CANEX AERTAI EXPLORATION ITD. DIVISION OF CANADIAN EXPLORATION LIMITEO
700 VURRARD BUILDING VANCOUVER 5, B. C. CANADA

FTNAL REDON

STAVE LARE PROPERTY

Venture 123
$B Y$
J.J. EYLANDS
Summary 11
Conclusions 11
Recommendations 11
Incroduceion 1
Locaeton 1
Topography 1
Access 1
Weather 1
Camp 3
Methods of Investlgation 4
Introduction 4
Sampling 4
Geology 9
Regional Ceology 9
Local Geology 9
Rock Types 9
Seructure 11
Mineralizaeion 14
Properey Evaluation 16
Sumary of Coses 27
Appendices
A - Description of rock types 18
B-Diamond drill hole sections 21
C - Calculation of tonnage iactor 29
Maps
Geology mapin pocker

The Stave Lake copper-molybdenum property, sleuated at 5,400. feet elevation appromltacely 11 miles northeast of Stava Lake, was found by Les Kiss as one result of a reconnalssance seream sediment sampling program undertaken in 1969. Surface mapping outlined a mineralized zone $4: 800$ feet long, east to west, and 1, 100 feet wide, north to south. This zone was sampled by three trenches in 1969 and seven NQ diamond drin1 holes 1 n 1970. The tonnage and grade indicated by the work are 272.5 mililon tons averaging $0.051 \% \mathrm{Cu}$ and $0.009 \% \mathrm{MoS}_{2}$. The 1970 program cost $\$ 80,972$, of which at Loatt $\$ 15,750$ can be applied to assessment.

CONCLUSTONS :

1) One set of very tight mineralized fractures is not enough to make this deposit economicelly attractive at today's metal prices.
2) Diamond drilling showed that the better mineralized zones were spotty and narrowed with depth.
3) Surface work indicated that no improvement in grade could be expected within the area mapped but not drilled or treached.
4) No evidence was found to Indicate that there might be economic mineralization elsewhere on the property.

RECOMMENDATIONS:

It is recomended that:

1) No further exploratory work be done on this property in the imediate future.
2) The sum of $\$ 15,750$, derived from diamond drilling costs, be applied as assessment on claims KF 1-30 to hold them for flve years.
3) The property be returned to Les Klss.

Copper-molyodemum mineralizacion was E2rse found on the Stave Lake property by L. Riss $1 n$ mid 1969 during foliowmp stream scdinent eamping. Wineralized Elont led him to emomine the drainage basin in decail and a large mineralized zone was Sound. The ares was staked and chree erenches biasced. Samples obtained Erom chese trenches gave encoureging veoulcs, so the minewalized zone was further scmpled by diamond dril11ng during Juiy and August. 1970.

LOCATHON

The Stave Lake property (Pile $V-123$) is 3 m miles northease of Winslow Lake, near the head of the third nafor west-slowing tributazy of Wimglow Creek (See Fig. 1). The coordinates (N.T.S. $92 \mathrm{G} \cdot 9 / \mathrm{E})$ are $49^{\circ} 34^{\circ} 40^{\prime \prime} \mathrm{N}, 122^{\circ} 05^{\circ} 10^{\prime \prime} \mathrm{W}$.

2OPOGRAPIX

The cerrain in the area is mouncainous, with marked changes In elevation. The property lies on the north slde of a cirgue, with the showing lying between elevations of 5,400 feet and 6,000 feet. Treeline Lias between 4,000 fear and 4,600 feen elevarlon, with bare rock, talue and saow above. The slope of the hillsides varles from 20° zo 45°. Numerous small streans drain the slopes and provided water for drilling and camp use.

ACCESS

No roads lead to the property. Hellcopter's are required to move men and materifal in and out. Equipment which mise be "slung$1 i^{18}$ by hericopter is Best brought to the end of the private Chehalis Lake-Eagle Creek logging road, controlled by Canalhan Forese Producte Lifated. A leas sacisfactory rouce is up Stave Lake by barge and then by truck to Wimslow Lake. There is an alsscrip for small ifred wing Aiscraft at the Wamick camp at the head of Stave Lako.

Walking into the property from the airstrip would take about eighe hours (estimate by L. Riss).

