

CLAIMS:

The Filmily group is comprised of l' full-sized, unsurveyed mineral claims staked 3 across and 4 along the length or the veins, thus thoroughly protecting the ore bodies. Originally located by J.J. Pugh and associates in 1930, these claims are now held in "lifetime" (of the Proparty) lease by Dr. W.H. Patmore (mining Geologist -- graduate Princeton University). Exhaustive surface exploration combined with detailed panning nos shown that most of the favorable geological structure is embraced by these claims. All the surrounding ground is nelda by various prospectors.

HISTORY:

This group was examine a in $193 \dot{8}-40$ by numerous field scouts (Pioneer, Premier, Privateer and others) who turned it down because of insurlicient surface exposures. Han-U-Uar mines held the ground under option for two monens ort dropped their rights without driving any tunnel. A.E. Trite was negotiating for some months but lost his chance through foley. Some surface stripping was carried out by the owner. the present maser, encouraged by the considerable amount or coarse god, that could be panned below the vein, took over the claims in 1941-4..

LEASE:

The lit'erime lease is on a perpetual, gross royalty basis ana involves no cash payments on a time schedule. The owner is to get 6% or the gross value of the mineral recovered from the ore (shipped or milled) tics the first two years or actual production. inerearter ne gets $\% \%$ of the cross. At our present average mill heads ($\$ 30$ per ton) this royal ty amounts to a direct cost or $\$ 1.00$ per ton. The owner will consider any offer to purchase ais royelty snare, but, since the completed mining has given nim a fair idea or the possible future value of ais property, this offer must be attractive. He believes that at least two million dollars wort or ore will be round, giving nam, at a gross royalty of 6%, $\$ 120,000$. Due to the naga rate or income taxation on royalties ne might settle tor less as op "return of capital"payments.

Any company raking over the leaser's rights would have to satisfy the terms or the present lease. Aside from paying the royalty, trip. would mean:
(1) Commencing construction of a mill as soon as war conditions ml allow (size or mill ar leaser's discretion).
(2) Keeping at least 4 men continuously at work as soon as labor procurable.
(3) Keeping the clams in good standing and ire or all liens,

The owner agrees to pay for ail costs in surveying and crown granting ais. $\perp \dot{Z}$ claims, the cost to be nelda against his royalty share.

Tne lease $1 s$ such that the property may be "trozen" for the durarion or until men ana macnineiy are available.

LOCATION:

Tae claims lie naliway along and on tne soutn side or Deep or Amai inle. Kyuquot souna, vancouver Lsland, B.l. and cover dotn slopes or tae <juUl riage Detween deep ana Cacnolot (or Narrowgut) inlets. rine beacn camp is 1\rangle miles by water lmostly sneltereal rrom tne risning village, supply center ana post ol'iice or Kyuquor. inamiss bay logeing camp lies y miles aistant. 'lnls area is just lé airline miles rrom tne maning tovn or Zeballos.

ACCESS:

Planes rrom vancouver (C.P. Alrlines) will stop or call at trie veacn camp or the mine on request. 'lneir ofticial scnedule is weekly IWecnesaay in sumner ana Saturaay at otner rimesh. ine rwo nour plane trap costs $\$ 3<{ }^{\circ}$ and $4010 S$. or baggage are allowed.
'rne C.Y. Steamers (Maquinna or Noran) stop only at tne nearest port of call, Unamıss Bay logeing camp, on a varıable 10 to 11 day scnedule. Ihe entire trip rrom Vancouver via nanaimo-rort Alderni or via victorig costs about $\gg 2$ incluaing meals, taxis, tips, etc.. A launcn musi be nirea to get irom Cnamiss Bay lor from neagnooring Kyuquoul to Deep Inlet ($\S \|=10$) unless tne small mine boat happens to be at Kyuquot where it calls for mail and supplies. Samples may be shipped from Chamiss Bay via the steamer .

TKANSPORTATION*FACILITIES:
The lowest snowings (elev. 1360') occur less than 1 mile (4300') from tidewater ana a good harbor, while those oi Zeballos are between $4 \frac{1}{2}$ and y miles from the beacn. Thus, the Patmore mane has the distinct aavantage or low cosu transportation involving supplies, ruel oil, macamnery and concentrates. None of tnese need be trucked over 1800^{\prime} and the fuel wall beusea ac the proposea beach power nouse. At the present, concentrates or ore may be shippea to the lacoma Smelter ror $\$ 4$ a ton (prewar cnerge was \$3).

TRA:UINE:
This advantage nas already been enhanced by the almost complete installation or a 400 ' tramline extenaing riom tae mine camp (elev. 1200') to a large, spruce log rloat (150' x 40') securea in a storm-sheltered. bay on the soutn side or Deep Inlet. Note that very little work at a low cost will complete this tram and allow immediate erection of a lu-ton mill or furtner ore development.
4
The lower part or the tramline (l000') is only of temporary construction (single reverside, lignt duty) since it must be replaced by a 7 000' gravelled truck road when and if a 2 - or 30 -ton mill is justiried. : De upper part of tine line (2400') nas ncavy duty, double reversible, standar type towers and trestles (cedar pole fabrication) all set on solid bedrock. Three towers nave yet :o be completed at an approximate cost of $\$ 1500$. These upper line towers, witn double lengtn, yellow cedar saddle bars, are ready ror the switcn-over rrom llght, single to heavy, dounle reversible type ir the proposed 29- to sC-ton mill is built. The chanme will ranitre only new

At sucn time as the installation 01 a large mill it may be Necessary to buila a dock oi creosote pilings witn a lou' approacn and an $1 s$ required in quantity.

RUAD:

Tne proposea cuUu' lengtn of road incluaes all switenbacks, benas and a curntable at the mill as well as a junction with the proposed aock approacn. by comparison with tug roads of Zeballos the gredg is good ana it varies between a maximum of 14 and 0°, averaging under 10. Two tniras or tne timber along the rignt-or-way is already cut tnougn not removed to the siae. Just one cneap cu' briage (with solia rock approaches) need be duilt. Due to its snortness it will require only heavy stringers and $3 "$ decking and snould not cost over $\$ 200$. Few culverts are necessary but the inside eage of the road shoula be well ditched and the suriace well gravelled because of excess seasonal rainfalls. Gravel may be nad from an adjoining deach and rrom the nearest creek bed. Contractors estimate that this road can be built for $\$ 2.2 j$ to $\$ 2.50$ per foot or a maximum total or \$ 5000 . A large part of this cost will be borne by the government (after the war) according to its pre-war mine-aid plan. A similar "fore and aft" style or temporary logging road could be built for $\$ 2300$ to $\$ 3000$ but it would last ror only $)$ or 6 years.

Neitner the dock nor the road is required until the next stage of development indicates that a 2 - to 30 -ton mill is warranted. Tne instal ation of a 10 -ton mill may be carried out witnout a road or a wnarf as the macninery is lignt andmay be dismantled into units weighing less than 400 lt

MILL SITE:

There is a good mill site for a 2 - or 30 -ton mill at a point On the tramline 1600' from the beacn. It lies at the foot of a $3 y^{\circ}$ slope which grades of 1 to $1 y^{\circ}$, thus allowing a choice of a $2 y^{\circ}$ slope for gravity reed through the mill with the corase ore bin built drectly benind on a steeper grade. 'l'ne site is already cleared or trees incluaing all possible winalalls. Creek water neea be piped less than 1000^{\prime} to secure sufricient nead at the mill. There is a relatively flat and safe camp site below and witnin 200' of the mill site. This is partiaily cleared. Excelient tailin disposal ground and grade is present witnin 200' of the mill site. 'A broad - nearly flat area at the foot of the mill offers a good turntable for the requirea truck road connection from mill to beach (2000' road. a proposea crosscut, giving s60' to 480^{\prime} more backs on the ore, will reauce the tramlane lengtn to eltner 1000^{\prime} or 1230^{\prime} instead of 2320^{\prime} from portal to mill, ána will also eliminate a norizontal angle station.
1.

There is a iine mill site for a lo-ton plant within 600' of the present lowest adit and witnin 4ju' of the water supply intake. This site is $1>0^{\prime}$ irom the mine camp at the tram terminal. It vould require an auxillary tramine 900^{\prime} in lengtn. 'lhis section is cleared for bO', Feaving jou' to de tinishea. A single, central line tower may be needed to supply clearancel togetner with the two tericinals. The cable shoula b, *" or l' $^{\prime \prime}$ for neavy duty.
0.

JILIBEP:
The trees are mainly cedar although hemlock and balsam are comino at lower elevations. Most or the cear is red and excellent "shake" trees are numerous. All the towers are bailt of red codar poles because of its ligntness, availability and long litie. Yellow cedar (stronger) is usea for sadale bars.

Plenty oi mine timbers (yellow cedar and nemlock poles) are present close to all the adits, altnougn very little timbering is needed.. Good cabin logs are available at all elevations. There is an abunance of rine rirewood (tir ana yellow cear) al all camp sites.

WATE!:

For camp purposes tne supply of water at the present mine camp is suriticient altnough mieager. If development justifies a 25 - or b0-to: mill, tne mill and mine camp will be combined at a site lb00' from the beacn where tnere is normally a good supply of camp and mill water. There is insuiticient water for anytning larger than a lo-ton mill at tne mine. A stil greater supply of water may be haa by piping water 3300' irom the main creek of the area (Mckay Creek).

PO!:ER:
Tnere is a cnoice berween a diesel-electric and a nyaroelectric plant but witn eitner rype the cost oi power will be low relativa to its cost at the Zeballos mines. Tnis difrerence is due to the nigh cost or trucking oil and or nauling in power macninery. Zevallos mines paid ४.0 cents per gal. for fuel oil at the beacn and between $1 \perp$ ana 12 cents at tne mines. Diesel power $2 s$ developen dy the Zeballos mines at a rate or. about $1 \frac{1}{s}$ cents per $k \ddot{Z}-n r$, but it shoula cost less than \mathcal{L} cent at Deep Inlet.

A $30-t$ on mill and maning plant would require between 200 and
 adout 100,000 gals. of fuel per year, costing $\$ 9000$. at tidewater or $\$ 12,000$ ar the average Zeballos mine, a relative saving of $\Psi 3000$ or more per year tor any deacin installation.

In initial cost of a lbo kw nydro-electric plant plus tne YOUU' of power line necessary tc reach from tne Cachalot inlet power site tc tne milı would approacn $\$ 2 \zeta, \cup \cup \cup$, whereas a similar sizen diesel-electric plz
 However, including maintenance, interest (aty\%), amortization (4\% over b years), government tees and insurance as well as fuel costs, the annual cost or a diesel plant woula amount to about $\$ 20,000$ while the nyaro-electric plant could be operatea at a cost or $\$ 8000$ tnus savine bl2, 000 yearly and paying ofl $1 t s$ nigner $2 n i t i a l$ cost in one year.

The nyaro-electrlc site nas a userul nead oi yu' (witn a dam 4^{\prime} nign ana sutcracting o' for the power nouse). it lies at the nead o1'tne Narlowgut Hiver tlats, approximately 3200' from tidewater. 400 or pipe $\boldsymbol{l}^{\prime \prime}$ in drameter wouln de needea to carry the water from the proposea LU' intake cunnel to the power-nouse. 'rne intake cus and tunnel could be ariven dy nana mining for siuU. rne riats rron tidewater are such that a creap "cat" road coula be built to tne site in a snort me to aid in naulin, in n° me macninery and pipe.

