         14300.0         12200.0         35.7         1714.3           60.10         60.80         20000.0         13600.0         12200.0         35.0         1645.7           60.80         61.20         17000.0         16000.0         1800.0         32.9         335.0           61.20         62.00         11000.0         1200.0         1800.0         32.9         340.0           62.00         63.00         175.0         72.0         0.6         &lt;5.0           41.10</td> <td>57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8         4.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0           59.00         59.70         30000.0         14900.0         4900.0         46.6         688.0         4.0           59.70         30000.0         14300.0         12200.0         35.7         1714.3         10.0           69.70         60.10         19000.0         13600.0         12200.0         35.7         1714.3         10.0           60.10         19000.0         13600.0         12200.0         35.7         1714.3         10.0           60.80         61.20         17000.0         1600.0         1800.0         32.9         335.0         26.0           &lt;</td> <td>57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0           57.80         58.20         32000.0         20400.0         105500.0         68.2         1062.8         4.0         28.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0           59.70         30000.0         14900.0         4900.0         46.6         688.0         4.0         15.0           69.70         60.10         19000.0         14300.0         12200.0         35.7         1714.3         10.0         10.0           60.10         60.80         20000.0         13600.0         12200.0         35.9         1645.7         13.0         12.0           60.80         61.20         17000.0         16000.0         1800.0         32.9         335.0         26.0         6.0      &lt;</td> <td>57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0         23600.0           57.40         57.80         26000.0         23900.0         38900.0         79.5         1885.7         7.0         31.0         6300.0           57.80         58.20         32000.0         26000.0         17700.0         119.3         2571.4         3.0         38.0         1763.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0           59.00         59.70         30000.0         14900.0         4900.0         46.6         688.0         4.0         15.0         156.0           59.70         60.10         19000.0         14300.0         12200.0         35.7         1714.3         10.0         10.0         374.0           60.10         60.80         20000.0         1800.0         32.9         335.0         26.0         6.0         250.0           60.80         61.20         17000.0         16000.0         1800.0         32.9         335.0         26.0         6.0         250.0           61.20         62.00<td>57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0         23600.0         531.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8         4.0         28.0         2099.0         78.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0           59.00         55.70         30000.0         14900.0         4900.0         35.7         1714.3         10.0         15.0         156.0         83.0           59.70         60.10         19000.0         13200.0         35.7         1714.3         10.0         10.0         374.0         71.0           60.10         19000.0         13600.0         32.9         335.0</td><td>57,00         57,40         7200.0         14300.0         46000.0         148.7         6068.4         15.0         37.0         23600.0         531.0         246.0           57,40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0           57,80         58.20         32000.0         20400.         105500.0         68.2         1062.8         4.0         28.0         2099.0         78.0         608.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0           59.00         59.70         30000.0         14900.0         4900.0         35.7         1714.3         10.0         15.0         374.0         71.0         56.0           59.70         30000.0         13600.0         12200.0         35.9         1645.7         13.0         12.0         952.0         84.0         <td< td=""><td>57.00         \$7.40         7200.0         14300.0         46000.0         145.7         6069.4         15.0         37.0         23600.0         531.0         246.0         31.0           57.40         \$7.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0         40.0           57.80         \$8.20         32000.0         20400.1         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0           58.20         \$8.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0           59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0         44.0           59.00         \$3000.0         14900.0         4900.0         35.7         1714.3         10.0         10.0         374.0         71.0         56.0         20.0           60.10         19000.0         13600.0         12200.0         35.7         1714.3</td><td>57.00         \$7.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0         23600.0         531.0         246.0         31.0         213.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0         40.0         277.0           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8         4.0         29.0         299.0         78.0         608.0         40.0         170.0           58.20         58.60         29000.0         47500.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0         149.0           59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0         44.0         92.0           59.70         30000.0         14300.0         13200.0         35.7         1714.3         10.0         10.0         374.0         71.0         56.0         20.0         53.0           60.12         1900.0</td><td>57,00 57,40 7200.0 14300.0 46000.0 145.7 6068.4 15.0 37.0 23600.0 531.0 246.0 31.0 213.0 24.  57,80 57.80 26900.0 23900.0 38000.0 79.5 1885.7 7.0 31.0 6300.0 186.0 271.0 40.0 277.0 39.  57,80 58.20 3200.0 20400. 105500.0 68.2 1062.8 4.0 28.0 2099.0 78.0 608.0 40.0 170.0 16.  58,20 58.60 29000.0 47500.0 17700.0 119.3 2571.4 3.0 38.0 1763.0 132.0 132.0 135.0 41.0 149.0 73.  58,60 59.00 25000.0 64000.0 26000.0 135.8 960.0 3.0 36.0 346.0 98.0 166.0 44.0 92.0 71.  59,00 59.70 30000.0 14900.0 4900.0 46.6 688.0 4.0 15.0 156.0 83.0 27.0 23.0 60.0 75.  59,70 60.10 19000.0 14300.0 12200.0 35.7 1714.2 10.0 10.0 874.0 71.0 56.0 20.0 53.0 54.  60.10 60.80 20000.0 18600.0 12200.0 35.7 1714.2 10.0 10.0 874.0 71.0 56.0 20.0 53.0 54.  60.10 60.80 1000.0 1800.0 1800.0 32.9 335.0 26.0 6.0 250.0 136.0 180.0 40.0 90.  61.20 62.00 11000.0 1200.0 1200.0 8.1 266.0 8.0 2.0 93.0 139.0 10.0 4.0 31.0 50.  62.00 63.00 11000.0 2400.0 700.0 12.3 540.0 7.0 3.0 524.0 86.0 5.0 4.0 36.0 77.  19.80 120.80 2000.0 68.0 92.0 0.7 14.0 23.0 3.0 524.0 86.0 5.0 4.0 1376.0 43.  39.50 140.50 800.0 175.0 72.0 0.6 45.0 29.0 32.0 45.0 23.0 5.0 1.0 1190.0 73.  41.10 142.20 1000.0 148.0 54.0 0.7 45.0 23.0 27.0 45.0 45.0 5.0 4.0 1190.0 77.0 39.0 159.0 150.0 150.0 73.  53.90 153.90 760.0 116.0 52.0 0.7 45.0 23.0 27.0 45.0 45.0 5.0 4.0 1100.0 77.0 60.  53.30 154.60 820.0 135.0 83.0 0.8 45.0 27.0 29.0 45.0 45.0 5.0 4.0 1100.0 77.0 60.  53.30 159.30 110.0 157.0 104.0 6.6 25.0 26.0 19.0 45.0 31.0 4.0 1.0 77.0 104.0 66.  56.60 168.60 2300.0 101.0 63.0 0.6 45.0 27.0 29.0 45.0 45.0 5.0 5.0 1.0 1167.0 62.  56.60 169.60 810.0 77.0 71.0 40.5 45.0 26.0 51.0 12.0 8.0 2.0 6.0 46.0 52.0 60.0 46.0 52.0 60.0 46.0 52.0 60.0 52.0 60.0 52.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 6</td><td>57.00 57.40 7200.0 14300.0 4600.0 145.7 6668.4 15.0 37.0 23600.0 531.0 246.0 31.0 213.0 24. 27. 57.40 57.80 2600.0 23900.0 3000.0 79.5 1885.7 7.0 31.0 6300.0 186.0 271.0 40.0 277.0 39. 33. 57.80 58.20 32000.0 20400. 105500.0 68.2 1062.8 4.0 28.0 299.0 78.0 698.0 40.0 170.0 16. 52. 58.20 58.60 2900.0 47500.0 17700.0 119.3 2571.4 2.0 38.0 1763.0 132.0 125.0 41.0 149.0 73. 50. 58.60 59.00 25000.0 64000.0 26000.0 135.8 960.0 3.0 36.0 366.0 98.0 166.0 44.0 92.0 71. 50. 59.00 59.70 30000.0 14900.0 4900.0 46.6 688.0 4.0 15.0 156.0 83.0 27.0 23.0 60.0 75. 8. 59.70 60.10 19000.0 14300.0 12200.0 35.0 1645.7 13.0 12.0 952.0 84.0 66.0 24.0 76.0 53.0 88. 50.80 61.20 17000.0 16000.0 1800.0 32.9 335.0 26.0 6.0 250.0 130.0 130.0 120.0 98.0 1645.7 13.0 12.0 952.0 84.0 66.0 24.0 76.0 53. 8. 50.80 61.20 17000.0 16000.0 1800.0 32.9 335.0 26.0 6.0 250.0 136.0 130.0 130.0 120.0 90.0 8. 50.10 62.00 11000.0 1200.0 1200.0 81.1 266.0 8.0 2.0 93.0 130.0 130.0 120.0 90.0 8. 50.20 63.00 11000.0 2400.0 700.0 12.3 540.0 7.0 3.0 524.0 86.0 5.0 4.0 36.0 77. 3. 50.20 63.00 11000.0 148.0 54.0 0.7 2.0 14.0 23.0 3.0 45.0 23.0 45.0 23.0 40.0 1376.0 43. 2. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 32.0 25.0 53.0 54.0 25.0 10.0 1376.0 43. 2. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 25.0 53.0 54.0 25.0 25.0 50.0 10.0 1193.0 71. 1. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 25.0 53.0 25.0 50.0 10.0 110.0 1193.0 71. 1. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 27.0 25.0 53.0 25.0 50.0 10.0 1193.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27</td></td<></td></td>	57.00         57.40         7200.0         14300.0         46000.0         145.7           57.40         57.80         26000.0         23900.0         38000.0         79.5           57.80         58.20         32000.0         20400.105500.0         68.2           58.20         58.60         29000.0         47500.0         17700.0         119.3           58.60         59.00         25000.0         64000.0         26000.0         135.8           59.00         59.70         30000.0         14900.0         4900.0         46.6           59.70         60.10         19000.0         14300.0         12200.0         35.7           60.10         60.80         20000.0         13600.0         12200.0         35.9           60.80         61.20         17000.0         16000.0         1800.0         32.9           61.20         62.00         11000.0         1200.0         1200.0         8.1           62.00         63.00         11000.0         2400.0         700.0         12.3           19.80         120.80         2000.0         68.0         92.0         0.7           52.90         153.90         760.0         116.0         52.0	57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0           59.00         59.70         30000.0         14900.0         4900.0         46.6         688.0           59.70         60.10         19000.0         14300.0         12200.0         35.7         1714.3           60.10         60.80         20000.0         13600.0         12200.0         35.0         1645.7           60.80         61.20         17000.0         16000.0         1800.0         32.9         335.0           61.20         62.00         11000.0         1200.0         1800.0         32.9         340.0           62.00         63.00         175.0         72.0         0.6         <5.0           41.10	57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8         4.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0           59.00         59.70         30000.0         14900.0         4900.0         46.6         688.0         4.0           59.70         30000.0         14300.0         12200.0         35.7         1714.3         10.0           69.70         60.10         19000.0         13600.0         12200.0         35.7         1714.3         10.0           60.10         19000.0         13600.0         12200.0         35.7         1714.3         10.0           60.80         61.20         17000.0         1600.0         1800.0         32.9         335.0         26.0           <	57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0           57.80         58.20         32000.0         20400.0         105500.0         68.2         1062.8         4.0         28.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0           59.70         30000.0         14900.0         4900.0         46.6         688.0         4.0         15.0           69.70         60.10         19000.0         14300.0         12200.0         35.7         1714.3         10.0         10.0           60.10         60.80         20000.0         13600.0         12200.0         35.9         1645.7         13.0         12.0           60.80         61.20         17000.0         16000.0         1800.0         32.9         335.0         26.0         6.0      <	57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0         23600.0           57.40         57.80         26000.0         23900.0         38900.0         79.5         1885.7         7.0         31.0         6300.0           57.80         58.20         32000.0         26000.0         17700.0         119.3         2571.4         3.0         38.0         1763.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0           59.00         59.70         30000.0         14900.0         4900.0         46.6         688.0         4.0         15.0         156.0           59.70         60.10         19000.0         14300.0         12200.0         35.7         1714.3         10.0         10.0         374.0           60.10         60.80         20000.0         1800.0         32.9         335.0         26.0         6.0         250.0           60.80         61.20         17000.0         16000.0         1800.0         32.9         335.0         26.0         6.0         250.0           61.20         62.00 <td>57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0         23600.0         531.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8         4.0         28.0         2099.0         78.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0           59.00         55.70         30000.0         14900.0         4900.0         35.7         1714.3         10.0         15.0         156.0         83.0           59.70         60.10         19000.0         13200.0         35.7         1714.3         10.0         10.0         374.0         71.0           60.10         19000.0         13600.0         32.9         335.0</td> <td>57,00         57,40         7200.0         14300.0         46000.0         148.7         6068.4         15.0         37.0         23600.0         531.0         246.0           57,40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0           57,80         58.20         32000.0         20400.         105500.0         68.2         1062.8         4.0         28.0         2099.0         78.0         608.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0           59.00         59.70         30000.0         14900.0         4900.0         35.7         1714.3         10.0         15.0         374.0         71.0         56.0           59.70         30000.0         13600.0         12200.0         35.9         1645.7         13.0         12.0         952.0         84.0         <td< td=""><td>57.00         \$7.40         7200.0         14300.0         46000.0         145.7         6069.4         15.0         37.0         23600.0         531.0         246.0         31.0           57.40         \$7.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0         40.0           57.80         \$8.20         32000.0         20400.1         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0           58.20         \$8.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0           59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0         44.0           59.00         \$3000.0         14900.0         4900.0         35.7         1714.3         10.0         10.0         374.0         71.0         56.0         20.0           60.10         19000.0         13600.0         12200.0         35.7         1714.3</td><td>57.00         \$7.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0         23600.0         531.0         246.0         31.0         213.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0         40.0         277.0           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8         4.0         29.0         299.0         78.0         608.0         40.0         170.0           58.20         58.60         29000.0         47500.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0         149.0           59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0         44.0         92.0           59.70         30000.0         14300.0         13200.0         35.7         1714.3         10.0         10.0         374.0         71.0         56.0         20.0         53.0           60.12         1900.0</td><td>57,00 57,40 7200.0 14300.0 46000.0 145.7 6068.4 15.0 37.0 23600.0 531.0 246.0 31.0 213.0 24.  57,80 57.80 26900.0 23900.0 38000.0 79.5 1885.7 7.0 31.0 6300.0 186.0 271.0 40.0 277.0 39.  57,80 58.20 3200.0 20400. 105500.0 68.2 1062.8 4.0 28.0 2099.0 78.0 608.0 40.0 170.0 16.  58,20 58.60 29000.0 47500.0 17700.0 119.3 2571.4 3.0 38.0 1763.0 132.0 132.0 135.0 41.0 149.0 73.  58,60 59.00 25000.0 64000.0 26000.0 135.8 960.0 3.0 36.0 346.0 98.0 166.0 44.0 92.0 71.  59,00 59.70 30000.0 14900.0 4900.0 46.6 688.0 4.0 15.0 156.0 83.0 27.0 23.0 60.0 75.  59,70 60.10 19000.0 14300.0 12200.0 35.7 1714.2 10.0 10.0 874.0 71.0 56.0 20.0 53.0 54.  60.10 60.80 20000.0 18600.0 12200.0 35.7 1714.2 10.0 10.0 874.0 71.0 56.0 20.0 53.0 54.  60.10 60.80 1000.0 1800.0 1800.0 32.9 335.0 26.0 6.0 250.0 136.0 180.0 40.0 90.  61.20 62.00 11000.0 1200.0 1200.0 8.1 266.0 8.0 2.0 93.0 139.0 10.0 4.0 31.0 50.  62.00 63.00 11000.0 2400.0 700.0 12.3 540.0 7.0 3.0 524.0 86.0 5.0 4.0 36.0 77.  19.80 120.80 2000.0 68.0 92.0 0.7 14.0 23.0 3.0 524.0 86.0 5.0 4.0 1376.0 43.  39.50 140.50 800.0 175.0 72.0 0.6 45.0 29.0 32.0 45.0 23.0 5.0 1.0 1190.0 73.  41.10 142.20 1000.0 148.0 54.0 0.7 45.0 23.0 27.0 45.0 45.0 5.0 4.0 1190.0 77.0 39.0 159.0 150.0 150.0 73.  53.90 153.90 760.0 116.0 52.0 0.7 45.0 23.0 27.0 45.0 45.0 5.0 4.0 1100.0 77.0 60.  53.30 154.60 820.0 135.0 83.0 0.8 45.0 27.0 29.0 45.0 45.0 5.0 4.0 1100.0 77.0 60.  53.30 159.30 110.0 157.0 104.0 6.6 25.0 26.0 19.0 45.0 31.0 4.0 1.0 77.0 104.0 66.  56.60 168.60 2300.0 101.0 63.0 0.6 45.0 27.0 29.0 45.0 45.0 5.0 5.0 1.0 1167.0 62.  56.60 169.60 810.0 77.0 71.0 40.5 45.0 26.0 51.0 12.0 8.0 2.0 6.0 46.0 52.0 60.0 46.0 52.0 60.0 46.0 52.0 60.0 52.0 60.0 52.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 6</td><td>57.00 57.40 7200.0 14300.0 4600.0 145.7 6668.4 15.0 37.0 23600.0 531.0 246.0 31.0 213.0 24. 27. 57.40 57.80 2600.0 23900.0 3000.0 79.5 1885.7 7.0 31.0 6300.0 186.0 271.0 40.0 277.0 39. 33. 57.80 58.20 32000.0 20400. 105500.0 68.2 1062.8 4.0 28.0 299.0 78.0 698.0 40.0 170.0 16. 52. 58.20 58.60 2900.0 47500.0 17700.0 119.3 2571.4 2.0 38.0 1763.0 132.0 125.0 41.0 149.0 73. 50. 58.60 59.00 25000.0 64000.0 26000.0 135.8 960.0 3.0 36.0 366.0 98.0 166.0 44.0 92.0 71. 50. 59.00 59.70 30000.0 14900.0 4900.0 46.6 688.0 4.0 15.0 156.0 83.0 27.0 23.0 60.0 75. 8. 59.70 60.10 19000.0 14300.0 12200.0 35.0 1645.7 13.0 12.0 952.0 84.0 66.0 24.0 76.0 53.0 88. 50.80 61.20 17000.0 16000.0 1800.0 32.9 335.0 26.0 6.0 250.0 130.0 130.0 120.0 98.0 1645.7 13.0 12.0 952.0 84.0 66.0 24.0 76.0 53. 8. 50.80 61.20 17000.0 16000.0 1800.0 32.9 335.0 26.0 6.0 250.0 136.0 130.0 130.0 120.0 90.0 8. 50.10 62.00 11000.0 1200.0 1200.0 81.1 266.0 8.0 2.0 93.0 130.0 130.0 120.0 90.0 8. 50.20 63.00 11000.0 2400.0 700.0 12.3 540.0 7.0 3.0 524.0 86.0 5.0 4.0 36.0 77. 3. 50.20 63.00 11000.0 148.0 54.0 0.7 2.0 14.0 23.0 3.0 45.0 23.0 45.0 23.0 40.0 1376.0 43. 2. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 32.0 25.0 53.0 54.0 25.0 10.0 1376.0 43. 2. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 25.0 53.0 54.0 25.0 25.0 50.0 10.0 1193.0 71. 1. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 25.0 53.0 25.0 50.0 10.0 110.0 1193.0 71. 1. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 27.0 25.0 53.0 25.0 50.0 10.0 1193.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27</td></td<></td>	57.00         57.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0         23600.0         531.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8         4.0         28.0         2099.0         78.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0           59.00         55.70         30000.0         14900.0         4900.0         35.7         1714.3         10.0         15.0         156.0         83.0           59.70         60.10         19000.0         13200.0         35.7         1714.3         10.0         10.0         374.0         71.0           60.10         19000.0         13600.0         32.9         335.0	57,00         57,40         7200.0         14300.0         46000.0         148.7         6068.4         15.0         37.0         23600.0         531.0         246.0           57,40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0           57,80         58.20         32000.0         20400.         105500.0         68.2         1062.8         4.0         28.0         2099.0         78.0         608.0           58.20         58.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0           58.60         59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0           59.00         59.70         30000.0         14900.0         4900.0         35.7         1714.3         10.0         15.0         374.0         71.0         56.0           59.70         30000.0         13600.0         12200.0         35.9         1645.7         13.0         12.0         952.0         84.0 <td< td=""><td>57.00         \$7.40         7200.0         14300.0         46000.0         145.7         6069.4         15.0         37.0         23600.0         531.0         246.0         31.0           57.40         \$7.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0         40.0           57.80         \$8.20         32000.0         20400.1         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0           58.20         \$8.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0           59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0         44.0           59.00         \$3000.0         14900.0         4900.0         35.7         1714.3         10.0         10.0         374.0         71.0         56.0         20.0           60.10         19000.0         13600.0         12200.0         35.7         1714.3</td><td>57.00         \$7.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0         23600.0         531.0         246.0         31.0         213.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0         40.0         277.0           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8         4.0         29.0         299.0         78.0         608.0         40.0         170.0           58.20         58.60         29000.0         47500.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0         149.0           59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0         44.0         92.0           59.70         30000.0         14300.0         13200.0         35.7         1714.3         10.0         10.0         374.0         71.0         56.0         20.0         53.0           60.12         1900.0</td><td>57,00 57,40 7200.0 14300.0 46000.0 145.7 6068.4 15.0 37.0 23600.0 531.0 246.0 31.0 213.0 24.  57,80 57.80 26900.0 23900.0 38000.0 79.5 1885.7 7.0 31.0 6300.0 186.0 271.0 40.0 277.0 39.  57,80 58.20 3200.0 20400. 105500.0 68.2 1062.8 4.0 28.0 2099.0 78.0 608.0 40.0 170.0 16.  58,20 58.60 29000.0 47500.0 17700.0 119.3 2571.4 3.0 38.0 1763.0 132.0 132.0 135.0 41.0 149.0 73.  58,60 59.00 25000.0 64000.0 26000.0 135.8 960.0 3.0 36.0 346.0 98.0 166.0 44.0 92.0 71.  59,00 59.70 30000.0 14900.0 4900.0 46.6 688.0 4.0 15.0 156.0 83.0 27.0 23.0 60.0 75.  59,70 60.10 19000.0 14300.0 12200.0 35.7 1714.2 10.0 10.0 874.0 71.0 56.0 20.0 53.0 54.  60.10 60.80 20000.0 18600.0 12200.0 35.7 1714.2 10.0 10.0 874.0 71.0 56.0 20.0 53.0 54.  60.10 60.80 1000.0 1800.0 1800.0 32.9 335.0 26.0 6.0 250.0 136.0 180.0 40.0 90.  61.20 62.00 11000.0 1200.0 1200.0 8.1 266.0 8.0 2.0 93.0 139.0 10.0 4.0 31.0 50.  62.00 63.00 11000.0 2400.0 700.0 12.3 540.0 7.0 3.0 524.0 86.0 5.0 4.0 36.0 77.  19.80 120.80 2000.0 68.0 92.0 0.7 14.0 23.0 3.0 524.0 86.0 5.0 4.0 1376.0 43.  39.50 140.50 800.0 175.0 72.0 0.6 45.0 29.0 32.0 45.0 23.0 5.0 1.0 1190.0 73.  41.10 142.20 1000.0 148.0 54.0 0.7 45.0 23.0 27.0 45.0 45.0 5.0 4.0 1190.0 77.0 39.0 159.0 150.0 150.0 73.  53.90 153.90 760.0 116.0 52.0 0.7 45.0 23.0 27.0 45.0 45.0 5.0 4.0 1100.0 77.0 60.  53.30 154.60 820.0 135.0 83.0 0.8 45.0 27.0 29.0 45.0 45.0 5.0 4.0 1100.0 77.0 60.  53.30 159.30 110.0 157.0 104.0 6.6 25.0 26.0 19.0 45.0 31.0 4.0 1.0 77.0 104.0 66.  56.60 168.60 2300.0 101.0 63.0 0.6 45.0 27.0 29.0 45.0 45.0 5.0 5.0 1.0 1167.0 62.  56.60 169.60 810.0 77.0 71.0 40.5 45.0 26.0 51.0 12.0 8.0 2.0 6.0 46.0 52.0 60.0 46.0 52.0 60.0 46.0 52.0 60.0 52.0 60.0 52.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 6</td><td>57.00 57.40 7200.0 14300.0 4600.0 145.7 6668.4 15.0 37.0 23600.0 531.0 246.0 31.0 213.0 24. 27. 57.40 57.80 2600.0 23900.0 3000.0 79.5 1885.7 7.0 31.0 6300.0 186.0 271.0 40.0 277.0 39. 33. 57.80 58.20 32000.0 20400. 105500.0 68.2 1062.8 4.0 28.0 299.0 78.0 698.0 40.0 170.0 16. 52. 58.20 58.60 2900.0 47500.0 17700.0 119.3 2571.4 2.0 38.0 1763.0 132.0 125.0 41.0 149.0 73. 50. 58.60 59.00 25000.0 64000.0 26000.0 135.8 960.0 3.0 36.0 366.0 98.0 166.0 44.0 92.0 71. 50. 59.00 59.70 30000.0 14900.0 4900.0 46.6 688.0 4.0 15.0 156.0 83.0 27.0 23.0 60.0 75. 8. 59.70 60.10 19000.0 14300.0 12200.0 35.0 1645.7 13.0 12.0 952.0 84.0 66.0 24.0 76.0 53.0 88. 50.80 61.20 17000.0 16000.0 1800.0 32.9 335.0 26.0 6.0 250.0 130.0 130.0 120.0 98.0 1645.7 13.0 12.0 952.0 84.0 66.0 24.0 76.0 53. 8. 50.80 61.20 17000.0 16000.0 1800.0 32.9 335.0 26.0 6.0 250.0 136.0 130.0 130.0 120.0 90.0 8. 50.10 62.00 11000.0 1200.0 1200.0 81.1 266.0 8.0 2.0 93.0 130.0 130.0 120.0 90.0 8. 50.20 63.00 11000.0 2400.0 700.0 12.3 540.0 7.0 3.0 524.0 86.0 5.0 4.0 36.0 77. 3. 50.20 63.00 11000.0 148.0 54.0 0.7 2.0 14.0 23.0 3.0 45.0 23.0 45.0 23.0 40.0 1376.0 43. 2. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 32.0 25.0 53.0 54.0 25.0 10.0 1376.0 43. 2. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 25.0 53.0 54.0 25.0 25.0 50.0 10.0 1193.0 71. 1. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 25.0 53.0 25.0 50.0 10.0 110.0 1193.0 71. 1. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 27.0 25.0 53.0 25.0 50.0 10.0 1193.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27</td></td<>	57.00         \$7.40         7200.0         14300.0         46000.0         145.7         6069.4         15.0         37.0         23600.0         531.0         246.0         31.0           57.40         \$7.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0         40.0           57.80         \$8.20         32000.0         20400.1         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0           58.20         \$8.60         29000.0         47500.0         17700.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0           59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0         44.0           59.00         \$3000.0         14900.0         4900.0         35.7         1714.3         10.0         10.0         374.0         71.0         56.0         20.0           60.10         19000.0         13600.0         12200.0         35.7         1714.3	57.00         \$7.40         7200.0         14300.0         46000.0         145.7         6068.4         15.0         37.0         23600.0         531.0         246.0         31.0         213.0           57.40         57.80         26000.0         23900.0         38000.0         79.5         1885.7         7.0         31.0         6300.0         186.0         271.0         40.0         277.0           57.80         58.20         32000.0         20400.1         105500.0         68.2         1062.8         4.0         29.0         299.0         78.0         608.0         40.0         170.0           58.20         58.60         29000.0         47500.0         119.3         2571.4         3.0         38.0         1763.0         132.0         125.0         41.0         149.0           59.00         25000.0         64000.0         26000.0         135.8         960.0         3.0         36.0         346.0         98.0         166.0         44.0         92.0           59.70         30000.0         14300.0         13200.0         35.7         1714.3         10.0         10.0         374.0         71.0         56.0         20.0         53.0           60.12         1900.0	57,00 57,40 7200.0 14300.0 46000.0 145.7 6068.4 15.0 37.0 23600.0 531.0 246.0 31.0 213.0 24.  57,80 57.80 26900.0 23900.0 38000.0 79.5 1885.7 7.0 31.0 6300.0 186.0 271.0 40.0 277.0 39.  57,80 58.20 3200.0 20400. 105500.0 68.2 1062.8 4.0 28.0 2099.0 78.0 608.0 40.0 170.0 16.  58,20 58.60 29000.0 47500.0 17700.0 119.3 2571.4 3.0 38.0 1763.0 132.0 132.0 135.0 41.0 149.0 73.  58,60 59.00 25000.0 64000.0 26000.0 135.8 960.0 3.0 36.0 346.0 98.0 166.0 44.0 92.0 71.  59,00 59.70 30000.0 14900.0 4900.0 46.6 688.0 4.0 15.0 156.0 83.0 27.0 23.0 60.0 75.  59,70 60.10 19000.0 14300.0 12200.0 35.7 1714.2 10.0 10.0 874.0 71.0 56.0 20.0 53.0 54.  60.10 60.80 20000.0 18600.0 12200.0 35.7 1714.2 10.0 10.0 874.0 71.0 56.0 20.0 53.0 54.  60.10 60.80 1000.0 1800.0 1800.0 32.9 335.0 26.0 6.0 250.0 136.0 180.0 40.0 90.  61.20 62.00 11000.0 1200.0 1200.0 8.1 266.0 8.0 2.0 93.0 139.0 10.0 4.0 31.0 50.  62.00 63.00 11000.0 2400.0 700.0 12.3 540.0 7.0 3.0 524.0 86.0 5.0 4.0 36.0 77.  19.80 120.80 2000.0 68.0 92.0 0.7 14.0 23.0 3.0 524.0 86.0 5.0 4.0 1376.0 43.  39.50 140.50 800.0 175.0 72.0 0.6 45.0 29.0 32.0 45.0 23.0 5.0 1.0 1190.0 73.  41.10 142.20 1000.0 148.0 54.0 0.7 45.0 23.0 27.0 45.0 45.0 5.0 4.0 1190.0 77.0 39.0 159.0 150.0 150.0 73.  53.90 153.90 760.0 116.0 52.0 0.7 45.0 23.0 27.0 45.0 45.0 5.0 4.0 1100.0 77.0 60.  53.30 154.60 820.0 135.0 83.0 0.8 45.0 27.0 29.0 45.0 45.0 5.0 4.0 1100.0 77.0 60.  53.30 159.30 110.0 157.0 104.0 6.6 25.0 26.0 19.0 45.0 31.0 4.0 1.0 77.0 104.0 66.  56.60 168.60 2300.0 101.0 63.0 0.6 45.0 27.0 29.0 45.0 45.0 5.0 5.0 1.0 1167.0 62.  56.60 169.60 810.0 77.0 71.0 40.5 45.0 26.0 51.0 12.0 8.0 2.0 6.0 46.0 52.0 60.0 46.0 52.0 60.0 46.0 52.0 60.0 52.0 60.0 52.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 6	57.00 57.40 7200.0 14300.0 4600.0 145.7 6668.4 15.0 37.0 23600.0 531.0 246.0 31.0 213.0 24. 27. 57.40 57.80 2600.0 23900.0 3000.0 79.5 1885.7 7.0 31.0 6300.0 186.0 271.0 40.0 277.0 39. 33. 57.80 58.20 32000.0 20400. 105500.0 68.2 1062.8 4.0 28.0 299.0 78.0 698.0 40.0 170.0 16. 52. 58.20 58.60 2900.0 47500.0 17700.0 119.3 2571.4 2.0 38.0 1763.0 132.0 125.0 41.0 149.0 73. 50. 58.60 59.00 25000.0 64000.0 26000.0 135.8 960.0 3.0 36.0 366.0 98.0 166.0 44.0 92.0 71. 50. 59.00 59.70 30000.0 14900.0 4900.0 46.6 688.0 4.0 15.0 156.0 83.0 27.0 23.0 60.0 75. 8. 59.70 60.10 19000.0 14300.0 12200.0 35.0 1645.7 13.0 12.0 952.0 84.0 66.0 24.0 76.0 53.0 88. 50.80 61.20 17000.0 16000.0 1800.0 32.9 335.0 26.0 6.0 250.0 130.0 130.0 120.0 98.0 1645.7 13.0 12.0 952.0 84.0 66.0 24.0 76.0 53. 8. 50.80 61.20 17000.0 16000.0 1800.0 32.9 335.0 26.0 6.0 250.0 136.0 130.0 130.0 120.0 90.0 8. 50.10 62.00 11000.0 1200.0 1200.0 81.1 266.0 8.0 2.0 93.0 130.0 130.0 120.0 90.0 8. 50.20 63.00 11000.0 2400.0 700.0 12.3 540.0 7.0 3.0 524.0 86.0 5.0 4.0 36.0 77. 3. 50.20 63.00 11000.0 148.0 54.0 0.7 2.0 14.0 23.0 3.0 45.0 23.0 45.0 23.0 40.0 1376.0 43. 2. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 32.0 25.0 53.0 54.0 25.0 10.0 1376.0 43. 2. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 25.0 53.0 54.0 25.0 25.0 50.0 10.0 1193.0 71. 1. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 25.0 53.0 25.0 50.0 10.0 110.0 1193.0 71. 1. 50.30 53.90 760.0 116.0 52.0 0.7 2.0 0.6 25.0 23.0 27.0 25.0 53.0 25.0 50.0 10.0 1193.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27

Page No. 2

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)


SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	. ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	.PB (ppm)	AS (ppm)	CD (ppm)	НО (ррж)	ММ (ррж)	CUZN	ETS	FE
VA01742	171.40	173.00	1400.0	90.0	42.0	⟨0.5	<5.0	29.0	56.0	5.0	(5.0	2.0	4.0	511.0	68.	1.	4.
VA01743		174.50	1400.0	18.0	39.0	<0.5	<5.0	25.0	69.0	10.0	(5.0	2.0	4.0	837.0	32.	1.	3.
VA01744	174.50		1500.0	30.0	54.0	<0.5	⟨5.0	32.0	84.0	11.0	8.0	2.0	5.0	921.0	36.	1.	4,
VA01745	176.00	177.60	1300.0	108.0	43.0	<0.5								547.0	72.	1.	
VA01746	204.50	205,50	80.0	78.0	59.0		<5.0	34.0	73.0	10.0	10.0	2.0	4.0	528.0	57.	1.	4.
VA01745	218.10		2700.0			<0.5	(5.0	26.0	51.0	13.0	<5.0	2.0	3.0		45.	4.	4. 5.
VA01747				74.0	89.0	(0.5	(5.0	24.0	54.0	15.0	14.0	2.0	6.0	772.0	35.		3.
VA01749	219.20	220.20	4200.0 3400.0	38.0	70.0	(0.5	(5.0	11.0	23.0	26.0	13.0	(1.0	1.0	342.0 358.0	38.	4. 3.	3.
				54.0	89.0	<0.5	₹5.0	12.0	28.0	28.0	13.0	1.0	2.0				
VA01750	222.00	223,00	4800.0	30.0	82.0	<0.5	₹5.0	7.0	16.0	25.0	10.0	<1.0	2.0	327.0	27.	3.	3.
VA01751	223.00	224.00	5500.0	47.0	98.0	<0.5	₹5.0	9.0	30.0	25.0	14.0	<1.0	1.0	368.0	32.	3.	3.
VA01752	224.00	225.00	6200.0	40.0	92.0	⟨0.5	<5.0	7.0	29.0	28.0	13.0	<1.0	1.0	418.0	30.	3.	3.
VA01753	225.00	226.00	4300.0	21.0	80.0	<0.5	(5.0	3.0	14.0	29.0	8.0	<1.0	2.0	348.0	21.	3.	2.
VA01754	226.00	227.00	3100.0	19.0	75.0	<0.5	<5.0	3.0	18.0	30.0	11.0	<1.0	4.0	558.0	20.	3.	2.
VA01755	227.00	228.00	2500.0	18.0	69.0	<0.5	<5.0	4.0	12.0	25.0	9.0	<1.0	<1.0	557.0	21.	. 3.	3.
VA01756	228.00	229.00	3100.0	19.0	71.0	<05	<5.0	6.0	13.0	22.0	<5.0	<1.0	<1.0	614.0	21.	3.	3.
VA01757	229,00	230,00	2700.0	23.0	88.0	<0.5	<5.0	3.0	19.0	28.0	11.0	(1.0	5.0	554.0	21.	3.	2.
VA01758	230.00	232.00	2700.0	28.0	77.0	<0.5	43.0	3.0	35.0	29.0	17.0	<1.0	2.0	399.0	27.	3.	Э.
VA01759	232.00	234.00	3600.0	23.0	65.0	<0.5	6.0	2.0	16.0	29.0	5.0	<1.0	<1.0	408.0	26.	з.	2.
VA01760	234.00	235.00	4000.0	21.0	59.0	<0.5	<5.0	2.0	10.0	25.0	<5.0	<1.0	<1.0	353.0	26.	3.	2.
VA01761	236.00	238.00	2800.0	28.0	86.0	<0.5	6.0	2.0	23.0	30.0	6.0	<1.0	<1.0	451.0	25.	3.	2.
VA01762	238.00	240.00	2200.0	25.0	66.0	<0.5	11.0	4.0	19.0	31.0	10.0	<1.0	<1.0	399.0	27.	3.	2.
VA01763	240.00	242.00	2600.0	22.0	72.0	<0.5	<5.0	2.0	21.0	31.0	6.0	<1.0	<1.0	294.0	23.	3.	2.
VA01764	242.00	244.00	2400.0	16.0	58.0	<0.5	25.0	2.0	11.0	29.0	13.0	<1.0	<1.0	493.0	22.	3.	2.

Hole No. CH88-49

Page No.

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA	CU	ZN	AG	AU	co	HI.	PB	AS	CD	но	нн	CUZN	ETS	FE
*			(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)		· · · · · · · · · · · · · · · · · · ·							
VA01765	244.00	246.00	2300.0	20.0	56.0	<0.5	<5.0	3.0	14.0	29.0	17.0	<1.0	<1.0	282.0	26.	3.	2.
VA01766	246.00	248.00	2600.0	24.0	68.0	<0.5	<5.0	3.0	26.0	30.0	16.0	<1.0	1.0	403.0	26.	Э.	2.
VA01767	248.00	249.60	3200.0	9.0	43.0	<0.5	<2.0	2.0	11.0	27.0	(5.0	<1.0	<1.0	603.0	17.	з.	2.
VA01768	249.60	250.60	2900.0	18.0	40.0	<0.5	<5.0	3.0	16.0	29.0	12.0	<1.0	<1.0	297.0	31.	3.	2.



Summary Log: DDH CH88-50

Location: 30+00 E, 0+95 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: May 6, 1988 Core logged by: J. Pattison

0.0 - 12.7 Casing.

12.7 - 39.1 Chloritic felsic ash and crystal tuffs

39.1 - 42.7 Gabbro

42.7 - 43.9 Nanaimo Formation argillite

43.9 - 50.0 Weakly chloritized felsic tuff

50.0 - 95.4 Nanaimo Formation argillite, greywacke and conglomerate

95.4 - 104.0 Chloritic felsic ash tuff

104.0 - 129.0 Chloritic felsic lapilli tuff

129.0 - 139.7 Chloritic felsic quartz eye tuff

139.7 - 147.0 Weakly chloritized felsic tuff

147.0 - 194.4 Felsic lapilli tuff

10 % pyrite over 6.0 m. Pyrite is heavily disseminated in the matrix of the coarsest portion of the tuff where angular felsic fragments up to 1.5 cm wide and over 7.0 cm long occur.

194.4 - 200.5 Felsic feldspar crystal tuff

200.5 - 218.3 Felsic lapilli tuff

218.3 - 223.4 Gabbro

223.4 - 234.8 Felsic lapilli tuff

7 % sphalerite, 5 % pyrite and 1.5 % chalcopyrite over 2.4 m. Sulphides are disseminated in a quartz crystal-rich matrix. The sphalerite is red-brown, finely dissminated along foliation planes and is difficult to distinguish from biotite which also occurs throughout the interval.

234.8 - 259.0 Gabbro

259.0 - 280.7 Massive mafic flows or gabbro

280.7 - 286.3 Mafic to intermediate tuffaceous sediments

286.3 - 300.5 Massive mafic flow

PROPERTY: Chemainus JV HOLE No: Page Number FALCONBRIDGE LIMITED CH88-50 DIAMOND DRILL LOG Hole Location: 30+00 E 0+95 S Claim No. Chip 1 NTS: 92B13 UTM: 5416854.9 N 430278.4 E Section No.: 30+00 E Azimuth: 210 Elevation: 533 m -50 Length: 300.5 m Dip: Logged By: J. Pattison Drilling Co.: Burwash Enterprises Started: 2-May-88 Assayed By: Bondar-Clegg & XRAL Completed: 6-May-88 Core Size: Purpose: DIP TESTS Azi-Azi-Length muth Dip muth Dip Length 20.10 211.0 -50.0 216.70 214.0 -46.0 123.70 213.0 -48.5 From To Sample From To Width Total Cu Рb Zn Αg (m) (m) -----DESCRIPTION-----(m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) No. (m) (m) 12.7 OVERBURDEN 12.7 17.1 WEAKLY CHLORITIC FELSIC TUFF Medium to light green moderately to weakly chloritic, well VA02824 12.7 29.3 16.6 n/a 121 n/a 32 n/a 661 n/a foliated felsic ash tuff with an occasional quartz eye up VA03650 14.1 2 72 16 204 480 15.1 1.0 (1 (5 to 3 mm or lapilli-sized felsic fragment. 45 47 VA03651 15.1 16.1 1.0 2 12 <1 ⟨5 970 VA03652 16.1 17.1 17 47 32 (5 1100 STRUCTURE: . Foliation is kinked over most of the interval. At 15.0 m bedding is at 70 degrees to core axis. ALTERATION:. 12.7 17.1 MODERATE PERVASIVE CHLORITIZATION. SULPHIDES:. 15.1-17.1 m 2 % pyrite and trace sphalerite disseminated and in (2 mm bands parallel to foliation. 17.1 29.3 CHLORITIC FELSIC FELDSPAR CRYSTAL TUFF 2-10 %, 1-3 mm epidotized feldspar crystals in a well ₹5 1000 VA03653 17.1 18.1 1.0 30 41 45 <1 foliated, moderately chloritic felsic to intermediate matrix. Locally up to 5 % grey, poorly defined felsic fragments. 5 % 2-4 mm white quartz eyes. Trace disseminated pyrite. Lower contact is a major fault at 40

degrees to core axis.

Rock has a crushed appearance over the entire interval. 18.8-18.9 M strongly chloritic fault breccia at 40 degrees

STRUCTURE: .

to core axis.

,

From To

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

No.

From

(m)

Τo

(m)

Width

(m)

Total

Sulphides (ppm)

HOLE No: Page Number CH88-50 2

Cu

Рb

Zn

(ppm) (ppm) (ppm)

Αg

Αu

(ppb) (ppm)

17.1 29.3 MODERATE PERVASIVE CHLORITIZATION.

29.3 31.6 MAFIC INTRUSIVE

Dark green, fine-grained with trace to 1 % finely disseminated ilmenite. Crushed over the entire interval. Lower contact is a fault gouge at 70 degrees to core axis.

#### STRUCTURE:.

Entire interval is part of a FAULT ZONE at 40-70 degrees to core axis. No lost core although there are fault gouges up to  $0.5\,$  m long.

#### ALTERATION:.

29.3 31.6 Weak fracture controlled hematization.

#### 31.6 39.1 FELSIC TUFF

Crushed, light grey, moderately sericitic ash tuff. Lower contact is very irregular and intrusive in appearance.

#### STRUCTURE: .

32.3 33.0 M FAULT ZONE at 40 degrees to core axis. Core is broken and blocky, 0.3 m of lost core.

At 34.4 m.1 m fault gouge at 60 degrees to core axis.

Strongly microfractured for 0.2 m from the lower contact. Microfractures are filled with quartz + carbonate.

37.4-37.7 M fault zone at 70 degrees to core axis. 0.2 m of lost core.

#### ALTERATION:.

31.6 39.1 HODERATE PERVASIVE SERICITIZATION.

#### SULPHIDES:.

31.6-39.1 m 2 % fracture controlled pyrite. In most cases pyrite is crushed and is almost black. Trace chalcopyrite at 31.9 m.

#### 39.1 42.7 MAFIC INTRUSIVE

As 29.3 to 31.6 m. Lower contact is sharp and appears to be an unconformity at 50 degrees to core axis. The contact is offset 1.5 cm by a microfault at 30 degrees to

VA02825 31.6 39.1 7.5 n/a 2080 n/a 18 n/a 14 n/a (5 2700 VA03654 31.6 32.6 1.0 2 124 44 28 <1 VA03655 32.6 33.6 1.0 49 43 37 (1 (5 2000 VA03656 33.6 34.6 1.0 2 11 48 21 (5 2300 VA03657 34.6 35.6 1.0 2 14 51 27 (5 - 2700 VA03658 **<5 2600** 35.6 36.6 1.0 2 35 28 19 <1 37.6 27 ₹5 1900 VA03659 36.6 1.0 28 <1 2 27 VA03660 37.6 38.6 30 <1 5 2000 1.0 2 48 24 VA03661 38.6 39.1 32 59 (1 (5 290

PROPERTY:	Chemainus	J۷	
, mor bit it.	CHCMALHAD	•	

51.8-52.0 M blocky, highly fractured core.
At 52.3 m foliation is at 60 degrees to core axis.
52.7-52.8 M fault zone at 70 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50 3

		DIAMOND DRILL LOG												
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm	)
		core axis. STRUCTURE:. 31.2-31.4 M fault gouge at 15 degrees to core axis.												
42.7	43.9	NANAIMO ARGILLITE Less than 5 % < 2 mm light grey angular fine-grained felsic clasts in a black, weakly graphitic argillite. Several rip-up greywacke clasts. Rock is crushed over the entire interval. Lower contact is a fault at 60 degrees to core axis.												
43.9	50.0	WEAKLY CHLORITIC FELSIC TUFF Appears to be an ash tuff but is strongly crushed over most of the interval and original textures are difficult to recognize. Lower contact is a 0.1 m fault gouge at 30 degrees to core axis.	VA02826 VA03662 VA03663 VA03664	43.9 46.9 48.0 49.0	50.0 48.0 49.0 50.0	6.1 1.1 1.0 1.0	n/a 2 1 1	27 31 28 43	n/a 27 28 17	12 39 18	n/a <1 <1	23 <5	1980 1100 460 1400	
		STRUCTURE.												
		### ### ##############################												
		core.												
		ALTERATION:. 43.9 46.9 MODERATE PERVASIVE SERICITIZATION. 46.9 50.0 MODERATE PERVASIVE SILICIFICATION.												
		SULPHIDES:.												
		47.0 2.0 % fracture controlled pyrite.												
		46.9 47.5 Ripped-up argillite beds are common.												
50.0	61.3	NANAIMO ARGILLITE Black to dark brown weakly graphitic argillite. Up to 5 % (2 mm felsic and occasionaly pyrite clasts (4 mm in diameter below 55.0 m. Rock becomes coarser below 55.0 m	VA03665	55.0	56.0	1.0	2	68	, <b>( 5</b> ,	100	<b>(1</b>	6	790	
		and broken up beds and clasts of argillaceous wackes are common. Below 58.0 m clasts are up to 1.0 cm in diameter, are often sulphide rich. And comprise less than 2 % of the rock. Broken core at the lower contact.												
		STRUCTURE:.												
		At 50.9 m 0.5 cm fault gouge at 65 degrees to core axis. At 51.5 m 1.0 cm fault gouge at 70 degrees to core axis.							:					

2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50 4

From To (m) (m) ------DESCRIPTION------

At 53.6 m 7.0 cm fault gouge at 40 degrees to core axis. 53.9-54.0 M fault gouge at 40 degrees to core axis. 52.3 888.8 0.5 cm ripped-up bed of greywacke. At 60.6 m minor fault gouge. Not possible to measure the orientation.

#### 61.3 76.0 NANAIMO GREYWACKE

Medium grey, massive greywacke with less than 5 % black mud clasts ( 1.0 cm long and up to 1 % angular lithic and sulphide fragments ( 4 mm in diameter. Becomes coarser and richer in quartz grains below 71.0 m (5-10 % granule-sized quartz and volcanic clasts). Grades into the next unit. The lower contact is arbitrarily placed where pebbles first appear.

#### STRUCTURE:.

61.1-61.7 M blocky, highly fractured core.
62.5-63.8 M blocky, highly fractured core.
65.8-66.9 M blocky, highly fractured core.
At 67.0 m 1.0 cm fault gouge at 70 degrees to core axis.
67.3-68.7 M FAULT ZONE (?) at 75 degrees to core axis.
Blocky, highly fractured core.
70.5-71.0 M blocky, highly fractured core.
72.1-72.9 m 1.0 cm fault gouge runs parallel to the core axis.
74.1-76.0 M FAULT ZONE. Core is broken and rubbly over the entire interval. 1.2 M of lost core. Not possible to measure the orientation of the fault but it appears to run close to the core axis. This fault runs into the next unit

#### 76.0 80.0 NANAIMO CONGLOMERATE

Matrix supported pebble conglomerate which coarsens downhole on a gross scale. The following clasts occur in the coarse quartz rich matrix. Cherty black argillite (5%). Light to medium green, fine-grained clasts (5%). Light grey, fine-grained felsic volcanics (5%). Light green to brown to grey cherty clasts (5%). Sulphide clasts ((1%). The lower contact is very sharp and appears to be a fault at 60 degrees to core axis.

#### STRUCTURE:.

76.2-76.6 H FAULT ZONE which appears to be at a very low angle to the core axis.
77.1-79.6 H FAULT ZONE. Blocky, highly fractured core. 1.0 m of lost core. Not possible to measure orientation of the fault.

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50 5

From To
(m) (m) -------DESCRIPTION------

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

80.0 83.5 NANAIMO CONGLOMERATE

As 61.3 to 76.0 m with up to 5 % angular to subrounded, granule to pebble-sized clasts of cherty sediments and felsic volcanics. Lower contact is a fault zone at 65 degrees to core axis.

STRUCTURE:.

80.4-80.8 M FAULT ZONE at 70 degrees to core axis. 0.1 m of lost core.
83.0-83.5 M FAULT ZONE at 65 degrees to core axis.

81.6 888.8 5.0 cm bed of pebble conglomerate at 60 degrees to core axis.

83.5 84.9 NANAIMO CONGLOMERATE

Similiar to 76.0 to 80.0 m except felsic clasts are somewhat more abundant and clasts are larger on average. Clasts are largest and most abundant immediately above the lower contact which is at 75 degrees to core axis.

84.9 86.6 NANAIHO GREYWACKE

As 61.3 to 76.0 m with several 10.0 cm beds of granule to pebble conglomerate. Lower contact is a fault that appears to be at 40 degrees to core axis.

STRUCTURE:.

At 85.3 m bedding is at 70 degrees to core axis. 86.4-86.6 M fault zone at 40 ? degrees to core axis.

86.6 88.3 NANAIMO CONGLOMERATE

Unsorted granule to pebble conglomerate similiar to 76.0 to 80.0 m. Lower contact is at 80 degrees to core axis.

88.3 93.6 NANAIHO GREYWACKE

Greywacke as 61.3 to 76.0 m with up to 5 % granule to pebble-sized black argillite. Light green cherty sediment and light grey felsic clasts. Also, locally up to 20 % irregular rip-up clasts of slightly lighter grey greywacke. Several beds of pebble conglomerate up to 0.3 m thick. Lower contact is gradational over 5.0 cm.

STRUCTURE:.

At 91.2 m bedding is at 70 degrees to core axis.

At 92.2 m bedding is at 75 degrees to core axis.

At 93.2 m bedding is at 70 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50

To From Width Total Cu Ph Αu Sample From Tα Zn Ασ (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (mqq) (mqq) (mqq) (ppb) (ppm)

VA03674 103.3 104.0

92.0 92.2 Pebble conglomerate coaresens downhole.

92.4 93.2 Granule conglomerate. Similiar to other conglomerates but almost all clasts are ( 5 mm in diameter. Lower contact is sharp at 70 degrees to core axis.

90.9 91.2 Pebble conglomerate at 75 degrees to core axis.

#### 93.6 95.4 NANAINO CONGLOMERATE

Generally a matrix supported conglomerate but locally is clast supported over 0.1 m intervals. Minor 1.0 cm fault gouge near the lower contact but lower contact itself appears to be an irregular erosional contact at approximately 80 degrees to core axis.

STRUCTURE:.

At 94.6 m bedding is at 79 degrees to core axis.

94.6 94.8 Greywacke.

#### 95.4 104.0 WEAKLY CHLORITIC FELSIC TUFF

Light grey, moderately sericitic, coarse felsic ash tuff with 2 % light grey quartz eyes <3 mm in diameter. Less than 5 % light grey, hazy lapilli-sized felsic fragments. Lower contact is placed where lapilli become conspicuous.

STRUCTURE:.

95.7-96.0 M FAULT ZONE at 45 degrees to core axis. 0.1 m of lost core.

At 100.5 m foliation is at 20 degrees to core axis. At 104.4 m 3 mm fault gouge at 15 degrees to core axis.

ALTERATION:.

95.4 104.0 MODERATE PERVASIVE SERICITIZATION and WEAK SPOTTY CHLORITIZATION. Chlorite alteration increases downhole.

97.3 97.7 Moderate biotization gives rock a reddish hue.

95.4-96.7 m 5 % fracture controlled and disseminated pyrite 96.7-98.4 m 2 % disseminated pyrite and possibly trace disseminated sphalerite (maybe thermal biotite ). 98.4-101.3 m 5 % disseminated and fracture controlled pyrite. Pyrite occurs in spots up to 3 mm in diameter. 101.3-103.3 m 2 % disseminated pyrite. 103.3-104.0 m 7 % pyrite disseminated and fracture

VA03666 95.4 96.4 43 28 27 <1 (5 1700 1.0 n/a 1410 VA02827 95.4 104.0 8.6 17 n/a (10 n/a n/a 97.4 39 39 <5 1300 VA03667 96.4 1.0 35 < 1 (5 1300 VA03668 97.4 98.0 43 24 29 <1 .6 55 9 6 1500 VA03669 98.0 99.0 26 1.0 VA03670 99.0 100.0 28 25 14 <1 (5 1400 1.0 (5 1600 VA03671 100.0 101.3 1.3 47 23 37 **(1** 32 1800 VA03672 101.3 102.3 1.0 42 22 54 <1 28 25 6 <1 **<5** 1600 VA03673 102.3 103.3 1.0

65

23

9

**<5 2100** 

129.0 139.7 CHLORITIC FELSIC QUARTZ EYE TUFF

fractures are filled with quartz.

