SURFACE GEOLOGY AND SOIL GEOCHEMISTRY ENTERPRISE MINE SLOCAN MINING DIVISION, B.C. NTS 82F/14W
 LATITUDE 49ㅇ́ LONGITUDE $116^{\circ}{ }^{\circ} 1^{\circ}$

ARCTEX ENGINEERING SERVICES

I.B. GOLDSMITH, P.ENG CONSULTING GEOLOGIST

OWNER, OPERATOR, CONSULTANT, AUTHOR NOVEMBER 1979

TABLE OF CONTENTS

Page
SUMMARY 1
INTRODUCTION 2
LOCATION MAP, MAP I 5
GEOLOGY 6
SOIL GEOCHEMISTRY 7
PROSPECTING: SURFACE 10
UNDERGROUND 11
RECOMMENDATIONS: SURFACE 12
UNDERGROUND 13
CONCLUSIONS 13
COST ESTIMATE 14
ENGINEER'S CERTIFICATE 15
REFERENCES 16
ITEMIZED COST STATEMENT, 1979 PROGRAMME 17
COST STATEMENT FOR M.E.I.P., SUMMARY 20
APPENDIX: GEOCHEMICAL ANALYSESASSAYS
SURFACE GEOLOGY AND SOIL GEOCHEMISTRY, MAP 2(Pocket inside back cover.)

SURFACE 'GEOLOGY AND SOIL GEOCHEMISTRY ENTERPRISE MINE

SLOCAN MINING DIVISION, B.C.

SUMMARY

A programme of prospecting, soil sampling and geological mapping on claims of the Enterprise Mine has outlined three target areas for additional exploration on surface. Underground workings are accessible and should be thoroughly sampled and mapped to detail ore which is readily available. Object of the exploration is to locate high-grade, directshipping silver-lead-zinc ore with a high silica content.

A cost estimate of $\$ 126,000.00$ to continue evaluation through the next stage is presented.

INTRODUCTION

The Enterprise property is located 14.5 km (9 miles) at azimuth 172° from Silverton, B.C. on the steep southern slope of Enterprise Creek. Access is by a recently improved logging road for 8 km (5 miles) up Enterprise Creek from a point on Highway 6 which is 11 km (6.8 miles) south of Silverton.

The claims were acquired by the author of this report and his associates November 3, 1978 in a drawing for lapsed crown grants. Because the claims were drawn singly instead of as a unit the ownership was fragmented but the key claims were obtained. From northeast to southwest the claims now held are:

United Empire	L2103
London Fraction	L5664
Sunset Fraction	L14541
Slocan Queen	L1015
Enterprise Fraction	L4522
Enterprise	L1014 (acquired Nov. 9, 1979)
Empress Fraction	L8400

All of the claims which were held for the past year were prospected and of these only the Enterprise Fraction (1.6 acres) did not have soil samples taken for geochemical analyses. A total of 170 soil samples and 3 samples of vein material were analysed. Prospecting and soil sampling were supervised and performed by the author; geological mapping was done by the author. Approximately 8 km of grid was established.

Early history of the mine is summarized by Cairnes (2, p. 172-174) and is reproduced below.

ENTERPRISE MINE

References: Ann. Repts., Minister of Mines, B.C., 1896-1928; 1896, pp. 69, 70; 1904, p. 171; 1824, pp. 200-201; and other years.

Rept. of Zinc Commission, 1906, p. 225.
The Enterprise property comprises the Enterprise, Enterprise fraction, Slocan Queen, and Iron Horse No. 2 Crown-granted claims. It is situated on the lower southern slope of Enterprise (Tenmile) creek about 2,200 feet above and 8 miles by road from Enterprise landing on Slocan lake. The property was acquired in 1928 by Yankee Girl Consolidated Mines, Limited, Vancouver, B.C.

