A MINERALOGKAPHIC EXAMINATION OF THE ORE OF

THE MORRIS MINE, TATIAYOKO IAKE,
BRIIISH COLUMBIA

Submitted in partial fulfilment of requirements in the Department of Geology, Fourth Year, at the University of British Columbia

Richard B. Campbell
University of British Columbia

Abstract Page ii
INTRODU CTION
Purpose 1
Locetion 1
Acknowledgments 2
Geology 2
MINERALOGY
Macroscopic Examinetion 4
Microscopic Examination 6Descriptions of Individual Minerals:
Quartz 8
Pyrite 10
Arsenopyrite 11
Sphalerite 13
Tetrahedrite 14
Galena 16
X (unidentified) 17
Gold 19
Stibnite 21
Cerbonate. 22
CONCLUSIONS
Mineralogy 23
Assays 23
Process of Mineralization 24
Classification of Deposit 24
Suggested Method of Treatment 24
LIST OF SECTIONS 26
BIBLIOGRAPHY 27

IIST OF ILLUSTRATIONS

Higure 1 Paragenesis Diagram. Page 28
Figure 2 Diagram of Introductionof Elements" 29
Figure 3 Sketch of Quartz filling fracture in arsenopyrite " SO
Figure 4 Sketch of arsenopyrite crystal in fracture in quartz " 31
Figure 5 hoto. of arsenopyrite replaced by X " 32Figure 6 Photograph of heavy-goldmineralizetion in quartz " 33
Figure " Photograph of gold in sphalerite : . . . " 34
Figure 8 Photogreph of gold insrsenopyrite, al so showingtetrehedrite veining sphaleriteand arsenopyrite " 25
Figure 9 Photogreph of gold with tetrehedrite . . " 36

552 Tennis Crescent, University Hill. Vancouver, B. C., April 9th, 1948

Dr. H. V. Warren, Professor of mineralogy, Department of Geology, University of British Columbia.

Dear Sir:
I have the honour to submit herewith the report:
"A Miner alogrsphic Examination of the Ore of the Morris vine, Tetlayoke Lake, British Columbia", es required for the second term work in the course Geology 409 of the Department of Geology ε (he University of British Columbia.

Sincerely yours,

richard b. Campoell

ABSThaCT

This report deals with the mineralography of the ore of the Morris Mine near Tatlayoke Lake, B. C. The mineralization has occurred in two periods, in the first of which arsenopyrite, sphalerite, tetrahedrite, pyrite, galena, gold, and an unidentified mineral were deposited, and in the second of which stibnite was deposited in large amounts. Gold occurs in grains as large as 0.2 mm within any of the first group of minerals, and frequently as free gold in quartz; it was not observed associated with stibnite. Tetrehedrite is probably argentiferous, producing the silver vilues; and, as it does not occur closely associsited with stibnite, it is the one sulphide unique to that part of the ore containing the precious metals.

A MINERALOGRAPHIC EXAMINATION OF THE ORE OF

 THE MORRIS WINE, TATLAYOKO LAKE,BRITISH COLUMBIA

INTRODUCTION

Purpose

A description of the minerals, their interrelations and paragenesis, as they occur in the ore of the Morris Mine, is the purpose of this report. This description is based on both macroscopic and microscopic examination of selected samples. Special emphasis will be laid on those minerals closely related to, hence indicative of the presence of the precious metals, gold and silver. Location

The Morris Mine is situated about six miles from the South end of Tatlayoko Lake, south of the head of Mathew Creek, a branch of the Homathko River, British Columbia. The showings on the property are at elevations between 6000' and 6500'feet.

Access to the area is by motor road,

169 miles West from Williams Lake to the north end of Patlayoko Lake, by boat or pack trail to the south end of the lake, and thence $3 \frac{1}{2}$ miles southessterly by a narrow road to the Morris base camp at elevation 2850^{\prime}. The main camp is connected by about three miles of pack trail to the mine camp at an elevation of 6050'feet.