Up to 10 % 1-4 mm clear quartz eyes and up to 5 % poorly

sericitic fine-grained, siliceous matrix which contains up

defined, hazy light grey to green felsic lapilli in a

to 15 % <0.5 mm feldspar crystals. Quite massive, only weakly foliated. Weak patchy chloritization gives rock a mottled appearance. Weakly to moderately microfractured,

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50 7

controlled and possibly 1 % fracture controlled dark brown sphalerite (or biotice). Much of the pyrite is within a light brown alteration patch (epidote+biotite ?).  104.0 129.0 CHLORITIC FELSIC LAPILLI TUFF  5-20 % dark green chloritic fragments up to 1.0 cm wide and 8.0 cm long stretched parallel to foliation in a grey sericitic felsic matrix. The larger fragments below 113.0 m are similar to the chloritic frame exposed in the Nobic	From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)	
5-20 4 dark green chloritic tragments up to 1.0 cm wide and 8.0 cm long stretched parallel to foliation in a grey sericitic felsic matrix. The larger fragments below 113.0 vanished foliation in a grey was provided and 10 to 10 to 10 to 10 to 2 to 10			brown sphalerite (or biotite). Much of the pyrite is												
Anita Excavation. Locally up to 5 % (3 mm quartz eyes. Quartz eyes sometimes occur within the chloritic lapilli. Lover contact is placed where chloritic lapilli become rare vA01679 108.0 10.9, 0 1.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 109.0 11.0 2 26 24 12 (1 55 1700 vA01680 11.0 2 26 24 12 (1 55 1700 vA01680 11.0 2 26 24 12 (1 55 1700 vA01680 11.0 2 26 24 12 (1 55 1700 vA01680 11.0 2 26 24 12 (1 55 1700 vA01680 11.0 vA01680 11.0 2 26 24 12 (1 55 1700 vA01680 11.0 v	104.0	129.0	5-20 % dark green chloritic fragments up to 1.0 cm wide and 8.0 cm long stretched parallel to foliation in a grey sericitic felsic matrix. The larger fragments below 113.0	VA03675 VA03676	104.0 105.0	105.0 106.0	1.0	2 2	22	24 22	6 7	<1 <1	<5 2 <5 1	000 600	
STRUCTURE:.  At 106.1 m foliation is at 20 degrees to core axis.  108.4-108.6 M crushed fault zone at 55-70 degrees to core axis.  Several fault gouges up to 5.0 cm wide.  At 110.4 m foliation is at 30 degrees to core axis.  At 116.0 m foliation is at 40 degrees to core axis.  At 122.4 m foliation is at 40 degrees to core axis.  At 126.9 m 1.0 cm fault gouge at 20 degrees to core axis.  At 127.6 m foliation is at 20 degrees to core axis.  ALTERATION:.  104.0 123.7 VEAK SPOTTY CHLORITIZATION.  123.7 125.0 HODERATE PERVASIVE SILICIFICATION.  25.0 128.0 WEAK SPOTTY CHLORITIZATION.  SULPHIDES:.  104.0-112.0 m 1-2 % disseminated pyrite and possibly trace sphalerite.  112.0-126.0 M trace disseminated and fracture controlled pyrite.  126.0-129.0 m 3-4% disseminated pyrite as spots up to 2 mm in diameter.  108.6 109.0 40 % chloritic lapilli (fiamme ?) up to 5 mm wide stretched parallel to foliation. Gives			Anita Excavation.  Locally up to 5 % (3 mm quartz eyes. Quartz eyes sometimes occur within the chloritic lapilli.	VA03678 VA03679 VA03680 VA03681	107.0 108.0 109.0 110.0	108.0 109.0 110.0 111.0	1.0 1.0 1.0	2 2 2 2	43 26 3 49	22 24 29 38	6 12 15 28	<1 <1 <1	<pre></pre>	900 700 400 300	
At 122.4 m foliation is at 20 degrees to core axis. At 126.9 m 1.0 cm fault gouge at 20 degrees to core axis. At 127.6 m foliation is at 20 degrees to core axis.  ALTERATION:. 104.0 123.7 VEAK SPOTTY CHLORITIZATION. 123.7 125.0 MODERATE PERVASIVE SILICIFICATION. 125.0 128.0 WEAK SPOTTY CHLORITIZATION.  SULPHIDES:. 104.0-112.0 m 1-2 % disseminated pyrite and possibly trace sphalerite. 112.0-126.0 M trace disseminated and fracture controlled pyrite. 126.0-129.0 m 3-4% disseminated pyrite as spots up to 2 mm in diameter.  108.6 109.0 40 % chloritic lapilli (fiamme ?) up to 5 mm wide stretched parallel to foliation. Gives			At 106.1 m foliation is at 20 degrees to core axis. 108.4-108.6 M crushed fault zone at 55-70 degrees to core axis. Several fault gouges up to 5.0 cm wide. At 110.4 m foliation is at 30 degrees to core axis.	VA03683	126.0	127.0	1.0	4	18	21	45	<1	<b>(5 1</b>	100	
104.0 123.7 VEAK SPOTTY CHLORITIZATION. 123.7 125.0 MODERATE PERVASIVE SILICIFICATION. 125.0 128.0 WEAK SPOTTY CHLORITIZATION.  SULPHIDES:. 104.0-112.0 m 1-2 % disseminated pyrite and possibly trace sphalerite. 112.0-126.0 H trace disseminated and fracture controlled pyrite. 126.0-129.0 m 3-4% disseminated pyrite as spots up to 2 mm in diameter.  108.6 109.0 40 % chloritic lapilli (fiamme ?) up to 5 mm wide stretched parallel to foliation. Gives			At 122.4 m foliation is at 20 degrees to core axis. At 126.9 m 1.0 cm fault gouge at 20 degrees to core axis.												
104.0-112.0 m 1-2 % disseminated pyrite and possibly trace sphalerite. 112.0-126.0 M trace disseminated and fracture controlled pyrite. 126.0-129.0 m 3-4% disseminated pyrite as spots up to 2 mm in diameter.  108.6 109.0 40 % chloritic lapilli (fiamme ?) up to 5 mm wide stretched parallel to foliation. Gives			104.0 123.7 WEAK SPOTTY CHLORITIZATION. 123.7 125.0 MODERATE PERVASIVE SILICIFICATION.												
126.0-129.0 m 3-4% disseminated pyrite as spots up to 2 mm in diameter. 108.6 109.0 40 % chloritic lapilli (fiamme ?) up to 5 mm wide stretched parallel to foliation. Gives			104.0-112.0 m 1-2 % disseminated pyrite and possibly trace sphalerite.												
wide stretched parallel to foliation. Gives			pyrite. 126.0-129.0 m 3-4% disseminated pyrite as spots up to 2 mm $$												
			wide stretched parallel to foliation. Gives												

VA02829 129.0 139.7 10.7

VA03685 133.0 134.0 1.0

VA03686 134.0 135.2 1.2

. 2

n/a 1430

(5 1400

(5 1500

(10 n/a

<1

12

23

31

2

3

n/a

26

21

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50 8

		DIAMOND DRILL LOG												
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphide	Cu s (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)	
		Lower contact is placed where quartz eyes dissapear.												
		STRUCTURE:.												
		At 138.7 m bedding is at 45 degrees to core axis.												
		ALTERATION:.												
		129.0 135.4 WEAK PERVASIVE SILICIFICATION and WEAK PERVASIVE SERICITIZATION.												
		135.4 138.7 MODERATE PERVASIVE SILICIFICATION and WEAK SPOTTY CHLORITIZATION.												
		138.7 139.7 WEAK PERVASIVE SILICIFICATION and WEAK SPOTTY CHLORITIZATION.												
		SULPHIDES:. 129.0-133.0 m 1 % disseminated pyrite.												
		133.0-135.2 m 3 % disseminated pyrite. Pyrite occurs as												
		spots 1-3 mm in diameter. 135.2-139.7 M nil to trace disseminated pyrite.												
139.7	147.0	WEAKLY CHLORITIC FELSIC TUFF												
		As 129.0 to 139.7 m except no quartz eyes.	VA02830	139.7	147.0	7.3	n/a	<10	n/a	<10	n/a	n/a	1420	
		STRUCTURE:.  143.2-143.9 M FAULT ZONE at 40-60 degrees to core axis.  0.5 m of lost core.												
1 .		At 145.2 m foliation is at 46 degrees to core axis.												
		ALTERATION:												
		SULPHIDES:. 143.9-147.0 m 2+3 % disseminated pyrite.												
147.0	194.4	FELSIC LAPILLI TUFF												
		Up to 30 % light to dark grey fine-grained rounded felsic lapilli in a siliceous, moderately sericitic, fine-grained	VA02831 VA03687			30.0 1.0	n/a	46 43	n/a 21	₹10 18	n/a <1	n/a ∢5	2460 1500	
		matrix. Locally weak, patchy chlorite alteration gives	VA03688			1.0	2	15	23	11	(1		1500	
		rock a mottled appearance. Lower contact is a bedding contact at 50 degrees to core axis.	VA03689			1.0	2 2	17 233	23 23	14 16	<1 <1	₹5 10	1300 1900	
		contact at 50 degrees to core axis.	VA03690 VA03691			1.0	. 4	75	19	27	(1	(5		
		STRUCTURE:	VA03692			.5	. 5	4300	32	169	6		470	
		At 148.8 m foliation is at 30 degrees to core axis.  At 151.8 m bedding is at 35 degrees to core axis.	VA03693 VA03694			$\frac{1.2}{1.0}$	3	49 187	24	15 30	<1 <1	<5 12		. 2
		156.0-156.6 M slip runs parallel to the core axis. Blocky,	VA03695	154.0	155.0	1.0	3	107	6	. 24	<1	9	1200	
		highly fractured core.	VA03696			1.0	. 2	20	8 8	19	(1		1100	
		At 161.6 m foliation is at 33 degrees to core axis.  At 173.5 m 0.5 cm fault gouge at 40 degrees to core axis.	VA03697 VA03698			1.0	4	27 17	10	19 11	$\frac{\langle 1 \rangle}{\langle 1 \rangle}$		1800 1700	
		At 180.7 m bedding is at 30 degrees to core axis.	VA03699	158.0	159.0	1.0	4	18	8	14	(1	₹5	1500	
		At 183.0 m foliation is at 30 degrees to core axis.	VX03700	159.0	160.0	1.0	4	21	5	15	· (1	<5	1400	

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50 9

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppmi)	Au (pp	Ba b) (ppma	)
		At 185.1 m 5.0 cm fault gouge at 30 degrees to core axis.	VA03701	160.0	161.0	1.0			5				1500	
		At 186.1 m 4.0 cm fault gouge at 35 degrees to core axis.	VA03701	161.0	162.0	1.0	4	22 100	7	19 54	<1 <1	(5	1000	
		At 190.1 m foliation is at 50 degrees to core axis.	VA03702			1.0	4	86	6	390	(1	()	1800	
		At 170.1 a lollacion is at 30 deglees to core axis.	VA03703			1.0	4	. 69	⟨5	25	(1	2	1500	
		ALTERATION:.	VA03705			1.0	4	67	5	15	(1	5	1400	
		147.0 MODERATE PERVASIVE SERICITIZATION and WEAK PERVASIVE		165.0	166.0	1.0		27	14	19	<b>(1</b>	6	1400	
		CHLORITIZATION.	VA03700	166.0		1.0	ξ.	15	14	29	(1	(5	1500	
		169.5 175.0 WEAK FRACTURE CONTROLLED SILICIFICATION.	VA03707			.7		15	25	34	1	. <5	3000	
			VA03709			.5	9	4300	133	3700	5	247	4800	
		SULPHIDES:.	VA03710			. 8	. 8	945	32	128	<b>√1</b>	55	4300	
		147.0-148.0 m 4 % pyrite, disseminated and in two large	VA03711			1.0	4	300	7	39	ά	18	2400	
		lapilli.	VA03712			1.0	. 4	49	8	24	<b>&lt;1</b>	5	2100	
		148.0-151.0 m 1-2 % disseminated pyrite.	VA03713			1.0	Ā	66	7	22	₹1	.8	1900	
		151.0-151.5 M pyrite in clumps up to 5 mm in diameter.	VA03714			1.0		46	<b>(5</b>	22	(1	₹5	1500	
		151.5-151.8 M bed of massive pyrite with trace	VA03715			.5	4	46	9	17	₹1	(5	2800	
		chalcopyrite and sphalerite at 35 degrees to core axis.	VA03716			.5	15	25	43	25	(1	22	3500	
		151.8-155.0 m 3 % disseminated pyrite.	VA03717			1.0	5	20	13	20	₹1	6	2900	
		155.0-156.0 m 2 % disseminated pyrite.	VA03718			1.0	5	48	36	20	₹1	8	2800	
		156.0-162.0 m 3-4 % disseminated pyrite.	VA03719			1.0	5	41	45	19	₹1	10	3200	
		162.0-165.0 m 4 % pyrite disseminated in lapilli and matrix	VA02832			17.4	n/a	146	n/a	629	n/a		3720	
		165.0-167.7 m 5 % pyrite concentrated in lapilli.		177.0		1.0	8	148	61	615	(1	37	2400	
		167.7-169.0 m 8 % disseminated pyrite 1 % chalcopyrite and	VA03721			1.0	25	523	24	80	1	96	1500	
		trace to 1 % sphalerite. Sulphides occur as lapilli-sized	VA03722			.5	25	466	22	45	(1	56	1500	
		clasts and disseminated in the matrix.	VA03723			.5	9	116	15	8	(1)	27	2000	
		169.0-173.5 m 3-4% disseminated pyrite.	VA03724			1.0	9	145	. 6	35	(1	27	1500	
		173.5-174.0 m 15 % fracture controlled and disseminated	VA03725			1.0	9	60	10	25	₹1	55	1300	
		pyrite.		182.0		2.0	9.	93	13	315	<1		1500	
		174.0-177.0 m 5 % pyrite disseminated and in bands/beds (	VA03728	184.0	185.0	1.0	7	160		1525	(1	188	1900	
		3 mm thick.			186.0	1.0	7	117		1046	(1	135	2000	
		177.0-178.0 m 8 % fracture controlled and disseminated		186.0		1.0	,	165	290 55	384	1	150	3700	
		pyrite.	VA03730			1.0	,	67	26		(1 ·	91	4400	
		178.0-179.5 m 25 % pyrite and trace to nil chalcopyrite.	VA03731				. 5	27		46		141	4600	
		Pyrite is heavily disseminated in the matrix and				1.0	5		19	<1	(1	95	2700	
		surrounds lapilli fragments forming a net texture.	VA03733			1.0	. 5	164	4.3	44	<1		3200	
		179.5-184.0 m 8-10 % pyrite as lapilli-sized clasts and		190.0		1.0		119	34	22	<1			
			VA03735			1.0	5	5.7	31	15	<1	433	4400	
		disseminated in matrix.	VA03736			1.0	5	75	32	9	(1		3400	
		184.0-187.0 m 7 % pyrite as clasts < 5 mm wide, bands/beds < 3 mm thick and disseminated.	VA03737	195.0	194.0	1.0	3	19	19	9.	(1	.7	2000	
		187.0-193.0 m 5 % pyrite, disseminated and as												
		lapilli-sized clasts.												
		107 O-104 4 m 2 % previte discominated and in hands / 2 mm												

180.5 184.0 Several beds of medium brown cherty sediment up to 0.1 m thick at 30-40 degrees to core axis. Beds contain 5 % disseminated pyrite and trace chalcopyrite and possibly sphalerite.

193.0-194.4 m 3 % pyrite, disseminated and in bands < 3 mm

wide parallel to foliation.

177.0 180.0 Lapilli are quite large (up to 2 cm wide and over 7 cm long) and angular. They stand out well in the sulphide-rich matrix.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50 10

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm)	
194.4	200 5	FELSIC FELDSPAR	COVETAL THEE												
134.4	200.3		n feldspar crystals, nil to 2 % light grey	VA02833	104.4	200.5	6.1	- /-	20	- 1-			,	4.4.6	
			to 3 mm in diameter and up to 5 % light	VA03738			6	n/a O	20 6	n./a. 8	<10 7	n/a - <1		1160 1700	
		grey to green i	fine-grained felsic lapilli in a very	VA03739			1.0	2	25	(5	17	⟨1		1300	
			aphanitic massive siliceous matrix.	VA03740			1.0	2	28	6	12	<1	7	1300	
			ery poorly developed and if not for the zy lapilli it might be a flow. Lower	VA03741			1.0	1	5	(5	10	(1		1100	
		contact is grad	dational over 5.0 cm.	VA03742 VA03743			1.0	1	4 15	9 · (5	. 8 12	<1 <1		1200 1200	
				VA03744			. 8	. 1	12	. 8	7	(1		1100	
		STRUCTURE:.													
		At 195.5 m foli	lation is at 30 degrees to core axis.												
		ALTERATION:.													
			AK PERVASIVE SERICITIZATION and WEAK												
		PER	RVASIVE CHLORITIZATION.												
			DERATE FRACTURE CONTROLLED SILICIFICATION.												
			AK PERVASIVE SERICITIZATION and WEAK RVASIVE CHLORITIZATION.												
		PER	CVASIVE CREOKITIZATION.												
		SULPHIDES:.													
		194.4-195.0 M n													
			-2 % disseminated and fracture controlled												
		pyrite.	race disseminated and fracture controlled												
		pyrite.	race disseminated and fracture controlled												
		,,													
200.5	218.3	FELSIC LAPILLI													
			grey, fine-grained rounded felsic lapilli	VA03745	200.5	201.0	.5	. 4	8	8	14	(1		1300	
			de and over 5.0 cm long stretched parallel n a moderately sericitic light grey	VA02834 VA03746	200.5	218.3	17.8	n/a	43	n/a 19	<10 10	n/a ≺1		2590 1700	
			elsic matrix. Locally up to 5 % < 3 mm	VA03747	202.0	203.0	1.0	4	34	24	7	(1		1500	
			tz eyes. Lower contact is at 50 degrees to	VA03748	203.0	204.0	1.0	4	119	20	14	⟨1		1600	
		core axis.		VA03749	204.0	205.0	1.0	4	69	28	8	<1	9	1400	
		STRUCTURE:.		VA03750		206.0	1.0	4	63	17	13	(1		1100	
			ation is at 45 degrees to core axis.	VA03751 VA03752		207.0	1.0	4	96 16	16 13	16 16	(1		1700 1400	
			ation is at 26 degrees to core axis.	VA03753	208.0	209.0	1.0	4	29	17	19	<b>(1</b>		1500	
				VA03754	209.0	210.0	1.0	4	86	27	12	<1		1700	
		ALTERATION:.		VA03755	210.0	211.0	1.0	4	334	21	23	<1		1300	
			PERATE PERVASIVE SERICITIZATION.	VA03756	211.0	212.0	1.0	4	82	24	15	(1		1600	
			dote sericite carbonate alteration patch bably associated with the gabbro intrusion	VA03757 VA03758	212.0 213.0	213.0 214.0	1.0	5 5	120 97	24 27	11 15	(1)		2000 3500	
			ow. Weak thermal biotite alteration for 0.2	VA03759	214.0	215.0	1.0	5	40	30	8	₹1		3000	
		n f	rom lower contact.	VA03760	215.0	216.0	1.0	5	54	31	12	⟨1		3100	
		SULPHIDES:.		. VA03761			1.0	5	121		158	(1		2800	
			* pyrite concentrated in lapilli sional pyrite clast up to 0.5 cm wide and 2	VA03762	217.0	218.3	1.3	5	144	37	79	<1	21	1900	
		cm long.	sional pyrite clast up to 0.5 cm wide and 2												
		- Zony.													

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50 11

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba ) (ppm)
		212.0-218.3 m 5 % pyrite disseminated and in lapilli fragments as above.											
		204.8 205.2 Several fine ash beds up to 6.0 cm thick at 25 to 40 degrees to core axis.										4.	
. 210 2	222 4	FELDSPAR PORPHYRITIC GABBRO											
218.3	223.4	Massive, medium green, fine-grained with 5 % 1-3 mm feldspar phenocrysts. 5.0 cm assimilation zone at the upper contact. Lower contact is at 40 degrees to core axis	VA03764	218.3	218.9	.6	6	549	9	62	€1 .	16	20
		218.3 218.9 Quartz-carbonate epidote flooded zone with 3 % pyrrhotite, 2 % pyrite and 1 % chalcopyrite.											
		222.5 223.0 5 % fracture controlled pyrite.											
		222.3 223.0 3 % fracture constorred pyrite.											
223.4	234.8	FELSIC LAPILLI TUFF											
		Ash tuff above 224.5 m. Below this depth it is a lapilli	VA02835	223.4	234.8	11.4	n/a	935	n/a	200	n/a	n/a 4	
		tuff with 5-40 % quartz grains and 5-10% grey felsic	VA03763		224.2	. 8		154	57	38	<1		2500
		fragments up to 1.0 cm long (most < 0.5 cm) in a	VA03765		225.0	. 8		1542		2097	<1		2300
		fine-grained grey felsic matrix. Felsic fragments	VA03766		225.4	. 4		7300		3300	20	582 5	
		predominate above 225.8 m and below 227.7 m. Between 225.8	VA03767		226.2	. 5		3600		2000		1337 12	
		and 227.7 m (where the economic sulphides occur) quartz fragments predominate. Lower contact is at 52 degrees to	VA03768 VA03769	226.2	226.7	. 5		500 1200	-	8600 5600		3154 20 1954 25	
		core axis.	VA03770	227.2	227.7	.5		1300		1600		1782 25	
		COIC MAID.	VA03771		228.7	1.0	. 5	200	122	606	(1	52 5	
		STRUCTURE:.	VA03772		229.7	1.0	-	154	99	293	à		4900
		At 224.4 m foliation is at 50 degrees to core axis.	VA03773	229.7	230.7	1.0	5	80	59	258	(1		4200
		At 231.1 m bedding is at 50 degrees to core axis.	VA03774		231.2	.5	10	195	59	184	d		6100
			VA03775	231.2	231.7	. 5	5	31	67	39	(1		5700
* +,		ALTERATION:.	VA03776	231.7	232.7	1.0	5	98	49	37	(1	16 4	1200
		223.4 225.4 MODERATE PERVASIVE SERICITIZATION.	VA03777	232.7	233.7	1.0	5	43	(5	45	<1	16 2	2400
		225.7 227.7 MODERATE PERVASIVE BIOTIZATION.	VA03778	233.7	234.8	1.1	5	81	11	41	<1	18 3	3200
		227.7 234.8 WEAK PERVASIVE SILICIFICATION and WEAK PERVASIVE SERICITIZATION.											
		CHI DUTDECA											

N.B. The SPHALERITE noted below is red-brown and is finely

disseminated along foliation planes and some of it may be BIOTITE.
223.4-224.2 M trace disseminated pyrite.
224.2-225.0 m 5 % disseminated pyrite and 1 % chalcopyrite and sphalerite.
225.0-225.4 m 3 % chalcopyrite, 5 % sphalerite and 2 % pyrite. Sulphides are disseminated.

225.7-226.2 m 8 % finely disseminated sphalerite, 4 % pyrite and 1 % chalcopyrite.
226.2-226.7 m 6 % sphalerite, 5 % pyrite and 3 % chalcopyrite.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample

No.

To

(m:)

(m)

VA03779 237.3 237.8

Width

(m)

. , 5

Total

Sulphides (ppm)

HOLE No: Page Number CH88-50 12

Cu

Рb

103 1449

λg

<1

313 5500

(ppb) (ppm)

(ppm) (ppm) (ppm)

From To (m)

------DESCRIPTION-----

226.7-227.2 m 8 % sphalerite, 5 % pyrite and 1.5 % chalcopyrite.
227.2-227.7 m 8 % sphalerite, 3 % pyrite and 1 % chalcopyrite.
227.7-230.7 m 4-5 % pyrite as spots up to 3 mm in diameter.
230.7-231.2 m 10 % pyrite in semi-massive bands (beds?) up to 1.0 cm thick at 50 degrees to core axis.
231.2-234.8 m 4-5 % pyrite disseminated and as clasts up to 1.0 cm in diameter.

225.4-225.7 M fine-grained MAFIC DYKE. Upper contact is at 25 degrees to core axis and lower contact is at 40 degrees to core axis.

234.8 280.7 FELDSPAR PORPHYRITIC GABBRO

Massive, medium green, fine to medium-grained and locally feldspar porphyritic (< 5 %, 1-3 mm feldspar phenocrysts). 1-3 % disseminated ilmenite and trace chalcopyrite. Ilmenite is surrounded by a white alteration mineral (leucoxene?). Core is blocky throughout the interval. Becomes fine-grained and epidote-calcite patches up to 5.0 cm wide are common below 259.0 m. Below 259.0 m it is difficult to tell if the rock is intrusive or extrusive. It is logged as gabbro because occasionaly trace ammounts of ilmenite can be seen. Check the WRA samples for TiO2. Lower contact is at 35 degrees to core axis.

STRUCTURE:

 $238.6-239.0 \ \text{m}$ ; 1.0 cm fault gouge runs parallel to the core axis.

237.3 237.8 Xenolith of FELSIC TUFF. Light grey moderately sericitic ash (?) tuff with 4 % disseminated pyrite. Lower contact is at 60 degrees to core axis.

264.0 280.7 5 % dark grey-green patches up to 2.5 cm wide with relatively sharp but jagged margins.

They are probably abrasions caused by the drill bit.

280.7 286.3 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS
Pale to medium green fine-grained mafic ash tuffs
intercalated with coarser, quartz eye, bearing
intermediate tuffs and light brown cherty tuffaceous
sediments. 1-3 % fracture controlled pyrite. Lower
contact is difficult to pippoint.

STRUCTURE:

2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-50 13

From To (m) (m) -----DESCRIPTION-----

Sample From To Width Total Cu Рb λg .Au Ba No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)

At 283.5 m bedding is at 40 degrees to core axis.

286.3 300.5 MAFIC FLOW

Massive fine-grained medium green locally weakly feldspars and or mafic porphyritic, feldspar are epidotized. May be gabbro but no ilmenite observered.

ALTERATION:.

286.3 300.5 WEAK SPOTTY EPIDOTIZATION and locally WEAK FRACTURE CONTROLLED CARBONATIZATION. 287.6 288.0 Quartz-carbonate flooded zone at 40 degrees to

core axis.

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	75 102	XAL203	ZCAO	ZHGO	ZNA20	XK20	<b>XFE203</b>	XT 102	XP205	IHNO	XLOI	SUM	BA	AI	NACA
							<del></del>								 · • • • • • • • • • • • • • • • • • • •		
VA02352	12.70	13.00	50.40	16.70	5.63	5.22	2.67	1.79	8.88	0.64	0.14	0.25	7.16	99.48	592.	46.	8.
VA02353	34.00	34.40	69.80	14.20	1.56	1.59	2.56	4.78	1.95	0.24	0.08	0.04	1.85	98.65	2500.	61.	4.
VA02354	97.00	97.30	72.10	14.00	1.25	0.98	1.63	3.42	2.10	0.29	0.08	0.03	2.23	98.11	1830.	60.	3.
VA02355	107.10	170.20	71.70	15.20	0.63	1.43	1.07	3.77	1,.91	0.34	0.07	0.02	2.47	98.61	2110.	75.	2.
VA02356	116.30	116.60	68.90	17.10	0.36	2.09	0.63	3.75	2.29	0.38	0.10	0.03	3.70	99.33	1780.	86.	1.
VA02357	127.20	127.40	69.60	14.00	2.17	2.03	1.63	2.88	2.86	0.28	0.07	0.03	2.62	98.17	1050.	56.	4.
VA02358	139.00	139.20	74.80	14.50	1.58	0.74	3.72	2.12	0.44	0.30	0.07	0.01	1.54	99.82	1380.	35.	5.
VA02359	147.00	147.30	70.50	15.40	2.55	1.63	5.68	1.12	0.87	0.32	0.07	0.02	2.00	100.16	630.	25.	8.
VA02360	160.10	160.30	71.90	14.90	2.25	1.44	2.63	2.04	1.47	0.36	0.10	0.02	2.08	99.19	1440.	42.	5.
VA02361	176.40	176.60	72.40	13.60	1.59	0.94	1.25	2.94	2.56	0.29	0.07	0.02	2.77	98.43	3160.	58.	3.
VA02362	185.30	185.50	71.70	13.80	0.29	0.56	0.49	3.60	4.42	0.35	0.06	<0.01	3.93	99.20	1850.	84.	1.
VA02363	197.20	197.50	71.60	15.80	5.27	1.24	2.38	0.75	1.07	0.33	0.09	0.01	1.77	100.31	966.	21.	8.
VA02364	211.10	211.50	73.60	14.90	2.29	0.77	2.06	2.17	1.29	0.31	0.07	0.02	2.00	99.48	1920.	40.	4.
VA02365	229.90	230.10	59.90	21.00	2.61	1.43	2.09	4.38	2.76	0.37	0.12	0.03	3.70	98.39	6930.	55.	5.
VA02366	254.00	254.50	48.80	13.40	11.00	7.18	2.60	0.30	11.80	1.37	0.14	0.19	1.77	98.55	285.	35.	14.
VA02367	260.70	261.00	49.10	15.60	8.24	6.67	4.39	0.31	10.30	0.85	0.17	0.17	2.93	98.73	255.	36.	13.
VA02368	270.10	270.40	45.20	17.70	12.30	5.19	2.46	0.27	13.10	0.92	0.11	0.13	2.16	99.54	185.	27.	15.
VA02369	279.00	279.20	49.10	13.90	11.40	8.09	2.75	0.31	9.84	0.55	0.13	0.16	2.39	98.62	135.	37.	14.
VA02370	282.00	282.20	52.80	17.50	5.45	4.58	1.76	2.25	9.55	1.02	0.36	0.11	3.31	98.69	1430.	49.	7,
VA02371	291.10	291.40	48.10	12.30	13.40	9.34	2.05	0.19	9.63	0.51	0.12	0.17	3.08	98.89	106.	38.	15.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	(ppm)	CU (ppm)	ZN (ppm)	NI (ppm)					ROCK	CODES	мім
	·											:.					
12.70	13.00	33.0	131.0	592.0	14.0	22.0	<10.0	231.0	137.0	13.0					TFAT	PHW	58P
34.00	34.40	40.0	202.0	2500.0	15.0	74.0	<10.0	<10.0	<10.0	<10.0					TFAT	PSH	FCP
97.00	97.30	69.0	31.0	1830.0	<10.0	99.0	11.0	<10.0	<10.0	<10.0					TEAT	PSM	DCP
107.10	170.20	71.0	30.0	2110.0	27.0	113.0	14.0	18.0	<10.0	<10.0					TFUT	SHW	DOP
116.30	116.60	74.0	102.0	1790.0	17.0	129.0	<10.0	65.0	56.0	<10.0					TEBI	SHH	DBP
127.20	127.40	49.0	105.0	1050.0	17.0	107.0	<10.0	10.0	37.0	11.0		. •			TEBT	SHW	DBP
139.00	139.20	42.0	253.0	1380.0	<10.0	93.0	<10.0	<10.0	<10.0	<10.9					TFAQY	PSM	DBP
147.00	147.30	27.0	370.0	630.0	<10.0	98.0	14.0	<10.0	13.0	<10.0					TFAM	PSW	DBP
160.10	160.30	37.0	261.0	1440.0	20.0	110.0	<10.0	42.0.	17.0	<10.0					TEAT	PSM	DCP
176.40	176.60	64.0	178.0	3160.0	28.0	88.0	10.0	13.0	<10.0	10.0					TFFT	PSM	DCP
185.30	185.50	58.0	55.0	1850.0	<10.0	121.0	20.0	76.0	629.0	<10.0					TFFT	PSS	DDP
197.20	197.50	<10.0	393.0	966.0	14.0	94.0	<10.0	12.0	<10.0	<10.0					TFAFMY	PSW	DBP
211.10	211.50	44.0	224.0	1920.0	<10.0	109.0	12.0	59.0	<10.0	<10.0					TFBT	PSM	DCP
229.90	230.10	73.0	348.0	6930.0	30.0	130.0	<10.0	61.0	<10.0	<10.0					TFPT	Pau	DCP
254.00	254.50	17.0	181.0	285.0	22.0	65.0	27.0	157.0	50.0	123.0					PMAEM	SEW	DCB
260.70	261.00	14.0	198.0	255.0	17.0	<10.0	<10.0	18.0	39.0	37.0					PMAMT	FCW	A
270.10	270.40	<10.0	446.0	185.0	16.0	<10.0	<10.0	171.0	27.0	28.0					Pham	PE₩	FCP
279.00	279.20	18.0	249.0	135.0	<10.0	<10.0	12.0	224.0	37.0	59.0					PMAH	PEW	A
282.00	282.20	56.0	299.0	1430.0	45.0	123.0	16.0	49.0	81.0	<10.0					THABT	PMW	FCP
291.10	291.40	<10.0	305.0	106.0	<10.0	<10.0	14.0	109.0	28.0	73.0					PMB	SEW	A
	12.70 34.00 97.00 107.10 116.30 127.20 139.00 147.00 160.10 176.40 195.30 197.20 211.10 229.90 254.00 270.10 279.00 282.00	12.70 13.00 34.40 97.00 37.30 107.10 170.20 116.30 116.60 127.20 127.40 139.00 139.20 147.00 147.30 160.10 160.30 176.40 176.60 195.30 185.50 197.20 197.50 211.10 211.50 229.90 230.10 254.00 254.50 260.70 261.00 270.10 270.40 279.00 279.20	12.70 13.00 33.0  34.00 34.40 40.0  97.00 97.30 69.0  107.10 170.20 71.0  116.30 116.60 74.0  127.20 127.40 49.0  139.00 139.20 42.0  147.00 147.30 27.0  160.10 160.30 37.0  176.40 176.60 64.0  195.30 185.50 58.0  197.20 197.50 <10.0  211.10 211.50 44.0  229.90 230.10 73.0  254.00 254.50 17.0  260.70 261.00 14.0  279.00 279.20 18.0  282.00 282.20 56.0	(ppm)         (ppm)           12.70         13.00         33.0         131.0           34.00         34.40         40.0         202.0           97.00         97.30         69.0         31.0           107.10         170.20         71.0         30.0           116.30         116.60         74.0         102.0           127.20         127.40         49.0         105.0           139.00         139.20         42.0         253.0           147.00         147.30         27.0         370.0           160.10         160.30         37.0         261.0           176.40         176.60         64.0         178.0           185.30         185.50         58.0         55.0           197.20         197.50         <10.0	(ppm)         (ppm)         (ppm)           12.70         13.00         33.0         131.0         592.0           34.00         34.40         40.0         202.0         2500.0           97.00         97.30         69.0         31.0         1830.0           107.10         170.20         71.0         30.0         2110.0           116.30         116.60         74.0         102.0         1780.0           127.20         127.40         49.0         105.0         1050.0           139.00         139.20         42.0         253.0         1380.0           147.00         147.30         27.0         370.0         630.0           160.10         160.30         37.0         261.0         1440.0           176.40         176.60         64.0         178.0         3160.0           185.30         185.5u         58.0         55.0         1850.0           211.10         211.50         44.0         224.0         1920.0           229.90         230.10         73.0         348.0         6930.0           254.00         254.50         17.0         181.0         285.0           260.70         261.00	(ppm)         (ppm)         (ppm)         (ppm)           12.70         13.00         33.0         131.0         592.0         14.0           34.00         34.40         40.0         202.0         2500.0         15.0           97.00         97.30         69.0         31.0         1830.0         <10.0	12.70 13.00 33.0 131.0 592.0 14.0 22.0 34.00 34.40 40.0 202.0 2500.0 15.0 74.0 97.00 97.30 69.0 31.0 1930.0 17.0 129.0 107.10 170.20 71.0 30.0 2110.0 27.0 113.0 116.30 116.60 74.0 102.0 1780.0 17.0 129.0 127.20 127.40 49.0 105.0 1050.0 17.0 107.0 139.00 139.20 42.0 253.0 1380.0 (10.0 93.0 147.00 147.30 27.0 370.0 630.0 (10.0 93.0 160.10 160.30 37.0 261.0 1440.0 20.0 110.0 176.40 176.60 64.0 178.0 3160.0 28.0 88.0 195.30 185.50 58.0 55.0 1850.0 (10.0 121.0 197.20 197.50 (10.0 393.0 966.0 14.0 94.0 211.10 211.50 44.0 224.0 1920.0 (10.0 109.0 229.90 230.10 73.0 348.0 6930.0 30.0 130.0 254.00 254.50 17.0 181.0 285.0 22.0 65.0 260.70 261.00 14.0 198.0 255.0 17.0 (10.0 270.10 270.40 (10.0 446.0 185.0 16.0 (10.0 279.00 279.20 18.0 249.0 135.0 (10.0 123.0	(ppm)	12.70   13.00   33.0   131.0   592.0   14.0   32.0   210.0   331.0   34.00   34.40   40.0   202.0   2500.0   15.0   74.0   410.0   210.0   97.00   97.30   69.0   31.0   1830.0   410.0   99.0   11.0   410.0   107.10   170.20   71.0   30.0   2130.0   27.0   113.0   14.0   18.0   116.30   116.60   74.0   102.0   1780.0   17.0   129.0   410.0   410.0   139.00   139.20   42.0   253.0   1380.0   410.0   93.0   410.0   410.0   147.30   27.0   370.0   630.0   410.0   98.0   14.0   410.0   160.10   160.30   37.0   261.0   1440.0   20.0   110.0   410.0   139.30   185.50   58.0   55.0   1850.0   410.0   121.0   20.9   76.0   197.20   197.50   44.0   224.0   1920.0   410.0   121.0   20.9   76.0   197.20   197.50   410.0   393.0   966.0   14.0   94.0   410.0   12.0   211.10   211.50   44.0   224.0   1920.0   410.0   109.0   12.0   59.0   229.90   230.10   73.0   348.0   6930.0   30.0   130.0   410.0   18.0   254.00   254.50   17.0   181.0   285.0   22.0   65.0   27.0   157.0   260.70   261.00   14.0   198.0   255.0   17.0   410.0   410.0   18.0   270.10   270.40   410.0   446.0   185.0   16.0   410.0   410.0   12.0   279.00   279.20   18.0   249.0   135.0   410.0   410.0   12.0   224.0   282.00   282.20   56.0   299.0   1430.0   45.0   123.0   16.0   49.0   282.00   282.20   56.0   299.0   1430.0   45.0   123.0   16.0   49.0	12.70 13.00 33.0 131.0 592.0 14.0 22.0 (10.0 231.0 137.0 97.00 97.30 69.0 81.0 139.00 170.0 170.20 71.0 30.0 2110.0 27.0 113.0 14.0 18.0 (10.0 116.30 116.60 74.0 105.0 1050.0 17.0 107.0 (10.0 127.0 139.00 139.20 42.0 259.0 138.0 (10.0 98.0 14.0 (10.0 10.0 13.0 147.00 147.30 27.0 37.0 261.0 148.0 393.0 (10.0 98.0 14.0 170.0 (10.0 127.0 110.0 160.30 37.0 170.0 160.30 37.0 170.0 160.30 37.0 170.0 160.30 37.0 261.0 170.0 160.0 170.0 (10.0 120.0 170.0 160.30 37.0 170.0 160.30 37.0 170.0 160.30 37.0 261.0 1440.0 20.0 110.0 (10.0 13.0 160.0 170.0 160.30 37.0 170.0 160.30 37.0 170.0 170.0 (10.0 170.0 160.30 37.0 170.0 160.30 37.0 170.0 170.0 (10.0 170.0 160.30 37.0 170.0 170.0 (10.0 170.0 170.0 160.30 37.0 261.0 1440.0 20.0 110.0 (10.0 13.0 (10.0 170.0 170.0 170.0 170.0 170.0 (10.0 170.0 170.0 170.0 170.0 170.0 (10.0 170.0 170.0 170.0 170.0 170.0 (10.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 1	12.70			12.70 13.00 33.0 131.0 592.0 14.0 22.0 (10.0 331.0 137.0 19.0 97.00 97.30 69.0 97.30 69.0 97.30 69.0 91.0 130.0 210.0 27.0 112.0 110.0 (10.0 10.0 10.0 10.0 10.0 10.0	12.70	12.70	ROAM   TO   RR   ROAM   Spa   RA   PA   Copa   Co

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENIS)

SAMPLI			75.100						R EL								
			45102	XAL203	ZCAO	ZHGO	ZNA20		ZEE203	21102	ZP205	ZHNO	ZL01	SUM	 BA	AI	NACA
VA02824	12.70	29.30	57.10	15.00	6.01	3.75									 		
VA02825	31.60	*****	70.40	13.90	1.85	1.12	2.42	1.53	7.21	0.53			5.00	98.55	661.	39.	8.
VA02826	43.90			13.30	2.93	1.43	3.69	2.40	2.64	0.23 0.25			1.77	98.57	2080.	57.	5.
VA02828		104.00		15.70	1.55	0.89	1.77	3.64	2.22	0.36			2.70	98.44	1980.	37.	7.
VA02829	129.00		72.20 71.40	15.80	0.86	1.44	1.29	3.44	1.62	0.37			3.00	97.93	1410.	58.	3.
VA02830	139.70	147.00	68.60	16.00	2.25	1.01	3.62 3.18	2.15	1.58	0.30				93.44	1610. 1430.	69. 35.	2.
16820AV	147.00		69.50	14.30	1.60	1.12	1.16	2.85 3.16	1.65	0.33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.23	98.08	1420.	48.	6. 5.
A02833	177.00		64.30	16.90	0.54	0.72	0.66	4.30	3.48 5.34	0.32				98.26	2460.	61.	3.
	200.50			15.10	3.61	1.63	2.15	1.12	1.30	0.31				98.26	3720.	81.	1.
	223.40			17.00 20.10	2.32	0.95	1.96	2.68	3.16	0.37				99.55	1160.	32.	6.
				#V.10	2.53	1.32	2.15	4.17	2.53	0.37				77.78	2590. 4660.	46. 54.	1. 5.

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	RB (ppm)	SR (ppm)	8A (ppm)_	Υ . (ppm)	ZR (ppm)	NB (ppm)	EU (ppm)	ZN (ppm)	NI (ppm)	· · · · · · · · · · · · · · · · · · ·		ROCK	CODES	MIN
							*******				<b></b>		 	 		
VA02824	12.70	29.30			661.0				121.0	32.0	<10.0			TEBT	PHW	DBP
VA02825	31.60	39.10			2080.0				18.0	14.0	<10.0			TFAT	PŚM	FCP
VA02826	43.90	50.00			1980.0				27.0	12.0	12.0			TFAT	PHW	FCP
VA02827	95.40	104.00			1410.0				17.0	<10.0	<10.0			TFAT	PHW	DCP .
VA02828	104.00	129.00			1610.0				20.0	16.0	21.0			TFAT	SHW	DCP
VA02829	129.00	139.70			1430.0				31.0	<10.0	<10.0			TFAQY	PHW	DCP
VA02830	139.70	147.00			1420.0				<10.0	<10.0	<10.0			TEAT	РНШ	DCP
VA02831	147.00	177.00			2460.0				46.0	<10.0	<10.0			TFPT	PSM	DCP
VA02832	177.00	194.40			3720.0				146.0	629.0	<10.0			TFBT	PSM .	DCP
VA02833	194.40	200.50			1160.0				20.0	<10.0	<10.0			TFAFY	PSW	DCP
VA02834	200.50	218.30			2590.0				43.0	(10.0	<10.0			TFBT	PSM	DCP
VA02835	223.40	234.80			4660.0				935.0	200.0	<10.0			TFBT	?	DCS

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	το	BA (ppm)	CU (ppm)	ZN (pp+)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	мн (ррњ)	CUZN	ETS	FE
									**********					~~~~~~			
VA03650	14.10	15.10	480.0	72.0	204.0	<0.5	<5.0	19.0	53.0	16.0	9.0	2.0	8.0	1634.0	26.	2.	4.
VA03651	15.10	16.10	970.0	12.0	47.0	<0.5	(5.0	7.0	11.0	45.0	<5.0	<1.0	1.0	743.0	20.	2.	2.
VA03652	16.10	17.10	1100.0	17.0	32.0	<0.5	<5.0	7.0	6.0	47.0	<5.0	<1.0	1.0	631.0	35.	2.	2.
VA03653	17.10	18.10	1000.0	30.0	45.0	<0.5	<5.0	8.0	19.0	41.0	₹5.0	<1.0	2.0	622.0	40.	1.	2.
VA03654	31.60	32.60	2700.0	124.0	28.0	<0.5	<5.0	7.0	9.0	44.0	<5.0	<1.0	2.0	392.0	82.	2.,	2.
VA03655	32.60	33.60	2000.0	49.0	37.0	(0.5	<5.0	9.0	13.0	43.0	₹5.0	<1.0	3.0	380.0	57.	2.	2.
VA03656	33.60	34.60	2300.0	11.0	21.0	<0.5	<5.0	4.0	3.0	48.0	<5.0	<1.0	<1.0	228.0	34.	2.	1.
VA03657	34.60	35.60	2700.0	14.0	27.0	<0.5	<5.0	4.0	5.0	51.0	<5.0	<1.0	<1.0	211.0	34.	2.	1.
VA03658	35.60	36.60	2600.0	35.0	19.0	<0.5	<5.0	3.0	4.0	28.0	₹5.0	<1.0	1.0	238.0	65.	2.	1.
VA03659	36.60	37.60	1900.0	27.0	27.0	<0.5	₹5.0	3.0	5.0	28.0	<5.0	<1.0	1.0	229.0	50.	2.	1.
VA03660	37.60	38.60	2000.0	48.0	30.0	<0.5	5.0	5.0	8.0	34.0	<5.0	<1.0	1.0	230.0	62.	2.	1.
VA03661	39.60	39.10	290.0	32.0	59.0	<0.5	<5.0	24.0	84.0	9.0	16.0	<1.0	7.0	755.0	35.	2.	3.
VA03662	46.90	48.00	1100.0	31.0	39.0	₹0.5	23.0	3.0	5.0	27.0	<5.0	<1.0	1.0	288.0	44.	2.	1.
VA03663	48.00	49.00	460.0	28.0	18.0	<0.5	₹5.0	3.0	20.0	23.0	<5.0	<1.0	1.0	275.0	61.	1.	· 1.
VA03664	49.00	50.00	1400.0	43.0	34.0	<0.5	<5.0	9.0	21.0	17.0	<5.0	<1.0	3.0	349.0	56.	1.	2.
VA03665	55.00	56.00	790.0	68.0	100.0	(0.5	6.0	26.0	67.0	<5.0	29.0	1.0	8.0	537.0	40.	2.	5.
VA03666	95.40	96.40	1700.0	43.0	27.0	<0.5	<5.0	6.0	9.0	28.0	<5.0	<1.0	1.0	208.0	61.	5.	1.
VA03667	96.40	97.40	1300.0	39.0	39.0	⟨0.5	(5,0	6.0	11.0	35.0	: <5.0	<1.0	1.0	398.0	50.	4.	1.
VA03668	97.40	98.00	1300.0	43.0	29.0	<0.5	<5.0	5.0	12.6	24.0	<5.0	<1.0	3.0	359.0	60.	4.	2.
VA03669	98.00	99.00	1500.0	55.0	9.0	⟨0.5	6.0	5.0	6.0	26.0	<5.0	<1.0	1.0	195.0	86.	- 5.	1.
VA03670	99.09	100.00	1400.0	28.0	14.0	<0.5	<5.0	4.0	5.0	25.0	<5.0	<1.0	1.0	144.0	67.	5.	1.
VA03671	100.00	101.30	1600.0	47.0	37.0	<0.5	₹\$.0	5.0	6.0	23.0	⟨5.0	<1.0	1.0	149.0	56.	5.	1.
VA03672 :	101.30	102.30	1800.0	12.0	54.0	∢0.5											1.
VA03672	101.30	102.30	1800.0	42.0	54.0	<0.5	32.0	3.0	6.0	22.0	<5.0	<1.0	<1.0	110.0	44.	2.	

Hole No. CH88-50

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	ин (ррж)	CUZN	ETS	FE
	-4															***********	
VA03673	102.30	103.30	1600.0	28.0	6.0	<0.5	<5.0	3.0	4.0	25.0	<5.0	<1.0	<1.0	59.0	82.	2.	0.
VA03674	103.30	104.00	2100.0	65.0	9.0	₹0.5	<5.0	16.0	9.0	23.0	<5.0	<1.0	<1.0	97.0	88.	7.	2.
VA03675	104.00	105.00	2000.0	22.0	6.0	<0.5	<5.0	4.0	7.0	24.0	<5.0	<1.0	<1.0	74.0	79.	2.	. 1.
VA03676	105.00	106.00	1600.0	9.0	7.0	(0.5 0	<5.0	3.0	5.0	22.0	<5.0	<1.0	1.0	92.0	56.	2.	1.
VA03677	106.00	107.00	1500.0	15.0	5.0	₹0.5	<5.0	3.0	5.0	23.0	<5.0	<1.0	1.0	83.0	75.	2.	1.
VA03678	107.00	108.00	1900.0	43.0	6.0	<0.5	(5.0	6.0	6.0	22.0	(5.0	<1.0	1.0	78.0	89.	2.	1.
VA03679	108.00	109.00	1700.0	26.0	12.0	<0.5	<5.0	4.0	3.0	24.0	<5.0	<1.0	<1.0	60.0	68.	2.	1.
VA03680	109.00	110.00	1400.0	3.0	15.0	<0.5	<b>&lt;5.0</b>	2.0	5.0	29.0	<5.0	<1.0	<1.0	31.0	17.	2.	0.
VA03681	110.00	111.00	1300.0	49.0	28.0	<0.5	8.0	5.0	3.0	38.0	√5.0	<1.0	1.0	67.0	64.	2.	1.
VA03682	111.00	112.00	1400.0	22.0	16.0	⟨0.5	12.0	3.0	4.0	30.0	<5.0	<1.0	<1.0	43.0	58.	2.	1.
VA03683	126.00	127.00	1100.0	18.0	45.0	<0.5	<5.0	6.0	8.0	21.0	₹5.0	<1.0	2.0	169.0	29.	4.	2.
VA03684	127.00	126.00	940.0	18.0	44.0	<0.5	₹5.0	5.0	9.0	20.0	(5.0	<1.0	1.0	183.0	29.	4.	1.
VA03685	133.00	134.00	1400.0	2.0	12.0	<0.5	<5.0	4.0	4.0	26.0	<5.0	(1.0	1.0	113.0	14.	3.	1.
VA03686	134.00	135.20	1500.0	2.0	23.0	<0.5	<5.0	6.0	11.0	21.0	⟨5.0	<1.0	1.0	123.0	8.	3.	2.
VA03687	147.00	148.00	1500.0	43.0	18.0	<0.5	₹5.0	10.0	15.0	21.0	<5.0	<1.0	1.0	147.0	70.	4.	2.
VA03688	148.00	149.00	1500.0	15.0	11.0	<0.5	⟨5.0	7.0	6.0	23.0	⟨5.0	<1.0	1.0	116.0	58.	2.	1.
VA03689	149.00	150.00	1300.0	17.0	14.0	<0.5	(5.0	3.0	4.0	23.0	<5.0	<1.0	<1.0	151.0	55.	2.	1.
VA03690	150.00	151.00	1900.0	233.0	16.0	(0.5	10.0	7.0	9.0	23.0	<5.0	<1.0	1.0	150.0	94.	2.	2.
VA03691	151.00	151.30	1300.0	75.0	27.0	<0.5	<5.0	14.0	14.0	19.0	<5.0	<1.0	1.0	168.0	74.	4.	2.
VA03692	151.30	151.80	470.0	4300.0	169.0	5.5	192.0	84.0	93.0	32.0	127.0	7.0	6.0	210.0	96.	5.	+10.
VA03693	151.80	153.00	1400.0	49.0	15.0	<0.5	₹5.0	9.0	8.0	24.0	<5.0	<1.0	1.0	153.0	77.	3.	2.
VA03694	153.00	154.00	1700.0	187.0	30.0	<0.5	12.0	15.0	16.0	20.0	<5.0	<1.0	1.0	111.0	86.	3.	3.
VA03695	154.00	155.00	1200.0	107.0	24.0	<0.5	9.0	9.0	9.0	6.0	<5.0	√1.0	2.0	70.0	82.	3.	1.

Page No. 2

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

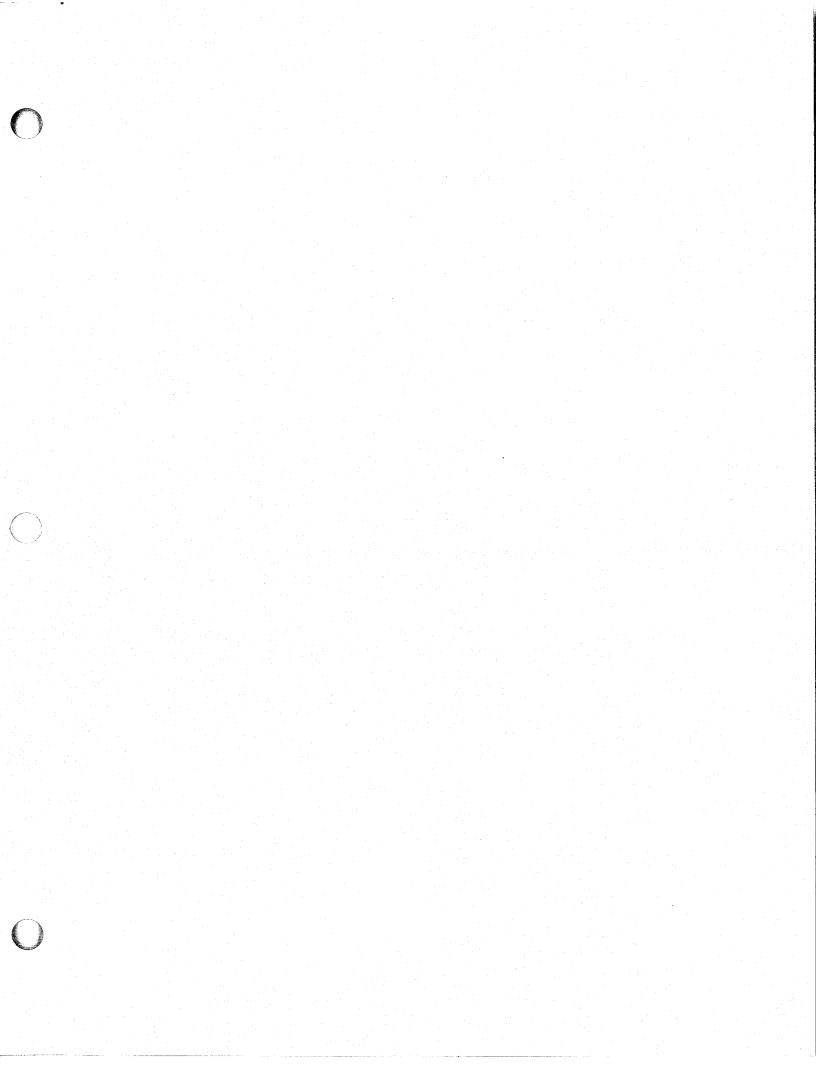
SAMPLE																**	
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	.PB (ppm)	AS (ppm)	(ppm)	HO (ppm)	НИ (ppm)	CUZN	ETS	FE
VA03696	155.00	156.00	1100.0	20.0	19.0	<0.5	<5.0	4.0	5.0	8.0	<5.0	<1.0	1.0	77.0	51.	2.	1.
VA03697	156.00	157.00	1800.0	27.0	19.0	(0.5	5.0	9.0	9.0	8.0	<5.0	<1.0	3.0	99.0	59.	4.	3.
VA03698	157.00	158.00	1700.0	17.0	11.0	<0.5	5.0	5.0	2.0	10.0	<5.0	<1.0	1.0	67.0	61.	4.	2.
VA03699	158.00	159.00	1500.0	18.0	14.0	<0.5	<5.0	5.0	3.0	8.0	⟨5.0	<1.0	1.0	75.0	56.	4.	1.
VA03700	159.00	160.00	1400.0	21.0	15.0	<0.5	<5.0	5.0	4.0	5.0	<5.0	<1.0	1.0	105.0	58.	4.	1.
VA03701	160.00	161.00	1500.0	22.0	19.0	<0.5	<5.0	4.0	3.0	5.0	<5.0	<1.0	2.0	96.0	54.	4.	1.
VA03702	161.00	162.00	1000.0	100.0	54.0	<0.5	₹5.0	4.0	4.0	7.0	⟨5.0	<1.0	1.0	118.0	65.	4.	1.
VA03703	162.00	163.00	1800.0	86.0	390.0	<0.5	5.0	6.0	4.0	6.0	(5.0	6.0	2.0	81.0	18.	4.	2.
VA03704	163.00	164.00	1500.0	69.0	25.0	<0.5	5.0	9.0	10.0	<5.0	<5.0	<1.0	5.0	93.0	73.	4.	з.
VA03705	164.00	165.00	1400.0	67.0	15.0	<0.5	5.0	4.0	3.0	5.0	₹5.0	<1.0	3.0	74.0	82.	4.	1.
VA03706	165.00	166.00	1400.0	27.0	19.0	<0.5	6.0	6.0	4.0	14.0	<5.0	<1.0	3.0	109.0	59.	5.	2.
VA03707	166.00	167.00	1500.0	15.0	29.0	(0.5	<b>&lt;5.0</b>	6.0	9.0	14.0	<5.0	1 <1.0	3.0	135.0	34.	5.	2.
VA03708	167.00	167.70	3000.0	15.0	34.0	<0.5	₹5.0	5.0	1.0	25.0	₹5.0	₹1.0	2.0	123.0	31.	5.	2.
VA03709	167.70	168.20	4800.0	4300.0	3700.0	5.2	247.0	12.0	14.0	133.0	7.0	13.0	4.0	111.0	54.	٤.	. 4.
VA03710	168.20	169.00	4800.0	945.0	128.0	<0.5	55.0	9.0	13.0	32.0	₹5.0	1.0	4.0	80.0	88.	8.	4.
VA03711	169.00	170.00	2400.0	300.0	39.0	<0.5	18.0	4.0	3.0	7.0	<5.0	<1.0	3.0	68.0	89.	4.	· i.
VA03712	170.00	171.00	2100.0	49.0	24.0	<0.5	5.0	4.0	2.0	8.0	⟨5.0	<1.0	2.0	54.0	67.	4.	1.
VA03713	171.00	172.00	1900.0	66.0	22.0	<0.5	8.0	5.0	1.0	7.0	<5.0	<1.0	2.0	54.0	75.	4.	2.
VA03714	172.09	173.00	1500.0	46.0	22.0	<0.5	<5.0	4.0	5.0	₹5.0	<5.0	<1.0	3.0	98.0	68.	4.	1.
VA03715	173.00	173.50	2800.0	46.0	17.0	<0.5	<5.0	5.0	7.0	9.0	<5.0	<1.0	3.0	79.0	73.	4.	i.
VA03716	173.50	174.00	3500.0	25.0	25.0	<0.5	22.0	6.0	10.0	43.0	11.0	<1.0	2.0	87.0	50.	15.	4.
VA03717	174.00	175.00	2900.0	20.0	20.0	(0.5	6.0	6.0	3.0	13.0	₹5.0	<1.0	2.0	91.0	50.	5.	2.
VA03718	175.00	176,00	2800.0	48.0	20.0	<0.5	8.0	6.0	4.0	36.0	₹5.0	<1.0 ⋅	2.0	91.0	71.	5.	2.