WEATHER

Weather in the vicinity of the property is typical of the coast range in general - clear weacher for two to four days, fog, clouds and some rain for the next week to ten days. Eyen when surrounding cirques had cleared, the one the property is in was often se111 cloud Eliled. When the sky is clear durlng the sumser temperatures on the hillsida reach the low elghties; when the valley is fogged in the cemperature seldom rises above fifcy degrees. Winds are uaually moderate at five to ten knots from the west.

CAMP

The canp wee etruated at about 4,600 seet eleverion in a telativaiy flat but swampy area south of the cantre of the showing. Wacer for the camp wei obedined from a creek flowing across the area and from a sump on the hliletde ease of camp. Seven framed cents, to accomodate thirteen mex, were erecead for the drilling program. Four of the tents wese accuracely made to moasure 12 feet by 16 feec, and as a reoult, the frames were erected ufth a minimu chount of cuteling of piyvood. The office sent and cook's cent wera sueller, the core tent larger. For a crow of twelve mon one $12^{\circ} \%$ 16° tent as a cook hhack ie not suffleient.

A plywood and clear vinyl shower was bulle and water heated in a 45 gallon drum using a Tiger Torch. This syetem using gravicy feed, was satisfaccory for the ahower, but could noc be used to supply tot water to the cook chack. A drum lined with plastic or painted inelde should be used for heating the water.

MECEODS OP INVESTIGATION

INTRODUCTIOR

The Stave lake deposit vas found by les kiss as a resule of a regional seream sedinent sampling program conducted during the Summer of 1969. Samples from streams draining the minerelized area returned values:of qreater chan 100 ppm . Cu and $10 \mathrm{ppm} \mathrm{Mo}$, to background values of 40-60 ppm Cu and $2-3 \mathrm{ppm} \mathrm{Mo}$. locations and values are plotced on Fig. 2. Kiss prospected the drainage nree and scaked 10 clains inirially. Sevency more claims were added later.

SALTLTNG

Three trenches were drilled, blasted and sampled by RIss during August, 1969. The relacive locations and values obtained are plotted on Fig. 3. Comblned grab and chip samples were used. The subjective element inherent in this type of sampling commonly results in opelmistic values. Channel sampling would have been difficult and time consuming but preferable.

During July and Auguet, 1970 , the surface was mapped and the mineralized zones sampled by seven wo diamond drili holes. The holes are summarized frí Table I and ploted on Fig. 4. Individusl Cin and MoS_{2} values and averages are plotted on the diamond drill hole sections, (Appendix B) and the average for each hole is given in Table 2.

TABLE I

HOLE NO.	AZIMTTE	DIP	LENGTH	ZONE T	SSTED
1	$020{ }^{\circ}$	-35°	501	M1dcie	Zone
2	200%	-50°	217	South	${ }^{16}$
3	020°	-35°	805	Middle	11
4	200°	-44°	506	South	\%
5	185°	-45°	536	North	1
6	200°	-58	300.	South	\because
7	020°	-35°	787	Midcle	4
			$\overline{3652}$		

TABLE 2

True. width measured perpendicular to dip of fractures.

GEOLOGY

REGTONAZ GROLOGY

The Stave Lake deposit is in the sotith central Coast Range, in an area mapped and studied by Roddick (1965): He divided the plutonic rocks tnto granite, gramodiorite, etc., and then subdivided these on the basib of mafic mineral content. The "stock" in which the mineralization was found was dosignated as $\$ 82$ (Map 1151 AGSC), and was mapped as quartz diosite with hombiende more abundant than biotite (type h3). Two miles north of the showing this "stock" is in contact with one of granodiorite with a similar mafic minetal distribution (type h_{2}). Four miles east of the showing the quartz diorite is in contact with a roof pendant of Jurassic metavolcanics and sediments.

Numerous north northeast Inears are visible on aerial photographs of this area, one of which can be traced from two miles north through the deposit and a mile or more to the south. Tipella Creek, Trechewey Creek, Winslow Creek and the pendant-quartz diorite contact are approximately parallel to these linears. The linears are probably faults with litele recognizable offset.

The absolyte ages of the plutonic rocks in this area have not been determined. The rocks in the roof pendant to the east have been placed in the Middle and Upper Jurassic; those in a small pendant six miles south of the deposit are pre-Jurassic metamorphic rocks.