Acknowledgments

The writer is particularly indebted to Dr. H. V. Warren and Dr. K. M. Thompson for their guidance and help in the many problems arising in the microscopic examination of polished sections of the ore. He is also grateful to Mr. J. Donnan for assistance in the mounting and polishing of the sections used in this work. It may also be ststed here that all the information concerning the locstion and geology of the Morris Mine, and, unless otherwise stated, the assays referred to, are derived from a part of the annual report of the Minister of Mines of the Province of British columbia, 1955, by B. T. O'Grady (O'Grady 1905).

Kether thein make continual reference in the matter of etch tests and microchemical tests used in the identification of the ore minerals, it is acknowledged here thet all information required for such identificetion was derived from the United Stetes Geological Survey Bulletin 914, 1940, entitled "Microscopic Determination of the Ore Minerals", by li. N. Short (Short 1940).

Geology

The geology of the area will be but briefly steted in this work. The veins cut Triassic argill-
ites and sandstones, and a quartz-diorite stock. This stock is probably releted to the Coast Range batholith, the edge of which is a few miles to the South. The veins are apparently closely related to the stock, for if they do not cut it they have not been observed more than 400' from its nearest exposure. Dykes, ranging in composition from diorite to basalt, are all apparently younger than the veins, either cutting them or intersecting other aykes which cut them. M\&ny of the veins not in the intrusive are in argillites and are often followed closely by dykes. The attitude of the sediments was not determined, and the fractures, occupied by dykes and veins, follow no well defined system.

The main horris vein has been traced on the surface for 850 feet, through a vertical range of 450 feet, and followed underground for 280 feet from the lowest outcrop. The average width of the vein in the 280 foot adit is 2.7 feet. The assays over this length and breadth of vein were found to be 0.25 ounces of gold per on, and 3.1 ounces of silver.

MINERALOGY

Macroscopic Examination

The ore occurs generally in clean walled veins, and in part exhibits a banding or crustification. Some parts of the mineralization occur in brecciated and crushed silicified zones. This seems especially true of the stibnite rich facies.

The outstanding feature of the ore examined macroscopically is the presence of the two distinct types of mineralization. The principal type is that in which the sulphides are chiefly arsenopyrite, and sphelerite with smell gmounts of tetrehedrite. The existence of other sulphides is suggested, but identification by macroscopic methods is difiicult. These metallic minersis are enclosed in quartz, which is mostly a milky white colour, but some of which tends to a smoky grey, suggesting two generations. The arsenopyrite occurs as long lathe-like euhedral crystals up to 5 mm long, and also in masses of anhedral grains. These two types of arsenopyrite occur in zones, parallel to one another and parallel to the walls of the veins. The masses of irreguler grains have the appearance of zones subject to some fracturing, and indeed generally occur along and about a striking linear fracture parallel to the walls. Sphalerite occurs in irregular to rounded blebs up to lcm in diameter. The more general size is about 5 mm .

The outstanding feature of the arsenopyrite, sphalerite type of mineralization is the obvious
space filling character of the ore. Many lathes of arsenopyrite lie perpendicular to the walls of the vein, separated by elongate grains of quartz also perpendicular to the walls. This comb structure typifies open space deposition at shallow depths, typical of epithermal deposits.

The second type of mineralization is
characterized by the preponderence of stibnite over the other sulphides. Sphelerite and minor arsenopyrite are discernable in this part of the ore. Here there are rather irregular vein walls and within the vein are fragments of the wall rock. In the vein, stibnite occurs in veinlets through the quartz, and also in irregular masses containing neede-like crystals up to 5 mm long. The veinlets, while not clearly defined, reach a width of 3 to 5 mm . The wall rock is, in places, veined irregularly by stibnite.

The mineralization has apparently occurred
in two periods, in the first of which the arsenide arsenopyrite is the dominant mineral, accompanied by sphalerite and tetrahedrite, with some pyrite. The second period seems to be one in which stibnite has been deposited in large amounts by a later influx of antimony-rich solutions.

