1983 FINAL REPORT SEDEX RECCE PROJECT

Southeastern British Columbia

(NTS 82 F, K, M)

by N. von Fersen

March 1983

Vancouver, B.C.

TABLE OF CONTENTS

(15

													Page
SUMMARY	• •	• •	• •	•	• •	•		•	•	• •	•	•	i
CONCLUSIONS	• •	• •	• •	•	• •	•	• •	•	•.	• •	•	•	ii
RECOMMENDATIONS	• •	• •	• •	•	• •	•	• •	• -	•	• •	•	•	iv
INTRODUCTION	• •	• •	• •	•	• •	•	• •	•	•	• •	•	•	1
Exploration Tar	get	• •	• •	•	• •	•	• •	۰.	•	• •	•	•	1
Target Areas	• •	• •	• •	•	•	• •	•	•	•	• •	•	•	3
Location and Ac	cess	•	• •	•	• •	•	• •	•	•	• •	•	•	6,
1983 Work Progr	am	• •	• •		•		• •	•	•	• •	•	•	7
GEOLOGY	• •	• •	• •	•	• •	• . •	• •	•	•	••	•	•	7
GEOCHEMISTRY	• •	• •	•	•	•	• •	•	••	•	• •	•	•	13
Results	• •	• •	• •	•	• •	• •	• •	•	•	• •	•	•	14
Adams Plateau .	•••	• •	• •	• •		• •	• •	•	•	• •	•	•	14
Trout Lake Area	ι.	• •	• •	•	•	• •	• •	•	•	• •	•	•	16
Salmo Area .	• •	• •	•		•	••	•	• •	•	• •	•	•	17 .
BIBLIOGRAPHY .	••		• •	•	•	•	•	•	•	•	•	•	19
Summary of Pro	ject (Costs	5	• •	•	••	•		•	• •	•	•	21
			API	PENI	DIC	ES							

Appendix I Sample Descriptions and Analytical Results Appendix II Analytical Results

ſ

LIST OF ILLUSTRATIONS

Fig	Title Sca	le	Page
1	Location Map		2
2	Geological Terranes of SE B.C.		4
3	General Geology of the Western Margin of the Shuswap Complex		8
4	Distribution of the Lardeau Group in the Trout Lake Area		10
5	Geolgoy - Salmo area		12
6	Geology and Sample Locations NTS 82H/3	poo	ket

SUMMARY

This report presents results of the 1983 Sedex Recce program conducted in south and southeastern British Columbia. The objective was the delineation and preliminary evaluation of favourable environments of deposition for shale-hosted massive sulphide deposits. Three prospective sedimentary successions were selected within Lower to Middle Paleozoic marine basins. These were the Eagle Bay Formation in the Adams Lake area, the Lardeau Group in the Trout Lake area, and the Active Formation -Ledbetter Slates south of Salmo, B.C.

i

A truck-supported, 2-3 man crew completed a road reconnaissance which relied heavily on rock geochemistry and examination of bedrock exposures in road cuts. Heavy mineral and silt samples were routinely collected. This program was carried out in conjunction with the Kootenay Arc Sn-W follow-up program.

Results of investigations indicate that the Eagle Bay Formation is not favourable for sedimentary exhalative massive sulphide deposits. The Lardeau Group contains the appropriate depositional environment, however, the favourable formations are restricted in areal extent and access is difficult. The Active Formation-Ledbetter Slates are representative of deep water starved basin lithologies similar to shale facies of the Road River and Earn Group in northeastern British Columbia and Yukon Territory, which host several important Sedex Further investigation of the Ledbetter Slates deposits. south of the U.S. border is recommended.

CONCLUSIONS

2.

1. The Eagle Bay Formation in the Adams Lake area is characterized by a eugeosynclinal depositional environment. Mafic to felsic volcanic flows, tuffs derived volcanic and sediments form a major component of the formation. Carbonates and fine-grained calcareous clastic sediments comprise the remainder. Deep water, starved basin lithologies are rare. Geochemical results show Pb, Zn, Ag and Ba contents to be generally lower than normal for black shales. The potential for the discovery of Sedex deposits is considered to be poor.

Lower Cambrian-Mississippian The Lardeau Group displays a eugeosynclinal setting similar to the Eagle Bay Formation, but lacks appreciable felsic volcanics. Deep water shale facies are represented by the Triune and Sharon Creek Formations. Both formations are restricted in areal extent and indicate a short interval of quiet deposition in a reducing environment. Numerous crosscutting quartz-carbonate veins high-grade contain lead-silver mineralization. These veins are not considered to represent remobilized stratiform massive sulphides. The Broadview Formation exhibits a transitional environment between shallow water and more basinal deposition. Rapid facies The changes are common. potential for Sedex deposits appears to be limited. The Lardeau Group in the Trout Lake area is difficult to explore because of rugged terrain and complex geologicalstructural relationships. The large number of

ii

mineral showings of diverse origin suggests further regional evaluation is warranted.

3.

iii

The Active Formation-Ledbetter Slates adjacent to the International Boundary represent a deep water, starved basin shale facies lithologically comparable to the Road River Formation and Earn Group, which host important Zn, Pb, Ag deposits in northeastern British Columbia and Yukon Territory. Pyritic, carbonaceous shales, minor black limestone, and siliceous argillite occur in a section approximately 600-700 metres thick. No anomalous metal values were obtained during limited sampling, however, the depositional setting is favourable. Further investigation of the shale belt south of the boundary is warranted.

RECOMMENDATIONS

1.

2.

3.

The Ledbetter Slates south of the International for Boundary be investigated their should stratiform massive sulphide potential because they represent the appropriate depositional environment in which Sedex deposits are found. Previous work by Texasgulf indicated slightly elevated silver south of values in black shales Coleville, Contact zones between Cretaceous and Washington. Tertiary granitic intrusions and the Ledbetter should be investigated for their Slates qold Access in the area is good and a low potential. cost evaluation could be completed in one field season. Initiation of any program in the Colville-Metaline quadrangles should be contingent on a comprehensive review of published data.

The Lardeau Group hosts a variety of mineral deposits in the Duncan Lake, Trout Lake, Akolkolex Extensive flows, pillow lavas, and River area. fragmentals occur near the base and the top of the The potential for volcanogenic deposits or group. mineralization exists and should be gold investigated. A thorough review of mineral occurrences, geology, and assessment work records is recommended covering the Lardeau Group from north Kootenay Lake to Revelstoke.

No further exploration for Sedex deposits is warranted in the Eagle Bay Formation. The formation, however, has potential for volcanogenic iv

deposits such as the recently discovered Hilton showing (Rea Gold), a polymetallic massive sulphide occurrence in felsic volcanics, with high gold values. Future developments in the Adams Plateau area should be monitored with regard to possible property acquisition.

N. von Fersen

v

INTRODUCTION

The purpose of the 1983 Sedex program was the identification of a specific geological setting favourable for the occurrence of shale-hosted massive sulphide deposition. Most of the recent large discoveries of zinc, lead and silver have been stratiform accumulations within Selwyn Basin shales in northeastern British Columbia and the Yukon Territory. The need for low cost production, established infrastructure, and a dependable labour pool dictates that shale-hosted massive sulphide exploration be concentrated in southern British Columbia. Three areas of interest were selected on the basis of previous work done by Texasgulf in 1977 and literature research (Figure 1).

The geological setting of known sedimentary exhalative (Sedex) deposits is characterized by certain regional tectonic, lithological and sedimentary features, which are considered to be favourable indicators of the geological environment in which these deposits could have formed. The recognition of these indicators in the field formed the basis for evaluating the exploration potential of the selected areas.

Exploration Target

Shale-hosted, or Sedex deposits form in active tectonic environments from metalliferous geothermal brines that rise to the seafloor along deep seated fault zones and precipitate as bedded sulphide deposits, usually accompanied by barite. Deposits form in restricted basins under anoxic conditions. Volcanic rocks are generally absent, although tuffaceous rocks may be spatially associated. Age of deposits ranges from Proterozoic to 1

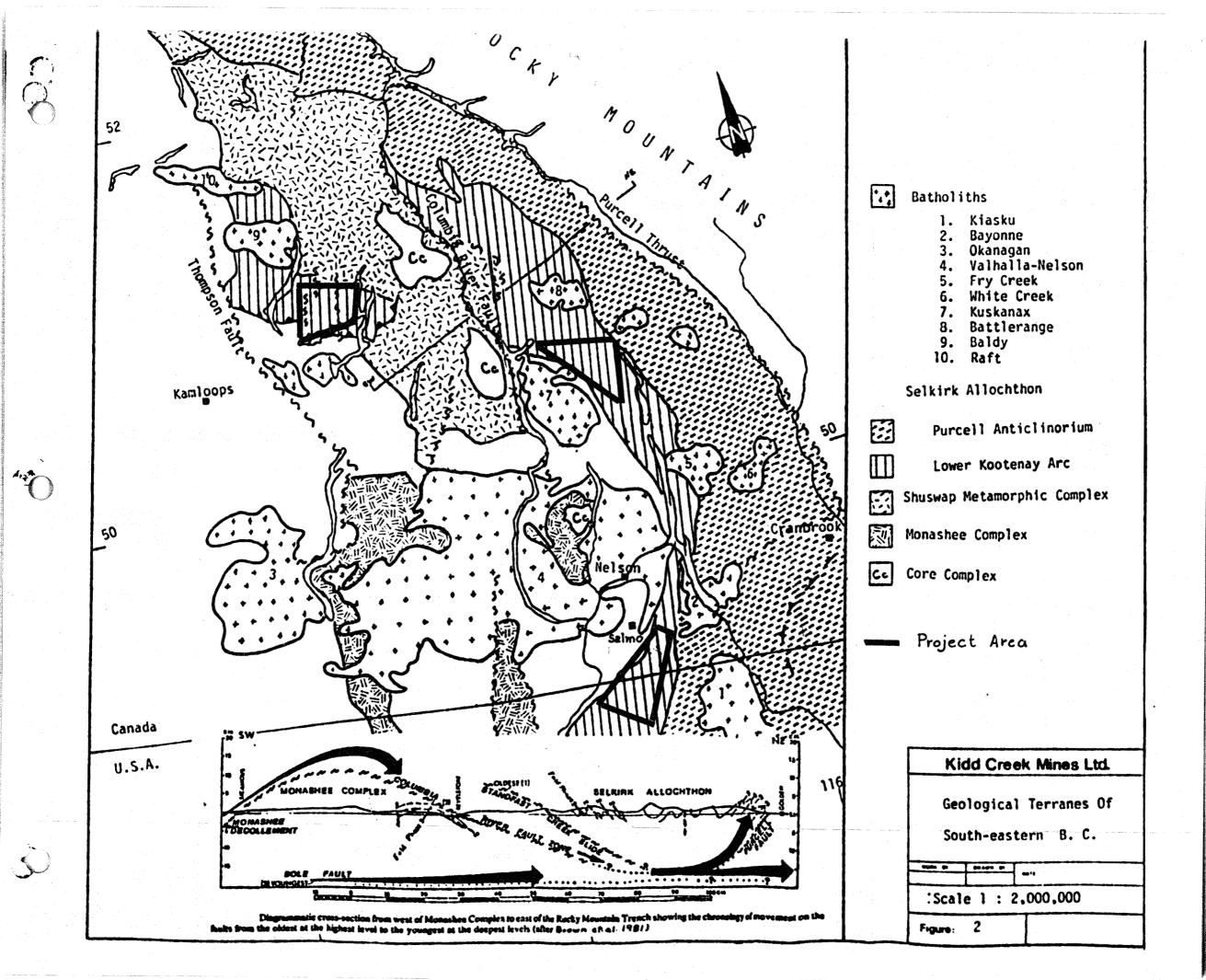
Upper Paleozoic and size of deposits may vary considerably. The Sullivan deposit in southeastern British Columbia is the largest known Sedex-type deposit in North America (160 million tonnes 6.7% Pb, 5.8% Zn, 79 gm/t Ag), although the recently discovered Red Dog deposit in Alaska may be comparable in size and grade.

3

Some important field criteria indicative of a favourable depositional environment for Sedex deposits (in an existing sedimentary basin) are as follows:

- a starved basin setting characterized by low energy deposition, low rates of sedimentation, and a reducing environment (high concentrations of organic carbon).
- evidence of metal deposition, (hydrothermal chert, geochemical halos, stratiform bedded pyrite, barite, stratiform zinc).

Target Areas


Three potentially favourable Paleozoic basins were identified in southern and southeastern British Columbia (Figure 2).

1. Eagle Bay Formation - Lower to Mid Paleozoic

The Eagle Bay Formation underlies a large part of the Adams Plateau, extending from Shuswap Lake northwesterly to North Barriere Lake and north beyond the North Thompson River.

The potential for stratiform shale-hosted deposits was recognized as a result of Texasgulf's exploration for volcanogenic deposits in the area. Several interesting, possibly Sedex-type occurrences were known east of Adams Lake.

2. Lardeau Group - Middle Cambrian-Lower Mississippian The section of Lardeau Group selected strikes

northwesterly from the head of Kootenay Lake to Galena Bay on Upper Arrow Lake. Ag, Pb, Zn bearing vein occurrences are hosted by black siliceous argillite and quartzite of the Sharon Creek, Ajax and Triune Formations. The presence of strong deformation and regional metamorphism suggested the possibility that Sedex-type mineralization may not have been recognized, and that some vein-type mineralization may reflect remobilized stratiform mineralization.

The upper member of the Lardeau Group, the Broadview Formation, although predominantly of shallow water origin, contains some black phyllite indicating a possible deep water origin.

Active Formation-Ledbetter Slate- L-M Ordovician Black shale and argillite of the Active Formation occur east of Ymir in a narrow fault-bounded belt that extends southwest beyond the U.S. border. Analagous lithologies in northeastern Washington are termed the Ledbetter Slates. Previous work by Texasgulf in 1977 indicated elevated values for Ag of these black south in shales Coleville, Washington.

3.

The northeast-trending rift zone that appears to controlled the distribution of have Purcell clastic-hosted deposits may have been important in localizing Lower and Middle Cambrian deposits at the southern end of the Kootenay Arc. The largest concentration of Kootenay Arc deposits, the Salmo Camp, and a Middle Cambrian platform edge lie along the projected strike of the pre-Cambrian rift zone. This zone may have been reactivated during lower Paleozoic times.

Location and Access

Location and access for the target areas are briefly described below.

1. Adams Plateau-Bagle Bay Formation (82M/3,4)

The area of interest centres around Adams Lake, 60 km northeast of Kamloops. Access is provided by paved roads and a good network of logging roads. Topography is moderate with a well developed plateau at approximately 1,900 metres. Relief averages 600-700 metres. Glacial overburden is widespread and bedrock exposures are restricted to slopes and steep incised creek drainages.

2. Trout Lake Area - Lardeau Group (82K/11,12)

The Trout Lake area lies 70 km southeast of Revelstoke and includes the old mining community of Ferguson. A good gravel road connects the area with Kaslo near the head of Kootenay Lake and Galena Bay on Upper Arrow Lake. Access within the Trout Lake area is restricted to a few old logging and mine access roads. The terrain is rugged with steep overgrown slopes rising from less than 1000 metres up to 3000 metres. Bedrock exposures are poor at low elevations.

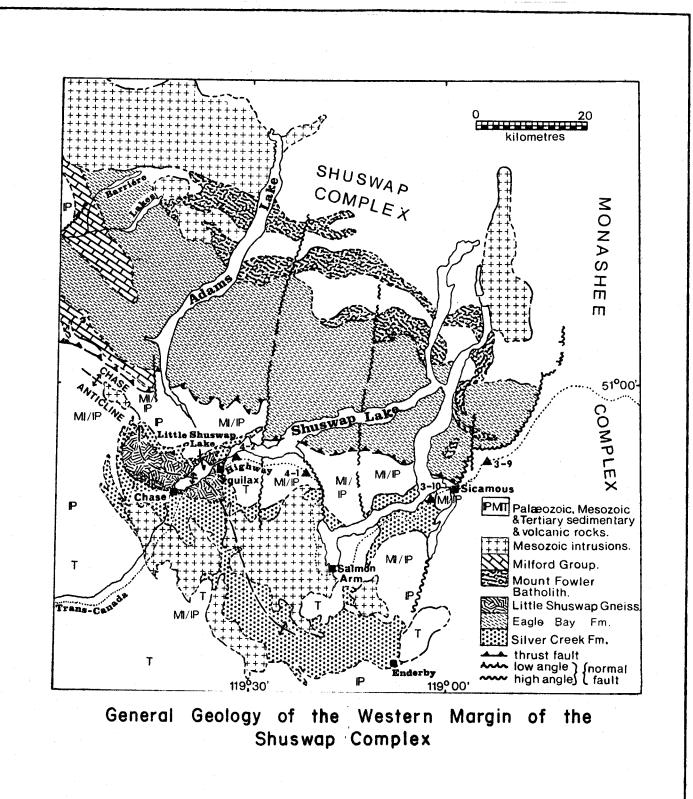
3. Salmo Area - Active-Ledbetter Formation (82F/3)

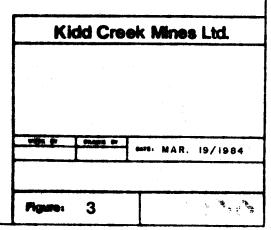
Salmo lies 40 km east of Trail. The area selected lies just east of Salmo and trends southwesterly to the International Boundary. Access is provided by the main Salmo-Creston highway and numerous logging roads which traverse most large drainage basins. A good road system exists south of the border. Relief ranges from moderate in the south to more extreme in the north. Glacial deposits and overburden cover are widespread at lower elevations.

1983 Work Program

The program was carried out by a 2-3 man truck-supported crew. Work was done in conjunction with the Kootenay Arc Sn-W anomaly follow-up. Project duration was approximately two weeks with a large percentage of time spent investigating the Sedex potential in the Adams Plateau. 7

Exploration was restricted to road reconnaissance with the intention of establishing a favourable setting for shale-hosted mineralization. Heavy mineral and stream sampling was carried out, however, the main emphasis was on rock geochemistry. Road cuts often provided the only good exposures in the recessively weathering shales and phyllites.

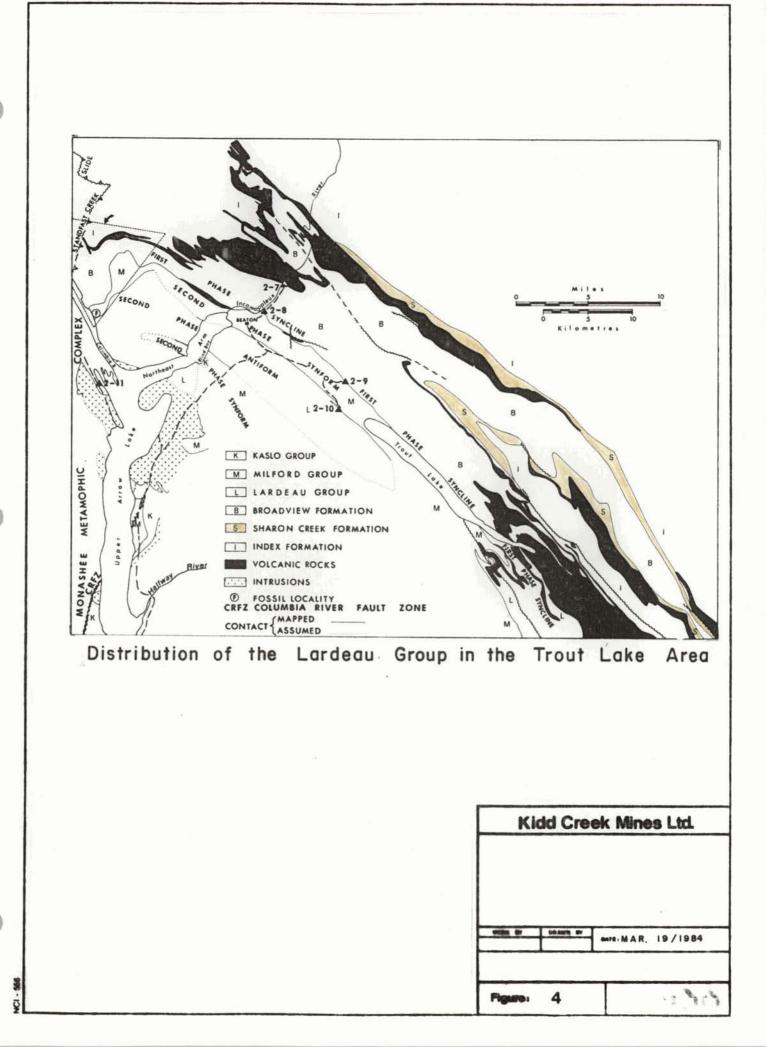

GEOLOGY


Bagle Bay Formation (Figure 3)

Lower to Middle Paleozoic

The Eagle Bay Formation as defined by V. Preto (B.C. Department of Mines, 1981) includes а broad assemblage of mafic and felsic metavolcanic rocks, clastic metasediments and numerous beds and lenses of carbonate, including a major carbonate unit; the Tshinakin limestonedolomite. Metamorphic grade is generally greenschist to sub-greenschist. Two and locally three phases of macroscopic folds have been recognized.

In the northern part of the map area higher grade metasedimentary and metavolcanic rocks are cut by orthogneiss of the Late Devonian Mt. Fowler Batholith. The post tectonic Mesozoic Baldy Batholith has intruded the Eagle Bay succession north of Barriere Lakes.