However, tnere 23 no storage space for water above tae dam slze ana tnc avalacie volume woula develop $2>0 \mathrm{H} . \mathrm{P}$. tor two thirds of the Vear only, 2 ts output recedang to approximately 80 to $100 \mathrm{H} . \mathrm{P}$. during tne dry montns (suriricierc ror the mill alone). During abnormally ary yearstne developea H.P. woula be still less for the one to two driest months (volume unaer b cu. It. per sec.). Tnus, an auxiliary aiesel plant ($190 \mathrm{H} . \mathrm{P}_{\mathrm{P}}$) wouls be requirea, raising tne initial cost or the nyaro pland by anotner $\$ 8000 \mathrm{t}$ $\$ 10,000$. Sucr a combinea nyaro-diesel electric unti woula save its entire extra initial cost witnin 3 years.

A diesel-electric power nouse coula be most easily and economically set up alongside the junction of tae proposed truck road and whari approacn, where tnere is a satistactory, level, granodiorite foundation, as well as room for 3 large wooden ruel-oil tanks or 3 months or 22, 200 gal: capacity (3 storage tanks cost $\$ 900$ betore installation). An oil pipe connection witn tne dock woula allow tankers te pump the ranks rull winout further handling.

The 1000^{\prime} power line lusing the present tramline rignt-ot-way and towers) from a transrormer at the power house to one at the mill site coula de cneaply installea aue to the closely spaced (300 ${ }^{\circ}$) completed tower: Two transtormers would cost about $\$ 1>00$ and 1600 of line snoula not exceed $\$ 1000$. A furtner 1200^{\prime} to 1400^{\prime} of line would be necessary to carry.power from the mill up to the proposed crosscut portal where a transrormer and an electric compressor woula neea to de installea. Otnerwise, compressed air would nave to be piped rrom the mill to a receiver at the portal.

A 10-ton mill would require a 30 H .p. gas engine at the upper mill site (cost $\$ 4\rangle$) . Tnis coula be cnangea later to a diesel oil user by adaing a $\ddagger 3 y$ U Lauder exnaust attachment whicn simply "cracks" diesel oil by reason of waste neat, thus lowering opeiating costis. Fuel woula hava te be hauled in on the tpamline at tne rate of 1900 gals. per month (2 drums per
 a saving of $\$ 200$ per month. Inus, the choice of burning diesel oil wald result in a saving or $\$ 200$ per month which would soon pay for the Lauder converter.

PROPOSED CROSSCUT:

It the next stage or development justiries installation of a 2j-. or 30 -ton mill (i.e. suliticient ore is found on the present lowest or 1400^{\prime} level) it will de aavisable to open up the ore for milling by driving a long crosscut rrom a point several nundred leet below tne upper terminal c tne tram to a zone approximately beneatn the porial of tne lowest level.

Tape and Brunion surveys show tnat a 1000^{\prime} crosscut vill give sol' or "backs" on the ore (93' to $200^{\prime \prime}$ extra would have to be allowed for vein aip wnicn averages about $/\rangle^{\circ}$ away from tne.proposed portal). By lengtr ening tne crosscut anotner 100^{\prime}, a turther 120^{\prime} ot backs coulabe gained. Taus a total of llou' woula give 300^{\prime} or backs or 1200^{\prime} woula ada 480^{\prime} or Dacks up to the 1400^{\prime} level. Below these alternative portal sites the slope ridecreases trom 43° to about 30° ror a slope distance of 230° and then flat of to 0° ror 300^{\prime}.

Dopenaing upon the colce, this crosscut would elimiaate eitner LOyU' or 1200^{\prime} from the total lengtn or the. linal tramline, reducing it fror 2320^{\prime} to 1250^{\prime} or 1000^{\prime} thercuy obviating the building of several towers anc and angle station as well as discarding two.towers and one tr: stle. f coars
ore din woula nave to de erected at the portal ana anotner at tne mill site. The shortness or the final tram woula allow larger tonnages to be nauled, an.
 aign sarety ractor to permit naulage or miners irom the mill-camp aite to tne portal. This scheme would entirely eliminate the need for the upper cams

0
Since the rock is a tough granodiorite the crosscut must be driven by mcanines and an electric compressor. There is a satisiactory grad ror nauling a compressor and receiver up the mountain on skids. As an alter. native, the compressor could be set up at the mill site and air piped up l200' to 1400^{\prime} to a receiver at the portal. This voula eliminate skiading or any neavy macainery beyond the truck road, and would remove the need for 1400' or poer line although 1400^{\prime} of air pape would be required to take its place.
'I'ne crosseut snoula cost less than $\dot{l} \mathrm{l}^{h}$ per root or a tal of $\$ 16,700$ to $\$ 16,400$ depenaing on the adove choice or lengtn. inis cost estimation is made relarive to maning experience in nearoy zedallos where the same rocks are encountered. For example, central Zeballos, for sligntly oveı \& 1 per $I^{\prime} .$, drove a 1000^{\prime} crosscut through very nara, nignly silicitied limestones ana granoaiorite. Lt is possible that one or the numerous dikes wnicn occur in tile area may be encountered tnus aftording cheaper mining. 'I'nere is aloo a lielinood tnat otner veins may be intersected.

MINING EQUUP:TENT:

'Inas crosscut will requare arill steel, 2 arirters, j000' or track, several ore cars, and air and water line as well as a compressor and redeivere. 'Iwo or tnree cars will be suriticient until are is deing trammea trirougn this main naulege way, onen an electric locomotive and ten l-ton cars will be necessary. line prelmmary cars, macnines, compressor etc. could be purchased for about $\$ 10,000$.

None or tais equipment is needed for the secondary stage or development as this can be comipleted by hand writing and the use of rubbertired wheelbarrows. Also, il'it is planned to proceed with a l0-ton mill none of the above will be essential for tne first few months operation. Afte that, a small compressor, a driiter and two ore cars will be necessary for certain difiticult sections found along the vein.

CAMPS:

At present tnere are two log cabins at widely separated points on the beacn. 'lne larger one ($20^{\prime} x^{\prime \prime} 8^{\prime}$), situated near the float, is usea for a warenouse and cook nouse as well as for limited sleeping quarters. Mucn of the tramline equipment (saddles, cables, bolts, engines ana carriage wneels) is storea in one tnira or tnis ouilding partitioned orif rom the kítcnen and manager's room. 'ine liarge attic is used for storing rooting pape kegs or' nalls ete.. 'inere is also space tor several camp cots. the smaller
 *rom the snoreline towaras tne mine. It is used for a packing snelter. Plan: call for a $14^{\prime} \times 10^{\prime}$ cabin to be constructed close wo the larger building. Th will form a stopover vunk-nouse for visitors and persorinel. a samil loadis E..ea snoula be built at tne rram termincl. rour men spent 20 aays coapleting tne lerger cadin -- it was later improved in many ways. Its value woula arproximate $\$ 8 G 0$ to $\$ Y 00$. fine smalier cabins snoula not cost over $\$ 200$.

There are, es yot, no builders at the mill site camp and it 1s anly partially clecred. Four men cou'd finish this clearine in d or 2 days. The site is reasonable flat, spacious, close to the road terminal and mill site, and abundant creek water flows alongside. The proposed camp woul house both miners and millmen as it would require only 3 to 4 minutes to hau the miners to work on the tramline.

The upper (mine) camp (elev. l200') has two log buildings at present. One has been used for a bunkhouse (4 or 5 . men) but it is too small (12' x 14'). Therefore, another bunkhouse is necessery at once. It should $^{\prime}$ be at least $16^{\prime \prime} x$ 16' to accomodate 5 men rs well as a table and a heater. The. smaller cabin can then ba used as a drying-house. A $121 \times 14^{\prime}$ wood shed power saw house should be constructed at this camp. These two buildings should not cost over \$500. The other cabin is 161×181 and forms a spaciou cookhouse and cook's quarters. It is entirely of log and shake construction and cost about $\S 600$ to complcte. A large food storage room was later added its front verandah. The mine camp lies 900' by trail from the lowest portal When and if the mine is operated on 10 -ton basis this camp will be the permanent one.

Camp water is tamporarily drawn from a seepage well 125^{\prime} above the cabins but another 450^{\prime} of $l^{\prime \prime}$ pipe (cost $\$ 68$) would supply the buildings with fresh creek water.

It should be realized that the next stage of development, whether it is installetion of a l0-ton mill or whether it is further ore development to the 25 - or 50 -ton class, requires very little camp constructi. This fact should allow rapid achievement of either objective.

REGIONAL GEOLOGY:

The ore-bearing veins and their dikes lie in north-south fractures and shear zones which cut, at steep dips, an almost circular boss of pinkish granodiorite about 6 miles in diameter embracing all of Deep Inle* This intrusive, if it does not actually make a surface junction with the sou: western contact of the main Zeballos Eranodiorite (grey), must meet its rlan) at shallow depths. These granitic rocks are easily distinguished in the fie by the almost totally light grey to blackish (dioritic phases) appearance of the Zeballos batholith and by the abundant arcas, small masses and irregular dikelets of pink to red orthoclase feldspar so common in the greenish Deep Inlet intrusive. There is no doubt that both types may carry gold deposits. Apparently, the two are relatively superficial phases (differing in age as well as in composition) of an underlyine, much larger, parent batholith, whis during the last stages of its activity, probably gave off the valuable metal. bearing solutiions that filled suitable structural and cooling fractures in localized projectirs cupolas formed by its earlier, overlying differentiates and their volcanic host.
,
A third intrusive mass of irregular, elliptical shape, lies between the center of Harrowgut River valley and Port Eliza Inlet, with its longer axis bearing south-vesterly, parralel to Espinosa Inlet. It is much like the Zeballos granodiorite in appearace but is normally coaraer and dark. yarying slightly to a dioritic type. No gold deposits have yet been located in the Narrowgut stock although it approaches to within 3000' of the southerl margin of the mineralized Deep Inlet boss along the north wall of Narrowgut Falley. However, it may be or sienificance that the pink intrusive is only gold-bearing adjacent to this erey stock.

A large proportion of the older roof (or host) rocks of the are:
$y_{1} \cdot 1$
are massive black to green volcanic flows of andesitic to bassitic composition. Looal intercalations or impure grey limestones are found in scant quantity. Volcanie breccias and purple tuffs are common in parts of the ar but light-colored, fine-grained felsic turfs are scarce. A few veins of relatively limited length have becn located in the volcanic roof rocks but aluays close to the border of the jranodiorite. These older rocks display very little obvious high grade metamorphism or metasomatism although dikele. of epiciote, magnetite and orthoclase are often observed.

LOCAL GEOLOGY:

Nany blackish-brown to green mafic dikes (probably lamprophyre: and relatively few relsic (aplite) dikes transect the pinkish granodiorite f a north-south, closely-parallel system. Their maximum concentration, togets with that of the gold-bearing veins, occurs within a few thousand feet of, z on both sides of, a limited, embayed section of the intrusive-volcanic conte not far from the neighboring Narrowgut stock. Only six dikes or irregular masses of aplite have so far been found and but three of these show any sign of gold mineralization. Most of the lamprophyres and several of the felsic dikes display great persistence over lengths and depths of several thousand feet even when of narrow width. At least six of the mafic dikes carry gold values although in the majority of them the mineralization appears to be limited to sporadic ocrurrences.