The ore produced by the Enterprise mine exceeds in quantity and total value that of any other property in Slocan City mining division. The main Enterprise lode was located in 1894. The property was sold in 1895 or 1896 and then acquired by the Enterprise (B.C.) Mines Company, Limited, which held the property until 1928 when it was secured by the present owners. Enterprise Mines operated the property until about 1901 since when it has been operated at intervals by lessees.

The first production recorded was 160 tons of silver-lead ore shipped in 1896. This ore carried, on the average, 163 ounces in silver to the ton and 23 per cent lead. Up to the end of 1905 the property is credited with 6,212 tons of silver-lead ore carrying an average of 122 ounces in silver to the ton and about 19 per cent lead. The shipments of this period doubtless included considerable zinc, of which no complete record is available. According to the Zine Commission the production up to 1906 included 8,215 tons of shipping ore, of which 2,466 tons were concentrates from the mill and 5,749 tons hand-sorted ore. Included in this tonnage was a middling product sold as silver ore, though containing 27-98 per cent zinc, $71 \cdot 6$ ounces in silver to the ton, and 2 to 4 per cent lead. Up to the end of 1919 shipments included 6,810 tons, averaging 121 ounces in silver to the ton and about 19 per cent lead. No shipments are recorded in the years 1920-1924 inclusive, but in 1925, 1926, and 1927 a total of
, 1,746 tons of silver-lead-zinc milling ore was shipped. Values of the 1927 shipments are unknown, but in the previous two years 929 tons of ore averaged about 20 ounces in silver to the ton, about 12 per cent lead, and 29 per cent zinc.

The underlying rock on this property is chiefly caarse-grained porphyritic granite of the Nelson batholith. In piaces both in the underground workings and at the surface more basic phases form irregular bodies of varying size, most of which appear to be either digested inclusions or differentiates of the granitic magma. The granitic rocks are intersected by s few, small, basic dykes, varying from hornblende porphyrite to olivine and olivine-diallage lamprophyres. One at least, and probably two, narrow dykes of the lamprophyre types were observed to cut across the Enterprise lode on No. 5 level. Others are pre-mineral and are involved in the faulting that disrupts this lode.

The main or Enterprise lode has been developed by nine adits, several intermediate levels, and two shafts on a slope facing northeasterly. One shaft was sunk on the lode about 50 feet above and 300 feet southwest of the portal of the uppermost level and the other on the lode from a point 35 feet below and a short distance northeast of the lowest adit. The lower shaft is on the Iron Horse No. 2 claim aad is reported to have followed the lode to a depth of 214 feet. The difference in elevation between the collar of the upper shaft and the bottom of the lower shaft is in the neighbourhood of 1,100 feet and the two shafts are about 2,200 feet apart horizontally.

The lode is continuous between the two shafts and throughout this distance the mineralization has an encouraging character. It is narrow.
in but few places exceeding $1 \frac{1}{2}$ feet in width and averaging less than i foot. The lode is a mineralized fissure striking north 50 degrees east and dipping from 60 to 80 degrees southeast. In the upper levels it was filled chiefly by varying proportions of quartz and ore ininerals. Most of the ore has been stoped out above the sixth level and the workings above are largely inaccessible, though some work has been done in recent years on the fourth level. Above the sixth level the ore minerals were largely galens carrying grey copper or other silver-bearing minerals. In the lower workings zinc blende became increasingly abundant. .The zinc blende is claimed to carry better silver values than the galena and these are said to persist to the lowest workings, zinc ore carrying as much as 90 ounces in silver a ton having been obtained from the lower shaft on the Iron Horse claim. Other ore minerals are pyrite and chalcopyrite.

The Enterprise lode is interrupted by one major fault or fault zone and by minor faults. The major fault intercepts the lode nearly at right angles about midway between the two shafts and dips steeply northeast. It offsets the lode about 60 feet to the left. The other faults cause only slight displacements. On either side of the main fault vein matter formed an almost continuous ore shoot which pitched towards the northeast. Along the sixth level, stoping was continuous for 650 feet and, 100 feet above this level, for 325 feet. Coincident with the increase of zinc blende with depth siderite became conspicuous and is notably abundant on the lowest level. Towards the face of this level, however, quartz is again the predominant gangue, the vein matter including, in places, from 6 to 12 inches of chiefly banded, massive zinc blende and quartz.