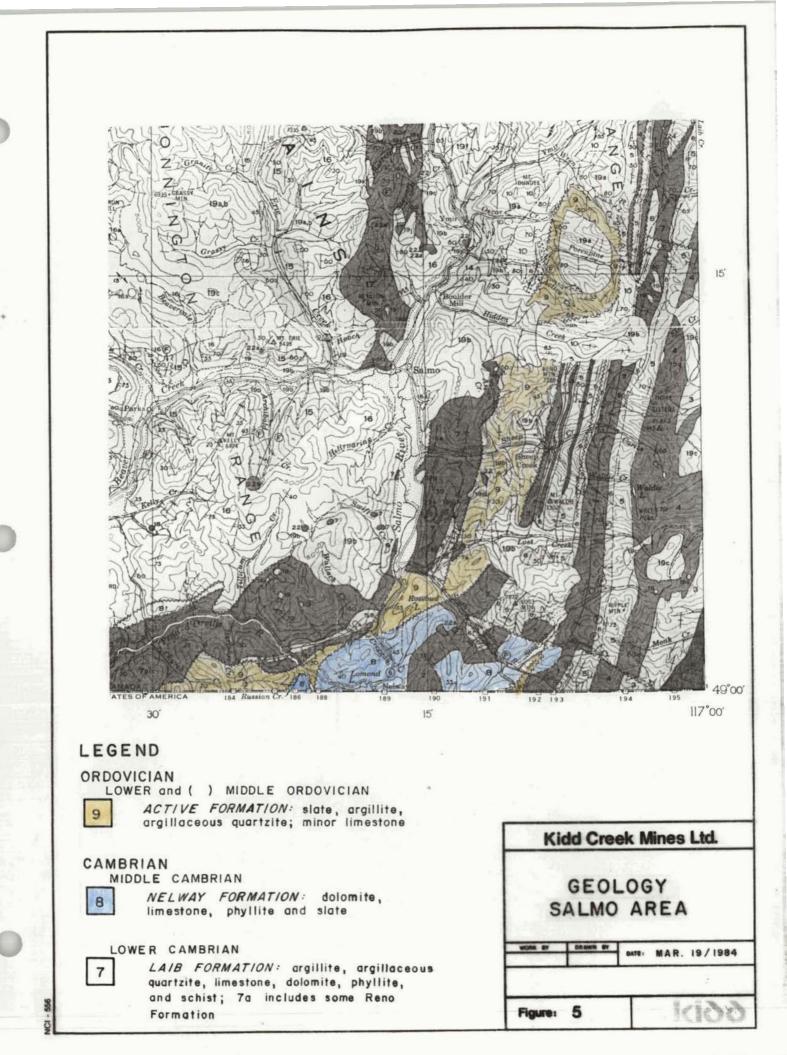

Bay Formation contains The Eagle numerous distinct lithologic units but their stratigraphic position poorly understood. Most units are discontinuous is because of facies changes and disruption by polyphase Parts of the sequence are overturned and deformation. parts repeated by recumbent folds. The stratigraphically lowest units in the Shuswap Lake-Adams Lake area are thought to be clastic and calcareous sediments which are interbedded with mafic volcanic flows and tuffs. Younger felsic volcanics are located further west suggesting a younging trend from east to west.

Regional age relationships are presently in a state of flux. Okulitch (1979) has suggested a Cambro-Ordovician age for the Lower Eagle Bay Formation, whereas Preto (1981) does not recognize any rocks older than Late Devonian, based on fossil data and zircon ages.

Lardeau Group (Figure 4)

Middle Cambrian-Mississippian

Lardeau Group comprises the geological The section lying between the Badshot-Mohican Formations of Lower Cambrian age and the base of the Mississippian Milford Group, and can be described as a eugeosynclinal sequence of fine- to medium-grained clastic sediments with interbedded carbonates and mafic flows, pillow lavas and fragmentals. The stratigraphic section established by Fyles and Eastwood (1962) is divided into six formational units, the majority of which consist of alternating pelitic and semipelitic rocks. Rapid facies changes and have made geological folding patterns complex interpretation difficult. Of particular interest are the


Triune and Sharon Creek Formations, deep water facies, which are probable time equivalents to the Active Formation in the Salmo area. The Triune and Sharon Creek Formations consist of dark grey to black siliceous argillite, chert, slate and phyllite, and are separated by massive grey quartzite (Ajax Formation). a Locally quartzite beds occur in both Triune and Sharon Creek Formations. Formational thickness is variable from less than 100 metres to greater than 300 metres. The thicker sections have likely been enhanced by fold repetition. The youngest member of the Lardeau Group, the Broadview Formation, overlies the dominantly mafic volcanic Jowett Formation and is composed of grey to green grit, phyllite and quartzite, indicative of a shallower, more active depositional environment than the Triune and Sharon Creek Formations. Locally some black carbonaceous phyllites are present which may indicate а deeper depositional setting.

ық 11

Active Formation-Ledbetter Slate (Figure 5)

Lower-Middle Ordovician

The Active Formation outcrops in а discontinuous belt from east of Ymir to the International Rocks correlated with the Active Formation in Boundary. the Coleville-Metaline area of northeastern Washington are termed the Ledbetter slates. The Active Formation is comprised primarily of dark grey to black slate, sooty slate, siliceous argillite and minor limestone. Both east and west contacts are fault-bounded and no base or top is The Active Formation overlies platform carbonates known. of the Nelway Formation unconformably. Internal deformation indicates thrusting from the southwest. The Ordovician age of the Active Formation is based on one fossil locality at the north end of the belt. The

Ledbetter slate has yielded abundant fossils of Middle Ordovician age and is correlated in part with the Active Formation.

GEOCHEMISTRY

Emphasis in the Sedex program was placed on the collection of rock chip samples in shale facies.

Heavy mineral and silt samples were routinely collected on stream drainages. The Sedex and Kootenay Arc Sn-W projects were conducted concurrently and frequently areas were sampled both for their W and Pb, Zn, Ag potential (e.g. Adams Plateau). In order to avoid confusion, the sample numbering convention and sequence was standardized. Heavy mineral samples are designated by odd numbers and silt samples by even numbers.

Heavy mineral samples were collected from active streams by means of a shovel and fiberglass batae Two full batae pans were systematically panned down pans. to a predetermined volume to ensure that no heavy mineral concentrate was lost. The remaining sample was then carefully transferred to a standard Kraft paper bag. Α silt sample was collected at each site. Sample locations are plotted on 1:50,000 NTS sheets. Brief lithological descriptions of rock samples and analytical results are presented in Appendix I. All analytical data are found in Appendix Laboratory preparation II. and analytical treatment of samples was completed by Acme Analytical Laboratories.

The majority of rock, pan concentrate, and silt samples were analysed by I.C.P. (Induction Coupled Plasma) for a 30-element suite. This method was selected because it was cost effective, provided data that satisfied requirements of both projects, and allowed some insight into mode of origin of the rocks sampled. No statistical treatment of data was attempted because the number of samples collected was too small for realistic interpretation. Anomaly thresholds were arbitrarily set based on previous experience in shale environments. Anomaly thresholds:

	Rocks	greater	than	100	ppm	Pb
		greater	than	1000	ppm	Zn
		greater	than	2.0	ppm	Ag
Heavy	Minerals	greater	than	100	ppm	Pb
		greater	than	1000	ppm	Zn
		greater	than	1.0	ppm	Ag
	Silt	greater	than	100	ppm	Pb
		greater	than	500	ppm	Zn
		greater	than	1.0	ppm	Ag

Results

Results of the reconnaissance program are with brief descriptions of the discussed by area geological setting investigated, geochemical response, mineralization if the noted, and comments on area potential for sedimentary exhalative deposits in the following order:

1.	Adams	Plateau	NTS	82M	3
2.	Trout	Lake	NTS	82K	6,11
3.	Salmo		NTS	82F	2

Adams Plateau

The Eagle Bay Formation, in the area investigated, can be divided into three basic units which are not in stratigraphic order. Deformation is extreme and unit thicknesses are not known.

 Tshinakin Limestone - a grey-white massive crystalline limestone-dolomite which exhibits major polyphase deformation. This limestone is closely associated with unit 2 below. 14

- Interbedded greenstone, greenschist, chloritic and sericitic phyllite and lesser calcareous phyllite and limestone beds.
- 3. Calcareous phyllite, shale, black argillite limestone and minor chert. This unit was potential hold the most for considered to Sedex-type mineralization.

Analytical results from rock samples, pan concentrates and silt samples were not anomalous, in fact Pb, Zn, Ag and Ba were in general lower than the norm for black shales. Several rock samples of chloritic phyllite contained elevated Ni and Cr values indicating a possible ultramafic origin for some of the volcanics.

No mineralization of note was seen in pelitic rocks. Weakly disseminated euhedral pyrite is common but no stratiform concentrations of sulphide occur. Quartz veins generally cut foliation and are commonly barren. Mineral occurrences in the area are restricted to veins which contain Pb, Zn, Ag.

The most interesting prospect examined in the Adams Plateau area is the Lucky Coon, a stratabound Pb Zn Ag occurrence intermittently exposed for 1500 metres and The mineralization occurs in up to .7 metre in thickness. an infolded sequence of fine clastic sediments underlain by a thick greenstone unit, in an overturned synclinal The regional strike is N 40°E and dips are structure. Footwall rocks are comprised of approximately 30° NW. siliceous to calcareous dark grey phyllite and hanging wall rocks consist of calc-silicate and limestone. A thin band of quartz-sericite schist immediately underlies the ore zone in the main showing area. The mineralization has suggested as being replacement, volcanogenic or been sedimentary exhalative in origin.

The stratiform nature and persistent strike length of the mineralization argue against a replacement origin. Ore mineralogy, (arsenopyrite, argentite, tetrahedrite) and geological setting do not favour a classical Sedex setting. Footwall phyllites are not anomalous in Cu, Pb, Zn, Ag, or Ba.

The quartz-sericite schist underlying the mineralization and the large volcanic component in the section suggest a volcanogenic origin. The footwall phyllites contain tuffaceous may beds. Similar quartz-sericite schist is closely associated with ore in the Anvil Camp but is considered to be the result of sulphide-wall rock interaction during metamorphism. More detailed work is required to define the mode of origin of the mineralization. The most acceptable model is that mineralization is distal volcanogenic in nature. Near surface tonnage potential appears limited. Deeper sections of the synform may host more substantial thicknesses of mineralization. The property is presently staked and future developments should be monitored.

The potential for Sedex deposits in the Eagle Bay Formation is considered to be low because the majority of rocks consist of volcanics and shallow water sediments.

Trout Lake Area

The Creek Broadview, Sharon and Triune Formations, members of the Lardeau Group, were briefly investigated. The Broadview Formation is the youngest formation in the Lardeau Group. Green to grey grit and calcareous phyllite are interbedded with minor quartzite mafic volcanics. The Broadview Formation and was deposited under relatively shallow water conditions.

Black graphitic shales or argillites are rare. Facies changes are numerous indicating fluctuating depositional environments. Rock samples collected from a rusty weathering black shale returned low values for Cu, Pb, Zn, Ag and Ba.

The Sharon Creek and Triune Formations contain pyritic, black carbonaceous, and siliceous argillite, slate, and chert. Road exposures near Ferguson sampled by Texasgulf in 1977 returned low values in Pb, Zn, Ag. Pb, Ag, Zn mineralization associated with quartz veins that cut stratigraphy occur in both formations. No evidence exists that these are related to unrecognized deformed Sedex deposits. Although the Sharon Creek and Triune Formations are relatively thin, they have good strike The area underlain by these formations is very extent. rugged and not easily accessible without helicopter Known mineral occurrences are staked. The support. potential for Sedex-type mineralization is low.

Salmo Area

Much of the Active Formation extending from Ymir to the Remac mine, south of Salmo, is currently staked. No attempt was made to investigate this belt. Reconnaissance was confined to an area south of the Pend d'Oreille River.

Highly deformed, weakly pyritic brown-grey calcareous phyllite and limestone of the Lower Cambrian Laibs Formation outcrops above the river. The Laibs Formation is in fault contact with black argillite of the Active Formation at higher elevations. Outcrop is limited north of the U.S. border. Road cut exposures of graphitic argillite, minor black limestone and thin bedded argillite-siliceous argillite were sampled south of the 17

border. A thick section of deep water shales is exposed which trends from graphitic sooty argillite and minor black limestone interbeds to siliceous argillite down Disseminated pyrite is more abundant in section. siliceous argillite. Lithologies are very similar to those in major shale basins in the Yukon Territory and northeastern British Columbia. Stratiform pyrite or evidence of barite was not found. Rock samples did not return anomalous metal values, with the exception of several slightly elevated silver values. The depositional environment compares favourably with other shale basins shale-hosted massive sulphide contain which mineralization. The Ledbetter Slates should be further examined.

18

BIBLIOGRAPHY

- Brown, R.L., et al, 1981. South Cordillera Cross-Section - Cranbrook to Kamloops, in Field Guides to Geology and Mineral Deposits Calgary 81 Annual Meeting, R. Thompson and D. Cook, editors. Geological Association of Canada, pp. 335-372.
- Fyles, J.T., 1964, Geology of the Duncan Lake area, Lardeau District, British Columbia; British Columbia Department of Mines and Petroleum Resources, Bulletin 49, 87 p.
- Fyles, J.T., 1970. Geological setting of the lead-zinc deposits in the Kootenay Lake and Salmo areas of British Columbia; in Lead-Zinc Deposits in the Kootenay Arc, Washington Division of Mines, Bulletin 61, pp. 43-53.
- Fyles, J.T. and Eastwood, G.E.P., 1962. Geology of the Ferguson area, Lardeau District, British Columbia; British Columbia Department of Mines and Petroleum Resources, Bulletin 45, 92 p.
- Fyles, J.T. and Hewlett, C.G., 1959. Stratigraphy and structure of the Salmo lead-zinc area; British Columbia Department of Mines, Bulletin 41, 162 p.
- Graham, F, Hubacheck, P. Memos on the Shale Belts of Southeastern B.C. and Northeastern Washington. Nov. 1977. internal report.
- Hoy, T., 1980. Geology of the Riondel area, central Kootenay Arc, southeastern British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 73, 89 p.
- Little, H. W., 1960. Nelson map-area, west half, British Columbia, Geological Survey of Canada, Memoir 308, 205 p.
- Okulitch, A.V. 1979. Lithology, stratigraphy, strucutre and mineral occurrences of the Thompson-Shuswap-Okanagan area, British Columbia; Geological Survey of Canada, Open File 637.

Read, P.B. and Wheeler, J.O., 1976. Geology, Lardeau west-half, British Columbia; Geological Survey of Canada, Open File 432. Read, P.B., 1979a. Geology and mineral deposits in the eastern part of Vernon east-half, British Columbia; Geological Survey of Canada, Open File 658.

Reesor, J.E., 1973. Geology of the Lardeau map-area, east- half, British Columbia; Geological Survey of Canada. Memoir 369, 129 p.

Rice, H.M.A., 1941. Nelson map-area, east-half, British Columbia: Geological Survey of Canada, Memoir 228. 86 p.

Wheeler, J.O., 1965. Big Bend map-area, British Columbia. Geological Survey of Canada, Paper 64-32. 37 p. 20

PROJECT AND PROGRAM EXPENDITURES - 1983

6.4

Pro	ject: Sedex	Project	<u># 909</u>	AFE # E-307
01	Salaries and Wages		CDN\$	13,033.97
02	Fringe Benefits			13,033.77
03	Camp Expense		-	2,542.55
04	Shipping and Storage			42.25
05	Travel Expenses		-	159.90
07	Office and Technical Supplies			144.42
08	Communications			
11	Geological			
12	Geophysical Programs	· ·	· · · · ·	
13	Geochemical Programs		 -	98.40
14	Photogrametry			
15	Drafting, Publications and Maps			24.02
16	Assaying Charges			475.25
17	Auto Operation and Maintenance		-	2,688.68
18	Aircraft Charter - Fixed Wing			
19				
21	Equipment Purchases and Maintenance			31.42
22	Heavy Equipment Contracting			
23	Surveying and Line-cutting		•	
24	Drilling and Logging			aana di generaan ka mara
25	Exploration Mining			
28	Metallurgical Testing			
29	Bulk Sampling			
30	Consultants			
60	Legal Expenses			
61	Property Acquisition - Purchase			
63	Property Acquisition - Staking			
65	Government Fees			
66	Option Payments			
67	Lease Bonuses			
68	Tolls and Trespass Charges			
	Other		••••	
	TOTAL			17,688.59

APPENDIX I Sample Descriptions and Analytical Results

•

(

			ppm					
Sample	Lithology	Cu	РЬ	Zn	Ag	Ba		
	Kwikoit Ck							
73702	Dark grey-black phyllite and interbedded	44	10	48	3	26		
15102	limestone beds (.05 m-1.0 m). Phyllite			-10	• •			
	carbonaceous and variably siliceous weak							
	Fe staining.							
· · · ·								
73703	grey-brown dolomitic phyllite,	32	5	64	.1	45		
	interbedded siltstone, shale, thin	_		-	-			
	bedded, euhedral py, highly deformed,							
	minor quartz veins.							
73704	black graphitic phyllite cut by narrow	33	10	87	.1	-71		
	qtz-calcite veinlets, highly deformed in							
	contact with massive d. grey limestone.							
73705	rusty-phyllite-argillite, black, very	57	18	85	.2	44		
	fissile near contact with mafic-	-						
	(chlorite) rich syenite dyke.							
73706	highly sheared d. grey-black graphitic	30	24	69	.2	63		
	phyllite, minor qtz veinlets, limy							
	interbeds, disseminated euhedral py.							
73707	grey-greenish, highly deformed	25	14	62	.1	47		
	calcareous phyllite and thin bedded							
	limestone-shale.							
72700		• •						
73708	grey-green calcareous phyllite, low py,	22	9	50	.1	30		
	qtz-carbonate veinlets parallel to							
· · · · · · · · · · · · · · · · · · ·	-foliation.		····· .					

C

				ppn	n		
Sample	Lithology	Cu	РЬ	Zn	Ag	Ba	
73709	grey calcareous phyllite and interbedded	51	6	90	.1	55	
	black carbonaceous phyllite, hairline						
	qtz-carbonate py stringers.						
73710	black, graphitic phyllite, highly	54	12	77	.1	25	
	deformed interbedded with shaly	Ì					
	limestone, minor pyrite.					ъ.	
73711	black graphitic phyllite, minor pyrite	42	46	75	.3	29	
	strongly deformed. Weakly siliceous. rusty black phyllite, disseminated py cut	 ↓					
	by quartz veinlets.	62	11	45	1	22	
	by quartz vermets.	02	14	40	• 1	32	
73713	pyrrhotite-rich altered dark grey	ĺ					
	phyllite.	64	15	77	.1	40	
73714	rusty calcareous phyllite in old showing						
	rably calculous payrines in our showing	81	45	62	.1	24	(241 Mo)
73715	small showing. calc. phyllite and			02	• '	27	(241 MO)
	interbedded limestone intruded by	206	992	301	10.5	68	(5 ppb Au)
	irregular quartz vein. 1.75 m chip across	(16	58 Mc)			
	quartz vein. Visible sulphides.	 					
73716	2.5 m chip of wallrock.	133	67	447	.8	65	(5 ppb Au)
		(18	12 Mc)			
73717	highly foliated, black graphitic	l					
	phyllite, euhedral py.	56	31	83	.2	33	

(

 \mathbf{O}

•

L_e i

Sample	Lithology	Cu	Pb	Zn	Ag	Ba	Au
73718	brownish tan weathering, medium grey,	55	13	63	.1	27	
нон Настания Станка	slaty, slightly graphitic sericite				•		
	phyllite, calcareous.						
73719	grey weathering, medium to dark grey	35	13	87	1%	57	
	and black-siliceous graphitic sericite	-					
	phyllite, not calcareous.						
73720	yellow brown weathering interlaminated	96	5	55	.1	64	
	dark grey graphitic sericite phyllite						-
	and dark grey finely crystalline						
	calcareous marble with some lenses of						
	white crystalline calcite.						
73721	small exposure in prospect excavation.	47	16	87	.1	72	
	Dark grey to black siliceous, graphitic						
	and pyritic sericite phyllite in close						
	proximity to quartz-galena-sphalerite						
	veining.						
		· · · · · ·					
73722	mineralized vein in prospect trench.	191	39585	8742	45.1	12	120
	Massive to disseminated fine- to						
	coarse-grained galena and sphalerite		1				
	in milky white quartz, vein is 5 cm wide					۲	
	with attitude 354/85W.						
73723	Altered wallrock from prospect trench.						
13123	Random sample of broken wallrock	59	4202	40500	70 4	10	45
	material in vicinity of vein. Dark	29	4203	42530	79.4	18	15
	grey sericite phyllite extensively						
 	silicified and impregnated with				- 6 6 6 6		
	sphalerite, white precipitate-positive						
	zinc reduction.						