Some of the veins lie directly in the granodiorite but most of these are typically of eash-filled origin and do not give promise of being commercial. Others lie in the volcanios but these, too, seem to be somewhat limited by the unfavorable fracture-sustaining nature of such rocks.

STRUCTURAL CONTROL:

It is obvious that certain structural conditions have had a great influence in determining which fractures would become strongly minerali Apparently, the major sturctural eontrol haa been intesive compression expressed as north-south shearing mainly confined to a few dikes which therselves have occupied lines of earlier tensional weakness. There is no doubt that the shearing of the main ore-bearing lamprophyre persists to a length and depth of several thousand fect. ihere conditions are favorable, this crushed dike (though often but a few inches wide and co:nonly branching or coalescing) may be traced, almost uninterruptedly, for the complete width and height of Deep Inlet ridge because its mantled portions have unmistakably determined the sites of erosional gulleys. Thus, the main shear zone has formed the trough for a sukstantial creek. However, it should be realized that only a small part of the entire length is favorable to gold mineralizati other structural reatures have played an important part in localizing ore shoots, but this strone horizontal movement (proven by horizontal striae) appears to be one of the prerequisites in the formation of a commercial ore body insofar as Deep Inlet is concerned. Iumerous other dikes contain highly comminuted portions but they are seldom sulphide or gold-bearing. That is, shearing is usually found with the favourable minerals but the converse is ra: rrom true. In a few localities the crushiry embraces small sections of the tougher granodiorite or large inclusions within it although, as gimole, the main intrusive mass seems to have acted as the agent transmitting the stress to its component healing dikes, the weak lamprophyres offering the easieat Mlier to lone-term strains developing within the compressed block. The woverent was continued or an appreciable interval as is evidenced by conjugat, fracturing of the main dike and by the "rubbelized" quartz and "slickensided" pyrite which fi:l such rractures. This fact has been or prime importance in assessing the low cost of mining and milline operations. i second lamprophyr. dike on the patmore nrannrty jinin.....
than the extensive co:minution of the main ore zone. The brittie aplites characteristically show oblique cross-fracturing with minor strike-shearing. Apparently they are less susceptible to the latter.type of stress.

Other structural features that may have offered direct control Ato ore shoot localization are systems of rlatly-dippine ($30^{\circ} f$) cross-strikin (east-west) dikes.thet are concentrated along portions of the shear zone, bu their relation is uneertain as yet. Rolls in dip or intersections with bran veins may be important factors.

A pronounced association of aplite and lemprophyre occurs along the main ore zone. The two complementary dites roughly parallel each other for several thousand feet, averaging about 15^{\prime} to 20^{\prime} apart where exposed but actually coming together at the deepest point of underground exploration (fac of the lowest tunnel). At the junction, a whitish, clayey gouge seam about I' wide indicates the intensity of motion and eccermates the more rigid natur of the dense, fine-grained aplite, marked only by tiny, sulphide-bearing, cross-fractures. So far, no ore has been located in the lamprophyre north a this contact althougi some ore is present in the aplite itself along minor ahearing. On the otiner hand, the best ore so far developed has come from thi lamprophyre south of the junction, whereas none has been found to date ind similar section of the aplite. Thus; it would appear as though the mineral solutions had switched over from the mafic to the relsic host at this point even though the northern extension of the lemprophyra is moderately sheared. This may.be substantiated by the ract that, at the portal of the middle tunne the vein lies entirely in the granodiorite between the two dikes.

RAXIAM: FAVORABLE RA:GE:
From the standpoint of general structure it would seem that the most favorable horizon for exploration would be that portion lying closest tc the original roof of tine granodioritic cupola, since here would be the maximum weakness and heace the greetest susceptibility to movement. The older, volcanic-sedimentary rocks were originally doned over the gold-bearinf block but erdsion has removed them from most of it. However, this strippine has taken place in such a way that it may readily be seen that none of the known veins is at any great distance (max. 3000') from tine ancient foof. From the discoveries so far made, it seems likely that the favorable portion of the cupola will not exceed a length of $400^{\prime \prime}$, a width of 3 miles and a lessdefinable vertical range of at least 4000'. The vein distribution is along this contact or near-contact area and does not extend to parts of the granodiorite or volcanics that are far from the site of the original roof-structu These points are important in regard to the chances of rinding further segregations of ore shoots elong the vein-shears (which are strong and well-defi in themselves) as drifting proceeds southerly inta the ridee. Even though these drifts are now approaching ($1600^{\prime}-2000^{\prime}$) the present intrusive-volcanic contact (a flank of the old rood) on the far side of Deep Inlet ridge, a part of the ancient eontact (now eroded)was formerly present only a short distanee (perhaps 1500 or less) above the adit portals. Thus, in a general way, the entire section through the ridge top to several thousand feet in depth is of structurally favorable nature and the presence of comercial gold values on t south side would appear to eubstantiate this tineory. The exact localization of segregations of ore shoots is further dependent upon secondary details suc as cross-faulting and rolls etc. whose influence wes supe:imposed on the majo structure. Their importance cannot be rully estimeted until development is fiore advanced.

A serics of pre-ore coss-faults (apurox. cast-west and riatly-dipsing), Bome of considerable magnitude, may have been the channels of access =ollowed by the rising mineral solutions as they entered the structuralzy-ravorable gold horizon or cupola. These are expressed on the Prace as gravel-filled draws and in the creeks as 90° changes in course. f.ay are to be seen in both the intrusive and the older rocks.

So far no sign of fault displacement has been noticed in the ore bodies except as strike-shearing (closely-spaced faulting) in the plane of the vein. This, of course, is a great aid in low-cost development and stoping. f strong cross-fault may be observed in the loviest tunnel where it intersents the two parallel dikes without seeming to disturb either of them. It may be significant that an ore shoot lies in the aplite where this fault zone (3^{\prime} wide) meets it, although the lamprophyre is barren at the opposite end of the fault except for calcite and chlorite.

In sumation, it is extremely fortunate that raulting has occurred along the plane of the vein since the resultant comrainution means reduced drilling, blasting and crushing costs. find it is no less fortunate that it has not displaced the ore bodies laterally wich also promises low costs in development and stoping. Furtinermore, one of the cross-shears has already been used as the site of a cheaply-driven crosscut.

VEIISS:

Numerous gold-bearing veins of eifferent types have been located in the favorable horizon. They occur as lenticular gash-shears and tight gash-fissures in the granotiorite; as narrow, irregular fissures in the volcanics and as combined filings and replacements along shear zones in Ah aplite and lamprophyre dikes winch transect the intrusive rock. BeLues these deposits, there are several instances of "knife-blade", crossrractures (carrying visible gold and massive sulphide) spaced l" to. $^{\prime \prime}{ }^{\prime \prime}$ ipart along the length of the aikes. One aplite dike contains disseminated turiferous cube-pyrite, apparently as a replacement streak 8" to 12" wide $\because \mathrm{ell}$ within its walls. It is evident that most of the mineralization in the ther deposits is of tine filled-fissure type with linited replacement. lhere is one striking example of visible gold and much chlorite occupying the intergranular spaces and tiny slips in a narrow shear in granodiorite. Juartz and sulphides are entirely absent from large sections of the shear.

Nine different veins and mineralized dikes have been located in the Patmore property so far but the majority are far too narrow to be :ommercial. Unless shearine: is meoninent and persistent the veins varrant little attention. However, at least roar of them display surficient structral strength to encourafe surface strif.ine with limited drifting. All of he veins are closely-paralle and they lie within 300: to 4c0: of each thíer. It seems likely that yblind" deposits will be encountered during :rosscutting since many shcared dikes, without surface ore have been dis overed between the known veins. The simple gash-rissures are typical openavitỳ fillings composed of sueary cuartz crystals, pyrite, oxide and cattered crystalline gold. Vugs siowing nearly euhedral quartz ere common. hese veins vary between a knife-blede and $2 "$ in thickness and do not appear o persist for much more than loo' in length. They are not associated with ikes and are not found outside the granodiorite.

Of the more important deposits, a quartz-healed, brecciated and sheared lamprophyre is worthy of more stripping and a short drift because of its structural strength, more abuncant quartz and scattered sulphides. It yieldsinteresting gold assays rrom several of the open cuts $w^{\prime \prime}$ eh expose it, in generally narrow widths, for a length of 150^{\prime}. A stcond showing of importance is a recently-iocated, highly oxidized, 6" to $10^{\prime \prime}$ shear-zone lying in the dark volcanic rocke several hundred feet from the roughly parallel granodiorite contact. The rlank of the intrusive plunges toward thedeposit. Due to heavy overburden, this vein is poorly exposed by a single open-cut but channel samples so far taken (3) have been seen in the oxide and gouge, and the adjacent volcanic rock is appreciably replaced by auriferous oxidized pyrite. A third yein which gives some promise is a quartz and pyrite filled-fissure that lies in the granodiorite about 250^{\prime} east of and parallel to the main ore zone. It is relatively narrow (1" to $3^{\prime \prime}$) but may be seen at various points for at least 250 in length. Since it dips more steeply than the main veln, it may possibly intersect that deposit at a few hundred feet below its outcrop. Therefore, a relatively short crosscut from the lower level (along one of the cross-dikes) would permit cheap exploration at depth. This vein shows a little visible gold and carries appreciable values (\$40 to $\$ 70$) in 2 composite samples).

MAIN VEIN:
The main vein displays the greatest strength of structure since it lies within a shear-zone that persists for several thousand feet horizontally, as well as vertically, even though it changes its host along the strike. The shearing is eonfined mainly to the lamprophyre dike but it, or an offshoot, locally enters the granodiorite and, to a minor ertent, the ite. The ferromagnesian lamprophyre is much more continuous than its losely parallel, felsic neighbo:r and may be seen at intervals cleaving the intire ridge from Deep Inlet to Narrowgut. The aplite varies between 4' and 8^{\prime} in width while the dark lamprophyre is between l^{\prime} and 6 , averaging about 3'. The quartz commonly follas one, or sometimes both walls of the mafic dike but it may also be seen at any point across its width or in the enelosing granodiorite. The present work has exposed widths of quartz, oxide and sulphide, ranging from a knife-blade up to a maximum of $36^{\prime \prime}$ (including veins on both walls). Barren shearing may occur between ore shoots and vein "pinches". Since the shearing shows a maximum width of 6', further drifting could expose greater widths of quartz.