Some stoping has been done above the lowest level over a length of 400 feet, but above this there remains a large block of ground yet to be explored. It would appear that work might be extended to investigate the lode below the sixth adit level west of the big fault, though the character of the lode on the lowest (No. 7), and the third lowest (No. 5), adit level indicates that mineralization below these older, more westerly workings is likely to be zincy in character.

Aside from the extensive developments on the main Enterprise lode, a little work has been done on a second lode outcropping 380 feet to the west and on a level with the portal of the seventh adit. In 1927 it had been drifted on for about 150 feet. It is a wide shear zone in the granitic rocks and is composed mostly of crushed rock, partly cemented by quartz gangue with a little calcite. It strikes about north 40 degrees east and dips 70 degrees east. The hanging-wall is particularly well defined. In character and widtn this lode bears some resemblance to that developed so extensively in the Arlington mine and with which it is presumed to be continuous, though the two have not been traced to a junction. It seems likely that both lodes at the Enterprise mine and those on adjoining properties are within a single. wide zone of fissuring, shearing, and brecciation, and that to the southwest this zone passes through the Arlington, Speculator, and intervening properties. It is more doubtful whether sny single fissure persists for this distance. Exploratory work conducted within such a zone involves mnch crosscutting to assure that no important mineralized fissure is being overlooked.

In 1945 the Western Exploration Company reopened the mine and operated
it for millfeed until 1953. During 1947 most of the total production
of the company came from the Enterprise, beiog 6,125 tons containing
11 ounces Au ($0.0018 \mathrm{oz} /$ ton Au), 66,008 ounces $\mathrm{Ag}(10.78 \mathrm{oz} / \tan \mathrm{Ag}$),

(Reference 1). Lessees have extracted small quantities of ore since 1953 in at least two periods (1966-68 and 1974-76), the most recent operator being Len Freise, now retired in Nakusp, B.C. (Personal communication with L. Freise).

MINDEP computer files (3) list the total production and grade through 1978 as:

Tons	oz/ton Au	oz/ton Ag	\% Pb	$\% \mathrm{zn}$
12,274	0.0005	95.2	16.5	21.9

The recorded tonnage is believed to be low; the author has seen a figure of 29,000 tons of a similar grade.

GEOLOGY

The claims are underlain by porphyritic granodiorite and dioritic phases of the Ne1son batholith. Soil and talus cover is heavy and outcrops are scarce except in the extreme northern and southern portions of the claims. Location of assumed contacts has been based in part upon the preponderance of types of rock fragments in soil cover and the prevailing slope direction. The valley floor of Enterprise Creek is filled with transported alluvium.

In hand specimen the free quartz content generally appears to be too low for a porphyritic granite; thus the rock has been classified as a porphyritic granodiorite. Individual crystals of orthoclase feldspar may be as long as 50 centimetres, averaging perhaps 20 centimetres, in a more nearly equigranular ($0.5-1.0 \mathrm{~cm}$) groundmass of orthoclase, plagioclase and quartz with minor biotite and hornblende. Orthoclase content exceeds that of plagiclase.

The diorite or dioritic phase is generally less porphyritic and the percentages of orthoclase and plagioclase are more nearly equal. Ferromagnesian minerals may approach quantities of $25 \%-30 \%$ although 20% is more common.

Zones of shearing trend $040^{\circ}-050^{\circ}$ and dip steeply southeasterly. The Enterprise vein occupies one such zone. At least three other shears are present, one near the northwest side of the Slocan Queen claim, one west of the 5 level portal (previously called No. 2 vein) and one (or two) on the Empress Fraction claim.

- Cairnes records cross-faults which trend northwesterly and offset the northeast-trending shears. Narrow fractures near the $3 \frac{1}{2}$ level portal which strike approximately 135° may belong to this system.

