

CLEAN-UP OF 1908 BAY PROJECT ACTIVITIES

January 20, 1988

62M-4W

Field Copy

FALCONBRIDGE LIMITED

TEL. (604) 688-5476 RAPIFAX 683-1827

202 - 856 Homer Street Vancouver, B.C. V6B 2W2

DATE:

January 20, 1989

TO:

Files

FROM:

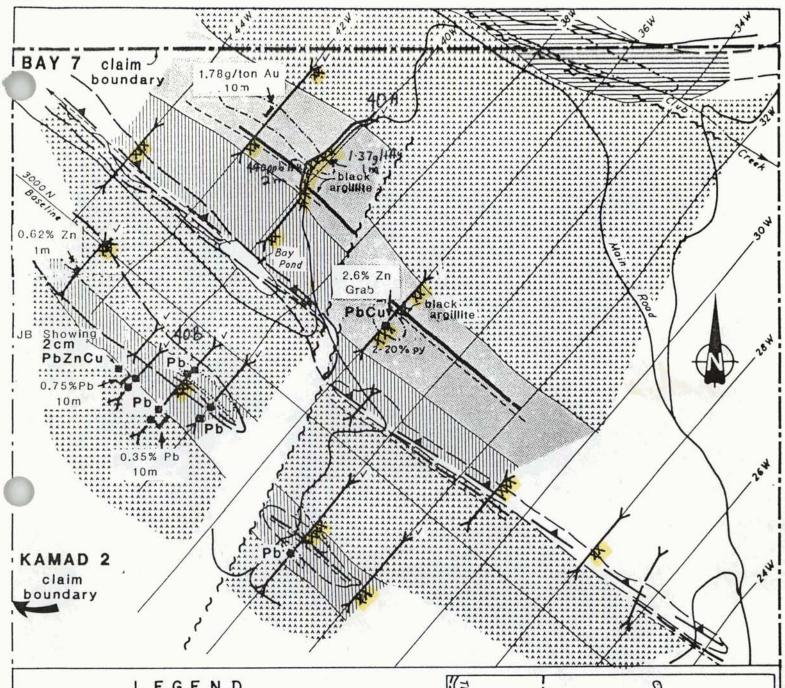
S. Enns

SUBJECT:

Clean-up of Bay Project 1988 Activities

Several of the recommended actions listed in the 1988 Bay Property Field Report (written in July), were carried out in late summer and early fall. This memo briefly documents these activities and their results.

CLAIMS SURVEY


The LCP and Claims Perimeter Survey was completed in August with positive results. The Bay 7/Kamad 2 common claim boundary has been established and we now have approximately 180m more land to the west than we previously thought. Thus the JB Showing is situated within our claim boundary. The field markings of the outer perimeter at several appropriate localities will greatly aid in drill collar location for drilling set-ups near the claim boundary. Two maps showing the survey are in the back pocket.

RESAMPLING OF GOLD ANOMALIES IN TRENCHES

Results from the trench sampling revealed three localities anomalous in Au. The original samples were collected as semi-continuous to continuous chip samples over 5 to 10m intervals. Closer sampling of these anomalies across 1 to 2m intervals confirmed the presence of anomalous gold and its precise locality. The samples are listed in Table I and localities are generally shown on Figure 1.

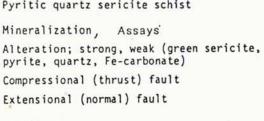
TABLE I GOLD RESULTS

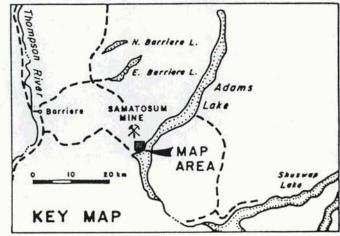
TRENCH	SAMPLE	FROM/TO	ANALYSIS	
		(m North)	(ppb)	
88-40A	VA10001	351-352	1.37g/t	(assay)
88-40A	VA10002	352-354	215	
88-40A	VA10003	354-356	22	
88-40A	VA10004	356-358	14	
88-40A	VA10005	358-360	30	
88-40A	VA10006	360-362	387	

LEGEND

Road, Trench () mapped/sampled IP (+28msec), HLEM, VLF anomaly

Mafic volcanics


Laminated carbonates, calc-siltstone, local dolostone and black phyllite


Chlorite schist and intercalated silty carbonate bands

Pyritic quartz sericite schist

Na20 depletion

FALCONBRIDG	E LIMITED
BAY OPTION	NTS: 82 M/4 Proj. 003
0 200 400 m	Fig. No.
Scale 1:10,000	1 lg. 140.

TABLE I GOLD RESULTS --continued--

TRENCH	SAMPLE	FROM/TO (m North)	ANALYSIS (ppb)
88-42	VA10007	18-21	24
88-42	VA10008	20-22	33
88-42	VA10009	22-24	25
88-42	VA10010	24-26	53
88-42	VA10011	26-28	65
88-42	VA10012	28-30	440
88-42	VA10013	30-32	8
88-42	AG08991	194-196	284
88-42	AG08992	196-198	91
88-42	AG08993	198-200	10
88-42	AG08994	200-202	42
88-42	AG08995	202-203	305
		till cover	
88-42	AG08996	205-206	1692*
88-42	AG08997	206-208	569*
88-42	AG08998	208-210	1067*
88-42	AG08999	210-212	1269*
88-42	AG09000	212-214	116
88-42	AG09231	214-216	543
88-42	AG09232	grab of veir	1775
		3	

(*) weighted average: $\frac{1072 \text{ ppb}}{7\text{m}}$

The best result was from trench 88-42 where an original sample of 1.78g/t was obtained across 22m. Resampling gave a more realistic result of 1.07g/t across 7m. Most of the resampled interval is underlain by strongly altered (sericite and Fe-Carbonate) mafic tuffs which contain little pyrite, and many white quartz-calcite veins. The likely carrier of the Au seems to be these veins. This is indicated by the grab sample of vein material #AG 9232 which contains the highest Au. Highest Au levels are present in the interval 205 to 212m, which is underlain by the greatest density of veins. This locality deserves more attention and at least one drill hole to determine the geology and potential for economic mineralization.

At the south end of this same trench a resampling result of 440ppb over 2m was obtained. This is underlain by innocuous-looking, carbonate-rich schist which is moderately altered to sericite and ankerite. This locality is regarded as not significant for economic Au mineralization.

At trench 88-40A along the road, resampling gave 1409ppb over 1m which when assayed was 1.37g/t. An adjacent sample ran 214ppb over 2m. This is underlain by tuffaceous dolomite-rich sediments which are altered to a sericite-chlorite schist. Ankerite is common as is also the presence of green sericite. This locality may be significant because it lies more or less along strike with the best Au anomaly in trench 88-42, about 200m to the west.

MAJOR OXIDE ANALYSIS

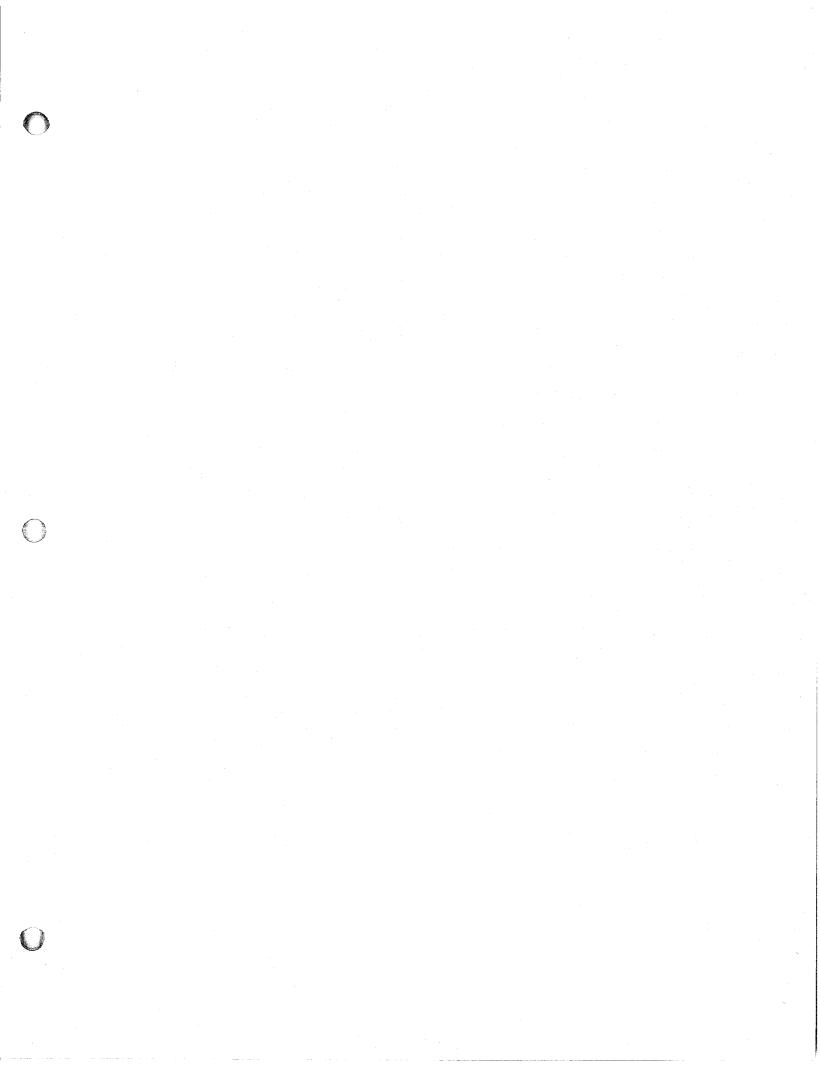
Most of the trench samples were initially analysed for metals by Bondar-Clegg during the course of the project. A minority of samples collected from unaltered looking parts of trenches and were analysed for major oxides by XRAL. In late fall, sample pulps from Bondar-Clegg representing trench material which crossed altered zones were composited (about 80 samples) and anlysed by XRAL for major oxides. Composited sample intervals average about 20m. All the major oxide results are listed by trench in Appendix A. The distances (from/to) were measured from the south end of each trench.