C

		ppm				
	Lithology	Cu	Pb	Zn	Ag	Ba
73724	interbedded dark grey phyllite and slate, non calcareous, with more siliceous beds	34	310	337	2.6	184
	rusty weathering.					
73725	thin bedded dark grey argillite interbedded with argillaceous quartzite, minor euhedral pyrite.	22	71	563	1.0	21
73726	dark grey-black non calcareous slate, disseminated euhedral pyrite rusty weathering.	40	39	172	1.2	163
73727	black graphitic, calcareous phyllite, strongly deformed, weakly pyritic, quartz veinlets parallel to foliation.	54	28	134	.1	48
73728	black graphitic phyllite subcrop	65	59	222	1.1	243
73729	black, carbonaceous slate-argillite, blocky fracture, disseminated euhedral pyrite.	27	15	130	.6	210
73730	black carbonaceous phyllite and argillite, blocky fracture, disseminated euhedral pyrite.	29	30	139	.6	510
73731	carbonaceous phyllite, Fe stain on fractures.	51	17	120	.3	144

E.

			p	m			ppb
	Lithology	Cu	Pb	Zn	Ag	Ba	Au
73732	dark grey-black phyllite, carbonaceous,	71	11	74	,2	41	
	minor interbedded black limestone.						
73733	dark grey to black, rusty weathering siliceous fine-grained graphite schist	62	11	59	.2	47	
	and graphitic sericite phyllite, non-calcareous.						
72704			45	4.4-7		405	
73784	rusty weathering dark grey to black graphite sericite phyllite and graphite schist, siliceous laminae, pyritic.	77	17-	147	.1	135	
73785	bias rock chip sample of laminated	27	13	64	.1	12	
	graphite schist, with orange, yellow & green secondary staining, peacock						
	coloured irridescent staining, dense rock with planar fissility.						
73786	rock chip sample across narrow quartz	6	196	12	1.3	183	5
	pyrite vein in quartz-porphyritic rhyolite, vein parallels pervasive joint						
	set.						
73787	rusty yellow brown weathering dark grey to black quartz-feldspar-biotite phyllite	45	8	62	.1	132	
	and slate very thinly fissile and friable, not graphitic.				,		
73788	grey weathering, dark grey graphitic sericite phyllite, siliceous.	60	10	50	.1	68	

 \bigcirc

				pp		ppb		
		Lithology	Cu	Pb	Zn	Ag	Ba	Au
	73789	brownish tan weathering, dark grey, black and dark greenish grey phyllite, sometimes slightly chloritic.	53	7	61	.1	112	
	Adams La	ake West 82 M/4						
•	73790	light grey weathering, medium to dark grey and dark greenish grey sericite-biotite phyllite, sometimes siliceous, sometimes chloritic, soft and friable not graphitic.	33	3	48	.1	53	
	73791	grey weathering, dark greenish grey, slightly chloritic phyllite, brittle with hackly fracture, not graphitic, minor malachite stain.	62	3	63	.1	129	
۰	73792	grey weathering, medium greenish grey, chloritic sericite-biotite phyllite, calcareous with lensoidal white calcite segregations.	57	5	52	.1	107	
	73793	dark grey and black, interlaminated graphite schist, sericite phyllite and dark grey siliceous marble.	25	15	36	1	26	
	73794	grey weathering, dark grey to black intercalated graphitic sericite phyllite and siliceous marble with numerous stringer and pods of white quartz.	12	9	35	.2	22	

C

			pp	pm			ppb
	Lithology	Cu	Pb	Zn	Ag	Ba	Au
73795	grey weathering, medium grey to black	7	3	14		14	
13135	fine-grained calcareous marble with	1 1	5	1-2	•2	1.4	
	5						
	interlayers of calcareous graphitic						
	sericite phyllite, numerous pods &	1					
	stringers of fine-grained white quartz.						
72706				25		05	
73796 -	rusty orange and brownish tan	20	9	35	.4	25	
	weathering dark grey to black						
	fine-grained siliceous calcareous						
	marble with thin interlayers of						
	calcareous graphite schist and						
	graphitic sericite phyllite.						
Shuswap I	Lake North 82 L/3						
73797	brownish tan weathering, very dark grey	22	60	166	.3	20	
×	to black intercalated siliceous,						
	foliated marble, graphite schist and		>				
	calcareous graphitic sericite phyllite,						
	pods and irregular veins of coarsely						
	crystalline white calcite and						
	fine-grained white quartz.	ĺ					
Scotch Cr	reek 82 M/3			· .			
							2
73798	grey weathering, dark grey graphitic						
	sericite phyllite, siliceous and	50	12	72	.1	38	
	pyritic.						
				·			

 \bigcirc

C

				pp	m		p	b
	Lithology	,	Cu	Pb	Zn	Ag	Ba	Au
. 1	medium grey, very thinly fissile, slightly graphitic, siliceous sericite		21	9	99	1	38	
	phyllite, pyritic quartz veins.							
73800	rusty weathering, medium to dark grey graphitic and calcareous sericite		47	16	72	.1	76	

- phyllite.

C

O

APPENDIX II Analytical Results

()

(

()

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS, VANCOUVER B.C.

PH: 253-3158 TELEX: 04-53124

ICP GEOCHEMICAL ANALYSIS

A .500 GRAN SAMPLE IS DIGESTED WITH 3 HL OF 3:1:3 HCL TO HOUS TO HOD AT 90 DEB.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 HLS WITH MATER. THIS LEACH IS PARTIAL FOR: Ca,P,Ng,Al,Ti,La,Na,K,N,Ba,Si,Sr,Cr AND D. AN DETECTION 3 ppa. AUX AMALYSIS BY AA FROM 10 GRAN SAMPLE. SNX AMALYSIS BY AA FROM 1.00 GRAN SAMPLE. SAMPLE IYPE P1-2 PAN-CONC P3-4 STREAM SED

	1002			
DATE RECEIVED MERINA	DATE PEPOPTE MATLED LUDIZAN	ACCAVED AU KAINA	DEAN TOVE	CEDITETED D C ACCAVED
NHIE KEGEIVEN MUSSIAN	DATE REPORTS MAILED Aug 12/83	HOSHTER JUL	DEMA INTE,	LERIIFIED D.L. ASSAYER

	1								-		_	. v	_																				
								ĸ	IDD	CREE	EK M	INES	5	PROJ	JECT	# 9	08	FI	ILE	# 83	5-15	25									PAG	E #	1
SAMPLE 8	No ppe	Cu pps	Pb ppa	Zn ppn	Ag ppa	Ni pps	Ce pps	fta ppo	Fe	As pps	U ppe	An. Ppa	Th pp=	Sr ppa	Cd ppa	Sb ppa	8i pps	y ppe	Ca 1	P I	La pp=	Cr. ppe	Ng I	Ba pp n	Ti 2	B ppa	A1 7	Ha I	K Z	¥ pps	Au t ppb	Sat ppe	
DF-435 DF-439 DF-441 DF-443 DF-445	1 1 1 1 1	20 17 28 17 36	14 13 14 9 28	67 52 55 47 52	.1 .1 .1 .1	40 37 35 30 40	15 17 14 14 31	707 340 748 410 404	3.96 3.75 3.34 3.23 4.44	4 11 13 13 49	2 2 2 2 2		6 4 3	44 17 21 15 67	1 1 1 1	3 3 2 2 2	2 2 2 2 2	46 37 31 32	.37 .26 .29 .23 1.36	.19 .08 .07 .95 .08	22 18 20 16 7	62 59 59 47 50	1.18 .99 .75 .76 .99	118 42 75 44 37	.05 .05 .02 .04 .05	3 5 4	1.37 1.47 1.50 1.34 1.25	.02 .01 .01 .01 .01	.10 .07 .06 .07	12 2 2 2 2 2	10 5 550 / 310 /		-
DF-447 DF-449 DF-451 DF-453 DF-453	1	26 16 67 20 14	12 11 26 14 6	59 29 56 36 27	.1 .1 .4 .1	37 23 63 27 21	23 11 84 11 11	433 272 462 434 728	4.05 2.33 6.13 2.64 2.49	24 10 21 3 3	2 2 2 2 4	₩ 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	5 24 5 3 19	27 31 48 23 39	1 1 1 1	2 2 2 2 2	2 2 2 2 2	51 37 46 28 30	.37 .58 .99 .33 .41	.10 .05 .10 .07 .09	15 38 10 19 51	63 43 74 48 30	1.23 .49 1.33 .40 .37	62 45 103 67 101	.07 .07 .12 .05	54	1.58	.01 .02 .02 .02 .04	.11 .07 .09 .15 .15	2 2 4 9 2	5 5 5 -	1 1 1 1 2	
DF-459 DF-461 DF-463 DF-465 DF-465	1 1 1 1	8 7 6 2 3	8 6 1 3	23 35 21 11 17	.1 .1 .2 .1 .1	12 15 12 5 6	5 5 2 3	298 272 719 329 259	1.52 1.67 1.53 1.91 .87	2 4 3 2 3	2 2 13 4 2		9 5 62 20 15	29 39 29 19 18	1 1 1 1	2 2 2 2 2	2 2 2 2 2	25 28 23 17 16	.36 .30 .45 .21 .27	.08 .06 .14 .05 .07	30 19 146 57 40	32 26 31 5 23	.31 .44 .25 .14 .18	65 99 52 38 52	.04 .05 .04 .05 .04	4	.76 1.14 .73 .50 .53	.03 .94 .03 .02 .02	.11 .15 .08 .08	2 39 11 3	5 - - -	1 1 1 1	
9F-469 DF-471 DF-473 DF-475 BF-477	1 1 1 1	7 5 31 20 24	4 2 19 9 22	23 29 56 32 44	.1 .1 .1 .1	14 12 46 29 41	8 5 26 21 21	384 403 518 307 403	1.52 1.53 4.45 3.00 3.29	2 2 10 9 13	6 2 2 2 2 2		13 26 4 5 3	27 15 36 40 37	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	19 25 74 47 55	.58 .22 .62 .92 .63	.12 .09 .11 .07 .08	38 65 17 21 14	17 27 73 55 72	.22 .21 1.21 .75 1.02	100 74 120 72 97	.03 .04 .10 .10	2	.56 .78 1.54 1.00 1.27	.03 .02 .02 .03 .03	.10 .10 .12 .09 .10	17 12 2 2 2	- 5 5 5	2 1 1 1	
DF-479 DF-481 DF-483 DF-485 DF-485	1 1 1 1	27 41 33 28 36	18 9 15 13 35	87 65 46 40 45	.3 .1 .1 .1 .2	54 79 54 41 48	27 20 38 29 29	372 622 412 407 341	4.11 3.92 3.01	15 12 13 6 11	2 2 2 2 2	409 109 109 109 109	3 4 5 5	55 42 47 36 37	- 1 1 1 1	6 2 4 4 3	2 2 2 2 2 2	60 72 64 45 49	.64 .54 .65 .55 .67	.10 .07 .07 .08 .10	16 20 16 21 22	128	1.20 1.48 1.19 .79 .81	162 181 130 88 76	.14 .11 .15 .09 .11	3	1.51 1.87 1.43 1.14 1.14	.04 .03 .03 .03	.14 .18 .17 .11 .11	2 2 2 3 2	5 5 5 10	1 1 2 4 2	
BF-489 DF-491 DF-493 DF-495 DF-497	1 1 1 1 1	35 18 7 31 15	46 18 13 12 9	46 40 28 50 48	.3 .1 .1 .1	32 22 11 55 16	24 12 7 20 7	362 465 434	3.54 2.26 2.02 3.41 2.04	7 5 6 2	2 2 2 4 2		22 8 15 4 5	44 32 31 42 47	1 1 1 1	2 2 4 2	2 2 2 2 2 2	41 35 27 59 30	.79 .67 .75 .51 .58	.09 .07 .06 .08 .04	41 27 50 16 17	35 41 15 102 23	.55 .55 .31 1.23 .48	79 68 55 117 79	.09 .07 .05 .10 .95	2 8 2	1.02 1.02 .77 1.54 1.18	.04 .03 .02 .03 .03	.12 .14 .09 .11 .11	56 13 8 2 24	5 5 5 5	5 1 2 3 1	
DF~499 DF-501 DF-503 DF-505 DF-507	1 1 1 1 1	8 22 10 11 33	10 6 2 17	29 41 31 32 40	.1 .1 .1 .1	10 27 12 21 28	5 10 7 11 13	232 340 352 300 278	1.36 2.58 1.71 1.80 2.59	3 7 3 4 7	2 2 2 3	199 199 199 199	5 7 12 7 7	27 52 25 28 46	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	21 40 25 31 38	.40 .68 .47 .45 .47	.05 .88 .05 .84 .05	18 23 39 24 23	25 39 30 31	.34 .68 .37 .57 .63	79 83 44 54 73	.04 .05 .05 .07	5	1.18	.02 .04 .02 .03 .04	.10 .14 .07 .10 .13	2 2 17 18 3	10 5 5 5	2 6 1 1 2	
BF-509 DF-511 STD A-1/AU0.5/S	1 1 1	32 33 31	39 18 38	68 41 181	.2 .2 .3	26 32 36	14 16 12	356 314 1018	2.83 2.82 2.83	8 10	2 2 2	K9 K9 K9	9 6 2	46 53 36	1 1 1	2 2 2	2 2 2	33 44 59	.89 .91 .58	. 98 . 08 . 10	29 17	30 57 75	.56 .68 .77	68 68 281	.07 .10 .08	2	1.02 1.20 2.08	.04 .05 .02	.15 .14 .20	18 12 2	10 5 495	1 1 26	