SOIL GEOCHEMISTRY

Base line for the grid was established at azimuth 050°, parallel to the strike of the Enterprise vein, with cross-lines oriented at 140°. Line spacing is 122 metres (400 feet) with sample intervals of 30.5 metres (100 feet). Samples were taken with a narrow elongate spade at depths of 20 cm (8 inches) below the organic debris. Soils are nearly uniformly light-coloured and sandy with varying proportions of light-coloured (usually light-brown-orange) clay minerals.

Analyses for silver, lead and zinc were petformed by Loring Laboratories Ltd., 629 Beaverdam Road N.E., Calgary, Alberta. Samples are screened to -80 mesh and 500 mg of the fine fraction is weighed into test tubes. Aquaregia is added and the sample is digested in a water bath at $100^{\circ} \mathrm{C}$ for three hours. Test tubes are then bulked to the 10 ml level, mixed and allowed to settle overnight. The samples are then put through. the atomic absorption, with appropriate standards, and the results reported in parts per million.

Background metal values for lead and silver are averaged for 70 samples from lines $12+00 N$ to $32+00 \mathrm{~N}$ above the alluvium level where the soils are not deemed to be anomalous, and found to be 20 ppm Pb and 0.6 ppm Ag. Zinc analyses had not been requested but the laboratory inadvertently analyzed one batch of samples; coverage is not adequate to calculate background values but a subjective scan sets a background level at approximately 90 ppm although there are broad fluctuations from this figure. There may be a vague direct relationship between soils which have an interpreted diorite association and higher zinc values but zinc from rock minerals is probably overprinted by zinc from sulphide zones.

- Lead values clearly increase near the Enterprise lode as it is approached from either the northwest or southeast. Silver also peaks near the lode although in a less pronounced fashion than lead.

The most unambiguous single anomalous analysis of 280 ppm Pb and 8.5 ppm Ag is from $12+00 \mathrm{~S}, 4+00 \mathrm{E}$ where there is no evidence of contamination from mining operations, and the sample is located on the trace of the Enterprise lode. This sample is high on the valley slope of a stream which cuts the lode at approximately $14+00 \mathrm{~S}, 4+00 \mathrm{E}$, or 60 metres (200 feet) grid south.

Other anomalous values listed below could possibly be attributed to stream transport or to man-made disturbances. However, in every instance the soil texture and colour (recorded at the time of sampling) is appreciably different from the balance of the samples. At these locations the soil contains more clay, is damper and is dark brown in colour. It is possible that a very old slide which crossed the Enterprise lode may have-mixed and transported soils, organics and metals downslope. None of the sites are particularly flat, nor is there evidence of ore stockpiles.

Location	Pb ppm	Ag ppm	Soil Description
4+00S, 1+00W	240	2.8	Dark brown, coarse sand, lesser clay. Skid trail (?) on slope direction passes at $0+80 \mathrm{~W}$. Porph. grano. fragments.
$8+00 \mathrm{~S}, 1+00 \mathrm{~W}$	760	5.6	Dark brown to tan, sand and clay and fine rock fragments. Deeper soil without coarse rock. In clearing (15m x 15m) with Devil's Club, 10 metres downslope from road.
$8+00 \mathrm{~S}, 1+00 \mathrm{E}$	159	3.5	Brown sand with clay. Porph. grano. and dioritic fragments. Descending into road cut. Stream at $1+20 \mathrm{E}$.
12+00S, 1+00E	240	5.5	Dark brown sand and clay. Porph. grano. gragments. Clearing, with Devil's Club. Possibly very old slide area 4 metres downslope from road.
12+00S, $2+00 \mathrm{E}$	187	3.2	Dark brown clay and sand. Porph. grano. gragments. 2 metres downslope from road.

Values from lines $4+00 S$ and $8+00 S$ if correlated to line $12+00 S$ appear to be offset southeasterly; this offset would be in the same left-hand relationship as the cross-fault noted by Cairnes which should cross the grid in the vicinity of line $12+00 \mathrm{~S}$.