To date, our understanding of the chemical signature of the altered rocks is unsophisticated. The high CaO levels in most of the rocks severely affect the usefulness of our standard alteration indicies. Consequently, Na₂O depletion by itself , if used carefully appears to be the most reliable indication. Na₂O levels less than 1.3% (chosen by visual inspection) are taken as significant.

Table II lists the Na_2O depletion anomalies. In most cases these anomalies correlate with the mapped alteration in the trenches (Figure 1). In several cases, however, they do not. Significant Na_2O anomalies have been given a designation (*) in Table II.

TABLE II Na₂O DEPLETION ANOMALIES

TRENCH LOCATION	COMMENTS
88-28 * 93-170m N	-0.5% Na ₂ OEdge of mapped alteration, probably extends north under overburden.
88-31 * 90-125m N	-0.2-1.0% Na ₂ OOverlaps at north edge of mapped alterationStrongest mapped alteration not Na ₂ O depleted.
88-32 * 80-110m N	-0.3-1.3% Na ₂ O -Altered mafic volcanics, with green sericite present.
88-34 * 160-230m N	-0.8-1.5% Na ₂ O -Weak and broad anomaly in mafic volcanics mapped as sericite altered with presence of green sericitePartly coincident with VLF, HLEM, IP anomalies at south end.
88-36 * 10-110m N 130-150m N 170-190m N	-0.5-0.9% Na ₂ O -Anomalous Ba and a small IP anomaly at 40-50m N0.8% Na ₂ O suspect sedimentary rocks cause the low Na ₂ O0.8% Na ₂ O -as above.
88-39 * 130-170m N	-0.9-1.5% Na ₂ O -weak depletionAsocciated with mapped alterationCoincident with IP, VLF.
88-40A * 10-70m N 110-320m N	-0.1-1.3% Na ₂ OWeak alteration in mafic tuff0.4-1.3% Na ₂ OElevated Ba levels (1500-2200 ppm)With mapped alteration, but sediments are present.
88-40B	-Needs to be analysed as geology is promising.


TRENCH	LOCATION	COMMENTS
88-42	50-70m N	-0.5% Na ₂ ODark argillite sediments are presentHigh Ba (1400-2400ppm).
	280-290m N	-0.1% Na ₂ OAssociated with alteration, anomaly extends north beyond trench.
88-43	* 110-160m N	-0.7% Na ₂ O -Altered mafic volcanics, but strong- est mapped alteration not depleted.
88-44	* 93-170m N	-0.9-1.2% Na ₂ OAssociated with alteration, green sericite presentHigh Ba.

* denotes significant Na₂O depletion.

PROPOSED DRILLING ON THE BAY 7 CLAIM

A short fall drilling programme was proposed for the Bay. The proposal was for 1400m in 13 holes, to test the weak surface mineralization on the west part of the Bay 7 claim and test altered geology at several localities. Drilling was delayed because the agreement between Falconbridge and Cominco/Westmin was still unsigned in early October. By mid-October, logistics on other drill projects caused postponement of this drilling until 1989.

The 1988 Diamond Drilling Proposal is given in Appendix B_{\bullet}

APPENDIX A

WHOLE ROCK (MAJOR OXIDES) RESULTS FOR TRENCH SAMPLES

1988 TRENCH RESULTS; ALTERATION SAMPLING (XRAL)

SAMPLE!	TRENCH	START	BND	S102%	AL203%	CAOS	MGO\$	NA 20%	K20%	PE203%	MNOE	1102	P205%	CR203\$	L01	RBppm	SRppm	¥рр в	7Rpps	NBppm	ВАрри	NIppm	СПррв	3Nppm	
AG09374	TR88-26+50	0	17	40.70	14.10	10.30	7.29	2.44	0.50	10.50	0.17	1.12	0.10	0.05	12.00	11	144	-10	18	31	132	270	87	57	
AG09375	TR88-26+50	37	42	36.40	9.42	18.40	4.72	2.94	0.23	6.96	0.14	0.90	0.12	0.04	20.20	15	290	11	25	21	31	188	- 54	33	
AG09376	TR88-26+50	42	60	41.90	12.30	8.19	9.38	1.61	0.02	10.90	0.16	1.67	0.31	0.07	13.00	25	141	-10	79	37	167	267	189	67	
AG09377	TR88-26+50	60	80	38.30	12.10	10.20	9.16	1.91	0.14	10.50	0.16	1.67	0.30	0.07	14.90	19	172	-10	- 81	39	93	310	71	81	
AG09378	TR88-26+50	80	100	42.60	13.50	7.90	7.08	3.37	0.09	11.00	0.16	1.45	0.17	0.05	11.70	-10	81	21	36	13	85	241	72	74	
AG09379	TR88-26+50	100	115	44.10	10.70	13.80	4.10	2.41	0.75	8.20	0.19	1.01	0.12	0.06	13.50	20	150	-10	. -	14	. -	221	82	41	
AG09380	TR88-26+50	138	154	37.70	12.90	12.20	5.26	2.38	0.75	10.90	0.16	1.61	0.27	0.05	14.20	29	156	-10	. <u> </u>	33		223	172	58	
AG09366	TR88-28	10	20	38.20	12.20	12.00	6.77	1.87	0.29	11.30	0.17	1.46	0.24	0.07	15.50	16	150	15	49	16	142	365	32	72	
AG09367	TR88-28	30	50	42.00	11.80	8.42	9.12	1.86	0.07	10.00	0.15	1.25	0.15	0.06	14.80	-10	147	14	32	41	67	293	94	67	
AG09368	TR88-28	50	70	43.30	11.80	9.63	8.38	1.50	0.05	10.20	0.11	1.12	0.14	0.06	13.70	- 11	132	-10	37	16	67	292	61	73	
AG09369	TR88-28	70	80	44.00	11.00	10.50	6.12	1.76	1.23	8.41	0.15	1.00	0.12	0.05	15.50	43	116	-10	39	14	353	237	99	52	
AG09370	TR88-28	80	90	42.20	11.20	11.90	4.97	2.15	1.37	8.11	0.15	1.11	0.20	0.03	16.10	43	141	-10	43	23	385	166	107	56	
AG09371	TR88-28	90	95	44.90	10.40	12.50	2.43	0.51	1.71	10.80	0.20	1.40	0.28	0.04	14.20	59	126	15	71	36	514	234	58	57	
AG09372	TR88-28	140	160	36.60	11.80	14.60	6.93	2.26	0.07	10.60	0.18	1.21	0.17	0.05	15.40	22	337	-10	57	29	100	216	68	59	
AG09373	TR88-28	160	180	39.90	12.20	11.80	7.11	2.11	0.17	10.90	0.18	1.47	0.24	0.05	13.20	12	272	11	99	19	138	247	50	63	
AG09351	TR88-31	10	20	38.40	11.60	13.50	6.73	1.48	0.01	11.30	0.15	1.29	0.16	0.06	14.50	18	244	-10	33	22	. 16	340	101	61	
AG09349		30			11.20	7.32	8.93	1.32		9.92		1.14	0.14		13.10	22	78	-10	31	23	216	267	94	62	
AG09350		50			12.70		4.08	2.14		10.50		1.14	0.14		14.00	32	121	25	15	22	485	178	81	67	
		• • •	. •							_,,,,						-									

1988 TRENCH RESULTS; ALTERATION SAMPLING (XRAL)

SAMP	LE# TRENCH	START	END	SI02%	AL203%	CAOS	MGO\$	NA 20%	K20%	PE203%	MNOS	T102%	P205%	CR203%	LOI3	RBppm	SRppm	Урра	ZRppm	ИВрра	ВАрры	NIppm	CUppm	2Nppm	
AG092	51 TR88-31	70	90	57.10	15.10	3.60	0.93	2.03	1.70	10.30	0.15	1.46	0.14	0.05	7.70	63	124	14	- 56	15	1040	160	76	67	
AG092	52 TR88-31	90	110	46.00	11.90	8.62	4.52	1.01	1.28	10.20	0.17	1.58	0.26	0.06	14.70	44	153	17	74	32	466	246	76	59	
AG092	53 TR88-31	110	125	42.50	12.80	8.20	5.88	0.21	1.93	11.80	0.18	1.76	0.30	0.06	14.50	59	92	19	83	: 45	694	288	53	73	
AG093	42 TR88-32	0	20	38.50	12.00	12.50	5.40	1.76	1.44	9.46	0.15	1.59	0.32	0.04	16.70	41	166	24	90	46	332	189	69	56	
AG093	43 TR88-32	20	30	40.20	13.60	8.90	8.56	1.99	0.48	10.80	0.14	1.81	0.33	0.05	13.30	22	161	. 18	94	49	205	260	91	85	
AG093	44 TR88-32	40	60	42.50	12.90	8.68	6.71	2.09	0.93	10.60	0.15	1.29	0.18	0.06	14.10	35	96	17	57	24	233	. 315.	96	95	
AG093	45 TR88-32	60	80	42.90	12.40	9.16	5.73	1.58	1.26	10.70	0.19	1.24	0.15	0.06	15.00	26	139	-10	12	28	281	295	65	136	
AG093	46 TR88-32	80	90	40.30	11.80	10.70	4.91	0.26	2.80	10.90	0.24	1.17	0.17	0.06	15.80	71	118	-10	57	26	418	260	70	186	
AG093	47 TR88-32	90	100	38.20	12.30	14.20	4.46	1.32	1.28	10.90	0.16	1.53	0.20	0.07	16.00	29	151	: 11	75	31	237	295	51	84	
AG093	48 TR88-32	100	110	36.10	10.50	18.10	5.36	1.13	0.59	9.03	0.16	1.32	0.21	0.06	17.70	28	302	16	45	22	134	267	62	86	
AG086	46 TR88-32	110	120	41.00	11.80	12.70	7.58	1.94	0.02	10.20	0.16	1.42	0.18	0.06	13.20	-10	245	27	42	17	45	327	77	53	
AG086	47 TR88-32	130	140	44.30	13.30	7.81	10.90	2.79	0.03	12.30	0.18	1.39	0.15	0.07	6.93	25	190	11	53	35	72	364	61	72	1.
AG086	48 TR88-32	150	160	40.80	15.30	6.77	10.80	1.89	0.03	15.60	0.18	1.70	0.17	0.09	6.93	-10	222	17	57	15	. 58	501	73	96	
AG086	49 TR88-32	170	180	40.90	14.40	11.60	5.28	3.60	0.82	9.82	0.14	1.24	0.14	0.04	12.20	29	140	-10	38	15	127	169	79	54	
AG086	50 TR88-32	190	200	45.80	15.70	6.10	7.29	4.04	0.27	11.00	0.13	2.12	0.51	0.02	7.16	32	121	-10	239	22	141	124	115	84	
AG086	17 TR88-34	0	10	41.10	11.70	12.50	7.87	2.38	0.22	9.08	0.16	1.35	0.21	0.05	13.60	30	200	12	49	26	76	232	76	45	
AG086	18 TR88-34	10	20	41.80	11.90	12.60	6.43	2.09	0.76	9.43	0.14	1.18	0.13	0.06	13.40	37	197	21	31	15	123	269	63	44	
AG086	19 TR88-34	20	30	41.40	12.70	12.40	6.69	3.18	0.03	9.73	0.15	1.52	0.16	0.05	12.70	14	173	14	51	40	-10	290	87	46	