KIDD CREEK MINES PROJECT # 908 FILE # 83-1525

Swerts No. Cu Pp Pp <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>PH0</th><th>E #</th><th>1</th></t<>																						,											PH0	E #	1
pf = 515 i<		SAMPLE .	No pps		Pb ppa	Zn pps														V ppa		P I						-		Na I	K Z				
BF-515 1 20 9 31 -2 15 10 31 20 100 112 23 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 113 97 11 113 97 11 113 113 113 113 113 113 113 113 113 114 10 328 2.13 2 2 100 113 12 2 2 113 113 14 10 328 2.13 2 2 100 113 12 2 2 100 114 113 10 114 10 114 113 100 114 100 114 100 114 100 114 100 114 100 114 100 114 100 114 100 114 100 114 100 114 100 114 100 114 100 114 100 114 100 1111 1			1	22	9	35	.1	19	12	323	2.10	3	2		7	61		2		TA	1 09		~												
BF-517 I 45 19 64 1.1 53 27 42 4.1 5 10 7 7 19 .48 88 .09 2 1.07 .06 .22 18 5 1 2 2 51 1.13 17 77 <			1	20	. 9	31	.2	15	10	331		3	5		ģ			2								-		3		.04	.19	8	5	:	
bF-519 1 17 8 23 1 14 10 328 2.13 2 2 10 1 4 1 2 2 10 1 4 1 2 2 10 10 21 1.1 21 1.1 21 1.1 21 1.1 21 1.1 21 1.1 21 1.1 21 1.1 44 10 22 20 1.1 1.1 1.1 4.1 1.1			1	45	19	64	.1	53	27			5	,					4	4							88	.09	2	1.07	. 06	.22	18	5	1	
bf-521 1 31 8 70 .1 46 18 54 12 2 100 14 54 19 .33 66 .07 8 .66 .12 12 5 1 bf-523 2 71 34 14 24 24 .14 24 24 .14 14 14 27 11 91 .14 14 18 34 19 .33 66 .07 8 .66 .12 12 5 1 bf-523 2 71 31 74 54 24 70 11 25 1 100 44 11 12 2 54 1.51 13 70 13 71 13 72 2 14 11 71 13 54 2 100 3 37 12 12 15 13 14 13 22 14 13 14 14 14 14 14 14 14 14 14 14 14 14		DF-519	1	17	8	23	.1	14				2	;					4	4							106	.07	5	1.42	.03	.14	6	10	- 1	
bf -523 1 37 24 57 1 43 24 62 2 10 4 10 13 14 11 4 1.83 .02 .23 2 5 1 bf -525 2 11 11 17 13 174 5.61 25 2 10 4 56 1 2 2 54 1.37 11 4 1.83 .02 .23 2 51 1.06 646 .06 6 1.27 .02 .02 2.5 1 1.11 1 1.13 2 2.5 1 1.11 1.13 2 2.5 1.11 11 1.11 11 1.13 2 2.5 1.11 11 1.13 2 2.5 1.11 11 1.13 2 2.5 1.11 11 12 2 2.5 1.11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11.11 11.1 11.11 11.1 </td <td></td> <td>DF-521</td> <td>1</td> <td>31</td> <td>8</td> <td>70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ŝ</td> <td></td> <td></td> <td>3</td> <td></td> <td>1</td> <td></td> <td>. 8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ī</td> <td></td>		DF-521	1	31	8	70						ŝ			3		1											. 8						ī	
bf-525 2 71 50 11 1 77 11 74 10 11 74 10 11 74 10 11 74 10 11 74 10 11 74 10 74 10 74 74 10 74 <		NC 807										•	•		5			4	4	01	. 36	.12	17	42	1.46	192	.11	4	1.83	.02	.23	2	5	1	
a: 2.3. 2 1 30 111 -1 7/ 31 742 5.6 2 40 5 2.6 1 2 2 61 57 10 14 77 76 627 60 7 1.77 60 7 1.77 60 7 1.77 60 7 1.77 60 7 1.77 60 7 1.77 60 7 1.77 60 7 1.77 60 7 1.77 60 7 1.77 60 7 1.77 60 7 1.77 70 71			1									8	2	ND	4	56	1	2	2	- 54	1.57	17	12	51	1 64			,							
pr-52/ pr-52 2 41 35 68 -1 51 33 585 4.30 11 4 400 3 49 1 2 2 52 -10 10 11 75 64 74 75 77 10 14 44 11 1 2 2 53 1.33 11 44 10 71 2 55 1.10 14 44 11 1 2 2 53 1.33 1.11 11			2	-					31	742	5.61	25	2		3		1	2	,													2	5	1	
bp-52/2 2 36 26 49 3.40 28 49 3.44 5 2 40 4 111 1 2 2 33 1.03 131 1.01 48 .07 9 1.33 .10 11 71 103 331 11 71 21 103 331 11 71 21 103 331 14 41 11 71 23 103 341 1.03 331 41 41 71 23 66 5 5 5 11 2 11 71 103 331 41 11 71 21 11 71 103 331 24 11 71 103 331 23 24 44 11 2 2 531 1.50 11 71 111 71 114 71 114 71 114 71 114 71 114 71 114 71 114 71 114 71 114 71 114 71 114 71 <t< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>51</td><td>22</td><td>585</td><td>4.30</td><td>11</td><td>4</td><td>ND</td><td>3</td><td></td><td>1</td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>1</td><td></td></t<>			2					51	22	585	4.30	11	4	ND	3		1		,														5	1	
BP-531 3 72 30 150 .1 85 35 122 5.1 11 2 NO 3 51 1 2 2 54 .11 <			2				- 3	40	28	498	3.44	5	2				i		-									9				2	5	ė	
DF-533 2 36 41 49 .3 38 28 466 3.46 5 2 ND 4 67 1 2 2 51 1.20 1.12 14 41 44 1.13 2 5 1 BF-535 1 31 14 70 .1 51 20 545 3.79 3 2 14 15 12 14 49 1.41 171 2.7 2.5 1.1 4 1.4 4 1.77 0.4 0.57 1.2 14 49 1.41 170 1.3 4 1.44 0.0 2.2 2.5 1 1.2 1.4 1.49 1.42 1.1 1.44 4 1.07 0.41 0.07 2.2 2.5 1 1.1 1.11 <td< td=""><td></td><td>DF-531</td><td>- 2</td><td>72</td><td>30</td><td>150</td><td>.1</td><td>85</td><td>32</td><td>1282</td><td>5.15</td><td>11</td><td>2</td><td></td><td>3</td><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td>-</td><td>-</td><td>3</td><td></td></td<>		DF-531	- 2	72	30	150	.1	85	32	1282	5.15	11	2		3		i											4				-	-	3	
pf=535 1 31 14 70 .10 51 20 440 51 2 80 3 2 80 2 44 1 2 2 51 120 14 4 1.27 .04 .27 2 20 2 bf=537 1 42 30 60 .7 95 19 502 3.32 5 2 80 3 55 1 5 7 7.7 1.9 1.11 1.10 1.13 4 1.44 4 1.27 .04 .27 2 20 2 5 1 5 7 7.7 1.9 11 14 14 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.44 4 1.43 1.44 4 1.44 4 4		DF-577	2	ŦĹ.		40	,	70	~	•••									-				• ·	•••	• • • •	737		,	1.11	. 41	.13	2	5	1	
bf-537 1 42 30 60 .7 9 19 92 34 1 3 2 71 .54 .12 14 99 1.61 170 .13 4 1.04 .03 .22 2 1 BF-537 1 68 15 60 .1 B2 28 597 4.59 6 2 HD 2 44 1 3 2 71 .64 112 1.61 170 .13 4 1.04 .03 .22 2 5 1 BF-537 2 68 15 60 .1 B2 28 597 4.59 4 2 HD 2 45 1 2 2 76 7.11 .10 114 1.41 1.61 1.04 .03 2.0 2.0 2.12 2 5 1 BF-547 1 36 69 .1 70 25 643 4.62 10 2 2 105 .107 5 1.63 .02 <th< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>2</td><td></td><td>4</td><td>67</td><td>1</td><td>2</td><td>2</td><td>51</td><td>1.20</td><td>.12</td><td>14</td><td>55</td><td>1.19</td><td>241</td><td>14</td><td></td><td>1.77</td><td>04</td><td>77</td><td>•</td><td>70</td><td>-</td><td></td></th<>			-									5	2		4	67	1	2	2	51	1.20	.12	14	55	1.19	241	14		1.77	04	77	•	70	-	
bit b			4									2	-		2	- 44	1	3	2	71	.54											-		- 2	
Indication Indication <thindication< th=""> Indication Indication<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>-</td><td>ND</td><td>3</td><td>55</td><td>1</td><td>5</td><td>7</td><td>67</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>2</td><td></td><td>:</td><td></td></thindication<>												5	-	ND	3	55	1	5	7	67								-				2		:	
br 54 1 2 42 41 112 1 68 23 955 4.37 2 2 45 1 2 2 66 52 11 17 100 1.24 157 .66 5 1.73 .02 .11 2 5 1 2 2 66 .52 .11 17 100 1.24 157 .66 5 1.73 .02 .11 2 5 1 bf-545 1 46 19 74 .1 57 25 634 4.62 4 2 HD 5 48 1 2 2 46 .60 .13 25 166 1.02 .16 .05 7 1.37 .02 .11 2 5 1 bf-547 1 151 14 10 16 11 111 17 10 7 13 .02 .11 2 5 1 1.11 14 .02 .23 .01 1.11 2 2 1.11												6	2	ND.	2	64	1	2	2	76												4		1	
bf-543 1 51 16 69 .1 71 27 643 4.56 5 2 ND 4 42 1 2 2 57 .54 .11 20 120 1.36 105 .07 5 1.63 .02 .11 2 5 1 bf-545 1 46 19 74 .1 57 25 634 4.62 4 2 1 2 2 57 .54 .11 20 1.03 105 .07 5 1.63 .02 .11 2 5 1 bf-547 1 31 17 56 .1 40 23 44 45 1 2 2 46 .01 13 13 17 .02 .13 2 53 .10 17 30 .53 133 .07 3 .03 .02 .03 .03 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 <		MI _ J.4.1	4	44	41	112	•1	68	23	955	4.37	2	2	KD	2	45	1	2	2															i	
DF-545 1 46 19 74 .1 57 27 634 4.60 3 2 HD 5 48 1 2 2 57 .54 .11 20 1.20 1.36 105 .07 5 1.63 .02 .11 2 5 1 DF-547 1 31 17 56 .1 40 23 449 3.78 8 2 HD 5 48 1 2 2 46 .60 .13 25 66 1.02 .13 .02 .13 2 5 1 DF-547 1 15 11 34 .1 16 11 311 1.76 3 2 HD 6 41 1 2 2 46 .60 .13 25 61 1.02 .130 .07 5 1.63 .02 .13 2 5 1 DF-555 1 8 8 20 .2 6 1 15 1 2 2 <td< td=""><td>1</td><td>DF-543</td><td>1</td><td>51</td><td>16</td><td>69</td><td>.1</td><td>71</td><td>27</td><td>643</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>•11</td><td>4</td><td>3</td><td>1</td><td></td></td<>	1	DF-543	1	51	16	69	.1	71	27	643			-					-										-			•11	4	3	1	
DF-547 1 31 17 56 .1 40 23 449 37 88 1 2 2 46 .60 .13 25 66 1.02 106 .05 7 1.37 .02 .13 2 51 DF-549 1 15 11 34 .1 16 11 31 1.76 3 2 MD 6 41 1 2 2 46 .77 .11 14 42 .83 368 .02 .03 .02 .23 3 1010 1 DF-551 1 19 24 52 .1 31 17 417 2.66 6 2 MD 4 49 1 2 2 2 43 .56 .10 18 49 .10 6 1.14 .04 .25 2 5 1 DF-553 1 8 8 20 .2 MD 42 26 1 2 2 23 .17 89 .29	1	DF-545	Ì									3					I	-	2				20	120	1.36	105	.07	5	1.63	.02		2	5	,	
DF-549 1 15 11 34 1 16 13 31 1.76 3 2 HD 6 4 45 1 2 2 46 .77 .11 14 42 .83 368 .09 6 1.03 .02 .23 3 100 1 2 2 2 46 .77 .11 14 42 .83 368 .09 6 1.03 .02 .23 3 100 1 2 2 2 46 .77 .11 14 42 .83 368 .09 6 1.03 .02 .23 3 100 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 10 1 3 3 100 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3		DF-547	1 -										-		3		1	-	2				25	66	1.02	106	.05	7	1.37					•	
bF-551 1 19 24 52 .1 31 1.7 417 2.66 6 2 ND 4 49 1 2 2 29 .63 .10 17 30 .53 133 .09 3 .80 .03 .23 7 5 1 DF-553 1 5 5 23 .1 5 3 288 1.18 2 2 HD 4 49 1 2 2 43 .56 .10 18 49 .80 149 .10 6 1.14 .04 .25 2 5 1 DF-555 1 8 8 20 .2 6 6 195 1.50 3 2 ND 42 26 1 2 2 23 .99 .34 176 10 .32 39 .07 6 .74 .05 .23 17 -1 17 17 17 17 17 17 17 17 17 1.17 17 17<	1	DF-549	i									8	-		4		1					.11	14	42	.83	368	.09	6	1.03			-	-		
DF-553 1 5 5 23 .1 5 3 288 1.18 2 2 43 .56 .10 18 49 .60 18 49 .60 18 49 .60 18 49 .60 18 49 .60 18 49 .60 18 49 .60 18 49 .60 18 49 .60 18 49 .60 18 49 .60 148 .10 6 1.14 .04 .25 2 51 15 15 15 3 288 1.18 2 2 MD 23 30 1 2 2 23 .17 89 29 .35 78 .07 6 .74 .05 .23 17 -1 DF-557 1 5 9 15 .5 4 4 164 1.15 1 2 3 15 .89 .37 306 20 .12 22 .05 3 .38 .02 .09 2 2												3			6		1			29	. 63	.10	17	30	.53	133	.09					· · ·		1	
DF-553 1 5 5 23 .1 5 3 288 1.18 2 2 ND 23 30 1 2 2 22 .63 .17 89 29 .35 78 .07 6 .74 .05 .23 17 - 1 DF-555 1 8 8 20 .2 6 6 195 1.50 3 2 ND 42 26 1 2 2 23 .99 .34 176 10 .32 39 .07 2 .85 .83 .17 4 - 1 .97 .53 78 .07 2 .85 .83 .17 4 - 1 .97 <t< td=""><td>-</td><td></td><td>•</td><td>• /</td><td>44</td><td>71</td><td>•1</td><td>51</td><td>. 17</td><td>41/</td><td>2.00</td><td>6</td><td>2</td><td>ND</td><td>4</td><td>49</td><td>1</td><td>2</td><td>· 2</td><td>43</td><td>.56</td><td>.10</td><td>18</td><td>49</td><td>.80</td><td>148</td><td>.10</td><td>6</td><td></td><td></td><td></td><td>2</td><td>-</td><td>1</td><td></td></t<>	-		•	• /	44	71	•1	51	. 17	41/	2.00	6	2	ND	4	49	1	2	· 2	43	.56	.10	18	49	.80	148	.10	6				2	-	1	
DF-555 1 8 8 20 .2 6 175 1.30 3 2 ND 43 30 1 2 2 22 .83 .17 89 29 .35 78 .07 6 .74 .05 .23 17 - 1 DF-557 1 5 9 15 .5 4 4 168 1.14 6 22 ND 42 26 1 2 2 23 .99 .34 176 10 .32 39 .07 2 .85 .83 .17 4 - 1 .97 .35 .98 .97 2 .85 .83 .17 4 - 1 .97 .97 .97 .97 2 .85 .83 .17 4 - 1 .97 .97 .37 .306 20 .12 .22 .05 3 .38 .02 .09 2 -2 .21 .97 .37 .98 .37 .306 20 .12 .22 <td>1</td> <td>DF-553</td> <td>1</td> <td>5</td> <td>5</td> <td>23</td> <td>. 1</td> <td>5</td> <td>۲</td> <td>700</td> <td>1 10</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td>•</td> <td>•</td> <td></td>	1	DF-553	1	5	5	23	. 1	5	۲	700	1 10		-					_														-	•	•	
DF-557 1 5 9 15 1.5 4 1.68 1.16 6 22 168 1 2 2 23 199 .34 176 10 .32 39 .07 2 .85 .93 .17 4 - 1 DF-557 1 3 5 31 .2 3 338 1.21 3 380 40 29 1 2 3 15 .89 .37 306 20 .12 22 .05 3 .38 .07 2 .85 .03 .17 4 - 1 DF-557 1 3 338 1.21 3 380 40 29 1 2 3 15 .89 .37 306 20 .12 22 .05 3 .38 .02 .09 2 - 2 18 .44 .12 118 4 .32 112 .08 2 .61 .04 .28 3 - 1 .2 2 13	D	DF-555	1	8	Ř							4					1	2	_					29	. 35	78	.07	6	.74	.05	. 23	17	-	,	
BF-559 1 3 5 31 .2 3 338 1.21 3 3 ND 40 29 1 2 3 15 .89 .37 306 20 .12 22 .05 3 .38 .02 .09 2 -2 DF-561 1 4 8 38 .1 4 3 430 1.22 2 3 ND 40 29 1 2 2 18 .44 .12 118 4 .32 112 .08 2 .61 .04 .28 3 .1 DF-563 1 6 7 30 .1 5 4 339 1.54 5 2 ND 18 36 1 2 2 26 .53 .09 75 11 .42 93 .09 6 1.15 .04 .26 2 .2 .2 .06 54 19 .18 51 .04 .26 2 .2 .2 .2 .61 .04			ī	5	ő			- U 				3		-			1	2	-				176	10	.32	39	.07					4	-		
DF-561 1 4 B 38 .1 4 3 3.36 1.21 3 3 HD 40 29 1 2 2 18 4.12 118 4 .32 112 .08 2 .61 .04 .28 3 -1 DF-561 1 4 3 430 1.22 2 3 HD 22 15 1 2 2 18 4 .32 112 .08 2 .61 .04 .28 3 -1 DF-563 1 6 7 30 .1 5 4 339 1.54 5 2 ND 18 36 1 2 2 26 .53 .09 75 11 .42 93 .09 6 1.15 .04 .26 2 .3 ND 26 18 1 2 2 11 .42 93 .09 6 1.15 .04 .26 2 .3 ND 26 18 1 2 2			i	ž	÷				•				77				1	2			. 89	. 37	306	20	.12							2		•	
DF-563 1 6 7 30 1 5 4 339 1.54 5 2 ND 18 1 2 2 3 10 22 15 1 2 2 13 .24 .06 54 19 .18 51 .04 5 .68 .02 .23 2 - 2 DF-563 1 2 5 19 .15 4 339 1.54 5 2 ND 18 36 1 2 2 26 .53 .09 75 11 .42 93 .09 6 1.15 .04 .26 2 - 3 ND 26 18 1 2 2 11 .43 .10 77 2 .19 6.3 .05 4 .47 .03 .18 2 - 1 .24 .47 .03 .18 2 - 1 .24 .24 .47 .03 .18 2 - 1 .24 .47 .03 .18			1				•4	5				5	3				1	2	2	18	.44	.12	118	4				-				÷.		<i>.</i>	
DF-563 1 6 7 30 .1 5 4 339 1.54 5 2 ND 18 36 1 2 2 26 .53 .09 75 11 .42 93 .09 6 1.15 .04 .26 2 .34 10 77 2 .19 63 .05 4 .47 .03 .18 2 .11 .2 2 11 .34 .10 77 2 .19 63 .05 4 .47 .03 .18 2 .11 .2 <td></td> <td></td> <td>•</td> <td>•</td> <td>0</td> <td>70</td> <td>•1</td> <td>•</td> <td>2</td> <td>430</td> <td>1.22</td> <td>2</td> <td>3</td> <td>ND</td> <td>22</td> <td>15</td> <td>I</td> <td>2</td> <td>2</td> <td>13</td> <td>.24</td> <td>.06</td> <td>54</td> <td>19</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>2</td> <td></td>			•	•	0	70	•1	•	2	430	1.22	2	3	ND	22	15	I	2	2	13	.24	.06	54	19								2		2	
DF-565 1 2 5 19 -2 2 2 277 -96 2 3 ND 26 18 1 2 2 18 34 -10 77 2 -19 63 -05 4 -47 -03 -18 2 - 1 STD A-1/AU 0.5/ 1 30 39 183 -3 36 13 991 2.68 10 2 ND 2 37 1 2 2 77 42 41 -10 77 2 -19 63 -05 4 -47 -03 -18 2 - 1	D)F-563	1	6.	7	30	.1	5	4	339	1.54	5	r	MD	+0	14	·		•	•												•		•	
STD A-1/AU 0.5/ 1. 30 39 183 .3 36 13 991 2.68 10 2 MD 2 37 1 2 2 57 42 11 .34 10 77 2 19 63 .05 4 .47 .03 .18 2 - 1	Đ	DF-565	1	2	5			2	2			2					1											6	1.15	.04	. 26	2		3	
	5	TD A-1/AU 0.5/	1.	30	39			3A	n.																		.05	4	. 47			2	-	i	
							•••				4.00	14	4	nu)	2	3/	1	2	2	57	.62	.11	7	76	.17	282	. 08	8	2.06			2	485 -	24	

PAGE # 💈

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HND3 TO H2D AT 90 DEG.C. FOR 1 HDUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,Ai,Ti,La,Ma,K,M,Ba,Si,Sr,Cr AND B. AN DETECTION 3 pps. SNN ANALYSIS BY AA FROM 1.00 GRAM SAMPLE. SAMPLE TYPE - P1-2 PAN-CON P3-4 STREAM SED

DATE	RECEIVED) AUG	19 19	83	DA	TE	REPO	DRT	SM	AILI	ED_	Au	g ś	<u>Z/</u> 9	13 A	SSA	YER	/	le	bez	4	DEAI	N T	DYE	, Ci	ERT	IFI	ED I	9.C.	. A!	55A)	YER	
		÷								KIDD	CRE	EEK	U Pl	RDJE	CT	# 90	8	FIL	.E #	83-	172	2									Pf	AGE #	1
	SANFLE #	Mo ppe	Cu ppa	Pb pps	Zn ppe	Ag ppe	Ni ppa	Co ppe	Mn ppa	Fe Z	As ppa	U Ppa	Au pp a	Th pps	Sr ppa	Cd pp a	Sb ppa	Bi ppa	V pp a	Ca I	P I	La pps	Cr ppa	Ng Z	Ba ppe	Tì Z	B	A1 Z	Na Z	K Z	y PD#	Sn≇ pps	
	9F-567 DF-569 DF-571 DF-573 DF-575	2 1 14 2 1	11 13 15 9	5 5 3 4	36 42 20 20 19	.1 .1 .1 .1	9 9 6 7 7	4 5 3 4 4	230 242 229 169 245	1.24 1.53 1.22 1.31 1.37	5 2 2 2 2	2 2 2 2 2 2	nd Nd Nd Nd	23 14 56 20 46	22 49 25 69 57	1 1 1 1	2 3 2 2 2	2 7 2 2 2 2	17 28 16 17 18	.31 .51 .47 .49 .59	.04 .08 .10 .12 .14	67 44 128 50 107	38 34 15 14 15	.26 .38 .29 .41 .32	35 40 30 44 30	.10 .12 .07 .10 .10	22222	.63 .72 .57 .64 .59	.03 .05 .93 .03	.18 .22 .18 .29 .21	2 2 14 20 36		
	DF-577 DF-579 DF-581 DF-583 DF-585	1 1 1 5	6 10 11 10 8	6 3 4 6 8	19 14 27 16 13	.2 .1 .1 .1 .4	6 5 10 7 6	3 3 5 4 4	255 225 179 196 240	1.38 1.22 1.66 1.45 1.48	4 4 2 7	2 2 4 2 2	nd Nd Nd Nd	48 15 4 5 23	47 34 33 34 41	1 1 1 1	2 2 2 4	2 2 2 7 4	18 15 24 15 14	.63 .71 .63 .70 .66	.13 .12 .04 .07 .13	118 31 9 17 175	15 12 23 13 11	.30 .34 .70 .41 .25	27 45 81 50 35	.10 .07 .10 .07 .07	3.	.57 1.07 1.65 1.20 .57	.04 .04 .05 .04 .03	.18 .25 .49 .30 .16	30 7 2 5 6	1	
•	DF-587 DF-589 DF-593 DF-595 DF-595	1 1 3 2 2	15 11 59 52 67	6 4 22 32 34	14 22 187_ 86 94	.2 .1 1.5 .7 .6	6 53 118 99 89	4 8 25 39 40	419 346 401 505 665	1.93 1.86 6.04 5.61 5.84	15 2 27 21 28	2 2 3 2 2	nd Nd Nd Nd	21 17 4 2 2	15 11 19 22 39	1 1 1 1	3 2 2 2 2	17 2 2 2 2	16 21 32 36 52	.64 .28 .13 .35 .91	.11 .05 .05 .07 .08	69 61 21 11 9	11 55 37 45 55	.20 .94 .24 .63 .79	32 48 462 267 113	.07 .06 .01 .02 .02	2 2 4 4 3	.73 .83 .64 .86 1.01	.03 .02 .01 .01	.13 .14 .16 .12 .12	24 2 2 2 2	1	
	DF-599 DF-601 DF-603 DF-609 DF-611	2 1 2 1 1	67 43 46 24 23	47 22 30 29 10	71 70 97 37 27	.4 .3 .2 .4 .3	76 57 104 31 44	49 21 29 17 23		5.73 4.04 4.59 2.59 2.78	24 5 13 2 2	72223	ND ND ND ND	2 2 2 6 8	78 45 20 38 26	. 1 1 1 1	7 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31 63 35 34 36	3.05 .96 .36 .63 .42	.08 .11 .07 .08 .06	5 14 9 19 29	37 75 68 46 70	.80 1.41 .84 .57 .70	150 166 171 92 54	.02 .06 .01 .07 .06	22322	.69 1.55 .90 .75 1.01	.01 .02 .01 .03 .03	.08 .13 .10 .13 .09	2 2 7 13		
	STD A-1/SN	1	20	39	185	.3	36	13	1045	2.82	10	2	ND	2	37	1	2	2	58	.58	.10	8	74	.76	285	.07	6	2.06	. 02	.21	2	23	

KIDD CREEK MINES PROJECT # 28 FILE 82-0838

SAMPLE 1	No pp∎	Cu ppe	Pb ppa	Zn pp#	Ag pp e	Nı ppa	Co pçe	Ka pp a	Fe 1	As pp∎	U ppe	Au pps	Th ppe	Sr: pp#	Cd pps	Sb pp o	Bi pp=	V ppe	Ca 2	P I	La. ppm	Cr pps	Ng, I	Ba ppa	Ti Z	B ppe	A1 7	Ka Z	K Z	¥ pps	Sn1 ppn	
6H28-82-31 6H28-82-35 6H28-82-37 6H28-82-41 6H28-82-43	3 1 4 1 2	7 6 3 10	7 4 4 3	23 19 23 13 19	.2 .2 .1 .1	8 12 13 4 9	4 7 6 2 5		1.42 1.85 1.44 1.67 1.46	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	59 3 2 3 2	nd Ng Ng Ng	67 25 22 42 20	14 35 25 12 15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	16 41 32 13 22	.42 1.16 .67 .42 .42	.17 .39 .20 .08 .06	78 77 46 106 51	20 26 33 13 37	.16 .60 .59 .21 .36	62 68 75 31 49	.03 .08 .08 .09 .09	28 21 28 23 29	.41 .84 .80 .80 .79	.02 .07 .05 .03 .05	.08 .11 .13 .06 .10	<u>39</u> 5 12 16 6	1 2 1 2 2	
6H28-82-45 6H28-82-47 6H28-82-47 6H28-82-51 6H28-82-51 6H28-82-57	1 1 1 1 1	6 4 5 14	7 3 4 4	23 14 11 17 15	.2 .1 .1 .1	13 5 3 6 7	5 3 2 5	224	2.12 1.02 1.03 1.10 1.67	2 2 2 2 2	2 2 2 2 11	KD ND ND ND ND	64 28 26 12 17	28 12 13 10 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	29 17 17 13 14	.53 .39 .48 .26 .41	.15 .10 .12 .04 .07	130 74 64 32 49	24 26 10 42 14	.48 .19 .22 .23 .24	77 43 36 52 39	.07 .07 .06 .08	29 29 29 30 27	.88 .52 .49 .70 .71	.04 .05 .03	.13 .08 .11 .11	4 5 2 2 4	3 2 3 3	
6H28-82-59 6H28-82-61 6H28-82-63 6H28-82-63 6H28-82-65 6H28-82-69	L 2 3 1	7 64 36 61 24	6 41 45 26 8	23 78 39 73 28	.1 .6 .5 1.9 .2	35 83 36 84 43	9 49 40 33 27	720 527	2.46. 8.05 3.68 5.97 3.22	4 22 30 16 8	2 2 16 10 2	KD ND ND ND	14 10 43 5 13	13 42 38 58 26	1 1 1 1	2 2 2 2 2	2 6 2 5	20 71 37 58 38	.37 .80 .91 1.85 .52	.06 .12 .12 .10 .07	40 22 45 15 31	40 77 56 96 83	.80 1.07 .59 1.55 .74	72 342 130 265 64	.07 .13 .13 .06 .11	25 17 13 18 35	.72 1.34 .98 1.61 1.06	.02 .03 .04 .02 .03	.04 .08 .08 .10 .07	2 11 198 3 39	2 14 7 3 5	
6H28-82-71 6H28-82-79 6H28-02-81 6H28-02-83 6H28-82-85	1 1 1 1	24 8 19 13 7	13 8 11 9 7	40 34 48 37 31	.3 .2 .2 .1 .2	41 11 18 17 11	18 5 7 5	499 303 411 356 473	3.31 1.46 2.33 2.06 1.66	4 2 2 2 2	2 2 2 8	XD XD XD XD XD	11 10 16 29	32 30 40 31 17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2	2 7 2 2 2	35 22 25 24 17	.53 .43 .51 .46 .35	.07 .07 .12 .11 .11	29 27 45 42 60	62 33 23 47 17	.81 .42 .55 .46 .28	79 91 149 64	.10 .06 .05 .06 .04	16 34	1.20 .84 1.16 1.01 .77	.05 .04 .04 .04 .04	.10 .11 .13 .12 .10	6 9 3 9	2 2 3 2 1	
GH28-82-87 GH28-92-89 GH28-82-91 GH28-82-93 GH28-82-93 GH28-82-95	1 1 1 1 1	4 5 3	5 4 3 4 4	18 28 9 23 11	.1 .1 .1 .1	7 7 3 6 3	3 4 2 3 2	468 156	1.78 1.27 .67 1.50 .79	2 2 2 2 2	2 2 2 2 2 2	Kd Nd Nd Nd Kd	25 11 6 13 29	10 9 7 11 4	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	20 15 11 16 7	.44 .22 .20 .25 .13	.07 .02 .03 .03 .02	61 30 15 34 73	41 11 18 13 21	.34 .24 .19 .29 .11	33 52 41 59 32	.09 .06 .04 .07 .04	14 35 32 29 28	.97 .87 .51 .88 .49	.04 .04 .03 .03 .02	.08 .07 .13 .03	3 11 2 7 14	3 2 1 3 1	
6H28-82-97 6H28-82-99 STD A-1 6H28-82-101 6H28-82-107	1 1 1 1	3 4 32 4 9	4 28 2 2 2	11 8 184 10 20	.1 .1 .3 .1	4 5 36 3 11	2 1 13 2 6	629 192 1024 572 754	.91 .63 2.82 1.06 1.54	2 2 10 2 2	2 2 2 2 3	nd Nd Nd Nd Nd	10 8 2 14 22	5 5 30 7 14	1 1 2 1 1	2 2 2 2 2 2	2 2 2 2 2 2	9 .7 55 9 21	.12 .13 .59 .19 .47	.01 .02 .11 .03 .14	24 17 7 38 53	8 30 81 29	.15 .12 .82 .13 .33	34 35 257 35 55	.05 .04 .07 .05 .07	29 32 8 31 29	.51 .40 2.11 .47 .71	.02 .02 .02 .02 .03	.05 .05 .20 .05 .10	3 2 5 6	2 2 1 2 3	
6H28-82-109 6H28-82-111 6H28-82-113 6H29-92-115 6H28-82-117	1 1 2 1 1	4 4 4 3	5 4 5 3	23 29 19 18 18	.1 .1 .2 .2 .1	5 8 6 7 5	4 5 4 3	281 363	1.43 1.09 1.60 1.30 1.69	2 2 2 2 2	3 52 2 6 3	nd Nd Nd Nd Nd	17 21 26 27 24	21 13 15 17 21	1 1 1 1	2 2 2 2 2	2 2 2 2 2	25 13 30 25 32	.66 .34 .45 .34 .34	.24 .13 .16 .10 .09	45 35 60 55 57	8 22 11 36 12	.29 .19 .17 .21 .22	89 70 49 65 58	.07 .03 .06 .08	30 28 31 31 28	.60 .50 .47 .57 .65	.04 .03 .03 .04 .04	.11 .12 .06 .07 .07	11 4 5 14 18	2 1 1 2	
6H28-82-121 6H28-82-123 6H28-82-125	1 1 1	5 3 5	5 4 4	21 18 15	.1 .1 .1	11 8 11	4 3 6		1.12 1.23 1.43	2 2 2	2 2 3	ND ND ND	9 32 9	22 19 18	1 1 1	2 2 2	2 2 2	17 18 21	. 28 . 32 . 36	.09 .10 .12	23 73 70	40 14 30	.25 .20 .18	79 59 59	.04 .06 .05	29 29 34	.54 .57 .52	.04 .04 .03	.07 .07 .06	4 10 6	1 2 3	