On the Empress Fraction claim the geochemical values in the vicinity of trenches and adits are approximately three times background in lead and two times background in sllver. Two parallel zones are indicated.

In the northeastern portion of the property two samples at $32+00 \mathrm{~N}$, $4+00 E$ and $5+00 E$ are two to three times background in lead and two times background in silver. These lie within a stream valley and could have been transported: However, samples taken further downstream do not show anomalous values.

PROSPECTING

Surface

Prospecting was conducted on approximately 30 metre (100 foot) traverses between the established grid lines, in addition to coincident prospecting with soil sampling. Because drainages have undoubtedly been examined extensively in the past, more attention was devoted to areas with soil cover.

Three character samples of vein material were collected and assayed. Of primary interest is sample EMP-1 taken from a trench near $36+00 S$, $.2+00 E$ on the Empress Fraction claim which returned $9.56 \mathrm{oz} /$ ton Ag. The composition is mostly vein quartz with bands of sphalerite. There has been no extensive mining nearby; if an ore shoot is present it has been undisturbed by previous mining operations.

Sample SQ-1 taken from a stope above the 2 level portal assayed 28.82 oz/ton Ag. Quartz with some calcite and ankerite has streaks and blebs of galena and sphalerite. This is of importance as an indication of the grade of mineralization which might have been deemed sub-economic when the level was last worked.

SQ-2 was broken from a chunk ($150 \mathrm{~cm}^{3}$) of quartz and iron carbonate with disseminated galena and sphalerite, from dump material at the mouth of an adit. In-place location of the specimen is unknown but the adit is accessible and should be examined.

A rusty shear zone with a narrow quartz vein in a creek valley on the United Empire claim does not appear to be mineralized. The shear is probably part of the broad Enterprise zone.

An explanation for the anomalous geochemical values on the Slocan Queen claim was not found.

Underground

8 Level. The 8 level drift on the Enterprise vein was prospected along its length of 290 metres (950 feet) from a point 75 metres (250 feet) from the portal where the crosscut intersects the lode. Five samples of vein material were collected but have not yet been assayed.

Much of the vein has been stoped above the drift, particularly from 60 metres (200 feet) to 180 metres (600 feet) measured from the point where the crosscut intersects the lode. Beyond 180 metres to the end of the drift several exploration raises and small stopes have been mined. At the end of the drift the vein digitates into at least three strands of 3 cm width each over 2 metres of exposure.

A little underhand stoping has been done to 1.25 metres (4 feet) below the track intermittently along 45 metras (150 feet) of drift beneath the mined area. The excavations are water-filled but could easily be pumped, washed and sampled.

Exposures of the vein 3 on the hangingwall (southeasterly) side of the drift floor were examined at numerous locations. Where stoping begins nearest to the portal the mineralization is heaviest across 200 cm ($8^{\prime \prime}$) and consists of sphalerite in bands with irregular blebs and streaks of galena in a quartz-carbonate gangue. Sulphides may comprise 10% of the vein. At a point 150 metres (500 feet) along the lode the width of the mineralization is still approximately 200 cm . Quantity of sulphides is about 10% but galena content increases to perhaps 25% of the total sulphide. Carbonate content has also increased to perhaps 70% of the gangue.

In the last 60 metres (200 feet) of drift the vein narrows to 100 cm (4") with pinches and swells, and breaks into strands. Sulphides are erratically distributed and appear to comprise less than 5% of the vein. Galena content, however, increases to 50% of the sulphides. Tetrahedrite (?)
or finely divided galena is hosted in quartz veinlets. Carbonate and quartz contents are approximately equal.

When assays are available, the results with a map and sample descriptions will form an addendum to this report.