1988 TRENCH RESULTS; ALTERATION SAMPLING (XRAL)

SAMPLE#	TRENCH	START	END	S102%	AL203%	CAO\$	MGO\$	NA 20%	K20%	FE203%	MNO	T102%	P205%	CR203%	rois	RBppm	SRppm	¥ррш	7Rppm	NBppm	ВАрри	NIppm	СПрри	ZNppa	
AG08620	TR88-34	30	40	39.50	11.60	15.20	5.65	3.04	0.04	9.50	0.14	1.24	0.16	0.05	14.20	18	215	-10	29	18	54	290	90	30	
AG08621	TR88-34	40	50	36.90	12.90	11.80	8.57	1.73	0.05	12.50	0.15	1.52	0.17	0.08	13.80	-10	149	-10	54	36	54	405	70	. 59	
AG08622	TR88-34	50	60	36.40	13.70	12.00	7.82	2.42	0.23	12.20	0.15	1.66	0.18	0.08	13.40	27	142	-10	53	24	98	446	72	58	
AG08623	TR88-34	60	70	36.00	11.00	16.90	6.47	2.00	0.38	9.40	0.16	1.31	0.15	0.05	16.30	31	222	-10	30	37	81	309	79	44	
AG08624	TR88-34	70	80	36.60	12.20	15.80	6.62	2.72	0.02	9.99	0.14	1.31	0.15	0.06	15.00	19	239	-10	20	25	-10	293	49	.43	
AG08625	TR88-34	80	90	35.70	10.50	18.80	5.10	1.90	0.46	9.10	0.15	1.23	0.15	0.05	17.50	33	295	-10	47	.: .: 37	188	237	86	38	
AG08626	TR88-34	90	100	42.20	14.10	11.20	5.62	2.07	0.69	10.90	0.09	1.54	0.16	0.06	12.20	34	149	13	53	27	211	332	80	135	
AG08627	TR88-34	100	110	44.20	11.40	14.30	3.74	1.67	1.19	8.80	0.17	0.97	0.12	0.05	14.20	27	146	-10	17	25	189	212	48	33	
AG08628	TR88-34	110	120	39.60	10.90	14.40	5.42	1.99	1.08	9.61	0.25	0.92	0.14	0.05	15.80	29	166	14	25	26	285	237	65	31	
AG08629	TR88-34	120	130	41.00	12.00	14.20	5.20	2.00	0.40	9.59	0.11	1.10	0.13	0.06	14.30	18	209	-10	38	20	82	252	46	108	
AG08630	TR88-34	130	140	38.60	13.40	12.30	5.92	2.03	0.57	11.30	0.13	1.25	0.16	0.07	14.40	29.	155	15	43	13	159	349	70	72	
AG08631	TR88-34	140	150	34.20	11.30	18.30	4.22	1.84	0.65	9.44	0.15	1.16	0.20	0.05	19.20	17.	198	13.	40	27	122	175	48	77	
AG08632	TR88-34	150	160	45.10	10.70	14.60	1.55	1.46	1.61	8.51	0.18	0.89	0.18	0.02	15.80	55	137	18	64	22	358	154	40	37	
AG08633	TR88-34	160	170	36.30	12.00	17.40	1.92	0.81	1.29	11.20	0.15	1.48	0.32	0.04	17.20	32	162	-10	81	.30	150	272	49	77	
AG09338	TR88-34	170	190	41.60	13.90	11.60	2.80	1.26	2.15	9.83	0.17	1.34	0.22	0.05	14.80	61	141	-10	59	20	291	196	79	111	
AG09339	TR88-34	190	210	43.20	12.80	9.56	4.10	1.44	2.27	9.81	0.18	1.14	0.13	0.06	14.40	52	112	19	26	-10	420	266	64	112	
AG09340	TR88-34	210	220	43.10	14.90	7.61	5.31	1.26	1.41	11.70	0.16	1.38	0.15	0.07	12.70	46	102	24	42	33	362	329	62	96	
AG08634	TR88-34	220	230	42.60	11.20	9.96	8.93	1.47	0.30	10.50	0.17	1.12	0.13	0.05	14.30	17	110	-10	29	-10	364	284	64	73	
AG08635	TR88-34	230	240	36.00	11.10	17.10	6.00	1.66	0.35	10.00	0.14	1.10	0.14	0.05	17.00	18	289	16	33	13	94	264	64	57	

1988 TRENCH RESULTS; ALTERATION SAMPLING (XRAL)

					1																				
SAMPLE	TRENCH	START	END	SI02%	AL203%	CAO3	MGO\$	NA 203	K20%	FE203%	HNO\$	T102%	P205%	CR203%	LOIS	RBppm	SRppm	Тррш	2Rppm	NBppm	Варры	NIppm	СПррв	2Nppm	
AG08636	TR88-34	240	250	39.10	13.40	12.20	6.38	2.92	0.20	11.40	0.14	1.33	0.15	0.06	13.20	21	209	÷ 23.	35	18	83	331	102	73	
AG08637	TR88-34	250	260	41.10	11.10	14.70	6.49	2.63	0.03	9.00	0.17	1.12	0.12	0.04	14.20	-10	331	-10	24	23	284	216	67	45	
AG08638	TR88-34	260	270	40.50	11.90	14.20	6.01	2.70	0.35	9.76	0.16	1.18	0.13	0.05	13.80	18	327	13	-10	20	131	262	81	42	
AG08639	TR88-34	270	280	38.30	13.40	10.40	9.02	1.74	0.45	12.60	0.17	1.41	0.15	0.07	12.40	25	202	-10	- 44	28	168	400	. 58	69	
AG08640	TR88-34	280	290	44.40	15.50	7.30	7.81	3.38	0.04	12.10	0.14	1.50	0.16	0.08	8.15	-10	203	-10	57	21	80	376	78	68	
AG08641	TR88-34	290	300	41.60	14.30	9.18	9.04	2.23	0.02	12.90	0.16	1.43	0.16	0.07	9.16	19	222	-10	34	18	49	395	90	71	
AG08642	TR88-34	300	310	40.20	12.90	13.50	6.84	2.53	0.02	11.10	0.14	1.33	0.14	0.06	11.20	22	327	11	30	12	21	315	76	49	
AG08643	TR88-34	310	320	45.50	14.80	7.43	8.54	3.21	0.03	12.00	0.17	1.44	0.15	0.07	6.62	-10	256	21	44	29	53	360	71	67	
AG08644	TR88-34	320	330	44.20	15.10	8.23	7.05	3.36	0.03	12.50	0.18	1.50	0.17	0.08	7.77	35	365	-10	44	21	55	387	82	75	
AG08645	TR88-34	330	340	37.00	14.80	11.60	7.32	2.77	0.63	12.00	0.14	1.43	0.16	0.07	12.30	. 22	178	10	51	16	154	336	105	66	
AG09204	TR88-36	0	10	39.80	16.40	8.69	2.83	3.21	1.29	12.90	0.19	2.21	0.47	0.07	12.50	45	177	21	180	25	374	261	55	66	
AG09205	TR88-36	10	30	32.90	12.20	15.20	4.32	0.90	2.20	10.30	0.20	1.81	0.42	0.05	18.00	56	196	10	164	41	902	201	39	60	
AG09206	TR88-36	30	50	38.30	12.40	14.90	4.11	0.77	1.80	8.32	0.17	1.27	0.20	0.07	16.20	53	207	-10	66	20	708	281	53	334	
AG09207	TR88-36	50	70	36.00	12.40	13.50	4.79	0.77	2.19	10.30	0.18	1.56	0.25	0.06	16.30	69	210	15	98	27	633	216	50	124	
AG09208	TR88-36	70	80	35.30	13.00	11.30	6.90	0.82	1.88	10.90	0.21	2.09	0.45	0.06	15.20	61	216	-10	177	47	436	248	177	281	
AG09209	TR88-36	80	90	33.60	13.30	10.30	7.46	0.83	1.93	10.40	0.21	1.65	0.38	0.07	16.00	46	1,76	20	143	39	3,49	246	45	175	
AG09210	TR88-36	90	110	32.30	9.99	16.10	4.75	0.54	1.96	11.10	0.20	1.31	0.26	0.06	17.20	41	183	15	80	25	407	247	59	139	
AG09211	TR88-36	110	130	39.60	13.70	11.60	4.96	1.55	1.07	10.90	0.19	1.83	0.47	0.06	11.50	37	126	13	184	33	336	274	53	112	