		1						κı	DD C	CREE	K MI	INES	F	ROJ	ECT	# 28	3	FIL	E	82-	0835	l d'								₽£	GE 1	¥ 7
SAMELE I	No pp=	Cu pps	Pb pp∎	Zn ppe	Ag pp e	Ni ppa	Co ppe	ñn ppe	Fe I	As Pp•	U pps	Au ppa	Th pps	Sr ppa	Cd ppa	Sb ppe	Bi pp∎	V ppa	Ca I	P	La ppo	Cr ppa	Ng Z	Ba ppe	Ti Z	9 pps	Al . X	Ha I	K Z	¥ pps	Sn1 pps	
6H28-82-127 6H28-82-131 6H28-82-137 6H28-82-139 6H28-82-141	1 1 1 1	15 19 8 11 13	8 7 6 8 7	26 26 23 23 27	.2 .1 .2 .1 .1	24 32 12 20 19	12 21 6 7	376 718 636 296 378	2.39 2.85 1.77 1.83 1.77	2 2 2 2 2 2	2 2 2 2 3	ND ND ND ND	13 15 31 4 7	54 32 23 48 23	1 1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2	31 25 24 34 22	. 46 . 40 . 40 . 54 . 32	.14 .11 .10 .07 .03	37 39 63 13 17	40 27 34 41 44	.43 .40 .33 .64 .37	80 113 65 102 101	.05 .05 .04 .07 .05	27 22 28 29 29	1.12 .95 .77 1.02 .82	.06 .04 .03 .07 .04	.10 .12 .08 .13 .15	4 7 25 15 2	1 1 3 2 2	
6H28-82-145 6H28-82-149 6H28-82-151 6H28-82-153 6H28-82-153 6H28-82-155	1 1 1 1 1	12 12 11 22 21	7 7 6 8	37 28 28 35 38	.1 .1 .1 .1	18 19 16 24 30	6 7 7 10 12	283 317 346 348 548	2.00 2.02 2.08 2.34 2.77	2 2 2 2 2 2	2 3 3 2 2	KD KD KD	6 7 12 10 8	19 18 15 21	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	21 24 14 19 25	.21 .75 .15 .29 .37	.06 .05 .05 .07 .09	16 23 29 27 27	25 39 19 43 40	.42 .30 .24 .32 .45	113 83 61 71 79	.08 .05 .04 .05 .07	28 30 29 28 29	.94 .67 .59 .72 .94	.03 .03 .02 .02 .04	.29 .16 .14 .15 .14	2 10 3 5 24	2 1 3 2 1	
6H28-82-161 6H28-82-165 6H29-82-167 6H28-82-175 6H28-82-177	1 1 1 1 1	24 53 5 16 10	12 11 5 8 5	31 61 30 33 23	.2 .2 .1 .1 .2	28 67 10 15 10	18 41 4 11 10	336 484 331 370 216	2.85 8.67 1.18 2.29 1.66	4 7 2 2 2	2 2 2 5 2	ND ND ND ND	8 3 15 10 7	40 23 12 25 26	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	27 150 18 27 22	.66 .44 .20 .44 .31	.09 .09 .06 .11 .06	22 7 31 23 20	49 150 32 22 27	.52 1.97 .26 .40 .35	101 72 58 241 80	.06 .13 .04 .04	26 21 31 29 28	.88 2.27 .£4 .75 .70	.04 .02 .03 .03 .03	.11 .08 .07 .09 .10	3 2 6 13 8	2 2 3 2 2	
6H28-82-181 6K28-82-183 6K28-82-183 6K28-82-187 6K28-82-191 6H28-82-193	1 1 2 1	10 12 60 41 15	6 7 24 23 16	34 38 57 56 38	.1 .1 .4 .1 .2	18 18 57 48 23	8 7 69 45 13	364 307 467 494 309	1.97 1.97 5.67 4.70 2.30	2 2 15 11 5	2 2 2 2 2	ND ND ND ND	14 6 4 3 5	35 41 50 401 43	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	27 26 59 58 30	.54 .43 1.23 1.03 .25	.14 .07 .11 .12 .04	40 15 15 10 9	29 40 70 76 34	.55 .59 1.30 1.58 .59	94 89 105 232 138	.06 .05 .14 .11 .07	25	1.03 1.33 1.52 1.58 .83	.04 .05 .03 .03 .02	.12 .14 .09 .08 .06	4 2 3 5 2	2 3 2 3 2	
6H28-82-195 6H28-82-197 6H28-82-197 6H28-82-199 6H28-82-201 STD A-1	1 1 1 1 1	41 32 19 26 32	16 22 13 12 39	48 67 55 36 186	.2 .2 .1 .4	50 47 37 35 37	38 15 12 21 13	342	3.77 3.34 2.56 2.96 2.86	35 5 3 11	2 3 2 2 2	nd Nd Nd Nd Nd	50 28 10 15 2	30 44 29 34 30	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2		.74 1.26 1.00 .50 .60	.08 .07 .06 .08 .11	39 16 16 18 7	68 75 76 49 84	.75 .95 .77 .77 .82	61 83 75 176 258	.10 .14 .12 .09 .09	25 27 31	1.04 1.67 1.24 1.05 2.14	.02 .06 .04 .03 .02	.05 .11 .07 .09 .21	2 3 6 2 2	3 1 2 2 1	

KIDD CREEK PROJECT # 28 FILE # 92-0716

									1.64	يبا لد	r:c. E f		FRU	IEU I	₩ .	28	FIL	.E #	92-	-071	6		•							Fi	NGE	n :	
SAMPLE .	No pp a	Cu pp:	-	Zn pps	Ag pps	N1 ppe	Co ppe	fin pps	Fe 1	As pçæ	95e. A	Au ppe	Th poa	Se ppa	Cd pps	S) Ppe	B1 pps	Y Pps	Ca I	Р 1	ila ppe	Cr pça	Ng I	Ba ppe	Ti Z	B pps	Al Z	Ka Z	K L	# 208	Sn: pps		
CL28-82-627 CL29-82-629 CL28-82-631 CL28-82-633 CL29-82-633 CL29-82-635	1 1 1 1 2	11	5 2	• •	.1 .1	5 8 3 4 10	4 2 2 4	146 290 159 162 297	.89 1.55 .65 .80 1.44	2 5 2 2 2	2 2 2 2 2 2	ND ND ND ND	4 5 11 8 10	5 11 9 9	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	8 13 10 10 11	.09 .19 .26 .28 .20	.02 .03 .08 .08 .05	10 15 29 22 31	19 13 14 5 50	.16 .27 .18 .19 .25	22 38 19 24 31	.01 .03 .02 .02 .03	2 2 4 2	.38 .73 .38 .40 .63	.01 .03 .02 .02 .03	.04 .09 .03 .04 .07	7 202 25 3 2	1 2 1 1 3		
CL28-82-639 CL28-82-641 CL28-82-643 CL28-82-643 CL28-82-645 CL28-82-645	1 1 2 1			21	.1	8 5 10 6	7 2 4 6 4	330 177 209 343 183	2.19 .75 1.26 1.53 1.20	2 3 2 2 2	2 2 3 2 2	ND ND ND ND	21 ⁵ 8 9 11 4	50 18 23 14 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42 12 20 15 12	.73 .28 .37 .26 .23	.17 .07 .10 .06 .07	98 39 49 50 14	15 18 9 50 8	.77 .21 .34 .29 .21	82 43 64 124 53	-11 -03 -05 -04 -02	2 2 2 2 2 2	1.24 .45 .51 .58 .49	.04 .02 .03 .03 .01	.12 .04 .07 .07	4 5 29 49 10	1 1 1 1 5		
 CL28-82-651 CL28-82-689	1 	1 AN:	2 1 2 1 YS1S	25	.1 .1 FROM 10	8 SRAM	2 SAMPLE	197	1.26 .92	2 2 YSIS BI	2 2 1 AA FS	ND NC RCM 1.4	11 11 22 58A	16 15 1 SAMP	1 1 E.	2 2 SAMPLE	2 2 TYPE	19 10	.38 .35 C24CEX	.09 .12	32 34	39 4	.30	48 40	.04	2	.61	.04 .02	.07 .09	15 3	1		-
DAMPLE #	No 995	Cu pp#	Pb pps	Zn pps	Ag pps	Ni pps	Cc	ăn soa	Fe	As ppa	U 998	Au poa	Ih pps	5; 803	Cd ppa	5b 203	B: 825	V DOB	Ca Z	f I	La 908	Cr Dos	 	82 502	Ti Z	e PD#	A! I	Na I	K Z	¥ pcs	Aut pot	Sat	-
CL 28-92-701 CL 28-82-703 CL 28-82-705 CL 28-82-711 CL 28-82-713	1 2 1 1 2	16 16 17 17	4 4 5 17	30 20 21 45 18	.1 .1 .1 .2 1.3	5 8 9 14 7	4 4 5 5	536 313 411	2.20 1.38 1.93 1.53 2.09	4 2 6 4 13	3 4 6 5 22	СХ СХ СХ СЯ КЭ КЭ	12 15 20 14 165	7 34 52 128 47	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 4	17 16 19	.82 1.00 1.39 1.50 1.18	.12 .28 .20 .15 .37	46 57 62 135 1686	17 27 20 37 21	.29 .31 .31 .72 .34	54 47 48 131 38	.10 .09 .10 .15 .13	34 39 15 15 16	.78 .56 1.31 .82 .72	.05 .04 .10 .08 .05	.13 .11 .14 .24 .14	11 10 24 4 91	-	4 1 1 1 4	
CL28-82-715 CL28-82-717 CL28-82-719 CL28-82-719 CL28-82-721 CL28-62-723	1 1 2 3 1	17 21 16 14	5 7 7	20 14 15 26 43	.1 .1 .2 .4 .1	14 7 8 10 11	5 4 4 6 4	233 233 258 459 233	2.50 1.31 1.30 2.33 1.31	6 5 11 14 5	2 2 13 15 2	N9 KD KD KD	15 21 39 90 17	67 40 43 94 39	1 1 1 1	2 2 2 2 2	2 2 2 2 2	32 15 18 32 22	.95 1.09 1.38 1.60 .77	.14 .18 .30 .34 .10	57 92 93 226 61	54 16 40 28 40	.34 .38 .58 .50 .73	49 63 49 33 47	.15 .10 .11 .15 .17	36	1.23 1.05 1.11 .80 .73	.09 .05 .06 .08 .05	.16 .20 .19 .20 .20	3 15 34 71 6	•	4 2 3 4 2	
CL28-82-727 CL28-82-735 CL28-82-737 CL28-82-737 CL28-82-739 CL28-82-741	3 1 4 1	11 14 21 11	5 5 6	37 20 34 34 21	.9 .2 .1 .1	11 9 19 35	10 3 7 14 8	905 329 530 366 535	2.31 1.43 2.54 2.38 4.19	12 4 4 6	16 4 2 2 7	ND ND ND ND ND	71 33 20 16 53	940 58 41 15 24	1 1 1	2 2 2 2 2	2 2 2 2 2		7.19 1.15 .74 .45 .82	2.63 .25 .17 .07 .18	967 244 142 51 196	38 37	1.17 .37 .70 1.95 .93	1660 63 175 86 60	.03 .10 .14 .11 .20		.89 .91 1.22 1.03 .95	.16 .06 .05 .05	.20 .16 .37 .21 .15	2 9 2 2 2	- - - -	2 2 1 1 1	
CL28-82-749 CL28-82-753 CL28-82-755 CL28-82-755 CL28-82-757 CL28-82-759	1 1 1 1 1	7 14 13 15	7	20 25 27 27 42	.1 .1 .2 .1	12 17 16 21 18	6 7 7 10 5	287 425 517 356 717	1.34 1.98 1.83 2.21 1.66	2 3 5 3 2	2 2 2 2 2 2	KD KD KD KD	10 19 26 9 17	14 32 27 30 38	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	19 19 16 30 20	.24 .55 .43 .53 .50	.05 .12 .09 .08 .05	33 64 69 35 55	37 26 40 33 42	.41 .36 .32 .64 .41	57 84 56 86 67	.05 .07 .04 .06	14 13 13 13 14	.70 .79 .75 .95 1.04	.02 .04 .04 .05 .05	.09 .13 .10 .13 .08	4 7 11 2 6	- - - -	1 2 3 2	
CL28-82-763 CL28-82-765 CL28-82-775 CL28-82-777 CL28-82-783	1 4 1 1	14 48 23 23 23	<u>88</u> 12 12	45 30 67 49 32	.1 .4 .1 .1	47 45 43 40 28	14 73 16 22 15	387 1393 646 431 335	2.72 4.64 3.67 3.45 2.35	2 19 2 7 8	2 36 2 2 2	ND ND ND ND ND	5 41 6 10 14	37 27 58 30 32	1 1 1 1	2 2 2 2 2	2 21 2 2 2	34 20 44 31 26	.56 .66 .56 .52 .51	.12 .15 .13 .12 .09	21 93 33 35 27	55	1.13 .45 1.25 .87 .66	67 81 156 77 73	.08 .08 .09 .08 .08	12 32	1.12 .89 1.40 1.10 .89	.03 .03 .04 .03	.07 .07 .14 .12 .10	2 42 4 2 2 2	- - - -	1 _ <u>46</u> 3 	
CL28-82-785 CL28-82-787 CL28-82-789 STD A-1	1 1 1 1	11	6 6 1 6	21 28 25 182	.2 .1 .1 .3	13 16 36	6 9 8 13	804 367 557 1014	1.52 2.14 1.62 2.80	10 2 3 12	8 2 8 2	KD KD KD ND	64 8 20 3	22 29 22 30	1 1 1	2 2 2 2	2 2 2 2	18 27 15 55	.49 .51 .37 .66	.16 .09 .09 .11	149 30 53 10	32 22 43 80	.28 .42 .26 .81	60 198 102 257	.04 .04 .05 .09	35 14 15 8	.60 .75 .53 1.83	.03 .04 .04 .02	.07 .11 .10 .20	75 ° 2 12 2	5	2 3 4	

•

•

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TE

CL28-82-788

CL28-82-790

27

1 : 11

1

13 56

7 42

.2 19

.2 26 13 596 3.13

7 373 1.97

2 KD

ND .

4 48

5 53

1

2

28

2

2 3

TELEX:04-53124

3 1.32 .02 .18 2

.03

.17

3.77

. 05

47 140

1

.

2 44 .61 .11 24 42 .68 181 .05

17____

31

.42 .10

ICP GEOCHEMICAL ANALYSIS

A .500 BRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HWG3 TO H2O AT 90 DES.C. FOR 1 HCUR. THE SAMPLE IS DILUTED TO 10 HLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Hg,AI,Ti,La,Ma,K,W,Ba,Si,Sr.Cr AND B. Au DETECTION 3 ppa. SAMPLE TYPE - SILT & ROCK & PULP

	li a aiba	11 6		
DATE RECEIVED AUG 13 1982	DATE REPORTS MAILED (14.4.2182	ASSAYER N SEC	DEAN TOYE.	CERTIFIED B.C. ASSAYER

										<i>(</i>	'							'												
								KIDD	CREEK	MIN	ES	PRI	OJEC	CT #	28	F	ILE	# 8	2-08	338								•	PAGE	#
SAMPLE .	ño pps	Cu pps	Pb ppm	Zn ppe	Aq pps	Ni ppa	Co pps	Re ppe	Fe As I ppe	U Pps	Au pps	Th . ppe	Sr ppa	Cd ppe	Sb pp=	D: pps	Y ppe	Ca 1	P I	La ppe	Cr pps	Ng Z	8a ppe	Ti Z	· B ppa	41 X	Na I	K I	¥ ppe	
CL 28-82-732 CL 28-82-734 CL 28-82-736 CL 28-82-738 CL 28-82-739	1 1 1 2	20 37 9 23 39	8 10 4 8 8	53 78 20 47 64	.2 .1 .1 .2 .2	27 70 10 22 125	12 17 4 7 19	847 2. 380 3. 161 1. 244 2. 413 3.	10 Z 18 2 37 4	2 2 2 2 2 2	nd Nd Nd Nd	4 5 7 4 4	41 46 49 26 31	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2 2 2	45 54 17 42 54	.46 .45 .68 .38 .44	.07 .10 .10 .09 .06	22 21 22 14 15	20 41	.74 1.25 .35 .82 1.81	290 250 68 184 217	.19 .22 .07 .19 .21	· 5 3 4	2.35 2.87 1.17 1.47 2.35	.03 .04 .05 .03 .03	.46 .55 .25 .72 .53	2 2 2 2 2 2	
CL 28-82-742 CL 28-82-744 CL 28-82-746 CL 23-82-748 CL 23-82-748 CL 26-82-759	1 1 1 1	17 17 15 22 19	6 6 6 12	30 53 40 33 43	.2 .3 .1 .2 .2	29 38 20 20 19	7 10 7 7 10	201 2. 350 2. 244 2. 226 1. 513 2.	69 3 28 2 84 2	2 2 2 2 3	ND ND ND ND	7 5 5 6	29 97 42 104 24	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	38 50 43 29 36	.57 .81 .49 1.36 .30	.12 .16 .09 .09 .87	16 24 23 10 22	43 58 39 31 34	.82 1.18 .65 .57 .71	100 469 141 127 144	.13 .18 .14 .11 .07	5 4 8	1.25 2.17 1.59 2.16 1.80	.04 .05 .03 .15 .02	.37 .45 .31 .28 .19	2 2 2 2 2	
CL28-82-752 CL28-82-754 CL28-82-754 CL28-82-758 CL28-82-758 CL28-82-760	1 1 1 2	35 18 18 30 18	13 8 7 4 12	73 38 42 40 80	.3 .1 .2 .2 .2	33 19 23 28 24	13 7 8 12 11	490 2. 319 1. 390 2. 362 2. 1322 2.	95 2 19 2 85 4	2 6 4 2 2	ND ND ND ND	2 2 2 2 2	35 37 33 68	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	50 28 31 51 34	.39 .45 .41 .48 .68	80. 90. 80. 10. 80.	26 17 17 21 27	57 32 40 51 33	1.00 .49 .71 .87 .54	138 115 71 136 165	.10 .07 .06 .09 .07	3 3 4	2.07 1.08 1.25 1.41 2.08	.02 .04 .03 .02 .04	.14 .17 .15 .19 .13	2 2 2 2 2	
CL 28-82-762 CL 28-82-764 CL 28-82-766 CL 28-82-768 CL 28-82-768 CL 28-82-770	1 1 1 1	25 25 30 67 58	14 14 9 15 13	50 65 59 56 67	.2 .2 .3 .3 .2	35 66 40 85 72	15 16 15 30 25	540 2. 793 3. 299 2. 882 4. 871 4.	39 2 97 3 88 2	2 2 2 2 2 2	KD ND ND ND	6 4 5 2 2	35 59 36 48 37	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	44 52 51 99 92	.52 .46 .58 .85 .58	.12 .12 .13 .12 .11	24 20 20 12 13	68 179	.85 1.33 .78 2.06 1.89	103 141 74 125 157	.06 .07 .08 .15 .14	5	1.25 1.73 1.09 2.41 2.34	.02 .01 .02 .01 .01	.13 .13 .07 .11 .14	2 2 2 2 2	
CL22-82-772 CL25-82-774 STD A-1 CL28-82-776 CL28-82-778 CL28-82-780 CL28-82-782 CL28-82-784	1 1 1 2 2 1	55 50 30 34 33 38 20 23	10 10 38 20 17 23 18 10	70 64 169 93 67 63 45 41	.2 .2 .4 .3 .2 .3 .2	96 79 32 58 52 45 26 31	17	B06 4. 649 3. 935 2. 1277 3. 663 3. 1037 3. 826 2. 357 2.	92 2 67 11 56 3. B1 4 45 7 42 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	KD KD KD KD KD KD	2 2 2 4 4 9	38 35 106 51 30 34 38	1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2	96 80 53 52 52 44 34 39	.65 .59 .52 1.27 .76 .53 .47 .54	.11 .10 .09 .15 .14 .08 .07 .11	13 11 9 14 17 20 52 17	178 71 95	2.01 1.78 .74 1.31 1.23 .95 .59 .76	103 84 276 227 118 137 103 89	.12 .13 .08 .08 .07 .06 .03 .06	4 9 6 6 7	2.33 1.92 1.93 1.82 1.55 1.44 1.00 1.08	.01 .01 .02 .01 .01 .01 .01 .02	.08 .07 .20 .17 .17 .06 .08 .10	2 2 2 2 2 2 2 2 2 2 2 2	
CL28-82-786	1	10	7	43	.3	19	7	409 2.		2	ND	4	43	1	2	2	22	.46	.12	23	34	.51	131	.06	2	1.24	.02	.13	2	