Microscopic Examination

General Description
The ore occurs in veins composed of quartz, sulphides, and, in places, carbonate. Gold occurs in very erratic mineralization, usually accompanying the heavy polysulphide zones. The sulphides are pyrite, arsenopyrite, sphalerite, tetrahedrite, gelena, a metallic grey mineral so far unidentified, and which will be referred to as"X, End stionite. The gangue minerals are quartz and minor emounts of carbonate.

There appears to have been two periods of minerclization, esch one depositing quartz, and the lest stibnite and carbonate. The ore is outstanding for the fact thet each period has its typical mineralization which tends to occur in zones not intimately mixed. Stibnite wes not observed to occur where there is heavy tetrahedrite minerelization, which latter is closely associcted with the observed gold. It may be stated, however, that with the stibnite there are minor amounts of other sulphides, especi\&lly arsenopyrite and lesser amounts of sphelerite. This does not necessarily imply that these higher temperature minercls are products of the same period of minerelization as the stibnite; rather they are remnants of the first period, veined, end to some extent replaced by second generation quartz and late stibnite.

The descriptions of individual minerals
will be given in the order of their age rather then of their abundance. It is to be noted, however, theit of the two types
of mineralization, the sequence in which the minerals are described corresponds roughly to that in which they occur in most abundance. In the ore of the first period type arsenopyrite is by far the most ebundant mineral. Next in order of amount are sphalerite, tetrahedrite or pyrite," x, galena, and gold. Because there is such diversity in the intensity of sulphide mineralization, no attempt has been made to estimate overall percentages.

In the ore dominated by stibnite, that mineral hes been reported as comprising 16 percent of the total vein, and is accompenied by minor ersenopyrite, sphalerite and "X."

It is felt that a description of the minerals in the order in which they vere deposited will lend continuity to the following work.

Descriptions of Inaividual Minerals

quartz
Quartz, es previously stated,
occurs in tvo generetions. The truth of this statement may not be entirely proven; for, while there is very good evidence of post pyrite, arsenopyrite, sphalerite, tetrahedrite, quartz, there is little definite proof of a quartz existing prior to these minerals. The ergument in fevour of the early quartz is based mainly on the fact that grains of arsenonyrite, wich is considered one of the first sulphides, occur in many pleces in fractures in the quartz. That is, euhedral to subhedral greins begin and end in a fracture. (see figure 4)

Further strength is adoed to this argument by the fect that quartz is often an early mineral.

Thet there is quartz succeeding the deposition of arsenopyrite, sphalerite, tetrahedrite and gelena is clearly shown in almost every section. It cleurly cuts the arsenopyrite, end in meny pleces, es in sections III and IV, occupies veinlets in sphelerite, end often hes a corroded contsct with it, exhibiting ceries bitten into the sphelerite. It often hes \& similer contact with tetrehedrite. Further evidence that some quartz is leter than tetrahedrite is shown by its behaviour in veinlets in sphelorite. In meny pleces tetrehedrite veinlets in sphalerite cre interrupted by quartz, and often in these places the guartz has widened the veinlets considerably and irregulerly into the schelerite. Aleo in the se veinlets quartz may ocour necrer the edge of the spheler-
ite rain then does the tetrahedrite, having the sppearance of working into the veinlet preferentisuly replacing the latter mineral.

Small veinlets snd oreins of quartz occur
in the gelena in a menner similsr to its relation with sphelerite, and is likely leter then both thet mineral and "x".

Pyrite

> There is little pyrite in the
ore; it wes observed in eny emount only in e few sections. Where it does occur. it is typicully in corroded eunecrel greins being recleced and veined fertly by quartz and ertly by arsenorjrite.

Purite wes identified by its herdness,
yellorich colour ina negitive reaction to etch resegents.

arsenoryrite

Arsenorgrite is one of the most
prevelent minersis in the ore. It ocoure in leree orystils up to 5 mm in lenoth down minute nerticles. the lerre arcins are dominsutly euhedrel, whereus the ambl onos wre both entedral and yexy irregulirly arhedral.