1988 TRENCH RESULTS; ALTERATION SAMPLING (XRAL)

_																								
SAMPLE		START	BND		AL203%	CAO3	MGO\$			PE203%		T1023	P205%				SRppm	¥рр∎	ZRpp≡	NBppm	BAppm	NIppm	CUppm	2Nppm
AG09212	TR88-36	130	150	47.20	11.60	8.89	5.37	0.77	1.50	10.20	0.18	1.57	0.26	0.06	12.60	48	93	. 20	127	36	1230	198	75	64
AG09213	TR88-36	150	170	45.40	12.10	8.31	6.06	2.18	0.51	10.80	0.17	1.78	0.35	0.08	12.40	17.	101	17	153	24	400	381	57	73
AG09214	TR88-36	170	190	36.70	8.57	15.10	5.57	0.81	1.29	10.70	0.16	1.24	0.24	0.07	19.80	51	146	-10	73	30	529	343	58	44
AG09215	TR88-36	190	210	43.90	12.80	11.30	2.67	3.03	1.62	9.79	0.18	1.68	0.49	0.06	12.40	46	109	13	124	30	507	236	66	47
AG09216	TR88-36	210	230	40.90	11.50	10.10	8.35	1.87	0.13	11.00	0.22	1.72	0.32	0.08	14.10	-10	205	15	134	27	398	462	60	72
AG08616	TR88-36	230	240	48.20	11.80	7.64	6.78	2.43	0.03	10.60	0.12	1.97	0.36	0.06	10.00	-10	130	-10	142	30	124	235	79	46
AG09262	TR88-38	. 0	20	42.00	11.50	13.10	4.51	2.48	0.60	9.95	0.19	1.03	0.12	0.05	14.70	26	173	-10	26	18	138	224	54	248
AG09263	TR88-38	20	30	42.60	13.50	13.40	3.93	3.47	.0.34	8.60	0.12	1.20	0.14	0.04	12.80	-10	200	24	30	18	54	190	/ - 65	67
AG09264	TR88-38	30	40	42.80	15.10	8.39	4.11	3.07	1.04	12.10	0.18	1.34	0.13	0.05	10.10	29	116	18	49	- 26	216	242	108	108
AG09265	TR88-38	40	60	38.60	12.20	13.70	4.13	2.03	1.24	10.60	0.18	1.12	0.16	0.04	15.50	38	146	-10	34	34	212	228	59	106
AG09266	TR88-38	60	80	39.70	11.10	15.30	2.83	1.48	1.21	9.90	0.18	1.23	0.20	0.04	17.00	31	144	12	67	26	131	190	62	82
AG09267	TR88-38	80	100	49.20	14.80	7.43	2.64	3.64	1.27	9.65	0.14	1.30	0.15	0.04	9.54	37	86	14	44	25	268	169	73	75
AG09268	TR88-38	100	120	44.60	13.00	11.30	3.46	2.91	1.11	9.28	0.17	1.11	0.13	0.04	11.80	35	140	- 15	49	-10	154	152	89	61
AG09269	TR88-38	120	140	43.70	13.30	11.30	3.85	2.54	1.42	9.62	0.21	1.24	0.15	0.04	11.90	. 57	155	-10	43	34	178	179	.: 78	47
AG09354	TR88-38	140	150	44.20	13.70	10.60	5.67	3.55	0.36	8.63	0.12	1.13	0.14	0.05	11.50	31	177	12	33	19	71	223	78	50
AG09355	TR88-38	160	170	40.20	12.80	13.90	4.64	2.75	1.04	8.46	0.13	1.11	0.14	0.05	13.70	44	268	-10	23	18	252	211	69	43
AG09356	TR88-38	180	190	43.20	15.00	8.22	6.90	4.38	0.19	10.70	0.14	1.43	0.14	0.05	9.39	44	161	-10	49	30	75	216	124	63
AG09357	TR88-39	20	30	40.90	9.34	16.20	6.42	1.18	0.17	8.38	0.16	0.92	0.09	0.04	15.80	20	267	-10	14	17	21	218	73	35

1988 TRENCH RESULTS; ALTERATION SAMPLING (XRAL)

SAMPLE!	TRENCH	START	END	S102%	AL203%	CAOS	MGO\$	NA 20%	K20%	PE203%	MNO	T102%	P205%	CR203%	LOI\$	RBppm	SRppm	¥ррш	2Rppm	NBppm	ВАрря	NIppm	COppn	ZNppm
AG09358	TR88-39	40	50	39.20	12.30	12.20	7.69	2.40	0.02	10.40	0.15	1.47	0.16	0.05	12.80	16	182	-10	31	21	- 38	270	94	51
AG09359	TR88-39	60	70	38.40	11.60	16.80	4.67	2.84	0.52	7.48	0.16	1.15	0.15	0.05	15.80	18	305	20	29	21	129	281	64	39
AG09360	TR88-39	80	90	35.30	11.00	17.50	5.83	1.84	0.38	8.99	0.14	1.20	0.15	0.05	17.10	12	309	-10	28	20	207	298	81	56
AG09270	TR88-39	90	110	36.50	9.30	18.30	5.81	1.42	0.39	8.49	0.20	0.96	0.12	0.04	18.20	16	398	-10	10	19	118	220	119	- 130
AG09271	TR88-39	110	130	44.70	10.70	11.80	5.16	2.54	0.50	8.41	0.17	0.95	0.12	0.03	13.40	23	170	-10	20	14	132	155	188	1010
AG09272	TR88-39	130	150	41.90	10.80	12.00	4.13	0.88	1.95	10.70	0.20	1.15	0.15	0.05	15.80	57	111	-10	41	21	287	212	76	205
AG09273	TR88-39	150	170	43.10	12.40	11.80	2.87	1.46	2.16	10.00	0.17	1.30	0.17	0.06	13.30	60	120	-10		23	364	243	126	129
AG09274	TR88-39	170	185	33.50	9.56	18.90	4.42	2.76	0.62	8.21	0.22	0.77	0.10	0.03	19.70	33	215	- 10	11	-10	135	173	102	· : 77
AG09275	TR88-39	192	214	40.90	12.50	12.10	3.45	2.18	1.81	9.85	0.23	1.30	0.23	0.05	14.50	49	135	-10	56	28	259	203	89	150
AG09276	TR88-39	218	234	37.90	12.10	13.70	4.06	2.95	1.34	8.86	0.20	1.14	0.16	0.04	16.00	36	158	-10	47	26	214	146	87	410
AG09363	TR88-39	275	280	45.80	14.90	7.96	5.98	4.28	0.08	9.49	0.11	1.27	0.14	0.05	9.77	-10	120	-10	36	31	79	189	60	59
AG09364	TR88-39	290	300	41.30	14.30	9.44	7.47	2.63	0.40	10.90	0.12	1.27	0.15	0.05	11.20	22	122	22	40	22	165	203	96	75
AG09284	TR88-40A	10	30	28.50	5.44	18.40	8.51	0.07	1.09	10.10	0.26	0.57	0.09	0.08	25.00	30	133	22	18	- 15	240	344	65	28
AG09285	TR88-40A	30	50	47.00	13.20	6.27	5.85	1.33	1.24	11.70	0.19	1.37	0.16	0.06	11.40	48	124	15	41	16	510	268	93	72
AG09286	TR88-40A	50	70	41.00	10.60	11.90	6.69	1.40	0.61	9.84	0.18	1.14	0.18	0.06	16.00	32	199	-10	43	33	266	293	. 99	50
AG09287	TR88-40A	64	72	38.80	11.70	12.40	4.97	1.56	1.03	10.30	0.17	1.51	0.28	0.06	17.30	15	220	24	109	26	418	238	. : 84	60
AG09288	TR88-40A	90	110	40.00	10.50	14.50	4.94	1.76	0.57	8.57	0.15	1.14	0.23	0.06	17.80	18	252	22	55	34	608	228	56	- 59
AG09289	TR88-40A	110	130	36.30	11.80	15.00	4.92	1.27	0.88	10.10	0.14	1.44	0,33	0.07	17.80	22	235	29	105	16	378	293	71	70
AG09290	TR88-40A	130	150	36.10	11.20	17.20	3.73	0.53	1.90	9.30	0.16	1.06	0.16	0.06	18.90	43	163	19	37	-10	564	213	80	55