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	.MG (ppm)	MN (ppm)	CUZN	ETS	FE
																	<del></del>
VA03719	176.00	177.00	3200.0	41.0	19.0	<0.5	10.0	7.0	4.0	45.0	<5.0	(1.0	1.0	82.0	68.	5.	2.
VA03720	177.00	178.00	2400.0	148.0	615.0	(0.5	37.0	6.0	5.0	61.0	<5.0	3.0	1.0	73.0	19.	θ.	3.
VA03721	178.00	179.00	1500.0	523.0	80.0	0.5	96.0	20.0	31.0	24.0	56.0	2.0	3.0	31.0	87.	25.	+10.
VA03722	179.00	179.50	1500.0	466.0	45.0	⟨0.5	56.0	12.0	20.0	22.0	41.0	2.0	3.0	17.0	91.	25.	+10.
VA03723	179.50	180.00	2000.0	116.0	8.0	<0.5	27.0	4.0	2.0	15.0	<5.0	<1.0	<1.0	16.0	94.	9.	2.
VA03724	180.00	181.00	1500.0	145.0	35.0	(0.5	27.0	15.0	12.0	6.0	10.0	<1.0	6.0	332.0	81.	9.	4.
VA03725	181.00	182.00	1300.0	60.0	25.0	<0.5	55.0	18.0	14.0	10.0	9.0	<1.0	3.0	233.0	71.	9.	4.
VA03726	182.00	184.00	1500.0	93.0	315.0	<0.5	103.0	10.0	12.0	13.0	12.0	2.0	3.0	141.0	23.	9.	4.
VA03728	194.00	185.00	1900.0	160.0	1525.0	⟨0.5	188.0	6.0	7.0	240.0	11.0	6.0	1.0	37.0	10.	7.	3.
VA03729	185.00	186.00	2000.0	117.0	1046.0	<0.5	135.0	6.0	5.0	290.0	6.0	4.0	1.0	48.0	10.	7.	3.
VA03730	186.00	187.00	3700.0	165.0	384.0	0.5	150.0	8.0	19.0	55.0	27.0	3.0	5.0	58.0	30.	7.	7.
VA03731	187.00	188.00	4400.0	67.0	46.0	(0.5	91.0	5.0	5.0	26.0	5.0	<1.0	2.0	47.0	59.	5.	3.
VA03732	188.00	189.00	4600.0	27.0	0.5	⟨0.5	141.0	6.0	2.0	19.0	<5.0	<1.0	1.0	57.0	98.	5.	2.
VA03733	189.00	190.00	2700.0	164.0	44.0	<0.5	95.0	11.0	12.0	43.0	16.0	1.0	2.0	71.0	79.	5.	5.
UA03734	190.00	191.00	3200.0	119.0	22.0	<0.5	182.0	13.0	9.0	34.0	13.0	<1.0	2.0	62.0	84.	5.	4.
VA03735	191.00		4400.0	57.0	15.0	⟨0.5	433.0	13.0	15.0	31.0	9.0	(1.0	5.0	36.0	79.	5.	4.
VA03736	192.00		3400.0	75.0	9.0	<0.5	388.0	9.0	9.0	32.0	6.0	<1.0	1.0	18.0	89.	5.	3.
VA03737	193.00	194.00	2000.0	19.0	9.0	<0.5	7.0	3.0	3.0	19.0	₹5.0	<1.0	4.0	52.0	68.	3.	1.
VA03738	194.40		1700.0	6.0	7.0	<0.5	<5.0	2.0	2.0	8.0	<5.0	<1.0	5.0	53.0	46.	0.	1.
VA03739	195.00		1300.0	25.0	17.0	(0.5	⟨5.0	7.0	5.0	(5.0	₹5.0	<1.0	7.0	80.0	60.	2.	2.
VA03740	196.00		1300.0	28.0	12.0	<0.5	7.0	5.0	4.0	6.0	<5.0	<1.0	8.0	77.0	70.	2.	1.
VA03741	197.00		1100.0	5.0	10.0	<0.5	⟨5.0	2.0	3.0	⟨5.0	<5.0	<1.0	7.0	74.0	33.	1.	1.
VA03742	198.00		1200.0	4.0	8.0	<0.5	⟨5.0	2.0	3.0	9.0	< <b>5.0</b>	<1.0	5.0	61.0	33.	1.	1.

Hole No. CH88-50

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE																	
NUMBER	FROM	TO	BA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	(ppm)	PR (ppm)	AS (ppm)	CD (ppm)	NO (ppm)	ИМ (ppm)	CUZN	ETS	FE
VA03743	199.00	199.70	1200.0	15.0	12.0	<0.5	<5.0	3.0	3.0	<5.0	<5.0	<1.0	6.0	73.0	56.	1.	1.
VA03744	199.70	200.50	1100.0	12.0	7.0	<0.5	<5.0	2.0	1.0	8.0	<5.0	<1.0	6.0	62.0	63.	1.	1.
VA03745	200.50	201.00	1300.0	8.0	14.0	<0.5	<5.0	3.0	4.0	8.0	<5.0	(1.0	7.0	78.0	36.	4.	1.
VA03746	201.00	202.00	1700.0	22.0	10.0	<0.5	5.0	7.0	5.0	19.0	<5.0	<1.0	4.0	69.0	69.	4.	2.
VA03747	202.00	203.00	1500.0	34.0	7.0	<0.5	<5.0	9.0	7.0	24.0	₹5.0	<1.0	2.0	41.0	83.	4.	2.
VA03748	203.00	204.00	1600.0	119.0	14.0	<0.5	7.0	8.0	5.0	20.0	<5.0	<1.0	4.0	65.0	89.	4.	1.
VA03749	204.00	205.00	1400.0	69.0	8.0	<0.5	9.0	5.0	. 6.0	28.0	<5.0	<1.0	1.0	36.0	90.	4.	1.
VA03750	205.00	206.00	1100.0	63.0	13.0	<0.5	5.0	8.0	6.0	17.0	<5.0	<1.0	6.0	80.0	83.	4.	2.
VA03751	206.00	207.00	1700.0	96.0	16.0	<0.5	7.0	13.0	5.0	16.0	<5.0	<1.0	9.0	91.0	86.	4.	2.
VA03752	207.00	208.00	1400.0	16.0	16.0	<0.5	₹5.0	4.0	2.0	13.0	₹5.0	<1.0	8.0	118.0	50.	4.	1.
VA03753	208.00	209.00	1500.0	29.0	19.0	<0.5	<5.0	6.0	6.0	17.0	⟨5.0	(1.0	6.0	116.0	60.	4.	2.
VA03754	209.00	210.00	1700.0	86.0	12.0	⟨0.5	10.0	6.0	7.0	27.0	⟨5.0	<1.0	1.0	61.0	88.	4.	2.
VA03755	210.00	211.00	1300.0	334.0	23.0	<0.5	11.0	8.0	4.0	21.0	<5.0	<1,.0	4.0	146.0	94.	4.	2.
VA03756	211.00	212.00	1600.0	82.0	15.0	<0.5	₹5.0	5.0	3.0	24.0	(5.0	<1.0	3.0	116.0	85.	4.	1.
VA03757	212.00	213.00	2000.0	120.0	11.0	<0.5	26.0	10.0	6.0	24.0	<5.0	<1.0	6.0	84.0	92.	5.	2.
VA03758	213.00	214.00	3500.0	97.0	15.0	₹0.5	45.0	7.0	5.0	27.0	₹5.0	<1.0	6.0	72.0	87.	5.	2.
VA03759	214.00	215.00	3000.0	40.0	8.0	<0.5	19.0	6.0	4.0	30.0	<5.0	<1.0	3.0	36.0	83.	· 5.	2.
VA03760	215.00	216.00	3100.0	54.0	12.0	₹0.5	48.0	5.0	3.0	31.0	<5.0	<1.0	6.0	41.0	82.	5.	2.
VA03761	216.00	217.00	2800.0	121.0	158.0	<0.5	42.0	5.0	4.0	34.0	<5.0	€1.0	1.0	61.0	43.	5.	2.
VA03762	217.00	218.30	1900.0	144.0	79.0	⟨0.5	21.0	14.0	17.0	37.0	⟨5.0	1.0	2.0	390.0	65.	5.	3.
VA03764	218.30	218.90	20.0	549.0	62.0	<0.5	16.0	47.0	82.0	9.0	13.0	2.0	7.0	495.0	90.	6.	4.
VA03763	223.40	224.20	2500.0	154.0	38.0	<0.5	9.0	4.0	3.0	57.0	<5.0 ·	<1.0	<1.0	65.0	80.	1.	1.
VA03765	224.20	225.00	2300.0	1542.0	2097.0	<0.5	51.0	8.0	5.0	41.0	5.0	10.0	1.0	42.0	42.	5.	3.


Hole No. CH88-50

## DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CU (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	НН (ррм)	CUZN	ETS	FE
		· .												9 -			
VA03766	225.00	225.40	5500.0	7300.0	13300.0	19.7	582.0	15.0	44.0	809.0	17.0	46.0	7.0	143.0	35.	10.	3.
VA03767	225.70	226.20	12000.0	3600.0	32000.0	19.7	1337.1	7.0	23.0	81.0	7.0	107.0	7.0	102.0	10.	12.	3.
VA03768	226.20	226.70	20000.0	5500.0	28600.0	26.0	3154.2	10.0	12.0	74.0	8.0	98.0	5.0	45.0	16.	12.	3.
VA03769	226.70	227.20	25000.0	4200.0	55600.0	26.7	1954.2	8.0	16.0	278.0	8.0	175.0	4.0	81.0	7.	13.	3.
VA03770	227.20	227.70	25000.0	4300.0	41600.0	45.3	1782.8	7.0	13.0	1764.0	19.0	119.0	5.0	76.0	9.	15.	3.
VA03771	227.70	228.70	5800.0	200.0	606.0	⟨0.5	52.0	7.0	12.0	122.0	₹5.0	3.0	5.0	83.0	25.	5.	2.
VA03772	228.70	229.70	4900.0	154.0	293.0	<0.5	47.0	13.0	8.0	99.0	<5.0	2.0	9.0	195.0	34.	5.	2.
VA03773	229.70	230.70	4200.0	80.0	258.0	<0.5	23.0	4.0	3.0	59.0	<5.0	1.0	7.0	77.0	24.	5.	1.
VA03774	230.70	231.20	6100.0	195.0	184.0	<0.5	24.0	5.0	4.0	59.0	₹5.0	1.0	5.0	103.0	51.	10.	2.
VA03775	231.20	231.70	5700.0	31.0	39.0	<0.5	13.0	5.0	6.0	67.0	<5.0	<1.0	14.0	154.0	44.	5.	1.
VA03776	231.70	232.70	4200.0	98.0	37.0	<0.5	16.0	6.0	12.0	49.0	₹5.0	<1.0	9.0	132.0	73.	5.	1.
VA03777	232.70	233.70	2400.0	43.0	45.0	<0.5	16.0	7.0	14.0	<5.0	6.0	<1.0	6.0	180.0	49.	5.	1.
VA03778	233.70	234.80	3200.0	81.0	41.0	<b>(0.5</b>	18.0	6.0	16.0	11.0	<5.0	<1.0	4.0	117.0	66.	5.	1.
VA03779	237.30	237.80	5500.0	665.0	1449.0	(0.5	313.0	11.0	12.0	103.0	⟨5.0	7.0	3.0	112.0	31.	5.	2.

Hole No. CHB8-50

Page No.



Summary Log: DDH CH88-51

Location: 26+92 E, 3+10 S; Chip 1 Claim

Azimuth: 210, Dip: -45

Hole Completed: May 6, 1988 Core Logged By: D.P. Money

0.0 - 4.0 Casing.

40 - 25.4 Gabbro.

25 4 - 44.4 Black argillite with 4 % fracture controlled pyrite.

44.4 - 50.6 Tuffaceous conglomerate with argillite clasts in a felsic tuffaceous matrix.

50.6 - 101.7 Felsic crystal tuffs with minor 1 to 2 m argillite beds.

101.7 - 104.4 Volcanic wacke with argillite clasts.

104.4 - 117.1 Felsic ash tuff.

117.1 - 118.7 Black argillite with intercalated cherts.

118.7 - 131.4 Felsic ash tuff with minor chert beds.

131.4 - 132.5 Black argillites and cherts with 2 % fracture controlled pyrite.

132.5 - 136.2 Tuffaceous conglomerate.

136.2 - 147.6 Mafic lapilli tuff with strong carbonatization, 2 %

fracture controlled pyrite and trace pyrrhotite.

147.6 - 159.7 Mafic tuffs and intercalated cherty sediments.

159.7 End of hole.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-51

Hole Location: 26+92 E 3+10 S

NTS: 092/B13

UTM: 5416817.7 N 429904.4 E

Azimuth: 210 Dip: -45

Elevation: 510 m Length: 159.7 m

Started: May 4, 1988 Completed: May 6, 1988 Claim No. CHIP1

Section No.: Line 27+00 East, Chip Group

Logged By: David P. Money

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NO

Dip

Purpose: To test the strong southern IP anomaly

DIP TESTS

Azi-

Length muth Dip Length

14.30 220.0 -44.0

Azi-

muth 93.60 218.0

From	To		Sample	From	To Width	Total	Cu	Pb	Zn	Aσ	Au	Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m) (m)	Sulphides	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)

### 4.0 OVERBURDEN

### 25.4 FELDSPAR PORPHYRITIC GABBRO

23.5 24.7 : 0.7 m.

Fine-grained medium green gabbro with on average 10 to 15 %, 1 to 3 mm, feldspar grains. There is moderate local shearing at 76 degrees to core axis with moderate fracture controlled carbonatization. There are minor fracture controlled calcite, epidote and hematite veinlets. There is blocky, highly fractured core from 5.4 to 5.8, 13.0 to 14.8, and 24.0 to 25.0. Is oxidized throughout with rust on fractures. Lost core :. 20.4 23.5 : 0.3 m.

#### 25.4 44.4 BLACK ARGILLITE

Black argillite with up to 2 % white and grey - green	VA01769	25.4	26.9	1.5	3	29	27	156	<1	< 5	6100
cherty sediment beds. Core is mostly blocky, highly	VA01770	26.9	28.4	1.5	3	28	29	247	<1	< 5	5200
fractured core with 20 cm of fault gouge at 31.0. There is	VA01771	28.4	30.4	2.0	4	18	27	61	<1	₹5	2700
strong fracture controlled carbonatization. Fracture	VA01772	30.4	33.1	2.7	5	15	28	61	<1	₹5	2400
controlled pyrite is fine-grained and averages 3 to 5 %.	VA01773	33.1	35.7	2.6	5	19	26	63	<b>(1</b> )	< 5	2600
Beds are variable in thickness from up to 1 mm to greater	VA01774	35.7	37.0	1.3	5 .	21	30	60	(1	₹5	2700
than 10 cm.	VA01775	37.0	39.0	2.0	5	38	30	390	(1	<5	3800
Bedding :.	-A01776	32.0	40.5	1.5	5	39	59	71	<1	< 5	2900
25.7: 40 degrees to core axis.	VA01777	40.5	42.0	1.5	-5	18	53	. 89	<1	10	3900
28.0 : 71 degrees to core axis.	VA01778	42.0	43.0	1.0	4 -	14	52	21	<1	. <5	3000
29.0 : 72 degrees to core axis.	VA01779	43.0	44.4	1.4	3	-14	45	47	<1	₹5	4200
34.9 : 60 degrees to core axis.											

39.1 : 58 degrees to core axis. 41.6: 46 degrees to core axis. 44.0 : 48 degrees to core axis.

FALCONBRIDGE LIMITED
DIAMOND DRILL LOG

HOLE No: Page Number CH88-51 2

			DIAMOND DRILL LOG											
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba o) (ppm)
		Lost core :.												
		26.4 28.3 : 0.4 m.												
		28.3 29.6 : 0.2 m.												
		30.4 32.0 : 0.3 m.												
		32.0 33.1 : 0.6 m.												
		33.1 35.7 : 0.7 m.												
		Alteration :.												
		25.4 44.4 STRONG FRACT	TURE CONTROLLED CARBONATIZATION.											
44.4	50.6	TUFFACEOUS CONGLOHERA		*********					4.5			;		4030
			te to wacke. There is 30 to 40 %, 1	VA01084	44.4	50.0	5.6	n/a	13	n/a	33	n/a	n/a	4930
			n, quartz and feldspar grains.											
			aths or angular. There are up to 1 %,											
			mm, argillite clasts and one block											
			8.9. There is strong thermal biotite											
			moderate thermal biotite after 45.2.											
			re controlled chlorite and strong											
			pyrite ) from 47.4 to 47.9 and from											
			is weak fracture controlled											
			rtz veinlets with very weak											
		associated pervasive :	silicification.											
		Foliations :.	<u>.</u>											
		45.2 : 61 degrees to												
		46.6 : 61 degrees to												
		47.0 : 62 degrees to	core axis.											
		Lost core :.												
		50.0 50.6 : 0.5 m.												
FA 6														
50.6	51.8	BLACK ARGILLITE							4.5		3.7			25.00
		<u> </u>	ninor brown beds. Beds are variable	VA01780	50.6	51.8	1.2	3	12	44	37	⟨1	(2	2500
			ck. There is 2 to 3 % fine-grained											
			yrite. Is blocky, highly fractured											
		core from 50.7 to 51.3	<b>4.</b>											
		Bedding:.												
		50.6 : 38 degrees to	core axis.											
		DEC. 27.2	COVERN INDICE MUDD											
51.8	55.8	FELSIC QUARTZ FELDSPA		*******									n/a	4060
			brown felsic tuff with 10 %, 1 mm,	VA01085	51.8	55.8	4.0	n/a	<10	n/a	38	n/a	ii/a	4900
			5 %, 1 to 2 mm, quartz eyes and											
			cm, cherty lapilli. There is a very											
			61 degrees to core axis. There are											
			lled quartz and chlorite veinlets.											
			weak kinking. From 54.05 to 54.1											
		there is a quartz - b	lotite vein.											
55.8	57.3	BLACK ARGILLITE						_						0700
		Blocky, highly fractu	red core with 0.2 m lost core from	VA01781	55.8	57.3	1.5	1	12	41	80	<1	(5	2700

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-51

From	To	
(m)	(m)	DESCRIPTION

Sample From Width Total Cu Рb To Zn Αq Au Ba (ppm) (ppm) (ppm) (ppb) (ppm) (m) (m) Sulphides (ppm) No. (m)

56.0 to 57.0. Black cherty argillite with minor fracture controlled pyrite.

### 57.3 61.7 FELSIC TUFF

Felsic tuff or siliceous cherty tuffite with minor greenchert and black argillite beds at approximately 40 degrees to core axis, is weakly contorted. Foliation is strong at 30, 45 and 70 degrees to core axis. There is minor fine-grained feldspar crystals, < 1 mm and approximately 5 %. There is weak brown colour.

61.7 100.2 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Light green to medium grey - green coarse crystal tuff with weak to moderate chlorite, 5 to 12 %. Is crystal rich with on average 5 to 7 %, 1 to 3 mm, quartz eyes and 20 %, 1 to 2 mm. feldspars. From 86.4 to 86.5 and 87.6 to 88.0 there is 20 % epidote instead of feldspar, and locally there are up to 1 % epidote grains. Tuff is massive with trace chert lapilli, up to 1 cm, and a 2 cm pyrrhotite clast at 79.4 and a 1 cm pyrite clast at 98.6. There are minor quartz veins, up to 4 cm with minor biotite. There is minor sediment beds, green chert, with minor pyrite at 0 degrees to core axis from, 61.7 to 61.2. There is approximately 0.5 % fracture controlled g"artz - ( calcite ) veinlets with trace pyrite. There is weak to moderate thermal biotite to approximately 64 m and very weak spotty thermal biotite after. At 93.2 there is a minor fault slip at 71 degrees to core axis. There is blocky, highly fractured core from 72.7 to 76.0. 61.7 100.2 WEAK PERVASIVE CHLORITIZATION. Structure :.

Foliations :.

64.3: 74 degrees to core axis.

70.2: 84 degrees to core axis.

78.3: 61 degrees to core axis.

83.4: 78 degrees to core axis.

91.7: 68 degrees to core axis.

98.6: 71 degrees to core axis.

Bedding :.

87.6: 40 degrees to core axis.

#### 100.2 101.7 BLACK ARGILLITE

Cherty black argillite with minor felsic tuffite and wacke beds, hads are up to 3 cm and average 1 cm. There is moderate 's strong fracture controlled carbonatization. There is trace to 1 % fracture controlled pyrite. Is block" highly fractured core. Tops appears to be downtole, ( to the south), based on fining direction.

VA01086 65.0 80.0 15.0 107 n/a n/a 2010 n/a <10 n/a 135 <5 1400 VA01782 79.2 79.7 .5 0 16 37 <1 n/a 131 n/a n/a 1440 VA01087 80.0 100.0 20.0 <10 n/a

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-51 4

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		Beds are cross-cut by minor faults at approximately 0											
		degrees to core axis with up to 2 mm displacements.						4 (1)					
		Bedding averages 40 degrees to core axis.											
101.7	104.4	ARGILLACEOUS VOLCANIC WACKE											
		Felsic tuffite to 102.8 with minor argillite clasts, up to											
		3 mm, hosts approximately 20 %, < 1 mm, feldspar and											
		quartz grains. Tuffite is light grey, fine-grained and											
		papery. To 103.6 is argillic tuffite, black with minor											
		fracture controlled carbonatization and pyrite. There are											
		good argillite beds to 104.0. There is breccia to 104.3											
		with very angular argillite and chert clasts, up to 3 cm.											
		From 104.3 to 104.4 there is 10 cm of fault gouge at 36											
		degrees to core axis.											
		Foliations:											
		102.4 : 62 degrees to core axis.											
		103.4 : 50 degrees to core axis.											
		Bedding :.											
		103.4 : 25 degrees to core axis.											
		104.0 : 42 degrees to core axis.											
•													
104 4	117 1	FELSIC TUFF											
104.4	11/.1	Felsic tuff or tuffite with cherty ash tuff beds and	11101000	105.0	115 0	10.0	- /-	₹10	n/a	40	n/a	n/a 1	620
		fine-grained ash crystal beds with 15 to 20 %, (1 mm	VA01088 VA01783				n/a 6	24	117 a	49 52	11/4 · · · · · · · · · · · · · · · · · · ·		720
			4401103	113.0	113.1	1.5		44		34	1,1		120
		feldspar and quartz grains. From 111.1 to 111.5 there are											
		black cherty argillite beds or clasts up to 25 cm. From											
		113.7 to 114.3 and 114.8 to 115.0 there is moderate											
		fracture controlled carbonatization and bleached tuff with											
		approximately 10 % pyrite. There is weak fracture											
		controlled carbonate - quartz veinlets at 0 to 90 degrees											
		to core axis. Tuff beds are variable in colour from weak											
		light green to medium grey and in thickness from 1 mm to			•								
		50 + cm.											
		Bedding:											
		104.9 : 51 degrees to core axis.											
		110.6 : 53 degrees to core axis.											
		Foliations:											
		105.0 : 56 degrees to core axis.											
		110.5 : 58 degrees to core axis.											
		115.0 : 59 degrees to core axis.											
		Tuults:											
		110.4 : 61 degrees to core axis, 1 to 2 mm fault gouge.											

117.1 lio.7 CHERTY SEDIMENTS (BLACK ARGILLITE AND SILTSTONE WITH MINOR GREYWACKE)

Very contorted black argillite, green chert and felsic

Lost core :. 111.9 114.0 0.6 m. 2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-51 5

From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au É (ppb) (p	Ba ppm)
		tuffite beds with strong folding and minor cross faults along fold axis. Bedding is very variable. There is trace to 1 % fracture controlled pyrite.											
119 7	119 8	FAULT ZONE											
110.1	110.0	5 Cm zone of fault slips with fault gouge at 36 degrees to core axis.											
***		DUL AVA MUND											
118.8	131.4	FELSIC TUFF Felsic tuff or tuffite with weak thermal biotite and or chlorite, is papery with approximately 20 % feldspar crystals. There are minor red chert beds throughout and strong chert from 121.2 to 122.2, and 124.2 to 125.2.	VA01089 VA01784 VA01785 VA01786	122.7 123.2	123.2 123.7	10.0 .5 .5	n/a 12 2 1	<10 71 21 39	n/a 20 12 16	<10 57 71 44	n/a <1 <1 <1	n/a 2570 15 210 (5 820 (5 490	)
		Sulphides and alteration:. 121.2 121.3 3 to 5 % fracture controlled pyrite in chert	VA01787			. 5	· . 1	60	₹5	83	<b>(1</b>	16 340	
		or cherty sediments. 122.7 123.1 Weak pervasive epidote, carbonatization and chloritization with 10 to 15 % fracture											
		controlled fine-grained pyrrhotite and pyrite.  123.3 123.4 Approximately 5 to 7 % sulphides as from 122.7 to 123.1.											
		124.3 125.1 Approximately 1 % fracture controlled pyrite in cherty sediments.											
		125.9 126.0 2 to 3 % pyrite in moderate chloritization and weak carbonatization. Foliations:											
		119.2 : 62 degrees to core axis. 129.8 : 43 degrees to core axis.											
		Bedding:. 124.5: 16 degrees to core axis.											
		Lower contact:. 1 Cm fault gouge at 54 degrees to core axis.											
		I cm rault googe at 3% degrees to core axis.											
131.4	132.5	CHERTY SEDIMENTS (BLACK ARGILLITE AND SILTSTONE WITH MINOR GREYWACKE)											
		Cherty black argillite, brown wacke and red and green cherts with 2 to 3 % fracture controlled pyrite. Bedding averages 60 degrees to core axis. There is a 2 cm bleb of	VA01788	131.4	132.5	1.1	3	31	20	45	<b>(1</b>	<5 1300	1
		pyrrhotite in green chert at 132.5.											
132.5	136.2	TUFFACEOUS CONGLOMERATE											
		20 % round thermal biotite brown coloured cobbles and boulders, up to 10 cm, in a brown, feldspar rich, matrix. There is 3 % disseminated pyrite, coarse pyrite concentrated on clast margins and fine-grained in matrix.	VA01789 VA01790 VA01791	134.0	135.0	1.5 1.0 1.2		115 126 155	26 36 40	37 33 42	<1 <1 <1		)

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-51 6

From (m)	T0 (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba (ppm	)
136.2	147.6	MAFIC LAPILLI TUFF												
		Variably carbonatized and bleached mafic tuff with epidote	VA01090	136.2	147.6	11.4	n/a	<10	n/a	11	n/a	n/a	150	
		spots or lapilli. There is strong fracture controlled	VA01792	136.2	138.0	1.8	2	62	41	10	(1	₹5	470	
		carbonatization and moderate pervasive carbonatization.	VA01793	138.0	139.3	1.3	2	35	44	5	<1	< 5	240	
		There is 2 % fracture controlled pyrite with a 1 cm	VA01794	139.5	141.0	1.5	2	54	58	49	<b>(1</b>	₹5	940	
		pyrrhotite clot at 142.0. There are approximately 15 %, 3	VA01795	141.0	142.5	1.5	2 .	92	4.7	24	<1	. ∢5	1500	
		to 10 mm, lapilli, probably after feldspar, now are	VA01796	142.5	144.0	1.5	3	78	51	8	<1	(5	1100	
		calcite and epidote. Massive with no foliation. There are	VA01797	144.0		1.5	3	30	44	11	₹1	18	<20	
		numerous fracture controlled quartz veins and veinlets at	VA01798	145.5	147.6	2.1	2	17	41	16	(1	36	1560	
		numerous orientations.												
		Alteration:												
		136.2 147.6 STRONG FRACTURE CONTROLLED CARBONATIZATION.												
		136.2 147.6 MODERATE PERVASIVE CARBONATIZATION. 136.2 147.6 MODERATE SPOTTY EPIDOTIZATION.												
147.6	159.7	MAFIC TUFFS WITH MINOR CHERTY SEDIMENTS												
		Dark brown mafic tuff with approximately 20 %, < 1 mm.	VA01799	151.5	152.7	1.2	5	107	41	20	<1	4.2	640	
		feldspars and red and green cherts. Most beds are at 0	VA01800	152.7	153.7	1.0	5	85	45	16	₹1	6	1000	
		degrees to core axis. From 151.5 to 153.7 there is mafic	VA01801	157.0	158.0	1.0	0	59	23	37	₹1	< 5	3900	
		tuffs and green cherts with 5 % fracture controlled	VA01802	158.0		1.0	1	129	7	55	(1		2200	
		pyrite and one speck of chalcopyrite at 151.55. From 158.0	VA01803			. 7	î	77	6	52	₹1		2500	
		the mafic is fine-grained brown and argillaceous with				•	7	- 1	•					
		trace to 0.5 % fine-grained fracture controlled pyrite.												
		Foliation is questionable with good cleavages at 35, 45												
		and 50 degrees to core axis.												
		Lost core : 148.4 to 149.0 : 0.2 m.												
		The state of the s												

End of hole: 524 feet (159.7 m) on Friday May 6, 1988 at 1:29 p.m.

Total lost core = 4.7 m % Recovery = 97.1 %.

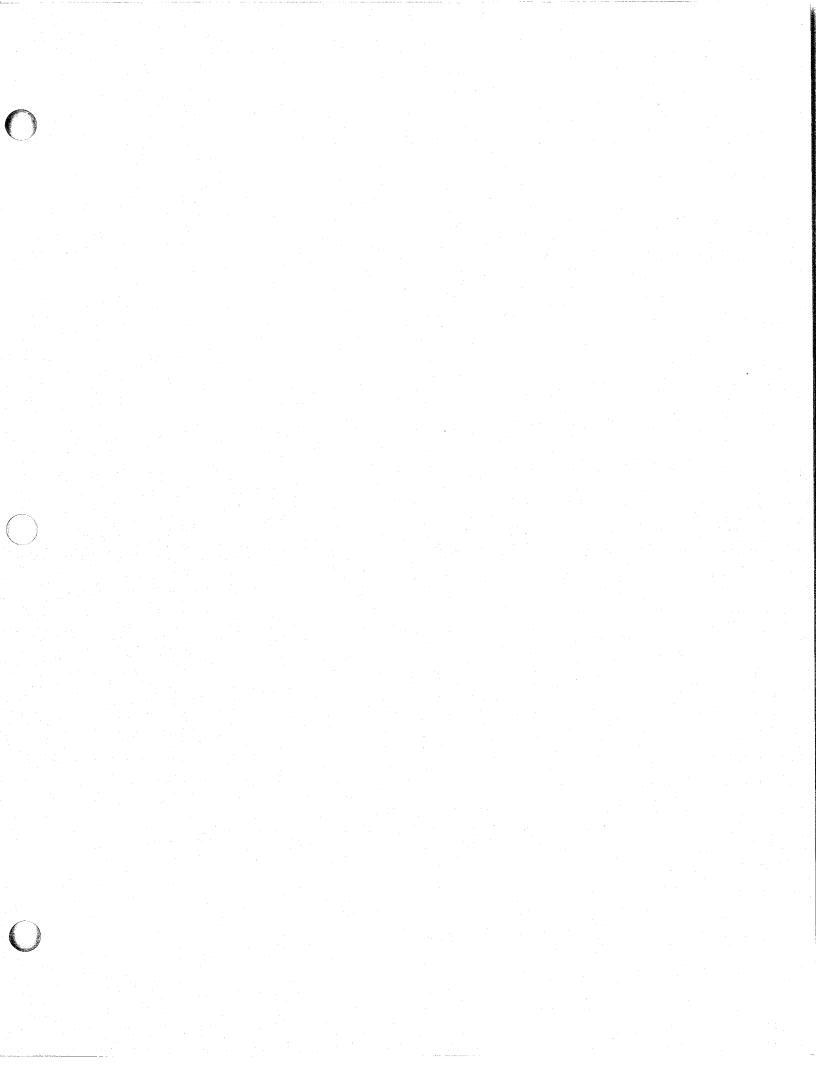
# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	25102	ZAL203	ZCAO	ZNGO	ZNA20	XK20	ZFE203	21102	XP205	ZHNO	ZLOI	SUM	ВА	AI	NACA
•==========																	
VA00640	46.90	47.00	66.30	15.40	2.48	1.90	2.29	3.66	4.81	0.47	0.13	0.11	1.93	99.48	2710.	54.	5.
VA00641	53.70	53.80	71.40	12.90	2.24	1.98	1.61	2.77	3.47	0.37	0.07	0.12	2.47	99.40	3180.	55.	4.
VA00642	63.40	63.50	72.00	14.00	2.26	2.04	1.21	2.55	2.85	0.36	0.20	0.10	2.08	99.65	2400.	57.	3.
VA00643	79.10	79.20	67.70	15.80	3.05	2.15	3.15	1.66	3.52	0.60	0.13	0.15	1.93	99.84	1760.	38.	6.
VA00644	92.10	92.20	65.60	14.90	5.61	2.00	2.25	1.24	4.80	0.62	0.11	0.17	2.47	99.77	1180.	29.	8.
VA00645	139.10	139.20	46.40	13.40	22.20	4.24	0.32	0.08	6.87	0.53	0.37	0.21	5.39	100.01	50.	16.	23.

### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLI		то	RB (ppm)	SR (ppm)	BA (ppm)	(ppm)	ZR (ppm)	NB (ppm)	.CU (ppm)	ZN (ppm)	NI (ppm)				ROCK	CODES	MIN
												:		·			
VA00640	46.90	47.00	93.0	565.0	2710.0	36.0	128.0	19.0	<10.0	22.0	<10.0				TFAC	?	Α
VA00641	53.70	53.80	78.0	822.0	3180.0	48.0	120.0	(10.0	<10.0	38.0	<10.0				TFAD	? .	A
VA00642	63.40	63.50	92.0	377.0	2400.0	61.0	145.0	14.0	12.0	175.0	<10.0				TEAU	PHW	FBP
VA00643	79.10	79.20	58.0	751.0	1760.0	24.0	106.0	<10.0	<10.0	70.0	<10.0				TFAP	PHW	FBP
VA00644	92.10	92.20	45.0	591.0	1180.0	62.0	129.0	16.0	<10.0	43.0	<10.0				TFAD	PHW :	EBP
VA00645	139.10	139.20	20.0	226.0	50.0	17.0	43.0	20.0	<10.0	<10.0	26.0				Tha	FCS	FCP

### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)


SAMPLE	FROM	TO	XS 102	XAL203	ZCAO	ZHGO	XNA20	XK20	XFE203	21102	2P205 ZHNI	) xroi	SUN	 BA	ΑI	NACA
									******							
VA01084	44.40	50.00	63.20	15.10	2.74	1.98	2.15	3.82	5.70	0.45		2.62	97.76	4930.	54.	5.
VA01085	51.80	55.80	69.90	14.70	1.96	1.90	1.14	3.49	3.15	0.38		2.23	98.85	4960.	63.	3.
VA01086	65.00	80.00	67.30	15.30	2.76	2.33	2.47	2.10	3.73	0.52		2.31	98.82	2010.	46.	. 5
VA01087	80.00	100.00	67.30	14.90	3.39	2.36	2.58	1.43	4.20	0.59		2.23	98.98	1440.	39.	6.
VA01088	105.00	115.00	69.40	13.90	1.98	3.50	0.61	2.37	3.61	0.42		3.00	98.79	1620.	69.	3.
VA01089	120.00	130.00	63.10	16.60	2.86	3.39	1.77	2.80	4.03	0.67		2.77	97.98	2570.	57.	. 5.
VA01090	136.20	147.60	46.10	14.50	18.50	3.77	0.11	0.37	11.60	0.58		2.47	98.00	150.	18.	19.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE											 				
NUMBER	FROM	TO	RB (ppm)	SR BA (ppm) (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)		· .	ROCK	CODES	MIN
WAA1404											 				
VA01084	44.40	50.00		4930.0				13.0	33.0	13.0			TRAD		
VA01085	51.80	55.80		4960.0				<10.0	38.0	<10.0			TFAD	7	DBP
VA01086	65.00	80.00		2010.0				<10.0	107.0	<10.0			TFBD	?	Ą
VA01087	80.00	100.00		1440.0				<10.0	131.0	<10.0			TFAD	PHW	FBP
VA01088	105.00	115.00		1620.0				<10.0					TFAD	PHW	FBP
VA01089	120.00	130.00		2570.0						<10.0			TFA	?	Α
VA01090	136.20	147.60		150.0				<10.0	<10.0	<10.0			TFA	?	A
				133.0				<10.0	11.0	41.0			TMA	FCS	FCP

### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	IN (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	НО (ppm)	HH (ppm)	CUZN	EIS	FE
				·													
VA01792	136.20	138.00	470.0	62.0	10.0	<0.5	<5.0	21.0	57.0	41.0	<5.0	<1.0	1,0	257.0	86.	2.	2.
VA01793	138.00	139.30	240.0	35.0	5.0	<0.5	<5.0	15.0	35.0	.44.0	<5.0	<1.0	<1.0	270.0	88.	2.	1.
VA01794	139.50	141.00	940.0	54.0	49.0	<0.5	<5.0	15.0	42.0	58.0	⟨5.0	<1.0	<1.0	244.0	52.	2.	. 1.
VA01795	141.00	142.50	1500.0	92.0	24.0	(0.5	<b>(5.0</b>	26.0	55.0	47.0	<5.0	(1.0	1.0	349.0	79.	2.	2.
VA01796	142.50	144.00	1100.0	78.0	8.0	<0.5	<5.0	23.0	54.0	51.0	<5.0	<1.0	<1.0	295.0	91.	3.	2.
VA01797	144.00	145.50	(20.0	30.0	11.0	<0.5	18.0	22.0	46.0	44.0	<5.0	<1.0	1.0	347.0	73.	з.	2.
VA01798	145.50	147.60	1560.0	17.0	16.0	<0.5	36.0	17.0	25.0	41.0	<5.0	<1.0	1.0	507.0	52.	2.	3.
VA01799	151.50	152.70	640.0	107.0	20.0	(0.5	42.0	28.0	26.0	41.0	22.0	<1.0	3.0	504.0	84.	5.	5.
VA01800	152.70	153.70	1000.0	85.0	16.0	(0.5	6.0	28.0	22.0	45.0	<5.0	<1.0	1.0	362.0	84.	5.	4.
10810AV	157.00	158.00	3900.0	59.0	37.0	<0.5	<b>&lt;5.0</b>	22.0	32.0	23.0	9.0	<1.0	8.0	416.0	61.	0.	2 4.
VA01802	158.00	159.00	2200.0	129.0	55.0	<0.5	36.0	32.0	39.0	7.0	17.0	2.0	11.0	541.0	70.	1.	7.
VA01803	159.00	159.70	2500.0	77.0	52.0	<0.5	<5.0	25.0	32.0	6.0	10.0	2.0	9.0	472.0	60.	1.	5.



Summary Log: DDH CH88-52

Location: 31+00 E, 1+90 S; Chip 1 Claim

Azimuth: 210, Dip: -60

Hole Completed: May 9, 1988 Core Logged By: D.P. Money

0.0 - 7.7 Casing.

7.7 - 30.0 Cherty felsic tuff with minor interbedded argillite and cherty sediments.

30.0 - 66.4 Gabbro.

66.4 - 70.1 Chert.

70.1 - 79.0 Gabbro with minor argillite beds or blocks.

79.0 - 95.1 Black argillites with minor interbedded cherts. The argillite hosts 2 % fracture controlled pyrite.

95.1 - 122.4 Black argillites with 2 to 3 % pyrite and minor intercalated mafic tuffs and cherts.

122.4 - 129.4 Hornblende phyric mafic dyke.

129.4 - 131.5 Andesitic tuffs with minor interbedded cherts.

131.5 - 151.5 Hornblende phyric mafic dyke.

151.5 - 185.9 Intercalated argillites, mafic tuffs and cherts, locally intruded by minor mafic dykes.

185.9 - 203.3 Black argillites with 3 to 5 % fracture controlled pyrite and very minor chert and greywacke beds.
203.3 End of hole.

PROPERTY: Chemainus J.V. HOLE No: Page Number FALCONBRIDGE LIMITED ch88-52 DIAMOND DRILL LOG Hole Location: 31+00 E 1+90 S Claim No. Chip 1 NTS: 092B/13W UTM: 5416718.7 N 430307.3 E Section No.: Section 31+00 East, Chip Claim Group Elevation: 538 m Azimuth: 210 Length: 203.3 m Dip: -60 Logged By: D.P. Money Drilling Co.: Burwash Enterprises Started: May 6, 1988 Assayed By: Bondar-Clegg and X-Ray Assay Completed: May 9, 1988 Core Size: NQ Purpose: DIP TESTS Azi-Azi-Length muth Dip Length muth Dip 17.40 210.0 -60.0 185.00 216.0 -59.5 212.0 99.70 -60.0From To Sample From To Vidth Total Cu Рb Zn Ag -----DESCRIPTION-----(m) (m) No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 7.7 OVERBURDEN .0 7.7 30.0 FELSIC TUFF Felsic tuff, tuffite and minor cherty sediments. VA01091 10.0 30.0 20.0 n/a 12 n/a 17 n/a n/a 5900 Dominantly medium grey felsic ash tuff with weak thermal VA01804 14.5 15.5 1.0 58 **<5** 5500 biotite. Foliation and bedding are parallel to core axis. Is blocky, highly fractured core. From 14.5 to 15.5 there are 50 % black cherty argillites with trace fracture controlled pyrite. No lapilli or crystals occur in the tuff. There is 2 cm pyrite clot at 26.8 in grey chert. Lost core :. 16.8 18.0 : 0.1 m. 18.0 18.6 : 0.2 m. 18.6 19.2 : 0.2 m. 19.5 20.3 : 0.3 m. 20.4 21.3 : 0.3 m. 21.3 22.4 : 0.8 m. 22.4 23.5 : 0.2 m. 25.3 26.2 : 0.2 m. 28.0 28.7 : 0.6 m. 28.7 29.3 : 0.4 m. 29.3 30.5 : 0.5 m. 30.0 43.6 MAFIC INTRUSIVE Mafic tuff (?) or gabbro. With minor epidote - sericite -VA01092 30.5 43.0 12.5 n/a 349 n/a 197 41 n/a quartz beds or veins, (?) sediments. There are minor epidote veins and veinlets with associated carbonatization. There are 3 %, up to 1 mm, white spots,

probably leucoxene, some appear to have ilmenite core, are not carbonate as do not react with HCL. There is moderate

2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample From

(m)

No.

To

(m)

Width

(m)

Total

Sulphides (ppm)

HOLE No: Page Number ch88-52

Cu

PЪ

Zn

(ppm) (ppm)

(ppm) (ppb) (ppm)

From To -----DESCRIPTION-----(m)

fracture controlled carbonatization and minor quartz carbonate veinlets at orientation of 0 to 90 degrees to core axis. Is dark green and massive with (?) 3 to 5 %, < 1 mm chloritized hornblendes in the matrix. Probably is gabbro, whole rock sample taken to verify this. Lost core :. 30.5 32.3 : 0.2 m.

43.6 66.4 FELDSPAR PORPHYRITIC GABBRO

Plagiophyric gabbro with on average 5 %, 1 to 2 mm, feldspar grains. Part of same gabbro body as 30.0 to 43.6 with similiar epidotization locally. There are numerous minor fracture controlled quartz, calcite and epidote veinlets at orientations of 0 to 90 degrees to core axis. 52.1 52.2 3 % chalcopyrite in fracture controlled 1 to 3 mm calcite veinlet.

52.9 53.3 Strong fracture controlled carbonatization with trace chalcopyrite.

61.0 61.2 Fault at 18 degrees to core axis with 2 cm of fault gouge along slip.

Blocky, highly fractured core :.

44.5 to 46.3, 46.9 to 47.2, 50.0 to 51.0, 56.1 to 57.2,

60.0 to 60.2, 60.7 to 61.9 and 64.9 to 66.4.

Lost core :.

50.9 52.9 : 0.2 m.

54.3 54.5 : 0.1 m.

56.4 57.0 : 0.2 m.

64.9 66.4 : 0.3 m.

66.4 70.1 CHERT

Weakly brown, thermal biotite (?), to grey chert. Fractured and blocky, highly fractured core with weak fracture controlled carbonatization. No sulphides occur. Bedding is variable, is at 43 degrees to core axis at 66.5 and is at 24 degrees to core axis at 69.1. There is weak kinking of the beds. Lost core :.

66.4 67.2 : 0.3 m.

67.2 68.0 : 0.3 m.

70.1 74.5 FELDSPAR PORPHYRITIC GABBRO

Fine-grained medium green gabbro with approximately 7 %, 2 mm, feldspars and 5 % boudinaged quartz - calcite veinlets with trace pyrite and chalcopyrite. There is a weak foliation or moderate cleavage at 70 degrees to core axis.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number ch88-52 3

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au Ba (ppb) (pp	
74.5	75.4	CHERTY SEDIMENTS (BLACK ARGILLITE AND SILTSTONE WITH MINOR GREYWACKE)											
		Red and green folded cherts with up to 10 % thermal biotite coloured quartz eye tuff. Upper contact at 37 degrees to core axis and lower contact at 56 degrees to core axis. There is trace fracture controlled pyrite and											
		minor fracture controlled quartz and calcite veinlets.  Bedding is approximately 45 degrees to core axis at edges and 80 degrees to core axis in core. May be a block											
		plucked by the gabbro.											
75.4	79.0	FELDSPAR PORPHYRITIC GABBRO Gabbro, as from 70.1 to 74.5 with folded chert blocks (?)											
		from 76.7 to 78.0 and 77.9 to 78.3. Cherts have thermal biotite, moderate fracture controlled quartz and calcite veinlets and are weakly bleached. Gabbro has numerous											
		quartz +/- biotite veinlets with trace local pyrite.											
79.0	91.3	CHERTY SEDIMENTS (BLACK ARGILLITE AND SILTSTONE WITH MINOR GREYWACKE)											
		Black cherty argillites and brown to white cherts. Is mostly blocky, highly fractured core. There is on average 2 % fracture controlled pyrite with strong local fracture	VA01805 VA01806 VA01807	79.0 80.0 81.0	80.0 81.0 82.0	1.0 1.0 1.0	3 1 1	46 35 60	7 5 9	70 46 110	1 1	17 6500 11 6000 9 12000	
		controlled quartz veinlets. From 88 to 89 there is minor fault brecciation. Is dominantly argillite with strong	VA01808 VA01809	82.0 83.8	83.8 85.0	1.8 1.2 2.0	2 2 2	41 58 48	6 5 15	65 98 150	<1 <1	(5 33000 (5 9700 (5 6600	
		chert from 79.0 to 81.4, 85.0 to 85.5 and from 86.0 to 86.5. Lost core:	VA01810 VA01811 VA01813	85.0 87.0 89.0	87.0 89.0 90.5	2.0 2.0 1.5	2 2 2	28 30	32	130 130 108	(1 1	(5 19000 (5 4000	
		81.4 83.1 : 0.3 m. 83.1 83.8 : 0.6 m. 83.8 84.4 : 0.4 m.	VA01812	90.5	92.4	1.9	2	51	9	98	- (1	<b>&lt;5 14000</b>	
		85.0 87.2 : 0.2 m. 85.0 87.2 : 0.5 m.											
		88.9 90.5 : 0.3 m. 90.5 91.7 : 0.6 m. Bedding :											
		79.3: 48 degrees to core axis. 80.5: 31 degrees to core axis.											
		81.7 : 36 degrees to core axis. 87.5 : 18 degrees to core axis.											
91.3	95.1	FAULT ZONE	V201014	00.4				21	. 9	120	1	6 4100	
		Black argillite fault gouge with 5 % fracture controlled pyrite and moderate fracture controlled carbonatization.  Graphitic rubble. Fault motion at approximately 60	VA01814 VA01815	92.4 93.5	93.5 95.1	1.1	5 5	31 24	8	128 75	⟨1	6 36000	
		degrees to core axis. Lost core :. 91.7 92.4 : 0.6 m.											
		VART VMIT & VIV MA											

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number ch88-52 4

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Äg (ppm)	Au Ba (ppb) (ppm)
		92.4 93.5 : 0.2 m.										
		93.5 95.1 : 0.7 m.										
								1				
95.1	96.7	MAFIC INTRUSIVE										
		May be bleached and carbonatized gabbro. Fine-grained tan										
		schist with 1 %, 2 mm, feldspars and very strong										
		pervasive carbonatization. Upper contact is at 7 degrees										
		to core axis from 95.1 to 95.55. Foliation is at 28 degrees to core axis.										
		degrees to core axis.										
96.7	100.8	BLACK ARGILLITE										
		Black graphitic argillite with weak to moderate fracture	VA01816	96.7	98.1	1.4	6	34	10	125	1	(5 3500
		controlled quartz - calcite veinlets and 5 to 7 % fracture	VA01817	98.1	99.4	1.3	6	24	10	116	1	(5 2500
		controlled pyrite. Is blocky, highly fractured core with	VA01818	99.4	100.8	1.4	- 6	24	9	98	<1	5 5300
		strong fractures parallel to bedding, approximately 20 to										
		25 degrees to core axis.										
		Lost core :.										
		96.6 97.2 : 0.1 m.										
		97.2 97.8 : 0.1 m.										
		99.4 100.0 : 0.2 m.										
		100.0 102.0 : 0.2 m.										
100.8	102.0	TUFFACEOUS CONGLOMERATE										
		Argillaceous tuffite with minor feldspar and quartz	VA01819	100.8	102.0	1.2	4	17	6	81	<1	(5 4100
		crystals and 5 to 10 % pebble to cobble sized argillite										
		clasts. There is minor kink bands, quartz veinlets and 3										
		to 4 % fracture controlled and disseminated fine-grained										
		pyrite.										
		Foliation: 102.2: 35 degrees to core axis.										
102.0	110 0	BLACK ARGILLITE										
102.0	119.9	Graphitic to cherty black argillite with moderate fracture	VA01820	102 0	103.0	1.0	2	37	11	140	1	(5 3400
		controlled carbonatization and 2 to 3 % fine-grained	VA01821		104.1	1.1	2	17	5	81	₹1	(5 3900
		fracture controlled pyrite. Foliation or cleavage at 0	VA01822			.8	2	30	8	102	1	(5 2200
		and approximately 45 degrees to core axis.	VA01823			. 9	2	33	8	130	1	6 1500
		Blocky, highly fractured core :.	VA01824	105.8	107.3	1.5	2	19	10	88	1	<5 3500
		103.5 110.1 0.	VA01825	107.3	109.0	1.7	2	16	7	90	<1	(5 4000
		113.7 114.0 0.	VA01826	109.0	110.5	1.5	2	29	8	110	<1	6 1900
		116.1 119.9 0.	VA01827			1.5	2	15	< 5	90	(1	5 2900
		Lost core :.	VA01828			1.5	2	26	.7	95	<1	(5 5400
		102.0 104.1 : 0.2 m.	VA01829			1.5	4	29 34	7	130 148	1 1	(5 7100 5 6400
		104.1 104.9 : 0.2 m. 104.9 105.8 : 0.2 m.	VA01830			1.5 1.9	3	34 29	12 10	148	1	5 3000
		104.9 105.8 : 0.2 m. 105.8 106.4 : 0.3 m.	VA01831 VA01832			1.5	. 3	36	28	135	1	(5 2700
		105.8 106.4 : 0.5 m.	1AU1032	410.4	117.3	4.5	. 4	30	70	133	* .	. 5 2/00
		107.4 107.6 : 0.1 m.										
		107.6 107.9 : 0.1 m.										

_

151.5 166.3 CHERTY SEDIMENTS (BLACK ARGILLITE AND SILTSTONE WITH MINOR GREYWACKE)

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number ch88-52 5

From (m)	To (m)			DESC	CRIPTION	·:	Sampl No.	е	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba (pg	
		100 5 100																	
			.0:0.5 m																
			.0:0.2 m																
			.8 : 0.3 m																
		Bedding:		•															
				to core axis															
				to core axis															
				to core axis															
119.9	122.4	MAFIC TO	INTERHEDIA'	TE TUFFACEOU	S SEDIMENTS														
		Mafic tuf	f and grey	to green ch	erts with min	or quartz -													
						core with 0.3													
		m lost c	ore from 1:	19.9 to 120.	.4.														
122.4	129.4			AFIC FLOW /															
					medium grained		VA0109	3	123.0	129.0	6.0	n/a	<10	n/a	47	n/a	n/a	2670	
					, biotite crys														
					up to 5 mm, av	-													
					n to locally b ntrolled chlor														
					inlets. At 128														
					in a fracture														
					th no foliatio														
		Alteratio		massive with	in no lollatio														
				F FRACTURE (	CONTROLLED CAR	RONATIZATION													
		100.7 107	. T HODDINI	b innoione (															
129.4	131.5	MAFIC TO	INTERMEDIA'	TE TUFFACÉOU	JS SEDIMENTS														
						silicification													
					s with 20 %,														
		crystals.	Bedding	at 130.3 is	at 41 degrees	to core axis.													
131.5	151.5			AFIC FLOW /															
					ine-grained zo		VA0109	4	132.0	151.0	19.0	n/a	₹10	n/a	43	n/a	n/a	2820	
					brown biotite														
					tite crystal s														
					25 %, 3 to 5 m														
			•	•	n. Is massive														
					inor pyrite wi														
					141.4 and 15														
					roxenes not ho t 47 degrees t														
			n fault go		uegrees t	o core avis													
					ONTROLLED CAR	BONATIZATION													
		-74.7 131	INCUDENTI	- INNOTOND		SOURITHUIT AND													

FALCONBRIDGE LIMITED

HOLE No: Page Number ch88-52 6

		DIAMOND DRILL LOG												
Fron		DESCRIPTION	Sample No.	from (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm	)
		Black argillite with minor brown greywacke from 155.3 to	VA01833		153.0	1.5	7	37	29	142	1	<b>(5</b>	3300	
		155.4, 156.5 to 156.6 and 166.1 to 166.2 and conglomerate	VA01834		154.5	1.5	7	25	8	122	<1	۲5	2000	
		with argillite clasts from 156.8 to 156.9. There is moderate to strong fracture controlled calcite veinlets	VA01835			1.5	7	28	18	132	1	<b>(5</b>	2400	
		and 7 % fracture controlled pyrite. There is minor local	VA01836 VA01837			1.5 1.5	. /	34 36	26 20	138 152	1 1	< 5 6	2100 2000	
		blocky, highly fractured core and fault gouge. Lost core:	VA01838			1.3	,	30 37	. 23	110	(1	<b>(</b> 5	2900	
		157.0 159.6 : 0.4 m.	VA01839			1.3	7	32	. 23	118	1		4100	
		161.5 163.4 : 0.3 m.	VA01840			1.9	i	33	8	140	î		3000	
		151.5 166.3 STRONG FRACTURE CONTROLLED CARBONATIZATION.	VA01841			1.6	7	32	6	130	1	(5	2800	
		Bedding :.	VA01842	165.0	166.3	1.3	7	34	13	130	<1	∢5	2200	
		155.4 : 61 degrees to core axis.												
		157.8 : 56 degrees to core axis.												
	171 0	VACTA NO TUMBOVEDANE SUPPLANDIA ABOTVOURA												
100.3	1/1.2	MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS	*******		160.0									
		Weak thermal biotite in mafic tuff with minor clast of chert. Local quartz - calcite - chlorite veinlets in	VA01843			1.7	1	37	< 5	170	<1	<5	2400	
		bleached tuff with trace to 1 % fracture controlled	VA01095 VA01844			4.0	n/a	53	n/a (5	45	n/a (1		4830	
		pyrite. Weak hematite on fractures.	VA01845			1.6	. 1	60 90	- (5	93 110	(1		4300	
		Foliations:	1401043	107.0	111.6	1.0	•	30	. ( )	110	. 1	()	4300	
		168.3 : 49 degrees to core axis.												
		171.0 : 23 degrees to core axis.												
171.2	177.3	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION												
		Medium grained biotite phyric intrusive, medium to dark	VA01096	171.3	177.3	6.0	n/a	15	n/a	60	n/a	n/a	549	
		green, with 20 to 25 %, 2 to 3 mm, dark brown biotite												
		after pyroxene crystals. Massive with no foliation as												
		before. Lower contact at fault at 31 degrees to core axis												
		with 0.1 m fault gouge of mafic sill.												
		Alteration :. 171.2 177.3 WEAK FRACTURE CONTROLLED CARBONATIZATION.												
		171.2 177.3 WEAK FRACTURE CONTROLLED CARBONATIZATION. 171.2 177.3 WEAK FRACTURE CONTROLLED CHLORITIZATION, dark												
		green chlorite on fractures.												
		green chrotite on fractures.												
177.3	181.9	CHERTY SEDIMENTS (BLACK ARGILLITE AND SILTSTONE WITH MINOR												
		GREYWACKE)												
		Black argillite with cherts and minor greywacke. There is	VA01846	177.3	179.0	1.7	2	27	₹5	140	<1 .	(5)	990	
		weak to moderate fracture controlled carbonatization and 3	VA01847	179.0	180.5	1.5	2	32	₹5	85	<1	(5	2700	
		% fracture controlled pyrite. Bedding varies locally from	VA01848	180.5	181.9	1.4	2	25	-5	128	⟨1	39	970	
		22 to 52 degrees to core axis.												
		WANTED PARAMETERS VALUE TO THE ATTENDANCE OF												
181.9	185.9	MAFIC PORPHYRITIC MAFIC FLOW / INTRUSION	1/3/01/007	101 0	105 0	4.0	· / -	3.1	-1-	0.4	-/-	-/-	1630	
		Fine-grained medium green sill as before. Massive rock	VA01097	101.9	102.9	4.0	n/a	33	n/a	84	n/a	n/a	1630	
		with approximately 5 %, < 1 mm, biotites and 5 to 10 % feldspars, < 1 mm. There is minor fracture controlled												
		calcite veinlets with trace pyrite.												
		THE TOURS OF THE PERSON TO THE												

.