LiIN VEIN AVERAGES:
So far, the average width of the ore shoots is slightly over B" and approximately 40% of the total initial development hes been in ore, lowever, this latter figure can:ot be taken as a mine average because of the limited amount of drifting ank the inevitable waste footage needed to gain 'backs" on the ore shoot zone. During secondary exploration, the average Cootage in ore should improve markedly. To date, ore shoots, separated by jincbes, have been located over a total vertical range of 4501 and over a iorizortal range of 850^{\prime}. The average width ($8^{\prime \prime}$) should also improve be:ause of the remarkable shoot now being developed on the second level and secause of the fact that mining results indicate that the top level merely rapetrated the u;permost portion of the ore shoot zone. (The ore lies 100 : ther into the hill on the top level than at the surface above, and both idths and values increase profressively down and in alone a direction -tching diagonally into the ridge.) The rich second-level shoot, averaging : 100 per ton across $10^{\prime \prime}$, displays a width of over $2^{\prime \prime}$ for the last $6^{\prime \prime}$ of irift: The bottom level is not yet into the gain ore shoot zone but it
should reach it within 50^{\prime} to 1001 . A strong, wet go. ge streak and scattered particles of oxide appear to signal its nearness. Branch or featherveins are common and they enter the main zone at acute angles.
MSSIBILITIES Ii: DEPTY:
The maximum depth of any one vein is limited by the 4000' ore more of the favourable cupola-block already discussed but upon this must be super-imposed further restrictions resulting from more localized struc-mural controls of as yet somewhat indeterminate effect. These may include the attitude, concentration and persistency of cross-faulting or of crossdikes or perhaps simply the extensive depth and obvious strength of the better known main shear-zone. It seems fairly certain that depth possibilivies are best in that portion of the block lying under the sloping flank of the volcanic roof toward the far or south aide of Deep Inlet ridge. That is, as greater depth is attained, ore finding chances should improve progressively wi th drifting though the hill toward the roof remnant, since this steeply-plunging structure ($50^{\circ}-70^{\circ}$) apparently allowed very little avenue of escape to the rising mineral solutions (indicated by lack of deposits above the contact). There is little doubt but that the shearing and faulting penetrate well down through that flank, thus offering channels of access. The unknown factors are the temperature-deposition conditions (restricted by distance from the source) and the presence or absence of suitable trapping structures at the lower horizons. Only further exploration will bring out these details. The structural control which determined the position of the present ore shoot zone must first be ascertained and then it may be possible to extrapolate and trace these features or discover similar ones along the shear in the most favorable portion of the cupolaPock. That some such secondary structure must have played its part is emphasized by the several hundred foot barren portion of the shear lying above the main ore shoot aggregate. It is obvious that the presence of appreciable gold values (2 oz . across $2^{\prime \prime}-4$ ") in the same shearing right at the granodiorite-volcanic contact (roof-femnant) on tile Narrowgut side of the ridge 1600' distant, favours a considerable addition to the vein length, Furthermore, e newly discovered, parallel, gold-bearing shear has been hoc.aced on that same side of the mountain.

MINERALS:
The ore is simple rather than complex and few ore minerals have been identified so far. Of these, pyrite is the most abundant but even tale pyrite is relatively scarce because of extensive oxidation. A little sphalerite and still less chalcopyrite, usually oxidized to malachite, have been encountered. Galena, so apparent in other Vancouver Island camps, is entirely lacking but the far less common tellurides are visible in scattered specimens, especially where appreciable coarse gold is to be seen. Field examination of the small specks is not sufficient to allow determination of the exact species but tetradymite and possibly sylvanite are thought to be present. Chemical analysis has substantiated this observation. Mill tests indicate that the amount of telluride in the ore will not affect the recover of gold. The gan cue minerals are mainly quartz with a little chlorite and sericite. Calcite is rare where the ore is commercial.

MISERY GOLD:

Visible fold is plentiful and it varies from almost invisible specks to grains as large as a small pea. lino of it is crystalline and grinding tests have show that it is easily divisible and will pass readily through fine screens. The gold lies inside pure white masses of non-porous quartz as well as amongst bunches of chocolate-brom oxide of iron, and its
presence in quentity in this state ot over 123^{\prime} in depth would sugest primary, rather than secondary, deposition. With so much oxide showing, even at the deapest fiace, there is always the question of some secondary enrichment but it should be remembered that there is no comparison between He ease and rate of oxidation of relatively unstable pyrite and the ease and rate of dissolution of almost insoluble gold. Besides, considerable gold may be seen confined to a few inchea near aad at tha surface amongst pure oxide in the wettest and highest part of the ore zone where, apparently, it has not been carried downward with the supposed effect of impoverishing the surface and enriching the vein beneath. Rather, this surface gold is of the extended "wire" type fomning strings 12 " to 2 " long of tiny crystals which are never found at depth in the Deep Inlet veins and it undoubtedily has the appearance of secondary gold. It seems possible that hiphly localized solution and recrystallization has taken place within an extremely thin surface layer of the veia, where optimum conditions (the presence of ferrous sulphate and sulphuric acid for example) could result in the formation of tinese delicate wires. However, such solutions are highly unstable at the best so that any transfer of gold would be limited. This relation would thus be residual enrichment as the surrounding pyrite has been completely oxidized and rapidly removed, leaving the gold concentrate hehind. The finding of tellurides undergound would also supgest a primary deposition of most of the precious metal. Visible gold has been noticed in small quantities within the aplite dike away from oxidation and open fracturing alike. In fact, it is sometimes entirely surrounded by the dense greyish aplite unaccompanied by contiguous sulphide or quartz. This hardly indicates redeposition from cold surfade waters lacking in penetrative power. Further evidence is contained in the fact that the greatest quantity of visible gold so far dis covered lies l25' underground in close association with the tellurides. If tifis is indicative of secondary gold then it is to be hoped that there is . Jre like it. Relative to the abundance or visible gold in the lamprophyre ore, the amount located in the aplive is practically negligible. A possible explanation lies in the magnesian content of the mafic dike since magnesia is knom to be an effective gold precipitant. The quartz itself is locally ground into a rubble cemented by ozides and the pyrite sometimes displays slickensides. Such late movement is especially favorable to the still later primary deposition of gld anc it renders the ore very friable.

ORE SLIOOTS:
Five ore shoots have been partially autlined so far by drifting. Four of them occur in the sheared lamporphyre while the fifth lies whally within the aplite. Taken together with the intervening pinches, they cover a horizontal range of 850^{\prime} and a vertical range of 450'. However, there is a notable barren section of approximately l00' to perhaps 2001 lyine between the ralatively low grade (marginal) aplite shoot and the near- est lemprophyre ore. For the above reasons the aplite shoot has been left out of the averafe value and tonnage calculations. It is nevertheless indicative of the todal range of possible gold mineralization as established to date.

The shoots are seperated by pinches containing $l^{\prime \prime}$ to $2^{\prime \prime}$ of quartz and sulphides which may be high grade or low grade depending upon the amount of oxides or sulphides associated with tine guartz. At oticer places me pinches are composed of completely barren, sheared lamprophyre with a Aittle soft couge.

Local rolls and svells occur along the shoots and ore vidths viry rupidly in any direction because of the irregularity of ehearing. It is sifill too carly to hazard much of an opinion on ore shoot eontrol but soveral possibilities have already been notea. Relatively flat-lying crosstikes, of limited areal distribution, may have offered some trappine effect A it is also possible that both these dikes and the shoots are concentrated in close association because both are the result of long-continued stresses within the same weak block. Hovever, it is a fact that they do occur together when in any quantity. One of the cross-striking lampophyres shows a displacement parallel to the strike of the vein and since it does not cut the ore-bearing dike the latter is apparently younger. Therefore it does not seem likely that these older dikes could have dammed the rising solutions.

Other structures may explain the localization of ore shoots but their importance is not yet clearly discernitle. One of these is the presence of numerous branch or feather veins striking or dipping into the main zone, as in the care of the high grade east wall vein (almost vertical) oi the top tunnel which approaches-a junction with the main west wall vein (dipping at 75\%). Another structure worthy of attention is the distinct ciange in attitude or the dike both horizontally and vertically. There is a marked roll between the lowest and the middle levels, and the lamprophyre becomes almost vertical near the face of the top tannel (a 15° chnnee in dip). This flattening at depth may be accompanied by a decided widening of ore snoots somewhere along the prodosed extension of the bvest drift, since it is commony found that such conditions appear to retain or slow down rising mineral solutions, thus alloving maximum penetration, cooling and deposition. Until all the structures, includine cross-faults, are rurther explored and accurately mapped, their importance in shoot control will remain indefinite and of little value in the search for new ore shoot zones.

SHCOT AVERAGES:

The shoot lengths so far exposed are 25', 45', 20', 107', and 33^{\prime} and the average, or the tat, may be readily caloulated (2301 of shoots in 610^{\prime} of all development, or, eliminating the mareinal shoot, 205' in 610'). fowever, these figures mean little or nothing for several reasons:
(1) Only 2 out of the 5 shoots have been truly elimited by mining. Gne of these (the eplite shoot, 25^{\prime} long) is not considered to be a rember of the lamprophyre ore zone and the other (33^{\prime} lone) is believed to be on the upper margin of the favorable zone.
(2) Of the oter 3 shoots, one (20' long) is open at the face and shows considerable strength.
(3) The last two (10.7' and 45' lone) were drirted through at one nnd, but vere termineted at their opiosit.e (north) end by erosion since they ire both stronc at the portal.
(4) Not enough shoots have bcen drifted on to give a fair average (ihis holds true in any kind of sampling).

Thus, it is absurd to use the last 3 lengths in calculating a picture of the mine average. If minine has teca conrined meinly to the - and front, or outside perimetsr, of the ore shoot zone, the ore bodies so .. exposed should obviously be subnormal and the results of maximumpenetration of tinat zone (race of the miodle level) may be considered as rep-
16.
iececitative of the trend to better leneths, widths and values.
Even if the true, average, horizontal length were known, there is no set rule, or law, which justifies the assumption that all the axes of any given shoot or shoots are of nearly equal length although it is ssible they could be so. On the other hand, most ore shoots are irregular in outline and size, ana although there may be a definite axial ratio for any one mine, or even an entire camp, that ratio is almost completely dependent upon structural control of deposition. Such control, through its inherent nature, must determine which axis shall be longest or shortest, as well as define the pitch and rake of the shoots. Therefore, until several raises or stopes have been completed, any assumptions of equal heights or lengti are only guesswork, and to attemp calculations of possible future tonnage based opon the above subnormal and limited date is wasted lebor unless the results are employed to picture minimum prospects. Similar arguments may be advanced concerning the average width (9.1") and values. It would appear that most, if not all of the above averages are mininal and that further drifting on the two lowest levels will bring increases.

SAMPLING PROCEDURE:
Three sets of channel samples have been taken by, or under the snpervision of, competent field scouts, who heve axamiried the Patmore mine euring the past six months. This was done with a view to or.tioning a substantial interest for their prircipals. Two of the companies are amonest the largest in Canada and the third is an important mine operator in the United States. All.have shown a decided interest in the property and two vritten offers emphasize the mine-makine probabilities.

The samples were cut both wide and deep ($2^{\prime \prime}-6$ ") so that Naey were essentielly bulk samples. This practice was followed in an effort to eliminate "erratics". A methodical $2 \frac{2}{2}$ ' spacire was chosen for the shoots and this was increased to 5' alone the pinches. This left a mere 2^{\prime} between the sample cuts and produced, in effect, almost a continuous strip sample. That such a procedure i: essential and warranted on narrow hieh grade veins is demonstrated by the following:
(1) The results of the various sets agree fairly well. hs one engineer said, "On this besis (c:ittine the highs) the assays show a reasoneble check. The figures for cach shoot check approximately and there is a very close check on the total".
(2) A large sample was roughly guartered in the field after very coarse crushing. The two opposite guarters werc combined ana sent iff for assay. The other two were treated similarly as a planned check. The results showed a one ccunce (in gold) per ton dirference thus stressing the need for lgrge samples or for fine grinding before quartering.