1988 TRENCH RESULTS; ALTERATION SAMPLING (XRAL)

SAMPLE	TRENCH	START	END	SI02%	AL203%	CAO\$	MGO\$	NA 20%	K20%	PE203%	MNOS	T102%	P205%	CR203%	ro1\$	RBppm	SRppm	¥ррв	ZRppm	NBppm	BApp∎	NIppm	СПррв	ZNppm	
AG09291	TR88-40A	150	170	33.20	11.10	18.80	5.07	0.44	1.40	8.74	0.14	1.06	0.16	0.06	20.20	20	224	-10	62	36	499	225	91	56	
AG09292	TR88-40A	170	190	43.20	13.60	8.72	4.16	0.79	2.65	10.80	0.18	1.62	0.27	0.09	13.60	69	98	21	102	26	1170	246	73	52	
AG09293	TR88-40A	190	210	40.30	13.00	13.70	1.44	1.68	2.01	10.40	0.16	1.90	0.41	0.05	15.30	55	171	10	181	25	913	150	45	54	
AG09294	TR88-40A	210	230	40.30	9.56	12.10	7.17	0.82	0.82	9.40	0.14	1.30	0.26	0.09	16.60	36	166	-10	56	31	525	462	61	71	
AG09295	TR88-40A	230	243	37.50	12.10	14.30	2.80	1.31	2.01	9.98	0.15	1.53	0.37	0.05	15.10	61	169	-10	60	25	552	169	59	68	
AG09296	TR88-40A	293	320	46.90	10.30	12.70	1.89	0.90	1.33	9.92	0.17	1.09	0.16	0.08	13.00	32	173	-10	45	26	1140	175	67	116	
AG09297	TR88-40A	334	352	43.60	14.00	9.31	2.24	2.45	1.66	11.20	0.22	1.49	0.28	0.06	12.50	39	197	21	71	19	653	192	120	58	
AG09298	TR88-40A	352	370	40.70	12.80	10.60	4.27	2.77	0.92	10.50	0.18	1.16	0.22	0.04	15.60	34	276	18	52	17	573	154	80	82	
AG09299	TR88-40A	370	390	39.90	12.20	11.60	5.52	2.45	0.58	10.30	0.17	1.34	0.21	0.05	14.70	22	259	-10	45	23	2350	248	. 89	66	
AG09300	TR88-40A	390	410	42.60	12.50	12.20	3.10	2.00	1.25	10.70	0.21	1.54	0.27	0.05	13.50	40	162	12	88	24	1010	243	68	75	
AG09201	TR88-40A	410	420	43.50	12.80	12.30	3.32	2.83	1.04	9.94	0.16	1.22	0.24	0.04	12.50	34	188	19	70	22	667	166	94	- 67	
	TR88-40A	420			14.70		5.85	3.92			0.15	1.48	0.19		12.90	20	271	29	59	14	190	121	46	45	
	TR88-40A	420			12.70		4.61	3.42	0.25		0.17	1.32	0.18		15.10	-10	314	18	60	26	131	108	41	50	
AG09203	TR88-40A	430	440	39.30	12.70	14./0	3.15	2.42	1.38	9.73	0.17	2.07	0.32	-0.01	13.90	36	220	26	97	25	340	81	51	84	
AG09218	TR88-42	• 5	30	37.70	12.60	13.70	3.79	2.87	0.59	10.30	0.17	1.74	0.35	0.05	16.50	33	280	27	143	22	187	195	65	59	
AG09219	TR88-42	30	50	40.20	14.30	11.00	2.54	2.01	1.74	11.50	0.16	2.11	0.41	0.05	14.20	51	179	· 18	209	41	733	164	56	63	
AG09220	TR88-42	50	70	55.70	11.10	7.17	3.33	0.50	1.63	9.03	0.09	1.57	0.27	0.05	9.93	48	116	25	103	31	1880	145	70	61	
AG09221	TR88-42	70	90	31.70	10.30	17.20	5.27	1.42	1.56	9.33	0.22	1.09	0.16	0.06	21.90	29	181	16	41	21	352	190	52	47	

1988 TRENCH RESULTS; ALTERATION SAMPLING (XRAL)

SAMPLE#	TRENCH	START	END	S102%	AL203%	CAO\$	MGO%	NA 20%	K20%	FB203%	MNO	T102%	P205%	CR203%	LOI	RBppm	SRppm	¥рр в	ZRppm	NBppm	ВАрри	NIppm	СПрри	ZNppm	
AG09222	TR88-42	90	110	40.80	11.70	13.70	2.65	1.82	1.39	10.60	0.18	1.35	0.19	0.05	15.80	46	143	18	73	22	520	151	69	60	
AG09223	TR88-42	110	125	42.30	13.70	11.80	1.16	3.40	1.45	11.20	0.15	2.06	0.32	0.03	12.50	55	160	15	110	32	364	149	36	63	
AG09224	TR88-42	153	170	40.00	11.80	15.60	3.36	3.14	0.41	9.22	0.15	1.31	0.26	0.04	13.60	20	277	18	61	43	194	220	63	60	
AG09225	TR88-42	170	190	41.70	11.80	10.10	6.66	1.98	0.57	11.10	0.16	1.60	0.27	0.06	14.10	36	227	-10	78	41	221	351	82	86	
AG09226	TR88-42	190	210	50.80	11.60	7.22	5.25	3.43	0.66	8.34	0.17	1.18	0.22	0.06	11.50	20	193	21	59	32	230	263	64	88	
AG09227	TR88-42	210	230	47.00	15.30	6.30	3.71	3.77	1.14	10.60	0.17	2.44	0.42	-0.01	8.39	40	166	11	175	47	445	67	94	69	
AG09228	TR88-42	230	252	43.20	14.00	8.19	8.24	3.01	0.12	11.60	0.14	2.09	0.39	0.05	9.16	17	173	15	146	44	332	281	96	^{1 2} 1 277	
AG08613	TR88-42	241	248	41.10	12.60	11.20	7.78	2.95	0.02	11.10	0.14	1.85	0.35	0.06	10.80	21	230	-10	114	44	151	311	87	63	
AG09229	TR88-42	261	280	48.70	14.60	4.78	3.15	2.38	1.89	13.40	0.21	2.02	0.36	0.07	7.39	71	67	14	121	33	626	299	97	213	
AG09230	TR88-42	280	290	44.10	11.40	10.10	4.59	0.10	3.04	9.78	0.26	1.33	0.21	0.07	13.90	84	81	-10	58	20	857	226	70	194	
AG09352	ጥ ወደ የ መመር መጠር መጠር መጠር መጠር መጠር መጠር መጠር መጠር መጠር	0	1.0	20 20	11.20	12 20	7.89	2.05	n n2	10.90	0.17	2.02	0.27	0.06	12 20	17	205	15	t n	20		222	70	2.01	
			10	37.20	11.20	13.30	1.07	2.03			0.17	2.02	0.27	0.00	13.20	17	265	13	57	38	41	332	78	363	
AG09353	TR88-43	10	20	37.30	10.80	14.20	8.10	1.39	0.80	9.99	0.21	1.52	0.21	0.05	14.80	39	170	-10	43	29	256	266	80	217	
AG09254	TR88-43	30	50	39.80	13.20	10.90	4.87	3.15	1.44	9.26	0.21	1.25	0.16	0.03	14.40	36	110	-10	44	16	326	118	112	102	
AG09255	TR88-43	50	70	44.00	12.20	9.70	3.11	2.11	1.66	10.40	0.24	1.17	0.15	0.04	10.70	39	93	-10	38	22	245	171	98	405	
AG09256	TR88-43	70	90	41.80	10.30	14.30	3.60	1.65	1.31	9.50	0.16	1.02	0.13	0.05	14.70	28	185	15	28	19	193	181	77	86	
AG09257	TR88-43	90	110	35.60	9.94	18.90	2.72	2.03	0.91	9.44	0.17	0.99	0.14	0.03	18.80	36	191	16	16	-10	69	197	58	59	
AG09258	TR88-43	110	130	42.00	11.70	13.10	3.05	1.43	1.62	10.60	0.22	1.25	0.16	0.06	15.20	38	129	21	38	-10	236	270	84	85	
AG09259	TR88-43	130	150	38.50	10.50	14.40	4.11	0.74	1.36	10.30	0.21	1.29	0.20	0.05	16.50	47	152	15	32	18	170	246	59	134	
AG09260	TR88-43	150	160	41.00	9.92	14.40	3.50	0.69	1.28	10.40	0.21	1.36	0.24	0.05	17.10	49	134	-10	55	34	150	198	50	67	

1988 TRENCH RESULTS; ALTERATION SAMPLING (XRAL)

SAMPLE	TRENCH	START	END	SI02%	AL203%	CAO	MGO\$	NA 20%	K20%	PE203%	HNOS	T102%	P205%	CR203%	LOI	RBppm	SRppm	¥рр в	ZRppm	NBppm	BAppm	NIppm	COppm	ZNppm	
AG09277	TR88-44	10	30	46.30	12.60	7.74	5.24	2.48	1.22	9.54	0.16	1.24	0.15	0.05	11.80	46	97	-10	29	. 11	343	199	100	75	
AG09278	TR88-44	30	50	45.10	14.30	7.16	7.31	3.00	0.23	10.10	0.14	1.34	0.17	0.05	10.30	11	88	-10	40	29	127	227	77	71	
AG09279	TR88-44	58	60	43.80	12.80	6.58	6.92	1.55	0.89	12.20	0.22	2.12	0.34	0.07	12.50	27	45	-10	121	43	360	338	617	83	
AG09280	TR88-44	93	107	40.80	11.70	10.40	5.40	1.22	0.71	11.40	0.18	1.67	0.35	0.07	15.10	26	135	15	94	41	189	288	81	68	
AG09281	TR88-44	107	135	38.80	10.30	11.70	3.50	1.18	1.12	14.20	0.18	1.22	0.21	0.05	9.16	49	103	-10	46	27	272	262	120	, . 51	
AG09282	TR88-44	145	170	44.80	11.00	9.95	3.01	0.90	1.49	13.40	0.22	1.09	0.15	0.05	13.50	57	94	12	42	14	436	188	81	53	

APPENDIX B 1898 DIAMOND DRILLING PROPOSAL FOR BAY

TO;

N. VONFERSEN

FROM:

S. ENNS

COPIES:

R. MOORE

DATE:

OCTOBER 7, 1988

SUBJECT: 1988 DIAMOND DRILLING PROPOSAL FOR BAY OPTION

A drilling programme comprised of about 1450m in 13 holes is proposed for the Bay Property located in the Adams Lake area of southern B.C. The expenditures incurred in drilling will meet the requirements to give Falconbridge a 40% earned interest in the property. The target is a polymetallic massive sulphide deposit with associated precious metals in mafic volcanics.