KIDD CREEK MINES PROJECT # 908 FILE # 83-1525

SAMPLE #		No ppa	Cu ppa	Pb ppe	Zn p pe	Ag pps	Ni ppø	Co ppe	Mn ppe	Fe 1	As ppe	U ppa	Au ppe	Th ppe	Sr pps	Cđ pp=	Sb pps	Bi ppa	V ppo	Ca Z	P Z	La 998	'Cr ppe	Ng Z	Ba ppe	Ti L	B Ppe	A1 1	Ha Z	к 2	W ppe	Aut ppb	
DF-436 DF-438 DF-440 DF-442 DF-444		1 1 1 1	27 19 37 26 28	16 12 20 11 15	79 68 71 52 67	.1 .1 .1 .1	49 53 47 30 39	15 15 23 13 18	912 468 856 663 729	3.20 3.09 4.57 3.00 4.17	9 15 16 12 22	2 2 2 3	nd Nd Nd Nd Nd	4 3 4 4	72 60 27 20 68	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	48 54 39 28 44	.71 .59 .37 .29 1.44	.13 .15 .11 .08 .10	14 14 20 18 9	76 89 72 42 54	1.07 1.25 .90 .64 1.23	169 137 69 64 47	.07 .10 .02 .02 .03	2 2 9	1.60 1.76 1.58 1.33 1.66	.01 .01 .01 .01 .01	.12 .1a .05 .04 .07	2 2 2 2	- 10 5 5	
DF-446 DF-448 DF-450 DF-452 DF-454		1 1 1 1	23 14 22 41 22	12 59 14 16 9	56 177 42 64 54	.1 .2 .1 .1	34 <u>17</u> 34 42 31	15 11 18 11	266 488 512	3.52 2.94 2.34 3.63 2.35	21 6 9 14 7	2 2 3 2	ND ND ND ND	4 33 7 3 4	33 31 34 46 28	- 1 1 1 1	2 2 2 2 2	2 3 2 2 2 2	46 50 41 71 34	.54 _73_ .50 1.52 _31	.14 .08 .12 .08	13 122 23 10 17	55 24 50 79 39	.95 .46 .65 1.71 .53	65 78 63 119 125	.03 .09 .06 .09 .07	- <u>4</u> 3 2	1.46 .93 1.03 1.56 1.28	.01 .03 .02 .02 .02	.0 ¹ .17 .07 .11 .22	2 9 2 2 2	5 _30 _5 _5 	
DF-456 DF-458 DF-460 DF-462 DF-464		1 1 1 1	18 19 12 9 3	7 8 6 3	46 42 44 40 23	.1 .1 .1 .1	26 24 18 17 6	9 9 7 3	304 518 428 320 231	2.42 2.19 2.20 1.77 .97	6 8 4 3 2	2 2 2 2 2 2	nd Nd Nd Nd	5 4 5 3	45 57 39 38 57	3 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	46 38 35 31 20	.43 .48 .37 .37 .25	.13 .09 .09 .11 .07	19 17 17 22 20	43 38 28 28 9	.53 .54 .51 .48 .20	195 186 112 115 93	.09 .08 .05 .05 .05	3 4 5	1.24 1.48 1.16 1.27 1.09	.03 .03 .03 .02 .01	.21 .20 .13 .11 .07	2 2 2 2 2	- 5 -	
DF -466 DF -468 DF -470 DF -472 DF -474	419444	1 	5 18 8 10 41	6 63 5 11 19	37 273 45 49 77	.1 .1 .1 .2	9 18 19 15 57	5 6 21	273 434 371	1.32 2.27 1.93 1.87 4.34	2 7 4 5 8	2 2 2 3 2	ND ND ND ND ND	7 19 6 3	35 31 37 21 36	1 2 1 1	2 2 2 2 2 2	2 2 2 2 2	25 54 30 32 86	.33 .67 .57 .22 .67	.11 .16 .10 .09 .14	22 54 16 28 12	13 25 29 24 100	.32 .59 .45 .31 1.61	118 98 112 142 221	, 05 _08 _05 _04 _09	2 2	1.03 <u>1.13</u> .90 1.50 2.01	.02 .03 .03 .01 .01	.11 .18 .17 .1: .23	12 12 3 2		
DF-476 DF-479 DF-480 DF-482 DF-484		1 1 1 1 1	23 28 38 41 45	8 19 24 10 12	38 46 151 66 61	.1 .1 .1 .1	27 39 65 79 64	12 18 19 21 20	580	2.51 3.27 3.70 3.60 3.80	2 5 14 9 12	2 2 2 2 2 2	ND ND ND ND	3 3 2 3 3	38 32 53 48 35	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	47 61 74 67 64	.94 .64 .51 .47 .49	.12 .10 .10 .10 .11	15 15 16 19 18		.92 .96 1.49 1.53 1.20	116 114 242 181 119	.06 .07 .13 .12 .07	2 4 4	1.08 1.18 1.90 1.94 1.54	.02 .01 .02 .02 .01	.10 .09 .25 .38 .11	2222	5 5 5 5	
DF - 486 DF - 488 DF - 490 DF - 492 DF - 494		1 -1 -1 -1 -1 -1	44 11 32 23 6	11 29 19 12 6	54 101 62 64 30	.1 .2 .3 .1 .1	54 16 33 24 10	17 <u>5</u> 10 5	264 344 531	3.17 3.33 2.87 2.38 1.32	10 8 7 5 5	2 2 2 2 2 2	ND ND ND ND	4 42 5 4 4	36 32 47 29 21	1 1 1 1 1	2 2 2 2 2 2	2 6 2 2 2 2	57 48 46 43 22	.49 .80 .65 .45 .34	.11 .25 .11 .09 .08	17 160 18 13 15	90 23 50 39 18	1.11 .43 .78 .83 .29	142 65 91 105 54	.08 .07 .07 .07 .03		1.59 	.02 .03 .03 .02 .01	.1c .12 .15 .22 .06	2 122 4 2 2	19 63 67 61 64 68	
DF - 496 DF - 498 DF - 500 DF - 502 DF - 504		1 1 1 1 1	39 30 9 17 17	11 13 11 11 5	59 58 38 61 50	.1 .1 .2 .1	62 19 13 16 30	18 8 6 8	293 480	3.51 2.77 1.53 2.05 2.17	9 6 2 4 5	2 2 2 2 2 2	ND ND ND ND	3 4 4 2	41 50 24 31 24	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	69 36 25 33 39	.52 .59 .38 .49 .42	.10 .05 .09 .09 .07	17 16 17 20 11	109 28 22 23 47	1.32 .58 .36 .51 .76	146 95 78 93 90	.09 .07 .04 .04	2 7 6	1.76 1.34 .74 1.41 1.39	.02 .03 .02 .01 .02	.15 .11 .0° .10	و و ده زم زم زه	10 LA CA LA CA	
DF-506 DF-508 STD A-1/AU 0.	5 ·	1 1	29 8 30	14 13 38	55 45. 185	.1 .J .J	28 14. 36	10 7 13		2.53 J.BJ 2.81	3 810	2 2 2	ND ND ND	<u>53</u> 2	42 <u>34</u> 37	1	2 2 2	2 	38 58	.81 .97 .59	.07 .30 .11	15 _210 	40 78	.70 .39 .77	79 53 278	. 06 09 80 .		1.11 2.10	.03 .03 .02	.13 .20 .20	2 170 2	5 10 500	

PAGE # C

KIDD CREEK MINES PROJECT # 909 FILE # 83-1525

																	, ,				00	I JZ	` •								F	HOE I	# 4
	SANPLE #	fio ppe	Cu ppa	Pb pps	Zn ppe	Ag ppe	Ni ppa	Co ppe	Mn ppe	Fe 2	As pp a	U ppa	Au ppe	Th ppm	Sr ppa	Cd ppe	Sb ppa	Bi ppe	V ppe	Ca X	P Z	La ppe	Cr ppe	Kg Z	Ba pps	Ti Z	B ppe	AI Z	Na Z	K Z	W ppe	Au: ppt	
	DF-510	- E 1	37	51	102	.1	28	11	444	2.54	3	2	ND	5	48	1	2	2	41	1.11	.10	13	43	.77	94	.06	4	1.23	.04	.20	2	5	
	DF-512	1	36	19	57	.1	36	15	414	2.57	3	2	ND	3	28	1	4	2	- 44	.61	.10	- 11	54	.81	73	.05		1.17	.02	.15	5	4	
	DF-514	1	27	9	45	.1	32	14	377	2.83	7	2	ND	6	48	1	. 2	2	43	.75	.12	19	45	.71	80	.05		1.04	.02	.11	;	š	
	DF-516	1	29	- 17	39	.2	20	9		2.19	2	6	ND	4	119	1	2	2	38		.09	13	30	- 62	77	.07		1.19	.05	.17	2	۲. ۲	
	9F-518	1	39	21	77	.1	60	20	667	4.18	5	2	ND	5	71	1	2	2	64	1.03	.20	22	86	1.23	169	.07		1.65	.02	.19	2	50	1
	DF-520	1	19	9	31	.1	17	9	347	1.94	6	2	ND	6	36	1	2	2	34	.52	.11	19	25	.47	82	.05		.85	.03	.11	2		
	DF-522	1	50	20	68	.1	58	23		4.36	8	ÿ	ND	2	56	i	ż	2	66	2.20	.15	12	70	1.26	139	.03	- 2	1.39	.03	.06	ź		
	DF-524	3	77	37	122	.1	85	26		5.24	33	2	ND	3	31	· .	2	2	60	.72	.12	16	63	.93	225	.02		1.35	.01	.08	2	5	
	DF-526	2	61	40	93	.2	69	26		4.70	17	2	ND	3	34	i	,	2	64	.90	.11	16	68	1.03	215	.03		1.30	.01	.08	2	2 6	
	DF - 528	1	16	45	198	.2	18	<u>.</u>	. 27.4		1	2		_ 26_		i_	_ż		51_	_11_			23			08			.01	.00	í	20	
	DF-530	1	48	27	64	.1	58	22	835	3.82	10	6	ND	٦	53	,	,	,	68	1.15	.13	14	85	1.22	145	A.				·•.			
	DF-532	ī	55	31	81	.1	69	23		4.60	. 9	. 7	ND	2	55	-	5	2	79	1.42	.14	12			154	.06		1.47	. 01	.06	Z	Ş	
	DF-534	3	68	31	166	.1	80	24		4.50	10	Ś	ND	- î	21	1	- - -	2	52	.30	.11	15	44 64	.56	324	.018 .01	5	1.93	.02	.10	2	5	
	DF-536	1	48	15	104	.1	80	25		5.36	ŝ		ND	, T	41		3	,	100	. 56	.15	20		2.22	203	.11		2.61	.01 .02	.10 .11	-	2	
	DF-538	1	62	23	74	.3	159	26		4.63	17	2	ND	2	52	i	5	2	99	.83	.09	8	337	2.58	126	.10		2.54	.01	.15	2	ມ 5	
	BF-540	. ,	42	10	59	.1	57	19	634	3.72	8	2	ND		38		-	•				•••								•	•	-	
	DF-542	1	53	18	85	.1	76	23		5.04	10	Ś	ND		43		<u></u>	4	54	. 60	.11	20		1.07	95	.05		1.31	.01	.06	2	5	
	DF-544	i	49	18	81	.1	60	20		4.81	6	2	ND	1	4.5 34		-	<i>``</i>	62	.59	.13	23	112	1.27	143	.04		1.66	.01	.08	2	25	
	DF-546	÷	36	20	69	.1	52	18		4.02	10	2	MD MD	6		· •	2	2	47	. 48	.13	23	59	.92	116	.03		1.27	.01	.0E	2	5	
•	DF-548			22			15			3.57	2	_ź.	ND .				2	3	60 49	.95 .86	.13	14	61 20_	1.07	121 67	.05	4	1.13	.01	. 65 . 20	2 148	_250	
	DF-550	•	26	15	50	1	33	12	377	3 48																					_		
	DF-552		33	21	90	.1	53	18		2.48 3.55	6 7	Z	WD ND		40	1		2	- 44	. 61	. 09	- 14	53	.84	105	.07		1.17	.02	.17	2	5	
	DF-554	1	8	1	39	.1	7	5			•	4	ND	3	45	1	2	4	62	.55	.10	19	68	1.07	146	.06		1.57	.02	.09	2	10	
	DF-556		7	4	35		5			1.64	9	4	ND	11	29	1	2	2	31	: 43	.11	30	15	.47	65	.05		1.10	.01	.23	_ 7 .	~	
	DF-558	1	ś		29	.1	J	3			- 3	2	ND	11	38	1	2	2	29	.54	.09	27	10	.51	61	. 08		1.51	.01	. 30	2	-	
	UT - JJ0	1	J		27	•1		2	242	1.13	3	4	ND	21	15	1	2	2	17	. 45	.17	46	6	.21	23	.04	6	. 58	.01	.13	2	-	
	DF-560	1	4	1	12	.1	2	2	148	.67	7	2	ND	10	9	1	2	2	12	.23	.08	25	6	.14	24	.03	4	. 38	.01	.08	2	-	
	DF-562	1	11	10	50	.2	8	6	505	1.93	5	15	KD	10	67	Ĩ	2	2	35	.73	.08	55	16	.55	115	.09	6	2.11	.03	. 30	2	-	
	NF-564	1	3	9	45	.1	4	3		1.30	2	2	NÐ	27	15	1	2	2	15	.24	.07	45	6	. 20	50	.04	3	.92	.01	.20	ż	-	
	STD A-1/AU 0.5	1	20	37	186	.3	36	13	1047	2.83	9 .	2	MD	3	36	1	2	2	58	. 60	.11	8	76	.17	280	.08	-	2.09	.02	.20	2	485	
																-	-	-				•		•••			-				•		

FAGE # 4

KIDD CREEK

	1																															
SAMPLE #		No pp a	Cu ppe	РЪ рр е	Zn ppa	Aç pp≘	Ni ppe	Co ppe	in ppa	Fe	As pps	U ppe	Au ppe	Th pp=	Sr ppa	Cd ppe	Sb pps	Bi ppm	V Ppa	Ca T	F I	La pps	Cr pps	Ng. X	Ba pp s	Ti T	B ppe	Al Z	Na I	K Z	¥ . 204	
DF-566		3	ló	7	62	.2	9	7	750	1.55	2	6	ND	9	23	1	2	2	21	.27	.07	43	15	.30	70	.06	2	1.18	.01	. 23	2	
DF-568		1	11	44	105	2	14	7	267	3.21	2	- 2	ND	38	30	1	2	6	41	.83	.27	155	21	. 41		. 08		.60	.02	.17	161 -	
DF-570		2	27	8	55	.1	9	6	341	1.76	4	4	KD	7	215	1	2	2	12	. 92	. 40	46	12	.34	52	.08		1.03	.01	.17		
DF-572		1	11	4	18	.1	7	4	135	1.48	2	10	ND	25	26	1		2	23	.59	.24	3	17		29	.05	7	.48	.01	. 16	:	
DF-574		2	32	10	55	.1	23	9	327	2.38	3	2	ND.	9	105	1.	ž	2	36	.63	. 18	32	37	1.27	123	.15	2	1.54	.02	. 56	2	
DF-576		1	12	3	25	.1	8	4	157	1.32	2	2	ND	17	43	1	4	2	19	.42	. 14	22	16	.40	50	.08	4	.73	.01	.29	÷	
DF-578		1	7	1	16	.1	5	3	107	.91	2	2	ND.	18	44	1	2	2	14	.51	.20	43	13	.72	29	.05	,	.6	.01	.13	-	
0F-580		1	11	3	20	.1	7	3	106	.97	2	2	ND	. 9	38	1	2	2	16	.74	.12	7	15	.47	53	.07	,	1.40	.03	.29	2	
DF-582		1	15	8	20	.1	11	5	161	1.48	2	2	ND	3	41	1	5		Z 5	.85	.11	÷	24	.78	81	.10	;	1.93	.04	.48		
DF-584		1	8	2	12	.1	5	2	91	.69	2	4	ND	5	37	i	2	2	10	.59	. 10	16	9	.23	37	.04	2	.57	.01	.13	1	
DF-586		1	12	2	18	.1	6	4	119	. 92	10	5	ND	7	25	1	2	14	12	.63	. 18	19	11	.72	46	.05	2	.76	. 02	.16	-	
DF-588		1.	9	21	61		13	6	225	3,48	2	2	ND	40	29	1	2	7	41	.86	.30	178	19	.35	55	.08	4	.69	.02	.16	175 -	
DF-590		1	20	6	60	.1	106	17	336	2.71	2	2	ND	3	24	1	2	?	45	. 32	.06	12	109	1.32	171	.16	2	2.05	.01	.36		
DF-594	1	3	57	19	185	.8	116	22	505	5.06	24	-	ND	ž	22	;	÷		27	.17	.07	16	34	.24	96	.01	-	.51	.01	.03	:	
DF-596	1	2	51	20	76	.2	86	26	860	4.46	15	2	ND	2	26	1	2	2	39	.54	.09	9	48	.66	146	.02	2	.96	.01	.04	2	
DF-598		2	62	29	105	.1	90	31	755	5.01	27	2	ND	2	47	1	2	2	49	1.16	.10	7	51	.68	107	.01	2	.98	.01	.02	,	
DF-600		2	57	30	80	.4	65	28	914	4.30	21	2	ND	2	63	1	5	5	30	2.52	.09	Ś	37	.76	94	.01	5	.68	.01	.01		
DF-602		2	54	37	121	.2	130	29	926	4.91	18	2	ND	2	23		7	- 7	38	.52	.09	7	79	.75	110	.01	-	.92	.01	.03	2	
DF-608		1	12	37	105		15	7			.,	5	ND	30	3:	;	;	7	44	.89	.29	144	72	41		.02	1	.78	.07	14	18	
DF-510		1	44	17	90	.1	99	24		4.48	9	2	ND	2	31	1	2	2	77	.84	.09	12	171	1.89	227	.07	2	2.15	.01	.07	154	
DF-612		1	34	10	43	.1	59	16	479	2.64	3	2	ND	2	29	1	2	2	48	.41	.08	11	113	1.04	94	.06	2	1.37	.01	.10	:	
STD A-1		1	30	38	185	.3	36	13	1047	2.82	ç	2	ND	2	36	1		2	57	.58	.10	8	75	.75	284	. 07		2.08	.01	70	÷	