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number ch88-52 7

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)
185.9	203.3	CHERTY SEDIMENTS (BLACK ARGILLITE AND SILTSTONE WITH MINOR GREYWACKE)											
		Cherty black argillite with moderate fracture controlled	VA01849	185.9	187.0	1.1	3	35	14	100	<1	₹5	1100
		carbonatization and 3 to 5 % fracture controlled pyrite	VA01850	187.0	188.0	1.0	3	27	12	65	<1	₹5	540
		with minor other sediments. There are green cherts with	VA01851	188.0	189.5	1.5	. 3	30	10	150	1	. <5	1800 .
		weak fracture controlled silicification from 187.1 to	VA01852	189.5	191.0	1.5	. 3	35	8	140	1	₹5	2000
		187.5. There is minor wacke to conglomerate with	VA01853	191.0	192.5	1.5	3	24	6	110	<1	₹5	2200
		argillite clasts from 187.7 to 188.4, 195.5 to 196.0 and	VA01854	192.5	194.0	1.5	3	17	7	96	(1	₹5	3500
		from 192.4 to 192.7.	VA01855	194.0	195.5	1.5	3	23	6	110	<1	13	3500
		Bedding:.	VA01856	195.5	197.0	1.5	3	30	10	113	<1	<5	1700
		188.5 : 52 degrees to core axis.	VA01857	197.0	198.5	1.5	3	40	8	88	<1	₹5	2200
		192.8 : 60 degrees to core axis.	VA01858	198.5	200.0	1.5	3	44	10	96	<1	₹5	3000
		195.0: 48 degrees to core axis.	VA01859	200.0	201.5	1.5	3	37	7	90	<1	₹5	2600
		200.6 : 61 degrees to core axis.	VA01860	201.5	203.3	1.8	3	48	10	105	1 .	₹5	2700

End of hole 667 feet (203.3 m) on Monday May 9, 1988 at 2:30 p.m.

Total lost core = 14.2 m % Recovery = 93.0 %.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	25102	ZAL203	ZCAO	zngo	ZNA20	XK20	XFE203	ZT 102	XP205	2440	XFOI	SUM	BA	ΑI	NACA
			<del></del>				- <del>12</del>								 		
VA00646	35.30	35.40	48.80	14.70	10.10	6.52	2.61	0.19	13.00	1.78	0.17	0.20	1.93	100.00	294.	35.	13.
VA00647	54.60	54.70	48.70	13.70	10.80	6.39	2.20	0.33	13.30	1.86	0.18	0.20	1.70	99.36	407.	34.	13.
VA00648	95.80	95.90	45.50	12.40	12.10	5.24	1.16	0.60	10.70	1.51	0.14	0.21	10.30	99.86	1820.	31.	13.
VA00649	124.30	124.40	46.30	14.10	7.96	10.90	2.48	0.96	10.40	1.62	0.33	0.17	3.08	98.30	1440.	53.	10.
VA00650	135.80	135.90	46.10	13.60	9.47	10.60	2.30	1.12	10.10	1.60	0.29	0.16	3.08	98.42	1880.	50.	12.
VA00651	141.20	141.30	45.10	14.70	8.98	9.96	3.03	0.96	10.20	1.64	0.33	0.20	5.77	99.87	1900.	45.	12.
VA00652	148.20	148.30	42.90	11.70	10.20	13.30	1.03	1.31	11.40	1.51	0.29	0.19	4.16	97.99	2140.	57.	11.
VA00653	172.50	172.60	42.90	9.49	11.00	17.10	0.48	0.49	10.60	1.51	0.31	0.20	4.70	98.78	807.	61.	11.
VA00654	183.80	183.90	43.00	13.70	6.53	13.00	1.91	1.04	12.30	1.73	0.34	0.22	4.47	98.24	1550.	62.	9.

### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZK (ppm)	NB (ppm)	(bbw)	ZN (ppm)	NI (ppm)	-			ROCK	CODES	MIN
VA00646	35.30	35.40	27.0	291.0	294.0	<10.0	70.0	30.0	249.0	66.0	99.0				TMA	FCM	A
VA00647	54.60	54.70	<10.0	254.0	407.0	16.0	89.0	11.0	270.0	61.0	107.0				PMA	?	A ·
VA00648	95.80	95.90	41.0	634.0	1920.0	13.0	42.0	16.0	144.0	64.0	84.0				0	PCS	A
VA00649	124.30	124.40	26.0	335.0	1440.0	21.0	80.0	41.0	<10.0	79.0	210.0				PMB	FSM	A
VA00650	135.30	135.90	20.0	460.0	1380.0	18.0	78.0	41.0	70.0	38.0	259.0				PMB -	ECM	Α .
VA00651	141.20	141.30	33.0	258.0	1900.0	<10.0	84.0	48.0	1100.0	98.0	171.0				PHA	FCM	Α
VA00652	148.20	148.30	32.0	288.0	2140.0	18.0	76.0	55.0	98.0	64.0	406.0				PMC	ECM	A
VA00653	172.50	172.60	21.0	231.0	807.0	<10.0	90.0	37.0	19.0	51.0	367.0				PMB	FCW	À
VA00654	183.30	183.90	26.0	171.0	1550.0	12.0	96.0	62.0	97.0	98.0	425.0				PMA	?	Α.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

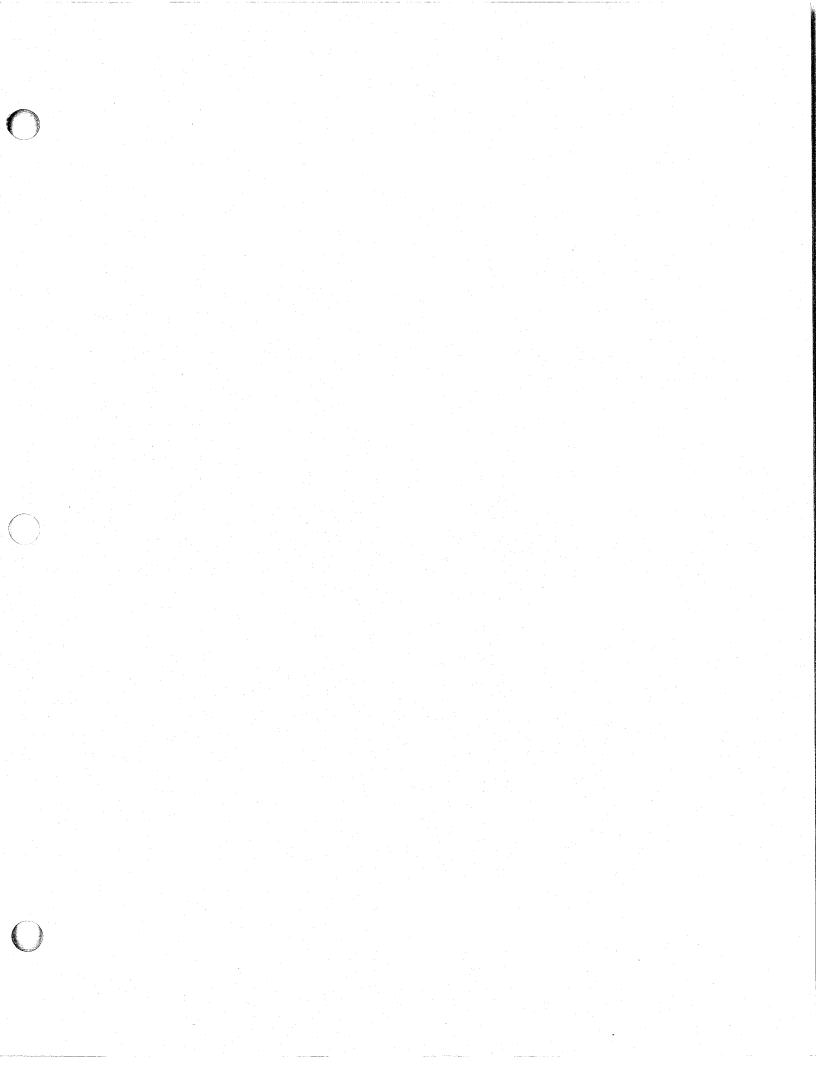
SAMPLE	FROM	ro	<b>XS 102</b>	XAL203	#CAO	ZAGO	ZNA20	XK20	ZEE303	XT 102	XP205	ZHNO	2101	SUM	BA	AI	NACA
																<del></del>	
VA01091	10.00	30.00	74.70	8.82	2.28	2.00	0.91	1.85	4.78	0.31			2.08	97.73	5900.	55.	3.
VA01092	30.50	43.00	48.50	13.30	12.00	5.86	1.98	0.26	11.70	1.55			3.70	98.85	349.	30.	14.
VA01093	123.00	129.00	45.10	13.50	9.68	10.40	2.08	1,41	10.40	1.80			4.23	98.60	3670.	50.	12.
VA01094	132.00	151.00	45.00	12.60	9.76	11.00	1.85	1.33	9.98	1.58			4.54	97.64	2820.	52.	12.
VA01095	167.00	171.00	41.90	16.50	14.40	3.79	2.36	2.04	8.09	1.54			7.39	98.01	4830.	26.	17.
VA01096	171.30	177.30	42.20	8.76	11.10	16.80	0.41	0.35	11.20	1.41			5.70	97.93	549.	60.	12.
VA01097	181.90	185.90	43.90	14.10	7.31	12.60	1.91	0.86	11.90	1.75			5.31	99.64	1630.	59.	9.

### DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE															CODES	
NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NR (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)			ROCK	ALT	MIN
VA01091	10.00	30.00			5900.0				12.0	17.0	22.0			TFA	?	A
VA01092	30.50	43.00			349.0				197.0	41.0	95.0			PMA	?	Α
VA01093	123.00	129.00			2670.0				<10.0	47.0	213.0			PMB	FCM	A
VA01094	132.00	151.00			2820.0				<10.0	43.0	246.0			PMP	FCM	A
VA01095	167.00	171.00			4830.0				53.0	45.0	34.0			TMA	PCW	FCP
VA01096	171.30	177.30			549.0				15.0	60.0	492.0			PMB	FCW	A
VA01097	191.90	185.90			1630.0				33.0	84.0	386.0			PMA	?	Α

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	ΒΑ (pp#)	CU (ppm)	ZΝ (βρπ)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	НО. (рр <b>и</b> )	НН (ррж)	CUZN	EIS	FE
			***************************************														
VA01804 ·	14.50	15.50	5500.0	58.0	49.0	<0.5	(5.0	5.0	24.0	6.0	9.0	<1.0	2.0	287.0	54.	1.	3.
VA01805	79.00	80.00	6500.0	46.0	70.0	<0.5	17.0	8.0	18.0	7.0	8.0	<1.0	1.0	432.0	40.	3.	4.
30810AU	80.00	81.00	6000.0	35.0	46.0	1.3	11.0	6.0	20.0	5.0	10.0	<1.0	1.0	378.0	43.	1.	3.
VA01807	81.00	82.00	12000.0	60.0	110.0	0.8	9.0	7.0	28.0	9.0	10.0	<1.0	1.0	490.0	35.	1.	4.
80810AV	82.00	83.80	33000.0	41.0	65.0	<0.5	<5.0	5.0	17.0	6.0	20.0	<1.0	2.0	251.0	39.	2.	2.
VA01809	83.80	85.00	9700.0	58.0	98.0	<0.5	<5.0	7.0	22.0	5.0	30.0	<1.0	2.0	676.0	37.	2.	5.
VA01810	85.00	87.00	6600.0	48.0	150.0	0.6	<5.0	6.0	28.0	15.0	20.0	(1.0	3.0	330.0	24.	2.	3.
VA01811	87.00	89.00	19000.0	28.0	130.0	<0.5	<5.0	3.0	14.0	32.0	17.0	<1.0	2.0	234.0	18.	2.	2.
VA01813	89.00	90.50	4000.0	30.0	108.0	0.5	<5.0	3.0	20.0	10.0	13.0	<1.0	5.0	542.0	22.	2.	2.
VA01812	90.50	92.40	14000.0	51.0	98.0	<0.5	<5.0	5.0	24.0	9.0	18.0	<1.0	1.0	336.0	34.	2.	3.
VA01814	92.40	93.50	4100.0	31.0	128.0	0.8	6.0	4.0	20.0	9.0	16.0	<1.0	6.0	385.0	20.	5.	2.
VA01815	93.50	95.10	36000.0	24.0	75.0	<0.5	6.0	3.0	14.0	8.0	12.0	(1.0	2.0	265.0	24.	5.	2.
VA01816	96.70	98.10	3500.0	34.0	125.0	0.8	<5.0	2.0	24.0	10.0	11.0	<1.0	4.0	384.0	21.	6.	2.
VA01817	98.10	99.40	2500.0	24.0	116.0	0.6	⟨5.0	1.0	18.0	10.0	11.0	<1.0	3.0	372.0	17.	6.	2.
7A01818	99.40	100.80	5300.0	24.0	98.0	<0.5	5.0	4.0	9.0	9.0	8.0	<1.0	3.0	637.0	20.	6.	2.
VA01819	100.80	102.00	4100.0	17.0	81.0	<0.5	<5,0	3.0	8.0	6.0	9.0	<1.0	2.0	309.0	17.	4.	2.
VA01820	102.00	103.00	3400.0	37.0	140.0	1.0	<5.0	3.0	28.0	11.0	13.0	<1.0	8.0	371.0	21.	2.	3.
VA01821	103.00	104.10	3900.0	17.0	81.0	<0.5	<5.0	2.0	10.0	5.0	5.0	<1.0	2.0	226.0	17.	2.	2.
VA01822	104.10	104.90	2200.0	30.0	102.0	0.6	<5.0	2.0	24.0	8.0	21.0	<1.0	2.0	285.0	23.	2.	2.
VA01823	104.90	105.80	1500.0	33.0	130.0	0.6	6.0	2.0	24.0	8.0	30.0	<1.0	2.0	266.0	20.	2.	2.
UA01824	105.80	107.30	3500.0	19.0	88.0	0.6	<5.0	3.0	9.0	10.0	<5.0	<1.0	2.0	386.0	18.	2.	2.
VA01825	107.30	109.00	4000.0	16.0	90.0	<0.5	<5.0	1.0	9.0	7.0	<5.0	<1.0	13.0	486.0	15.	2.	2.
VA01826	109.00	110.50	1900.0	29.0	110.0	₹0.5	6.0	<1.0	26.0	8.0	<5.0	<1.0	3.0	377.0	21.	2.	1.


Page No. 1

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	8A (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	(ppm)	MO (ppm)	MN (ppm)	CUZN	ETS	FE
VA01827	110.50	112.00	2900.0	15.0	90.0	<0.5	5.0	<1.0	8.0	<5.0	5.0	2.0	2.0	354.0	. 14.	2.	2.
VA01828	112.00	113.50	5400.0	26.0	95.0	<0.5	<5.0	7.0	9.0	.7.0	8.0	<1.0	11.0	572.0	21.	2.	3.
VA01829	113.50	115.00	7100.0	29.0	130.0	9.5	<5.0	6.0	14.0	7.0	10.0	<1.0	2.0	496.0	18.	4.	3.
VA01830	115.00	116.50	6400.0	34.0	148.0	0.8	5.0	4.0	28.0	12.0	9.0	<1.0	36.0	370.0	19.	4.	3.
VA01831	116.50	118.40	3000.0	29.0	142.0	0.8	5.0	6.0	37.0	10.0	14.0	<1.0	12.0	356.0	17.	3.	3.
VA01832	118.40	119.90	2700.0	36.0	135.0	0.7	<5.0	6.0	10.0	28.0	⟨5.0	<1.0	2.0	406.0	21.	2.	3.
VA01833	151.50	153.00	3300.0	37.0	142.0	0.8	<5.0	5.0	7.0	29.0	<5.0	<1.0	1.0	390.0	21.	7.	4.
VA01834	153.00	154.50	2000.0	25.0	123.0	<0.5	⟨5.0	2.0	22.0	8.0	13.0	<1.0	3.0	571.0	17.	7.	2.
VA01835	154.50	156.00	2400.0	28.0	132.0	0.5	<5.0	3.0	10.0	18.0	<5.0	<1.0	2.0	335.0	18.	7.	2.
VA01836	156.00	157.50	2100.0	34.0	138.0	0.6	⟨5.0	1.0	9.0	26.0	5.0	<1.0	2.0	277.0	20.	7.	3.
VA01837	157.50	159.00	2000.0	36.0	152.0	0.7	6.0	1.0	24.0	20.0	11.0	<1.0	3.0	360.0	19.	7.	3.
VA01838	159.00	160.20	2900.0	37.0	110.0	<0.5	<5.0	6.0	13.0	23.0	5.0	<1.0	1.0	422.0	25.	7.	3.
VA01839	160.20	161.50	4190.0	32.0	118.0	0.6	<5.0	2.0	23.0	8.0	50.0	<1.0	2.0	361.0	21.	. 7.	з.
VA01840	161.50	163.40	3000.0	33.0	140.0	0.5	₹5.0	3.0	28.0	8.0	12.0	<1.0	2.0	246.0	19.	7.	2.
VA01841	163.40	165.00	2800.0	32.0	130.0	0.6	⟨5.0	3.0	24.0	6.0	12.0	<1.0	3.0	250.0	30.	7.	3.
VA01842	165.00	166.30	2200.0	34.0	130.0	<0.5	<5.0	6.0	35.0	13.0	11.0	<1.0	3.0	361.0	21.	7.	3.
VA01843	166.30	168.00	2400.0	37.0	170.0	<0.5	<5.0	28.0	98.0	<5.0	<5.0	<1.0	4.0	970.0	18.	1.	6.
VA01844		169.60	4000.0	60.0	93.0	<0.5	<5.0	20.0	32.0	<5.0	<5.0	<1.0	3.0	730.0	39.	1.	5.
VA01845		171.20	4300.0	90.0	110.0	<0.5	<5.0	23.0	54.0	⟨5',0	5.0	<1.0	4.0	823.0	45.	1.	6.
VA01846		179.00	990.0	27.0	140.0	<0.5	⟨5.0	4.0	20.0	⟨5.0	5.0	1.0	4.0	617.0	16.	2.	2.
	177.30	180.50	2700.0	32.0	. 85.0	⟨0.5	< <b>5.</b> 0	6.0	24.0	5.0	5.0	<1.0	4.0	537.0	27.	2.	5.
VA01847											< <b>5.</b> 0	<1.0	3.0	466.0	16.	2.	2.
VA01848	180.50	181.90	970.0	25.0	109.0	<0.5	39.0	5.0	25.0	5.0						3.	3.
VA01849	185.90	187.00	1100.0	35.0	100.0	<0.5	<5.0	7.0	24.0	14.0	5.0	<1.0	2.0	431.0	26.	3.	3.

# DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	то	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	НН (ppm)	CUZN	ETS	FE
VA01850	187.00	188.00	540.0	27.0	65.0	<0.5	<5.0	9.0	36.0	12.0	6.0	<1.0	2.0	452.0	29.	3.	3.
VA01851	188.00	189.50	1800.0	30.0	150.0	0.5	(5.0	2.0	24.0	10.0	30.0	<1.0	3.0	270.0	17.	, 3.	2.
VA01852	189.50	191.00	2000.0	35.0	140.0	0.6	<5.0	3.0	26.0	8.0	19.0	<1.0	3.0	214.0	20.	3.	3.
VA01853	191.00	192.50	2200.0	24.0	110.0	<0.5	⟨5.0	4.0	14.0	6.0	6.0	<1.0	2.0	430.0	18.	3.	3.
VA01854	192.50	194.00	3500.0	17.0	96.0	<0.5	<5.0	3.0	11.0	7.0	7.0	<1.0	5.0	407.0	15.	3.	3.
VA01855	194.00	195.50	3500.0	23.0	110.0	<0.5	13.0	3.0	16.0	6.0	6.0	<1.0	6.0	335.0	17.	3.	2.
VA01856	195.50	197.00	1700.0	30.0	113.0	<0.5	⟨5.0	3.0	20.0	10.0	5.0	<1.0	3.0	453.0	21.	3.	2.
VA01857	197.00	198.50	2200.0	40.0	88.0	<0.5	⟨5.0	5.0	23.0	8.0	6.0	<1.0	2.0	296.0	31.	3.	3.
VA01858	198.50	200.00	3000.0	44.0	96.0	₹0.5	<b>(5.0</b>	5.0	24.0	10.0	6.0	<1.0	2.0	371.0	31.	u : 3.	3.
VA01859	200.00	201.50	2600.0	37.0	90.0	⟨0.5	<b>(5.0</b>	5.0	24.0	7.0	5.0	<1.0	2.0	220.0	29.	3.	3.
VA01860	201.50		2700.0	48.0	105.0	0.6	(5.0	8.0	26.0	10.0	28.0	<1.0	1.0	225.0	31.	3.	3.



Summary Log: DDH CH88-53

Location: 30+00 E, 1+95 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: May 10, 1988 Core logged by: J. Pattison

0.0 - 12.6 Casing.

12.6 - 15.1 Mafic to intermediate tuffaceous sediments

15.1 - 35.0 Massive mafic flow

35.0 - 37.1 Mafic to intermediate tuffaceous sediments

37.1 - 79.5 Gabbro

79.5 - 80.6 Volcanic wacke

80.6 - 125.8 Black cherty argillite with 3-5 % fracture controlled pyrite

125.8 - 128.5 Cherty felsic tuff/tuffite

128.5 - 130.0 Black argillite

130.0 - 133.0 Greywacke

133.0 - 247.1 Reworked felsic tuff

Very massive quartz grain-rich coarse to fine felsic tuff. Bedding is rare but appears to be at a very low angle to the core axis.

247.1 - 250.0 Mafic tuff

250.0 - 255.5 Cherty sediments (argillite and siltstone)

255.5 - 267.3 Reworked felsic tuff

267.3 - 268.6 Mafic tuff

268.6 - 272.5 Black argillite

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-53

n/a 1160

93

n/a

172

n/a

Hole Location: 30+02 E 1+95 S

UTM: 5416761.1 N 430229.8 E NTS: 92B13

Elevation: 532 m Azimuth: 210 Length: 272.5 m Dip: -50

Started: 6-May-88 Completed: 10-May-88 Claim No. Chip 1 Section No.: 30+00 E

Logged By: J. Pattison

Drilling Co.: Burwash Enterprises Assayed By: Bondar-Clegg & XRAL

Core Size:

Purpose:

DIP TESTS

Azi-Azi-Length muth Dip Length muth Dip

135.90 210.0 -50.0 23.20 210.0 -50.0

Sample From To Width Total Cu Рb To From Sulphides (ppm) (ppb) (ppm) (m) (m) (ppm) (ppm) (ppm) (m) -----DESCRIPTION-----No. (m) (m)

VA02836

15.1 37.1 22.0

12.6 OVERBURDEN

15.1 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS Dark brown, strongly thermal biotite altered, fine-grained, locally cherty mafic tuffaceous sediments. Trace fracture controlled pyrite. Broken core at the lower contact.

STRUCTURE:.

At 13.3 m bedding is at 35 degrees to core axis.

ALTERATION:.

12.6 15.1 STRONG PERVASIVE BIOTIZATION.

15.1 35.0 MAFIC FLOW Medium green, massive mafic flows with occasional ripped-up beds of mafic tuffaceous sediments and beds of cherty fragment rich mafic tuff up to 0.1 cm wide. . STRUCTURE: . 32.3-33.5 M FAULT ZONE at 45 (?) degrees to core axis. 0.1

34.2-35.0 M blocky, highly fractured core. 0.4 m of lost core.

ALTERATION: .

12.6 35.0 WEAK SPOTTY EPIDOTIZATION and WEAK SPOTTY CARBONATIZATION.

35.0 37.1 MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS

FALCONBRIDGE LIMITED DIAMOND DRILL LOG.

Sample From

(m)

No

Width

(m)

Total

Sulphides (ppm)

To

(m)

HOLE No: Page Number CH88-53

Cu

Pb

Zn

From То (m) (m) -----DESCRIPTION-----

> Medium green, mafic tuff with beds and ripped-up beds of cherty very fine-grained tuffaceous sediments. Broken core at lower contact but it appears to be at 37 degrees to core axis.

STRUCTURE:.

At 36.2 bedding is at 50 degrees to core axis.

ALTERATION:

32.3 37.1 WEAK PERVASIVE CHLORITIZATION

#### 37.1 79.5 MAFIC INTRUSIVE

Medium green, fine-grained with nil to 20 % 1-4 mm feldspar phenocrysts and trace to 3 % disseminated ilmenite. Ilmenite is often rimmed with leucoxene. Weakly to moderately carbonatized. Moderately carbonatized zones are non feldspar porphyritic and weakly sheared. Calcite +/- quartz veinlets are common. Blocky zones and minor fault gouges are common throughout. 5.0 Cm assimilation zone at the lower contact. Lower contact is at 55 degrees to core axis.

#### STRUCTURE:

39.8-40.0 M FAULT ZONE at 50 degrees to core axis. 0.1 m of lost core. 43.2-44.5 M FAULT ZONE. Rock is broken and blocky the over entire interval. 0.6 M of lost core. Not possible to measure the orientation of the fault. 47.1-47.2 M fault gouge at 70 degrees to core axis. At 63.8 m 1.0 cm fault gouge at 60 degrees to core axis. At 66.3 m 0.5 cm fault gouge at 30 degrees to core axis.

69.3-69.5 M fault gouge at 33 degrees to core axis.

### 79.5 80.6 IMMATURE VOLCANIC WACKE

Grey-brown massive volcanic wacke above 80.2 m. Below this depth there are several 2-3 mm black argillite beds. At 80.3 m there two subangular clasts of felsic quartz feldspar porphyritic flow or tuff. Tightly packed quartz-rich pebble conglomerate for 5.0 cm from the lower contact. Lower contact is a 1.0 cm fault gouge at 70 degrees to core axis.

#### 80.6 125.8 BLACK ARGILLITE

Black, weakly cherty, weakly to moderately graphitic argillite (95 % of unit) with beds of light green-grey cherty siltstone 1-10 mm thick and rare chert beds ( 3 cm thick. Massive to finely bedded. Lower contact is a bedding contact at 15 degrees to core axis.

/A03780	80.6	81.4	. 8	. 3	50	7	100	₹1	∢\$	4400
/A03781	81.4	82.0	. 6	3	66	13	115	₹1	(5	4700
/A03782	82.0	83.0	1.0	3	45	- 8	110	<1	₹5	4200
/A03783	83.0	84.0	1.0	3	40	11	110	<1	₹5	5600
/A03784	84.0	85.7	1.7	3	48	17	145	<1	₹5	5300

Àσ (ppm) (ppm) (ppm) (ppb) (ppm)

Att

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-53 3

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm)	
		92.4-92.7 M a bed of wacke FINES DOWNHOLE. Ripped-up	VA03785	85.7	86.3	. 6	5	113	7	225	<1	⟨5	2900	
		argillite clasts occur at the base of the bed. Bedding is	VA03786	86.3	87.0	.7	5	56	10	140	<1	< 5	5900	
		at 65 degrees to core axis.	VA03787	87.0	88.0	1.0	5	40	- 7	108	<1 .	(5	5300	
		96.9-97.5 M FAULT ZONE at 60-30 degrees to core axis.	VA03788	88.0	89.0	1.0	5	17	8	102	<1	<5	3700	
		97.5-103.0 M blocky, highly fractured core. 0.6 m of lost	VA03789	89.0	90.0	1.0	5	37	10	132	3	<5	4600	
		core. Moderately to strongly graphitic.	VA03790	90.0	91.0	1.0	5.	44	41	460	1	-8	4100	
			VA03791	91.0	92.0	1.0	5	32	9	118	<1	(5	5800	
		STRUCTURE:.	VA03792	92.0	93.0	1.0	5	26	11	128	<1	<5	4600	
		At 81.1 m 10 cm fault breccia at 70 degrees to core axis.	VA03793	93.0	94.0	1.0	5	30	. 7	102	1	< 5	4600	
		81.2-82.0 M bedding is wavey and nearly parallel to the	VA03794	94.0	95.0	1.0	5	32	8	120	1	. < 5	4200	
		core axis.	VA03795	95.0	96.0	1.0	5	23	8	90	1	(5	6200	
		At 82.7 m bedding is at 60 degrees to core axis. Beds are	VA03796	96.0	97.0	1.0	5	35	11	150	1	₹5	5200	
		kinked and offset by a matter of mm's by numerous	VA03797	97.0	98.0	1.0	5	36	9	122	1	< 5	2800	
		microfaults at low angles to the core axis.	VA03798	98.0	99.0	1.0	5	31	12	110	1	₹5	4500	
		At 83.6 m 9.0 cm fault zone at 60-70 degrees to core axis.	VA03799	99.0	100.0	1.0	5	20	9	100	1	<b>&lt;</b> 5	3900	
		At 83.9 m bedding is at 88 degrees to core axis.	VA03800	100.0	101.0	1.0	5	31	10	130	1	(5	2100	
		At 86.8 m 10.0 cm fault gouge at 78 degrees to core axis.	VA03801	101.0	102.0	1.0	- 5	20	8	90	<1 .	< 5	2100	
		At 88.0 m bedding is at 75 degrees to core axis.	VA03802			1.0	5	19	8	88	<1	<5	1800	
		90.3-90.4 M bed of cherty sediments that grades from a	VA03803	103.0		1.0	. 5	23	10	80	<1		1200	
		coarse wacke with ripped-up argillite clasts to a	. VA03804	104.0		1.0	5	30	6	157	(1		1500	
		siltstone downhole.	VA03805	105.0	105.7	.7	5	30	- 6	118	1	₹5	2000	
		At 101.6 m foliation is at 35 degrees to core axis.	VA03806	105.7	106.0	.3	5	27	₹5	198	1	₹5	1000	
		At 102.5 m bedding is at 30 degrees to core axis. 0.5 cm	VA03807	106.0	106.4	. 4	5	19	< 5	166	<1	13	1700	
		bed FINES UPHOLE.	VA03808	106.4	107.5	1.1	. 5	27	<5	190	<1	< 5	730	
		107.7-110.9 M blocky, highly fractured core. Foliation is	VA03809	107.5	108.0	.5	5	21	<b>(5</b>	70	(1	< 5	4900	
		at < 30 degrees to core axis. 0.2 m of lost core.	VA03810	108.0	109.0	1.0	5	26	8	100	$\mathbf{c}_{1}$ .	₹5	4700	
		At 113.0 m bedding is nearly parallel to the core axis.	VA03811	109.0	110.0	1.0	. 5	15	(5	95	<1	₹5	4000	
		113.1-113.6 M FAULT ZONE at 40 degrees to core axis. 0.5 m	VA03812	110.0	111.0	1.0	5	27	. 9	110	<1	.∢5	2800	
		of lost core.	VA03813	111.0	112.0	1.0	. 5	20	7	90	1	₹5	4200	
		115.4-116.1 M fault at 15 degrees to core axis. 0.8 m of	VA03814	112.0	113.0	1.0	5	21	6	100	<1	(5	3000	
		lost core.	VA03815	113.0	114.0	1.0	5	27	10	100	<1 .	< 5	8100	
		118.1-125.8 M FAULT ZONE (?). Blocky, highly fractured	VA03816	114.0	116.0	2.0	. 5	20	6	90	<1	(5	4900	
		core, foliation is nearly parallel to the core axis. 4.3	VA03817	116.0	118.0	2.0	. 5	22	. 7	90	. <1	₹5	3400	
		m of lost core.	VA03818	118.0	120.0	2.0	5	25	8	115	<1.	5	4500	
			VA03819	120.0	121.0	1.0	5	29	8	140	1	₹5	4000	
			VA03820	121:0	125.0	4.0	5	21	5	110	<1	(5	2700	
		ALTERATION:.	VA03821	125.0	125.8	.8	5	40	22	65	<1	₹5	3600	
		80.6 125.8 WEAK FRACTURE CONTROLLED CARBONATIZATION. Some												

80.6 125.8 WEAK FRACTURE CONTROLLED CARBONATIZATION. Som of the wacke beds are strongly carbonatized.

SULPHIDES:.

80.6-85.0 m 3 % pyrite, fracture controlled, disseminated and in 1-2 mm bands parallel to bedding.
85.0-85.7 m 5 % fracture controlled pyrite.
85.7-86.3 m 3 % fracture controlled pyrite.
86.3-125.8 m 4-5 % fracture controlled pyrite.

85.7 86.3 Pale green strongly carbonatized MAFIC TO INTERMEDIATE TUFF. Upper contact is at 60 degrees to core axis and the lower contact is at 85 degrees to core axis.

FALCONBRIDGE LIMITED

HOLE No: Page Number CH88-53 4

				DIAMOND DRI						Cu88-23							
From (m)	To (m)		DESC	RIPTION		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)	
		105.7 106.0	Pale green, fine-gralower contacts are axis. 5 % fracture	sharp at 30 degrees	to core												
		106.4 107.5	MAFIC DYKE: as 105.	7 to 106.0 m.													
125 0	120 E	EFICIC TUPE															
125.8	128.5	tuff/tuffite	le green, fine-grain e. Rock is weakly mid with quartz. Lower co	crofractured and f		VA03822 VA03823			1.0	1	12 2	10 12	55 42	(1 (1		3800 3800	
		ALTERATION:															
			WEAK SPOTTY EPIDOTIS CONTROLLED SILICIFIC		CTURE												
		126.5 126.7	BLACK ARGILLITE. So along the lower con- degrees to core axis contact.	tact which is at 4	10												
128.5	130.0	tuff up to : Lower contac STRUCTURE:.	125.8 m with occasion 1.0 cm wide. 2 % fraction of the contraction of	acture controlled per 0.1 m.		VA03824 VA03825			.5 1.0	2 2	35 31	12 58	53 290	<1 <1		3600 3300	
		At 128.8 m	bedding is at 43 deg	rees to core axis.													
130.0	133.0	of chert up clasts occur controlled	fine-grained greywa to 1.0 cm wide. Ar r over the first 0.3 pyrite. Lower conta e to measure the ori	gillite beds and ri m. Trace fracture ct is relatively sh	p-up arp but	VA03826 VA03827			1.0	1 1	2 2	<5 <5	88 58	<1 <1		3000 3000	
		core															
		STRUCUTRE:. At 130.7 m l	bedding is at 32 degr	rees to core axis.													
		ALTERATION: 130.0 133.0	VEAK FRACTURE CONTRO	OLLED SILICIFICATIO	ж.												
133.0	247.1	rich, coarse	LSIC TUFF e (no bedding or fol: e felsic tuff. Competer rtz grains, up to 5	osed of 50-60 % 1-3	mm	VA02837 VA02838 VA03828	163.0	193.0		n/a n/a 2	<10 <10 26	n/a			n/a n/a (5		

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-53 5

rrom	10		Sample	rrom	10
(m)	(m)	DESCRIPTION	No.	(m)	(m)
		crystals in a very fine-grained siliceous, weakly	VA03829	169.0	170.0
		sericitic and chloritic matrix intercalated with lesser	VA03830	174.0	175.0
		ammounts of pale green, fine felsic ash tuff. Locally up	VA03831	192.0	192.5
		to 20 % 2-3 mm epidotized feldspars. Quartz grain rich	VA02839	193.0	223.0
		nature of the tuff suggests that most of the unit has been	VA03832	194.0	194.5
		reworked to some extent. The tuff becomes coarser grained	VA03833	218.5	219.5
		below 145.5 m (average grainsize is 3 mm). Quartz filled	VA02840	223.0	247.1
		fractures and gashes up to 0.5 cm wide are common. Nil to			
		5 % 2-4 mm angular light grey cherty fragments above 200 m			
		and up to 10 % below 200 m. Nil sulphides. Trace to 1 %			
		magnetite or ilmenite as black grains (0.5 mm in diameter			
		with a submetallic lustre. Lower contact is at 15 degrees			

#### STRUCTURE:.

to core axis.

145.1-145.5 M fault gouge at 20 degrees to core axis.

At 161.4 m slip at 40 degrees to core axis.

At 188.2 m weak foliation at 60 degrees to core axis.

At 217.4 m weak foliation at 45 degrees to core axis.

At 227.5 m foliation is at 37 degrees to core axis.

At 230.8 m bedding is parallel to the core axis.

At 246.0 m foliation is at 20 degrees to core axis.

#### ALTERATION:.

133.0 247.1 WEAK FRACTURE CONTROLLED SILICIFICATION, WEAK PERVASIVE SERICITIZATION and WEAK PERVASIVE CHLORITIZATION. Locally very weakly thermal biotite altered.

#### SULPHIDES:.

168.0-169.5 m 2 % disseminated and fracture controlled purite

174.0-175.0 m 3 % pyrite; fracture controlled, disseminated and as clasts to 1.0 cm. Trace fracture controlled sphalerite.

Pyrite and trace fracture controlled sphalerite.

Pyrite and trace chalcopyrite and sphalerite occur in an epidote alteration patch associated with a 0.5 cm quartz filled fracture at 30 degrees to core axis.

218.5-219.5 M trace fracture controlled pyrite and trace sphalerite or biotite associated with quartz-carbonate filled fractures.

219.0 220.0 INTERMEDIATE QUARTZ-FELDSPAR CRYSTAL LAPILLI TUFF. Composed of 30 % quartz and feldspar crystals 2-4 mm in diameter in a fine-grained intermediate chlorite+sericite matrix. Upper and lower contacts are at 62 degrees to core axis.

230.7 230.8 A bed of cherty BLACK ARGILLITE at 0 degrees

Width Total Cu Рb λu Zn λσ Sulphides (ppm) (ppm) (ppm) (mqq) (ppb) (ppm) (m) 1.0 10 100 <1 **(5 2000** 12 580 (5 2100 . 0 1.0 3 12 ₹1 1 90 18 2000 7 90 . 5 . 5 3 n/a 1000 324 .0 30.0 n/a 16 n/a n/a (5 2000 20 . 17 142 <1 . 5 . 1 93 (5 370 . 5 1.0 . 1 10 6 <1 n/a 1370 .1 24.1 n/a <10 n/a 150 n/a

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-53 6

				DIAMONI	D DRILL LOG											
From (m)		· · · · · · · · · · · · · · · · · · ·	D	ESCRIPTION		Sample No.	From (m)	To (m)	Width (m)	Total Sulphide	Cu s (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)
		,	to core axis.													
247.1	250.0	MAFIC TUFF														
		0.7 m. 5 %, 2 and angular 2 % fracture co	2-3 mm quartz + 2-5 mm quartz ri ontrolled pyrite	omewhat cherty over /- carbonate fille ch clasts are comm . Lower contact i <20 degrees to con	ed amygdales non. 3 to 4 is at a verv	VA03834 VA03835 VA03836	248.0	249.0	.9 1.0 1.0	4 4 4	16 27 27	(5 (5 (5	72 106 79	(1 (1 (1	<5 <5 <5	290 250 130
250 0	266 6	CUEDTY CENTAL	NMC (DIACK ADOT	LLITE AND SILTSTON												
250.0	255.5	GREYVACKE)	INTS (BLACK ARGI	LLITE AND SILTSTON	E WITH MINOR											
		Pale green-gr	ey very cherty	siltstone with bed	s and broken											
		up, ripped-up	beds of black	argillite. Beddin	g is at a											
		very low angl	e to the core a	xis. Mafic tuff, runs along the ed	identical to											
		core. Lower	contact is at 8	degrees to core a	xis.											
		STRUCTURE:.														
			dding is at 20	degrees to core ax	ie and											
		sediments, ap	pear to FINE DO	WNHOLE.	is allu											
			•													
255 5	264.7															
255.5	264.7		47.1 m with bed	s of cherty sedime		VA03837	263.7	264.7	1.0	1	8	19	420	.<1	<b>(5</b> 3	100
		ambii amii am														
		STRUCTURE:	dding is at 20	degrees to core ax	4. (1											
		siltstone wit below 264.0 m	h broken and ri	pped-up beds of a	rgillite											
264.7	265.5	MAFIC TUFF														
2011.	203.3		massive mafic	ash tuff with 5 %,	2-20 mm:	VA03838	264.7	265.5	.8	5	83	5	200	2	<b>(5 2</b>	2400
		angular clast	s of cherty silt	tstone. 5 % disse	minated and			200.0			0.5	J .	200	, 4	13 2	400
		fracture cont	rolled pyrite. (	0.3 m quartz-carbo	nate flooded	•										
		zone at 30 de	grees to core as	kis at the lower c	ontact.											
											-					
265.5	266.5	SILTSTONE														
		Pale green, c 40 degrees to		ided siltstone. B	edding is at	VA03839	265.5	266.5	1.0	1	19	9	100	1	<5 2	000
266.5	267.3	REWORKED FELS	IC TUFF													
				ntact is gradatio	nal over 5.0	VA03840	266.5	267.3	.8	2	4	<b>(5</b>	102	(1	₹5 6	900
		cm.								_	.=			-	- 0	

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-53 7

From (m)		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)		Zn (ppm)	Ag (ppm)	Au Ba (ppb) (ppm)
267.3	268.6 MAFIC TUFF  Massive, mafic ash tuff with 5 %, 3-10 mm angular cherty fragments. 4 % disseminated pyrite. Lower contact is	/ VA03841	267.3	268.6	1.3	4	15	5 ,	122	(1	(5 1500
	45 degrees to core axis.										
268.6	272.5 BLACK ARGILLITE Cherty black argillite with light grey cherty siltstone wacke and felsic feldspar crystal tuff beds at 0-15 degrees to core axis. A bed FINES DOWNHOLE at 269.5 m. 4-5 % fracture controlled and bedded (beds are < 3 mm	VA03842 VA03843 VA03844 VA03845	268.6 269.4 270.7 271.7	269.4 270.7 271.7 272.5	.8 1.3 1.0	4 4 4	34 25 27	7 7 5 (5	83 70 62 39	1 (1 1	<pre></pre>
	thick) pyrite.										

STRUCTURE:. 269.6-271.0 M blocky, highly fractured core. 0.2 m of lost core.

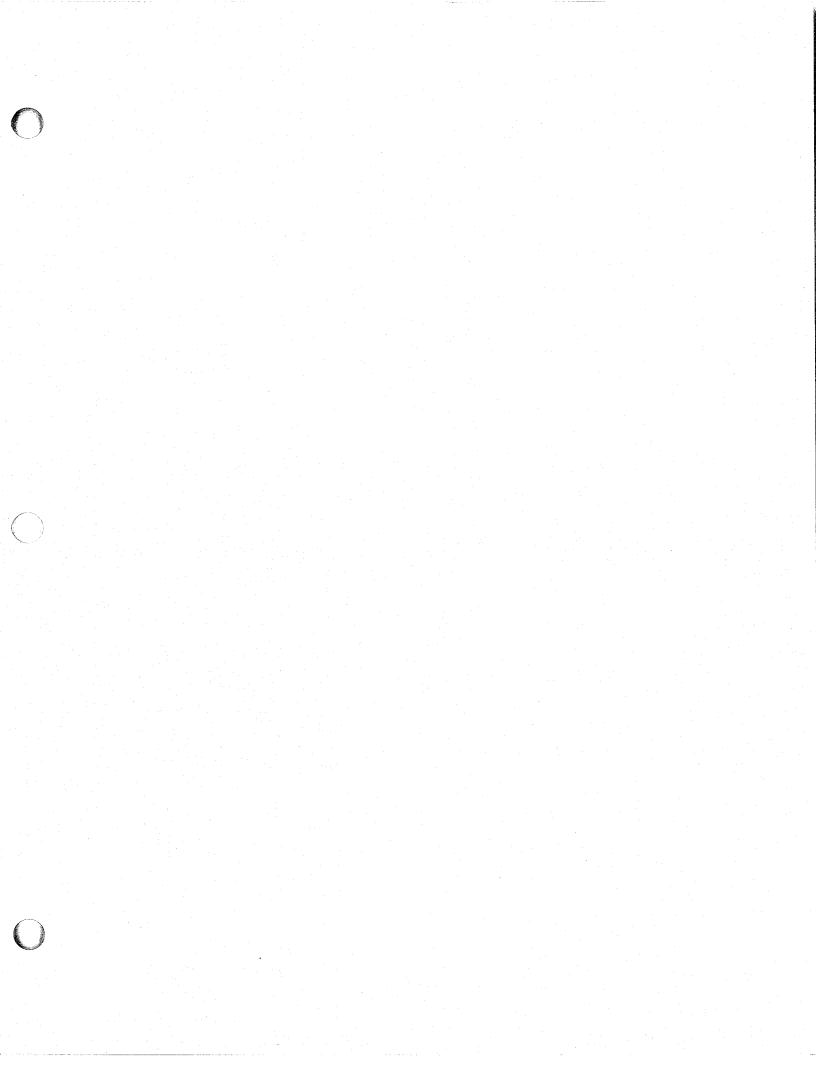
SAMPLE NUMBER	FROM	TO	25102	XAL203	ZCAO	ZHGO	XNA20	XK20	1FE203	21 102	XP205	ZHNO	ILOI	KUZ	BA	AI	NACA
				:													
VA02372	18.60	18.90	48.10	16.10	6.87	8.01	3.64	0.63	11.10	0.85	0.18	0.25	3.16	98.89	1300.	45.	11.
VA02373	29.50	29.80	47.00	16.50	7.33	7.82	3.07	0.97	11.40	0.85	0.18	0.23	3.08	98.43	1190.	46.	10.
VA02374	134.30	134.70	74.00	11.40	2.37	1.99	2.90	1.33	3.42	0.38	0.08	0.11	1.77	99.75	1270.	39.	5.
VA02375	147.70	148.10	67.40	15.00	2.59	2.27	2.74	2.03	3.95	0.59	0.11	0.17	2.23	99.08	2130.	45.	5.
VA02376	159.00	159.40	67.30	14.50	5.38	1.96	3.29	0.52	4.55	0.61	0.13	0.19	1.85	100.28	531.	22.	9.
VA02377	170.40	170.70	65.70	16.00	2.21	2.30	2.63	2.38	3.93	0.60	0.11	0.12	2.54	98.52	2630.	49.	5.
VA02378	182.40	182.70	67.40	16.00	1.65	2.33	2.11	2.75	3.74	0.58	0.10	0.13	2.39	99.18	3310.	57.	4.
VA02379	191.00	191.50	67.40	16.60	2.19	2.39	2.65	2.33	3.50	0.61	0.11	0.13	2.47	100.38	2400.	49.	5.
VA02380	202.00	202.60	65.90	16.80	2.56	2.35	2.45	2.39	3.69	0.71	0.13	0.16	2.39	99.53	2870.	49.	5.
VA02381	215.00	215.40	67.20	15.90	2.82	2.23	2.87	1.85	3.57	0.72	0.13	0.16	2.00	99.45	2120.	42.	6.
VA02382	228.00	228.40	69.70	14.80	1.54	2.78	1.17	2.65	3.54	0.47	0.08	0.12	2.62	99.47	2440.	67.	3.
VA02383	243.00	243.40	69.40	14.30	1.95	2.82	1.12	2.28	4.43	0.35	0.05	0.10	2.47	99.27	2920.	62.	3.
VA02384	249.50	249.70	46.80	15.10	14.00	3.23	1.32	0.11	11.80	2.50	1.04	0.28	2.77	98.95	101.	18.	15.

0

SAMPLE NUMBER	FROM	то	RB (opm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	NB (ppm)	CH (ppm)	ZN (ppm)	NI (ppm)	. *		ROCK	CODES	MIN
VA02372	18.60	18.90	23.0	256.0	1300.0	16.0	17.0	25.0	265.0	90.0	44.0			VMAH	SEM	A
VA02373	29.50	29.80	38.0	307.0	1190.0	14.0	<10.0	<10.0	142.0	31.0	36.0			UMAN	?	DOP
VA02374	134.30	134.70	48.0	244.0	1270.0	28.0	30.0	17.0	<10.0	248.0	<10.0			TEAM	EGW	A
VA02375	147.70	148.10	54.0	444.0	2130.0	53.0	109.0	23.0	17.0	141.0	<10.0			TFAM	?	· A
VA02376	159.00	159.40	32.0	571.0	531.0	43.0	102.0	16.0	<10.0	550.0	<10.0			TFAM	?	A
VA02377	170.40	170.70	74.0	280.0	2630.0	46.0	132.0	14.0	<10.0	65.0	<10.0			TEAM	? .	Á
VA02378	182.40	182.70	82.0	219.0	3310.0	40.0	135.0	24.0	<10.0	58.0	<10.0			TFAM	?	À
VA02379	191.00	191.50	51.0	309.0	2400.0	69.0	137.0	24.0	<10.0	47.0	<10.0			TEAM	?	DPP
VA02380	202.00	202.60	66.0	329.0	2870.0	47.0	138.0	<10.0	<10.0	52.0	<10.0			TFAM	?	DBP
VA02381	215.00	215.40	54.0	405.0	2120.0	44.0	101.0	22.0	10.0	47.0	11.0			TFAH	?	A
VA02382	229.00	228.40	76.0	217.0	2440.0	58.0	158.0	<10.0	<10.0	71.0	<10.0			TEAM	7 -	A
VA02383	243.00	243.40	57.0	164.0	2920.0	43.0	170.0	21.0	<10.0	109.0	<10.0			TFAM	?	A
VA02384	249.50	349.70	11.0	416.0	101.0	50.0	271.0	69.0	27.0	52.0	<10.0			THAL	?	DCP

					<b></b>										 		
SAMPLE NUMBER	FROM	TO	<b>XS</b> 102	ZAL203	ICAO	zHGO	XNA20	XK20	XFE203	ZT 102	XP205	ZHNO	ILOI	SUM	ВА	AI	NACA
		<del></del>			<del></del>										 		
VA02836	15.10	37.10	46.10	15.10	10.00	7.21	2.99	1.00	10.70	0.74			4.54	98.38	1160.	39.	13.
VA02837	133.00	163.00	65.80	14.30	3.72	2.29	1.83	2.36	3.88	0.49			3.08	97.74	2090.	46.	6.
VA02838	163.00	193.00	65.50	15.90	2.62	2.26	2.54	2.15	3.80	0.59			2.62	97.98	2370.	46.	5.
VA02839	193.00	223.00	63.40	14.80	5.89	2.12	2.76	0.75	4.49	0.67			2.77	97.65	1000.	25.	9.
VA02840	223.00	247.10	66.50	14.00	4.76	2.51	1.92	1,27	3.88	0.45			2.62	97.91	1370.	36.	7.

SAMPLE NUMBER I			;										CODES	
NUMBER	FROM	TO	(ppm)	SR (ppm)	BA (ppm)	(ppm)	ZR (ppm)	(ppm)	(ppm)	ZN (ppm)	(ppm)	ROCK	ALT	MIN
VA02836	15.10	37.10			1160.0				172.0	93.0	55.0	VMAM	? .	DBP
VA02837	133.00	163.00			2090.0				<10.0	166.0	<10.0	TFAN	?.	A
VA02838	163.00	193.00			2370.0				<10.0	66.0	<10.0	TFAM	. ?	A
VA02839	193.00	223.00			1000.0				16.0	324.0	<10.0	TFAM	?	A
VA02840	223.00	247.10			1370.0				<10.0	150.0	<10.0	TEAM	?	A


SAMPLE NUMBER	FROM	TO	. 8A	CU	ZN	AG	AU	CO	. NI	PB	AS	CD	ом	. ни	CUZN	ETS	FE
	·		(ppm)	(ppm)	(pp <b>m</b> )	(ppm)	(ppb)	(ppm)									
VA03780	80.60	81.40	4400.0	50.0	100.0	<0.5	<5.0	5.0	16.0	7.0	11.0	<1.0	2.0	292.0	33.	3.	3.
VA03781	81.40	82.00	4700.0	66.0	115.0	<0.5	<5.0	6.0	17.0	13.0	8.0	<1.0	2.0	328.0	36.	3.	3.
VA03782	82.00	83.00	4200.0	45.0	110.0	<0.5	<5.0	6.0	18.0	8.0	6.0	(1.0	2.0	305.0	29.	3.	з.
VA03783	83.00	84.00	5600.0	40.0	110.0	(0.5	<5.0	4.0	15.0	11.0	10.0	<1.0	2.0	298.0	27.	3.	з.
VA03784	84.00	85.70	5300.0	48.0	145.0	<0.5	<5.0	5.0	20.0	17.0	18.0	<1.0	2.0	355.0	25.	3.	3.
VA03785	85.70	86.30	2900.0	113.0	225.0	<0.5	<5.0	25.0	56.0	7.0	35.0	<1.0	3.0	1370.0	33.	5.	6.
VA03786	86.30	87.00	5900.0	56.0	140.0	<0.5	<5.0	5.0	24.0	10.0	14.0	<1.0	1.0	353.0	29.	5.	3.
VA03787	87.00	88.00	5300.0	40.0	108.0	<0.5	<5.0	4.0	19.0	7.0	21.0	<1.0	3.0	336.0	27.	5.	2.
VA03788	88.00	89.00	3700.0	17.0	102.0	<0.5	<5.0	2.0	11.0	8.0	10.0	<1.0	2.0	231.0	14.	5.	2.
VA03789	89.00	90.00	4600.0	37.0	132.0	3.2	<b>&lt;5.0</b>	3.0	22.0	10.0	16.0	<1.0	3.0	432.0	22.	5.	2.
VA03790	90.00	91.00	4100.0	44.0	460.0	1.1	8.0	5.0	20.0	41.0	27.0	2.0	3.0	459.0	9.	5.	3.
VA03791	91.00	92.00	5800.0	32.0	118.0	(0.5	<5.0	3.0	22.0	9.0	11.0	<1.0	3.0	289.0	21.	5.	2.
VA03792	93.00	93.00	4600.0	26.0	128.0	⟨0.5	<5.0	3.0	17.0	11.0	12.0	<1.0	5.0	535.0	17.	5.	3.
VA03793	93.00	94.00	4600.0	30.0	102.0	0.5	(5.0	3.0	20.0	7.0	20.0	<1.0	3.0	309.0	23.	5.	2.
VA03794	94.00	95.00	4200.0	32.0	120.0	0.6	<5.0	3.0	22.0	8.0	13.0	<1.0	5.0	311.0	21.	5.	2.
VA03795	95.00	96.00	6200.0	23.0	90.0	0.7	<5.0	2.0	14.0	3.0	13.0	⟨1,0	7.0	821.0	20.	5.	2.
VA03796	96.00	97.00	5200.0	35.0	150.0	1.2	⟨5.0	3.0	26.0	11.0	18.0	<1.0	7.0	344.0	19.	5. :	3.
VA03797	97.00	98.00	2800.0	36.0	122.0	0.8	<5.0	2.0	26.0	9.0	15.0	<1.0	5.0	457.0	23.	5.	2.
VA03798	98.00	99.00	4500.0	31.0	110.0	0.8	<5.0	2.0	20.0	12.0	10.0	(1.0	2.0	217.0	22.	5.	2.
VA03799	99.00	100.00	3900.0	20.0	100.0	0.5	⟨5.0	<1.0	14.0	9.0	9.0	<1.0	2.0	472.0	17.	5.	1.
VA03800	100.00		2100.0	31.0	130.0	0.7	(5.0	1.0	22.0	10.0	58.0	<1.0	4.0	277.0	19.	5.	3.
VA03801																	2.
	101.00		2100.0	20.0	90.0	<0.5	<5.0	2.0	10.0	8.0	80.0	<1.0	2.0	332.0	18.	5.	
VA03802	102.00	103.00	1800.0	19.0	88.0	<0.5	<5.0	1.0	14.0	8.0	11.0	⟨1.0	3.0	511.0	18.	5.	2.