LOCAL GEOLOGY

An area approximately 5,200 feet by 2,600 feet covering the showling was mapped at a scale of $1^{\prime \prime}=200^{\prime}$. On the resultang map (in pocket) are plotted faults, surveyed control polnts and clain posts, and the distribution of the mineralized fractures. The control points were surveyed by Charles Wilmot, and the mapping done principally by Denis Clarke. Trench $\$ 3$ was mapped by Eric Standen at a scale of $1^{1 "}=20^{\circ}$ (F1g. 5).

ROCK TYPES

Quartz diorites and a porphyritic.granodiorite are the two major rock types found. The former occupy over 90% of the area mapped. Contacts between the quartz diorlte were very hard to define in outcrops ut the scale used, but in split core five variecies of quarez diorite could be distinguished. Descriptions of the rock types are given in Appendix A.

Contacts between the varieties vary from sharp to gradational; but most are sharp. Table 3 sumarizes the contacts noted in core from five of the seven holes drilled. Holes $s i x$ and seven were both in MQD for their entire lengths. The only chilled contacts recognized were in large boulders. In both cases PGD was ch1lled against MQD.

contact $\begin{cases}\text { sharp } & \\ \text { gradational } & \ldots\end{cases}$

* for rock types see appendix A

CANEX AERIAL EXPLORATION	$1^{\prime \prime}=20^{\prime}$
GEOLOGY MAP	$V-123$
TRENCH NO. 3	Fig. 5

2ABLE 3

Smail, rounded, partly assimilated zenollthe are present in the quicire dioritee and the porphyritic granodiorite. The degree of assimilation Is relatively constant regardless of host rock and the renollths are always darker and flnez grained than the host. There are occasional local concentrations of es many es four or five per square yard, but in general they are more widely diseributed. They vary in diamecer from one inch to four inches, mose being in berween. Very fev subangular ones were seen, the majority belag definitely rounded.

STRUCTURE

The only mafor structural features which are readlly apparent on acrisl photographs ($1: 32,000$) of the area are the north-south trending Faults. These innears are marked by alignment of streams and notches inFidges, and can be traced for miles. One of these faults crosses the west contral part of the deposit, and provided access for most of the basic dykes found on the property. Less pronounced patallel faules are also marked by copographic depressions and the presence of basic dykes.

These faults are paralleled by numerous fractures not vislble on, the aerlal photographs. These strike 000° to 020°, dip steeply east or west, and aro unmineralized. A second group of unmineralized fraceures are present here and there. One set dips steeply northwest or southeast, the ocher steeply northeast or southwest. A third group strikes east-west with a shallow dip to the south. The slope of the hillslde is largely controlled by this group. On the east ead of the property some of these fractures are filmed by epidote.

Suiphide minerallzation is confined eo an east-wese seriking set of fractures which dip steeply north. The strike of theec varles locelly but most trend 110° eo 215° along the zone. Thay are extromely elghe, Features, often not apparent from a distance of Ilve Eeet but warked periodically by ridges or lumpe caused by local sillifleacion. These fractures extend beyond the limits of the mineralisation and the southerr boundaries of the mineraliued zones have a flatter dip to the north than the fractures. The northern boundaries of the mineraliwed zome dip to the south.

Movemant has occurred on fractures of each of these sets, the amont seldon ercecding a Eew inches on any one frecture. The predominant sense of movement In the weatern part of the area was zight 1ateral; In the ease it was lest. Iateral. Charactariting the Sour sets as NW, NE, EN and SE, the lollowing relaefonehips have been found:

TABLE 4
*

PRACLURES ON WRICH MOVEmREAC OCCURRED	FRACTURES WHTCH WERE OFTSET	sease OF MOVETENT	AMOUNT OR Movmenent
18	EW	Sighe lateral	$2^{\prime \prime}$
W8	WS		4-3 ${ }^{19}$
n	EW	" \quad "	$1 "$
\because	E	Left lateral	$2^{\prime \prime}$
*	SE		3/4"
8	SE	R1ght lateral	$2-3^{\prime \prime}$
Ex	WS	\cdots	6^{10}
	Ns	Left laceral	$3_{4}-2^{\prime \prime}$
SE	NE		4^{18}

These examples were obtained from the weatern and central parch of the mineralized area. Both right and left lateral movement appears to have occurred on fractures trending NE and 26. This may be more apparent than real, becauee vertlcal novemant on one fracture crossing two ochers with oppoatte dips would give the same pattern.