FROJECT # 908 FILE # 83-1722

KIDD CREEK MINES PROJECT # 28 FILE # 82-0838

SAMPLE #	No ppa	Cu pp s	₽Ъ pp∎	Zn pps	Ag pp=	Ni pp#	Co ppa	ňn pp∎	Fe 1	As pp#	U ppm	Au pps	Th pps	Sr ppa	Cd pps	Sb pps	Bi pp#	· V ppa	Ca T	P I	La ppe	Cr pps	Ng Z	Ba ppm	Ti T	B	fa I	Na I	K I	W ppa	
5H29-82-66 6H29-92-68 6H28-82-70 6H28-62-72 6H28-82-74	2 1 1 1 1	48 58 22 30 17	23 16 8 12 8	65 51 32 53 33	.2 .1 .1 .1 .1	65 49 38 40 18	20 20 11 12 7	642 567 299 677 322	3.58 4.51 2.17 2.67 1.67	12 9 2 3 2	7 10 2 2 5	ND ND ND ND ND	3 2 3 4 4	75 77 34 39 86	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	46 80 41 39 27	2.38 3.47 .41 .40 1.86	.10 .11 .07 .07 .08	8 9 14 10	77 75 78 67 24	1.26 2.14 .78 .87 .54	98 120 86 105 89	.03 .07 .06 .05 .06	2 2	1.11 1.27 .99 1.24 .98	.01 .01 .01 .01 .64	. 97 . 12 . 08 . 1 1 . 18	2 2 2 2 2	
6H28-82-76 5H28-82-78 6H28-82-80 6H28-82-82 6H29-82-82 6H29-82-84	1 2 1	14 21 14 25 19	8 24 9 13 15	36 58 63 64 61	.1 .4 .1 .1 .1	15 17 16 20 20	7 7 9 9	828	2.07 2.04 2.16 2.55 2.44	2 2 2 2 2 2	2 2 3 2 5	ND ND ND ND	5 3 5 4	33 66 61 52 43	1 1 1 1	2 2 2 2 2	2 2 2 2 2	35 32 34 31 31	.41 .54 .49 .50 .44	.09 .06 .09 .13 .10	15 15 27 20 23	31 30 31 29 28	.60 .54 .65 .68 .60	95 246 274 118 110	.05 .07 .07 .05 .05	2 2	.93 1.31 1.24 1.19 1.19	.02 .02 .02 .02 .02	.10 .14 .18 .14 .14	2 2 2 2 2 2	
6H28-82-86 6H28-82-88 6H29-82-90 6H28-82-92 6H28-82-92 6H28-82-94	1 1 1 1	11 11 23 8 11	11 6 7 2 4	50 41 55 18 39	.1 .1 .2 .1 .1	14 13 27 4 9	6 25 4 7	355 278 1009 219 499	1.79 1.76 2.34 1.03 1.72	2 2 2 2 2	4 3 9 3 5	ND ND ND ND	4 2 4 3	27 29 39 12 27	1 - 	2 2 2 2 2	2 2 3 2 2	25 32 34 19 27	.28 .36 .40 .27 .31	.08 .07 .05 .05 .05	15 11 17 10	23 26 19 10 18	.37 .60 .39 .30 .44	93 101 145 63 119	.04 .09 .07 .05 .07	2	.92 1.22 2.77 .80 1.37	.01 .02 .02 .02 .02	.12 .22 .17 .14 .22	2 2 2 2 2 2	
6H28-82-96 6H28-82-98 6H28-82-100 6H28-82-102 6H28-82-104	1 1 1 1	5 0 5 11 22	1 4 3 5 7	9 23 12 24 49	.1 .1 .1 .1	3 8 4 7 20	2 5 2 4 12	86 413 108 285 402	.54 1.16 .70 1.19 2.63	2 2 2 2 2 2	2 3 5 4 3	ND KD KD KD	3 5 5 5 5	7 14 6 13 9	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	8 17 10 17 28	.16 .13 .13 .15 .08	.05 .03 .04 .04 .03	9 9 13 11 11	7 16 10 14 31	.11 .27 .14 .27 .59	37 71 43 69 131	.02 .06 .03 .05 .15	2 2 3 2 2	.42 .87 .50 .98 1.49	.01 .01 .01 .01	.05 .15 .08 .18 .70	2 2 2 2 2 2	
GH28-92-104 GH28-82-108 GH28-82-110 GH28-82-112 GH28-82-112 GH28-82-114	1 1 1 1	15 11 5 9 5	2 2 2 2 2 2 2	26 20 29 56 34	.1 .1 .2 .1	9 9 6 10 7	6 5 4 5 4	238 152 221 523 300	1.60 1.24 1.32 1.66 1.19	2 2 2 2 2 2	6 3 2 7 4	nd Nd Nd Nd	4 10 10 4 4	14 22 36 55 28	1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	24 22 25 26 22	.13 .81 .85 .45 .39	.04 .32 .35 .11 .14	9 26 23 28 18	22 16 12 22 13	.41 .31 .29 .39 .23	84 54 115 187 97	.09 .04 .05 .04 .04	2 2 2 2 2	.95 .58 .77 1.14 .74	.01 .01 .01 .01 .01	.37 .11 .11 .14 .09	2 4 7 2 2	
6H28-82-114 6H28-82-118 6H28-82-120 6H28-82-122 6H28-82-122 6H28-82-124	1 1 1 1	4 5 7 6	5 7 8 8	29 27 21 46 46	.1 .2 .1 .1	6 8 7 16 16	4 4 7 7	372 283 214 734 883	1.18 1.33 1.22 1.94 1.80	2 2 2 2 2 2	4 5 4 6 7	KD NJ ND ND	5 3 5 3	39 66 22 51 44	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	23 29 21 33 31	.45 .34 .29 .44 .33	.16 .10 .12 .14 .10	21 21 17 18 17	13 16 13 28 27	.24 .30 .21 .47 .48	117 123 108 205 165	.04 .06 .04 .05 .06	2	.81 1.11 .94 .98 1.19	.01 .01 .01 .03 .02	.09 .09 .07 .13 .12	5 2 2 2 2	
6H28-82-12 6 6H28-82-128 6H28-82-130 6H28-82-132 6H28-82-132 6H28-82-134	- 1 1 1 1	9 22 25 21 18	4 9 12 11 10	31 46 56 42	.2 .2 .1 .1	14 29 40 32 26	12 14 11 10		1.44 2.99 3.38 2.75 2.45	2 2 2 2 2 2	5 2 2 14 5	ND ND ND ND	2 4 4 3 4	42 72 78 76 58	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	23 47 52 44 40	.30 .76 .74 .44 .39	.08 .14 .17 .09 .11	14 19 22 16 20	21 39 55 45 38	.32 .64 .75 .67 .48	162 175 244 283 249	.05 .08 .09 .10 .08	2 2 2	1.03 1.46 1.49 1.71 1.29	.02 .04 .04 .03 .02	-11 -16 -22 -18 -16	2 3 2 2 2	
6H28-82-136 6H28-82-138 STD A-1	1 1 1	16 13 30	7 6 38	37 40 173	.1 .1 .3	23 17 33	10 8 12	354	2.28 2.19 2.73	2 2 7	7 4 2	ND ND ND	4 4 2	44 42 41	1 1 1	2 2 2	2 2 2	29 29 28	.37 .48 .60	.11 .13 .10	18 17 4	32 32 73	.43 .48 .74	186 128 301	.07 .05 .09	-	.84 1.02 1.81	.02 .02 .02	.15 .12 .21	2 2 2	

KIDD CREEK MINES PROJECT # 28 FILE # 82-0838

SAMPLE #	Ko pp=	Cu pps	Pb pps	Zn ppm	Ag ppa	Ni pp#	Co ppe	Hn ppe	Fe I	As pp n	U ppe	Au pps	Th pps	Sr ppe	Cd pps	Sb pps	ði pps	V pp=	Ca I	P I	La ppe	Cr' pps	Ng I.	Ba pps	Ti I	B ppæ	Al Z	Ka I	K I	¥ ppa j	
6H28-82-140	1	22	7	41	.1	24	10		2.34	2	3	KD	2	61	1	2	2	42	. 48	.08	13	40	.65 .63	209 249	.10		1.43	.03	. 20	2	
GH29-82-142	1	19	10	47	.1	27	9	324 385	2.60	2	. 4	ND ND	4	57	1		2	50 34	.51 .43	.12	15 13	46 32	.51	247	.10		1.20	.03	.21	2	
6H28-82-144	1	18	9 11 ·	42 54	.1	23 28	8 10	288	2.16	3 2	11	ND ND	5	60 40	4. 1	ź	ź	42	. 32	.07	13	41	. 58	211	.11		1.24	.02	. 32	2	
GH28-82-146 GH28-62-148	1	15	8	22	.1	20	8		2.72	2	2	KD	4	30	1	2	2	34	.39	.12	15	30	.39	131	.07	2		. 02	.16	3	
0010-01-140		10	ę	30	••	44	U	333	2.24	•	•		'		•	6	•			•••		••	••••			•	••••				
GH29-92-150	1	21	11	45	.2	27	10	340	2.45	3	2	ND	4	40	1	2	Ž	35	. 38	.10	13	38	. 59	181	.09	2	1.07	.03	. 27	. 2	
6H29-82-152	1	19	10	43	.1	20	9	249	2.56	2	- 6	ND.	. 9	17	1	2	2	20	.19	.07	26	28	.40	107	.07	- 2	.89	.01	.22	2	
GH29-82-154	1	23	12	48	.1	25	10		2,48	2	2	ND.	- 4	22	1	2	2	28	.24	.07	14	28	.41	110	.06	2	.81	.01	. 18	2	
6H28-82-156	1	22	9	49	.1	29	11	384	2.33	2	2	. ND	3	30	1	2	2	32	. 32	.07	14	37	.54	137	.07		1.15	.02	.23	2	
SH28-82-158	1	16	7	51	.1	18	8	356	1.95	2	2	CM	4	25	1	2	2	27	.25	.07	15	28	. 38	120	.04	2	. 89	.01	.14	2	
6H28-82-160	1	15	5	26	.1	17	8	284	1.86	2	4	ND	5	27	1	2	2	29	. 29	.07	13	29	. 44	113	. 06	2	. 88	.02	.14	2	
5H28-82-162	1	22	10	34	.2	25	12	337	2.39	2	2	ND.	4	52	1	2	2	35	.71	. 12	15	28	.55	107	.05	- 2	.83	.03	.11	2	
SH28-82-164	1	25	10	- 44	.1	29	12	355	2.55	2	2	XD	- 3	48	1	2	2	43	.49	.10	13	51	. 78	96	.05		1.23	.02	.11	2	
GH28-52-166	1	40	13	54	.2	48	18	518	3.80	4	2	ND	2.	40	1	2	2	76	.51	.07	11	95	1.33	133	.07		1.67	.02	. 09	2	
6H28-82-168	1	13	1	66	.1	14	10	1093	2.22	2	. 9	ND.	4	34	1	2	2	37	. 34	.09	20	24	.40	133	.06	Z	1.40	.02	.11	2	
6H28-82-170	1	8	. 6	38	.1	12	6	373	1.51	2	5	N9	4	23	1	2	2	23	. 32	.07	15	19	. 28	83	.04	2		.01	.09	2	
6H28-82-172	1	10	7	43	.1	12	6	426	1.75	2	6	ND	2	35	1	2	- 2	29	.33	- 06	16	21	.32	121	.06		1.34	.01	.12	2	
6828-82-174	1	11	9	69	.1	31	12	1233	2.48	2	5	ND	2	62	1	2	- 2	44	. 38	.10	17	41	.17	318	. 09	-	1.67	.02	.23	2	
6H28-82-176	1	18	8	37	.1	19	10	351	2.26	2	3	ND	8	42	1	2	2	34	.51	.12	16	28	.48	157	.04	2	.90	.02	.13	2	
GH28-92-178	1	10	5	32	.1	9	6	263	1.61	2	3	ND	3	43	1	2	2	28	.35	.08	12	20	. 37	107	.05	2	.79	.07	12	2	
6H28-82-180	1	7	5	29	.1	10	4	243	1.36	2	4	ND	. 3	49	1	2	2	24	. 32	.06	14	19	. 35	117	.05	. 2	. 93	. 02	. 09	2	
5H29-82-182	1	17	- H	61	.1	29	11	565	3.01	2	2	KO	4	67	1	2	2	50	.55	.14	17	- 47	. 94	224	.09	2		.04	. 28	2	
6H2B-B2-194	i	19	12	58	.1	27	11	442	2.82	2	4	ND	5	11	3	2	2	42	. 68	.12	19	39	.79	175	.07		1.74	.04	.23	2	
GH28-82-186	1	32	11	34	.1	29	14	395	2.99	2	2	ND	- 2	58	1	2	2	59	1.05	.09	8	55	1.00	78	.08		1.09	. 02	.10	2	
GH28-82-188	1	- 29	- 14	42	.3	32	13	1124	3.13	7	1	ND	3	148	1	2	. 2	46	6.06	.09	10	52	.90	166	.05	2	1.13	.01	. 08	2	
6H28-82-190	1.	47	13	61	.2	26	17	538	3.69	3	2	ND	2	63	•	2	2	66	1.45	.10	10	59	1.34	147	. 09	2	1.43	.01	.14	2	
6H28-82-192	1	22	17	- (3	.2	24		357	2.02	5	;	ND	2	91	i	2	2	IJ.	5.79	.10	7	40	3.41	82	.04	2		.01	. 06	2	
EH28-82-194	i	18	20	52	.2	27	10	404	2.63	2	2	ND	2	106	i	2	2	47	.65	.05	9	46	.78	234	.06	2		.01	.07	2	
GH28-82-196	1	34	12	57	.2	53	18	377		3	Ĩ	ND	30	- 44	ĩ	2	. 4	85	. 62	.10	n	96	1.11	82	.06		1.45	.02	.07	2	
6H2B-82-198	1	50	31	126	.1	62	19			2	2	ND	5	59	i	2	2	71	. 69	.08	14	98	1.12	156	.10		1.97	.04	.16	2	
6H28-82-200	1	32	17	83	.2	47	14	373	3.53	3		ND		43	,	2	2	63	. 56	.08	12	97	.85	125	.09	,	1.50	.03	.12	2	
6H28-82-202	1	26	8	45	1	34	13	380	2.84	2	2	ND	4	47	i	ż	2	45	.57	.10	14	56	.85	129	.06	-	1.14	.02	.13	ź	
STD A-1	1	20	29	167	.3	32	11 .	911	2.61	- 8	2	ND	2	40	· i	2	2	54	. 58	.09		70	.73	291	.09	-	1.82	.02	.20	2	
SH28-82-206	1	67	- 41	139		32	14	401	3.54	24	3	ND	7	20	1	2	2	23	.29	.07	15	ZO	.50	74	.03	ź	.91	.01	. 67	2	
															-	-	-			•••				• •		•	• • •			4	

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER D.C. PH: 253-3158

TELEX:04-53124

ICP GEOCHEMICAL ANALYSIS

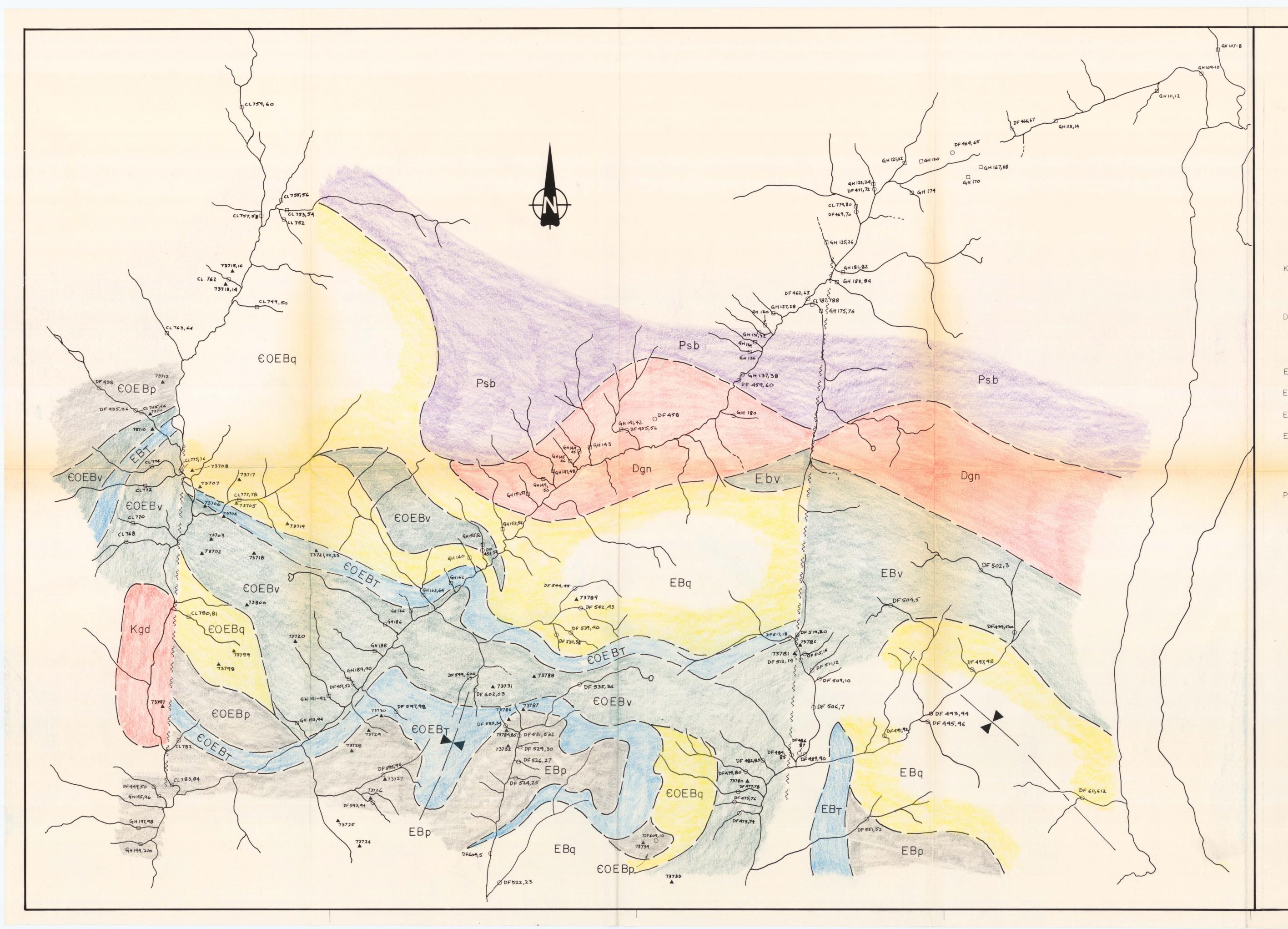
A .500 GRAM SAMPLE IS DIGESTED WITH 3 HL OF 3:1:3 HCL TO HND3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILLITED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 pps. AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. W& ANALYSIS BY ICP FROM 1.00 GRAM FUSED SAMPLE. SAMPLE, TYPE - ROCK CHIPS

DATE RECEIVED AND 16 1983 DATE REPORTS MAILED Aug 26/33 ASSAYER _____ DEAN TOYE, CERTIFIED B.C. ASSAYER

						1						1	1						1	/												
									κı	ם ממ	REE	к	PRO	JECI	r #	909	F	ILE # 4	83-10	6 6 3		•								PAGE	E #	1
SAMPLE #	No ppe	Cu ppe	Pb ppe	Zn pp a	Ag ppa	Ni pp n	Co pp n	Min ppa	Fe Z	As pp a	U ppe	Au ppa	Th pp a	Sr ppæ	Cd ppa	Sb ppa	Bi ppe	V Ca ppn Z	P Z	La ppii	Cr ppm	Yig Z	Ba ppe	Ti Z	B ppa	Al T	Na Z	K 2	W ppa		NI Ppe	
073702 073703 073704 073705 073706	2 1 1 1 1	44 32 33 57 30	10 5 10 18 24	48 64 87 85 69	.3 .1 .1 .2 .2	29 33 39 35 31	15 10 12 15 9	919 460 476 501 668	2.66 3.08 3.63 3.92 3.02	8 2 7 8 9	2 9 8 2 3	nd Nd Nd Nd Nd	3 3 6 10 5	231 74 131 37 199	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	46 6.55 7 2.33 21 2.81 42 .49 19 4.09	.06 .07 .06	6 19 14 8	9 35 40	1.53 .68 1.79 1.36 1.66	26 45 71 44 63	.03 .01 .01 .09 .01	5 5 11	1.67 .58 2.47 2.47 2.02	.01 .02 .01 .05 .01	.13 .14 .14 .30 .14	2 2 2 2 2 2	-		۰.
073707 073708 073709 073710 073711	1 1 3 1	25 22 51 54 42	14 9 12 46	62 50 90 77 75	.1 .1 .1 .3	27 22 38 32 25	10 8 13 15 12	433 431 419 925 876	2.28	5 2 4 3 3	5 2 2 2 2 2	nd ND ND ND	54 4 9 9	148 170 70 62 8	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	15 2.83 9 4.69 23 1.02 11 1.23 15 .05	.05 .06 .05	11 9 8 20 15	16	1.52 1.02 1.37 .63 .87	47 30 55 25 29	.01 .01 .01 .01	4 5 5	1.94 1.03 1.99 1.27 1.48	.01 .01 .02 .01 .01	.18 .12 .15 .13 .14	2 2 2 2 2	-		
073712 073713 073714 073715 073716	13 1 241 168 182	62 64 81 206 133	14 15 45 992 67	45 77 62 301 447	.1 .1 10.5 .8	17 39 42 17 39	8 18 19 6 13	221 1096 1377 2830 2824	4.03 4.01 4.81 3.64 4.20	2 2 2 14 3	2 3 3 12 2	ND ND ND ND	5 9 7 2 2	17 67 81 1680 789	1 1 4 4	2 2 2 2 2	2 2 25 4	15 .10 18 1.51 15 1.25 3 10.47 11 10.56	.05 .07 .01	14 20 11 2 2	22 5	.52 1.18 .95 .44 1.74	32 40 24 68 65	.01 .01 .01 .01	6	1.17 1.62 1.21 .16 .39	.01 .02 .02 .01 .02	.15 .26 .17 .01 .11	2222	1 - 5 5 5	-	
073717 073718 073719 073720 073721	4 1 1 2	56 55 35 96 47	31 13 13 5 16	83 63 97 55 87	.2 .1 .1 .1	39 153 43 55 33	15 24 15 22 9	845 875 404 937 468	4.22	9 17 6 9 4	2 2 2 2 2	nd ND ND ND	82625	39 10 9 97 11	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	15 .31 86 .29 8 .29 91 5.93 6 .74	.06 .05	12 8 10 2 10	23 345 15 121 6	.56 3.96 .25 2.23 .07	33 27 57 64 72	.01 .09 .01 .09 .01		1.43 3.54 .71 2.86 .35	.01 .01 .02 .03 .01	.13 .10 .15 .32 .13	2 2 2 2 2			
073722 073723 073724 073725 073725	1 1 5 1	191 259 34 22 40	39585 4203 310 71 39		45.1 79.4 2.6 1.0 1.2	31 5 70 45 62	1 12	18551 62630 787 1008 521	3.76 1.41 3.45 2.94 3.39	106 52 8 3 2	6 2 2 2 2	nd Nd Nd Nd	6 24 4 5	131 318 58 23 26	59 280 2 3 1	424 111 2 2 2	2 8 2 2 2	31 4.59 15 11.72 25 .51 23 .15 21 .14	.03 .07 .06	2 3 16 12 33	3 44	1.39 1.62 .86 1.21 .21	12 18 184 92 163	.01 .01 .01 .01		.37 .09 1.10 1.59 .62	.01 .01 .01 .01 .01	.09 .01 .21 .17 .22	2 2 2 2 2 2	120	-	
073727 073728 073729 073730 073731	1 5 2 7 2	54 65 27 29 51	28 59 15 30 17	134 222 130 139 120	.1 1.1 .6 .5	37 83 26 40 45	20 19 5 7 14		4.25 2.36 2.23	27 8 2 7 3	2 2 2 2 2 2 2	nd Nd Nd Nd	72322	16 23 12 6 23	1 2 1 1 1	2 2 3 2 2	2 2 2 2 2 2	9 .24 56 .24 32 .09 20 .03 25 .39	.10 .07 .04	12 13 18 11 6	13 55 42 16 17	.54 .54 .52 .14 .07	48 243 210 510 144	.01 .02 .01 .01 .01		.83 1.32 1.00 .44 .41	.01 .01 .01 .01	.19 .21 .17 .12 .10				
07 3732 073780 073781 073782 073783	2 1 1 1 3	71 51 10 597 62	- 11 	74 71 7 20 59	.2 .2 .2 .5 .2	38 46 14 35 42	17 24 22 42 12	905 735 854 133 600	3.46 4.70 1.86 14.57 2.47	9 7 2 15 6	11 19 2 2 2	nd Nd Nd Nd	5223	90 144 98 2 64	1 1 1 2	2 2 2 6 2	2 2 126 2	47 2.85 125 2.24 7 7.00 13 .04 30 1.79	.12 .03 .01	15 14 2 7		1.72 2.52 .11 .04 .80	41 215 5 3 47	.01 .09 .05 .01 .01	2 2 3	1.93 2.44 .27 .29 1.04	.01 .04 .01 .01	.15 .13 .01 .01	2 2 2 2 2	- 5	22	
073784 073785 073786 STD A-1	6 4 79 1	77 27 6 30	17 13 196 38	147 64 12 186	.1 .1 1.3 .3	51 17 5 36	8 2 2 13	224 78 102 1062		4 2 2 9	2 2 2 2 2	nd ND ND ND	2 2 2 2	56 42 230 37	1 1 1	2 2 2 2	2 2 4 2	24 1.21 24 .73 3 .18 57 .57	.50 .01	9 8 2 8	20 19 7 76	.07 .03 .01 .77	135 121 183 279	.01 .01 .01	6 3 3 7	.72 .46 .12 2.05	.01 .01 .01 .02	.15 .11 .06 .20	2 2 2 2	- 5 -	- 	;