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	#O (ppm)	ИН (ppm)	CUZN	ETS	FE
VA03803	103.00	104.00	1200.0	23.0	80.0	<0.5	<5.0	1.0	18.0	10.0	10.0	<1.0	3.0	684.0	22.	5.	1.
VA03804	104.00	105.00	1500.0	30.0	157.0	<0.5	<5.0	<1.0	26.0	6.0	12.0	<1.0	4.0	1070.0	16.	5.	2.
VA03805	105.00	105.70	2000.0	30.0	118.0	0.5	<5.0	2.0	22.0	6.0	9.0	<1.0	4.0	872.0	20.	5.	2.
VA03806	105.70	106.00	1000.0	27.0	198.0	0.5	<5.0	17.0	9.0	<5.0	9.0	<1.0	5.0	1041.0	12.	5.	. 9.
VA03807	106.00	106.40	1700.0	19.0	166.0	<0.5	13.0	6.0	18.0	<5.0	10.0	<1.0	6.0	818.0	10.	5.	3.
VA03808	106.40	107.50	730.0	27.0	190.0	<0.5	<5.0	20.0	6.0	<5.0	42.0	<1.0	5.0	911.0	12.	5.	8.
VA03809	107.50	108.00	4900.0	21.0	70.0	<0.5	<5.0	3.0	8.0	⟨5.0	9.0	<1.0	3.0	419.0	23.	- 5.	٠.
VA03810	108.00	109.00	4700.0	26.0	100.0	⟨0.5	<b>&lt;5.0</b>	4.0	16.0	8.0	19.0	<1.0	3.0	300.0	21.	5.	3.
VA03811	109.00	110.00	4000.0	15.0	95.0	<0.5	<5.0	3.0	9.0	<5.0	12.0	<1.0	2.0	233.0	-14.	5.	3.
VA03812	110.00	111.00	2800.0	27.0	110.0	<0.5	<5.0	3.0	16.0	9.0	11.0	<1.0	2.0	316.0	20.	5.	3.
VA03813	111.00	112.00	4200.0	20.0	90.0	0.5	<5.0	5.0	8.0	7.0	16.0	<1.0	4.0	398.0	18.	5.	4.
VA03814	112.00	113.00	3000.0	21.0	100.0	<0.5	<5.0	3.0	12.0	6.0	19.0	<1.0	2.0	298.0	17.	5.	2.
VA03815	113.00	114.00	8100.0	27.0	100.0	<0.5	₹5.0	7.0	8.0	10.0	12.0	<1.0	3.0	406.0	21.	5.	3.
VA03816	114.00	116.00	4900.0	20.0	90.0	<0.5	<5.0	5.0	7.0	6.0	10.0	<1.0	2.0	408.0	18.	5.	3.
VA03817	116.00	118.00	3400.0	22.0	90.0	<0.5	<5.0	5.0	6.0	7.0	7.0	<1.0	2.0	471.0	20.	5.	3.
VA03818	118.00	120.00	4500.0	25.0	115.0	<0.5	5.0	4.0	15.0	8.0	10.0	<1.0	2.0	382.0	18.	5.	3.
VA03819	120.00	121.00	4000.0	29.0	140.0	0.6	<5.0	4.0	24.0	8.0	13.0	<1.0	2.0	281.0	17.	5.	3.
VA03820	121.00	125.00	2700.0	21.0	110.0	<0.5	<5.0	2.0	20.0	5.0	18.0	<1.0	3.0	740.0	16.	5.	1.
VA03821	125.00	125.80	3600.0	40.0	65.0	<0.5	₹5.0	4.0	18.0	22.0	9.0	<1.0	10.0	391.0	38.	5.	3.
VA03822	125.80	126.80	3800.0	12.0	55.0	<0.5	7.0	1.0	5.0	10.0	<5.0	<1.0	1.0	367.0	18.	1.	2.
VA03823	127.50	128.50	3800.0	2.0	42.0	<0.5	<5.0	<1.0	4.0	12.0	<5.0	<1.0	2.0	430.0	5.	1.	2.
VA03824	128.50	129.00	3600.0	35.0	53.0	<0.5	<5.0	4.0	13.0	12.0	11.0	<1.0	3.0	418.0	40.	2.	2.
VA03825	129.00	130.00	3300.0	31.0	290.0	<0.5	38.0	3.0	12.0	58.0	8.0	2.0	4.0	501.0	10.	2.	2.

Page No.

SAMPLE																	
NUMBER	FROM	TO	BA (ppm)	CU (pp=)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	HN (ppm)	CUZN	ETS	FE
																	************
VA03826	130.00	131.00	3000.0	2.0	88.0	<0.5	38.0	<1.0	4.0	<5.0	(5.0	<1.0	1.0	432.0	2.	1.	2.
VA03827	131.00	132.00	3000.0	2.0	58.0	<0.5	<5.0	<1.0	2.0	<5.0	<5.0	<1.0	1.0	411.0	3.	1.	2.
VA03828	168.00	169.00	1700.0	26.0	100.0	<0.5	<5.0	3.0	2.0	<5.0	₹5.0	(1.0	1.0	501.0	21.	2.	2,
VA03829	169.00	170.00	2000.0	10.0	100.0	<0.5	<b>(5.0</b>	2.0	4.0	5.0	₹5.0	<1.0	1.0	504.0	9.	2.	3.
VA03830	174.00	175.00	2100.0	12.0	580.0	<0.5	<5.0	5.0	. 4.0	12.0	<5.0	2.0	2.0	519.0	2.	3.	2.
VA03831	192.00	192.50	90.0	90.0	2000.0	2.5	7.0	5.0	4.0	18.0	6.0	6.0	2.0	925.0	4.	1.	2.
VA03832	194.00	194.50	2000.0	20.0	142.0	<0.5	<5.0	2.0	4.0	17.0	<5.0	<1.0	1.0	723.0	12.	1.	з.
VA03833	218.50	219.50	370.0	10.0	93.0	<0.5	<5.0	9.0	6.0	6.0	6.0	<1.0	2.0	801.0	10.	1.	3.
VA03834	247.10	248.00	290.0	16.0	72.0	<0.5	<5.0	10.0	5.0	<5.0	5.0	<1.0	9.0	845.0	18.	4.	5.
VA03835	248.00	249.00	250.0	27.0	106.0	0.6	<5.0	19.0	5.0	<5.0	<5.0	<1.0	4.0	1200.0	20.	4.	7.
VA03836	249.00	250.00	130.0	27.0	79.0	<0.5	₹5.0	14.0	6.0	₹5,0	<5.0	<1.0	3.0	926.0	25.	4.	5.
VA03837	263.70	264.70	3100.0	8.0	420.0	(0.5	<5.0	4.0	5.0	19.0	<5.0	1.0	7.0	639.0	2.	1.	2.
VA03838	264.70	265.50	2400.0	83.0	200.0	2.2	<5.0	20.0	6.0	5.0	10.0	<1.0	7.0	1850.0	29.	5.	7.
VA03839	265.50	266.50	2000.0	19.0	100.0	0.5	<5.0	6.0	10.0	9.0	18.0	<1.0	16.0	1450.0	16.	1.	3.
VA03840	266.50	267.30	6900.0	4.0	102.0	<0.5	<5.0	2.0	4.0	<5.0	<5.0	<1.0	3.0	1130.0	4.	2.	3.
VA03841	267.30	268.60	1500.0	15.0	122.0	<0.5	<5.0	14.0	4.0	5.0	5.0	<1.0	3.0	1830.0	11.	4,	6.
VA03842	268.60	269.40	1200.0	34.0	83.0	1.0	<5.0	5.0	14.0	7.0	<5.0	<1.0	2.0	549.0	29.	4.	4.
VA03843	269.40	270.70	990.0	25.0	70.0	⟨0.5	⟨5.0	5.0	10.0	7.0	5.0	<1.0	2.0	448.0	26.	4.	3.
VA03844	270.70	271.70	1500.0	27.0	62.0	0.5	<5.0	5.0	15.0	5.0	(5.0	<1.0	2.0	376.0	30.	4.	3.
VA03845	271.70	272.50	3600.0	4.0	39.0	<0.5	⟨5.0	2.0	9.0	<5.0	<5.0	<1.0	2.0	213.0	9.	4.	2.

Page No.



Summary Log: DDH CH88-54

Location: 32+00 E, 0+49 S; Chip 1 Claim

Azimuth: 210, Dip: -45

Hole Completed: May 13, 1988 Core Logged By: D.P. Money

0.0 - 20.2 Casing.

20.2 - 56.0 Intercalated chloritic felsic tuffs and chlorite schists.

56.0 - 68.5 Feldspar porphyritic felsic flow.

68.5 - 99.1 Gabbro.

99.1 - 104.5 Quartz porphyritic felsic flow.

104.5 - 107.9 Major thrust fault.

107.9 - 115.6 Nanaimo Group argillite.

115.6 - 152.5 Nanaimo Group, Benson Formation basal conglomerate.

152.5 - 194.9 Hornblende phyric mafic lapilli tuff.

194.9 - 235.3 Intercalated andesitic tuffs and chert beds.

235.3 - 244.3 Mafic ash tuff.

244.3 - 250.0 Cherty felsic tuffite.

250.0 - 257.2 Andesitc tuffs with interbedded chert and argillite.

257.2 - 258.6 Gabbro.

258.6 - 291.7 Mafic to andesitic tuffs with interbeds of chert and argillite, with up to 2 % fracture controlled pyrite in the sediments.

291.7 End of hole.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-54

Hole Location: 32+00 E 0+49 S

NTS: 092B/13W UTM: 5416783.6 N 430468.2 E

Azimuth: 210 Elevation: 549 m Length: 291.7 m Dip: -45

Started: May 9, 1988 Completed: May 13, 1988 Claim No. Chip 1

Section No.: Section 32+00 East, Chip Claim Group

Logged By: D.P. Money

Drilling Co.: Burwash Enterprises

n/a

109

n/a

88 n/a

n/a 506

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NO

Purpose: To test for 'active tuff' north of the fault.

Azi-Azi-Length muth Dip Length muth Dip 29.60 211.0 -42.0 188.10 216.0 -41.0 93.60 215.0 -41.0 275.50 216.0 -36.0

From To Sample From To Width Рb Total Cu Zn -----DESCRIPTION-----(m) (m) No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

VA01098 20.2 23.9 3.7

20.2 OVERBURDEN

20.2 23.9 CHLORITE SCHIST

Medium to dark green chlorite schist with 2 to 3 % fracture controlled and parallel to foliation carbonatization. There are approximately 3 % calcite epidote grains, up to 5 mm. There is felsic tuff from 23.5 to 23.8.

20.2 23.9 WEAK FRACTURE CONTROLLED CARBONATIZATION.

Lost core :. 20.4 23.5 : 0.5 m.

Foliation :.

20.4: 60 degrees to core axis.

23.3: 57 degrees to core axis.

23.9 24.7 INTERMEDIATE QUARTZ FELDSPAR CRYSTAL TUFF

Chlorite - sericite schist with 10 %, 2 mm, quartz eyes and 10 to 15 %, 2 to 3 mm, epidote grains. Foliation and

lower contact are at 68 degrees to core axis.

24.7 42.5 WEAKLY CHLORITIC FELSIC TUFF

Chloritic felsic tuff, weakly to moderately chloritic with 3 to 15 % chlorite. Is fine-grained with up to 15 %, up to 1 mm, epidote to feldspar grains and up to 5 %, 3 mm, quartz eyes. Average crystal content is approximately 10 4. Is locally contorted with moderate kinking and minor chlorite schist with strong carbonatization. Is very disky and broken into 'poker chips'. There is trace disseminated pyrite locally.

n/a 1100 VA01099 24.7 42.5 17.8 n/a <10 <10 n/a

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-54 2

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp)	Ba b) (ppm)	
		24.7 42.5 WEAK PERVASIVE CHLORITIZATION.												
		Lost core :.												
		32.6 34.7 : 0.5 m.												
		34.7 36.3 : 0.6 m. 36.3 37.7 : 0.3 m.												
		Foliations:												
		26.3 : 73 degrees to core axis.												
		30.1 : 65 degrees to core axis.												
		32.6 : 84 degrees to core axis.												
		37.8 : 72 degrees to core axis.												
		41.9 : 54 degrees to core axis.												
42.5	47.2	CHLORITE SCHIST												
		Strongly contorted and kinked chlorite schist with minor	VA01100	42.5	47.2	4.7	n/a	48	n/a	76	n/a	n/a	828	
		local sericite - chlorite schist. There weak fracture	VA01861	42.5		. 1.5	1	88	< 5	143	<1	₹5	900	
		controlled carbonatization and trace to 0.25 %	VA01862	44.0	45.5	1.5	1	93	8	118	<1	5	670	
		disseminated pyrite, as up to 1 cm cubes.	VA01863	45.5	47.2	1.7	· 1	45	√5	52	<1	< 5	1100	
		42.5 47.2 WEAK FRACTURE CONTROLLED CARBONATIZATION.												
47.2	55 5	INTERMEDIATE FELDSPAR CRYSTAL TUFF												
	20.7	Andesitic ash tuff to chlorite schist with on average 15 %	VA01101	47.2	55.5	8.3	n/a	89	n/a	40	n/a	n/a	256	
		epidotized feldspars, 1 to 3 mm. Is locally very		• • • •								, -		
		contorted with moderate pervasive carbonatization as white												
		streaks. On average there is 3 %, 3 mm, quartz eyes.												
		There is local trace disseminated pyrite cubes, up to 3												
		mm. Folds are primarily 'Z' folds. Foliation trend varies												
		from approximately 50 to 70 degrees to core axis.												
		Alteration:.												
		47.2 55.5 MODERATE PERVASIVE CARBONATIZATION.												
		TANKE TOWN												
55.5	56.6	FAULT ZONE												
		Felsic and mafic fault gouge and grey clay at 80 to 90 degrees to core axis.												
		Lost core :.												
		55.5 57.9 : 0.2 m.												
56.6	.68.5	FELDSPAR PORPHYRITIC FELSIC FLOW												
		Light grey to green massive and blocky siliceous felsic	VA01102	56.6	68.5	11.9	n/a	11	n/a	₹10	n/a	n/a	655	
		flow with 5 to 7 %, 2 to 4 mm, feldspar to epidotized												
		feldspar grains. There is minor fault gouge throughout.												
		From 65.1 to 68.5, there is weak thermal biotite and weak												
		schistosity at approximately 65 to 70 degrees to core												
		axis. There is trace to nil disseminated pyrite as (1 mm												
		cubes.												
		Lost core:												
		57.9 58.5 : 0.3 m. 58.5 60.0 : 0.6 m.												
		JO,J UV.V . V.O M.												

FALCONBRIDGE LIMITED CH88-54 DIAMOND DRILL LOG From To Sample From Width Total Cu Zn Ag Au To -----DESCRIPTION-----(m) (m) No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) 61.9 63.1 : 0.2 m. 63.1 64.5 : 0.6 m. 66.4 66.8 : 0.2 m. 66.8 68.9 : 0.3 m. 68.5 99.1 MAFIC INTRUSIVE Gabbro (?). Blocky and massive. Is medium green with 3 % 225 55 n/a n/a 140 VA01103 68.5 99.1 30.6 n/a n/a fracture controlled calcite veinlets at all orientations. There is on average 1 to 2 %, 2 mm, feldspars and 5 to 7 %, < 1 mm, chlorite after (?). There is approximately 2 to 3 % leucoxene. Upper contact at fault at 46 degrees to core axis and lower contact at blocky, highly fractured core. There is minor fault gouge at 76.8, 81.2 and 82.6. Lost core :. 68.9 70.4 : 0.2 m. 73.2 74.4 : 0.3 m. 74.4 75.3 : 0.2 m. 75.6 76.8 : 0.3 m. 81.2 82.9 : 0.3 m. 82.9 83.4 : 0.3 m. 83.4 84.4 : 0.6 m. 84.4 85.3 : 0.2 m. 85.3 86.6 : 0.3 m. 94.2 95.1 : 0.2 m. 97.5 99.1 : 0.1 m. 99.1 104.5 QUARTZ PORPHYRITIC FELSIC FLOW Felsic flow or silicified felsic tuff with 5 to 7 %, 3 to VA01104 99.1 104.5 5.4 n/a <10 n/a <10 n/a n/a 1360 4 mm, quartz eyes. There is moderate fracture controlled quartz veinlets. Is blocky, highly fractured core. Weak foliation at 55 degrees to core axis. Lost core :. 101.8 103.5 : 0.1 m. 104.5 107.9 FAULT ZONE

107.9 115.6 NANAINO ARGILLITE

Soft brown argillite with fault gouge to 113.5. Is very fine-grained with 3 to 5 % fracture controlled calcite veinlets. There is foliation at 50 degrees to core axis

75 degrees to core axis.

Lost core :. 104.5 105.2 : 0.3 m. 105.8 107.0 : 0.5 m. 107.0 107.9 : 0.7 m.

Mafic blocky, highly fractured core with minor fault gouge to 106.7 and Nanaimo argillite after. Fault gouge is at

PROPERTY: Chemainus J.V.

VA01105 108.0 115.6 7.6 n/a 977 n/a 1050 n/a n/a 733

HOLE No: Page Number

?

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-54

From To -----DESCRIPTION-----(m) (m)

Width Total Cu Sample From To (ppm) (ppm) (ppm) (ppb) (ppm) Sulphides (ppm) (m) No. (m) (m)

at 115.2, may be bedding. Lost core :. 107.9 109.6 : 0.2 m.

115.6 152.5 NANAIMO CONGLOMERATE

Namaimo conglomerate to locally greywacke to sandstone. Clasts vary locally in size and quantity. To 136.0 there are trace clasts except for minor local 10 cm zones, probably minor stream channels. Clasts to 136 are rounded pebbles, up to 2 cm of white chert and black argillite. Matrix is medium to dark grey and siliceous. From 136.0 to 146.0 there are numerous 0.5 to 1 m clast rich beds with 40 % argillite, 40 % chert and 20 % gabbro and mafic tuff clasts. To 150.3 is all clast rich with similiar % as from 136 to 146 with pebble to cobble sized clasts, rounded up to 5 cm. From 150.3 to 152.5 is a dark green to black chloritic matrix with mafic tuff and minor gabbro large pebbles and cobbles. There is trace to 1 % fracture controlled calcite veinlets in the matrix. Argillite clasts have trace to 2 % fracture controlled pyrite. Bedding :.

122.3: 45 degrees to core axis.

147.5 : 51 degrees to core axis.

Foliation :.

140.6: 48 degrees to core axis.

Fault slippage :.

151.1: 56 degrees to core axis.

152.5: 41 degrees to core axis with 4 cm fault gouge.

Lost core :.

151.5 153.3 : 0.3 m.

152.5 194.9 MAFIC PORPHYRITIC MAFIC LAPILLI TUFF

Dark to medium green mafic tuff with on average 7 %, mafic crystals, ( 1 mm, hornblende (?). Locally there are up to 20 %, average 3 to 5 %, concretionary epidote lapilli, round and 2 to 4 mm. There is local spotty epidotization or selective alteration of clasts. There is moderate fracture controlled carbonatization and strong local pervasive chloritization. There are minor fault slips and quartz - calcite veinlets. Is massive with no observable bedding, debris flow (?). Nil to trace disseminated pyrite occurs. Lapilli are up to 1.5 cm. Alteration :.

163.5 173.0 STRONG SPOTTY EPIDOTIZATION.

183.4 185.2 HODERATE FRACTURE CONTROLLED CARBONATIZATION.

191.5 194.9 WEAK FRACTURE CONTROLLED CARBONATIZATION.

152.5 169.5 STRONG SPOTTY CHLORITIZATION.

Faults:

2050 n/a 391 988 n/a n/a VA01106 152.5 165.0 12.5 n/a 239 331 n/a 129 n/a n/a VA01107 165.0 180.0 15.0 n/a n/a 406 n/a 231 n/a 56 n/a VA01108 180.0 194.9 14.9

## FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-54 5

		DIAMOND DRILL LOG												
From	To		Sample	From	To	Width	Total	Cu	Рb	Zn	λα	λu	Ва	
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm	) (ppm)	(ppm)	(ppl	) (pps	1)
		104 0 105 0 2 4 - 34 4 0 4- 21 1												
		184.2 185.0 3 cm fault gouge at 0 to 21 degrees to core												
		axis. Lost core :.												
		162.0 163.7 : 0.2 m.												
		192.3 194.2 : 0.3 m.												
		Foliations:												
		156.0 : 56 degrees to core axis.												
		168.4: 64 degrees to core axis.												
		173.6: 60 degrees to core axis.												
		180.7 : 47 degrees to core axis.												
		185.4 : 39 degrees to core axis.												
		188.3 : 59 degrees to core axis.												
		Whole rock samples :.												
		161.2 161.4 Epidotized lapilli or epidotization with minor												
		hornblende and epidotized feldspar crystals.												
		168.3 168.4 8 % epidote concretionary lapilli and 5 %	100											
		hornblendes in green chloritic matrix.												
		179.0 179.1 10 to 15 %, chloritized hornblendes in												
		fine-grained medium green matrix.												
		186.9 187.0 Fine-grained dark green with approximately 15												
		%, (( 1 mm, hornblendes and trace disseminated												
		pyrite.												
194.9	225 2	INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS												
134.3	233.3		VA01109	200.0	230.0	20.0	n/a	224	n/a	58	n/a	n/a	1550	
		Fine-grained medium green to brown andesitic tuff with						80	n/a.	85	n/a (1	· (5	750	
		minor 1 to 4 mm green and white chert beds. There are	VA01864		225.0	1.0	1		-				300	
		trace minor fracture controlled calcite veinlets. Upper	VA01865		226.0	1.0	1	87	(5	148	(1	(5	630	
		contact is at quartz - biotite vein. There is on average 2	VA01866		227.0	1.0		3200	5	740	.<1	24		
		to 3 %, up to 1 mm, quartz eyes and locally up to 5 %, 1	VA01867			1.0	1	128	7	240	4	< 5	390	
		mm, epidotized feldspars and or chlorite after hornblende.	VA01868	-	232.0	1.0	. 1	140	5	118	(1	7	500	
		Thermal biotite occurs locally and is strong from 232.2	VA01869			1.0	1	97	<5	140	<1		1900	
		to 235.3. There is local weak fracture controlled	VA01870			1.0	1	95	8	120	<1		1700	
		silicification and chloritization. There is local fracture	VA01871	234.0	235.9	1.9	1	118	<5	100	<1	₹5	1500	
		controlled pyrite in the sediments.												
		Bedding:.												
		194.9 Tightly folded bed with fold axis at 76 degrees to												
		core axis.												
		197.5 : 21 degrees to core axis.												
		212.7 : 24 degrees to core axis.												
		222.0 : 36 degrees to core axis.												
		226.3: 46 degrees to core axis.												
		230.4: 49 degrees to core axis.												
		Lost core :.												
		213.0 214.0 : 0.2 m.												
235.3	244.3	MAFIC PORPHYRITIC MAFIC ASH TUFF					4							
		Variably bleached light to medium green mafic tuff with 5	VA01110			9.0	n/a	122	n/a	46	n/a	n/a	736	
		to 20 %, average approximately 12 %, 1 to 2 mm,	VA01873			.5	1	135	₹5	72	<1		1400	
		chloritized hornblendes. There are minor local fracture	VA01872	243.8	244.3	. 5	1	400	(5	90	1	₹5	1200	

_

PROPERTY.	Chemainus	JV

261.6 266.8 CHERT

Grey chert and cherty tuffite. Locally up to 5 %, 1 mm, quartz eyes. There is very weak local fracture controlled

sericitization and quartz veinlets. Bedding:. 264.5: 49 degrees to core axis. 266.3: 48 degrees to core axis.

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-54 6

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)	
		controlled calcite and fracture controlled biotite veinlets. At 244.3 there is chalcopyrite in a quartz veinlets, 2 to 3 % over 5 to 7 cm. Is massive with weak												
		foliation at 51 to 52 degrees to core axis. At 241.8 there is a 7 to 10 mm quartz veinlet with 30 % sphalerite												
		and 10 % chalcopyrite.												
244.3	250.0													
		Grey to brown cherty felsic tuffite or chert. Hosts nil to 25 %, 1 to 2 mm, quartz eyes locally, average 5 %. There	VA01111	244.3	250.0	5.7	n/a	172	n/a	21	n/a	n/a	717	
		are trace local quartz lapilli, up to 2 cm. There is trace local fracture controlled pyrite.												
		Foliations:. 247.0: 37 degrees to core axis.												
		248.1: 43 degrees to core axis. 249.6: 52 degrees to core axis.												
		Bedding:. 245.8: 63 degrees to core axis.												
		249.5 : 58 degrees to core axis.												
250.0	257.2	INTERMEDIATE TUFFS WITH MINOR CHERTY SEDIMENTS												
		Brown to green andesitic tuff, brecciated with argillite and chert beds. Foliation and bedding vary from 0 to 60	VA01112	250.0	257.0	7.0	n/a	86	n/a	76	n/a	n/a	1730	
		degrees to core axis. There are up to 25 % crystals, feldspar and quartz.												
257.2	258.6	FELDSPAR PORPHYRITIC GABBRO Dark green gabbro with 5 to 10 %, 3 mm, feldspars and 3 %,												
		(1 mm, leucoxene. There is minor fracture controlled calcite veinlets.												
258.6	261.6	MAFIC LAPILLI TUFF Brecciated mafic with minor brown carbonate spots and	VA01113	258.6	261 6	3.0	n/a	215	n/a	46	n/a	n/a	431	
		strong fracture controlled quartz and calcite veins.	VA01874	258.6	260.0	1.4	17 a 1	106 132	(5 (5	80 82	(1 (1	(5	150 570	
		Lapilli are up to 4 cm. Is brown to green tuff with minor, up to 3 %, mafic crystals. There is trace to 1 % fracture controlled pyrite. There is no structure, in situ brecciation probably.	VA01875	260.0	201.6	1.6	1 2 %	134	(3	04	(1		310	
							. 1 -							

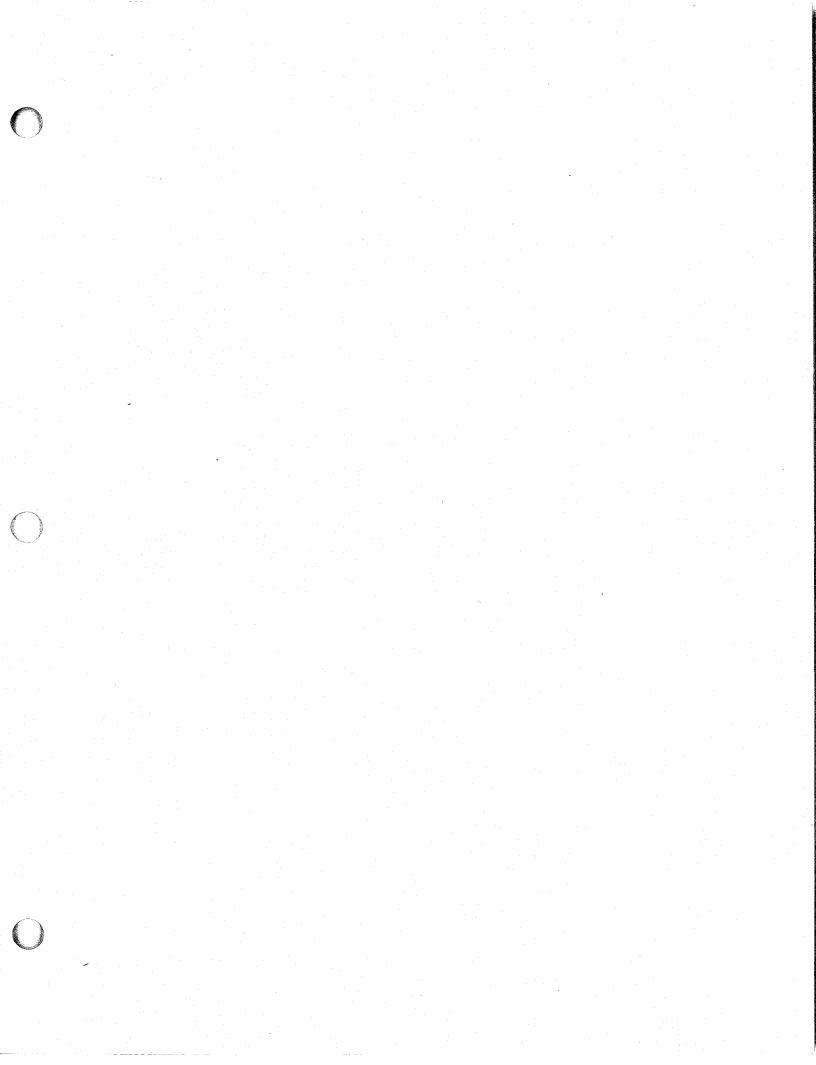
Total lost core: 10.2 m * Recovery = 96.5%.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-54 7

From (m)	. To (m)	bescription	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	(ppm)	Au Ba (ppb) (ppm)
										ν.		
266.8	291.7	MAFIC TO INTERMEDIATE TUFFACEOUS SEDIMENTS										
		Brown to green andesitic to mafic crystal to ash tuffs	VA01114		291.7		n/a	127	n/a		n/a	n/a 1390
		with cherty argillite and green to white cherts. Variable	VA01876	279.0	280.0	1.0	1	132	₹5.	162	<1	8 360
		crystal content in tuff, averages 5 %, feldspars,	VA01877	280.0	281.0	1.0	2	90	5	130	<1	5 740
		hornblende and minor quartz eyes. Is approximately 30 %	VA01878	281.0	282.0	1.0	2	102	32	173	1	5 2100
		sediments, equal chert and argillite. Thermal biotite is	VA01879	282.0	283.0	1.0	1	100	24	123	<1	₹5 2100
		strong locally and dominantly absent. There is up to 2 %	VA01880	288.6	289.1	. 5	0 .	119	13	95	<1	<b>(5 1000</b>
		fracture controlled pyrite in the sediments. Sediment beds	VA01881	290.0	291.7	1.7	1	70	13.	107	<1	₹5 1400
		vary from < 1 cm to approximately 50 cm.										
		Bedding :.										
		275.6: 53 degrees to core axis.										
		278.4: 58 degrees to core axis.										
		290.0 : 54 degrees to core axis.										
		Faults:										
		Locally at 0 to 20 degrees to core axis with up to 20 cm										
		displacements perpendicular to bedding.										
		Lost core :.										
		270.4 271.3 : 0.3 m.										
		Tops:.										
		275.0 277.0 Fining in up to 5 mm green chert beds										
		indicates tops uphole.										
		290.0 290.5 Chert beds with fining and thus tops uphole.										
		End of hole: 957 feet (291.7 m) on Friday May 13, 1988 at 12:00 p.m.										

SAMPLE NUMBER	FROM	TO	25102	XAL203	XCA0	XHG0	ZNA20	1K20	ZFE203	21102	XP205	ZHHO	ILOI	SUM	ВА	AI I
VA00655	23.40	23.50	47.50	17.30	8.20	4.92	2.88	0.96	10.30	0.80	0.14	0.23	6.23	99.46	460.	35.
VA00656	24.60	24.70	64.20	12.40	6.28	1.87	0.18	2.57	5.78	0.24	0.06	0.13	5.00	98.71	1290.	41.
VA00657	26.20	26.30	67.90	13.80	4.37	1.09	0.35	3,94	2.91	0.26	0.06	0.08	4.85	99.61	1100.	52.
VA00658	37.90	38.00	69.00	13.30	2.68	1.97	4.01	1.53	2.99	0.34	0.08	0.10	2.85	98.85	821.	34.
VA00659	48.90	49.00	48.00	17.30	5.60	6.16	4.67	0.20	9.69	0.70	0.12	0.20	5.93	98.57	130.	38.
		61.10	65.30	16.70	3.05	1.90	6.68	0.42	2.73	0.38	0.30	0.06	1.47	98.99	352.	19.
VA00660	61.00		44.80	12.30	11.40	6.21	2.00	0.29	13.10	1.82	0.16	0.19	6.00	98.27	83.	33.
VA00661	79.50	79.60					3.85	4.00	1.60	0.26	0.08	0.03	1.54	99.61	1300.	49.
VA00662	100.90	101.00	71.00	13.90	1.34	1.01			12.10	1.01	0.12	0.22	4.23	98.12	153.	31.
VA00663	161.20	161.40	41.80	20.40	11.30	5.23	1.22	0.49				0.22	6.39	98.01	101.	44.
VA00664	168.30	168.40	44.20	16.70	7.05	8.02	3.39	0.05	10.90	0.86	0.23					
VA00665	179.00	179.10	41.90	14.40	11.30	10.90	0.87	0.10	15.30	0.98	0.27	0.25	3.62	99.89	79.	47.
VA00666	186.90	187.00	48.50	16.90	4.51	7.63	4.61	0.28	11.40	1.00	0.17	0.21	3.08	98.29	283.	46.
VA00667	195.80	195.90	49.30	15.90	7.48	7.64	3.45	1.02	9.99	0.78	0.17	0.19	2.62	98.54	919.	44.
	242.00	242.10	44.90	16.80	8.66	8.23	2.58	0.52	12.50	0.90	0.18	0.24	3.08	98.59	938.	44.
WA00668					11.80	5.66	1.94	0.66	10.90	1.56	0.15	0.16	8.77	100.00	639.	32.
VA00669	257.60	257.70	46.00					0.56		0.73	0.24	0.08	3.54	99.64	960.	51
VA00670	266.30	266.40	55.20	18.00	1.52	6.90	5.74	0.36	/.13	3.73						


DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	- ZR	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)		 		ROCK	CODES ALT	MIN
													 		:		
VA00655	23.40	23.50	23.0	439.0	460.0	<10.0	21.0	13.0	126.0	93.0	37.0			rt,	MAT	PCM	A .
VA00656	24.60	24.70	47.0	180.0	1290.0	39.0	86.0	<10.0	28.0	13.0	<10.0			Ī	IAD .	?	A
VA00657	26.20	26.30	61.0	45.0	1100.0	<10.0	98.0	<10.0	16.0	14.0	<10.0			I	EAU	?.	4
VA00658	37,90	38.00	34.0	183.0	821.0	38.0	100.0	19.0	<10.0	<10.0	<10.0			7	FAD	PHW	A
VA00659	48.90	49.00	<10.0	179.0	130.0	<10.0	12.0	28.0	16.0	48.0	15.0			τ	IAD	PCM	DBP
VA00660	61.00	61.10	19.0	264.0	352.0	38.0	111.0	<10.0	<10.0	<10.0	<10.0			,	FAF	?	Α.
VA00661	79.50	79.60	15.0	124.0	83.0	22.0	27.0	20.0	245.0	71.0	90.0			P	MA ·	FCW	A
VA00662	100.90	101.00	58.0	108.0	1300.0	<10.0	86.0	11.0	<10.0	12.0	<10.0				EAR	?	A
VA00663	161.20	161.40	29.0	482.0	153.0	71.0	22.0	11.0	1060.0	1390.0	58.0			T	'hA	?	A .
VA00664	168.30	168.40	22.0	225.0	101.0	17.0	15.0	13.0	414.0	984.0	122.0			. 1	MA	?	Α
VA00665	179.00		<10.0	254.0	79.0	<10.0	27.0	<10.0	546.0	351.0	128.0				:MA	· ?	Α
VA00666	186.90	187.00	15.0	158.0	283.0	11.0	17.0	16.0	296.0	65.0	53.0				MA	?	DBF
VA00667	195.80		<10.0	318.0	919.0	<10.0	<10.0	15.0	192.0	101.0	37.0			1	[MA	?	A
VA00668	242.00		<10.0	327.0	938.0	<10.0	<10.0	<10.0	<10.0	69.0	46.0			1	THA .	?	A
VA00669	257.60		<10.0	197.0	639.0	23.0	49.0	23.0	248.0	51.0	88.0			I	PMA.	FCW	A
VA00670	266.30		<10.0	259.0	960.0	30.0	65.0	16.0	36 <b>.0</b>	50.0	24.0				TEAQ	?	A _.

SAMPLE NUMBER	FROM	TO	XS 102	ZAL203	ZCAO	ZHGO	2NA20	XK20	XFE203	XT 102	XP205	2HN0	XLOI	SUM		BA	AI	NACA
									, ₁ ,					<u></u>				····
VA01098	20.20	23.90	48.40	16.90	7.22	4.71	3.06	1.42	9.68	0.73			6.23	98.35	•	506.	37.	10.
VA01099	24.70	42.50	68.10	13.30	3.43	1.41	2.44	2.61	3.01	0.28			3.70	98.28		1100.	41.	6.
VA01100	42.50	47.20	49.20	16.80	6.34	5.03	1.75	2.59	9.05	0.67			7.54	98.97		828.	49.	8.
VA01101	47.20	55.50	47.40	15.70	7.70	5.96	3.31	0.50	9.91	0.66			7.47	98.61		256.	37.	11.
VA01102	56.60	68.50	69.60	13.60	3.20	1.46	4.25	1.32	2.95	0.29			2.54	99.21		655.	27.	7.
VA01103	68.50	99.10	46.80	12.90	10.50	6.73	2.07	0.36	13.50	1.85			3.62	98.33		140.	36.	13.
VA01104	99.10	104.50	71.10	13.40	2.12	1.11	3.40	3.87	1.67	0.22			2.39	99.28		1360.	47.	6.
VA01105	108.00	115.60	52.00	16.40	5.59	3.17	1.61	2.32	8.01	0.83			8.00	97.93		733.	43.	7.
VA01106	152.50	165.00	42.40	22.10	8.66	4.49	1.57	1.46	11.90	0.95			4.77	98.30		391.	37.	10.
VA01107	165.00	180.00	45.40	17.50	6.72	7.28	3.22	0.52	11.60	0.93			4.62	97.79		239.	44.	10.
VA01108	180.00	194.90	45.60	12.80	11.50	7.88	2.68	0.47	10.30	0.68			8.00	99.91		406.	37.	14.
VA01109	200.00	230.00	49.90	16.30	5.93	6.94	3.66	2.21	9.51	0.80			2.62	97.87		1550.	49.	10.
VA01110	235.30	244.30	44.10	15.60	13.30	6.90	1.90	0.51	11.10	0.77			3.54	97.72		736.	33.	15.
VA01111	244.30	250.00	58.40	15.80	2.24	6.66	4.90	0.69	7.06	0.63			2.93	99.31		717.	51.	7.
VA01112	250.00	257.00	47.00	13.70	13.90	6.22	1.48	2.25	7.97	0.55			5.54	98.61		1730.	36.	15.
VA01113	258.60	261.60	46.20	15.60	6.36	6.88	3.07	1.00	10.60	0.83			8.16	98.70		431.	46.	9.
VA01114	267.00		48.60	16.10	6.19	7.00	3.13	2.53	9.85	0.82			3.54	97.76		1390.	51.	9.

SAMPLE NUMBER	FROM	то	RB (ppm)	SR BA (ppm) (ppm)	(ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)	 	 <del></del>	ROCK	CODES	MIN
VA01098	20.20	23.90		506.0				109.0	88.0	28.0			MMAT	ECM	A
VA01099	24.70	42.50		1100.0				<10.0	<10.0	<10.0			TFAD	PHW	A
VA01100	42.50	47.20		828.0				48.0	76.0	19.0			MMAT	FCW	DBP
VA01101	47.20	55.50		256.0				89.0	40.0	35.0			TIAD	PCM	DBP
VA01102	56.60	68.50		655.0				- 11.0	<10.0	<10.0			VEAD	7	DBP
VA01103	68.50	99.10		140.0				225.0	55.0	104.0			PHA	FCW	A
VA01104	99.10	104.50		1360.0				<10.0	<10.0	<10.0			VEAQ	?	A
VA01105	108.00	115.60		733.0				977.0	1050.0	57.0			SAT	FCW	A
VA01106	152.50	165.00		391.0				988.0	2050.0	100.0			IMA	?	
VA01107	165.00	180.00		239.0				331.0	129.0	73.0				?	DBP
80110AV	180.00	194.90		496.0				231.0	56.0	43.0			THA		DPP
VA01109	200.00	230.00		1550.0				224.0	58.0	43.0			TMA	?	DBP
VA01110	235.30	244.30		736.0				122.0	46.0	46.0			TIA	3	DBP
VA01111	244.30	250.00		717.0									TMA	?	A
VA01112	250.00			1730.0				172.0	21.0	92.0			TFAC	?	FBP
/A01113	258.60							86.0	76.0	70.0			TIA	?	Α
JA01114	267.00			431.0				215.0	46.0	50.0			IMA	£¥	FBP
PILIVE	407.00	671./9		1390.0				127.0	50.0	59.0			TMA	?	A

SAMPLE	FROM	TO	BA (pp#)	CU (ppm)	2N (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	ЖО (ppm)	HN (ppm)	CUZN	ETS	FE
					* .												
VA01861	42.50	44.00	900.0	88.0	143.0	<0.5	<5.0	18.0	16.0	,<5.0	13.0	<1.0	3.0	1420.0	38.	1.	5.
VA01862	44.00	45.50	670.0	93.0	118.0	<0.5	5.0	22.0	18.0	8.0	5.0	(1.0	3.0	1460.0	44,	1.	6.
VA01863	45.50	47.20	1100.0	45.0	52.0	<0.5	<5.0	13.0	10.0	<5.0	<5.0	<1.0	3.0	690.0	46.	1.	3.
VA01864	224.00	225.00	750.0	80.0	85.0	<0.5	<5.0	19.0	34.0	₹5.0	<5.0 €	<1.0	2.0	653.0	48.	1.	4.
VA01865	225.00	226.00	300.0	87.0	148.0	<0.5	<5.0	17.0	28.0	<5.0	5.0	<1.0	2.0	550.0	37.	1.	5.
VA01866	226.00	227.00	630.0	3200.0	740.0	<0.5	24.0	23.0	30.0	5.0	<5.0	8.0	2.0	769.0	81.	1.	6.
VA01867	227.00	228.00	390.0	128.0	240.0	4.3	₹5.0	21.0	26.0	7.0	9.0	1.0	2.0	1140.0	35.	11	6.
VA01868	231.00	232.00	500.0	140.0	118.0	<0.5	7.0	25.0	22.0	5.0	8.0	<1.0	2.0	926.0	54.	1.	6.
VA01869	232.00	233.00	1900.0	97.0	140.0	<0.5	<5.0	22.0	32.0	<5.0	5.0	<1.0	2.0	974.0	41.	1.	6.
VA01870		234.00	1700.0	95.0	120.0	<0.5	<5.0	25.0	40.0	8.0	5.0	<1.0	2.0	850.0	44.	1.	7.
VA01871	234.00	235.90	1500.0	118.0	100.0	<0.5	<5.0	26.0	30.0	<5.0	<5.0	<1.0	2.0	870.0	54.	1.	6.
			1400.0	135.0	72.0	<0.5	<5.0	25.0	26.0	<5.0	<b>&lt;5.0</b>	<1.0	1.0	849.0	65.	1.	5.
VA01873	241.50	242.00			90.0	0.8	<5.0	28.0	28.0	<5.0	6.0	<1.0	1.0	917.0	82.	1.	6.
VA01872	243.80		1200.0	400.0			₹5.0	28.0	44.0	(5.0	12.0	<1.0	2.0	1170.0	57.	1.	7.
VA01874	258.60	260.00	150.0	106.0	80.0	<0.5						<1.0	2,0	1290.0	62.	1.	7.
VA01875	260.00	261.60	570.0	132.0	83.0	<0.5	<5.0	30.0	32.0	₹5.0	6.0			967.0	45.	1.	6.
VA01876	279.00	280.00	360.0	132.0	162.0	⟨0.5	8.0	22.0	20.0	₹5.0	<5.0	(1.0	2.0			2.	6.
VA01877	280.00	281.00	740.0	90.0	130.0	<0.5	5.0	21.0	32.0	5.0	5.0	<1.0	2.0	818.0	41.		
VA01878	281.00	282.00	2100.0	102.0	173.0	0.5	5.0	37.0	34.0	32.0	6.0	€1.0	8.0	1200.0	37.	2.	7.
VA01879	282.00	283.00	2100.0	100.0	123.0	<0.5	<5.0	32.0	30.0	24.0	5.0	₹1.0	<1.0	950.0	45.	1.	6.
VA01880	288.60	289.10	1000.0	119.0	95.0	<0.5	₹5.0	37.0	23.0	13.0	12.0	<1.0	<1.0	840.0	56.	0.	5.
VA01881	290.00	291.70	1400.0	70.0	107.0	<0.5	<5.0	22.0	40.0	13.0	<5.0	<1.0	<1.0	400.0	40.	1.	4.



Summary Log: DDH CH88-55

Location: 30+00 E, 3+60 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: May 13, 1988 Core logged by: J. Pattison

0.0 - 3.7 Casing

3.7 - 59.7 Feldspar porphyritic gabbro

59.7 - 71.9 Granophyric coarse-grained gabbro

10 to 15 % ilmenite in clumps up to 5 mm in diameter. A 2.5 m interval contains 3-4 % disseminated chalcopyrite.

71.9 - 79.1 Feldspar porphyritic gabbro

79.1 - 82.2 Granophyric ilmenite-rich gabbro

82.2 - 215.5 Feldspar porphyritic gabbro

FALCONBRIDGE LIMITED

DIAMOND DRILL LOG

Hole Location: 30+00 E 3+60 S

NTS: 92B13 UTM: 5416632.4 N 430152.7 E

Azimuth: 210 Elevation: 538 m Dip: -45 Length: 215.5 m

Started: 10-May-88 Completed: 13-May-88

Purpose: To test 44 msec IP anomaly at 4+40 S

Claim No. Chip 1 Section No.: 30+00 E

Logged By: J. Pattison

Drilling Co.: Burwash Enterprises Assayed By: Bondar-Clegg & XRAL

CH88-55

HOLE No: Page Number

Core Size: NO

DIP TESTS

Azi-Azi-Length muth Dip Length muth Dip 12.20 212.0 -45.0 215.50 217.0 -45.0 111.90 213.0 -45.0

From	To		Sample	From	To	Width	Total	Cu	Pb Zi	Ag	Au	Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides	(ppm)	(ppm) (p	m) (ppm)	(ppb)	(ppm)

- 3.7 CASING 0.3 M of overburden then into GABBRO.
- 3.7 59.7 FELDSPAR PORPHYRITIC GABBRO Massive dark green, fine to medium-grained gabbro with 10 % feldspar phenocrysts and 2 % interstitial ilmenite. Ilmenite is partially altered to leucoxene. Occasional quartz +/- carbonate fracture.

42.9-43.2 M fault zone at 55 degrees to core axis.

- 59.7 71.9 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO Massive, coarse to medium-grained granophyric gabbro, all VA03846 65.2 66.2 1.0 400 <5 120 <1 12 280 mafic minerals have gone to chlorite. 10-15% interstitial VA03847 66.2 66.8 2000 130 50 (20 . 6 (5 1 ilmenite as anhedral patches up to 0.5 cm in diameter VA03848 66.8 68.1 1.3 840 ₹5 116 <1 210 partially altered to leucoxene and 0.5 to 1 % VA03849 68.1 69.0 . 9 5800 ₹5 170 236 290 disseminated chalcopyrite and pyrite often associated with VA03850 69.0 70.0 1.0 6300 ₹5 170 3 112 400 the ilmenite. Weak fracture controlled and pervasive VA03851 2900 70.0 70.6 . 6 (5 132 1 41 310 carbonatization. Lower contact is sharp at 55 degrees to 2600 45 VA03852 70.6 71.1 .5 ₹5 118 1 60 core axis. VA03853 71.1 71.9 725 108 <1 13 30
  - 66.2 66.8 Intrusive breccia zone: angular breccia fragments up to 5.0 cm in diameter sit in a white, carbonate-rich matrix. 1 % disseminated chalcopyrite.
  - 66.8 68.1 0.5 % disseminated chalcopyrite.

#### FALCONBRIDGE LIMITED

HOLE No: Page Number CH88-55 2

		DIAHOND DRILL LOG							_				
From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		68.1 70.6 3-4 % disseminated chalcopyrite associated with carbonate-filled fractures. There are several barren quartz +/- carbonate veins up to 10 cm wide at 40-50 degrees to core axis.											
		70.6 71.9 Becomes finer grained, moderately carbonatized and chloritized and there is weak epidote alteration centred on feldspar phenocrysts. 1 % disseminated chalcopyrite.											
71.9	79.1	FELDSPAR PORPHYRITIC GABBRO Fine-grained massive gabbro with 10 %, 2-5 mm feldspars and 3 % interstitial ilmenite partially altered to leucoxene. Locally weakly glomeroporphyritic. Lower contact is gradational.	VA03854	71.9	72.9	1.0	1	155	₹5	61	<1	40	60
		STRUCTURE:. 74.0-74.6 M blocky, highly fractured core. 0.2 of lost core At 77.2 1.0 cm fault gouge at 25 degrees to core axis.											

- 79.1 82.2 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO Hedium to coarse-grained gabbro with 10 % coarse interstitial ilmenite and 0.25 % chalcopyrite. Weak patchy epidote alteration. 0.2 m quartz vein at 60 degrees to core axis at the lower contact.
- 82.2 131.0 FELDSPAR PORPHYRITIC GABBRO
  As 71.9 to 79.1 m. 5 % disseminated ilmenite. Ilmenite
  occurs in patches < 4 mm in diameter. Quartz-carbonate
  filled fractures are common and often contain biotite
  along their margins.
  Ilmenite rich coarse-grained interval (>10% ilmenite)
  between 87.8 and 88.1 m.

#### STRUCTURE:.

0.5 Cm fault gouge at 65 degrees to core axis.

- 101.0 101.7 Xenolith (?) of mafic feldspar crystal tuff.
  Composed of 20% 2-4 mm feldspar crystals in a
  fine-grained dark grey-brown mafic matrix. No
  ilmenite. Upper and lower contacts are sharp
  at 65-70 degrees to core axis.
- 108.6 109.5 Quartz vein with trace disseminated chalcopyrite at 50-60 degrees to core axis.
- 119.6 120.3 Fine-grained non feldspar porphyritic phase of the gabbro runs along the edge of the core.

From To (m) (m) FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number

CH88-55

)DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
129.6 130.1 Many quartz +/- carbonate filled fractures and gashes up to 5.0 cm wide. Nil sulphides.											
3 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO											
As 79 1 to 82 2 m. 10 % ilmenite and 1 % chalconviite	V101855	131.2	132 3	1 1	1	841	75	90	<b>1</b>	7	60

132.3 162.7 FELDSPAR PORPHYRITIC GABBRO

As 71.9 to 79.1 m. 0.2 m weakly sheared quartz-carbonate flooded zone at 55 degrees to core axis at the lower contact.

As 79.1 to 82.2 m. 10 % ilmenite and 1 % chalcopyrite.

STRUCTURE:.

At 156.6 m slip at 60 degrees to core axis.

131.0 132.3 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO

Upper and lower contacts are gradational.

- 137.8 138.3 COARSE-GRAINED GRANOPHYRIC ILMENITE RICH GABBRO with 10 % ilmenite and 0.5 % chalcopyrite.
- 148.4 150.6 0.4 m of lost core. The core is somewhat blocky but no obvious reason for the core loss
- 152.6 888.8 1.0 cm wide quartz-carbonate vein at 36 degrees to core axis with 5 % sphalerite (?) or possibly biotite.
- 152.6 153.5 Blocky, highly fractured core.
- 156.2 156.3 Quartz vein at 80 degrees to core axis with chlorite filled fractures.
- 162.7 165.4 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO As 79.1 to 82.2 m. 10 % ilmenite and 0.5 to 1 % disseminated chalcopyrite. Lower contact is gradational.
- 165.4 215.5 FELDSPAR PORPHYRITIC GABBRO

Fine to medium-grained feldspar porphyritic gabbro. Locally weakly glomeroporphyritic. 3-5% Interstitial fine medium-grained ilmenite. Quartz-carbonate healed fractures and gashes are common. Becomes medium to coarse-grained below 213.6 m.

STRUCTURE: .

At 210.0 1.0 cm brittle fault zone at 65 degrees to core axis. Core is blocky for 0.5 m on downhole side of fault. 0.1 m of lost core.

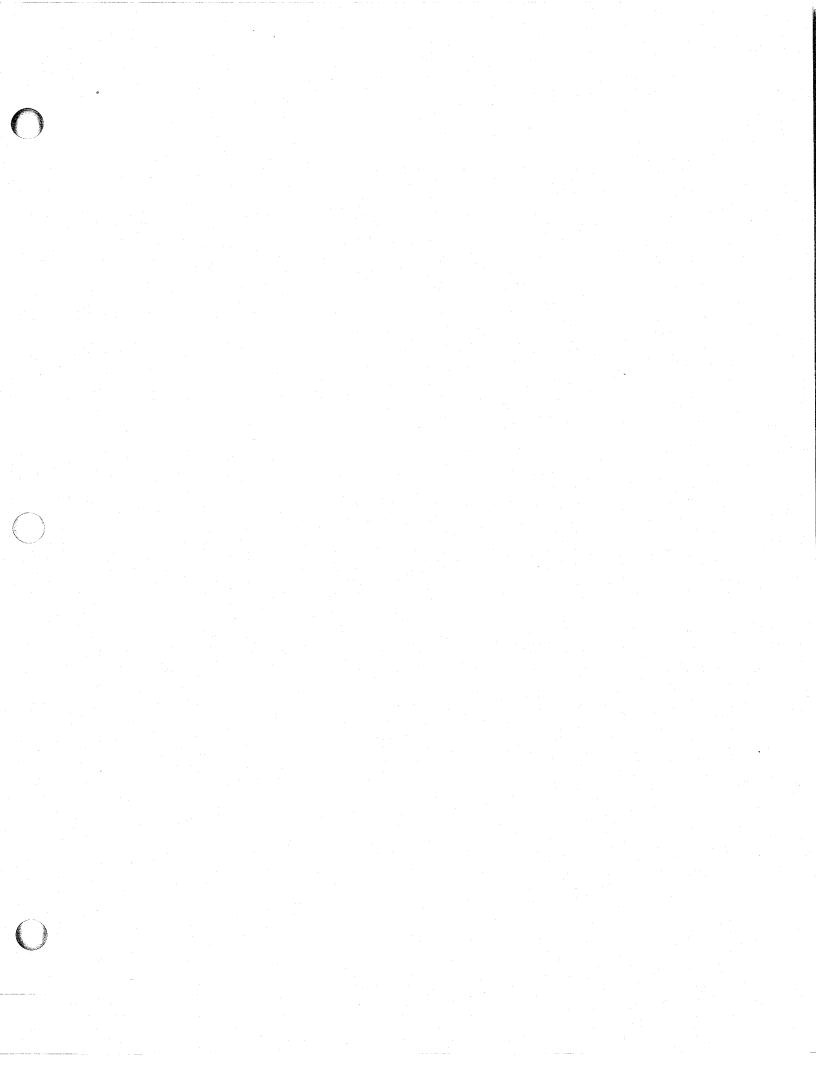
FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-55 4

From To (m) (m) -----DESCRIPTION-----

Sample From To Width Total Cu

Pb Zn No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm)


Ag Au Ba

202.9 203.3 Blocky, highly fractured core. 0.2 m of lost core.