The Bay 7 claim at the north end of the property has never been drilled. The 1988 drilling is planned to follow up on positive results from this past summer's fieldwork. These results include:

- weak mineralization over significant widths, associated with alteration,
 - definition of chargeability and resistivity low anomalies,
- VLF and HLEM conductors (in most cases these are believed to be caused by fault zones),
- -Au mineralization in one trench.

No borehole geophysics is planned for now, however, casing will be left in the holes so that we have the option of conducting future downhole surveys on holes with favourable geological characteristics. Most of the holes are short (~100m), and will be drilled along sections which have been trenched.

Technical details of the proposed holes are listed in the Table 1 and hole locations and drill sections are shown on accompanying figures, organized by grid line.

JB Showing

The JB Showing area is located on the west side of the Bay 7 claim. Seven holes (Bay #1-7) will test mineralization encountered in trenching. Three sections 100m apart, will be drilled to determine the geological characteristics of alteration, Pb-Zn mineralization, the IP anomaly (which underlies the entire area), and several conductors. The details for holes Bay #1-6 are shown on sections 38+00W, 39+00W and 40+00W. Bay #7 is a 300m step-out to the northwest; it will test weak, along strike mineralization encountered in trenching section 43+00W.

Alteration Zone D

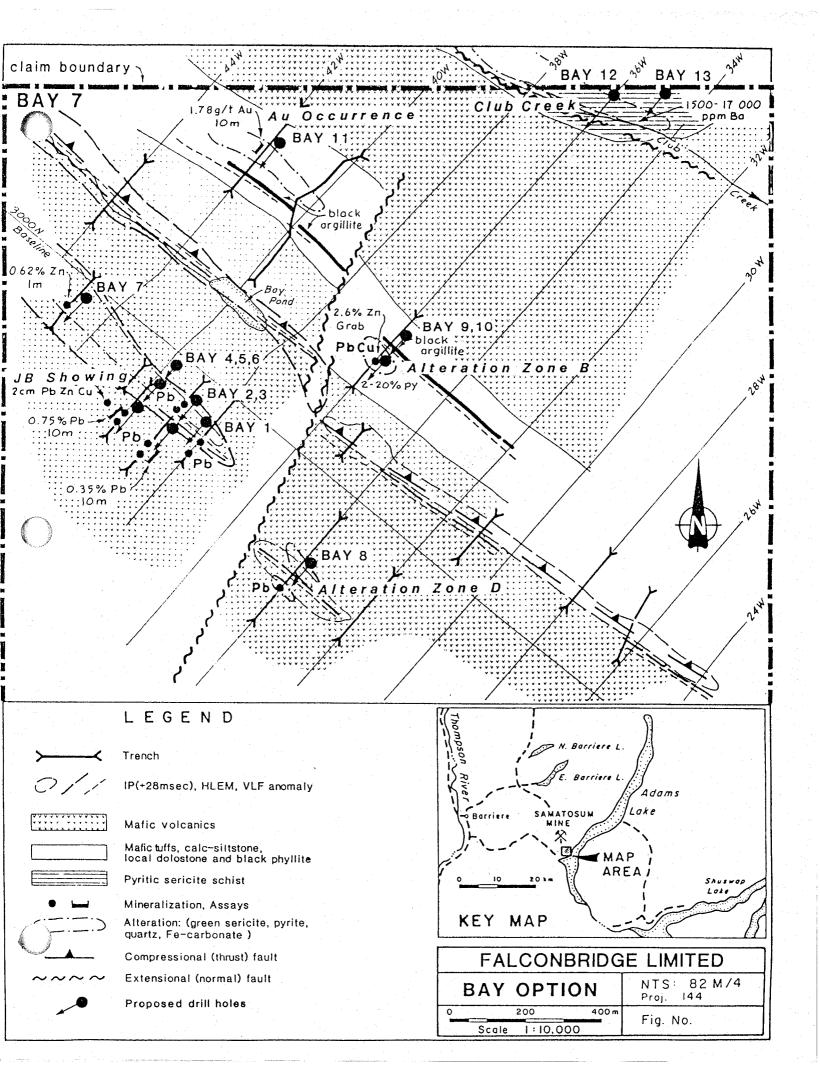
Bay #8 will be drilled on section 34+00W to test Alteration Zone D comprised of strong, sericite-altered mafic tuffs and associated weak galena-sphalerite mineralization. A chargeability anomaly underlies the area. Alteration Zone D is correlated across the north-south fault with the alteration found at the JB Showing area.

Alteration Zone B

Two holes (Bay #9 and 10) will be drilled on section 36+00W, across Alteration Zone B. Hole Bay #9 will test sericite altered, mixed tuff and sediments with local, Ba-rich stratigraphy associated with a VLF conductor. Hole Bay #10 will test silicified and sericite altered mixed mafic tuffs and sediments which contain scattered Cu, Zn and Ag mineralization in the trench. It will also test the IP anomaly at depth. Together, these holes will provide a geologic section in this region, (as indicated on the appropriate figure).

Au Occurrence

Bay #11 will be drilled on section 42+00W to test the Au mineralization and to give information on its geological context. Resampling of earlier results (shown on the map) gave 1.07g/t over m (weighted average). Details are shown on the appropriate figure.


Club Creek

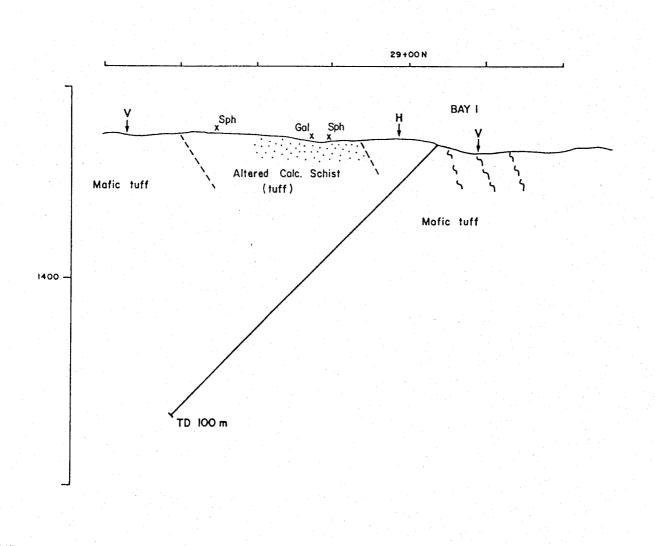

The Club Creek alteration zone at the north end of the Bay 7 claim is underlain by Ba-rich (1500-17,000ppm) pyritesericite schists. TiO2 levels indicate that the protolith is a mafic volcanic. A large chargeability and resistivity-low anomaly underlies this altered zone. Proposed holes Bay #12 and 13 100m apart, will test this zone on two sections, for favourable geological characteristics. Figures for sections 35+00W and 36+00W show the details.

TABLE 1: TECHNICAL DATA FOR PROPOSED DRILL HOLES

HOLE	LOCATIO	NC	ELEV'N	DIP	AZIM	DEPTH
	JВ	Showing	Area			
Bay #1	Line 38+00W	29+08N	1435m	-45	220	100m
Bay #2	Line 39+00W	29+40N	1433m	-45	220	100m
Bay #3	Same	28+65N	1437m	-45	220	100m
Bay #4	Line 40+00W	28+96N	1437m	-45	220	100m
Bay #5	Same	28+32N	1435m	-45	220	100m
Bay #6	Same	27+78N	1447m	-45	220	100m
Bay #7	Line 43+00W	28+95N	1430m	-45	220	100m
-						
	Alt	eration 2	Zone D			
Bay #8	Line 34+00W	27+92N	1445m	-45	220	150m

	Alte	eration Zor	ne B			
Bay #9	Line 36+00W	34+11N	1470m	-45	220	100m
Bay #10	Same	33+2011	1485m	-45	220	100m
	Go.	ld Occurrer	ice			
Bay #11	Line 42+00W	36+53N	1440m	-45	220	100m
	01.	uh Omaala Na				
		ub Creek Ai	ea			
Bay #12	Line 35+00W	43+77N	1348m	-45	220	150m
Bay #13	Line 36+00W	42+94N	1355m	-45	220	150m

LEGEND

V VLF Anomaly

HLEM Anomaly

Chargeabiity Anomaly (+26,+44 msec)