> (3) Although considerable coarse, visible gold is present in the vein, remar'able few erratics vere obtained.
(4) Mill teses show that over 80% or the total gold is or the free-milling type.

Thus it seems reasoheble that the completed sampline is fairly representative of the ore so far exposed by drifting. However, the calculated weighted average does not limit the chances for a chance and the grade of the deepest shoot would appear to indicate an improvement.

All the samples were assayed by G.S. Eidridge and Co. of Vancouvor, und certified copies of the results were presented to the lease holder. The mill-feed fieure below is based on a 3' stoping width (this may be improved as is discussed under stoping) with 50% rted to waste. That is, the milline width is $18^{\prime \prime}$. Since the ore is hiehly oxidized, $12 \mathrm{cu} . \mathrm{ft}$. is taken to equal l ten. This would be reduced to 10 cu . ft. if the sulphides were unoxidized and present in. the ratio of 3 parts to l of quartx. Following are the weighted averages of the lamprophyre-shoots. hll assays over 502 . have been cut to that rigure.

MILL FEED VALUE AT TONNAGE

SHOOT		3IIDTH	LEMGTH	GRADE	MILL FEED GRADE-18"	Value at $\text { . } 535 \mathrm{GOLD}$	TOINLGE $\mathrm{V} \mathrm{BRT} . \mathrm{FT} .$
NO. 2	Tunnel (outer)	8.81	45^{1}	1.46	. 71	\% 24.85	$\frac{5.62}{}$
M, 2	Tunnel (inner)	11.10	20^{1}	2.57	1.58	55.30	2.50
1-. 3	Tunnel (outer)	8.81	107.31	1.21	. 59	20.65	13.43
No. 3	Tunnel (inner)	6.11	331	1.65	. 56	19.60	4.12
TOTAL		8.7"	205.51	1.72	. 83	\$29.09	25.7

Averaging the results of the two examining engineers' sampling:

MIDTH	LETGTH	GKADE	GILLL FEED GRADE-18"	VALUE AT $\$ 35$ GOLD
$8.9^{\prime \prime}$	205.5^{1}	1.73	.86	$\$ 29.93$

A composite assay for silver showed approximately loz. per ton therefore total values are about $\$ 30.40$.
18.

Since the third set of samples was much more limited inkcope because 0 if its preliminary naturc, it has not been presented in the same manner. The Ti gures may be tabulated as below to give an idea of the gold distribution. The samples were taken at irrerularly spaced points thus maring it useless to present them as an average:
130. 2 THNNEL

SLPPLE	PLACE	Y:IDTH	GREDE
1922	Outer shoot (portal)	4"	1.07 oz .
1823	O" (portal)	5"	3.62
1924	"	91	1.48
1922	"	4"	. 94
1926	"	6"	. 96
1927	"	5"	. 78
1928	"	3"	1.92
1929	"	5"	4.06
1935	Inner shoot	3"	. 58
1936	"	3"	. 49
1937	"	4"	1.30
1938	"	5"	4.05
1939	"	$3 "$. 34
1940	"	5.5"	5.03
1956	"	6.5 "	1.31
1957	" (race)	32"	. 36

NO. 3 TUMMEL

SOPLE \#	PLACL		WIDTH	GRDE
, 1	Outer shoot	(portal)	71	. 68
J.942	"		$2 "$	3.10
1943	"		110	5.94
1944	"		11"	1.35
1945	"		8"	. 24
1946	"		$9{ }^{\prime \prime}$	1.82
1747	"		13"	1.61
1948	"		10"	3.58
1949	Inner shoot		$9{ }^{\prime \prime}$	4.72
1950	"		3"	2.28
1931	"		4"'	8.52
1952	"		4"'	4.49
1953	"		3"'	1.14
1954	"		3"'	4.22
1955	"	(near face)	5 "	. 63

AVETAOES

TJTEL
SHOOT
WIDTH
GRADE

2	Outer	$5.1^{\prime \prime}$	1.850 z.
2	Inner	$7.7 \prime \prime$	1.68.
3	Outer	$8.8 \prime \prime$	2.29
3	Inner	$4.4 "$	3.71

Note: The widths are narrow here because the full width of the voin vas not sampled durine the preliminury inspection - at a later date the "stri pped" vein was broken through for complete sampling.

The results of sampling the "pinches" are not shown since *qey could be of little value. It surfices to say that unless oxides or ildhides are present in the narro:i sections they are berren of gold. White quartz alone carries very small amounts of the precious metals although here and there, such quartz may show xoarse visible gold if the quartz accompanied by oxides.

SUSR:ARV OF VALUES:

Thus, it seems that an average millhead value of at least $\$ 30.00 \mathrm{vill}$ result if. 50_{i}^{6} of the broken tonnage is sorted to waste either on a picking belt or by carcful use of resuingloethods. In the latter case it should be possible to keep the values above that figure by holding the stope widths to approximately $30^{\prime \prime}$ and taking out cleaner ore before or arter the waste. Further, if the present improvement continues (No. 2 tunnel of higher value than No. 3 and its inner shoot better than the o.ter one), the millheads might easily reach $\mathbf{\beta} 35.00$ per ton.

MINIIG CONDITIONS AND COSTS:

The prevsiling conditions are readily apparent and the resulting costs may be closely calculated by reason of the $61^{\prime \prime}$ of drifts and crosscuts already completed on 3 levels. i su mary indicates that low-cost features are prominent and mining expenses should be appreciably less than those met with in Zeballos.
(1) The veins di fron 65° to 90° to the east, averaging about 75°. chis fact insures gravity feed (rr*e running ore) and therefore low handling charges in stopes. It also adds to the eese of working where stopes are narrow (more hamer room) thereby permitting a maximum decrease in minine widths (unhindered limit $2^{\prime \prime}$) ia orier to hold up the grade of ore. Further, narrow stcpes require less suyport by timber or fill. Incindentaily, in such narrow openines the direct cost of minine by machine ifoften
greater than by hand although the speed (3:1) of raching cuttinc results in lower overall costs where overhead and management expenses become appreciable.
(2) The vein-bearine dike hes walls of solid granodiorite which sel-. dome show signs of slabbine thus rarely needing any timbei except for a few stulls. Due to this, the exira work of framing and installing timber is neelifible asjde from buildinc menveys and chutes.
(3) Because of the persistent sheerine (which should remein with depth) and the hifin proportion of oxidation (shich should drop off as the limit of penetration by water and crygen is approached, minine, has been véry cheap anc easy on all three levels. Note that the adits cover a verticel range of about $300^{\prime \prime}$ and vary in length from $123^{\prime \prime}$ to $25^{\prime \prime}$ through aplite, lamprophyre (with and \because ithout ore) and Granodioritie. The deep oxidation, still strong at the races, results from a combination of four ractors:
(a) Kiuch of the sheering extended throughout the entire period of Cineralization (as is evidenced by "sljckersided" pyrite and "rubble- quartz"! trus offerine casy penetration to overlyine solutions.
20.
watert rou The surface tracinc of the shear hes lone: been a natural
(c) The larce water supply is very erratic (rapid run-orf) thereby introducine the moisture variation which is most conducive to oxidption processes.
(d) The steep creek draw was protected by ita adjoinine Eranitic ridges from deep glacial erosion. Therefore, at least one, if not both, of the above features should continue to considerable depth and consistent low-cost mining should falow.

The average rate of all the hand contracts completed so far (involvine some dense, tough aplite and a small amount of granodiorite) apfroximates $\$ 7$ per foot including bod, powder, fuse and caps. This figure does not cover the cheaper contracts where the leaser participated in the actual work. Rapid progress was made (2^{\prime} or more per man-shift) and the miners cleared over $\hat{\forall} 12$ per day in wages at all times. One section was driven 100^{\prime} in 10 days by 3 men using less than 2 boxes of 40% powder (j' per man-shift). According to government statistics, l' per man-shift (direct cost - $\widehat{\$} 5$ per rt.$)$ is anaverage footage. Thus, the costs could have been still further lowered by some sacrifice in speed. About 75% of the noles were driven in rapid time by using a point-bar and it was seldom necessary to drixl more ihan 3 or 4 holes to a 3^{\prime} or 4^{\prime} round ($4^{1} \times 6^{\prime}$). Locally the dike.mey narrow and then the much tougher granodiorite must be sideswiped. \& jackhammer or light drifter should be on hand to speed up this more difficult work.
(4) As may be seen from the above rigures, the intense shearing and. osidation also result in low powder consuption. The mine records snow an average of 12^{\prime} to $15^{\prime \prime}$ per box of powder, mainly $4 C^{\prime \prime} /$ gelatin, for 6001 (a bwder-cost of 45 cents per ft. of drift). In most cases 3 holes were placed vertically one beneath the other and this surficed to cause a collapse of the entire dike where it was less than $3^{\prime \prime}$ to $4^{\prime \prime}$ wide. Overbreak of $\mathbf{l}^{\prime \prime}$ wascomin.
(5) For the same reasons a laree pert of the muc:- was finely broken and therefore easy to shovel. The leaser, with the help of one miner, average. 4^{\prime} per shift for 1001 althougn this meant mucking (with plates) 8 tons or about 50 barrows and wheeling it from l00' to 200' (usine smoothly-rolling rubber-tired \because heelbarrows but no planks). These conveyors are efficient up to 300' and can be used in relays up to 800^{\prime} underground but itis probably cheape to purchase track and a car for any traming over 4CO'.

As a whole, there is not a sinfle mine in the Zeballos district vihich can boast similar condit ons or results, so the assumption of equally low-cost stoping appears ustifiable. Mining charges at the Privateer approximated $\$ 4$ per ton 1939-40 (these increased durinc the war). At the Central Zebsllos § 5.92 was recorded for 1942, a war year. hithough post-war costs (mainly labor) may not recede to their pre-war level, it is reasonable to assume some reduction. Knowing that stoping conditions (including poser and transportatio' faktcrs) are better at Deep Inlet, it is, therefore, likely that the overall s stoping and development darifts, raises, and orasscuts) expenses will be under $f 5$ per ton after the effects of the war are readjusted.