The dark quarte diortte is locally follated, whereas the modiun quartz diorite very zarely is. The lollaced appearance is caused by allgmint of homblende. Follatlon la the medtum guartz diorite is reateicted to contaces with the dark quartz diorite. In one outcrop the medinn and dark quarez diorites appear to have been "swirled" together.

Sulphide mineraltzation, consisting of chalcopyriee, bornite and molybdentte, is present in marrow quarez veins, as contings on Eractures and ai dismeminatione between Eractures. Secondary minerals are predominantly malachite and "Inonite". with some azurite and ferrimolybdete. Scheelite and powelifce are prezent in minor amourss in quartz vains and with sulphide in Eractures. No pyrite wai seen anywhere on the property.

The çuarz velng at the east and west ends of the mineralized zone ate narrow, seldom exceeding \&s 1nch. In the centre they are thicker, to 2 inches, but fewer in number. Chalcopyrice and molybdenite ase the principal sulphides in the quartz velns. Mneralization is seldom continuous for more than two fect. eacept in the west central part of the sone where there are ho fach to $\frac{1}{2}$ Anch veina of molybdenite 10 to 20 feet loag, separated on strike by veins of quartz with disseminated molybdenite. Chalcopyrite la a minor conetinuent of these velns, but lonees up to 2 Inches wide and 2 feet long were found in the wide guarez veins. The chaicopyrite in these lenses is accompanied by coarse rosettes of molybdenite and inclmacely admined boralte. Similer thick lenses of molym bdente were not seen. Scheelite and powellite in the quartz veins occur as icregular miky whice grains occasionally as wide as if inch.

Most of the euiphide wineralization occurs as coatings and flllings in Practures. They are usually accompanied by euhedral quarts and sometimes blotite. The surface of a fracture seldom contains more chan 50% sulphides, and more commony only 30%. Euhedral guarez grains ug to 4 Inch long, with the C axis parallel to the fracture, are present with the sulphldes on many of the Eractures. When blotite ls present it is coarse grained and 1ntergrown with the sulphides. Both the quarta and the blotite appear to have preceeded the sulphides.

Towards the eastern end of the deposit molyblomite decteases, and the copper sulphides on the fractures have chlorlte and/or hormblende associated with them.

The distribution of the mineralized frectures was mapped on the besl's of the number of fractures per ten foot interval, the same teheme as uscd in logsing the core. Three arbitrary divisione have been used - Less than 5 fractures per 10 feet, 5 to 10 , and greater than 10. Three zomes of $10 \div$ Eractures/10 feet ware defined. Practures in the northern one have more molybdenire than chalcopyrite, and bornte is seldors present. Those in the central zone contafn more chalcopyrite and bornite, and less.molybdenite. The fractures in the south zone are mineralized with predeminantiy chafcopyrite and bormite, and molybdomite is scarce. The chalcopyrite: bornite ratio 13 alwaya $5: 1$ or greater.

2here 1s veny 1 ivtle disseminseed aulphide mineralizuelon. Then preseat 1 oceurs between closely spaced fraceures. and the sualua of sulphides are almose invariably in the coarser gratned homblende. Chalcopyrife 1 s foumd diseaminaeed much mote ofeen than bornite, and dissemlnated molyodanlte is very rare.

There Ls alao very Iltele alteration assoclated with the sulphide minecslization. The maflc minerals; principsily homblonde, presenc in and lmmedately adjacent to the mineralkzed fractures have been silghely chiozicized. No eericlee wae visible wogascopically. there ls evidence of sporadic silicification along sone of the frsctures, but no pexvesive alilcification is evident. Coarse gralned bornblende containing oulphides 1b noe vigibly altered or bleached.

No discinct correlation was found beqween rock type and sulphicie compostrion, but Eractures in the dark quartz diorice appemred to contain zelatively more bornite than fracturas in the other varieties.