SAMPLE NUMBER	FROM	TO	25102	ZAL203	ZCAO	ZNGO	ZHA20	1K20	XFE203	XT 102	ZP205	XHHO	XLO I	KUS	BA .	AI	NACA
UA02385	50.20	50.40	48.60	14.90	11.10	6.62	2.07	0.39	12.30	1.60	0.15	0.19	1.54	99.46	187.	35.	13.
VA02386	65.60	65.80	48.20	11.30	7.58	3.68	2.24	0.35	19.50	3.98	0.38	0.30	2.23	99.74	438.	29.	10.

SAMPLE																
NUMBER	FROM	то	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm).	NB (ppm)	(j) (mgm)	ZN (ppm)	NI (mad)		 	ROCK	CODES	MIN
VA02385	50.20	50.40	26.0	217.0	187.0	11.0	62.0	35.0	315.0	60.0	96.0			PMAEM		
VA02386	65.60	65.80	22.0	129.0	438.0	36.0	254.0	40.0	743.0	131.0	21.0			PMCM	r ech	A

SAMPLE NUMBER	FROM	TO	8A (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB .(ppm)	AS (ppm)	CD (ppm)	нО (ром)	ни (рры)	CUZN	ETS	FE
VA03846	65.20	66.20	280.0	400.0	120.0	<0.5	12.0	23.0	15.0	₹5.0	₹5.0	<1.0	3.0	453.0	77.	1.	7.
VA03847	66.20	66.80	<20.0	2000.0	130.0	1.0	50.0	28.0	19.0	<5.0	11.0	1.0	4.0	511.0	94.	1.	7.
VA03848	66.80	68.10	210.0	840.0	116.0	<0.5	6.0	22.0	12.0	<5.0	8.0	<1.0	3.0	437.0	88.	1.	7.
VA03849	68.10	69.00		5800.0	170.0	3.2	236.0	33.0	20.0	<5.0	⟨5.0	3.0	4.0	567.0	97.	4.	8.
VA03850	69.00	70.00		6300.0	170.0	3.4	112.0	36.0	24.0	<5.0	⟨5.0	3.0	4.0	543.0	97.	4.	7.
VA03851	70.00	70.60		2900.0	132.0	1.4	41.0	34.0	36.0	<5.0	<5.0	2.0	3.0	690.0	96.	4.	7.
		71.10	60.0		118.0	1.4	45.0	29.0	20.0	⟨5.0	<5.0	2.0	4.0	424.0	96.	1.	7.
VA03852	70.60	71.90	30.0	725.0	103.0	<0.5	13.0	30.0	32.0	(5.0	5.0	<1.0	3.0	509.0	87.	1.	7.
VA03853		72.90	60.0	155.0	61.0	<0.5	40.0	20.0	40.0	<5.0	5.0	<1.0	3.0	453.0	72.	1.	4.
VA03854	71.90	132.30	60.0	843.0	90.0	<0.5	7.0	18.0	23.0			<1.0	7.0	420.0	90.	1.	5.



Summary Log: DDH CH88-56

Location: 31+00 E, 0+01 N; Chip 1 Claim

Azimuth: 210, Dip: -55

Hole Completed: May 20, 1988 Core Logged By: D.P. Money

0.0 - 15.8 Casing.

15.8 - 104.5 Chloritic felsic crystal tuffs with minor chlorite schists, up to 1 m.

104.5 - 121.0 Mafic ash tuff.

121.0 - 139.3 Feldspar phyric felsic flow.

139.3 - 147.6 Gabbro.

147.6 - 148.5 Major thrust fault.

148.5 - 182.8 Nanaimo Group argillite, greywacke and conglomerate.

182.8 - 186.6 Andesitic flow with 2 % disseminated pyrite.

186.6 - 210.6 Gabbro.

210.6 - 234.4 Felsic crystal tuffs with tr to 7 % pyrite locally concentrate on fractures.

234.4 - 255.6 Gabbro.

255.6 - 314.7 Felsic crystal and lapilli tuffs with on average 1 % disseminated pyrite.

314.7 - 329.1 Gabbro.

329.1 - 432.7 Felsic crystal and lapilli tuffs with weak disseminated pyrite throughout and 20 % pyrite from 357.2 to 360.5. From 425.9 to 432.7 there is 1 to 30 % sphalerite, trace to 10 % galena, trace to 5 % chalcopyrite and on average 10 % pyrite. The sulphides are banded with up to 30 cm locally of semi-massive to massive spalerite and galena, and pyrite and chalcopyrite.

432.7 - 443.9 Mafic tuffs.

443.9 - 454.3 Hornblende phyric mafic tuff or flow.

454.3 - 485.3 Mafic crystal to ash tuffs with minor interbedded green ribbon cherts.

485.3 - 486.8 Cherty greywacke.

486.8 End of hole.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56

Hole Location: 31+00 E 0+01 N

UTM: 5416879.1 N 430407.7 E NTS: 092B/13W

Azimuth: 210 Elevation: 539 m Dip: -55 Length: 486.8 m

Started: May 13, 1988 Completed: May 20, 1988 Claim No. Chip 1 Section No.: Section 31+00 East, Chip Claim Group

<10

n/a

39 n/a

n/a

Logged By: D.P. Money

Drilling Co.: Burwash Enterprises

Assayed By: Bondar-Clegg and X-Ray Assay

Core Size: NO

Purpose: To test 'active tuff' downdip from Chem87-24

	Azi-					
Length	muth	Dip	Length	muth	Dir	
26.50	212.0	-52.0	279.50	214.0	-46.0	
99.70	209.0	-48.0	367.90	220.0	-49.0	
184 40	211 0	-48 0				

From	To		Sample	From	To	Width	Total Cu	Pb	Zn	Ag	Au	Ba
(m)	(m)	DESCRIPTION	No.	(m)	(m)	(m)	Sulphides (ppm)	(ppm	(ppm)	(ppm)	(ppb)	(ppm)

VA01115 15.8 23.0 7.2

.0 15.8 OVERBURDEN

15.8 23.0 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL LAPILLI TUFF Medium green and white spotty lapilli tuff with 10 % k feldspar lapilli or alteration. Is glassy with spotty pervasive silicification. There are 10 to 12 %, 1 to 2 mm, feldspar and quartz grains. There is on average 10 to 12 % chlorite in the matrix. Is blocky, highly fractured core with maximum length of core of 20 cm.

Foliations :.

16.2 : 61 degrees to core axis.

19.0: 41 degrees to core axis.

20.7: 44 degrees to core axis.

Lost core :.

15.8 17.1 : 0.2 m.

17.1 18.2 : 0.2 m.

20.7 23.2 : 1.4 m.

Alteration :.

15.8 23.0 MODERATE SPOTTY SILICIFICATION.

15.8 23.0 WEAK PERVASIVE CHLORITIZATION.

23.0 23.5 CHLORITE SCHIST

Dark green chlorite schist with calcite veinlets and veins parallel to foliation. Foliation is at 45 degrees to core axis.

23.5 62.3 CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF Variably chloritic felsic tuff with 3 to 15 % chlorite.

VA01116 24.0 39.0 15.0 <10

FALCONBRIDGE LIMITED DIAMOND DRILL LOG Sample From Width Total Cu Zn λσ Αu From To To -----DESCRIPTION-----(ppm) (ppm) (ppm) (ppb) (ppm) No. (m) (m) (m) Sulphides (ppm) (m) (m) Hosts on average 5 %, 1 to 3 mm quartz eyes and 10 %, 1 VA01117 44.0 59.0 15.0 n/a <10 n/a 23 n/a n/a 1060 mm, feldspar grains. There is minor biotite and pyrite exposed on core fractures. Core is very disky and is blocky, highly fractured core. There are trace minor local quartz veins and fracture controlled calcite veinlets. 23.5 62.3 MODERATE PERVASIVE CHLORITIZATION. Faults :. 36.7 : minor chlorite fault gouge. 38.1 : minor brown fault gouge, < 2 mm, at approximately 55 degrees to core axis. 55.0 55.5 Fault gouge at 65 degrees to core axis. 61.0 61.9 Blocky, highly fractured core with minor fault gouge at 75 degrees to core axis. Lost core :. 26.8 29.4 : 0.9 m. 29.9 34.1 : 0.4 m. 46.5 47.4 : 0.3 m. 47.4 48.8 : 0.4 m. 49.2 50.7 : 0.2 m. 52.7 55.5 : 0.3 m. 55.5 56.4 : 0.2 m. 56.4 57.9 : 0.6 m. 59.4 61.9 : 1.3 m. Foliations :. 25.4 : 51 degrees to core axis. 32.7: 46 degrees to core axis. 40.4: 56 degrees to core axis.

62.3 62.9 CHLORITE SCHIST Dark green chlorite schist with moderate carbonatization as 5 % calcite and trace to 0.5 %, 1 to 2 mm, pyrite cubes. Foliation is at 68 degrees to core axis. 62.3 62.9 MODERATE FRACTURE CONTROLLED CARBONATIZATION.

46.1: 69 degrees to core axis. 55.9: 66 degrees to core axis. 58.7 : 61 degrees to core axis.

PROPERTY: Chemainus J.V.

62.9 95.4 WEAKLY CHLORITIC FELSIC TUFF Very locally very chloritic to on average very weakly chloritic felsic tuff with minor local mafic tuff beds. 62.9 95.4 WEAK SPOTTY CHLORITIZATION.

62.9 64.3 Sheared and gungy chloritic felsic with approximately 5 % chlorite, 7 %, 1 to 2.5 mm, quartz eves and 15 % feldspars. There are numerous fracture controlled quartz veinlets.

64.3 67.7 Moderately siliceous felsic with weak pervasive chloritization as green tinged grey tuff with 5 %, 1 to 5 mm, quartz eyes. There is 0.5 % fine-grained disseminated pyrite.

HOLE No: Page Number CH88-56

66 12 149 610 VA01882 62.3 62.9 1 n/a 1260 VA01118 65.0 80.0 15.0 n/a ₹10 n/a 43 n/a VA01119 80.0 95.0 15.0 n/a 25 n/a 93 n/a n/a 886

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56

From To (m) (m) -----DESCRIPTION-----67.7 67.9 Blocky, highly fractured core. Chlorite schist with white quartz veins. 67.9 71.3 MODERATE PERVASIVE SILICIFICATION in chloritic felsic with 15 %, 2 to 4 mm, quartz eyes and 7 %, 1 mm, epidote grains. Is blocky, highly fractured core and schistose from 69.3 to 69.7 with minor fault gouge. There is 0.25 to 0.5 % fine-grained disseminated pyrite. 71.3 73.1 Chlorite to sericite - chlorite schist with minor local fault gouge and weak to moderate fracture controlled carbonatization. There is approximately 0.5 % very fine-grained disseminated pyrite. 73.1 74.3 Sericitic to weakly chloritic felsic schist with 5 to 7 %, 1 to 2 mm, and 3 %, 4 to 5 mm, quartz eyes and 7 to 15 %, 1 to 2 mm, epidotized feldspars. There is trace fine-grained disseminated pyrite. 74.3 83.6 MODERATE PERVASIVE SILICIFICATION, with weak to moderate chloritization. Siliceous and massive with moderate schistosity and cleavage. Crystal content is variable from trace to 15 %, up to 3 mm, quartz eyes and feldspar grains. There is 1 to 1.5 % disseminated pyrite, some is associated with the weak fracture controlled quartz calcite veinlets. There is minor bedding, 1 cm compositional banding of chlorite and sericite at 77.7. At 76.4 there is 2 cm of fault gouge at 74 degrees to core axis. 83.6 95.4 More schistose and sericitic with minor kinks from 87.0. There are locally minor mafic tuff beds and quartz veins, up to 10 cm. There is on average < 0.5 % pyrite, locally over 10 cm is up to 2 %. There is local blocky, highly fractured core up to 20 cm and minor fault slips parallel to foliation and at 94.3 at 56 degrees to core axis and 117 degrees to bedding with a 15 mm displacement. Crystals average 5 % with up to 7 mm quartz eyes and up to 2 mm feldspars. Lost core :. 62.9 64.2 : 0.3 m. 64.2 66.4 : 0.3 m. 66.4 68.1 : 0.2 m. 70.1 72.2 : 0.2 m. 74.7 76.2 : 0.3 m. 77.6 78.5 : 0.2 m. 78.5 79.4 : 0.3 m. 79.4 81.2 : 0.3 m. 81.2 83.2 : 0.4 m. 84.4 86.3 : 0.5 m. 87.0 89.0 : 1.0 m.

Sample From To Width Total Cu Рb 7. n. Aσ Au No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56 4

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pph	Ba (ppm)
		89.0 90.2 : 0.6 m.											
		Foliations:.		100									
		65.4: 74 degrees to core axis.											
		68.1: 45 degrees to core axis.											
		72.7: 69 degrees to core axis.											
		74.0 : 56 degrees to core axis.											
		80.6 : 51 degrees to core axis. 83.6 : 62 degrees to core axis.											
		84.6 : 53 degrees to core axis.											
		91.5 : 66 degrees to core axis.											
		71.7. by degrees to core dais.											
95.4	101.0	INTERMEDIATE QUARTZ FELDSPAR CRYSTAL TUFF											
		Andesitic crystal tuff to chlorite - sericite schist with	VA01120	95.4	101.0	5.6	n/a	154	n/a	379	n/a	n/a	509
		moderate pervasive carbonatization. From 98.0 to 99.2 is											
		not sheared and hosts 5 to 10 %, 1 to 2 mm, quartz eyes.									• '		
		Is locally contorted with minor 'S' drag folds. There are											
		minor boudinaged fracture controlled white quartz veins.											
		Alteration :.											
		95.4 101.0 MODERATE PERVASIVE CARBONATIZATION.											
		Foliations:.											
		96.0 : 68 degrees to core axis.											
		99.9 : 56 degrees to core axis.											
		Faults:.											
		99.2 99.7 Fault gouge at 61 degrees to core axis.											
		Lost core :.											
		96.3 97.8 : 0.4 m.											
		97.8 99.7 : 0.3 m.											
101.0	101.1	FAULT ZONE			101 5	2 -		27	- 1-		- /-	- 1-	1170
		Brecciated felsic tuff with interstitial grey fault gouge	VA01121			3.5 1.7	: n/a 2	27 45	n/a 10	<10 69	n/a <1	n/a	1100
		at approximately 70 degrees to core axis.	VA01883	101.0	102.7	1.7	2	45	10	0.5	\ <u>1</u>	13	1100
101 1	104 5	CHLORITIC FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF											
101.1	104.5	Contorted sericite schist with on average 15 %, 1 to 2 mm,	VA01884	102 7	104.1	1.4	1	24	₹5	72	<1	₹5	980
		feldspar and quartz crystals. There is minor quartz veins					-						
		and 1 to 2 % disseminated and banded pyrite. Is blocky,											
		highly fractured core with minor fault gouge from 102.7 to											
		104.5.											
		101.1 104.5 WEAK PERVASIVE CHLORITIZATION.											
104.5	117.4	FELDSPAR PORPHYRITIC MAFIC ASH TUFF											
		Hedium green mafic tuff with 30 to 40 %, 1 to 2 mm,	VA01122	104.5	117.4	12.9	n/a	119	n/a	48	n/a	n/a	435
		epidote grains and crystal laths after feldspar. From											
		112.5 to 114.4 and 114.9 to 115.0 there are tan coloured											
		siliceous dykes with minor fracture controlled											
		silicification and pyrite. There is minor local fault											
		gouge and is very contorted from 116.1 to 117.4. Is											

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample From

(m)

No.

To

(m)

Width

(m)

HOLE No: Page Number CH88-56 5

Рb

Zn

Aσ

(ppm) (ppm) (ppm) (ppm)

From To (m) (m) ------DESCRIPTION-----

locally blocky, highly fractured core and there is trace fracture controlled hematite. Is massive with no foliation. From 116.5 there is trace fracture controlled pyrite associated with weak fracture controlled carbonatization.

117.4 121.0 FAULT ZONE

Mafic fault gouge, contorted clay with rotated mafic tuff and quartz pieces, up to 5 cm. Trend is at 55 to 60 degrees to core axis.

121.0 139.3 FELDSPAR PORPHYRITIC FELSIC FLOW

Dominantly siliceous glassy grey felsic with 3 to 5 %, 2 to 4 mm, feldspars and from 121.3 to 123 minor emerald green wisps. Is blocky, highly fractured core from 117.4 to 125.3 and from 129.7 to 132. Is contorted from 130.2 to 139.3 and is schistose. There is very weak local biotite and local brown to pink tinges in the lower more siliceous flow. There is 0.5 to 1 % fracture controlled and disseminated fine-grained pyrite locally. Numerous minor faults occur locally. There are numerous fracture controlled quartz - calcite veinlets. Lost core :.

121.3 123.0 : 0.8 m.

123.4 124.4 : 0.5 m. 128.9 131.1 : 0.2 m.

136.2 138.5 : 0.3 m.

138.5 139.3 : 0.2 m.

139.3 147.6 FELDSPAR PORPHYRITIC GABBRO

139.3 144.6 Fine-grained and locally sheared with moderate to weak fracture controlled calcite veinlets.

There is on average 3 %, 1 to 3 mm, feldspars and 1 % very fine-grained leucoxene.

144.6 146.8 Hedium grained with weak fracture controlled hematite and 20 to 25 %, 2 to 4 mm, feldspars. There is spotty epidotization from 146.2 to 146.8 and local quartz veins occur.

146.8 147.6 Sheared and faulted with brecciated calcite veinlets and minor fault gouge.

147.6 148.5 FAULT BRECCIA

Quartz, chert and argillite clasts in green and grey clay to fault gouge.

148.5 155.9 NANAIMO ARGILLITE

VA01123 121.0 139.0 18.0 n/a <10 n/a <10 n/a 1070

Total

Sulphides (ppm)

PROPERTY	Chemainus	J.V

186.6 210.6 FELDSPAR PORPHYRITIC GABBRO

186.6 191.3 Fine-grained medium green gabbro with on average 7 to 10 %, 2 to 3 mm, feldspars and 3 %, 1 to 2 mm, ilmenite grains with purple

191.3 205.4 Medium to coarse grained gabbro with 20 to 50

%, up to 5 mm, feldspar grains and laths.

hematitic crusts.

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56 6

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppt	Ba o) (ppm)	
		Brown to black soft argillite with minor fault gouge from 149.2 to 149.7 and minor fault breccia from 149.7 to 150.1. There are minor fracture controlled calcite veinlet. Is very fine-grained.												
155.9	169.6	NANAIMO GREYWACKE Grey greywacke, quartz rich with trace up to 1 cm black argillite clasts. There are minor fracture controlled												
		calcite veinlets.												
160 6	102 0	NANAIMO CONGLOMERATE												
109.6	102.0	Benson Formation basal conglomerate.	VA01885	182.0	182.8	. 8	1	25	< 5	82	⟨1	16	1000	
		169.6 172.7 Dominantly pebble conglomerate with 50 % quartz grains, 20 % argillite clasts, clasts up to 5 mm on average with average of 2 mm, and mud matrix.  172.7 180.7 Pebble to cobble conglomerate with up to 10 cm clasts. Clasts are 30 to 40 % green to grey chert, 15 to 25 % argillite, approximately 3 %												
		gabbro and 2 % felsic tuff. There is a 10 cm clast with pyrite at 180.0.  180.7 181.9 Greywacke with 3 %, up to 1 cm, argillite clasts.  181.9 182.5 Pebble conglomerate with 35 % chert and 25 %,												
		up to 2 cm clasts.  182.5 182.8 Fine-grained pebble conglomerate with up to 3 mm clasts and minor sulphide mud.  Unconformity in sulphide mud and clay at 51 degrees to core axis.												
182.8	186.6	QUARTZ PORPHYRITIC INTERMEDIATE FLOW (?). Probably andesitic flow or tuff. Massive and dark	VA01886			1.2	2	162	22	124	<b>Ç</b> 1	7	100	
		green with 10 to 15 %, 3 to 4 mm, quartz grains. There is 3 % fracture controlled purple to pink carbonate. Hosts 2 % disseminated or fracture controlled fine-grained pyrite clots. Is massive and dark to medium green with no foliation, except sheared above gabbro for 0.5 m at	VA01124 VA01887 VA01888	184.0	185.0	3.8 1.0 1.6	n/a 2 2	392 273 218	n/a 30 28	84 136 135	n/a <1 <1	n/a 16 (5	120 60 (20	
		approximately 30 degrees to core axis. May be a boulder in the conglomerate.												

PRO	OPERTY:	Chemainus J.V.		
				FALCONBRIDGE LIMITED DIAMOND DRILL LOG
com (m)	To (m)		DESCRIPT	ION

HOLE No: Page Number CH88-56 7

Αg

(ppm) (ppb) (ppm)

n/a 1530 (5 1400 (5 1400

(5 1400

₹5 1200

<5 1500

₹5 1200

<5 1400

10 1400 (5 1300

n/a 1540

From (m)	To (m)		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (npm)	Pb (ppm)	Zn (ppm)	Ag (ppm
,,	1				,,		Daiphiaes	(PP.m)	(	(ppin)	( )
		Ilmenite averages approximately 2 %. There is									
		minor fracture controlled epidote, calcite and									
		quartz veinlets.									
		205.4 210.6 Fine-grained gabbro with trace feldspar and									
		ilmenite grains in fine-grained chloritic									
		matrix.									
210 6	234 4	FELSIC QUARTZ EYE TUFF									
		hight grey siliceous felsic tuff with on average 10 %, 1	VA01125	211 0	226.0	15.0	n/a	₹10	n/a	⟨10	n/a
		to 2 mm, quartz eyes and minor fragments, up to 2 cm,	VA01889			1.0	1	60		65	(1
		brown to white with weak fracture controlled	VA01890			1.0	5	106	6	58	(1
		carbonatization. There is local weak fracture controlled	VA01891			1.0	2	77	₹5	43	₹1
		chloritization and calcite veinlets. Is locally kinked	VA01892			1.0	ĩ	7	₹5	30	(1
		and contorted. Pyrite occurs locally.	VA01893	217.0	218.0	1.0	3	60	<b>(5</b>	30	<1
		Sulphides :.	VA01894	218.0	219.0	1.0	1	36	(5	25	<1
		211.9 212.0 5 % pyrite in 'early mafic sill' and minor	VA01895	219.0	220.0	1.0	2	31	(5	22	<1
		fracture controlled pyrite below.	VA01896	222.0	223.0	1.0	3	41	₹5	28	<1
		213.7 215.7 3 to 4 % fracture controlled pyrite.	VA01897	223.0	224.5	1.5	1	20	<5	34	<1
		217.0 217.8 2 % fracture controlled pyrite.	VA01126	226.0	234.0	8.0	n/a	(10	n/a	(10	n/a
		219.2 219.8 1 % fracture controlled and disseminated									
		fine-grained pyrite.									
		222.2 222.4 5 to 7 % fracture controlled fine-grained									
		pyrite.									
		222.6 224.2 1 % fracture controlled and disseminated									
		fine-grained pyrite.									
		Foliations:.									
		214.1 : 12 degrees to core axis.									
		216.7 : 25 degrees to core axis.									
		220.6 : 26 degrees to core axis.									
		224.0 : 25 degrees to core axis.									
		227.8: 31 degrees to core axis.									
		233.6: 43 degrees to core axis.									
		Bedding:.									
		211.5 : 34 degrees to core axis.									
		Lost core :.									
		225.0 226.0 : 0.5 m.									

#### 234.4 255.6 FELDSPAR PORPHYRITIC GABBRO

Fine-grained medium green gabbro with 12 to 17 %, 2 to 5 mm, feldspars and there is local quartz, calcite and epidote veinlets and veins. Quartz veins are up to 18 cm thick. Upper contact at blocky, highly fractured core and lower contact at 48 degrees to core axis with strong thermal biotite in tuff for 8 cm and weak to approximately 258 m.

255.6 268.8 WEAKLY CHLORITIC FELSIC TUFF

Very weakly chloritic felsic tuff, chloritization is local VA01127 256.0 269.0 13.0

VA01127 256.0 269.0 13.0 n/a (10 n/a 41 n/a n/a 1770

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

in contorted sericitic tuff. There is minor fracture

controlled quartz veinlets.

Lost core :. 273.4 274.2 : 0.6 m. 274.2 275.2 : 0.4 m. 275.2 276.5 : 0.6 m. HOLE No: Page Number CH88-56 8

			DIAMOND DRILL LOG										
	rom	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	2n (ppm)	Ag (ppm)	Au Ba (ppb) (ppm)
			as fracture controlled and pervasive alteration. Tuff is	VA01898	268.5	269.5	1.0	1	30	12	19	<1	<5 1600
			dominantly sericitic with thermal biotite to										
			approximately 258. Colour varies from light grey to medium										
			grey - green. On average there is 7 %, < 1 mm, quartz										
			eyes and 5 %, 2 to 3 mm, feldspar and quartz grains.										
			There is trace fine-grained pyrite with fracture										
			controlled chloritization from 259.0 to 259.6. From 263 to										
			268.8 there are white up to 1 cm siliceous or sericitic										
			layers with chloritic zones surrounding them. From 264.0										
			to 268.0 there are approximately 1 % milky white fracture										
			controlled quartz veinlets.										
			255.6 268.8 WEAK SPOTTY CHLORITIZATION.										
			Foliations:										
			257.0 : 50 degrees to core axis.										
			261.3 : 54 degrees to core axis.										
			267.9 : 26 degrees to core axis.										
			Bedding:.										
			261.3 : 32 degrees to core axis.										
			266.8 : 51 degrees to core axis.										
			Lost core :.										
			261.2 262.6 : 0.3 m.										
			264.3 266.0 : 0.3 m.										
268	. 8	271.8	FAULT ZONE										
			268.8 270.5 Contorted sericitic tuff with approximately 30	VA01899	269.5	270.5	1.0	. 1	37	8	32	<1	5 1600
			% white fault gouge. There is 2 to 3 %										
			fracture controlled chlorite locally and 0.5										
			to 1 % fine-grained disseminated pyrite.										
			270.5 271.2 Mafic with quartz veins and shearing at 41										
			degrees to core axis. There are trace pyrite										
			cubes. Late fracture controlled										
			silicification occured resulting in fracture										
			controlled quartz veinlets in the quartz veins.										
			271.2 271.8 Felsic with fault gouge at 9 degrees to core										
			axis, approximately 4 cm thick.										
			anto, approximately 4 cm thick.										
271	۰ .	202 2	FELSIC TUFF										
2/1		.04.4	Felsic lapilli tuff (?), Siliceous beds or lapilli, up to										
			2 cm, are in matrix of sericite and chlorite. Is blocky,										
			highly fractured core with minor local fault gouge.										
			Crystal content is variable with up to 10 % feldspars and										
			quartz eyes. From 278.5 there is approximately 0.5 to 1 %										
			fine-grained disseminated and fracture controlled pyrite in contorted sericitic tuff. There is minor fracture										
			in contorred sericitic tull. Inere is minor fracture										

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56 9

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl	Ba o) (ppin)
							-				• • •		
		276.5 277.1 : 0.1 m.											
		278.4 279.5 : 0.3 m.											
		281.0 282.5 : 0.3 m.											
		Foliations:											
		273.3: 26 degrees to core axis.											
		277.3: 29 degrees to core axis. 278.5: 30 degrees to core axis.											
		276.5 : 50 degrees to core axis.											
282.2	284.0	FAULT ZONE											
		Sheared and brecciated felsic tuff with 10 to 15 % fault	VA01900	282.2	283.7	1.5	1	62	21	30	⟨1	<b>&lt;</b> 5	2000
		gouge interstitial to tuff and as fault slips, which are	VA01128	283.0	293.0	10.0	n/a	80	n/a	21	n/a		1910
		at 23 to 45 degrees to core axis. There is approximately 1	VA01901	283.7		1.0	1	62	⟨5	34	⟨1		1600
		% fine-grained disseminated pyrite with minor local up to											
		1 cm clots.											
284.0	314.7	FELSIC LAPILLI TUFF										_	
		Contorted medium to light grey moderately siliceous to	VA01902	284.7	285.7	1.0	1	93	8	60	<1	- 9	1600
		locally sericitic felsic tuff with more siliceous	VA01903	285.7	286.2	- 5	6 .	837	11	95	1		1800
		material, lapilli (?), surrounded by sericite to sericite	VA01904	286.2	287.7	1.5	1	83	26	64	(1	-	1600
		with weak chlorite. Lapilli are 70 to 80 % of the tuff	VA01905	287.7	289.0	1.3	1	60	54	123	<1		1600
		and possibly the matrix (?) is a product of alteration.	VA01906	289.0	290.0	1.0	1	9	16	34	(1.		1400
		Crystal content varies from nil to approximately 10 %	VA01907	290.0	291.0	1.0	1	50	11	62	(1		1400
		feldspars and 5 % quartz eyes, < 1 mm. There is local	VA01908	291.0	291.5	.5	4	193	17	2353	(1	32	2000
		kinking and blocky, highly fractured core.	VA01909	291.5	293.0	1.5	1	85	. <5	55	<1		1500
		Sulphides:	VA01129	294.0	314.0	20.0	n/a	319	n/a	62	n/a	n/a	2050 1400
•		284.0 285.7 0.5 to 1 % fine-grained disseminated pyrite. 285.7 286.2 5 to 7 % pyrite as bands of 1 to 3 mm cubes in	VA01910 VA01911	298.2 302.7	298.8 304.0	.6	4 2	51 80	21	90 49	<1 <1	5 <5	2000
		the matrix around siliceous grey lapilli.	VA01911 VA01912	304.0	305.5	1.3	2	101	13	149	<1		1400
		286.2 287.7 1 % disseminated 2 mm pyrite cubes with	VA01912	305.5	307.0	1.5	2	118	48	194	(1		1500
		additional 1 to 2 % fine-grained pyrite over	VA01914	307.0	308.1	1.1	_	143	(5	1430	·(1		1400
		5 to 15 cm in minor fault zones. The	VA01915	308.1	308.6	.5	6	330	9	160	⟨1		1400
		fine-grained pyrite may also include trace	VA01916	308.6		1.4	- 3	140	. 6	40	\(\frac{1}{1}\)		1600
		sphalerite.	VA01917	310.0	311.5	1.5	3	39	29	100	⟨1		1900
		287.7 289.1 Minor FAULT BRECCIA with 0.5 to 1 %	VA01918	311.5		1.5	3	61	10	105	(1	3.0	2000
		disseminated fine-grained pyrite and pyrite	VA01919			1.7	1	68	8	85	(1		2000
		clots, up to 5 mm.		010,0							•		
		289.1 291.0 Approximately 0.5 % disseminated in siliceous											
		grey tuff.											
		291.0 291.5 3 to 4 % fine-grained fracture controlled and											
		banded pyrite.											
		291.5 296.0 0.25 to 0.5 % fine-grained pyrite in matrix						61					
		around lapilli.											
		296.0 298.2 Trace to 0.25 % in chloritic matrix.											
		298.2 298.8 3 to 5 % fine-grained sulphide mud in fault											
		breccia matrix.											
		298.8 302.7 Trace to nil disseminated pyrite, with minor											
		sphalerite in quartz vein at 301.4.											
		302.7 308.1 2 % fine-grained disseminated and banded pyrite											
		308.1 308.6 5 to 7 % fine-grained pyrite to grey sulphide											

2

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56 10

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		mud in breccia matrix.											
		308.6 314.7 2 to 3 % pyrite in chloritic lapilli tuff											
		matrix and ( 1 mm cubes disseminated.											
		Foliations:.											
		285.6: 44 degrees to core axis.											
		291.1 : 44 degrees to core axis.											
		295.0 : 38 degrees to core axis.											
		299.0 : 23 degrees to core axis.											
		303.9 : 30 degrees to core axis.											
		310.9 : 36 degrees to core axis.											
		313.8 : 36 degrees to core axis.											
		Faults:											
		286.4 : 5 to 10 cm of FAULT BRECCIA at 26 degrees to core											
		axis.											
		287.0 287.8 : 7 degrees to core axis with approximately 1											
		cm displacement, is at 70 degrees to the											
		foliation.											
		296.0 296.6 Fault gouge at 31 degrees to core axis.											
		311.8 313.4 Minor local fault gouge.											
		314.3 314.7 Clay fault gouge.											
		Lost core :											
		299.3 301.0 : 0.2 m.											
		302.2 302.7 : 0.3 m.											
		304.6 306.0 : 0.2 m.											
314 7	329 1	FELDSPAR PORPHYRITIC GABBRO											
314.7	227.1	Variably coarse to fine-grained plagiophyric gabbro.	VA01130	315.0	329.0	14.0	n/a	1470	n/a	111	n/a	n/a	112
		314.7 315.7 Medium grained with 5 to 7 %, brown mineral,	VA01920					1790	₹5	195	1		(20
		not carbonate, sphene (?) and approximately 5											
		% hematized ilmenite. There is 10 % quartz											
		grains in matrix of chloritized hornblendes.											
		There is 2 to 3 % chalcopyrite in white quartz											
		vein from 315.2 to 315.5.											
		315.7 320.9 Coarse grained gabbro with up to 5 mm grains.											
		There is approximately 10 % hematized ilmenite											
		320.9 322.4 Fine-grained sheared gabbro with minor calcite											
		veinlets. Hosts approximately 1 % chalcopyrite											
		and 2 % sphene.											
		322.4 326.8 80 % white quartz with minor chlorite,											
		chalcopyrite clots and gabbro up to 20 cm.											
		326.8 329.1 Fine-grained gabbro with 2 % ilmenite and										•	
		average 10 %, 2 mm, feldspars and 50 % quartz											
		- (chlorite) - (chalcopyrite) veins.											
		There is on average 0.5 to 1 % chalcopyrite throughout the											
		whole gabbro interval, mostly hosted by quartz veins.											
		Appears to be TiO2 rich.											
		314.7 329.1 MODERATE FRACTURE CONTROLLED CARBONATIZATION.											

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56 11

Cu

62

171

144

118

66

108

93

3 128

Рb

n/a

10

n/a

35

₹5

₹5

₹5

Zn

64

200

564

70

135

230

70

70

35

65

Ag

(ppm) (ppm) (ppm) (ppm)

n/a

<1

n/a

<1

< 1

<1

₹1

<1

Au Ba

n/a 2270

34 2400

n/a 1840

10 1700

(5. 1600

(5 2000

(5 1900

6 1900

10 1800

<5 1800

Total

n/a

n/a

2

1

1 55

3 .

1

Sulphides (ppm)

Vidth

(m)

. 6

1.0

Sample From To

VA01924 347.7 348.3

VA01928 354.0 355.0

No.

(m) (m)

VA01131 330.0 340.0 10.0

VA01921 337.1 338.1 1.0

VA01132 340.0 355.0 15.0

VA01922 341.7 342.7 1.0

VA01923 346.0 347.7 1.7

VA01925 348.3 349.8 1.5

VA01926 349.8 351.0 1.2

VA01927 351.0 352.4 1.4

From	To	PROGRAMAN)
(m)	(m)	DESCRIPTION
		329.1 331.0 Fine-grained micaceous tuff with 3 to 7 %
		chlorite. There are approximately 10 %, ( 1
		mm, feldspars. There are minor up to 2 cm
		white quartz veins.
		331.0 336.3 MODERATE FRACTURE CONTROLLED SILICIFICATION as
		spotty silicification. Is sericitic with very
		weak local chlorite. There are 10 %, 1 mm,
		quartz eyes and approximately 7 %, 1 mm,
		feldspars. There is compositional banding or
		bedding. There is trace to 0.5 % local
		fracture controlled pyrite.
		336.3 352.4 Sericitic tuff with minor up to 1 cm quartz
		lapilli and 10 %, $<$ 1 mm, feldspars and 7 %,
		up to 1 mm, quartz eyes. There is weak
		fracture controlled chloritization with
		approximately 2 % associated pyrite from
		337.1 to 338.2, 342.1 to 342.7 and 347.7 to
		348.3.
		352.4 355.0 Siliceous light grey to white tuff with trace
		sausuritized feldspars.
		Sulphides:.
		329.1 337.1 Trace fracture controlled and disseminated
		pyrite.
		337.1 341.7 0.5 to 2 %, average 1 %, fine-grained
		disseminated pyrite.
		341.7 342.7 1.5 to 2 % banded pyrite, up to 3 mm cubes.
		342.7 347.7 Trace to 1 %, average 0.5 %, fine-grained
		disseminated pyrite.
		347.7 348.3 2 to 4 % fine-grained pyrite in fracture
		controlled chlorite or chloritic matrix to
		felsic lapilli.
		348.3 349.8 Trace to nil disseminated pyrite.
		349.8 352.4 On average 2 to 3 % fine-grained disseminated
		pyrite, (?) in lapilli matrix.
		352.4 355.0 Trace disseminated pyrite, up to 0.5 % locally.
		Foliations:
		338.9: 31 degrees to core axis. 341.7: 41 degrees to core axis.
		343.3 : 41 degrees to core axis.
		345.9 : 40 degrees to core axis.
		348.5 : 28 degrees to core axis.
		351.5 : 27 degrees to core axis.
		Faults:
		339 : parallel to core axis.
		344.2 : approximately 5 cm fault gouge at approximately 60
		degrees to core axis.
		Lost core :.
		339.2 341.7 : 0.3 m.

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56 12

_	_													
From (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm)	
							•							
		Light to medium grey felsic lapilli tuff with 70 %	VA01929	355.0		1.1	3	119	₹5	35	⟨1		1800	
		siliceous whitish lapilli in sericitic to weakly	VA01930	356.1		1.1	3.	44	9	30	<1	9	1700	
		chloritic matrix with strong pyrite. There are minor	VA01931		357.7	5	20	88	10	75	∢1	75	1100	
		fracture controlled quartz - calcite veinlets. Crystals	VA01932			. 5	20	162	₹5	25	<1	12	1200	
		average 7 to 12 %, and are on average 7 %, 1 mm, quartz		358.2		. 5	20	109	<b>(5</b> ,	20	<1	21	1100	
		eyes and 5 %, < 1 mm, feldspars.	VA01934		359.2	. 5	20	66	(5	25	<1	9	1200	
		Sulphides:.	VA01935			.5	20	59	< 5	20	<1	18	1000	
		355.0 357.2 2 to 3 % pyrite with trace mariposite at 355.2.	VA01936		360.5	. 8	15	148	₹5	25	<1	17	1000	
		357.2 360.5 15 to 20 %, ( 1 to 3 mm, pyrite with minor	VA01133	360.0	370.0	10.0	n/a	43	n/a	<10	n/a	n/a	2500	
		chalcopyrite in quartz vein or lapilli at	VA01937		361.4	.9	5	31	(5	35	<1		1600	
		358.0.	VA01938		362.3	.9	3	42	₹5	50	· (1	27	2000	
		360.5 362.3 3 to 5 % pyrite, banded or encapsulating	VA01939	362.3	364.0	1.7	1	21	₹5	35	<1.	7	2300	
		lapilli.	VA01940	364.0		2.0	1	39	` ∢5	420	<1	6	2300	
		362.3 370.8 Trace to 2 %, disseminated and banded,	VA01941	366.0	368.0	2.0	1	34	₹5	45	<1	₹5	2100	
		averages 1 %.	VA01942			1.5	1	20	7	40	<1	< 5	2200	
		Foliations :.	VA01943	369.5	370.8	1.3	1	69	7	115	⟨1	7	2500	
		355.9 : 36 degrees to core axis.												
		357.2 : 32 degrees to core axis.												
		358.7 : 28 degrees to core axis.												
		359.3 : 53 degrees to core axis.												
		361.2 : 48 degrees to core axis.												
		364.5 : 21 degrees to core axis.												
		365.5 : 45 degrees to core axis.												
		Faults:												
		369.9 370.2 Blocky, highly fractured core with minor fault												
		gouge.												
370.8	372.2	MAFIC INTRUSIVE												
		Early mafic sill.	VA01944	370.8	372.2	1.4	7	64	17	175	<1	23	750	
		Medium green sill with moderate epidotization and												
		carbonatization and 7 % pyrite.												
372.2	432.7	FELSIC QUARTZ-FELDSPAR CRYSTAL TUFF												
		Light to medium grey felsic tuff with on average 3 %, 1 to	VA01945	372.2	373.7	1.5	2	48	25	185	<1	11	2100	
		3 mm, quartz eyes and 7 to 10 %, 1 to 2 mm, feldspars.	VA01946			1.5	2	60	14	35	(1	(5	2800	
		There are locally up to 5 % siliceous medium to dark grey	VA01134	375.0	400.0	25.0	n/a	238	n/a	134	n/a	n/a	3570	
		elongated lapilli. There are early mafic sills from 380.1	VA01947			1.5	2	37	13	65	<b>(1</b>	9	3000	
		to 380.4, 387.5 to 388.7, 389.7 to 390.0, and 423.0 to	VA01948			1.5	2	23	6	35	<1	. 27	2900	
		423.4. The mafic sills are epidote green, carbonatized and	VA01949	378.2		1.5	2	68	5	45	⟨1	17	2500	
		host 5 % disseminated pyrite blebs.	VA01950	379.7	381.2	1.5	2	30	: 7	110	(1	(5	2000	
		Sulphidess and alteration :.	VA01951		382.7	1.5	2	108	<b>(5</b>	70	(1	9	2800	
		372.2 384.2 1 to 2 % disseminated very fine-grained pyrite	VA01952		384.2	1.5	2	82	15	40	<b>(1</b>	13	3000	
		with trace banded or stringer pyrite in	VA01953		385.3	1.1	5	226	32	250	1		3300	
		crystal rich schistose tuff.	VA01954		386.4	1.1	. 5	62	13	195	(1	7	3900	
		384.2 387.5 3 to 4 % banded or stringer pyrite,	VA01955		387.5	1.1		175	50	100	1	8	4100	
		fine-grained pyrite in up to 5 mm bands and 2	VA01956	387.5	388.7	1.2	5	170	50	365	1	78	1000	
		% fine-grained disseminated in sericitic tuff	VA01957		390.2	1.5	3	812	152	110	2	68	3800	
		with minor fracture controlled quartz and / or	VA01958		391.7	1.5	3	31	162	105	1	124	3300	
		calcite veinlets parallel to core axis with	VA01959			1.5	3	74	61	50	1	103	2800	
		caretee termees bararies to core axis atti	*******	332.1	223.4		J	7.78	V 1	J-0		100		

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56 13

			DIAMOND DRILL LOG												
From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphide	Cu es (ppm)	Pb (pp	Zn n) (ppm)	Ag (ppm)	Au (pr	Ba	, )
									, (Fb)	( ) )	., (ррш)	(ppm)	( )	г, тррш	′
			minor up to 1 cm displacements. There appears	VA01960	393.2	394.7	1.5	3	86	27	70	1	43	3200	
			to be trace chalcopyrite in the pyrite.	VA01961	394.7	396.0	1.3	. 3	40	13	25	<1	39	5600	
		387.5 388.	7 STRONG PERVASIVE CARBONATIZATION in early	VA01962	396.0	397.5	1.5	3	45	20	30	- <1	33	3100	
			mafic sill with 50 % white quartz vein and 5 %	VA01963	397.5		1.5	3	38	10	30	<1	17	2200	
			disseminated pyrite.	VA01964	399.0	400.5	1.5	3	53	. 8	35	. <1	8	1600	
		388.7 394.	7 Sericitic with 2 % disseminated and 1 to 2 %,	VA01135		425.0	25.0	n/a	579	n/a	109	n/a	n/a	2670	
		304 7 400	1 to 2 mm, fine-grained banded, pyrite.	VA01965	400.5	401.7	1.2	1	22	6	30	<1	. (5	2000	
		394.7 400.	5 WEAK FRACTURE CONTROLLED CARBONATIZATION ,	VA01966	401.7	402.9	1.2	1	36	6	30	(1	₹5	1700	
			weak silicification (?) and is weakly	VA01967	402.9	404.2	1.3	1	35	5	30	<1	<b>(5</b>	1800	
			bleached. There is approximately 3 % disseminated pyrite blebs.	VA01968	404.2	406.0	1.8	2	50	11.	30	<1		2000	
		400 E 404	2 STRONG FRACTURE CONTROLLED CARBONATIZATION ,	VA01969		408.0	2.0	2	33	7	25	<1	< 5	2100	
		400.5 404.	bleached siliceous white felsic tuff (?) with	VA01970		410.0	2.0	. 2	40	6	40	<1	(5	2500	
			trace to 1 % fracture controlled pyrite.	VA01971			2.0	2	79	6	225	<1	₹5	2500	
		404 2 413	6 Light grey sericitic tuff with 1 to 2 %	VA01972		413.6	1.6	2	745	< 5	1075	(1	8	2000	
		404.2 413.		VA01973		414.9	1.3	5	1068	(5	75	1			
			disseminated and fine-grained banded pyrite	VA01974			1.3	5	252	₹5	30	⟨1		1900	
		413 6 416	parallel to foliation.	VA01975	416.2	416.7	.5	20	469	5	60	1		1800	
		413.6 416.	2 4 to 6 % fine-grained to 3 mm pyrite in quartz	VA01976		417.2	. 5	. 20	249	₹5	30	1		1700	
		416 0 417	crystal to lapilli tuff with minor mariposite.	VA01977			.5	20	455	₹5	1165	1	87	1400	
			7 20 to 25 % fine-grained banded pyrite.	VA01978	417.7	419.0	1.3	2	90	· (5	15	<1		1300	
		417.7 425.	9 2 to 3 % disseminated pyrite with local strong	VA01979		420.0	1.0	2	71	₹5.	15	⟨1		1300	
			banded pyrite as from 416.2 to 417.2, from	VA01980	420.0	421.0	1.0	2	58	₹5	10	<1	87	1500	
			422.8 to 423.0 and 423.5 to 424.2. There is a	VA01981			1.0	2	1164	₹5	40	1	256	2700	
		100 0 100	chalcopyrite bleb in a quartz vein at 423.4.	VA01982			1.0	5	697	7.	5600	1	83	5200	
18		425.9 426.	7 30 % fine-grained pyrite, 5 % chalcopyrite, 1	VA01983			1.0	. 7	816	. 9	11600	2	101	6100	
			% sphalerite, 1 to 2 % fine-grained grey	VA01984		425.0	1.0	5	1063	7	555	2	124	4900	
			mineral, galena (?) or tetrahederite as semi-	VA01985		425.9	. 9	2	714	6	670	- 1	63	7300	
			massive psuedo- banded sulphides.	VA01986		426.7	. 8		10900	.136	5400	9		9900	
		426.7 426.	9 5 % disseminated pyrite in tuff with 15 %, 3	VA01987			. 9	5	1071	9	2670	1	84	9000	
			mm, quartz eyes and minor mariposite.	VA01988		428.0	. 4	10	3800	13	22000	7		13000	
		426.9 427.	2 Early maf sill with strong pervasive	VA01989			1.2	. 7	3600	209	9600	12		15000	
			carbonatization and 5 % disseminated pyrite.	VA01990		430.4	1.2	7	1860	577	8400	12		19000	
		427.2 427.	6 Blocky, highly fractured core as from 426.7 to	VA01991		431.0	. 6	25	3900	935	26500		2880		
			426.9.	VA01992		431.5	. 5	35		10100	59400		3120		
		427.6 427.	7 20 % fine-grained honey sphalerite and 10 %	VA01993		431.9	. 4	6	5400	631	3700	- 13		8800	
			fine-grained pyrite in grey siliceous and (?)	VA01994		432.2	. 3		12600		48000			13000	
			silicified tuff.	VA01995	432.2	432.7	. 5	7	2028	1622	14000	15	317	10000	
		427.7 430.	4 Grey quartz eye tuff with 5 % fine-grained												
			disseminated pyrite and 1 to 2 % sphalerite												
			and trace to 0.5 % chalcopyrite with minor												
			pyrite as bands or stringers parallel to												
			foliation.												
		430.4 431.	5 12 % sphalerite, 3 % galena, 0.5 %												
			chalcopyrite and 10 % pyrite as fine-grained												
			bands up to 8 cm with strong sphalerite, 30												
		434 6 434	%, and galena, 10 %, from 431.1 to 431.4.												
		431.5 431.	9 Blocky, highly fractured core with												
			approximately 5 % pyrite, 0.5 % chalcopyrite												
			in sericitic schist.												
		431.9 432.	2 7 to 10 % sphalerite, 4 to 5 % chalcopyrite, 2												
			to 3 % galena in grey siliceous rock with												

2

PROPERTY:	Chemainus	J.V.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

beds. There is trace local pyrite, disseminated and fracture controlled. There are numerous quartz - chlorite

veinlets from 459.5 to 466.0.

HOLE No: Page Number CH88-56 14

From (m)	To (m)			DESCRIPTI	on	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (pp	Ba b) (ppm	a)
			minor fra	cture controlle	d quartz veinlets.												
					sphalerite in blocky,												
					ricitic crystal tuff.												
		Foliations :.															
		374.4 : 41 de		core axis.													
		383.8 : 41 de	~ .														
		390.8 : 41 de															
		405.0 : 48 de															
		414.9 : 39 de															
		415.6 : 22 de															
		418.8 : 43 de	-														
		421.8 : 37 de															
		428.5 : 31 de	egrees to	core axis.													
432 7	113 0	MARIC TO INTE	PREDIATE	TUFFACEOUS SED	INDUTE												
432.7	443.3						420.7										
					n to dark green mafic		432.7			n/a	172	n/a	48	n/a	n/a	394	
				d strong fractu		VA01996			1.3	1	125	40	385	1		1600	
					rom 436.5 to 440.0	VA01997	437.0	439.0	2.0	1	130	17	225	<1	8	640	
				ne-grained spot													
					rt beds and weak												
					fault slips at 7												
					foliation at 32												
		degrees to co	ore axis.														
		432.7 443.9 S	STRONG FR	ACTURE CONTROLL	ED CARBONATIZATION.												
		Lost core :.															
		436.2 436.5 :	0.2 m.														
		439.8 441.4 :	0.2 m.														
443.9	454.3	MAFIC PORPHYR	RITIC MAF	IC LAPILLI TUFF													
		Light to medi	ium green	mafic tuff with	20 to 25 %, 1 to 3	VA01137	443.9	454.3	10.4	n/a	229	n/a	46	n/a	n/a	390	
				lende crystals.										, -			
					1 to 3 mm, epidote												
				is strong fract													
				hite calcite ve													
					Is massive, may be a												
		flow.	. rorred c	mioricizacion.	is massive, may be a												
		Alteration :.															
				ACCURE CONTROLL	TD CARROWANT TANKEN												
					ED CARBONATIZATION.				4								
		443.9 454.3 M	ODERATE	FRACTORE CONTROL	LED CHLORITIZATION.												
454.3		WINTS NO THE		MURRIAROUA COS	· vauna												
434.3				TUFFACEOUS SED											,		
					piotite content with	VA01138	454.3	485.3	31.0	n/a	393	n/a	58	n/a	n/a	642	
					ization and chlorite	•											
					ip to 20 %, < 1 mm,												
					cm green chert												
		hade Thorn i	e trace	local purite di													

Total lost core: 17.5 m, % Recovery = 96.4 %.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-56 15

From To Sample From To Width Total Cu Рb Zn Au Вa Αg (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm) Bedding :. 468.3 : 34 degrees to core axis. 476.8: 37 degrees to core axis. 480.8: 55 degrees to core axis, with tops downhole. 483.7 : 31 degrees to core axis. Foliations :. 465.6: 59 degrees to core axis. 481.0 : 50 degrees to core axis. Alteration :. 454.3 485.3 MODERATE FRACTURE CONTROLLED CARBONATIZATION. 454.3 485.3 WEAK FRACTURE CONTROLLED CHLORITIZATION. 485.3 486.8 GREYWACKE Locally cherty greywacke, grey in colour with trace to 1 % VA01998 485.3 486.8 1.5 1 80 230 fracture controlled pyrite. There is weak fracture controlled carbonatization. Bedding is at (?) degrees to core axis. End of hole: 1597 feet (486.8 m) on Friday May 20, 1988 at 12:15 p.m.

2 .

SAMPLE	<del></del>									*****							
NUMBER	FROM	TO	<b>2</b> S 102	IAL203	ZCAO	INGO	ZNA20	2K20	XFE203	21102	XP205	ZHNO	7L01	SUH	BA	AI	NACA
												<del></del>					******
VA00671	18.80	19.00	71.10	11.80	2.61	1.14	4.32	1.27	2.43	0.30	0.06	0.10	3.08	98.21	661.	26.	7.
VA00672	23.20	23.40	10.00	18.60	8.53	4.30	2.28	3.76	8.55	0.87	0.14	0.25	11.80	99.08	1010.	43.	11.
VA00673	53.20	53.70	69.40	13.20	3.73	0.88	1.93	2.88	2.24	0.23	0.06	0.08	4.00	98.63	1000.	40.	6.
VA00674	68.10	68.20	68.60	14.80	1.78	1.77	3.64	2.31	2.81	0.26	0.06	0.07	2.23	98.33	1050.	43.	5.
VA00675	72.20	72.30	71.20	13.20	2.94	1.19	0.17	3.77	2.43	0.30	0.07	0.13	3.62	99.02	983.	61.	3.
VA00676	76.50	76.60	68.40	15.50	1.14	1.27	2.12	3.75	3.95	0.39	0.10	0.06	2.77	99.45	1360.	61.	3.
VA00677	105.60	105.80	51.90	16.40	6.62	5.44	3.85	0.13	9.35	0.65	0.12	0.21	5.16	99.83	125.	35.	10.
VA00678	112.50	112.70	54.70	17.00	14.70	0.66	2.74	0.20	6.04	0.29	0.33	0.12	2.85	99.63	166.	5.	17.
VA00679	127.60	127.70	74.70	12.20	2.47	0.88	5.54	0.36	1.11	0.20	0.06	0.03	1.39	98.94	435.	13.	8.
VA00680	133.50	133.70	71.50	15.30	1.26	1.52	4.22	2.07	1.85	0.27	90.08	0.03	1.85	99.95	1160.	40.	5.
VA00681	221.50	221.60	73.10	14.60	0.78	1.42	1.27	3.67	1.07	0.34	0.09	0.02	2.00	98.36	1630.	71.	2.
VA00682	230.70	230.80	72.90	14.50	0.53	1.37	2.22	3.49	0.91	0.35	0.08	0.01	1.85	98.21	1300.	64.	3.
VA00683	297.50	297,60	69.40	12.60	2.63	2.77	1.28	2.48	3.06	0.30	0.07	0.04	3.23	97.86	1620.	57.	4.
VA00684	318.00	319.50	47.20	10.90	8.64	4.42	1.84	0.26	20.00	5.05	0.25	0.29	1.62	100.47	248.	31.	10.
VA00685	333.60	333.70	69.30	12.80	1.92	2.97	1.85	1.53	5.81	0.31	0.09	0.04	3.77	100.39	1160.	54.	4.
08300AV	346.50	346.60	71.40	14.20	3.34	1.78	2.83	2.15	1.16	0.30	0.07	0.05	2.54	99.82	1440.	39.	6.
VA00687	363.10	363.20	73.50	14.10	0.19	0.93	0.62	3.66	2.86	0.33	0.07	<0.01	3.16	99.43	2670.	85.	1.
VA00688	375.50	375.60	75.60	13.40	0.17	0.62	0.43	3.64	2.25	0.31	0.06	0.01	2.70	99.19	3380.	88.	1.
VA00689	387.00	387.10	72.90	14.40	0.89	1,-11.	1.23	3.22	2.00	0.38	0.03	0.02	2.39	98.57	6470.	67.	2.
VA00690	388.30	388.40	32.10	21.80	10.40	7.43	0.48	1.29	14.70	0.94	0.24	0.16	9.16	98.70	1130.	44.	11.
VA00691	394.10	394.20	65.80	17.70	0.41	0.96	0.69	4.60	3.59	0.46	0.08	<0.01	3.77	98.07	3390.	83.	1.
VA00692	406.00	406.20	70.80	16.40	1.15	0.71	1.67	3.60	0.92	0.41	0.10	0.01	2.08	97.85	2370.	60.	з.
VA00693	416.00	416.10	59.90	18.70	0.52	0.36	1.91	4.34	7.13	0.56	0.05	<0.01	5.39	98.87	2050.	66.	2.