To sain some idea of development costs per ton of pure ore for
he average Vancouver lsland vein of $6 "$ to $8 "$ width, it is necessary to conider the driftine cost per root. Assumine $\$ 6$.per ft. (labor, rood, powder, uee and caps), c reasonable rate as far as the Deep Inlet ore zone is conenged, and an $18^{\prime \prime}$ width of mill feed ($8^{\prime \prime}$ ore and $10^{\prime \prime}$ waste), the direct Clopment cost per ton for the drifting (in ore) item alone on 100 lifts julá be $4 甘$ centg (since ${ }^{\prime \prime}$ drift would develop $12 \frac{1}{2}$ tons of millfeed $18^{\prime \prime}$ ide for the 100^{\prime} between two levels). To this must beadded other developent charges for drirt in waste, for crosscuts (with their attendant higher ost ratio) and for raises. Locally, in mining narrow veins it is common o have $2 / 3$ of the total underground footage in waste (very little ore is , pened up by much development). Thus, the total direct devolopment charges hould be at least 3 times 48 cents or probably sliehtly over $\$ 1.50$ per ton If millfeed before stoping. Moreover, it is likely that contract rates :an-be cut to $\$ 5$ per ft . since the man-shift average at Deep Inlet lies etween $2^{\prime \prime}$ and 3^{\prime} of drift, which affords each miner-ahift a liberal $\$ 10$ to .15 (less $\$ 2$ for food and supplies). These figures for contract labor are ;ubstantiated by the general average or $£ 5-\$ 6$ per ft . recorded by the U.S. 'ureau of Mines for a large number of similar soft (sheared and oxidized) leposits in Oregon (e.g. Record Mine were development costa were $\$ 1.30$ and :quare set stoping $\$ 1$ per ton). Note that although the Central Zeballos ore is highly sheared, neither it nor any or the other neighoping, mines disolays the persistent and elmost complete oxidation founc at Deep Inlet and in larts of Oregor (n.E.). This lower centract price should effect a further lecrease in development expense to about $\$ 1.50$ per ton of millfeed before ictuel stoping costs (or higher figure per ton ồ pure ore).

To arrive st the expected total mining cast to be applied (gainst each tor of millfeed, the cost of breaking both ore (a maximum 18" (ing width or less if economical) and waste (a maximum of $18{ }^{\prime \prime}$ or less if :eesible), whether separately or together, must be estimated and then apartioned to the millfeed alone (arter sorting). One ton of drirt-mined illfeed (18") would cost abat $£ 6.20$ since .81 tons would result from ${ }^{\prime \prime}{ }^{\prime \prime}$ if $6 \frac{1}{2}$ ' $\times 4^{4}$ drift at $\$ 5$ per ft . but shrinkage-stoped millfeed should not :xceed $1 / 3$ or this amount or $\$ 2.20$ per ton aside fro:n overhaad. (At the Central Zeballos, where low-cost shrinkage stopes were used, the figure was (2.38 including approximately 30 cents overhead). Usinc the resuing method (or its converse) on a similar soft, narrow vein, the stopine charges would be considerably higher but so too would be the mill-heads (providing the ore and the waste would scparate or could be sorted to a certaib economical (imit). The final choice of stoping, syster will be determined by the practice of giving the maximum profit. Therefore, for purposes of calculating that pessible profit, it will be locical to assume 100%, use of the shrinkage metnod if it is also assumed that millheads will not be higher than the $\$ 30$?verage obtained by sampling to date (stoping $3^{\prime \prime}$ and sorting to 18").

Thus, wita the above estimatcd direct costs of about $\hat{i} 1.50$ and \$2.00 per ton for developant and shrinage stoping respectively, the total mining charges, allowing 60 cents per ton overhèad as an average rigure, on a $5 \theta-t$ on basis, for supervision, engineering, assaying, bookkeeping and isoeial security, would approximate $\$ 4.10$, to be assigned to each ton or ore reaching the fine ore bin. Uith resuing (stripping) or its converse, the total mieht reach $\hat{5} 5$ but with resultant higher mill heads and an equal
not better profit.

STOPE MINIEG:

In narrow, steep deposits of a hiehly sheared nature, such as the main Eeep Irlet vein, hand drilling is as cheap as, if not more econonical', than machine work insofar as stopine is concerned. This is because
narrower, stopes may be carried by hond, thus using less powder (more control) end neglicible power to deliver a clenner product at a disproportionate loss in specd. This is especially true in the abnormally sort Deep Inlet ere, Lowever, lieht stopers or jackhnmers will be necessary locally where the shearing diminishes or the dike pinches to less than 32". The rastest uts are vertical water holes or steep, dry, 2'-3' uppers from which eutnes may fall freely, but where the vein meterial is under the average Vifith or the waste is too weak to stand heavy powder charges, it may be more economical to use horizontal cuts since they allow freater control or brearing. Where drilling is inescapable, "singlejacking" is preferable to doublejacking as the increase in speed is not proportional to the extra labor. In such soft ores actual drilling is seldom needed because ε " bullprick" or point-drill and at times ε hand-auger, will surfice for 75% of the boles. This Point-drill work requires a dojblejack ($14 \frac{11}{\pi}$ to $16 \frac{\| l}{1 /}$) and the steel is best withdrawn by.means of a collar and hand winch when the ore is very "gumny". In similar ore at the Sioux Consolidated mine, Utah, one man was able to break 25 tons per shift. Augers were used almost exclusively in the stopes of the Gleason mine, Oregon, where parallel cosijatis exiated.

Since the Deep Inlet ore is so easily drilled, it should be quite reasible to maintain $2 \frac{1}{2}$ ' stope wioths except for local sections intensely sheared ecross more than 32". Llthough cases of stopiag to maximum widthe of 13" are raported for fiexico and the States, unhindered hand mining is limited to a minimum of $24^{\prime \prime}$ and common practice tends towards $32^{\prime \prime}$ for drililing by hend and $36^{\prime \prime}$ for rachine work. The important factor apyears to be the softness of the ore and tine ease of putting in a round. Where the shearing is Greater than $32^{\prime \prime}$ excessive dilution may sometimes occur if powder charges are not kept at a minimum, holes drilled horizontally, and a few hitched stulls placed with hesdboards against the sloughing area. Central zeballos experienced this trouble hecause of "blocky" eround (3 ' stopes). Stopa Fes will probably be maintained as horizontal or sliehtly inclined 3:-4: sueps with holes placed so that trey may break to either of two free faces. If it seems advisable tu use cut end fill methods it is quite possible that muck-handiling charees may be lowered by instituting rilled stopes.

STCPTNG 1:STHODS:
Because of the appreciable dirferences in cost per ton of millfeed resulting from the application or tie numerous stoping systems, the selection of one or the other of thoy is of jithest importance in the economical exploitation of suci narrow veins. Since the main Deep Inlet vein is steeply dippiac as well as narrow, the choice is rairly well restricted to sirinkage :topes (the chespest), open stullea or square-set stopes and variations of ,he cut and fill type (resuine, its converse or full width breaking followed by undereround sorting). Cpen-stulled and underhand systems are not favoured lue to local weainess of the back ens walls where the dike is blecky or widely :hesred. Shrinkage stopes may be : sed only on the strong-walled wider shoots ! since slourhine is pronounced where vialls are sheared and broken ore tends os hang up darazerousiy in irregular narrow openings). At certain mines in 'regon where the back was weak and natural timber was as readily and cheaply rocured as it is et Deep Inlet, the square set-open system hes proven to き most efricient (e.G. Recordmine - stoping costs \widehat{y} l per ton. Tinere appears o be little doubt that more than ore system will be employed at the Patmore ine due to local variations in wali rock character and the amount or shearing.

Sit leazi tro shoots already drlfted on displey features that fivor rut end ril= methods, one of the shoots beine firm yet unfrozen and therciore suitabl $=$ ror resuine or "strippine"; tine other, sort and rree und cio best removed abead of the waste. This choice depends entirely upon wilic: fraction ca:. be stojed cleaner and easier thus leavinct the firmer one Fencine. In eitese case tinere must be a free or well-derincd junction befreen $0=$ and wasce and it, is the degree of rreedom which determine the economic limit to wicich cut and fill may be employed (i.e. the economic and possible limit of undereround sorting of intimately mixed ore and waste). Althoigh the Deep Inlet ore breaks fine and certain shoots display ragaed maríins between ore and sheared dike, extensive sorting of the 1 " material is possible and wEzranticd due to the ease of separatine tiae higily contrestine green waste from the red oxide and vihite quartz of the ore. Wrere tim. two are so intimately mixed that they must be broken together and cannot be separatea by sorting, the green dike usually carries sufficient values along fracture planes to rank as millreed but the product tends to be mareinal anc may not. withstand the hieh cost cut and fill system where the vein is : ide emough to create undue handine of the ore (siree waste is not mucked in cut and rill tine controlling factor is tine proportion of waste to ore). The only alternatives for Ereater widths are to use sirinkege methods in which lower hendinge costs should increase profits (practically no timberine, no múcking, greater speed and easier daylietht sorting after wasining but more trammingl or rilled stopes. Because shrinkage is not feasible \because here the back or walls are too weak to stand or the walls or shoots are too irmsular, the latter may offer the higier profit.

In sumation, the limited development so far carried out at the Patmore mine indicates that the width and extent of sheerine and of ore as well as the degree of possible economical sorting will determine locel use of shrinkEge or cut and fill bat that boti. systems will be coployed Ar shear zone characteristics ravorins the latter. It may be justiriable O institute rilled stopes (cravity-clearine platorms) vhere the proportion of ore is hich rather than shrink with attendant hicis slouehine and corieguent excess dilution.

:II.L TESTS:

Two lots (loc;" each aporoximately) of average type mi’lreed : ere sert out to the Deriver Equipment Co. of Colorado enc to G.E. Eldridge \because nd Co. of Vancouver. The ore ser:t to the Denver Testing laboratory was of average type but was not a true weighted average. That sent to Eldridge and So. was a weight-width averege althouch it included the more heavilyPyritized No. 1 tunnel shoot which is too mareinal in erade ($\because 14$ to \$16) to be milled. Even gt that, the millinead avejage was l.4 C oz. (using a shoot :idth of ebout 8. 8 " with very little waste involved). Eiis fifure amounts. i.c eprrosimately $\$ 3.85$ ver ton more tian tie celculated samule average. "hejefore, the mill tests show tiat at least $\{31$ tc $\overline{5} 34$ may be expected over in $18^{\prime \prime}$ width. Since the mill recovery will be over $95^{\circ} \%$, the gross returns hould smount to a minimum of $\$ j 0$ and pertaps even es much as $\{32$. It hould $b s$ noted that the recovery in a laboratory test is nearly always rceedec by thet in a full-size nill run once the operation is proceeding inoothly.

Following is irr. Eldgridec's sumary of results:
"As this ore abpears to be very rriable and easily crushed, . e incicated flow shect would be a Eyratory crusher reducing to $;$ orolls recucinc to $\frac{\lambda}{4}$, , thence to a jig taking out the rree cold in the

Jolne away vifin the usual troublesome tie-up of a large proportion of the Eold ii the bill mill circuit.
" dhe overflow from the jig being ground to ${ }^{2} "$ will give a better reed to the ball mill, Eivinc it a greater capacity than a coarse fusher reed, eno vill save considerable wear on bell mill liners and erinane medium. Tine overflow from the bail mill gees to a drag classirier, from which the fines overflow to the conditioner and then to six flotation cells, and trie oversize sands are. returned to the ball mill for regrind. The concentrates from the first two cells are sent to the vacuum filter, and the froth fron cells Nos. 4,5 and 6 are returned to the No. 3 cell for recleaning. The concentrate from No. 3 vould probably be rich enouch to be adied to the concentrate from Nos. land 2, and all filtered and shipped together. The flotation tailings would eo to a :lilrley Table, and the fron oxide concentrate from this could be either mixed with the flotation concentrates for shipment, or be sent to the amalgam barrel to remove any free gold by finer grinding.
"nine tailings from the amalgam barrel should be put over a small :iilfley Table to recover any ameleam or floured mercury in the form of a concentrate, and the table tailings, which would be small in amount, sent to the rlotetion conditioner to recover any sulphides, fine free gold or amelgam thet might get over the cleaning table.
"Test No. 2 indicates thet with this oxidized ore, using the above flow sheet, a recovery of Ninety-five per cent (95\%) of the gold can be obtained. Acout 65% of this would be by amalgamation, 21.5% by a flotation concentrate running 8.1 ozs. per ton, and 8.5% by a table concentrate on the tailines running about 1.5 ozs. per ton. This iatter ray be retreated in the mill, as shown above, or re-cleaned and jupped vitin the
otation concentrate.
"The ratio of concentration by rlotation is:
Twenty-four (24) tons of ore to one (1) of eoncentrete.
"The much higher amalgamation recovery (82\%) in Test 1 where all the ore $v \in s$ eround with the mercury indicates that in Test 2 condiderable gold was carried over in the Jig tails possibly due to too rast a rate of feed to the Jig. \#ie consider that by means of a very mixh slower reed to the Jig a higher rate of recovery by amalcamation would be obtained".