It is, vith the probeble excertion of forite,
the ecrliest sulyhide. It has been cat or enzulfed by sphslerite, tetrahedrite, "X", ind quartz. whe west excmples of its reletions with sphelerite ind tetrahearite are to be found in zection III ird viti" x "end guertz in section II.
ixamples of spoclerite actuclly cutting
 sphelerite does in meny ceaes epparently engulf or pertially engulf the other minerel. Tetraneãrite, vhich veine sphelerite, also veins and engulfs greins of ersenopyrite. The tetrsinedrite-arsenopyrite contect is, in pleces, very regulcr, but in others it is keevily csried, the corrosion epperertly veing that of arsenopyrite by tetrehedrite.

In two lerge greins or arsenofyrite in
Section II, the reletions of ersenoryrite and "X" (see figure 5) and arsenopyrite and guartz (see figure s) are clearly shown. In one cuse, ir the middie of a eukedrel crystal of ersenopyrite is e oleb of " X ", und from esch side of tris bleb is ε frecture running to the reriphery of the grein. The frecture pasces through X as rell as the arsenofgrite. In the other grein one pointed end of a typicel dicmond sheped crystal of
ersenopyrite hes been moved out about 0.2 min ind is slightly out of line. The interspace is filled with quartz. On the side of this same grain are fragments of arsenopyrite removed from a notch which is filled vith quartz.
also in Section II is a band of fine
greined enhedral ersenopyrite distributed cround a straight fracture paseirg across the section and along which pert of the section is broken. Some of the unknown minersi" x " end some quartz has filled the speces in this mylonite-like metericl. Apparently a period of active fracturing, involving minor movement, occurred efter the deposition of arsenopyrite, and prior to the deposition of X.

The distinctive rhomb shaped sections of arsenonyrite crystels, with its white colour, high herdness, and anisotropism, wes considered satisfactory evidence for identificetion. This was borne out by the fact thet the only etch reaction was e slight stein whixudage and fune tarnish by HNO_{z}.
sphalerite was determined by its
very dark grey colour and distinctive internel reflection under inclined light. It has ecsily determired relations to the other minerals, That it is later than arsenopyrite bes been shown above, end the fact that it precedes tetrehedrite (see figure 8) and quertz has also been described. It has peen veined in places $b y^{\prime \prime} X, "$ and by second generation quartz, apparently cut by carbonate; and appears, in its relation to stibnite, to have been repleced to some extent by that mineral. Galena, which occurs in unsupported grains
in the sphelerite, does to some extent vein it, sna generally hes the eppearance of replacing and fracture filling in the sphelerite and is probebly younger. Sphalerite occurs from very small grains
to large blebs one cm. in diameter. The average size of grains of this mineral is approximately 5 mm .

A notable fact of this occurrence of
sphelerite is the complete absence of chalcopyrite.

Tetrchedrite

The reletionship of tetrahedrite to its essociated minerals is not as simple es that of sphalerite, bejond the fact that it clearly veins sphalerite in veinlets vith metched wells and is younger than that mineral.
"X"seems to heve replaced tetrahearite, for in severeil pleces in Section IIl smell, deeply caried unsupported nuclei of tetrahedrite occur in the miade of a grain of "x." This would indicete replecement of tetrchearite from the borders of e grain, and this is likely the cese, for in severcl other pleces"X"occurs along the marginafind somewhat incising tetrahedrite.

The second generction quertz, elthough not found acturlly cutting tetrehedrite, does appecx, by the nature of its contact, to have been deposited later then that minercl. The relation of quertz in the veinlets in sphelerite elso indicetes that tetrahearite is earlier.

Also tending to date the tetrahedrite is its association vith sphelerite. Despite the fact that it is jounger, its many mutual bounderies \&na intimate essociction with the minerel indicate a close reletionship in time of deposition.

Tetrehedrite wes identified by the brownish tinge to its grey colour, by the fact that it reacts only slightly with HNO_{3} and is negative to all other reagents, its herdness, and its isotropism. It wes definitely determined by microchemicel tests giving copper, antimony and some iron.