	<del></del>														 		
SAMPLE NUMBER	FROM	TO	25102	IAL203	ICAO	ZHGO	2NA20	XK20	ZFE203	11102	XP205	ZHNO	ZLOI	SUN	BA -	AI	NACA
							<u> </u>						<del></del>		 		
VA00694	447.50	447.70	47.70	12.00	13.40	9.09	2.50	0.28	9.31	0.50	0.11	0.16	4.85	99.90	249.	37.	16.

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER	FROM	TO	RB (BBB)	SR (san)	BA	. Y	ZR	.NB	CU	ŽN	NI		ROCK	CODES	MIN
			(bbw)	(ppm)	(ppm)	(bbm)	(ppm)	(ppm)	(mgg)	(ppm)	(bbw)	 	 		
11800721	18 00	10.00		0.00											
VA00671	18.80	19.00	<10.0	268.0	661.0	<10.0	93.9	11.0	17.0	50.0	<10.0		TFBD	305	Α .
VA00672	23.20	23.40	60.0	301.0	1010.0	<10.0	16.0	<10.0	261.0	110.0	22.0		MMA	FCS	A
VA00673	53.20	53.70	64.0	86.0	1000.0	<10.0	. 35.0	13.0	13.0	14.0	<10.0		TEAD	PHH	A
VA00674	68.10	68.20	35.0	114.0	1050.0	<10.0	105.0	12.0	<10.0	29.0	<10.0		TFAL	FQM .	DBP
VA00675	72.20	72.30	59.0	36.0	983.0	27.0	115.0	<10.0	<10.0	227.0	11.0		TFAD	PHW	DBP
VA00676	76.50	76.60	75.0	37.0	1360.0	25.0	106.0	<10.0	21.0	18.0	<10.0		TFAD	?	DBP
VA00677	105.60	105.80	<10.0	188.0	125.0	17.0	35.0	<10.0	122.0	54.0	16.0		TMAE	?	À
VA00678	112.50	112.70	21.0	561.0	166.0	21.0	90.0	17.0	19.0	<10.0	<10.0		0	?	FCP
VA00679	127.60	127.70	<10.0	258.0	435.0	24.0	65.0	<10.0	13.0	<10.0	<10.0		VEAE	?	A
VA00680	133.50	133.70	35.0	190.0	1160.0	<10.0	105.0	<10.0	11.0	10.0	<10.0		VEAF	?	FBP
VA00681	221.50	221.60	68.0	83.0	1630.0	<10.0	103.0	<10.0	₹10.0	<10.0	<10.0°		TEAG	7	0
VA00682	230.70	230.80	78.0	53.0	1300.0	21.0	108.0	<10.0	<10.0	<10.0	<10.0				
VA00683	297.50		54.0		1620.0	<10.0	97.0	18.0					TFAC	?	A
VA00684	318.00		19.0						52.0	45.0	12.0		TFA	<b>?</b>	DBP
VA00685		333.70		242.0	248.0	19.0	150.0	27.0	507.0	123.0	29.0		PMB	FCW	0
			33.0		1160.0	18.0	110.0	<10.0	64.0	62.0	<10.0		TEAD	?	Α
VA00686	346.50		48.0	330.0		24.0	91.0	<10.0	12.0	11.0	<10.0		TFAD	?	DBP
VA00687	363.10	363.20	60.0	49.0	2670.0	40.0	119.0	17.0	70.0	<10.0	<10.0		TFAD	?	DCP
VA00688	375.50	375.60	65.0	36.0	3380.0	25.0	118.0	15.0	<10.0	<10.0	<10.0		TFAD	?	DCP
VA00689	387.00	387.10	51.0	146.0	6470.0	<10.0	115.0	14.0	17.0	19.0	<10.0		TFAD	?	DCP
VA00690	388.30	388.40	30.0	454.0	1130.0	<10.0	<10.0	<10.0	525.0	353.0	94.0		PM	PCS	DDP
VA00691	394.10	394.20	0.88	88.0	3390.0	21.0	136.0	<10.0 ·	33.0	<10.0	<10.0		TFAD	? ' '	DCP
VA00692	406.00	406.20	72.0	197.0	2370.0	<10.0	139.0	<10.0	18.0	<10.0	<10.0		TFAD	?	DCP

Hole No. CH88-56 WHOLE ROCKS SAMPLES

														CODES	
SAMPLE							ZR	NB	CU .	2N	NI -		ROCK	ALT	MIN
NUMBER	FROM	TC	KB (ppm)	SX (ppm)	(ppm)	Υ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	 	 		
															DCP
			77.0	106.0	2050 0	31.0	169.0	19.0	201.0	<10.0	<10.0		TFAD	•	961
VA00693	416.00												TMAW	FCS	A
VA00694	447.50	447.70	<10.0	311.0	249.0	13.0	<10.0	14.0	20210	2/10					

SAMPLE NUMBER	FROM	70	25102	XAL203	XCA0	ZHGO	XNA20	XK20	XFE203	21102	ZP205	ZHNO	IOIX	SUM	BA	AI	NACA
					• • • • • • • • • • • • • • • • • • • •	*****											
VA01115	15.80	23.00	69.90	13.50	2.60	1.14	4.58	1.70	2.62	0.30			3.54	99.88	684.	28.	7.
VA01116	24.00	39.00	67.00	14.10	3.64	1.12	2.96	2.72	3.50	0.31			4.39	99.74	977.	37.	7.
VA01117	44.00	59.00	70.60	13.50	3.39	0.75	2.17	2.88	2.28	0.24			3.77	99.58	1060.	40.	6.
81110AV	65.00	80.00	65.80	11.90	3.51	1.60	1.85	3.35	3.76	0.32			3.85	98.94	1260.	48.	5.
VA01119	80.00	95.00	63.80	13,80	3.97	2.46	2.32	2.44	5.06	0.33			4.08	98.26	886.	44.	6.
VA01120	95.40	101.00	48.80	16.50	6.71	5 <b>.5</b> 7	3.03	1.32	9.18	0.67			7.39	99.17	509.	41.	10.
VA01121	101.00	104.50	68.10	14.30	3.34	1.33	2.29	2.99	3.17	0.35			3.31	99.18	1170.	43.	6.
VA01122	104.50	117.40	52.10	16.40	6.50	5.10	2.97	0.79	9.15	0.65			5.47	99.13	435.	38.	9.
VA01123	121.00	139.00	70.90	15.10	2.08	1.30	4.97	1.70	1.56	0.26			2.08	99.95	1070.	30.	7.
VA01124	182.80	186.60	49.80	14.10	4.55	4.42	3.50	0.14	14.00	2.75			5.00	98.26	120.	36.	8.
VA01125	211.00	226.00	71.80	15.50	1.29	1.70	1.47	3.50	1.71	0.38			2.31	99.66	1530.	65.	3.
VA01126	226.00	234.00	70.10	16.20	1.84	1.90	1.84	3.50	1.64	0.47			2.54	100.03	1540.	59.	4.
VA01127	256.00	269.00	71.20	15.10	2.23	1.80	1.86	3.20	1.88	0.39			2.47	100.13	1770.	55.	4.
VA01128	283.00	293.00	68.90	15.00	1.41	1.59	1.20	3.53	3.58	0.35			3.23	98.79	1910.	66.	3.
VA01129	294.00	314.00	66.90	14.80	1.55	1.71	1.24	3.60	4.86	0.37			3.62	98.65	2050.	66.	3.
VA01130	315.00	329.00	43.60	13.70	7.45	4.82	2.40	0.23	15.80	3.64			6.70	98.34	112.	34.	10.
VA01131	330.00	340.00	70.90	14.70	1.76	1.72	1.55	3.42	2.33	0.33			2.70	99.41	2270.	61.	3.
VA01132	340.00	355.00	69.50	14.80	1.25	1.30	1.38	3.31	3.85	0.36			3.16	98.91	1840.	64.	3.
VA01133	360.00	370.00	74.50	14.60	0.46	0.63	1.41	3.40	1.91	0.33			2.39	99.63	2500.	68.	2.
VA01134	375.00	400.00	69.90	15.40	0.83	1.00	0.87	3.70	3.41	0.38			3.39	98.88	3570.	73.	2.
VA01135	400.00	425.00	69.40	16.50	0.87	0.55	1.22	3.80	3.25	0.42			3.23	99.24	2670.	68.	. 2.
VA01136	432.70	443.90	49.00	14.70	8.09	5.75	3.76	0.45	8.97	0.99			7.47	99.18	394.	34.	12.
VA01137	443.90	454.30	46.50	13.00	10.40	8.64	2.78	0.30	9.60	0.56			8.39	100.17	390.	40.	13.

SAMPLE	FROM	TO	<b>XS102</b>	ZAL203	ZCAO	z MGO	ZNA20	XK20	ZFE203	XI 102	XP205	0 N K E	2L0I	SUM	BA	ΑI	NACA
VA01138	454.30	485.30	45.30	15.30	6.78	7.92	3.20	0.99	10.30	0.98			7.85	98.62	642.	47.	10.

2

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

SAMPLE NUMBER		TO	RB (ppm)	SR (pp		Υ (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)		 	ROCK	CODES ALT	MIN
VA01115	15.80	23.00			684.0				<10.0	39.0	<10.0					
VA01116	24.00	39.00			977.0				<10.0	69.0	<10.0			TFBD	505	A
VA01117	44.00	59.00			1060.0				<10.0	23.0	<10.0			TFBD	PHM	DBP
VA01118	65.00	80.00			1260.0				<10.0	43.0	12.0			TFBD	РНМ	A
VA01119	80.00	95.00			886.0				25.0					TEAD	?	DBP
VA01120	95.40	101.00			509.0					93.0	<10.0			TFAD	?	. 0
VA01121	101.00	104.50			1170.0				154.0	379.0	31.0			TIAD	PCM	Α .
VA01122	104.50	117.40			435.0				27.0	<10.0	<10.0			TFAD	?	DCP
VA01123	121.00	139.00			1070.0				119.0	48.0	25.0			IMAE	?	À
VA01124	182.80	186.60							<10.0	<10.0	12.0			VEAF	.?	FBP
VA01125		226.00			120.0				392.0	84.0	66.0			SAIV	FCS	DCP
VA01126		234.00			1530.0				<10.0	CIO.0	<10.0			TEAQ	?	0
VA01127		269.00			1540.0				<10.0	<10.0	<10.0			TFAD	?	A
VA01128	283.00 2				1770.0				<10.0	41.0	<10.0			TFA	EHW :	A
VA01129					1910.6				80.0	21.0	11.0			TFB	?	DEP
	294.00 3				2050.0				319.0	62.0	<10.0			TFA	?	DCP
/A01130	315.00 3				112.0			. 1	470.0	111.0	63.0			PME	FCM	0
/A01131	330.00 3				2270.0				62.0	64.0	<10.0			TFAD	?	
	340.00 3	55.00			1840.0				144.0	64.0	<10.0				· •	DBP
	360.00 3	70.00			2500.0				43.0	10.0	(10.0					DBP
A01134	375.00 4	00.00			3570.0						(10.0				?	DCP
A01135	400.00 4	25.00			2679.0						(10.0					DCP
A01136	432.70 4	43.90			394.0				172.0	48.0	32.0			TEAD	?	DCP

Hole No. CH88-56 ALTERATION SAMPLES

SAMPLE												 	4.2		
NUMBER	FROM	TO	RB (ppm)		BA ppm)	Y (ppm)	ZŘ (ppm)	NB (ppm)	(oba)	ZN (ppm)	NI (ppm)		ROCK	CODES	MIN
VA01137	443.90	454.30			0.0										
VA01138	454.30	405.00		0,					229.0	46.0	59.0		THAW	FCS	Α
VHV1135	434.30	485.30		.: 64	2.0				393.0	58.0	59.0		IHA	FCM	FRP

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

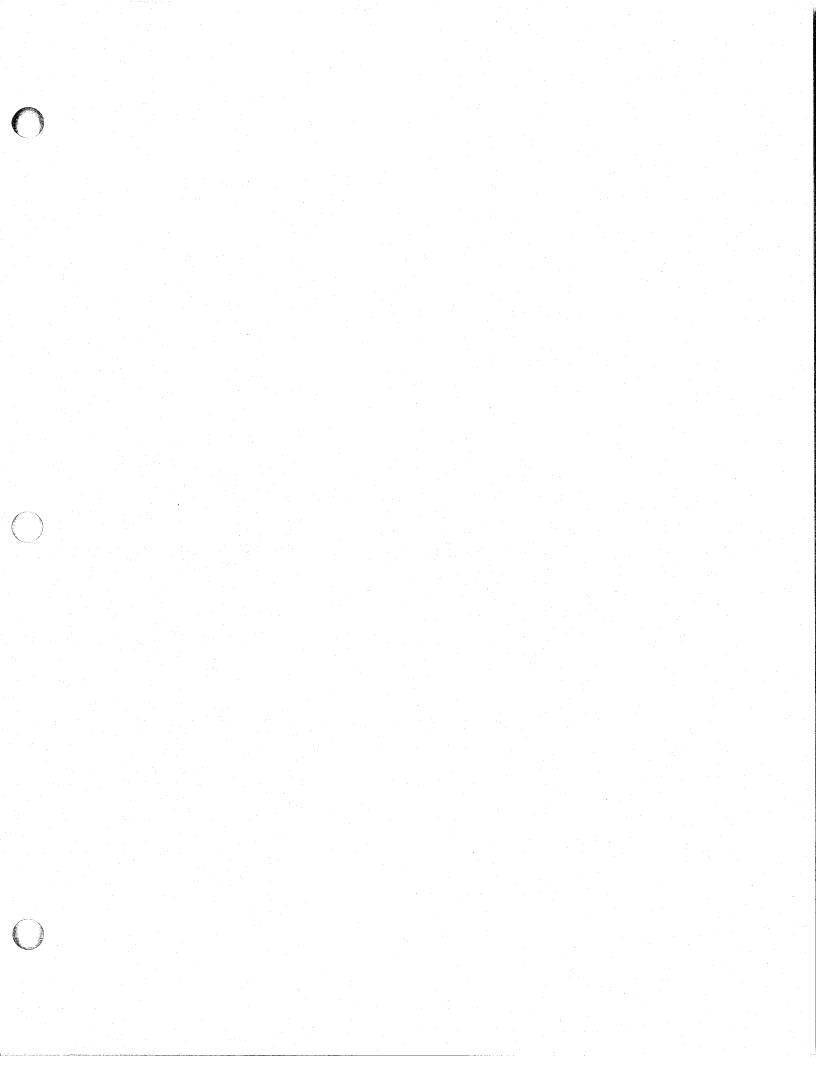
SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	2N (ppm)	AG (ppm)	AU (ppb)	CO . (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	НМ (ррж)	CUZN	ETS	FE
							<del></del>										
VA01882	62.30	62.90	610.0	66.0	149.0	<0.5	<5.0	34.0	47.0	12.0	<5.0	<1.0	<1.0	1300.0	31.	1.	6.
VA01883	101.00	102.70	1100.0	45.0	69.0	<0.5	<5.0	7.0	1.0	10.0	140.0	2.0	2.0	630.0	39.	2.	2.
VA01884	102.70	104.10	980.0	24.0	72.0	<0.5	<5.0	9.0	11.0	<5.0	55.0	1.0	<1.0	850.0	25.	1.	2.
VA01885	182.00	182.80	1000.0	25.0	82.0	<0.5	16.0	11.0	18.0	<5.0 ¹	50.0	<1.0	2.0	830.0	23.	1.	3.
VA01886	182.80	184.00	100.0	162.0	124.0	<0,5	7.0	39.0	49.0	22.0	36.0	(1.0	<1.0	1100.0	57.	2.	8.
VA01887	184.00	185.00	60.0	273.0	136.0	<0.5	16.0	49.0	43.0	30.0	17.0	<1.0	<1.0	880.0	67.	2.	9.
VA01888	185.00	186.60	<20.0	218.0	135.0	<0.5	<5.0	47.0	42.0	28.0	18.0	<1.0	<1.0	780.0	62.	2.	8.
VA01889	213.00	214.00	1400.0	60.0	65.0	<0.5	<5.0	12.0	1.0	<5.0	30.0	1.0	<1.0	370.0	48.	1.	2.
VA01890	214.00	215.00	1400.0	106.0	58.0	<0.5	<5.0	9.0	4.0	6.0	16.0	1.0	1.0	150.0	65.	5.	3.
VA01891	215.00	216.00	1400.0	77.0	43.0	<0.5	<5.0	6.0	5.0	⟨5.0	8.0	<1.0	2.0	150.0	64.	2.	3.
VA01892	216.00	217.00	1200.0	7.0	30.0	<0.5	<5.0	<1.0	2.0	<5.0	<5.0	<1.0	<1.0	135.0	19.	1.	1.
VA01893	217.00	218.00	1500.0	60.0	30.0	<0.5	₹5.0	8.0	<1.0	<5.0	<5.0	<1.0	<1.0	140.0	67.	3.	2.
VA01894	218.00	219.00	1200.0	36.0	25.0	<0.5	<5.0	5.0	- <1.0	<5.0	<5.0	<1.0	<1.0	120.0	59.	1.	1.
VA01895	219.00	220.00	1400.0	31.0	22.0	<0.5	<5.0	4.0	· <1.θ.,	<5.0	<5.0	<1.0	<1.0	85.0	50.	2.	1.
VA01896	222.00	223.00	1400.0	41.0	38.0	.º <0.5	10.0	5.0	<1.0	<5.0	<5.0	<1.0	<1.0	70.0	59.	3.	1.
VA01897	223.00	224.50	1300.0	20.0	34.0	<0.5	<5.0	3.0	<1.0	<5.0	<b>&lt;5.0</b>	<1.0	<1.0	85.0	37.	1.	1.
VA01898	268.50	269.50	1600.0	30.0	19.0	<0.5	.<5.0	4.0	2.0	12.0	⟨5.0	<1.0	24.0	120.0	61.	1. 1	1.
VA01899	269.50	270.50	1600.0	37.0	32.0	<0.5	5.0	10.0	2.0	8.0	<5.0	<1.0	8.0	190.0	54.	1.	2.
VA01900	282.20	283.70	2000.0	62.0	30.0	<0.5	⟨5.0	9.0	<1.0	21.0	<5.0	<1.0	6.0	115.0	67.	1.	2.
VA01901	283.70	284.70	1600.0	62.0	34.0	<0.5	₹5.0	4.0	2.0	₹5.0	<5.0	<1.0	3.0	80.0	65.	1.	2.
VA01902	284.70	285.70	1600.0	93.0	60.0	<0.5	9.0	7.0	(1.0	8.0	<5.0	<i.0< td=""><td>6.0</td><td>100.0</td><td>61.</td><td>1.</td><td>3.</td></i.0<>	6.0	100.0	61.	1.	3.
VA01903	285.70	286.20	1800.0	e37.0	95.0	0.6	59.0	20.0	10.0	11.0	13.0	(1.0	6.0	150.0	90.	6.	7.
VA01904	386.20	287.70	1600.0	83.0	64.0	<0.5	 <5.0	5.0	<1.0	26.0	<5.0	<1.0	5.0	140.0	56.	1.	3.

Page No. 1

SAMPLE NUMBER	FROM	то	8A (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (mqq)	PB (ppm)	AS (ppm)	Cti (ppm)	MO (ppm)	ИИ (ррж)	CUZN	ETS	FE
												-					
VA01905	287.70	289.00	1600.0	60.0	123.0	<0.5	7.0	7.0	<1.0	54.0	5.0	<1.0	3.0	90.0	33.	1.	2.
VA01906	289.00	290.00	1400.0	9.0	34.0	<0.5	<5.0	<1.0	<1.0	16.0	₹5.0	<1.0	2.0	110.0	21.	1.	1.
VA01907	290.00	291.00	1400.0	50.0	62.0	<0.5	<5.0	9.0	11.0	11.0	<5.0	<1.0	1.0	190.0	45.	1.	2.
VA01908	291.00	291.50	2000.0	193.0	2353.0	<0.5	32.0	7.0	7.0	17.0	10.0	12.0	9.0	140.0	8.	4.	4.
VA01909	291.50	293.00	1500.0	85.0	55.0	<0.5	14.0	4.0	<1.0	<5.0	<5.0	<1.0	1.0	90.0	61.	1.	2.
VA01910	298.20	298.80	1400.0	51.0	90.0	<0.5	5.0	12.0	17.0	21.0	8.0	<1.0	2.0	210.0	36.	4.	3.
VA01911	302.70	304.00	2000.0	80.0	49.0	<0.5		8.0	2.0	20.0	<5.0	<1.0	<1.0	150.0	62.	2.	2.
VA01912	304.00	305.50	1400.0	101.0	149.0	<0.5	28.0	7,.0	5.0	13.0	9.0	<1.0	2.0	95.0	40.	2.	3.
VA01913	305.50	307.00	1500.0	118.0	194.0	<0.5	53.0	4.0	<1.0	48.0	20.0	<1.0	<1.0	60.0	38.	2.	3.
VA01914	307.00	308.10	1400.0	143.0	1430.0	<0.5	65.0	6.0	3.0	<5.0	8.0	6.0	1.0	50.0	9.	2.	4.
VA01915	308.10	308.60	1400.0	330.0	160.0	₹0.5	26.0	60.0	20.0	9.0	8.0	<1.0	3.0	210.0	67.	6.	4.
VA01916	308.60	310.00	1600.0	140.0	40.0	<0.5	<5.0	6.0	10.0	6.0	₹5.0	<1.0	1.0	140.0	78.	3.	1.
VA01917	310.00	311.50	1900.0	39.0	100.0	<0.5	5.0	5.0	10.0	29.0	<b>(5.0</b>	<1.0	1.0	115.0	29.	3.	2.
VA01918		313.00	2000.0	61.0	105.0	<0.5	30.0	6.0	5.0	10.0	7.0	<1.0	3.0	125.0	37.	3.	3.
VA01919		314.70	2000.0	68.0	85.0	<0.5	10.0	5.0	10.0	8.0	5.0	<1.0	2.0	160.0	44.	3.	2.
VA01920		322.40	<20.0	1790.0	195.0	1.3	52.0	39.0	40.0	⟨5.0	10.0	1.0	4.0	700.0	90.	1.	10.
VA01921	337.10		2400.0	171.0	200.0	<0.5	34.0	12.0	15.0	10.0	10.0	<1.0	8.0	160.0	46.	1.	4.
		342.70	1700.0	118.0	70.0	⟨0.5	10.0	8.0	10.0	35.0	6.0	<1.0	2.0	100.0	63.	2.	3.
VA01922				66.0	135.0	<0.5	(5.0	6.0	15.0	5.0	5.0	<1.9	2.0	95.0	33.	1.	2.
VA01923		347.70	1600.0				<5.0	12.0	15.0	7.0	7.0	<1.0	6.0	90.0	32.	3.	3.
VA01924		348.30	2000.0	108.0	230.0	⟨0.5							4.0	50.0	44.	1.	1.
VA01925		349.80	1900.0	55.0	70.0	₹0.5	<5.0	6.0	10.0	<5.0	∴ <5.0	(1.0			57.	3.	3.
VA01926	349.80	351.00	1900.0	93.0	70.0	<0.5	6.0	10.0	15.0	⟨5.0	6.0	<1.0	7.0	40.0		3.	. 2.
VA01927	351.00	352.40	1800.0	128.0	35.0	○0.5	10.0	7.0	10.0	<5.0	<5.0	1.0	4.0	25.0	79.	٠.	

Page No. 2

SAMPLE NUMBER	FROM	то	BA (opm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	(ppm) NI	(ppm)	AS (ppm)	CD (ppm)	MO (ppm)	МЙ (ppm)	CUZN	ETS	FE
WAA1020	254 00	055 00	1000 0	61.0					<i>c</i> .					04.4		_	
VA01928	354.00	355.00	1800.0	61.0	65.0	<0.5	<5.0	4.0	5.0	<5.0	<5.0	<1.0	4.0	20.0	48.	0.	2.
VA01929	355.00	356.10	1800.0	119.0	35.0	<0.5	60.0	7.0	5.0	<5.0	<5.0	<1.0	6.0	30.0	77.	3.	2.
VA01930	356.10	357,20	1700.0	44.0	30.0	. <0.5	9.0	7.0	10.0	9.0	6.0	<1.0	4.0	20.0	59.	3.	3.
VA01931	357.20	357.70	1100.0	88.0	75.0	₹0.5	75.0	20.0	15.0	10.0	56.0	<1.0	10.0	15.0	54.	20.	+10.
VA01932	357.70	358.20	1200.0	162.0	25.0	<0.5	12.0	15.0	15.0	<5.0	16.0	<1.0	7.0	10.0	87.	20.	8.
VA01933	358.20	358.70	1100.0	109.0	20.0	<0.5	21.0	20.0	10.0	<5.0	22.0	₹1.0	5.0	10.0	85.	20.	+10.
VA01934	358.70	359.20	1200.0	66.0	25.0	<0.5	9.0	10.0	10.0	<5.0	14.0	<1.0	8.0	5.0	73.	20.	8.
VA01935	359.20	359.70	1000.0	59.0	20.0	<0.5	18.0	6.0	10.0	<5.0	24.0	<1.0	5.0	5.0	75.	20.	+10.
VA01936	359.70	360.50	1000.0	148.0	25.0	<0.5	17.0	13.0	10.0	<5.0	15.0	(1.0	9.0	15.0	86.	15.	6.
VA01937	360.50	361.40	1600.0	31.0	35.0	₹0.5	17.0	4.0	5.0	<5.0	⟨5.0	<1.0	2.0	15.0	47.	5.	2.
VA01938	361.40	362.30	2000.0	42.0	50.0	⟨0.5	27.0	4.0	5.0	<5.0	6.0	<1:0	4.0	10.0	46.	3.	3.
VA01939	362.30	364.00	2300.0	21.0	35.0	<0.5	7.0	3.0	10.0	<5.0	<5.0	<1.0	3.0	10.0	38.	1.	1.
VA01940	364.00	366.00	2300.0	39.0	420.0	<0.5	6.0	3.0	4.0	⟨5.0	<5.0	<1.0	5.0	15.0	9.	1.	1.
VA01941	366.00	368.00	2100.0	34.0	45.0	<0.5 .	<5.0	3.0	5.0	⟨5.0	<5.0	<1.0	5.0	20.0	43.	1.	1.
VA01943	368.00	369.50	2200.0	20.0	40.0	<0.5	<5.0	2.0	10.0	7.0	<5.0	<1.0 ⋅	3.0	25.0	33.	1,	1.
VA01943	369.50	370.80	2500.0	69.0	115.0	(0.5	7.0	3.0	5.0	7.0	(5.0	<1.0	4.0	40.0	38.	1.	3.
VA01944	370.90	372.20	750.0	64.0	175.0	<0.5	23.0	29.0	25.0	17.0	21.0	<1.0	7.0	930.0	27.	7.	9.
VA01945	372.20	373.70	2100.0	48.0	185.0	<0.5	11.0	8.0	10,0	25.0	14.0	<1.0	3.0	350.0	21.	2.	3.
														60.0	63.	2,	1.
VA01946	373.70	375.20	2800.0	60.0	35.0	⟨0.5	<5.0	3.0	5.0	14.0	5.0	<1.0	4.0				2.
UA01947	375.20	376.70	3000.0	37.0	65.0	<0.5	9.0	5.0	5.0	13.0	10.0	<1.0	5.0	50.0	36.	2,	
VA01946	376.70	378.20	2900.0	33.0	35.0	<0.5	27.0	4.0	5.0	6.0	6.0	<1.0	4.0	15.0	40.	2,	2.
VA01949	378.20	379.70	2500.0	68.0	45.0	<0.5	17.0	4.0	5.0	5.0	6.0	<1.0	3.0	20.0	60.	2.	3.
VA01950	379.70	381.20	2000.0	30.0	110.0	<0.5	<5.0	8.0	15.0	7.0	5.0	<1.0	4.0	105.0	21.	2.	3.


SAMPLE			**********														
NUMBER	FROM	TO	HA (ppm)	(ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	(ppm)	(pp#)	.РВ (ррж)	AS (ppm)	CB (ppm)	MO (ppm)	ММ (ppm)	CUZN	ETS	FE
										<del></del>							
VA01951	381.20	382.70	2800.0	108.0	70.0	₹0.5	9.0	4.0	5.0	<5.0	6.0	<1.0	4.0	20.0	61.	2.	2.
VA01952	382.70	384.20	3000.0	82.0	40.0	₹0.5	13.0	4.0	5.0	15.0	6.0	<1.0	5.0	15.0	67.	2.	2.
VA01953	384.20	385.30	3300.0	326.0	250.0	0.7	21.0	7.0	9.0	32.0	8.0	1.0	5.0	40.0	47.	5.	4.
VA01954	385.30	386.40	3900.0	62.0	195.0	<0.5	7.0	7.0	6.0	13.0	5.0	<1.0	6.0	30.0	24.	5.	2.
VA01955	386.40	387.50	4100.0	175.0	100.0	0.6	8.0	6.0	6.0	50.0	5.0	<1.0	6.0	75.0	64.	5.	3.
VA01956	387.50	388.70	1000.0	170.0	365.0	0.8	78.0	27.0	37.0	50.0	34.0	<1.0	6.0	870.0	32.	5.	4.
VA01957	388.70	390.20	3800.0	812.0	110.0	1.7	68.0	12.0	14.0	152.0	24.0	<1.0	5.0	320.0	88.	3.	3.
VA01958	390.20	391.70	3300.0	31.0	105.0	0.6	124.0	9.0	8.0	162.0	6.0	<1.0	7.0	155.0	23.	3.	2.
VA01959	391.70	393.20	2800.0	74.0	50.0	0.5	103.0	10.0	8.0	61.0	7.0	<1.0	7.0	90.0	60.	3.	2.
VA01960	393.20	394.70	3200.0	86.0	70.0	0.5	43.0	6.0	6.0	27.0	14.0	√1.0	7.0	65.0	55.	3.	2.
VA01961	394.70	396.00	5600.0	40.0	25.0	<0.5	39.0	4.0	4.0	13.0	8.0	<1.0	6.0	40.0	62.	3.	1.
VA01962	396.00	397.50	3100.0	45.0	30.0	<0.5	33.0	6.0	7.0	20.0	6.0	<1.0	7.0	115.0	60.	3.	3.
VA01963	397.50	399.00	2200.0	38.0	30.0	<0.5	17.0	6.0	6.0	10.0	5.0	<1.0	9.0	120.0	56.	3.	3.
VA01964	399.00	400.50	1600.0	53.0	35.0	<0.5	8.0	8.0	10.0	8.0	8.0	<1.0	8.0	180.0	60.	3.	4.
VA01965	400.50	401.70	2000.0	22.0	30.0	<0.5	<5.0	4.0	6.0	6.0	<5.0	<1.0	8.0	90.0	42.	1.	2.
VA01966	401.70	402.90	1700.0	36.0	30.0	<0.5	<5.0	4.0	6.0	6.0	< <b>5.</b> 0	<1.0	8.0	105.0	55.	1.	·i.
VA01967	402.90	404.20	1800.0	35.0	30.0	<0.5	<5.0	5.0	7.0	5.0	5.0	<1.0	7.0	75.0	54.	1.	2.
VA01968	404.20	406.00	2000.0	50.0	30.0	<0.5	<b>&lt;5.0</b>	6.0	11.0	11.0	<5.0	<1.0	9.0	110.0	63.	2.	1.
V401969	406.00	408.00	2100.0	33.0	25.0	<0.5	<5.0	3.0	5.0	7.0	<5.0	<1.0	7.0	40.0	57.	2.	1.
VA01970	408.00	410.00	2500.0	40.0	40.0	<0.5	<5.0	4.0	5.0	6.0	₹5.0	<1.0	7.0	30.0	50.	2.	1.
VA01971	410.00	412.00	2500.0	79.0	225.0	⟨0.5	⟨5.0	4.0	5.0	6.0	<5.0	1.0	7.0	30.0	26.	2.	1.
VA01972	412.00	413.60	2000.0	745.0	1075.0	<0.5	8.0	4.0	5.0	₹5.0	<5.0	3.0	7.0	20.0	41.	2.	2.
VA01973	413.60	414.90	1700.0	1068.0	75.0	0.7	27.0	7.0	8.0	<5.0	⟨5.0	<1.0	7.0	25.0	93.	5.	3.
VA01973	413.60	414.90	1700.0	1068.0	75.0	0.7	27.0	7.0	8.0	<5.0	<5.0	<1.0	7.0	25.0	93.		5.

Hole No. CH88-56

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (ppm)	2N (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	HO (ppm)	HN (ppm)	CUZN	ETS	FE
				**********							******		**********				
VA01974	414.90	416.20	1900.0	252.0	30.0	<0.5	19.0	7.0	8.0	<5.0	8.0	. (1.0	8.0	15.0	89.	5.	3.
VA01975	416.20	416.70	1800.0	469.0	60.0	0.6	84.0	5.0	. 8.0	5.0	16.0	<1.0	8.0	5.0	89.	20.	6.
VA01976	416.70	417.20	1700.0	249.0	30.0	0.5	35.0	4.0	7.0	<5.0	12.0	<1.0	8.0	5.0	89.	20.	5.
VA01977	417.20	417.70	1400.0	455.0	1165.0	0.6	87.0	7.0	11.0	<5.0	20.0	4.0	11.0	10.0	28.	20.	7.
VA01978	417.70	419.00	1300.0	90.0	15.0	<0.5	116.0	10.0	9.0	<5.0	18.0	<1.0	9.0	5.0	86.	2.	3.
VA01979	419.00	420.00	1300.0	71.0	15.0	<0.5	306.0	10.0	11.0	<5.0	18.0	<1.0	9.0	10.0	83.	2.	3.
VA01980	420.00	421.00	1500.0	58.0	10.0	<0.5	87.0	10.0	10.0	≺5.0	20.0	<1.0	8.0	10.0	85.	2.	3.
VA01981	421.00	422.00	2700.0	1164.0	40.0	1.0	256.0	4.0	6.0	⟨5.0	8.0	<1.0	9.0	15.0	97.	2.	2.
VA01982	422.00	423.00	5200.0	697.0	5600.0	1.3	83.0	10.0	17.0	7.0	18.0	13.0	14.0	120.0	11.	5.	4.
VA01983	423.00	424.00	6100.0	816.0	11600.0	1.9	101.0	16.0	28.0	9.0	26.0	42.0	19.0	260.0	. 7.	7.	6.
VA01984	424.00	425.00	4900.0	1063.0	555.0	1.5	124.0	10.0	13.0	7.0	6.0	2.0	17.0	80.0	66.	5.	5.
VA01985	425.00	425.90	7300.0	714.0	670.0	1.3	63.0	8.0	11.0	6.0	18.0	2.0	16.0	30.0	52.	2.	4.
VA01986	425.90	426.70	9900.0	10900.0	5400.0	8.6	318.0	5.0	8.0	136.0	64.0	20.0	16.0	15.0	67.	40.	9.
VA01987	426.70	427.60	9000.0	1071.0	2670.0	1.3	84.0	14.0	82.0	9.0	26.0	13.0	9.0	230.0	29.	5.	4.
VA01988	427.60	428.00	13000.0	3800.0 2	22000.0	7.0	416.0	4.0	6.0	13.0	97.0	111.0	14.0	30.0	15.	10.	4.
VA01989	428.00	429.20	15000.0		9600.0	12.0	562.0	5.0	10.0	209.0	50.0	40.0	12.0	10.0	27.	7.	4.
VA01990	429.20	430.40	19000.0	1960.0		12.0	349.0	5.0	14.0	577.0	45.0	33.0	15.0	5.0	18.	7.	4.
VA01991	430.40		13000.0	3900.0		25.0	2879.9	3.0	7.0	935.0	50.0	124.0	13.0	20.0	13.	25.	4.
UA01992	431.00			7400.0 5		89.5	3119.9	3.0		10100.0	10.0	241.0	14.0	135.0	11.	35.	4.
VA01993	431.50			5400.0		13.0	403.0	3.0	9.0	631.0	10.0	15.0	11.0	30.0	59.	6.	4.
UAU1994	431.90	432.20	13000.0			42.5	1371.4	3.0	10.0	5400.0	38.0	204.0	14.0	60.0	21.	25.	4.
															13.	23. 7.	· 5.
VA01995 VA01996	432.20		10000.0	125.0	385.0	0.7	317.0 19.0	9.0	30.0	1622.0	13.0	65.0 <1.0	12.0	760.0	25.	1.	6.

Hole No. CH88-56

SAMPLE NUMBER	FROM	TO	BA (ppm)	CU (nn=)	ZN	AG	AU	CO	IN	PB	AS	c b	но	ми	CUZN	ETS	FE
				(ppm)	(ppm)	(ppm)	(ppb)	(ppm)	(ррм) 	(ppm)	(ppm)	(ppm)	(ppm)	(pp=e)			
VA01997	437.00	439.00	640.0	130.0	225.0	<0.5	8.0	25.0	51.0	17.0	22.0	<1.0	7.0	900.0	37.	1.	7.
VA01998	485.30	486.80	200.0	80.0	230.0	<0.5	27.0	15.0	35.0	29.0	90:0	. (1.0	5.0	560.0	26-	1.	· <del>c</del>



Summary Log: DDH CH88-57

Location: 40+00 E, 1+90 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: May 20, 1988 Core logged by: J. Pattison

0.0 - 10.5 Casing 10.5 - 21.0 Gabbro

21.0 - 50.0 Felsic and intermediate tuffs

50.0 - 51.0 Gabbro

Core is broken and blocky due to the Fulford Fault splay which occurs at the lower contact.

51.0 - 53.0 Nanaimo sediments

53.0 - 61.6 Quartz-sericite schist

Up to 7 % disseminated pyrite and trace chalcopyrite.

61.6 - 68.5 Mafic to intermediate tuffaceous sediments

68.5 - 83.8 Nanaimo Conglomerate

83.8 - 202.2 Feldspar porphyritic gabbro

202.2 - 236.1 Cherty felsic tuff / tuffite

236.1 - 262.0 Feldspar porphyritic gabbro

262.0 - 270.0 Cherty felsic tuff / tuffite

270.0 - 313.3 Cherty argillite and greywacke

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-57

Hole Location: 40+00 E 1+90 S

NTS: 92B13

UTM: 5416242.3 N 431130.2 E

Azimuth: 210 Dip: -50 Elevation: 558 m Length: 313.3 m

Started: 14-May-88

Completed: 20-May-88

Purpose: To test updip of Chem87-31.

Claim No. Chip 1 Section No.: 40+00 E

Logged By: J. Pattison

Drilling Co.: Burwash Entrprises

Assayed By: Bonadar-Clegg & XRAL

Core Size: NQ

DIP TESTS

Azi-Azi-Length muth Dip Length muth Dip 30.80 209.0 -52.0 211.0 -52.0 216.70 122.20 208.0 -52.0 305.10 211.0 -53.5

From To To Width Total Sample From Cu Zn Αg Au Вa (m) (m) -----DESCRIPTION-----No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppb) (ppm) (ppm)

#### 10.5 OVERBURDEN

#### 10.5 21.0 MAFIC INTRUSIVE

Dark green, fine-grained and locally feldspar porphyritic. Weak pervasive and fracture controlled carbonatization and weak fracture controlled hematization. Specks < 2 mm in diameter of a light brown soft alteration mineral (Fe carbonate ?) occur throughout the rock. Quartz-carbonate healed fractures are common. The core is broken and blocky throughout the interval and lost core intervals are listed below. .

10.7-12.2 m: 1.0 m lost core. 12.2-14.0 m: 0.4 m lost core.

14.0-17.1 m; 1.5 m lost core.

20.4-23.2 m; 0.3 m lost core.

#### STRUCTURE:.

17.6-18.0 M fault gouge at 60 degrees to core axis.

#### 21.0 23.8 WEAKLY CHLORITIC FELSIC TUFF

Mottled green-grey altered chloritic felsic to intermediate tuffs. Rock has a brecciated appearance throughout. Becomes quite siliceous and very fine-grained below 22.8 m. 1-2 % fracture controlled pyrite.

#### STRUCTURE: .

At 22.8 m bedding is at 35 degrees to core axis.

22.0 22.8 Alteration patch or mafic dyke. Rock is green-brown, chloritic moderately pervasively

n/a 854 VA02841 21.0 50.0 29.0 43 n/a n/a n/a

PROPERTY:	Chemainus d	ĮV

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-57 2

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba ) (ppm)
		carbonatized and mafic in composition. Upper contact is fault breccia at 60 degrees to core axis and lower contact is very irregular at 10-50 degrees to core axis.											
		10-50 degrees to core axis.											
23.8	31.5	INTERMEDIATE TUFF Medium green intermediate to mafic tuff with up to 5 % ash-sized quartz grains. Relatively massive, bedding not observered. Lower contact is at 65 degrees to core axis.	VA03856 VA03857 VA03858	25.6 26.6 27.1	26.6 27.1 28.1	1.0 .5 1.0	1 4 1	65 64 42	7 5 <5	105 80 115	<1 <1 <1	<5 7 14	730 440 <20
		STRUCTURE:. 27.1-28.7 m 0.2 m of lost core for no obvious reason. 29.5-30.2 M blocky, highly fractured core.											
		ALTERATION:. 23.8 31.9 MODERATE PERVASIVE CHLORITIZATION and WEAK FRACTURE CONTROLLED CARBONATIZATION.											
•		SULPHIDES:.											
		26.6-27.1 m 4 % fracture controlled pyrite and possibly trace sphalerite.											
31.5	40.0	CHLORITIC FELSIC LAPILLI TUFF											
		Composed of 5-10% beige to light grey rounded felsic fragments 2-5 mm long and 2-5%, 2 to 4 mm grey-blue	VA03859 VA03860	31.5 33.0	33.0	1.5		227 137	57	420 335	1	70	4300 4000
		quartz eyes in a fine-grained siliceous, weakly to moderately chloritic and moderately sericitic well	VA03861 VA03862	33.5 35.0	35.0 36.0	1.5		115 139	40 32	340 65	(1) (1	22 14	2900 1500
		foliated matrix. Lower contact is a 1.0 cm fault gouge at 60 degrees to core axis.	VA03863 VA03864	36.0 39.0	39.0 40.0	3.0 1.0	5 3	142 10	21 <5	55 35	1 (1	15 <5	
		STRUCTURE:											
		31.7-32.1 M fault gouge at 50-60 degrees to core axis. 0.3 m of lost core.											
		At 33.5 m foliation is at 50 degrees to core axis. 33.5-34.5 M FAULT ZONE at 50 degrees to core axis. 0.7 m											

of lost core.
ALTERATION:.

of lost core.

31.5 40.0 WEAK PERVASIVE CHLORITIZATION , MODERATE PERVASIVE SERICITIZATION.

SULPHIDES:.

31.5-33.0 m 4 % disseminated pyrite.

33.0-33.5 m 7 % pyrite, disseminated and in a 0.5 cm band at 50 degrees to core axis.

35.7-38.4 M blocky, highly fractured core. 0.3 m of lost core.
38.6-39.1 M fault gouge at 52 degrees to core axis. 0.4 m

PROPERTY:	Chemainus	.TV

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-57 3

(m)	(m)	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb	Ba (ppm)
		33.5-38.4 m 4 % disseminated and fracture controlled pyrite											
		38.4-39.0 m 7 % disseminated pyrite.											
		39.0-40.0 m 3 % disseminated pyrite.											
		35.1 888.8 Chloritic mafic dyke or tuff at 55 degrees to											
		core axis.											
40.0	50.0	FELSIC TUFF											
		Light grey sericitic felsic tuff with occasional white	VA03865	40.0	41.0	1.0	5	46	47	45	<1	7	1000
		quartz eye up to 5 mm in diameter.	VA03866	41.0	42.0	1.0	5	33	56	50	· <1		1100
		5 % 1 to 3 mm feldspar crystals between 44.2 and 45.3 m.	VA03867	42.0	43.2	1.2	5	354	47	45	1	25	1400
		Feldspars have a pinkish caste due to hematzation. Broken	VA03868	43.2	43.6	. 4	3 .	102	11	90	<1	18	550
		core at the lower contact.	VA03869	43.6	44.0	. 4	3	43	21	70	<1	- 5	1900
			VA03870	44.0	45.0	1.0	3	14	19	30	<1	27	1500
		STRUCTURE:.	VA03871	45.0	46.0	1.0	3	31	14	70	<1	525	1700
		41.1-42.7 M blocky, highly fractured core 0.6 m of lost	VA03872	46.0	47.0	1.0	3	17	7	50	<1	29	1700
		core.	VA03873	47.0	48.0	1.0	3	27	₹5	60	<1		1600
		At 41.5 m foliation is at 70 degrees to core axis.	VA03874	48.0	50.0	2.0	3	34	8	90	<1	17	1600
		46.3-50.0 M blocky, highly fractured core. Fault zone (?). 1.7 m of lost core.											

#### ALTERATION:.

40.0 50.0 STRONG PERVASIVE SERICITIZATION and locally WEAK FRACTURE CONTROLLED CHLORITIZATION.

#### SULPHIDES:.

40.0-43.2 m 5 % pyrite in bands (stringers/fractures) < 2 mm thick roughly parallel to foliation.
43.2-43.6 m 3 % pyrite, trace sphalerite and chalcopyrite in irregular quartz veins and pods up to 2.0 cm wide.
43.6-50.0 m 3 % disseminated and fracture controlled pyrite. Dark green to black chlorite sometimes occurs along the fractures.

- 40.0 41.1 Dark green fine-grained chloritic mafic dyke.

  Upper and lower contacts are slips at 60 degrees to core axis.
- 42.7 43.0 MAFIC DYKE at 75 degrees to core axis.
- 43.2 43.6 MAFIC DYKE at 65 degrees to core axis. Several quartz-carbonate veins with pyrrhotite and chalcopyrite.

#### 50.0 51.0 MAFIC INTRUSIVE

Dark green, fine-grained mafic dyke. Weak fracture controlled carbonate alteration and very weak hematization. Light brown alteration mineral (Fe carbonate?) occurs as 1-3 mm specks throughout the unit.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-57 4

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Vidth (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	2n (ppm)	Ag (ppm)	Au (ppl	Ba o) (ppm	ı)
		Core is broken and blocky over the entire interval and there is 0.2 m of lost core. Broken core at lower contact.												
51.0	52.5	NANAIMO ARGILLITE Dark brown, massive argillite. Core is broken and blocky												
		throughout. 0.9 M of lost core. Lower contact is at 50 degrees to core axis.												
52.5	53.0	NANAIMO CONGLOMERATE												
		Matrix supported pebble to cobble conglomerate. Clasts are												
		rounded and occur in a matrix which grades from a dark brown argillite to a coarse wacke with depth. The												
		following clast types occur.												
		Feldspar porphyritic gabbro (60 %.												
		Fine-grained light grey pyrite-bearing felsic tuff (40%).												
		Lower contact is a slip at 70 degrees to core axis.												
_														
		TRUCKS OULDER OVE BUSE												
53.0	61.6	FELSIC QUARTZ EYE TUFF Light grey, fine-grained strongly sericitic felsic tuff.	VA03875	53.0	55.0	2.0	<b>A</b>	118	48	165	(1	42	2600	
		Rock is crushed and strongly foliated (poker chipped). In	VA02842	53.0	61.6	8.6	n/a	121	n/a		n/a	n/a		
		a few places light grey felsic lapilli can be recognized.	VA03876	55.0	56.0	1.0	4	168	108	415	1		1900	
		Broken core (fault) at the lower contact.	VA03877	56.0	57.0	1.0	4	281	91	755	<1	74	1200	
			VA03878	57.0	58.0	1.0	7 3	1401	10	70	<1	47	980	
		STRUCTURE:.	VA03879	58.0	60.0	2.0	4	86	. 11	50	<1		1200	
		At 53.5 m 5.0 cm fault gouge at 80 degrees to core axis.	VA03880	60.0	61.0	1.0	4	159	. 10	40	(1		1200	
		53.6-54.9 M blocky, highly fractured core. 1.0 m of lost core.	VA03881	61.0	61.6	. 6	4	70	9	70	<1	13	1500	
		At 55.3 m foliation is at 60 degrees to core axis.												
		57.7-59.4 M FAULT ZONE at 40 to 55 degrees to core axis.												
		1.4 m of lost core.												
		60.7-61.0 M fault gouge at 30 degrees to core axis.												
		61.3-61.6 M fault zone. Not possible to measure orientation. 0.3 m of lost core.												
		orientation. U.) m of lost core.												
		ALTERATION.												
		53.0 54.9 STRONG PERVASIVE SERICITIZATION. Occasional spot												
		of mariposite.												
		54.9 61.6 WEAK PERVASIVE CHLORITIZATION and MODERATE												
		PERVASIVE SERICITIZATION.												
		CUI DUI DUI DEG												
		SULPHIDES:												
		53.0-57.0 m 4 % disseminated and fracture controlled pyrite 57.0-58.0 m 7 % pyrite and 0.25 % chalcopyrite. Sulphides												
		57.0-58.0 m / * pyrice and 0.25 * charcopyrice. Sulphides												

occur in bands (2 mm wide parallel to foliation.

58.0-61.6 m 4 % disseminated pyrite and trace chalcopyrite.

FALCONBRIDGE LIMITED DIAMOND DRILL LOG HOLE No: Page Number CH88-57 5

From (m)	To (m)	DESCRIPTION	Sample No.	From (m)	To Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
		Green, fine-grained locally cherty mafic tuff with beds.	VA03882	61.6	62.6 1.0	1	83	₹5	65	(1	14	580
		ripped-up beds and blocks of pale brown cherty sediments. Rock is broken and blocky over most of the interval. Nil	VA02843	61.6	68.5 6.9	n/a	307	n/a	50	n/a	n/a	840
		to trace disseminated pyrite. Lower contact is a 2.0 cm fault gouge at 60 degrees to core axis.										

#### 68.5 83.8 NANAIMO CONGLOMERATE

Clast supported, unsorted pebble to cobble conglomerate. The clasts are subangular to subrounded. The following clast types occur:. Feldspar porphyritic gabbro (80 %). Felsic volcanics/volcaniclastics (10%). Cherty fine-grained sediments (5 %). Quartz pebbles (5%). Core is broken and blocky over the entire interval. Lower contact is irregular but appears to be an errosional unconformity.

At 68.5 m 2.0 cm fault gouge at 60 degrees to core axis.

#### STRUCTURE:.

72.2-73.0 M blocky, highly fractured core. 0.2 m of lost core.

74.3 82.9 Large boulder of FELDSPAR PORPHYRITIC GABBRO.
Dark green fine-grained with 5-10%, 2-3 mm
feldspar phenocrysts and up to 4 % ilmenite as
anhedral spots 1-2 mm in diameter often rimmed
by leucoxene.

#### STRUCTURE:

Core is broken and blocky over most of the interval. 75.0-75.6 M blocky, highly fractured core. 0.1 m of lost core.

77.0-78.0 M blocky, highly fractured core. Several slips at 60-80 degrees to core axis. 0.3 m of lost core. 79.0-82.7 M FAULT ZONE at 60-70 degrees to core axis. 1.3 m of lost core.

#### 83.8 202.2 FELDSPAR PORPHYRITIC GABBRO

Dark green, fine-grained, massive with 5-10% white 1-3 mm feldspar phenocrysts and 2-3% finely diss ilmenite rimmed by white leucoxene. Varies from a fine-grained feldspar porphyritic gabbro to a medium-grained equigranular gabbro. All mafic minerals have gone to chlorite. Locally weakly glomeroporphyritic. Weak to moderate fracture controlled quartz-carbonate alteration. Unoriented quartz-carbonate veinlets and veins up to 1.0

From

(m)

To

(m)

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-57 6

cm thick are common throughout the unit. Lower contact is at 35 degrees to core axis. STRUCTURE: . 84.0-87.5 M blocky FAULT ZONE. Not possible to measure orientation of the fault. 1.1 m of lost core. 91.0-93.0 M blocky, highly fractured core. 1.2 m of lost 95.7-96.8 M blocky, highly fractured core. 0.2 m lower contact. Slip at 15 degrees to core axis at 96.7 m. 100.9-102.4 M blocky, highly fractured core. 113.8-115.7 M blocky, highly fractured core. 0.2 m of lost 122.5-135.6 M blocky, highly fractured core. 1.3 m of lost core. Fault gouge runs close to the core axis between 134.7 and 135.0 m. 138.5-141.7 M blocky, highly fractured core. 0.3 m of lost 145.1-145.6 M blocky, highly fractured core. 0.2 m of lost 148.3-148.5 M fault zone at 25 degrees to core axis. 153.2-153.5 M blocky, highly fractured core. 0.2 m of lost

-----DESCRIPTION-----

At 196.0 m 1.0 cm fault gouge at 50 degrees to core axis.

103.0 106.2 Occasional epidote+/-calcite veins and patches up to 1.0 cm wide.

167.0-169.0 M foliation is almost parallel to the core axis

163.2-163.4 M blocky, highly fractured core. 0.1 m of lost

At 163.6 m slip at 15 degrees to core axis.

cm thick are common.

111.6 125.6 Quartz-carbonate veinlets and veins up to 0.5

- 133.8 134.3 Coarse-grained granophyric phase of the gabbro.
- 142.1 149.8 Specks of a soft light brown clay alteration mineral throughout the rock (2 %) does not fizz in HCl.
- 154.9 155.4 Weakly sheared and carbonatized zone at 30 degrees to core axis.
- 159.2 159.4 Coarse-grained ilmenite rich granophyric phase of the gabbro. Upper and lower contacts with the medium-grained gabbro are at 35-40 degrees to core axis.
- 159.4 160.0 Quartz-carbonate veins up to 3.0 cm wide at 0-30 degrees to core axis with 0.5 % chalcopyrite.

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

7

4

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-57 7

From (m)	To (m)		DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppl		
		163.6 164.5	Fine-grained non feldspar porphyritic section. Many quartz-carbonate veins and pods and dark green to black chlorite spots are common.												
		166.4 170.0	Carbonate+/-quartz altered zone. Many carbonate-filled fractures and locally rock is brecciated. Carbonate veins are cut by quartz-carbonate veins up to 2.0 with trace chalcopyrite up to 3.0 cm wide at 30-40 degrees to core axis.												
		174.7 175.9	Coarse-grained granophyric phase of gabbro. 10-15 % coarse-grained ilmenite almost entirely altered to leucoxene. Broken core at the upper contact. 0.4 cm quartz filled fracture at 50 degrees to core axis at the lower contact.												
		188.3 188.5	Quartz-carbonate vein with minor hematite at 20 degrees to core axis.												
202.2 2	236.1	CHERTY FELS	IC TUFF / TUFFITE												
		mottled, fi argillite b Occasional thick. Mode Microfractu gabbro dyke blocky over and intrusi	rained cherty light grey to green to brown, nely bedded to laminated felsic tuffite. Black eds up to 4 mm thick are common above 206.0 m. bed of mafic to intermediate tuff (1.5 cm rately to intensely microfractured. res are healed with quartz+carbonate. Two s near the upper contact. Rock is broken and most of the interval. Lower contact is sharp we looking at 30 degrees to core axis.	VA03883 VA02844 VA03884 VA03885 VA03886 VA03887 VA03889 VA03889 VA03890 VA03891	203.2 204.0 205.0 206.0 207.0 208.0 209.0	236.1	.4 33.9 .8 1.0 1.0 1.0 1.0 1.0	2 n/a 2 2 2 2 2 2 2 2 2	95 41 49 27 39 59 45 36 57	10 n/a 6 (5 7 6 6 (5 (5 (5 (5 )	65 55 50 55 65 55 55 55	<1 n/a <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	n/a 6 5 5 6 6	2500 5260 2900 7600 5700 4100 3800 5200 4400	
			dding is at 43 degrees to core axis. M blocky, highly fractured core. 0.2 m of lost	VA03892 VA03893 VA03894 VA03895	212.0	212.0 214.0 215.0 216.0	1.0 2.0 1.0 1.0	2 2 2 2	20 23 35 30	6 6 7 6	45 85 135 50	<1 <1 <1 <1 <1	₹5 ₹5	5100 2800 3900 3000	
		209.0-209.4 core.	bedding is at 30 degrees to core axis.  M blocky, highly fractured core. 0.2 m of lost	VA03896 VA03897 VA03898	216.0 217.7 218.0	217.7 218.0 219.0	1.7	2 2 1	11 57 14	<5 <5 <5	70 65 45	<1 <1 <1	₹5 ₹5	1200 270 1500	
		core. At 215.3 m	M blocky, highly fractured core. 1.3 m of lost bedding is at 15 degrees to core axis.  M blocky, highly fractured core. 2.1 m of lost	VA03899 VA03900 VA03901 VA03902	221.3 223.1	221.3 223.1 224.0 225.0	2.3 1.8 .9 1.0	1 1 1	8 21 10 8	(5 15 6 7	45 110 90 120	(1 (1 (1	₹5 ₹5	1900 2000 1700 6700	
		core. Most 221.3 m.	core loss (1.2 m) occurs between 220.1 and dding is at 20 degrees to core axis.	VA03903 VA03904 VA03905	225.0 226.2 227.0	226.2 227.0 228.0	1.2	1 1 1	30 28 50	7	100 155 100	(1 (1 (1	₹5 ₹5	8700 5400 3800	
		core.	M blocky, highly fractured core. 0.1 m of lost M blocky, highly fractured core.	VA03906 VA03907 VA03908	229.0	229.0 230.0 232.0	1.0 1.0 2.0	1 1 1	52 13 39	10 6 5	65 55 65	(1 (1 (1	₹5	1700 1100 2100	

#### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Sample From To

VA03909 232.0 233.0

VA03910 233.0 234.0

VA03911 234.0 235.0

(m)

VA03912 235.0 236.1 1.1

(m)

No.