A mineralised zone 4,800 feet long, aast to west, and averaging 1,065 Fect wide, north to south, was outlined on surfaca. The minoralization, consiselng of chalcopyrite, molybdenite and bomite, is conimed to narrow eab-wert Eractures. Fydrothemal alteration is eseentally absenc, Seven WQ diamond drll1 holes were drilled in the central pare of the zone to cest the exposed width and to deternino depth eztension. All cose was spilt and analyeed for copper and molybdenum. Alchough the values returned were low, an attempt has been made to indicate tomage and grade.
rirst, an area was asslgned to each of the drill holes, in plan and section. (See Figs. 6 to 10, Appendix B). The grade determined by each dxill hole was assigned to each of the mineralized blocks outlined. The connage of cach block wad determined by calculating the volume enclosed, and dividing by a tomage factor of 12.2 cu.ic./ton. This factor was calculated from the waight and volume of the cose from holes one and two (Appendix C). Flnally, the comage per block was multiplied by the average retal content of each Block, these products sumed and the totals For copper and molybdenite divided by the total tomage (Table 5). Tor the material blocked out by drilling the reaule is $33,092,000$ tons averaging $0.051 \% \mathrm{Cu}$ and. $0.009 \% \mathrm{MoS}_{2}$.

The volume of the entire zone was calculated using an area 4,800 feet by 1,065 feet. Vertical sides for the block were essumed, and the upper surface wat given an average 25° slope, rising from south to north. The approzimate elevation of the southern boundary is 5,400 feet, and the elevation to which the deposit has been cested is 5,000 feet. Dividing the volume by the factor of 12.2 gives an estimated tonnage of 272.5×10^{6} cons. The saly grade that can be assigned to this tomage is that deternined for Blocks A to G. The value per ton of this marerial, based on metal prices published in the Northern Miner, September 24. 1970 and an average grade of $0.051 \% \mathrm{Cu}$ and $0.009 \% \mathrm{MoS}_{2}$, is $\$ 0.78$.

TAELE 5

BLOCK	VERTICAL SECIION AREA	$\begin{gathered} \text { EORIZONTAL } \\ \text { WIDTE } \\ \text { FT. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { VOLUME } \\ & \text { FT. } x 10^{6} \end{aligned}$	$\begin{array}{r} \text { TONS } \\ \times 10^{6} \\ \hline \end{array}$	CuxT	$\mathrm{MoS}_{2} \times \mathrm{T}$
A	122,400	$292{ }^{\text { }}$	35.75	2.925	190,000	2,925
B	18,560	292	5.42	. 444	10,650	888
c	334,000.	414	128.57	10.52	558,000	137,000
D	103,100	414	42.70	3.50	280,000	32,500
E	101,600	133	14.42	1.183	42,600	12.830
F	38,400	528	20.24	1.66	225,000	44,800
c	297,600	528	156.90	12.86	386,000	70,750
				33.092	693,850	300,693

APPENDIX A

Description of rock types found on the Stave Iake property.
Medium quartz diorite - MQD and MQD egr.

This quartz diorlte $1 s$ medium gralned, medium grey, holocrystalline, and hypidiomorphic granime (1.e. granitic). Rormblende 1s. In euhedral to anhedral grains $1 / 8$ inch to $3 / 16$ Inch $10 n g$ and is coarser grained than the blotite. The larger hornblende grains have irregular, resorbed bounderies and are comonly polkilitic. Blotite is subhedral to anhedral, occasionally in small (1/10") pseudoheragonal books, more often in Irregular, fine grained. (1/16" to 1/31") flakes. Quartz forms subrounded to irregularly rounded clear grains 1/16 Anch to $1 / 3$ inch in dlameter. Coalesced grains have fnciusions of hornblende and/or blotite. Plagioclase occurs as white, fuhedral to anhedral equane grains, $1 / 8$ inch to $1 / 16$ Inch long, and is mot noticeably twinned. Spheme is a constant but aparse accessory.

Chalcopyrite and molybdente are the predominant sulphides. Where disseminated chalcopyrite is preferentially associated with grains of poikilitic hornbiende. Most of the chalcopyrite is present as fracture fillings in or associated with the mafic numerals. Molybdenite is essentially restricted to the fractures, and most comionly is found In narrow (1/8" to $3^{\prime \prime}$) quartz vins with some chalcopyrite.

The coarse grained variety (MOD cgr) is almilar texturally to MQD but hornblende is markedly coarser grained. Blotite and quartz are alightly coarser grained, but the feldspars appear to be unchanged.

Dark Quartz diorite - DQD and DQD cgr.