It occurs in narrow veins in sphalerite, usually about 0.5 mm wide, and in grains averaging 0.3 mm in diameter. The
lergest grain observed wis about fmm wide.

Gelene

Only in Section IX was gelena observeă. Here it occurs in \& few grains, ranging in size from 0.2 to 0.5 mm , end is invariebly intimetely associcted with"X," and enclosed by larger bodies of sphalerite. It was identified by its white colour, well developed trienguler pits, and softness; standerd etch tests conclusively proved it as galena. The enisotropism of"x", plus subtle differences in colour, distinguished that minerel from gelens, with which it is intermixed in a netchwork of small greins, especially along the edges of the larger grains of galena. " X "is slightly darker grey. The relations of galena and sphalerite appears to be one of replacement of the latter mineral by the first; for, as steted, the gelenc occurs in irregular blebs within the sphalerite. The possibility of some fissure filling is not precluded, for the geilena does to some extent vein the sphalerite in smell fingers. This, plus the fact that gelena is normelly later than sphelerite, hes been taken es prodf thet it is a leter mineral.

Tetrehedrite was not observed in contact with gelena, but the close association of galene end "X"hes been interpreted as evidence suggesting it to be leter than tetrahedrite, and to be contemporaneous with, or more probably earlier than "x."

The geiene conteins blebs and small
stringers of quartz that is correlated with quartz of similar relations to the sphalerite. Thas galena has been xaplaced before the second generation quartz.

" ${ }^{\text {X }}$ (Unidentified)

The time of deposition of "X"is
difficult to establish. That it is probably younger than tetrehedrite is shown ebove, but its reletions to the second quertz end to stibnite are not so clear.

As is clearly shown in Section II, it is deposited in quertz, where it occurs elong frectures, and where minute fibrous needles penetrate the quartz. Hence it is younger then quertz, but which quertz? It is essocieted intimately with tetrahearite and galena, and occurs in a less close essociation with stibnite. Tetrahearite and stibnite never, so fer es is known, occur in e close association. As stated above, it is deposited in frectures in quartz, but in some ceses, especially where closely ε ssociated with tetrehedrite, it seems to have the characteristics of the last mineral of earlier deposition then second generation quertz. On the other hand, it occurs with quartz in filling the interspaces in fregmented arsenopyrite, (sections II and VI) and, further, is in some degree associsted with stibnite.

Since its relctions to stibnite could be similar to trat of sphelerite or ersenopyrite, and since it could heve repleced and cut ersenopyrite before the second quertz, it is probeble, in view of its rether close essocietion with tetrahedrite and gelene, that X " wes deposited previous to the second generation quertz.
"X"was distinguished from galena and tetra-
hedrite only with difficulty. It is slightly darker grey than
the former and slightly lighter than the latter, and when it occurs, as it often does, intimately associated with one or the other, it is very difficult to distinguish, because in these cases one of the minerals is usually in very small grains. This mineral has etch reactions placing it in the jemesoniteboulangerite group. It etches black with HNO_{3}. After remeining negetive for awhile, the etch sweeps over the grain in ε wave, suggestive of meneghinite. It stainstorown with KOH , suggesting jamesonite, end is virtually negative to all the other standard reagents. Great difficulty was experienced in obtaining microchemical reactions, the most conclusive being thet for antimony. Exact identi土ication by x-ray powder photograph should soon be made. The hardness of "X" is between B and C .
"X" occurs in bleos of very diverse sizes, ranging from minute to 1.5 mm . The average would probebly be epproximately 0.3 mm . It also occurs in small stringers in sphelerite end arsenopyrite.

NOTE

An Appendix

The unidentified inineral "X" hes been
identified from X-reg fowder photograph $D y$ Dr. in.in. Thompson and proved to be jaresonite, the mineral most stronoly indicated by the etch reactions.

Gold
The precious metal was identified by its bright yellow colour, sectility, isotropism and immunity to all etch reagents, with the exception of acque regia.