Width

(m)

1.0

1.0

1.0

Total

1

1

1

Sulphides (ppm)

HOLE No: Page Number CH88-57

Aq

<1

<1

<1

(ppm)

(ppb) (ppm)

<5 - 350

(5 970

(5 140

(5 190

Zn

105

160

111

(ppm) (ppm)

(5

12

32

Cu

23

29

20

From (m)	To (m)	DESCRIPTION
		229.0-232.8 M blocky, highly fractured core. 1.4 m of lost
		core. At 235.5 m bedding is at 25 degrees to core axis.
		ALTERATION: . 202.2 233.1 WEAK FRACTURE CONTROLLED CARBONATIZATION and WEAK FRACTURE CONTROLLED SILICIFICATION.
		SULPHIDES:. 202.2-202.6 m 1.5 % fracture controlled pyrite and trace chalcopyrite.
		203.2-218.0 m 2 % fracture controlled pyrite. 218.0-233.1 M trace to 1 % fracture controlled pyrite.
		202.6 203.2 Fine-grained feldspar porphyritic mafic dyke with a 10 cm xenolith of cherty siltstone.  Upper contact is at 60 degrees to core axis and lower contact is at 30 degrees to core axis
		205.2 205.3 Rhythmically banded cherty siltstone and black argillite. Beds are 1 to 4 mm thick.
		205.8 207.4 Intensely microfractured and brecciated zone fractures are filled with quartz+/-carbonate. 2 % fracture controlled pyrite.
		217.7 218.0 Carbonate-chlorite-epidote alteration zone at 40 degrees to core axis.
		224.6 225.0 Carbonate altered mafic tuff beds up to 2.0 cm thick.
		223.1 224.0 Grainsize increases to sand. Moderate pervasive carbonatization.
		232.0 232.2 Massive green MAFIC TUFF. Broken core at upper and lower contacts.
		230.1 234.0 Massive green MAFIC TUFF. Upper contact is a 5 mm fault gouge at 60 degrees to core axis.  Lower contact is at 50 degrees to core axis.
		235.0 236.1 Tuff becomes a coarse-grained mafic tuff.

235.0 236.1 Tuff becomes a coarse-grained mafic tuff. 236.1 262.0 FELDSPAR PORPHYRITIC GABBRO

Medium green fine-grained feldspar porphyritic gabbro with 1-3 % finely disseminated ilmenite. 0.3 m chill margin at the upper contact. Quartz-carbonate veinlets and veins up to 10 mm thick are common. There are at least two generations of quartz-carbonate veining. In zones of

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-57 9

From (m)	To	DESCRIPTION	Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu	Pb	Zn (ppm)	Ag (ppm)	Au (nph	Ba o) (ppm	m )
,,,,,	,,,,,,			1447	(1447	(1117	Sulphildes	(ррш)	(ppiii)	(Shu)	(ppm)	(PPD	, (pp.	.,
		moderate quartz-carbonate veining rock is non feldspar porphyritic. Lower contact is at 40 degrees to core axis.												
		STRUCTURE:.												
		250.1-250.5 M fault gouge at 60 degrees to core axis. 0.3 m of lost core.												
		251.4-251.5 M fault gouge at 40 degrees to core axis.												
		244.2 245.0 Non feldspar porphyritic zone. Epidote filled microfractures.												
		245.6 252.5 Up to 2 % flakes of a light brown clay mineral (2 mm in diameter throughout the rock.												
		254.0 888.8 Few specks of hematite in quartz-carbonate												
		veinlets.												
2.22														
262.0	270.0	CHERTY FELSIC TUFF / TUFFITE Similiar to 202.2 to 236.1 except has more pyrite (2-4 %),	VA02845	262.0	270.0	8.0	n/a	38	n/a	85	n/a	n/a	5170	
		bedding much less recognizable. Becomes argillaceous and	VA03913	262.0	263.0	1.0	1	21	25	185			4300	
		turns dark grey towards its lower contact. Up to 5 %	VA03914	263.0	263.3	.3	2	28	17	650	<1	6 1	0008	
		feldspar crystals (< 1 mm occur locally. Rock has a pale	VA03915	263.3	264.0	. 7	2	12	21	74	<1		2600	
		pinkish-brown caste over the first 1.3 m. Due to very	VA03916	264.0	265.0	1.0	4	35	22	159	<1		1600	
		finely disseminated biotite. Lower contact is gradational.	VA03917	265.0		1.0	4 .	24	20	154	(1		3300	
			VA03918	266.0	267.0	1.0	4	27	22	73	<1		2400	
		STRUCTURE:	VA03919		268.0	1.0	4	35 33	27 30	106 30	<1 <1		1500 2200	
		At 262.8 m bedding is at 38 degrees to core axis. At 264.6 m bedding is at 25 degrees to core axis.	VA03920 VA03921	268.0 269.0		1.0	4	34	23	36	<1		2000	
		ALTERATION:.												
		SULPHIDES:.												
		262.0-263.3 m 1 % fracture controlled pyrite.												
		263.3-270.0 m 3-4% fracture controlled pyrite.												
270.0	313.3	BLACK ARGILLITE												
		Massive, dark grey to black cherty weakly graphitic	VA03922	270.0		1.0	. 4	56	23	46	1		3600	
		argillite. Locally moderately graphitic. Blocky, broken	VA03923	271.0	272.0	1.0	4	40	25	65	1		2000	
		core throughout. Quartz-carbonate filled fractures	VA03924		273.0	1.0	4	49	26	45	1		2400	
		throughout.	VA03925	273.0		1.0	4	35	23	80	. 1		2000 1500	
		STRUCTURE:.	VA03926 VA03927	274.0 275.0	275.0	1.0 3.0	4	39 19	25 24	56 87	<1 <1		1700	
		269.8-270.3 M slip runs nearly parallel to the core axis.	VA03927	278.0		1.5	2	40	28	87	1	_	1800	
		274.9-279.6 M blocky, highly fractured core. 3.3 m of lost	VA03929	279.5	280.4	.9	2	14	28	49	(Î		1300	
		core.	VA03930	280.4		2.0	2	16	25	87	(1		1600	
		281.2-282.2 M fault gouge runs parallel to the core axis.	VA03931	282.4	284.1	1.7	2	14	24	61	(1		1300	
		281.2-284.1 M blocky, highly fractured core. 0.5 m of lost	VA03932	284.1		1.0	2	28	26	76	(1		4500	
		core. At 284.2 m bedding is at 20 degrees to core axis.	VA03933 VA03934			1.0	2 2	14 19	20 18	73 69	<1 <1		3000 4700	
							<del>-</del> -		-					

FALCONBRIDGE LIHITED DIAHOND DRILL LOG

HOLE No: Page Number CH88-57 10

From (m)	To (m)DESCRIPTION		Sample No.	From (m)	To (m)	Width (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au Ba (ppb) (ppm)
	At 288.0 m bedding is at 13 degrees to core axis.		VA03935	287.1	288.1	1.0	2	18	18	97	(1	(5 3300
	288.7-308.0 M blocky, highly fractured core. 10.8 m of		VA03936	288.1	289.1	1.0	2	18	21	88	<b>(1</b>	(5 4700
	lost core.		VA03937	289.1	290.1	1.0	2	14	21	93	<b>&lt;1</b>	(5 4200
	At 312.2 m bedding is at 12 degrees to core axis.		VA03938	290.1	294.7	4.6	2	32	34 .	99	1	<b>(5 1700</b>
	309.0-311.5 m. 1.3 m of lost core.		VA03939	294.7	299.0	4.3	2	50	38	80	<1	⟨5 1100
			VA03940	299.0	302.0	3.0	2	16	26	75	<1	<b>(5 1800</b>
	ALTERATION:.		VA03941	302.0	308.0	6.0	2	24	26	70	<1	(5 2300
	270.0 313.3 WEAK FRACTURE CONTROLLED CARBONATIZATION.		VA03942	308.0	309.0	1.0	4	46	30	90	<1-	6 2900
			VA03943	309.0	312.0	3.0	4	22	26	83	(1	(5 2100
	SULPHIDES:.		VA03944	312.0	313.3	1.3	4	15	22	74	<1	<b>(5 3500</b>
	270.0-278.0 m 4 % fracture controlled pyrite.											
	278.0-308.0 m 2 % disseminated and fracture controlled pyrite.	1										
	308.0-313.3 m 4 % fracture controlled pyrite.											

279.6 888.8 Angular clast of coarse felsic tuff 4.0 cm wide

280.4 281.2 Reworked, coarse quartz grain rich felsic tuff. Broken core at the upper and lower contacts.

284.1 285.2 Medium grey coarse-grained greywacke. Bedding is common and beds are 0.5 to 2.0 cm thick at 20-25 degrees to core axis. Rock has a crushed appearance and locally bedding is very contorted. 2 % disseminated pyrite. Broken core at upper contact and lower contact is at 25 degrees to core axis.

285.5 288.9 Greywacke as 284.1 to 285.2 m with intervals of black argillite up to 0.4 m long. Bedding is at 10-30 degrees to core axis. 3 % disseminated and fracture controlled pyrite 0.5 cm thick band of carbonate+biotite at 30 degrees to core axis at the upper contact. Lower contact is at 20 degrees to core axis.

SAMPLE NUMBER	FROM	TO	<b>25102</b>	1AL203	ZCA0	XHGO	ZNA20	XK20	XFE203	ZT 102	XP205	ZHNO	XLOI	SUM	BA	AI	NACA
			-														
VA02387	27.30	27.80	51.60	15.60	3.99	5.33	4.76	0.60	9.40	0.89	0.29	0.17	6.47	99.10	140.	40.	9.
VA02388	40.50	40.80	77.50	12.90	0.49	0.76	1.09	3.49	1.24	0.27	0.06	0.01	1.85	99.66	1250.	73.	2.
VA02389	126.10	126.30	48.30	13.40	10.50	6.73	1.85	0.20	13.90	1.94	0.16	0.21	2.47	99.66	187.	36.	12.
UA02390	144.00	145.00	42.70	13.90	11.10	5.07	2.64	0.42	11.10	1.74	0.17	0.16	10.20	99.20	379.	29.	14.
VA02391	161.00	161.20	47.00	12.50	9.62	6.59	1.75	0,.19	15.40	2.40	0.25	0.23	3.39	99.32	130.	37.	11.
VA02392	177.80	178.20	48.10	13.40	10.80	7.66	1.83	0.69	12.30	1.44	0.12	0.20	2.85	99.39	707.	40.	13.
VA02393	206.60	206.90	81.90	5.73	0.65	1.51	1.10	0.98	4.55	0.29	0.07	0.06	1.54	98.38	4880.	. 59.	2.
VA02394	218.40	218.60	72.20	9.05	4.73	1.46	3.09	0.95	3.35	0.30	0.52	0.08	3.39	99.12	1410.	24.	8.
VA02395	229.30	229.60	84.60	4.07	3.19	0.83	1.57	0.15	1.79	0.15	0.10	0.06	2.54	99.05	562.	17.	5.
VA02396	262.50	262.60	79.00	9.11	1.84	0.78	2.60	1.30	2.19	0.20	0.04	0.05	1.93	99.04	2430.	32.	4.
VA02397	268.30	268.50	82.50	5.31	2.21	0.83	0.07	1.44	3.34	0.19	0.04	0.05	1.95	97.83	2250.	50.	2.

SAMPLE NUMBER	FROM	TO	. R.B (pgm)	SR (ppm)	BA (ppm)	Y (ppm)	ZK (ppm)	44 (mgc)	(00 (ppm)	2N (ppm)	NI (ppm)			 KOCK	CODES	MIN
VA02387	27.30	27.90	23.0	211.0	140.0	40.0	80.0	18.0	93.0	77.0	<10.0			TIAM	PHM	DBP
VA02388	40.50	40.80	76.0	14.0	1250.0	14.0	94.0	<10.0	<10.0	13.0	<10.0			TFAT	SH¥	DCP
VA02389	126.10	126.30	19.0	184.0	197.0	25.0	97.0	10.0	244.0	77.0	102.0			PMAME	7	A
VA02390	144.00	145.00	33.0	183.0	379.0	28.0	81.0	22.0	280.0	58.0	56.0			PHAM	FCM	DEP
VA02391	161.00	161.20	<10.0	166.0	130.0	33.0	114.0	20.0	500.0	90.0	110.0			PMBME	? .	DBP
VA02392	177.80	178.20	37.0	239.0	707.0	<10.0	40.0	<10.0	222.0	40.0	122.0			PHAFM	?	· À ·
VA02393	206.60	206.90	23.0	50.0	4880.0	<10.0	28.0	12.0	80.0	16.0	25.0			TEAM	FCW	A
VA02394	218.40	218.60	31.0	234.0	1410.0	39.0	50.0	16.0	62.0	<10.0	25.0			TEAM	?	A
VA02395	229.30	229.60	12.0	86.0	562.0	<10.0	20.0	<10.0	<10.0	15.0	12.0			TFAM	?	FBP
VA02396	262.50	262.60	49.0	107.0	2430.0	29.0	41.0	<10.0	18.0	23.0	<10.0		*	TFAM	?	FBP
VA02397	268.30	268.50	38.0	23.0	2250.0	21.0	29.0	14.0	14.0	<10.0	16.0			TEAM	?	FCP

SAMPLE NUMBER	FROM	TO	XS 102	ZAL203	ICAO	zngo	ZNA20	XK20	ZFE203	21102	ZP205	2HNO	XL0I	SUM	BA	AI	NACA
																	MACA
VA02841	21.00	50.00	55.20	13.90	5.80	2.93	1.73	2.97	6.20	0.83			8.47	98.03	854.	44.	8.
VA02842	53.00	61.60	68.70	15.30	1.19	1.69	0.57	3.89	3.89	0.35			3.39	98.97	1740.	76.	2.
VA02843	61.60	68.50	51.40	16.20	5.21	6.52	4.06	2.05	9.81	0.82			3.08	99.15	840.	48.	9.
VA02844	202.20	236.10	74.20	8.68	2.89	1.70	2.52	0.98	4.12	0.31			2.23	97.63	5260.	33.	5.
VA02845	262.00	270.00	72.80	8.78	3.91	1.14	1.54	1.72	3.86	0.26			3.39	97.40	5170.	34.	5.

SAMPLE															
NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppma)	Y (ppm)	ZR (ppm)	NB (ppm)	CU (ppm)	ZN (ppm)	NI (ppm)		ROC	CODES K ALT	MIN
									**********			 			
VA02841	21.00	50.00			854.0				89.0	43.0	28.0		IFAT	PHW	nan
VA02842	53.00	61.60			1740.0				121.0	325.0	<10.0				DCP
VA02843	61.60	68.50			0.40					020.0	110.0		IFAI	PSS	DCP
					840.0				307.0	50.0	49.0		TIA	PMW	DBP
VA02844	202.20	236.10			5260.0				41.0	<10.0	20.0		TFA	2	
VA02845	262.00	270.00			- 								IFM	· ·	FBP
		2,010			5170.0				38.0	85.0	18.0		TFA	FCW	FCP

AMPLE UMBER	FROM	TO	- BA - (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI. (ррм)	PB (ppm)	AS (ppm)	CD (ppm)	. НО (ррж)	MN (ppm)	CUZN	ETS	FE
					+					· ppar	, pp,						
VA03856	25.60	26.60	730.0	65.0	105.0	<0.5	<5.0	14.0	12.0	7.0	<5.0	<1.0	4.0	830.0	38.	1.	6.
JA03857	26.60	27.10	440.0	64.0	80.0	<0.5	7.0	14.0	16.0	5.0	14.0	<1.0	4.0	760.0	44.	4.	5.
VA03858	27.10	28.10	<20.0	42.0	115.0	<0.5	14.0	14.0	12.0	⟨5.0	22.0	<1.0	3.0	750.0	27.	1.	6.
A03859	31.50	33.00	4300.0	227.0	420.0	1.0	29.0	10.0	10.0	117.0	20.0	3.0	8.0	425.0	35.	4.	4.
/A03860	33.00	33.50	4000.0	137.0	335.0	0.6	70.0	11.0	11.0	57.0	33.0	1.0	8.0	475.0	29.	7.	4.
/A03861	33.50	35.00	2900.0	115.0	340.0	<0.5	22.0	10.0	17.0	40.0	14.0	2.0	7.0	570.0	25.	4.	4.
/A03862	35.00	36.00	1500.0	139.0	65.0	<0.5	14.0	12.0	15.0	32.0	12.0	<1.0	5.0	275.0	68.	4	3.
PA03863	36.00	39.00	1500.0	142.0	55.0	0.8	15.0	7.0	7.0	21.0	9.0	. <1.0	6.0	150.0	72.	5.	3.
/A03864	39.00	40.00	1200.0	10.0	35.0	<0.5	<5.0	4.0	7.0	<5.0	<5.0	<1.0	4.0	220.0	22.	3.	1.
A03865	40.00	41.00	1000.0	46.0	45.0	<0.5	7.0	8.0	18.0	47.0	5.0	<1.0	5.0	225.0	51.	5.	3.
A03866	41.00	42.00	1100.0	33.0	50.0	<0.5	22.0	4.0	7.0	56.0	12.0	<1.0	4.0	100.0	40.	5.	1.
A03867	42.00	43.20	1400.0	354.0	45.0	0.7	25.0	16.0	9.0	47.0	9.0	<1.0	11.0	350.0	89.	5.	3.
868E0A	43.20	43.60	550.0	102.0	90.0	<0.5	18.0	16.0	11.0	11.0	16.0	<1.0	9.0	550.0	53.	3.	6.
A03869	43.60	44.00	1900.0	43.0	70.0	⟨0.5	5.0	10.0	6.0	21.0	6.0	<1.0	8.0	280.0	38.	3.	2.
A03870	44.00	45.00	1500.0	14.0	30.0	<0.5	27.0	3.0	4.0	19.0	√5.0	<1.0	5.0	120.0	32.	3.	1.
A03871	45.00	46.00	1700.0	31.0	70.0	<0.5	525.0	4.0	5.0	14.0	8.0	<1.0	5.0	210.0	31.	3.	2.
A03872	46.00	47100	1700.0	17.0	50.0	<0.5	29.0	4.0	6.0	7.0	<5.0	<1.0	5.0	310.0	25.	3.	. 1.
A03873	47.00	48.00	1600.0	27.0	60.0	<0.5	17.0	4.0	6.0	√5.0	5.0	<1.0	5.0	330.0	31.	3.	1.
A03874	48.00	50.00	1600.0	34.0	90.0	<0.5	17.0	6.0	14.0	8.0	12.0	<1.0	5.0	400.0	27.	3.	2.
A03875	53.00	55.00	2600.0	119.0	165.0	<0.5	42.0	6.0	8.0	48.0	84.0	<1.0	5.0	70.0	42.	4.	3.
A03876	55.00	56.00	1900.0	168.0	415.0	0.5	30.0	4.0	5.0	108.0	18.0	2.0	5.0	270.0	29.	4.	2.
A03877	56.00	57.00	1200.0	281.0	755.0	<0.5	74.0	5.0	7.0	91.0	18.0	3.0	5.0	290.0	27.	4.	3.
A03878	57.00	58.00	980.0	1401.0	70.0	<0.5	47.0	6.0	13.0	10.0	18.0	(1.0	5.0	190.0	95.	7.	3.

Hole No. CH88-57

SAMPLE	FBOM	TO.	T.A	CU.	<b></b>												
NUMBER	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (pp≈)	(ppm)	(ppm)	AS (ppm)	(ppm)	(ppm)	ММ (ррж)	CUZN	ETS	FE
VA03879	58.00	60.00	1200.0	86.0	50.0	<0.5	35.0	12.0	36.0	11.0	18.0	<1.0	9.0	335.0	63.	4.	4.
VA03880	60.00	61.00	1200.0	159.0	40.0	<0.5	15.0	4.0	6.0	10.0	8.0	<1.0	6.0	210.0	80.	4.	2.
VA03881	61.00	61,60	1500.0	70.0	70.0	<0.5	13.0	8.0	17.0	9.0	8.0	<1.0	7.0	380.0	50.	4.	3.
VA03882	61.60	62.60	580.0	83.0	65.0	<0.5	14.0	22.0	57.0	<5.0	<5.0	<1.0	4.0	700.0	56.	1.	1.
VA03883	202.20	202.60	2500.0	95.0	65.0	<0.5	10.0	8.0	27.0	10.0	10.0	<1.0	4.0	400.0	59.	2.	4.
VA03884	203.20	204.00	2900.0	49.0	55.0	<0.5	6.0	6.0	19.0	6.0	10.0	<1.0	1.0	380.0	47.	2.	3.
VA03885	204.00	205.00	7600.0	27.0	50.0	<0.5	<5.0	4.0	15.0	<5.0	7.0	<1.0	2.0	350.0	35.	2.	3.
988C0AV	205.00	206.00	5700.0	39.0	55.0	<0.5	5.0	5.0	18.0	7.0	20.0	<1.0	2.0	380.0	41.	2.	3.
VA03887	206.00	207.00	4100.0	59.0	65.0	0.5	6.0	5.0	39.0	6.0	21.0	<1.0	3.0	320.0	48.	2.	3.
888E0AV	207.00	208.00	4100.0	45.0	55.0	<0.5	6.0	5.0	26.0	6.0	17.0	<1.0	2.0	410.0	45.	2.	4.
988E0AV	208.00	209.00	3800.0	36.0	55.0	<0.5	5.0	5.0	24.0	<5.0	12.0	<1.0	2.0	300.0	40.	2.	3.
068E0AV	209.00	210.00	5200.0	57.0	55.0	<0.5	6.0	6.0	22.0	<5.0	20.0	<1.0	4.0	450.0	51.	2.	3.
V403891	210.00	211.00	4400.0	38.0	40.0	₹0.5	5.0	5.0	20.0	<5.0	8.0	<1.0	3.0	360.0	49.	2.	3.
VA03892	211.00	212.00	5100.0	20.0	45.0	<0.5	0.9	3.0	15.0	6.0	5.0	<1.0	3.0	320.0	31.	2.	2.
VA03893	212.00	214.00	2800.0	23.0	85.0	<0.5	<5.0	2.0	16.0	6.0	6.0	<1.0	8.0	330.0	21.	2.	3.
VA03894	214.00	215.00	3900.0	35.0	135.0	<0.5	₹5.0	3.0	22.0	7.0	11.0	<1.0	7.0	550.0	21.	2.	3.
VA03895	215.00	216.00	3000.0	30.0	50.0	⟨0.5	. <5.0	6.0	18.0	6.0	11.0	<1.0	6.0	410.0	38.	2.	3.
VA03896	216.00	217.70	1200.0	11.0	70.0	<0.5	<b>(5.0</b>	5.0	14.0	⟨5.0	⟨5.0	<1.0	5.0	600.0	14.	2.	3.
VA03897	217.70	218.00	270.0	57.0	65.0	<0.5	₹5.0	13.0	14.0	<5.0	8.0	<1.0	6.0	2200.0	47.	2.	6.
VA03898	218.00	219.00	1500.0	14.0	45.0	<0.5	₹5.0	4.0	16.0	<5.0	<5.0	(1.0	22.0	520.0	24.	1.	2.
VA03899	219.00	221.30	1900.0	8.0	45.0	<0.5	<5.0	4.0	11.0	<5.0	₹5.0	<1.0	7.0	260.0	15.	1.	2.
VA03900	221.30	223.10	2000.0	21.0	110.0	<0.5	<5.0	3.0	14.0	15.0	7.0	<1.0	73.0	280.0	16.	1.	2.
VA03901		224.00	1709.0	10.0	90.0	<0.5	<5.0	9.0	64.0	6.0	19.0	⟨1.0	40.0	950.0	10.	1.	4.

Hole No. CH88-57

SAMPLE		TO	8A (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	P.B. (ppm)	AS (ppm)	CD (ppm)	МО (ррм)	им (ppm)	CUZN	ETS	FE
VA03902	224.00	225.00	6700.0	8.0	120.0	<0.5	<5.0	6.0	10.0	7.0	⟨5.0	<1.0	17.0	630.0	6.	1.	3.
VA03903	225.00	226.20	8700.0	30.0	100.0	<0.5	<5.0	6.0	10.0	7.0	<5.0	<1.0	6.0	450.0	23.	1.	з.
VA03904	226.20	227.00	5400.0	28.0	155.0	<0.5	√5.0	8.0	24.0	6.0	10.0	<1.0	8.0	550.0	15.	1.	3.
VA03905	227.00	228.00	3800.0	50.0	100.0	<0.5	<5.0	10.0	24.0	9.0	10.0	<1.0	3.0	450.0	33.	1.	3.
VA03906	228.00	229.00	1700.0	52.0	65.0	⟨0.5	<5.0	6.0	27.0	10.0	18.0	<1.0	8.0	440.0	44.	1.	2.
VA03907	229.00	230.00	1100.0	13.0	55.0	<0.5	<5.0	5.0	27.0	6.0	11.0	<1.0	6.0	330.0	19.	1.	2.
VA03908	230.00	232.00	2100.0	39.0	65.0	<0.5	5.0	8.0	35.0	5.0	18.0	<1.0	7.0	600.0	38.	1.	3.
VA03909	232.00	233.00	350.0	60.0	90.0	<0.5	<5.0	14.0	57.0	<5.0	48.0	<1.0	4.0	700.0	40.	ı.	3.
VA03910	233.00	234.00	970.0	23.0	105.0	<0.5	<5.0	28.0	158.0	<5.0	34.0	<1.0	4.0	1250.0	18.	1.	6.
VA03911	234.00	235.00	140.0	29.0	160.0	<0.5	<5.0	8.0	17.0	12.0	8.0	<1.0	2.0	420.0	15.	ı.	2.
VA03912	235.00	236.10	190.0	20.0	111.0	<0.5	<5.0	18.0	31.0	32.0	23.0	1.0	4.0	610.0	15.	1.	3.
VA03913	262.00	263.00	4300.0	21.0	185.0	<0.5	<5.0	7.0	5.0	25.0	21.0	<1.0	4.0	430.0	10.	1.	2.
VA03914	263.00	263.30	18000.0	28.0	650.0	⟨0.5	6.0	9.0	13.0	17.0	28.0	2.0	<1.0	690.0	4.	2.	3.
VA03915	263.30	264.00	2600.0	12.0	74.0	<0.5	<5.0	4.0	13.0	21.0	10.0	<1.0	28.0	340.0	14.	2.	1.
VA03916	264.00	265.00	1600.0	35.0	159.0	<0.5	15.0	8.0	38.0	32.0	28.0	<1.0.	16.0	550.0	18.	4.	3.
VA03917	265.00	266.00	3300.0	24.0	154.0	<0.5	5.0	7.0	14.0	20.0	34.0	1.0	7.0	670.0	13.	4.	4.
VA03918	266.00	267.00	2400.0	27.0	73.0	<0.5	<5.0	5.0	21.0	22.0	30.0	· (1.0	1.0	400.0	27.	4.	3.
VA03919	267.00	268.00	1500.0	35.0	106.0	<0.5	₹5.0	6.0	22.0	27.0	25.0	<1.0	<1.0	290.0	25.	4.	э.
VA03920	268.00	269.00	2200.0	33.0	30.0	<0.5	<5.0	6.0	24.0	30.0	24.0	<1.0	<1.0	380.0	52.	4.	2.
VA03921	269.00	270.00	2000.0	34.0	36.0	<0.5	<5.0	6.0	24.0	23.0	29.0	<1.0	1.0	330.0	49.	4.	2.
VA03922	270.00	271.00	3600.0	56.0	46.0	1 . I	25.0	9.0	33.0	23.0	636.0	4.0	2.0	390.0	55.	4.	3.
VA03923	271.00	272.00	2000.0	10.0	65.0	0.8	18.0	8.0	27.0	25.0	595.0	4.0	1.0	290.0	38.	4.	2.
VA03924	272.00	273.00	2400.0	49.0	45.0	0.8	<5.0	7.0	39.0	26.0	64.0	<1.0	<1.0	250.0	52.	4.	3.
												**					- *

SAMPLE	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	NI (ppm)	PB (ppm)	AS (ppm)	CD (ppm)	MO (ppm)	ММ (ррт)	CUZN	ETS	FE
VA03925	273.00	274.00	2000.0	35.0	80.0	0.5	<5.0	6.0	20.0	23.0	30.0	₹1.0	<1.0	370.0	30.	4.	2.
VA03926	274.00	275.00	1500.0	39.0	56.0	<0.5	<5.0	6.0	23.0	25.0	24.0	<1.0	3.0	360.0	41.	4.	2.
VA03927	275.00	278.00	1700.0	19.0	87.0	.<0.5	<5.0	6.0	22.0	24.0	19.0	<1.0	4.0	300.0	18.	4.	2.
VA03928	278.00	279.50	1800.0	40.0	87.0	0.6	<5.0	8.0	30.0	28.0	18.0	<1.0	2.0	320.0	32.	2.	3.
VA03929	279.50	280.40	1300.0	14.0	49.0	<0.5	<5.0	5.0	12.0	38.0	18.0	<1.0	9.0	360.0	22.	2.	1.
VA03930	280.40	282.40	1600.0	16.0	87.0	<0.5	<5.0	7.0	12.0	25.0	33.0	<1.0	(1.0	440.0	16.	2.	2.
1E6E0W	282.40	284.10	1300.0	14.0	61.0	<0.5	<5.0	4.0	16.0	24.0	16.0	<1.0	2.0	350.0	19.	2.	1.
VA03932	294.10	285.10	4500.0	28.0	76.0	<0.5	<5.0	12.0	12.0	26.0	32.0	2.0	31.0	560.0	27.	2.	4.
VA03933	285.10	286.10	3000.0	14.0	73.0	<0.5	<5.0	8.0	7.0	20.0	42.0	- <1.0	19.0	490.0	16.	2.	3.
VA03934	286.10	287.10	4700.0	19.0	69.0	(0.5	₹5.0	7.0	9.0	18.0	28.0	<1.0	51.0	470.0	22.	2.	3.
VA03935	287.10	288.10	3300.0	18.0	97.0	<0.5	<5.0	9.0	8.0	18.0	33.0	<1.0	14.0	460.0	16.	2.	3.
VA03936	288.10	289.10	4700.0	18.0	88.0	<0.5	⟨5.0	7.0	10.0	21.0	33.0	<1.0	43.0	470.0	17.	2.	3.
VA03937	289.10	290.10	4200.0	14.0	93.0	<0.5	<5.0	7.0	5.0	21.0	30.0	<1.0	6.0	400.0	13.	2.	3.
VA03938	290.10	294.70	1700.0	32.0	99.0	0.5	<5.0	7.0	23.0	34.0	35.0	: <1.0	1.0	510.0	24.	2.	3.
VA03939	294.70	299.00	1100.0	50.0	80.0	<0.5	<5.0	7.0	28.0	38.0	14.0	<1.0	2.0	240.0	38.	2.	3.
VA03940	299.00	302.00	1800.0	16.0	75.0	<0.5	<5.0	4.0	16.0	26.0	20.0	<1.0	2.0	370.0	18.	2.	2.
VA03941	302.00	308.00	2300.0	24.0	70.0	<0.5	<5.0	5.0	17.0	26.0	14.0	<1.0	1.0	370.0	26.	2.	2.
VA03942	308.00	309.00	2900.0	46.0	90.0	<0.5	6.0	12.0	25.0	30.0	29.0	<1.0	<1.0	290.0	34.	4.	3.
VA03943	309.00	312.00	2100.0	22.0	83.0	<0.5	√ <5.0	5.0	18.0	26.0	19.0	<1.0	2.0	390.0	21.	4.	2.
VA03944	312.00	313.30	3500.0	15.0	74.0	<0.5	<5.0	7.0	9.0	32.0	36.0	<1.0	<1.0	380.0	17.	4.	2.
											20.0			~	***	• •	

Summary Log: DDH CH88-58

Location: 39+00 E, 4+10 S; Chip 1 Claim

Azimuth: 210, Dip: -50

Hole Completed: May 24, 1988 Core logged by: J. Pattison

0.0 - 3.7 Casing

3.7 - 11.2 Gabbro

11.2 - 18.5 Felsic tuffs, tuffites and reworked tuffs

18.5 - 59.7 Feldspar porphyritic gabbro

59.7 - 114.7 Medium to coarse grained granophyric, ilmenite-rich gabbro and feldspar porphyritic gabbro

114.7 - 153.9 Feldspar porphyritic gabbro

153.9 - 210.0 Medium to coarse-grained granophyric ilmenite-rich gabbro and feldpsar porphyritic gabbro

210.0 - 224.9 Medium grained gabbro with minor ammounts of leucocratic gabbro

224.9 - 238.6 Leucocratic gabbro with 10-15 % ilmenite

238.6 - 248.7 Feldspar porphyritic gabbro

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

Hole Location: 39+00 E 4+10 S

NTS: 92B13 UTM: 5416090.1 N 430933.8 E

Azimuth: 210 Elevation: 540 m Dip: -50 Length: 248.7 m

Started: 20-May-88 Completed: 24-May-88

Purpose: Coincident deep and shallow IP anomalies

Length

12.20

at 5+00 S.

Dip

-52.0

DIP TESTS

Azi-

Length muth

Dip

247.20 211.0 -53.0

211.0 114.60 211.0 -52.0

Azi-

muth

From To Sample From To Width Total Cu Рb Zn Ag -----DESCRIPTION-----(m) (m) No. (m) (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppb) (ppm)

VA02846

VA03945

VA03946

VA03947

11.2

11.2

12.2

13.2

18.5

12.2

13.2

14.0

7.3

1.0

1.0

n/a

2

2

24

28

42

n/a

18

11

17

3.7 OVERBURDEN

3.7 11.2 MAFIC INTRUSIVE

Fine to medium-grained, massive, dark green gabbro with trace to 3 % disseminated ilmenite. Broken and blocky above 6.8 m and fractures are limonite stained. Lower contact is at 60 degrees to core axis.

7.4 8.8 Medium-grained, weakly bleached and carbonatized zone with 4-5 % fracture controlled pyrite.

11.2 14.0 CHERTY FELSIC TUFF / TUFFITE

Green to light pinkish brown (biotite alteration?) very fine-grained, massive to finely bedded cherty felsic tuffite or siltstone.

At 12.5 m bedding is at 35 degrees to core axis.

At 13.9 m bedding is at 35 degrees to core axis.

ALTERATION:.

11.2 14.0 WEAK FRACTURE CONTROLLED CARBONATIZATION.

SULPHIDES:.

11.2 1.5 % fracture controlled pyrite.

18.5 REVORKED FELSIC TUFF

Light grey-green, massive, felsic ash tuff with up to 20 % ash-sized white feldspar crystals and 2 % light to dark

Section No.: 39+00 E Logged By: J. Pattison

Claim No. Chip 1

Drilling Co.: Burwash Enterprises

CH88-58

HOLE No: Page Number

53

47

102

n/a

₹1

<1

<1

Assayed By: Bondar-Clegg & XRAL

Core Size: NO

n/a 1300

(5 2700

(5 2500

9 2300

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-58 2

From To (m)

-----DESCRIPTION-----

grey, cherty, rounded lithic clasts up to 10 mm long (most  $\langle$  5 mm). Nil sulphides. Lower contact is sharp at 55 degrees to core axis.

STRUCTURE: .

14.3-14.8 M blocky, highly fractured core. 0.1 m of lost core.

ALTERATION: .

14.0 18.5 WEAK FRACTURE CONTROLLED CARBONATIZATION.

16.5 888.8 Band or bed of strongly carbonatized+epidotized mafic tuff (?) 7.0 cm wide at 25 degrees to core axis.

18.5 59.7 FELDSPAR PORPHYRITIC GABBRO

Medium green, massive and fine-grained with 10 % 1-4 mm
plagioclase phenocrysts and up to 4 % interstitial
ilmenite partially altered to leucoxene. Becomes
medium-grained below 53.3 m.

Quartz-carbonate filled fractures are common.
Fine-grained, non feldspar porphyritic chilled margin for
15 cm at the upper contact.

STRUCTURE:.

52.9-53.1 M weak shearing at 60-70 degrees to core axis. 57.3-57.4 M fault zone at 20 degrees to core axis. Blocky, highly fractured core. 58.0-58.4 M slip runs nearly parallel to the core axis. Blocky, highly fractured core. 59.2-59.7 M FAULT ZONE at 20 to 50 degrees to core axis. 0.2 m of lower contact.

- 23.8 24.7 M quartz-carbonate vein with 1 % chalcopyrite at 40-50 degrees to core axis.
- 30.4 31.0 Quartz-carbonate flooded zone. Several minor fault gouges at 60-70 degrees to core axis.
- 79.5 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO
  Medium-grained and locally coarse-grained, almost
  pegmatitic, granophyric gabbro. Composed of 20 % subhedral
  to anhedral plagioclase, 60 % chlorite replacing needles
  of pyroxene up to 5 mm long, 10-15 % ilmenite in patches
  1-4 mm in diameter, up to 3 % quartz and trace to 2 %
  pyrite and chalcopyrite. Core is blocky throughout most
  of the unit. Very weak fracture controlled carbonatization

STRUCTURE: .

Sample From To Width Total Cu Pb Zn Ag Au Ba No. (m) (m) Sulphides (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number

From To -----DESCRIPTION-----(m) (m) Blocky zones up to 0.2 m long are common and are the

result of minor faults at < 20 degrees to core axis. 61.6-63.1 M blocky, highly fractured core, 0.2 m of lost

core. 75.5-76.0 M slip runs parallel to the core axis. At 79.0 m minor fault gouge at 50 degrees to core axis. 79.3-79.5 M fault at 40 degrees to core axis.

- 79.5 85.0 FELDSPAR PORPHYRITIC GABBRO Medium to fine-grained gabbro with 10-20 % white feldspar phenocrysts and 4-5% interstitial ilmenite. Several barren quartz-carbonate veins up to 7.0 cm thick at 35 degrees to core axis. Medium brown biotite sometimes occurs along the vein margins. Lower contact is a slip at 35 degrees to core axis.
- 85.0 92.8 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO As 59.7 to 79.5 m. Trace to 1 % disseminated chalcopyrite. Broken, blocky core for 0.1 m at the lower contact but it appears to be gradational.

85.1-86.6 Fault zone. Blocky, highly fractured core. Not possible to measure the orientation.

92.8 96.9 FELDSPAR PORPHYRITIC GABBRO As 79.5 to 85.0 m. Lower contact is gradational.

> STRUCTURE:. At 96.0 m slip at 15 degrees to core axis.

96.9 114.7 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO As 59.7 to 79.5 m. Trace to 1 % disseminated chalcopyrite and 5 to 12 % ilmenite. Lower contact is gradational.

104.5-105.5 m 0.2 m of lost core. Somewhat blocky.

106.4 107.1 Feldspar porphyritic gabbro. Fine-grained with 20 % white, 1-3 mm, euhedral feldspar laths. Trace ilmenite.

114.7 153.9 FELDSPAR PORPHYRITIC GABBRO Fine to medium-grained gabbro with 10-15 % feldspar phenocrysts. Locally weakly glomeroporphyritic. 5 % CH88-58

Width Sample From To Total Cu PЬ 7.n ÞΑ Au Вa (ppm) (ppm) (ppm) (ppm) (m) (m) Sulphides (ppm) (m)

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88~58

From To (m) (m) -----DESCRIPTION-----

disseminated ilmenite and trace chalcopyrite. Lower

No.

Width Sample From To (m)

Total Cu (m) Sulphides (ppm)

Ph Zn (ppm) (ppm) (ppm) (ppm)

(m)

contact is gradational.

121.0-121.6 M blocky, highly fractured core. At 127.5 m 2.0 cm fault gouge at 67 degrees to core axis. 135.0-135.3 M blocky, highly fractured core. At 137.0 minor fault gouge at 30 degrees to core axis. 138.0-138.4 M FAULT ZONE. Blocky, highly fractured core. Not possible to measure orientation of the fault but it appears to be at at a very low angle to the core axis. 149.1-149.4 M slip runs nearly parallel to the core axis. Blocky, highly fractured core. 153.6-153.7 M slip runs nearly parallel to the core axis. Blocky, highly fractured core.

- 118.2 120.6 M MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO. 8 to 10 % ilmenite.
- 124.4 128.0 HEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO with 10 % ilmenite.
- 133.5 134.8 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO with 10 % ilmenite. Lower contact is relatively sharp at 10 degrees to core axis.
- 139.4 140.0 Epidote+carbonate alteration patch at 30 degrees to core axis.
- 146.7 147.5 Coarse-grained ilmenite-rich gabbro runs parallel to the core axis. 15 % coarsely disseminated ilmenite. Trace disseminated chalcopyrite.
- 153.9 175.0 MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO As 59.7 to 79.5 m except finer grained on average. 8-10 % ilmenite and 1 % chalcopyrite. .
  - 154.4 154.6 Irregular carbonate veins up to 1.0 cm thick at 0-30 degrees to core axis with massive brown biotite along their margins and 3 % chalcopyrite.
- 175.0 187.5 FELDSPAR PORPHYRITIC GABBRO Massive, medium-grained gabbro with 5 to 20% 1-3 mm plagioclase phenocrysts and up to 5 % interstitial ilmenite in grains and aggregates up to 4 mm in diameter.
  - 184.3 184.8 Coarse-grained phase of the gabbro with 5-10 %

VA03948 187.2 188.2 1.0 744 25

PROPERTY:	Chemainus	J۷

### FALCONBRIDGE LIMITED DIAMOND DRILL LOG

HOLE No: Page Number CH88-58 5

Fro		To (m)	DESCRIPTION	Sample No.	From (m)	To (m)	Vidth (m)	Total Sulphides	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	Ba (ppm)
			ilmenite up to 5 mm in diameter and trace disseminated pyrite and chalcopyrite. Upper											
			and lower contacts are relatively sharp at 10-35 degrees to core axis.											
187.5	19	1.6	MEDIUM TO COARSE-GRAINED GRANOPHYRIC ILMENITE-RICH GABBRO	•										
			Medium-grained, locally coarse-grained gabbro with 10% ilmenite partially altered to leucoxene and trace	VA03949 VA03950	188.2 189.0	189.0	1.0	3	1942 636	11	84 70	1		190 340
			chalcopyrite.	VX03930	103.0	130.0	1.0		030		70	11	10	340
			188.2 189.0 Coarse-grained gabbro with 8 % ilmenite and 3 % disseminated chalcopyrite.											
191.6	21	0.0	MAFIC INTRUSIVE											
			Medium-grained massive gabbro. Feldspars are weakly	VA03951	197.9	198.9	1.0	1	231	5	63	<1 ·	6 .	300
			sauseritized and mafic minerals have gone to chlorite.	VA03952	198.9	200.3	1.4	3	500	10	70	<1	24	70
			4-5 % ilmenite as grains 2-4 mm in diameter rimmed by	VA03953	200.3	201.3	1.0	1	229	15	60	<1:	10	470
			leucoxene and trace finely disseminated chalcopyrite.											
			Occasional quartz-carbonate filled fractures. Lower contact is gradational over 5.0 cm.											

#### 210.0 211.7 LEUCOCRATIC GABBRO

Fine to medium-grained cream coloured, plagioclase-rich (70-30 %) gabbro. 7 % ilmenite as grains to 4 mm. Locally rock has a pinkish tint probably due to weakly hematized feldspars. A light green soft alteration mineral comprises up to 5 % of the rock and is replacing mafic minerals. Fault gouge at 70 degrees to core axis at the lower contact.

STRUCTURE:

ILMENITE-RICH GABBRO. 10-15 % ilmenite, 2 % disseminated pyrite and up to 1 % finely

199.0 200.3 MEDIUM TO COARSE-GRAINED GRANOPHYRIC

disseminated chalcopyrite.

210.7-210.9 M crushed fault zone. Two fault gouges at 70 degrees to core axis.

210.6 211.6 Intrusive breccia. More than 80 % cream coloured angular breccia clasts in a dark green chlorite-rich matrix.

#### 211.7 214.3 MAFIC INTRUSIVE

Fine to medium-grained gabbro. Somewhat lighter in colour than average gabbro. Blocky over the entire interval. Quartz-carbonate veins and veinlets are common throughout and in one place are cut by two 5 mm thick chloritic

From To

FALCONBRIDGE LIMITED DIAMOND DRILL LOG

From

To

Width

Total

HOLE No: Page Number CH88-58

Cu

Рb

(ppm) (ppm) (ppm) (ppm)

Sample (m) -----DESCRIPTION-----(m) No. (m) (m) (m) Sulphides (ppm) veins. Weak fracture controlled carbonatization. 213.3-214.3 FAULT ZONE. Broken blocky core throughout. Not

214.3 215.8 LEUCOCRATIC GABBRO As 210.0 to 211.7 m. Brecciated over the first metre. Quartz-albite veins are common. Lower contact is gradational over 0.1 m.

possible to measure the orientation.

215.8 224.9 MAFIC INTRUSIVE Starts off as a feldspar porphyritic gabbro. Becomes leucocratic between 217.0 and 217.9m. Below 218.9 m medium and locally coarse-grained gabbro contains 5-8 % ilmenite and trace chalcopyrite. Nil to weak fracture controlled hematization. Lower contact is gradational over 0.4 m.

224.9 238.6 LEUCOCRATIC GABBRO Light grey to cream coloured medium to fine-grained leucogabbro. Composed of 70-80 % subhedral to euhedral sauseratized and fresh plagioclase, 10-15% ilmenite as subhedral grains up to 4 mm in diameter, 5-10% light to dark green chloritized mafic minerals and 5 % light green soft translucent mineral (see thin section sample from ?m). Weak to moderate fracture controlled carbonatization. Quartz+albite+carbonate veins up to 1.0 cm wide are common. Ilmenite is often altered to a soft, brown mineral. Lower contact is gradational over 0.15 cm.

### STRUCTURE:.

225.6-225.8 M fault at 28 degrees to core axis. 236.0-238.5 M FAULT ZONE. Blocky, highly fractured core. There are numerous fault gouges and fault breccias at 20-40 degrees to core axis. Light grey angular felsic clasts, some with pyrite, occur in the breccia zones.

233.6 233.9 Quartz-carbonate flooded, brecciated zone. Nil sulphides.

#### 238.6 248.7 FELDSPAR PORPHYRITIC GABBRO

Massive, dark green, fine to medium-grained gabbro speckled with 10-15% plagioclase laths up to 5 mm long (most 3 mm). 2 to 3 % disseminated ilmenite and nil to trace chalcopyrite.

VA03954 225.0 226.0 272 109 11 1000 8 980 VA03955 226.0 227.0 1.0 369 22 125 <1 990 VA03956 232.0 233.0 1.0 1 126 26 63 <1 < 5 VA03957 233.0 234.0 123 25 <1 ₹5 610 1.0

SAMPLE NUMBER	FROM	TO	<b>ZSIO2</b>	ZAL203	XCA0	ZMGO	THA20	XK20	%FE203	21102	XP205	ZMNO	XLO I	SUN	BA	AI	NACA
VA02398	17.40	17.60	60.50	17.80	2.60	4.48	2.80	1.88	5.92	0.50	0.19	0.07	3.08	99.82	1700.	54.	<b>'5.</b>
VA02399	49.00	49.40	49.00	14.20	10.40	6.39	2.39	0.65	12.60	1.75	0.16	0.19	1.70	99.43	777.	36.	13.
VA02400	64.70				7.06	3.06	2.38	0.48	17.20	3.39	0.46	0.27	1.23	98.73	509.	27.	9.
VA02401	86.90	87.00	49.60	11.10	8.53	3.57	2.02	0.42	18.30	3.53	0.39	0.26	1.93	99.65	588.	27.	11.
VA02402		107.80		12.10	9.47	5.96	2.09	0.39	15.40	2.31	0.18	0.24	3.16	99.20	286.	35.	12.
VA02403		126.40		12.80	10.00	4.78	2.48	0.26	15.00	2.14	0.23	0.22	2.00	99.51	71.	29.	12.
VA02404	199.00			11.50	7.14	3.39	2.80	0.30	18.40	4.16	0.49	0.29	1.23	99.10	236.	27.	10.
VA02405		226.90	39.70		9.47	3.91	0.15	3.79	9.51	2.82	0.27	0.22	15.10	100.44	1070.	44.	10.
VA02406		235.60		12.20	12.90	5.28	0.50	2.77	10.20	1.65	0.16	0.21	19.20	99.77	800.	38.	13.

SAMPLE NUMBER	FROM	то	RB (ppm)	SŘ (ppm)	BA (ppm)	(ppm)	ZR (ppm)	, NB - (ppm)	ÇU (ppm);	ZN (ppm)	NI (ppm)	: ,		ROCK	CODES	мін
														 : -		
VA02398	17.40	17.60	47.0	252.0	1700.0	30.0	141.0	<10.0	29.0	42.0	16.0		1.4	TFAM	?	Α .
VA02399	49.00	49.40	15.0	251.0	777.0	27.0	68.0	<1,0.0	245.0	56.0	99.0			PMAEM	FCW	A
VA02400	64.70	65.10	<10.0 ₁	195.0	509.0	<10.0	282.0	38.9	296.0	116.0	<10.0			PMCM	ECM	A
VA02401	86.90	87.00	<10.0	166.0	588.0	45.0	254.0	16.0	632.0	115.0	15.0			PMBM	FCW	EBC
VA02402	107.30	107.80	28.0	172.0	286.0	30.0	100.0	24.0	310.0	37.0	68.0			PMBM	FCW	DBC
VA02403	126.30	126.40	14.0	158.0	71.0	21.0	131.0	22.0	461.0	84.0	40.0			PMBM	FCW	DBC
VA02404	199.00	199.10	<10.0	105.0	236.0	<10.0	263.0	36.0	590.0	98.0	23.0			PHBH	?	DCC
VA02405	226.70	226.90	76.0	249.0	1070.0	29.0	135.0	23.0	504.0	91.0	57.0			PMBX	FCW	A
VA02406	235.00	235.60	66.0	410.0	800.0	18.0	64.0	23.0	248.0	67.0	71.0			PMA*	FCM	A

CAMBUE						~~										
SAMPLE NUMBER	FROM	TO	25102	ZAL203	XCA0	XMG0	INA20	XK20 XFE203	21102	ZP205	ZHNO	XLO I	SUH	BA	AI	NACA
VA02846	11.20	18.50	68.50	7.24	8.23	2.16	1.80	0.32 4.04	0.25			5.62	98.16	1300.	20.	10.

SAMPLE															 CODES			
NUMBER	FROM	TO	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	ZR (ppm)	(ppm)	CU (ppm)	ZN (ppm)	NI (ppm)				ROCK	ALT	MIN	
				********									******		 			
VA02846	11.20	18.50			1300.0				24.0	53.0	36.0				TFA	FCW	FPP	

<0.5	AU (ppb) <5.0 <5.0	CO (ppm) 17.0 19.0	NI (ppm) 40.0 41.0	PB (ppm)	AS (ppm) 26.0	CD (ppm)	HO (ppm)	MN (ppm) 410.0	37.	ETS	FE 4.
<0.5	<5.0						4.0	410.0	37.	2.	4.
<0.5	<5.0						4.0	410.0	37.	2.	4.
		19.0	41.0	11.0							
<0.5	9.0				35.0	1.0	<1.0	390.0	29.	2.	4.
		10.0	24.0	17.0	19.0	<1.0	7.0	280.0	20.	2.	3.
<0.5	25.0	30.0	28.0	11.0	51.0	√<1.0	<1.0	450.0	92.	1.	5.
0.5	23.0	36.0	16.0	11.0	56.0	1.0	2.0	490.0	96.	3.	6.
<0.5	16.0	24.0	9.0	13.0	33.0	<1.0	1.0	400.0	90.	1.	5.
<0.5	6.0	29.0	43.0	5.0	49.0	<1.0	<1.0	560.0	79.	1.	5.
<0.5	24.0	28.0	19.0	10.0	40.0	<1.0	<1.0	400.0	88.	3.	5.
<0.5	10.0	22.0	24.0	15.0	41.0	<1.0	<1.0	350.0	79.	1.	4.
<0.5	11.0	49.0	43.0	17.0	142.0	2.0	<1.0	1420.0	71.	1.	6.
<0.5	8.0	46.0	43.0	32.0	142.0	1.0	<1.0	1390.0	75.	1.	5.
<0.5	<5.0	40.0	68.0	26.0	140.0	<1.0	<1.0	1420.0	67.	1.	6.
<0.5	<5.0	32.0	58.0	25.0	193.0	1.0	<1.0	1430.0	59.	1.	6.
	<0.5 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	<pre>&lt;0.5     25.0  0.5     23.0  &lt;0.5     16.0  &lt;0.5     6.0  &lt;0.5     24.0  &lt;0.5     10.0  &lt;0.5     11.0  &lt;0.5     8.0  &lt;0.5     &lt;5.0</pre>	<0.5	<0.5	<0.5	\$\color{1}\$       25.0       30.0       28.0       11.0       51.0         0.5       23.0       36.0       16.0       11.0       56.0         \$\color{1}\$       16.0       24.0       9.0       13.0       33.0         \$\color{1}\$       6.0       29.0       43.0       5.0       49.0         \$\color{1}\$       24.0       28.0       19.0       10.0       40.0         \$\color{1}\$       10.0       22.0       24.0       15.0       41.0         \$\color{1}\$       11.0       49.0       43.0       17.0       142.0         \$\color{1}\$       8.0       46.0       43.0       22.0       142.0         \$\color{1}\$       \$\color{1}\$       0.0       68.0       26.0       140.0	\$\color=0.5\$       25.0       30.0       28.0       11.0       51.0       <1.0	\$\color{1}{0.5}\$       25.0       30.0       28.0       11.0       51.0       <1.0	\$\color{1}\$       25.0       30.0       28.0       11.0       51.0       \$\color{1}\$       0.0       450.0         0.5       23.0       36.0       16.0       11.0       56.0       1.0       2.0       490.0         \$\color{1}\$       16.0       24.0       9.0       13.0       33.0       \$\color{1}\$       0       1.0       400.0         \$\color{0}\$       6.0       29.0       43.0       5.0       49.0       \$\color{1}\$       \$\color{1}\$       0       \$\color{1}\$       0	\$\cdot 0.5\$       25.0       30.0       28.0       11.0       51.0       \$\cdot 1.0\$       \$\cdot 1.0\$       450.0       92.         0.5       23.0       36.0       16.0       11.0       56.0       1.0       2.0       490.0       96.         \$\cdot 0.5\$       16.0       24.0       9.0       13.0       33.0       \$\cdot 1.0\$       1.0       400.0       90.         \$\cdot 0.5\$       6.0       29.0       43.0       5.0       49.0       \$\cdot 1.0\$       \$\cdot 1.0\$       560.0       79.         \$\cdot 0.5\$       24.0       28.0       19.0       10.0       40.0       \$\cdot 1.0\$       \$\cdot 1.0\$       400.0       88.         \$\cdot 0.5\$       10.0       22.0       24.0       15.0       41.0       \$\cdot 1.0\$       350.0       79.         \$\cdot 0.5\$       11.0       49.0       43.0       17.0       142.0       2.0       \$\cdot 1.0\$       1420.0       71.         \$\cdot 0.5\$       65.0       40.0       68.0       26.0       140.0       \$\cdot 1.0\$       \$\cdot 1.0\$       1420.0       67.	<0.5