Resistivity Anomaly

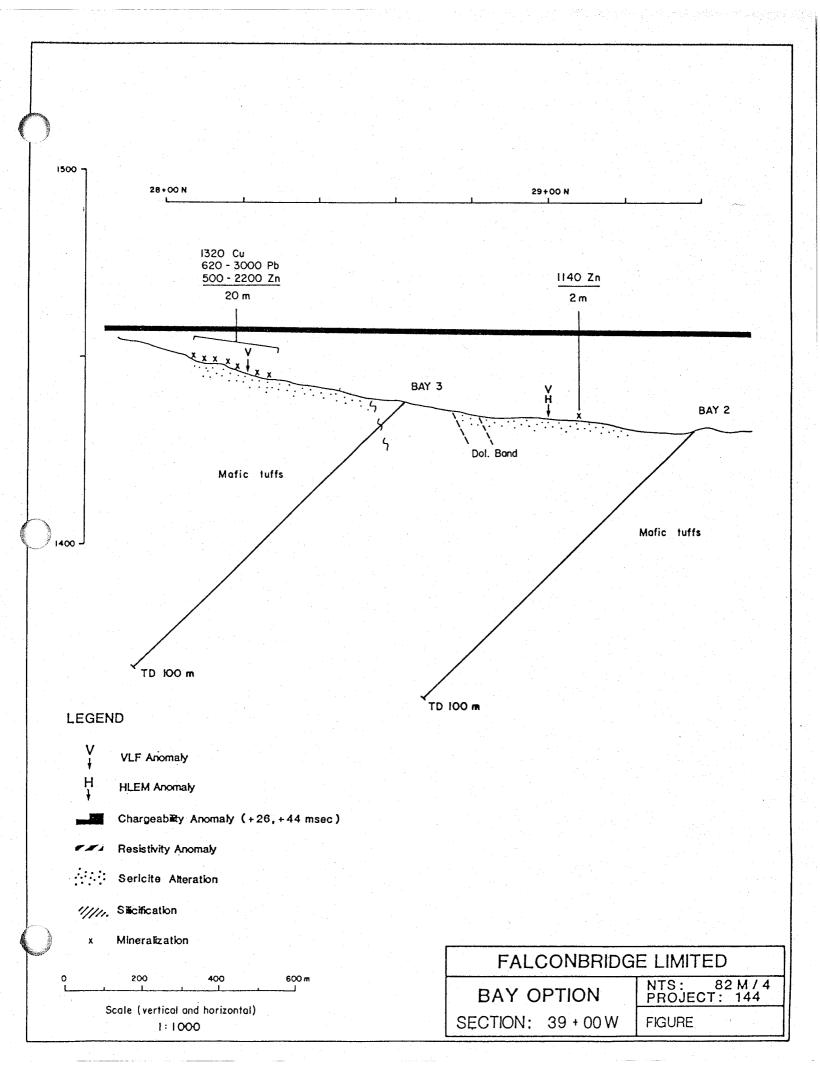
Sericite Atteration

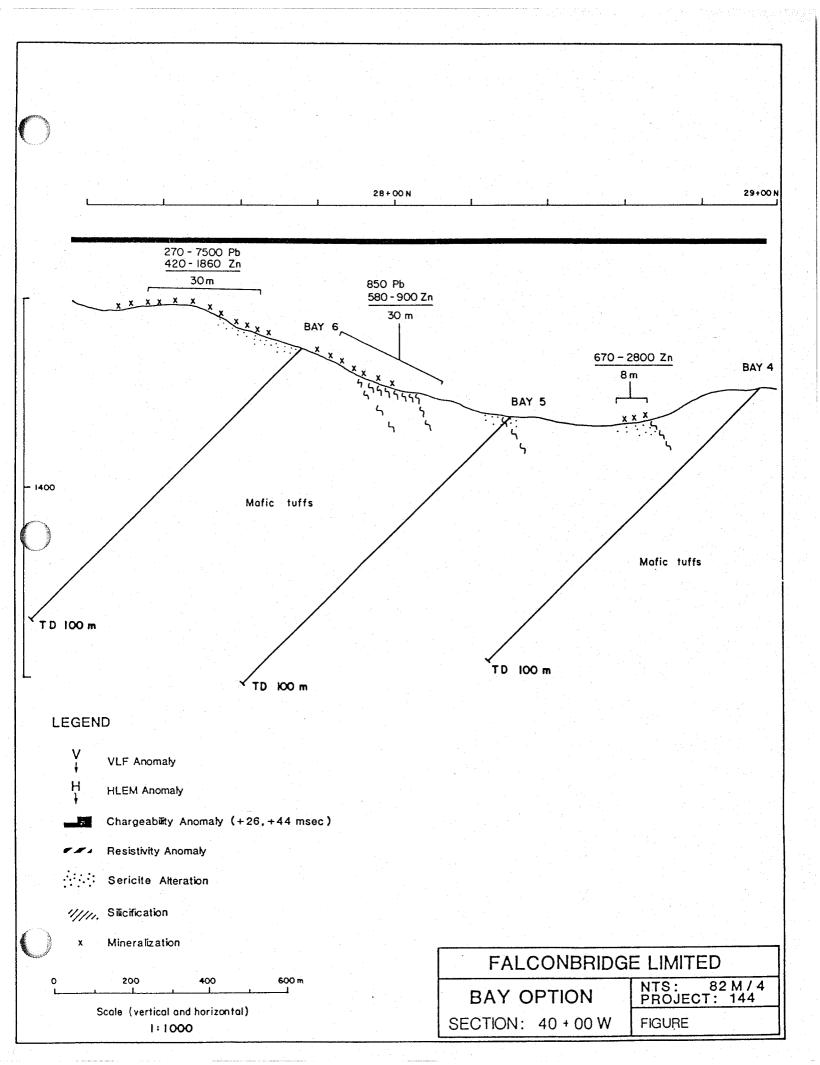
1////. Silicification

x Mineralization

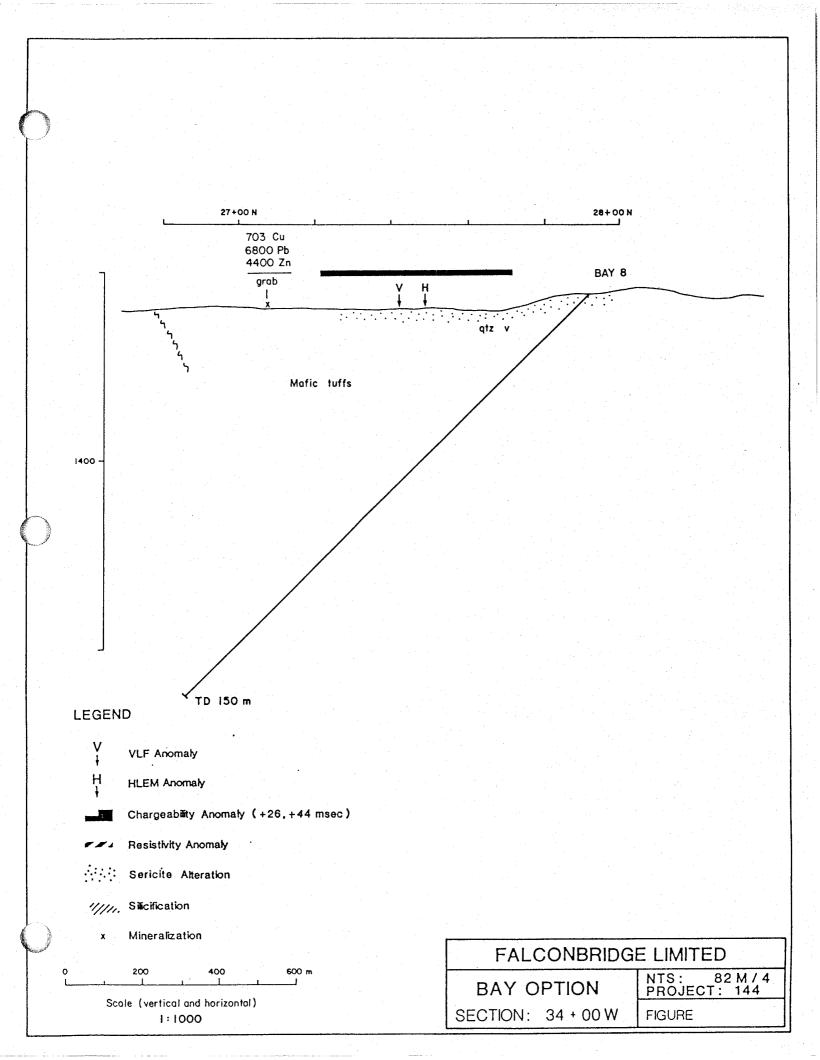
Scale (vertical and horizontal)