The dating of the deposition of the gold, which only occurs, at least in lerge amounts, in association with arsenopyrite, sphalerite, and tetrehedrite, decencis entirely on dating the quartz in which it is lergely contained. Here is a problem that is apparently impossible of solution. All that can be said of it is that gold is leter than quartz-again, which quartz? It does occur in some ceses within sphalerite, tetrahedrite, arsenopyrite, and x; along the bounderies of sphalerite and quartz, tetrahedrite and quartz, and in fractures in arsenopyrite, which places it later than these minerals. Gold was not found in any relationship to stibnite or carbonate. The assay values of samples of the veins were exceedingly erratic, indicating a definite tie-up with some particular type of mineralization. Because gola wes found in rather spectacular amounts in Section III, that is, with the first period of mineralization, characterized by tetrahedrite and lerge amounts of sphalerite, it has been pleced with that group. It is placed as the last mineral of the first period of mineralization, preceding the deposition of second generation quartz, and following the deposition of X. As previously stated, most of the gold occurs as free metel in quartz. Of the observed grains, at
least 75 percent have this occurrence. It is elways associated with fractures, often with minersil contacts, regardless of the host mineral, and was probably emplaced largely through the mechanigm of open space deposition, with replacement playing a minor role.

The lergest greins of gold observed are 0.2 mm in diameter, the average size being approximately 0.1 mm . in diameter, Very small grains are discernable, and gold probably occurs in submicroscopic particles. (See figures $6,7,8,9$).

stibnite

The stibnite in the ore is related
closely to few minerels, with the exception of quartz and sphalerite. It typically occurs along fractures in quartz, pinching and swelling in a very irregular manner in blebs up to 5mm long. In pleces "islends" of quertz heve been engulfed and many irreguler "peninsulas" of quartz project into the stibnite. Its deposition was apparently accomplished by both fracture filling and replecement. In places it surrounds and apparently replaces some sphalerite. Stibnite was not observed to be cut by any other mineral.

From the above facts, and from the nature of the minerel itself, stibnite has been placed in the second period of mineralization. A major argument in favour of this is the fact that nowhere is stibnite found closely related to tetrahedrite; although, should it have been, it might still have occurred in ε leter period. What the second generation quartz was not observed to cut it, \&nd that gold was depositea prior to this quartz and is not associated with stibnite, is elso suggestive that stibnite is the product of a late period of miner $\dot{\sim}$ ization. This minerel was recognized by its grey colour, softness, and exceedingly diagnostic etch with KOH. Except for the etch, end rether strong anisotropism, it is very similar to"X"in general appearence.

Carbonate

Carbonate in this ore cuts or is
otherwise related to most of the other minerals in a manner suggesting it is the youngest mineral, or perhaps contemporaneous with stibnite. It engulfs and replaces pyrite and arsenopyrite, cuts through and apparently replaces sphalerite, as it leaves stringers of tetrahedrite cutting it; otherwise only known to occur in sphalerite in veinlet form. It decidedly veins quartz, and in one case engulfs part of a grain of stibnite.

CONCLUSIONS

Mineralogy

The metcllic minerels identified in the ore of the Moris Mine are arsenopyrite, sphalerite, tetrahedrite, pyrite, an unidentified mineral referred to as "X," galene and gola, which occur in whet has been termed the first period of mineralization. Stibnite is the metallic constituent of the second period. The gangue minerals are quartz and carbonate, probably calcite.

Gold is not consistently associated with
a particalar mineral, but occurs vith arsenopyrite, sphalerite, tetrehedrite and X, and most often as free gold in quartz. In those parts of the ore rich in stibnite, gold was not observea, and assays of such parts have shown only a trece of gold ènd silver.
silver mintialiw wede not seen, and it is altogether likely that tetrahedrite is argentiferous. This mineral is elso uniquely associated with high gold values.