The aoove may be compared witi, the Denver conclusions given below:
"Following is 2 resume of the results of cacn test:
"Test No. 1
; Table concentration and smalganation of the resultin: concentrates.
This test produced a Denver Jig Concentrate which assayed 147.14 oz per t.on golo and lo. 12 oz per ton silver, and vihich contained 74.35% of the total cold and 37.05% or the total silver. Blanket matile treatment of tine Denver Jig tailing described on Page $\mathrm{D}-3$ produced a concentrate which - fayed 9.950 z su/ton and 1.930 za Afon.
":Htıo of concentration by lleaver Jie was $2 \% .3$ to 1 and by blenket table :isis l\&. 2 to 1 . The combined ratio of concentration was 10.93 to 1.
"imelpamation of the Denver Jis Concentrate produced amalgam which containe 75.45\% of the total gold and 34.45% of the total silver.
malgamation of the blenket table concentrate produced amaleam which contsined $4.7 \%_{i=}$ of the total cold and 2.55% of the total silver.

MEST NO. 2
Denver Minerai Jig rollowed by gravity table concentration and amaléamation of the resultiny concentrates.
This test produced a Denver Jig Concentrate with ratio of concentration of 20.6 to 1 vibich assayed $99.9 \mathrm{oz} \mathrm{Au} /$ ton and $10.7 \mathrm{oz} \mathrm{Ag} /$ ton and which contained 77.1\%\% of the total gold in the original head ore. Table concentration of the jig tailing produced a concentrate vith ratio of concentratio of 28.6 to 1 which assayed $17.08 \mathrm{oz} \mathrm{Au} /$ ton and $2.0 \mathrm{Oz} \mathrm{fg} /$ ton and which conteined 9.52% of the total gold. Amalgamation of the Denver Jig Concentra produced analgam containing 73.72% or the total gold in the original head ore. Amalgamation of the table concentrate produced amalgam containing 6.84% of the tal gold.
"?RE:RKS \therefore RID CONCLUSIONS:
Fine tests reported indicate that ove 80.0% of the gold in ore represented by the semple tested is recoverable in bullion form by treatment with the Denver Mine al Jig and Gravity mable concentration followed by barrel amalcemation of the resultine concentrates.

Me grinaing time used in the tests compared to that of our standard ind test ores indicates tiat the ore tested should be classed as being tetween "iedium" and "!iediam-hard" ore to grind.
"The rlowsheet recommended for the treatment of this ore to secure maximum rold recovery in bullion form should include the rollowing eguipment:
(1) Coarse Ore Bin
(2) Grizziy
(z. Denver Jawi Crusher
(4) Fine Ore Sin
(5) Denver Belt Ore Feeder
(6) Denver Hall !:ill
(7) Denver :iineral Jig
(8) Denver Cross-Flow Spiral Classifier
(9). Denver :ilfley Concentration Table
(10) Denver hmalgan Barrel
(11) Denver Mercury Seperator
$;$
(12) in\#lgam Retort

The tests indicate that the concentrating table is preferable to blanket abłe concertration. However, it, should be remarked that a blanket table sst on a batch basis is not comparable to the continuous operetion of a iEnket tajle in praciice. The length of table used in the test was much igrter then would be recomended in practice and the amount of concentrate ining or the blanket as compred to the quantity of betch used was much eeter the:: :!ould be held by the blanket aíter a few hours operation.
or this reason it is recommended that the above listed equipment be in:elled anc lareer scele blenket tests be conducted when the mill is oper\because ing continuously. Such tests :onld sinw thn ma....
pb:
"Siallince a full size blenket telije on the tailines.
"Because of the appreciable quantity of pyrite in the ore, maximum recovery will be secured by making s ratio or concentration of about 12 to 1 . however, the results of the milling operation may show that thefratio of Acentration can be raised to 20 or 25 to 1 , by carryine heavier bedding an the Denver Jig, and by cuttine higher erade table concentrate without too ereat a loss of amalgamable gold.
"The screen analysis or the tailing fron test lio. 1 indicates that the tailing losses occur heaviest in the minus 200 mesh portion and thet considereble additional recovery of gold may be expected when flotation is installed".

MILLTNG COSTS:

These costs are more dirficult to determine but the results of the above mill tests, used in conjunction with figures on getual practice employing a similar flowsheet on an equal tonnage, will give an approximation. The Central Zeballos mill could concentrate Deep Inlet ore juite efficiently with very minor changes. Furthermore, although this zeballos ore is unoxidized, it is pertially sheared somewhat like that of the Patmore mine and presents no major difference in metallureical conditions. The plant was designed for 35 tons per day but relatively few alterations have allowed an increase to 50 tons per day. Since tine Deep Inlet ore shoots are at least the equal (in tons per vertical foot as well as values) of those developed at the Central zeballos and other neiehboring mines, a minimum rate of 50 tons deily has been chosen as a base for discussion. or six Zeballos propertics, only one milled at less than tris figure.

Followine is a compsrison of vital cost reotors:
(1) Power supaly - Fuel costs 8.6 cents per fri. at the besch
where the proposed Deep Inlet diesel-electric plant will be located and Central zeballos pays $2 l .1$ cents at its mine plant. One year's fuel bill would amn int to between $\hat{\dot{\delta}} 12,000$ and $\$ 16,000$ since 80,000 to 100,000 gels. of oil would be needed to develop the required 200 to 250 H.P. (18.5 kw .1 The mill alone is driven by a 75 kva eenerator (about loc ï. P.) so that it vould consume about $2 / 5$ of the fuel or $\$ 4,700$ to $\$ 6,400$ worth. nill-power costs about $6 j$ cents per ton milled or of the total milline expense. By comparison it should not excead 40 cents at leep Inlet. inote that three aecondary factors enter into this igure. One is the cost of haulire in the initial machinery and replacemtns to the Central Zeballos property (14 miles of freighting, incluadic the return triy). \therefore second is the already completej power line right-oi-way and towers at peep Inlet, and a third is the tase of crushins anc frindint the ore at tae latter place. If a hydro-slectric plant were constructed there \%olla be ar: appreciable rurther savine as discussed earlier (sce fover).
(2) Mantenance and opertion of crushing-erinaing-classicyiner circuit - The mine-proven and liv-tested friability or the ore so far developed at the Pat:oore propert: is certain to result in low repair and replscenent expenses (especielly for ball chares anc linines). Sorting, crushing and crincine cosis exceed il per ton at Central zebellos.
 cyanidinel and ivount zoballos averages close to $55^{\prime} \mu$. Thus, the Lecf Inlet ore mey be clissed as typiceljy "rrec-milling" ane this fact shoud aid in Mting costs by means of decreasirc erindine time and increasing tonnage per II.r. utilizee, as well as lowering rlotetion experse (no overslimine of rine gold).
(4) Ratio of Concentration - Centrar Zeballos has a ratio of 20.65 (tons of ore) to l(ton of concentrates). G.S. Eldridge and Co. indicate a ratio ci 25:l for the Patmore ore. mis means that theie shoula be no more tha: two tons of concentrates per dey to be hauled 2000' to the tide:rater and shipped to Tacoma (60 tons per month at $\hat{8} 3$ to $\hat{i} 4$ per ton). Central Zebellos must truck $21 / 5$ tons per day for a distance of 7 miles and for this reeson their concentrate expense runs over 20 cents per ton milled v:ile $\quad \mathrm{m}=\mathrm{rk}$ eting exceeds $\hat{\forall} \boldsymbol{i}$.
(5) Mill and Mill-camp Supply - To a certain extent the cost of chemicals and of food sumply will be lower et Deep Inlet due to. the short heul.
(6) Labor -- This item, wich is the mejor sinile factor in cost of milling, asounted to $\$ 1.02$ per ton at tine Central Z̃cballos mill during 1940 (:isrch), a war year. It sentis possible that even the first post-war year should see some reduction in this cost. It is a least certain that labor charges will not be higher.

A reviev of total milline cost factors would appear to ipicate that tive Deep Inlet ore mey be concentrated at a sliehtly lower rate -an that atteined at the Certral zeballos plant ($\hat{i} 2.681$). Tine power faccor \&lone sho ld cut this to 2.51 and a combinationor more gavoureble milling, characteristics and cheap trensportation will almost certainly lower the total to a maximum of $\$ 2.25$ per ton milled. Unfortunately, no comperison may be made :ittit the results at the Privateer mine as more costly cyanidation is employed there.

CTHER ROPPE:SES:

(1) Trammine - Initially, the tramline may be 2320^{\prime} long but arter drivire the proposec crosscut it would not be over 12301 and possibly only 1060'. Framming 2400' by ecrial jictback at the rate of 66.3 tons deily, costs ebout 47 cents per ton (millcá) at the Central Zeballos mine. Therefore, \equiv fifer completion of the lone crosscut, the cost at leep Inlet should be seas:inet less than 40 conts per ton.
(2) Tailings Disuosal - This cost will be neglicible because ther is anple cissosal room with sort transportation of the tails required (erdyity rlcwi.
(3) Marketine - iside from the lower tomage of concentrates to be shipped anc the shorter truck haul, marketine costs at Decp Inlet should be comierable π itn those at Ceritral Zeballos (ij. (13) or say 75 cents per tonr nilled. If -ining proves up sufficient ore reserves anc tests are effedive, i Pay possitly be profitable to eanide the concentrates (due partly to the
 , aturally, $t: \leq$ cost of cyariding (fer ton of ore milled), aljowing for a retirement fina on such costly equipment ($10^{\circ}{ }^{\circ}$), interest on the

F fuveromen, (5is) for operuiton end for ehemiculs, could not exceed the : mernetine: cost of say. 75 conts fer ton if it vere to ve profitable.
(4) lyerit Guerheed - (Depreciation, extra starf) - By way comp:rision, the only advantace would be thet of transportation of repair add replucement parts. office and staff charges would be held at a mini. m by maintaining an office anc siaif only at the gine. Directors and consultants (insorar as fecs are concerned) :\%ould be unnecessary. Thus, the over-head should not amount to more then 75 cents per ton milled $(87$ cents at Central).
(5) Rovalty Charee - At the two year rate of 6% the royalt: cost would amount to $i=80$ per ton or $\$ 30$ ore milled.
(6) Insurance - This expense coild be held to about 15 cen /ton.
(7) Mineral Tax - At $2_{i 0}^{〔}$ this would amount to approximetely cents per ton milled.
(8) Amortization - 25% yearly on á proposed total developra and equipment cost of $\overline{f l 00,000}$ would equal $\$ 15,000$ arinuslly (18,000 tons) or 83 cents per ion milled.