The dark quartz diorite is a hypidiomorphic granular, holocrystalline rock, medlum to dark grey in colour. The mafic minerals vary in grain size from less than $1 / 64$ inch (biotite) to $1 / 8$ Inch $\times 1 / 16$ 1nch (hornbleade). The dark colour is due to the fine grained blotite. Coarse grained hornblende is poikilitic with inclusions of guartz and felapar. The texture of this variety is similar to the medium quarez diorite, but quartz and feldspar are slightly finer grained and twining in plagioclase is more evident. Sphene is less abundant in this variety than in the medium quarty diorite. Bornite is the prominent sulphide with accompanying chalcopyrite and some molybdenice. The latter is reduced in quantity, often markedly, compared to its quantity in the MQD. Disseminated bornite and chalcopyrite are found predominantiy in coarse grained, poikilitic hornblende.

DQD cgr differs from $D Q D$ principally in the grain size of the hormblende. In the coarse grained varlety large (to $\mathrm{K}^{\prime \prime}$ \% $3 / 16^{\prime \prime}$) grains of hornblende are prominent, while blotite is relatively fine grained (1/64"). In other respects the varlecies are similar.

This varieey is similat to DQD egr in grain otae and mode but tho maile mincrale: wee much less diectnce. It is not ar dosk as DQD and a greenish gray colour is characterlectc. Zrornblende conds to be coarse grained, equent, and poikilitic. There may bo an increase in RoLeldspar in this variaty - rounded, milky white grains diseince from guavez.

Porphystic granodioztce - PCD

Thia is a light grey rock which when weathered is butis to whice. It is holoczysealine bue unequisranulaz. The round mess is composed of Eine grained quartz and feldspar with eveniy dictributed Elne greined (.01") blocite. The phenocrysta are most noticeably grains of hornblonde, to to Inch long; of shiny black blotlee, $1 / 8$ 1nch to 1/16 sneh in diameter; and, least appareat, of quartz ro 3/16 1ach across. Lese than 10% of the rock 1s composed of these phenocrysts.

Aplice

Dykee of apiste, varying from lese chan I Inch to over 6 inches wide, were found on the property. Most strike 000° to 100°, and appear to be concentrated near the north and souch limits of the alneralized sone. One or two seamed to grade into quartz velns, particularly near DDA 5 on the north side of the rone. Aplite dykes striking 010° to 020° were not comon, and vere Elnar grainod than the othera.

Mnor rock eypes

Small lenses of pegmatilc material were occasionally seen assoctated with apllte dytes. Charscterlatleally theae were composed of comere grained guartz, k-feldmpar, and blotite oz chlorlee. Coarse grained apatite was found in two of these lenses.

Irregular bodies, with generaily lobate boundaries, of medium grained Alaskite (?) were found in the porphyritic granodiorite. They appaared to be younger than the sranodiortie.

Elongace blebs, 4 to 6 inches long and an inch wide, of "microademilite" were foum along east-wese Eractures. Charactoristically, choy had very maflc cores. Wich coarser gralned elongate pegratitic pods contained blebs of rusty chaicopyrite up to one inch across. Both the "oflcsoadamelilte" and the pegratitic material were resericted to a zone about 200 foet vide on the north side of the mineralized area.

```
    Hout major mosehwsouth erendlns caults, and sone coot-vest
ones, coneatr discontlnucus bastc dywes of varlable wldek. The dyte
zocks are genemalzy dask to greenlsh brown, flne gre\ned vilch
phaneritic bordere, and occasLonaliy amyedaloidal. In componLeion tney
dse probsbig andesLelc.
```

Broakdow of averaged portions of diamond drill holes.

VOLUME CALCULATHON

```
Arec of mRnorelized zone
4.115 < 10 gc. }\mp@subsup{}{}{2
ERSective rectangle
Average slope of hillside, rising to the north
Rise over 3,065 feet
Vertical eldee aasumed for zone
= 4,800 2c. & 1,065 &と.
*2 }2\mp@subsup{5}{}{\circ
=500 R&.
Volume above south boundary datun (5,400.1t. elevation)
    250\times4,800 =1,065 = 1.28 * 1098%. 
Elevation of sssumed bocron of mineralized zone
= 5,000 qeet
Volume belov: south boundary datum
=2.046 < 1092ع. 3
```

Wotal voime Tocal cons
$=\frac{3.326 \times 10^{9}}{12.2}$