Asseys

The reported assays present a discrepency
with conditions noted in the ore that was examined. High values in gold and silver are given as occurring with arsenopyrite and stibnite rich facies. This may be because the ore assayed and that here reported on are not from the same veins. Assays of mineralization showing "heavy sulphide consisting chiefly of stibnite and arsenopyrite"
gave one ounce of gold per ton, and 22 ounces of silver. "A sample containing 16.7 percent stibnite" assayed only a trace of gold and silver.

Process of Mineralization

The process whereby the minerais in une ure vile aeposited was dominantly that of open space filling. This is exemplified by a tendency to crustification, the well developed comb structure of the quartz and arsenopyrite, and the minersilization, chiefly by stibnite, of breccia zones, leaving clean-cut fragments of wall rock in the sulphide. Hicroscopic exsmination shows that replacement has, to a minor extent, been active, usually of one vein mineral by another. Classification of the Deposit

The tempersture of formation of the ore epparently veried considerably between the time of deposition of the relatively high temperature ersenopyrite and the low tempersture stibnite. The fact that open spaces, \&llowing the formation of rather continuous veins and the development of comb structures, crustificetion, and breccia zones weec an important feature in the vein formation, indicates a low pressure of formation. There is little, with the exception of the arsenopyrite, to indicate this is other than en epithermal type of deposit. It is possible that the arsenopyrite was deposited in the early stages before the rapid loss of temperature culminating in the low temperature late stage deposition of stibnite.

Suggested wethod of rreatment of the ore
This superficial examination of the ore
hardly justifies a recommenation for the method of milling.
It would appear, however, that a gravity type of concentrating the free gold from material ground to pass 100 mesh vould be a good method of original concentra屯ion. This might be accomplished vith a jig. The jig tails could be ground to 200 mesh, the stibnite removed by flotation, and the flotation tails ground finer for a cyanidation process.
IIST OF SECTIONS
Section I:StibniteArsenopyriteSphalerite" X "(unidentified)
Section II: ArsenopyriteSpheileritePyrite
"X'(unidentified)
letrehearite
Section III: ArsenopyriteSphaleritePyrite
Cetraneurite
" X"(unidentified)
Gold
section IV: ArsenopyritesphaleritePyriteCetrahedrite"X"(unidentified)
Section V: StibniteArsenopyriteSphaleritePyrite
Section VI: Arsenopyrite
"X"(unidentified)
Section VII: StibniteSphaleritearsenopyrite
Section VIII: (I) Arsenopyrite Pyrite Sphalerite cetrahedrite "X"(unidentified)
"X" (unidentified) Arsenopyrite sphslerite
(2) Stionite
Section IX: Arsenopyrite
(superpoliched) Sphalerite
'ietrahedrite
"X"(unidentified)
Gelena
Gold

BIBLIOGRAPHY

O'Grady, B. T. 1935 - Annuel keport of the Minister of Mines for the Province of British Columbia, 1935
Short, M. N. 1940 - United States Geological Survey Bulletin 914, 1940. Microscopic Determination of the Ore Minersls".

Figure 1
Paragenesis Diagram.

Figure 3
sketch of Quartz filling Fractures in Arsenopyrite X 50

Location in Section II

Figure 4
Sketch of Arsenopyrite Crystal in Fractures in Quartz.

X 50

Location in Section II

Nicro-Photograph of Arsenopyrite
Replaced by "X"

X 75

Microscope Leitz No. 357061 Iocation in Section II
Ocular 8X

$$
\text { Objective No. } 3
$$

Photograph Exposure 3/10secs. Camera Busch Pressman By R.Steiner

NO TE
"X" has been identified \&s jamesonite.

Microscope Ieitz No. :37061

Photograph
Oculer 8 X
Objective No. 3

Exposure 2/5secs.
Camera Busch Pressman
By R. Steiner

Microscope Leitz No. Be7061 Location in Section IX $\begin{array}{ll}\text { Ocular } & 8 \text { X } \\ \text { Objective } & \text { No. } 3\end{array}$

Photograph Exposure 3/10 secs. Camera Busch Pressmen By R.Steiner