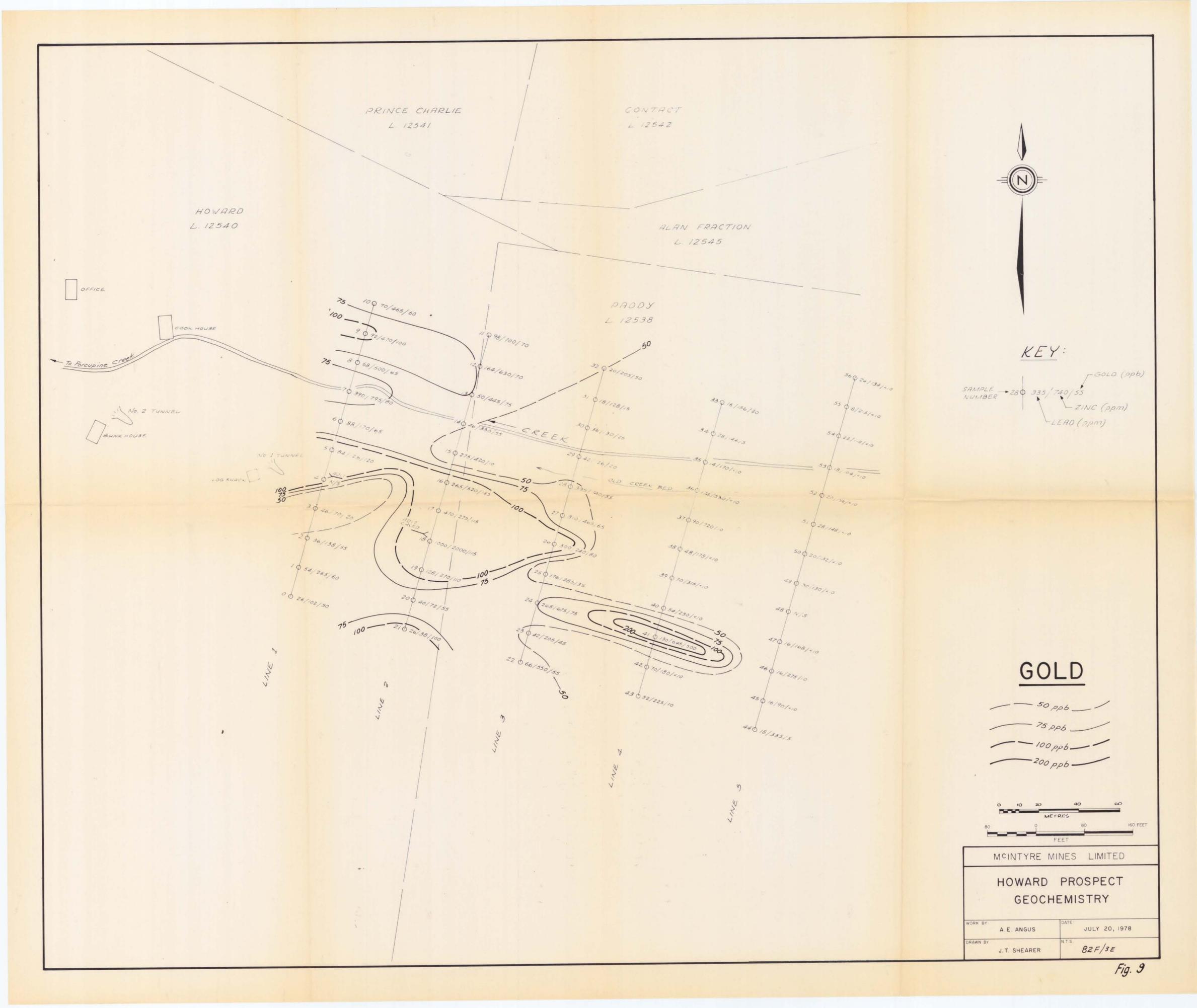
KIDD CREEK PROJECT # 909 FILE # 83-1663

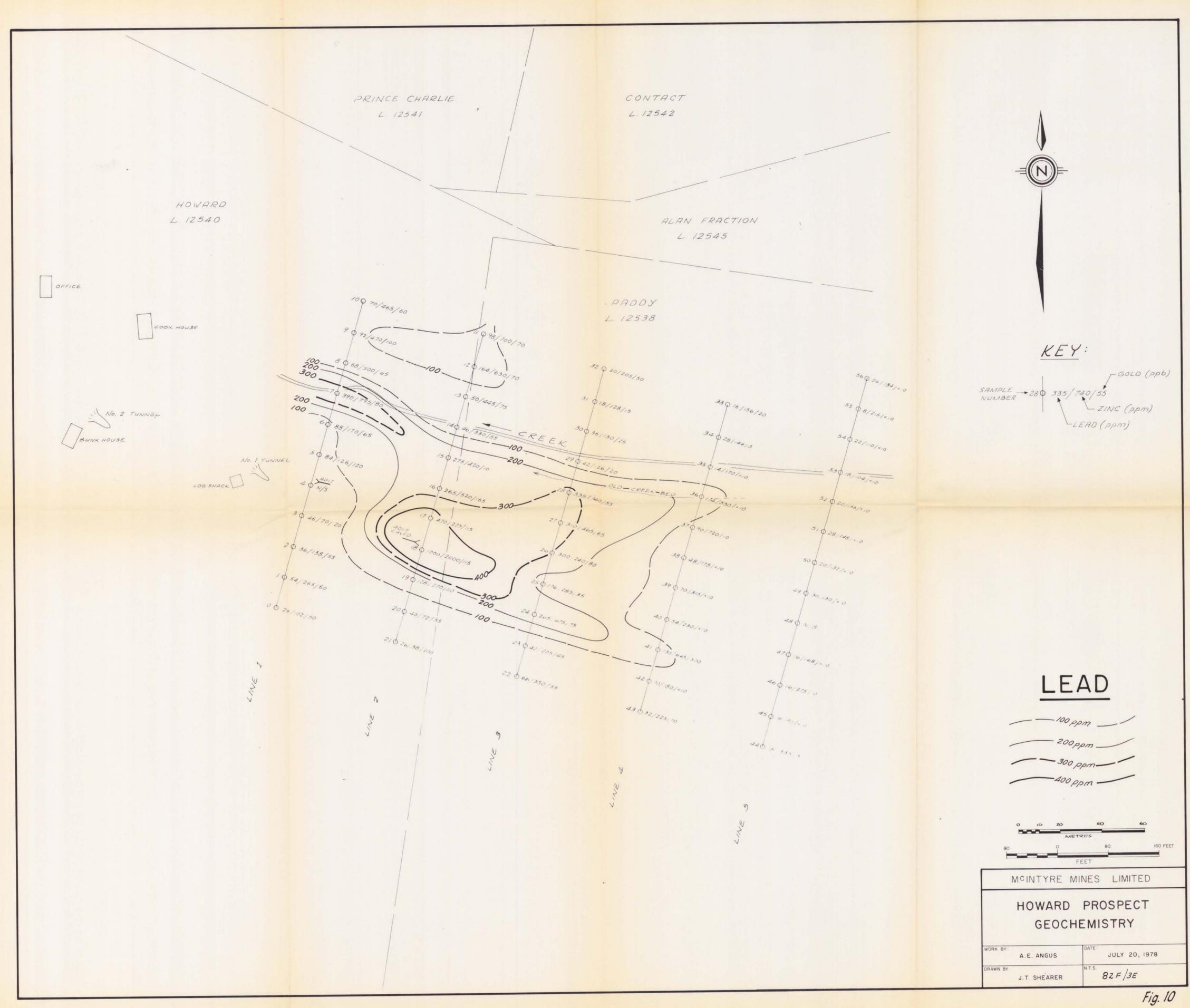
SAMPLE #		Mc pps	Cu ppe	РЬ рра	Zn ppm	Ag ppe	Ni pps	Co ppe	Mn pps	Fe 7	As ppe	U ppa	Au pps	Th ppm	Sr . ppa	Cd ppa	Sb ppa	Bi ppm	V ppa	Ca Z	P X	La pp n	Cr pps	Ng Z	Ba pp n	Ti Z	B ppm	Al Z	Na I	K Z	W ppa	
												••				••						••			••		••					
073787		1	45	8	62	.1	24	8	327	2.39	- 6	2	ND	2	17	1	2	2	32	.75	.07	10	23	.67	132	.01	3	1.03	.01	.17	2	
073788	•	4	60	10	50	.1	51	12	483	2.62	31	2	ND	2	. 6	1	2	2	45	.17	.10	7	40	1.26	68	.01	- 4	1.39	.01	.11	2	
073789		1	53	7	61	.1	165	32	457	5.42	6	- 14 -	ND	2	27	1	2	2	134	.86	.12	- 4	360	3.73	112	.15	3	3.13	.06	.17	2	
073790		1	33	3	48	.1	137	28	708	3.56	5	2	ND	2	. 95	1	2	2	61	5.09	.08	2	234	2.91	53	.16	2	2.46	.01	.21	2	
073791		1	62	3	63	-1	137	30	716	4.46	8	19	ND	2	97	1	2	2	54	3.44	.10	2	265	3.15	129	.20	3	2.80	.01	.10	2	
		-		-		••		•••			-	•••		•		-	-	-				-					-					
073792		1	57	5	52	.1	140	28	897	4.31	6	2	ND	2	285	1	2	2	90	10.57	.07	3	281	2.86	107	.10	3	2.73	.02	.03	2	
073793		1	25	15	36	.1	17	8	605	2.38	Ā	2	ND.	3	581	.1	2	3		14.67	.03	ī	10	.56	26	.01	3	.49	.01	.10	2	
073794			12		35			Ĩ	327	1.17	;	·	ND	2	1421	;		- Å		27.35	.02	;	7	.40	22	.01	~	.15	.01	.04	2	
073795			12	7	14	•4	5	5	175	.82	2	ź	ND	5	1530			~ ~		27.32	.02		- 1	.38		.01	5	.07	.01	.03	2	
		1		3				4				3		4		1	3						2		14							
073796		1	20	Y	35	.4	11	6	278	1.68	2	4	ND)	2	1209	1	2	· · /	•	27.26	.02	4	6	.59	- 25	.01	2	.19	.01	.07	2	
						-		-		• • •	-			-	:							-							••		-	
073797	1	10	22	60	166	.3	16		1311	2.17	2	2	NÐ	5	676	1	2	5		20.63	.03	8	24	.82	20	.03	2	1.16	.01	-11	· 2	
073798		2	50	12	72	.1	59	23	2132	4.26	10	- 4	ND	. 5	35	1	2	2	35	.71	.05	8	48	1.58	38	.01	- 2	2.37	.01	. 17	2	
073799		1	21	9	99	.1	48	26	4426	3.28	2	5	ND	8	20	1	2	2	19	. 18	.03	26	24	.97	38	.01	3	1.68	.02	.16	2	
073800	1	2	47	16	72	.1	55	20	2165	4.07	17	4	ND	4	20	1.	2	2	27	1.05	.07	13	- 37	.98	76	. 01	4	1.71	. 01	. 16	2	
STD A-1	1	1	30	40	181	.3	35	13	1025	2.80	10	2	ND	2	36	1	2	2	59	.62	.10	8	78	.75	278	.08	7	2.06	.02	.20	2	

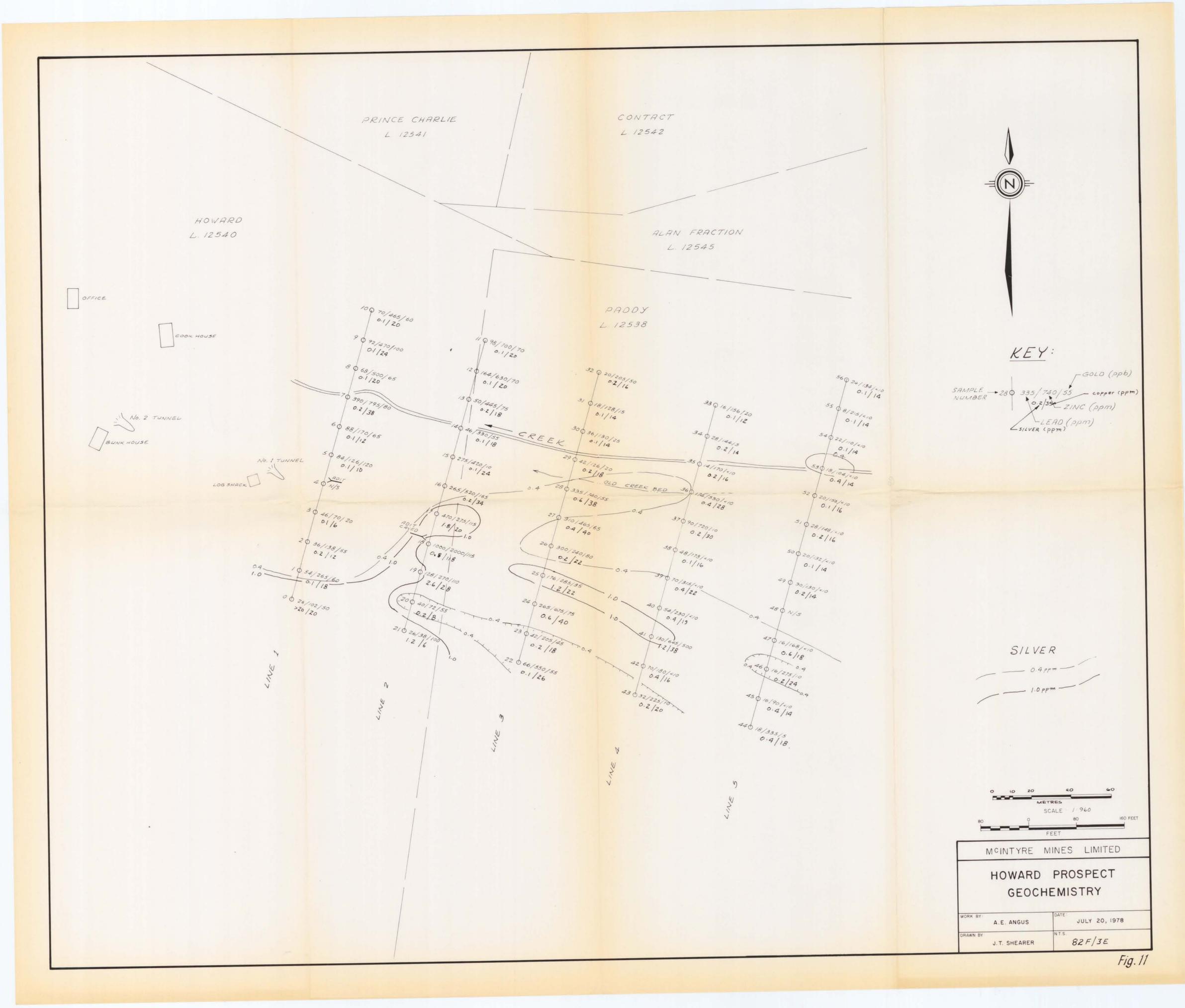

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DES.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. Au DETECTION 3 ppm. SAMPLE TYPE - ROCK CHIPS


DATE	RECEIVED	AUG 19	1983	I	DATE	E RE	EPOF	RTS	MÁJ	ILEI	<u>A</u>	ug z	2/8	3	ASS	AYE	R	Ab	D	e _f y	DE	EAN	TOY	/E,	CEF	RTIF	IEI) В.	с.	ASS	SAYE	ĒR	
									KII	ום מנ	REEK	:	FIL	E #	83-	1723	3	PR	DJEC	CT #	905	,									PAG	E #	1
	SAMPLE #	Mo pp a	Cu ppa	Pb pp#	Zn ppæ	Ag ppæ	Ni pp a	Co ppe	Hn ppa	Fe I	As ppa	U pp s	Au ppm	Th ppn	Sr ppa	Cd pps	Sb pp#	Bi pps	V ppm	Ca Z	P	La ppe	Cr pps	Ng Z	Ba ppa	Ti Z	B ppz	Al Z	Na Z	ĸ	W ppa		
	073733 073734 073779	3 5 1	31 96 50	12 12 16	100 71 87	.1 .1 .1	45 53 32	8 17 14	255 1003 1271	3.55 2.86 4.23	2 5 12	2 2 2	nd Nd Nd	6 4 7	18 16 180	1 1 1	2 2 2	5 4 3	47 28 18	.11 .57 5.69	.08 .06 .05	18 8 9	54 17 20	1.23 .43 .93	217 67 37	.01 .01 .01	4	1.79 .88 1.68	.01 .01 .01	.24 .18 .17	2 2 2		
	SAMPLE #	ño	Cu	Pb	Zn	Ag	Ni	Co	Ma	Fe 7	As	U	Au	Th	Sr	Cđ	Sb	Bi	Ŷ	Ca 7	P 7	La ppa	Cr ppa	fig Z	Ba ppa	Ti Z	B	Al 7	Na 7	K X	¥ ppa	Autt ppb	Sn# ppa
	73770 73771 73772 73773 73774	pp a 3 5 13 7	9 110 104 117 39	pp∎ 568 35 13 21 22	ppa 6578 306 38 123 77	90a 3.0 .7 1.4 2.8 .2	ррв 14 10 7 49 26	ppa 3 18 17 19 8	908 4744 759 167 756 855	3.01 3.67 3.48 4.60 3.95	22 15 210 103 8	ррв 2 2 2 2 2	PP® ND ND ND ND ND	pps 4 2 2 2 8	ppa 101 94 111 211 12	25 2 1 2 1	рря 2 2 2 2 2 2	ρρ# 2 2 2 2 2 2 2	pp∎ 8 50 50 113 23	4.56 2.52 2.74 4.51 .34	.08 .15 .12 .11 .05	2 3 3 4 10	6 3 3 103 25	1.29 .59 .37 2.01 1.30	36 57 14 96 30	.01 .07 .06 .05 .01	4 7 9 5	.25 1.94 4.30 2.15 1.98	.01 .19 .18 .03 .02	.11 .13 .24 .38 .11	22 22 23 22 22 22	14 95 14 3	- - - -
	73775 73776	3	62 66	24	77 101	.2	37	17	690 693	4.59 4.55	5	2	ND	10	14	i	2	2	22	. 41	. 06	9	21 29	1.24	35 32	.01		1.84	.02	.14	2	3	-


	1	e de la construcción de la constru		Contraction of the second second		•
KIDD CREEK	PROJECT #	909 F	ILE # 83	5-0814		PAGE# 1
SAMPLE		CU ppm	PB ppm	ZN ppm	AG ppm	
73751 73752 73753 73754 73755	•	38 51 22 19 12	$ \begin{array}{r} 1 & 3 \\ 1 & 4 \\ 1 & 7 \\ 6 & 6 \\ 1 & 0 \\ \end{array} $	150 270 113 320 51	.8 1.2 1.2 1.2	
73756 73757 73758 73759 73760		9 32 13 128 20	33 4 16 9	123 134 27 133 76	.3 .9 .4 .6	
73761 73762 73763 73764 73765		33 36 37 42 12	4 16 11 21 6	62 93 37 232 56	1.0 1.4 3.0 2.1 .2	
73766 STD A-1		18 30	- 26 38	90 184	.1 .3	



	L E G E N D
	EARLY CRETACEOUS
gd	SCOT CH CREEK PLUTON granodiorite, granite
gu	grandatorite, grantie
	LATE DEVONIAN
gn	MOUNT FOWLER BATHOLITH Foliated leucocratic granite granitic feldspar porphyry
	quartz monzonite, granodiorite, minor pegmatite.
	CAMBRIAN AND ORDOVICIAN?
Bv	EAGLE BAY FORMATION Greenstone, chloritic phyllite, minor agglomerate,
Pa	sericitic phyllite, quartzite, limestone and tuff.
Bq	Sericitic, siliceous phyllite, sericitic quartzite, quartz biotite shist, minor tuff and layers of EBv.
Вр	Black argillite, argillaceous phyllite, shale, minor limestone.
Вт	Massive grey white crystalline limestone, minor greenstone and greenshist.
	and greenshipt.
	PROTEROZOIC AND PALEOZOIC SHUSWAP METAMORPHIC COMPLEX
sb	Quartz mica shist, commonly garnet and sillimanite bearing.
	1982 Sample site
0	1983 Sample site
•	1983 Rock sample
	Kidd Creek Mines Ltd.
	1983 SEDEX RECCE PROJECT Adams Plateau Area
	GEOLOGY & SAMPLE LOCATIONS
	NTS 82M/3
	WORK BY DRAWN BY

NTS 82 M / WORK BY	DRAWN BY			
N. V F.	NVF/ER	DATE: FEBI	RUARY 20, I	983
1000	0 1000	2000	3000	4000 m
SCALE IN	METRES 1 : 50	,000		
Figure:	6			