SUAARY OF MCLAL EXPNCMED COSTS:

$$
\begin{aligned}
& \text { 2. Development............................ } 1.50 \\
& \text { 3. Nine overhcad (assaying, book- } \\
& \text { keeping, encineering, suptriv:sion, } \\
& \text { social security, anG maintenance.. . } 60
\end{aligned}
$$

FIM:L PROFIT:

Rerore taxes the profit would be $\hat{\imath} 19$ (assumins $\$ 30$ recovery per ton). The depletion allowance (at 33 1/jij emounts to 6.33 per ton thue leavine time rate of 40 ?. It should be stwesscd that such a rate cannot possibly perisist arter the war has ceased ir mining is to survive as a major canadian industry. Jowever, using tinis ricure (,C_{i}^{\prime}) the tas: will arount to $\$ 5.06$ per ton milled. The ainemel tas at 2% \%oula be ebout 38 cents thus making a comkined tax of $\hat{5}$.44. Therefore, ti:e rinal prorit to be rade on ore of the present averege grade could be expected to be better tian \& 3.56 per ton of ore milled (at tree rate of 50 tons per day). or course, ois firfure derends upon the assumption of efficient operation and rield
 mim of $\ddagger 20,34 C$ or about 240, COC ranuslly. Cr trie tesis or a 4C-6C division of profits this viculd. give the minority holder at least $f 96,000$ yearly.
fs explained previously，the present equipment includes every－ thinc．necessury to complete the secondary develoument from the lo－ton to the．アリー or 50－ton staco．The machinery and tools have all been viell looked ofter and they erc essential to the work．If they were not already on the Sperty，any compeny taking over the latmore lease vould be forced to acguire a similar outfit．Its velue at the beach and mine camps exceeds E5，000．Following is a nearly complet list：
1．：lain tram hoist and gas eneine（used） $\$ 500.00$2．fuxiliary tyar hoist and gas encine（new）400.00
3．Assay office crusher（Chipmunk－new：）
4．Assay office pulverizer（Braun－new） 400．c0
5．issay office power plant．（case engine－new） 70.00
6．Mwo nearly new Beebee winches 230.00
7．Cable－various sizes（mostly new） 1000.00
8．Boat－ 14.5 －and 3.4 H．P．encine（used） $40 c .00$
9．Boat－ 121 －and l H．P．engine（used） 100.00
10．Cables sackles，bolts etc．（new） 150.00
11．Carriage wheels－ 2 sets（new） 50.00
12． 3 rubber－tired barrow：s（2 used） 75.00
13．At least 4CO of minine steel 60.00
14．150＇er ealv．water pipe and connections 25．00
15．Two envils and forees 50.00
16．Picks，shovels，scrapers，hanmers and mucking plates for 3 faces 50.00
17．Bleósmith＇s tools 25.00
18．Carpenter＇s tools and coal 100.00
19． 6 Crosscut saws and redges 60.00
20．1？kegs of nails 75.00
21． 2 entire carap cooking outfits 250.00
22． 2 entire camp slecpine outfits 50.00
23．Heater 1 10.00
24．E cases powder，fuse and caps 70.00
25．Boom chains 20.00
26．Eye bolts（sflit vith wedges） 16． 60
27． 25 iron meets 40.00
28．Lumber（new） 120.00
29．3CO drift bolts 50.60
30． 6 rolls of roofine japer 20.60
31． 8 spare wi！dows（1iにhis） 10．CC32．Drag saw（used）$60 . c 0$
33．Circular saw blade cnci mandrel 60.00
34．Food su；plies（cooa shape） 150.00
35．inachinist＇s tools 54.00
36．Other canp equipment（ $=x$ xes，ropes， 160 ore sacks，carbide，cer：vas etc．） $: 200.00$

It snould be noted theit nuch of this ejuipment has already been pecired up ti：mowntain thus its value is enl：anced since most of it is very heavy materia！！back－packing－53：0）．In 6 months tine leaser packed 6 tons of ezuipment and suaplies from the veach to the mine canp．

The initial development included the following items with an approximate $\because ?$? ensation, maintenance, : supervision, engineerine, and interest on investsent)

Value of this construction may be computed as follows:
 5ip (ap;rox.) 2,400

Tonil investment and value 54,100
Present capipment and supplies 5,000

SECNMDARE DEVELOP:IMMT:

The present equipment is such that with very few repairs and replacements (such as ha amer handles) underground wor: can be initiated a soon as the temporary tramine and camps are completed. The SGC' to 1 COO' of drift necessary to trove up enough ore for a 25 - or 50 -ton mill will. ennt. about flo,000. It may be driven by hand steel end the muck.may be removed by wheelbarrow (rubber-tired). The lowest level réuires another $5^{\circ} 0^{\prime}$ to 600' of drirting in order to explore the vertical continuity of the zqne of shroots exposea in the two upper levels. The face will then be about 800 , fron the portal or about the economic limit of relay wheelbarrow tremaing. It might pey to build a lightweight rubber-tired dump tack to evoid the expensc of bringing in rails anc a mine car until the larger tonnage is proven. The midide level should not need over 300 c to 4 CO of secondary development drift - its leilth would then be 425' io 525'. The most of traming will ancrease the total cost per root as efci: consecutive 1CO' of advance is attained. it will reogure an extra trameer for each 2:0 of advance if weelbarrow are used.

The necessary tramline construction may be completed for out * 2000 (3 tomers to be built, the saddles bolted dom, and cables c:1ored and strung upl. Four men could finish the work in two to three inths. One of the towers (the timiest) is already haif erected and the infir two are short break-over and terminal structures (one of then being trestle or rail section). The cables are light and can be hauled into rition easily by means of ε rope and winch. The mainlife hoist has not et been taken up to the terminal site. Cables, sadides, eye bolts, carjafe wieels and gas hoist have already bee: purchased.

The buildings needed are few. A $14^{\prime} \times 16^{\prime}$ cabin and a tram eroinal freight shed should be constructed at the beach camp (f400). it he mine carp a new bunkhouse (10' x 16') and a voodshed (12, x 141) are :ssential (5.520). A pipe-ine hes been planned to supply the upper camp ritr running bater (80 irstalled). is small, storage powder house ($\hat{8} 200$) ;inoun also be ereoted near the mine before any more powder is brought in irom the beach. Construction of a mine storage ore bin will rejuire about 8800 .

Thus, the total secondary expense should be about as follows:
(1) Completion of temporary tramline for use in hauling camp supplies and powder
(2) Completion of camps (4 small buildings and water

$$
\text { system).................... } 1,000
$$

(3) Driving of between 8001 and 1000^{\prime} of prospectsize drift by hand (2 levels) 10,000
(4) Workmen's compensation cherges 1,00
(5) Construction of powder house and ore bin at No. 2 level portal

$$
1,000
$$

$$
\text { TCTAL } \$ 15,000
$$

Note: These estimates include the cost of suphlies (rood, powder, fuse, caps, carbide, coal, nails, rooring, pipe, etc.).

It should be emphasized that the $f 10,000$ for drirtine $\because i l l$ not be needec if the mine is opencd up by the present leaser as a lo-ton prcposition, However, the tramline, canp and ore tin expenses (í4000) $\because 0: 1 \mathrm{l}$ have to be met $i:$ cithor case. ill of the above cost estimates are based upon exp戶rience at this ce:p and tierfort should be fairly accurate.

FIUX POE/RMLITIG DEVELCPEIJT:

Providing thsi sufficient ore is opened up or is indicated by tio proposed secondary development (800^{\prime} to 1000 of drift) it is then planned to conclude the premillin: developnent os follovis:
(1) Drive a l00' to l200' haulige crosscut to gain

400' more backs (see Proposed Crosscat) §人15,000
(2) Complete the road (2ccil' and wherf proEram with čort. aid (as zlready outlined) 2,500
(3) Bu: and install a 25 -or 5 - -ton mill of simple desicn (x:it:i camp aloneside) 30,000
(4) =c:uert the tomporery fralite into a stort

(5) Bu. Ens instalu a ciesel-alcetric plant viith
nomer-line (sce rower)
(.-) Furcises mine cars, loconotive, compessor (but not power), steel, rails, drifters, :topers, etc............ 12,000
(i) Drive a 400 raise rrom tits crosscut to the
present lovest drift .. 4,000
(8) Open up initi三- stopes 3,000

TUTAL (i,xpensc of fimal develoument).fis 5,000
ERFEGE FCTA includine secondary development plCO,000
CCS? OF :ILLL (IESS:LLED):
The $\{30,000$ estimate is bssed opon the complete cost (up to actual operation) or the almost exactly similar mill now being used at the Central Zeballos mine. fihis plant, with all electrical equiphent, and entirely new e\%cept for the ball mill anc crusher, cost slichtly less then $\$ 25$, cigo including the labcr, supfli:s and equipment up to the first day's run. It vas designed for 35 tons but is now able to treat about 51 tons per 24-iour day. :"ith the much more fevorable location at Deep Inlet (2000' from the beach) it seems ouite likely that the 330,000 fimure mey be decreased even if the ball mill is pu:chased. mis. Of course the cost will be arraciably lower if the proven ore is only sufficiert to allow operation or a 25 -ton mill.

mentIzatIoni:

The above estimated total development and mill cost expend--iture of $\$ 100,000$ could be retired \equiv t $15 ;$ (maximum foverment allowance) cver a period of 7 years. Naturally, ir e 25-to: lant is piansed, the total -icure would nict exceed $\overrightarrow{\mathrm{y}} 70,000$ ard this amonnt co:ld be retirea in 5 vears. any compeny takin: over the preschi lease will be allowed the return of its development capense at the 15% rate - as ar. expense it.en to be withdravm before divisjon of net p.:ofits. iny cash peyner.ts in lieu of a interest will not be considered in the same lirht. These must be returned only out of the payer's share of net profits.

PRCPOSED DEAL:

This vill be on the above basis with the leaser retaininc a 60f: interest in the net profits but eivine ojeratine control to the minority interest (ΔC_{j}^{\prime}) Purcheger who musi setisfy the terms of the present lease. A certain mint of cash. to cover the value of present usable equipment ano leaser's back sejery, must be paid upon sjenine of any deal and furter payments due after the secoreary development is rinished will be decided by nezotiation. If the operatine perty does not intend to proceed when the secondary cevelopacnt hes been completed, it shell not retain any eduity in return for it,s outlay.
i
Thus it may be seon thet eny cominny wioh t三kes over the lease
 develcpinent. .nnor tnat amount has been spent the firal size of the mill may be determineci as tie ore will us prover, if it is present at sll. If proven, there will be no further eable as to tice return of the entire investmert. There aje relatively fen prospects witt the ore showincs and Alock of the fatmore mine that cai. be ?rover up at sucr: a low injtial =xperditure.

(mining: geolorjst)