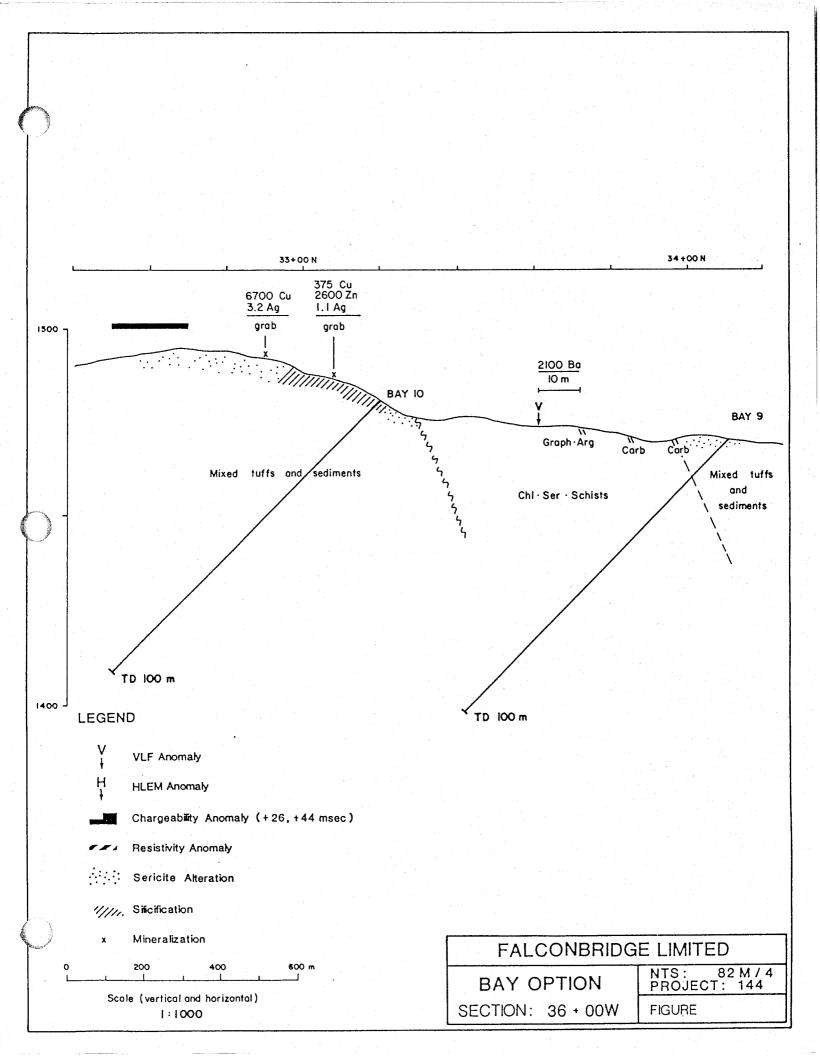
1:1000

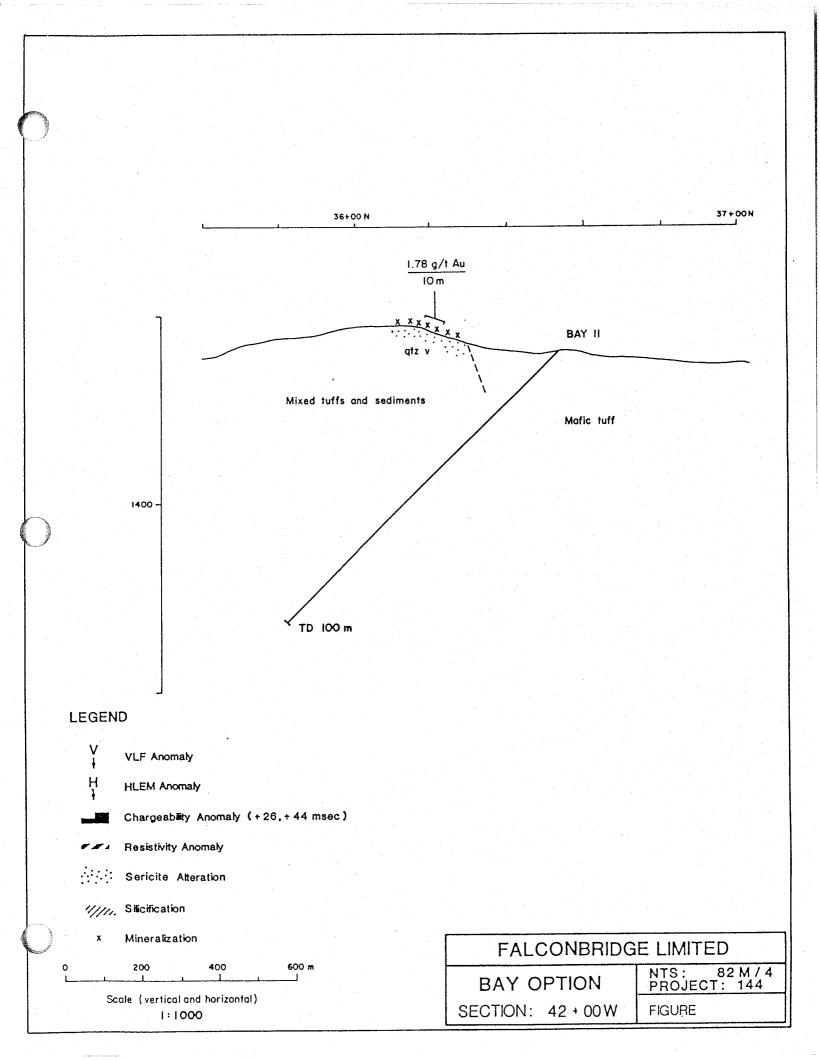

FALCONBRIDGE LIMITED

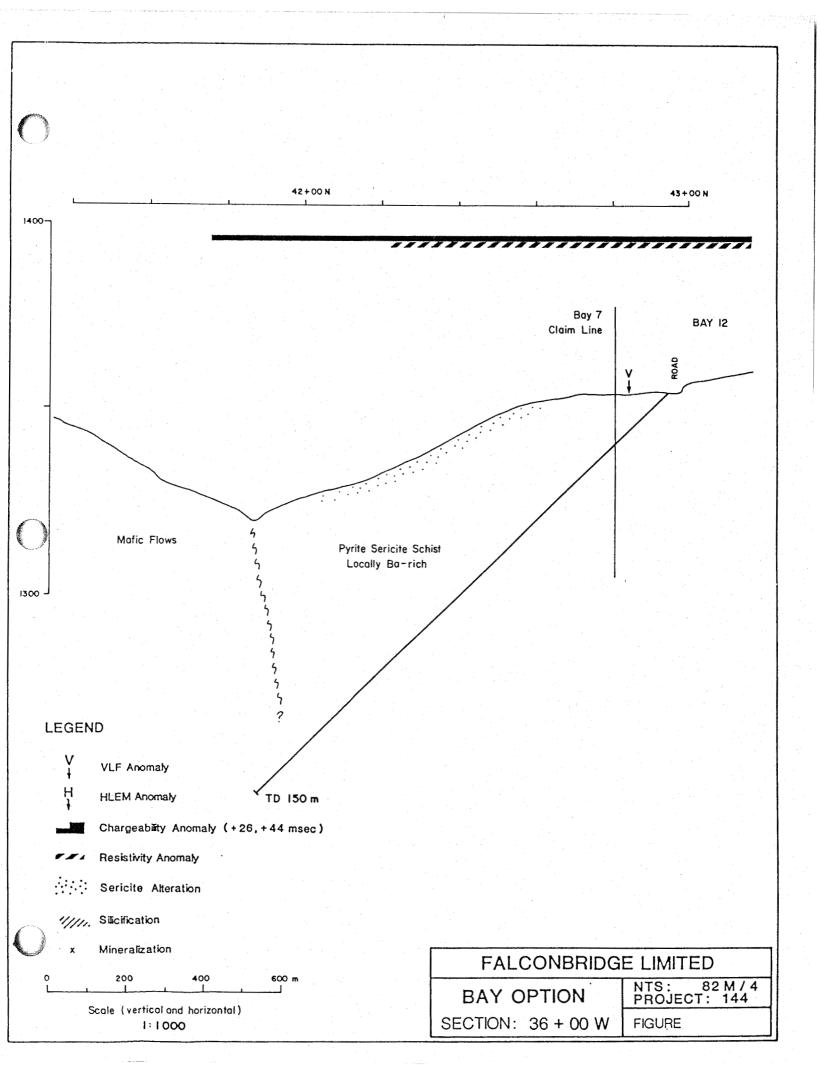

BAY OPTION

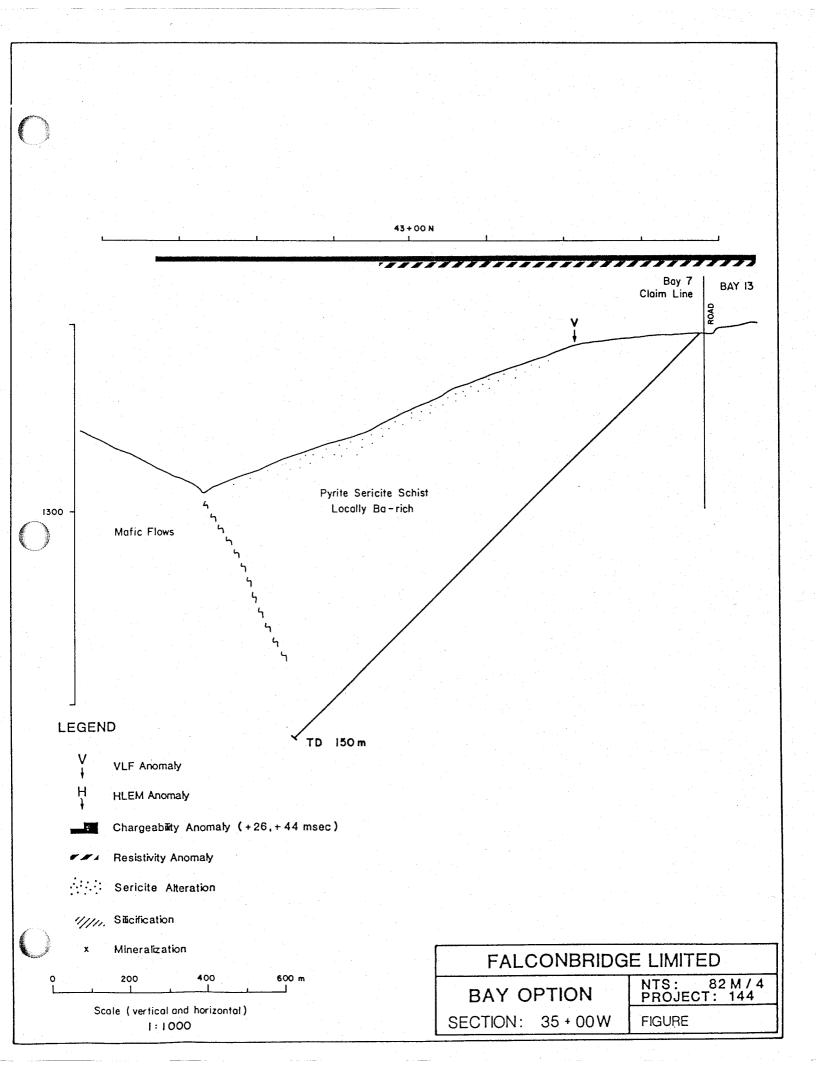
NTS: 82 M / 4 PROJECT: 144


SECTION: 38 + 00 W FK


FIGURE






28+00 N 29+00 N 227 - 1685 Pb 490 - 6200 Zn 346 Pb 285-970 Zn BAY 7 Mafic tuffs 1400-TD 100 m LEGEND VLF Anomaly **HLEM Anomaly** Chargeability Anomaly (+26, +44 msec) Resistivity Anomaly Sericite Alteration 1////. Silicification Mineralization FALCONBRIDGE LIMITED 200 600 m 400 NTS: 82 M / PROJECT: 144 82 M / 4 **BAY OPTION** Scale (vertical and horizontal) SECTION: 43 + 00 W **FIGURE** 1:1000