Only portals of other workings were examined. Their condition is noted below:

7 level	Partly caved but accessible. Ladders from 8 level are usable.
6 level	Caved. Could be reopened inexpensively.
5 level	Accessible.
4 level	Caved. Crawl space may be open into a stope.
$3 \frac{1}{2}$ level	Caved but accessible with a ladder into a stope. 3 level 2 levelBadly caved and partly covered with 2 level dump.\quadCaved but several hours shovel work would enlarge an

RECOMMENDATIONS

Surface

1. Additional soil geochemistry should be completed on intermediate lines in the vicinity of $4+00 \mathrm{~S}, 8+00 \mathrm{~S}$ and $12+00 \mathrm{~S}$ near the base line to further define the anomalous zone. If results are encouraging, trenching with a bulldozer-backhoe should be done to expose bedrock. Soil cover appears to be thick and diamond drilling might be required to penetrate overburden.
2. Soil geochemistry should be undertaken, with prospecting and geological mapping, on the newly acquired Enterprise claim.
3. Cleaning of old trenches and new stripping should be attempted on the Empress Fraction to define, sample and map the mineralized zone.
4. The road to the Empress Fraction from $16+00 S, 4+00 E$ should be reopened by bulldozing the scrub alders and minor slides off the right-of-way. This may be completed within a few days of the time of writing this report.

5. Prospecting and limited soil geochemistry to the north of line $32+00 \mathrm{~N}$ should be completed to search for the source of the two weakly anomalous values near the creek.
6. Four short discovery diamond drill holes will be considered to explore the anomaly on the Slocan Queen and the mineralization on the Empress Fraction. Total length of drilling would be in the order of 300 metres (1,000 feet).

Underground

1. Sampling and measuring of all accessible vein material will be undertaken to outline potential mining or salvage blocks. Statistical treatment of the quantative data may assist in guiding exploration. Number of samples is estimated at 100 for a preliminary phase and 200 more for detail, totalling 300. Minor rehabilitation of access routes is anticipated.
2. Geological mapping with particular emphasis on structure should begin with the sampling programme. Controls for lode dilation and zoning patterns will be noted.

CONCLUSIONS

The Enterprise Mine has provided a moderate tonnage of high-grade silver-lead-zinc ore. In addition, the high percentage of silica is currently purchased as flux when shipped to the Cominco smelter at Trail, some 125 km (78 miles) distance from the mine site.

Exploration should be directed towards discovering new high-grade ore shoots in fissures parallel to the main Enterprise lode, as well as in ummined sections of the Enterprise lode which may now be economic. It is anticipated that ores can be mined and shipped directly to a smelter without milling.

COST ESTIMATE

Surface (Items 1 - 6 refer to Recomendations 1 - 6)

1. Soil geochemistry, 100 samples © $\$ 3.00$ each $\$ 300.00$ Grid, sample collection . 500.00
Assays, 10 @ $\$ 20.00$ each 200.00
Equipment rental, 50 hrs . @ $\$ 40.00 / \mathrm{hr}$. $\quad 2,000.00 \quad \$ 3,000.00$
2. Soil geochemistry, 100 samples @ $\$ 3.00$ ea. 300.00

Assays, 10 @ $\$ 20.00$ each 200.00
Grid, sample collection 500.00
Prospecting $\quad 1,000.00$
Geological mapping $\quad \underline{1,600.00} \quad 3,600.00$
3. Assays, 25 @ $\$ 20.00$ each 500.00

Equipment rental, 50 hrs . @ $\$ 40.00 / \mathrm{hr}$. 2,000.00 $2,500.00$
4. Equipment rental, $20 \mathrm{hrs}$. @ $\$ 65.00 / \mathrm{hr}$. $1,300.00 \quad 1,300.00$
5. Prospecting 500.00

Grid, sample collection 400.00
Soil geochemistry, 33 samples @ \$3.00 ea. $\quad 100.00 \quad 1,000.00$
6. Drilling, 300 metres © $\$ 100.00 /$ metre $\quad 30,000.00 \quad 30,000.00$
7. Supervision $14,000.00$

Reporting 4,000.00
$18,000.00$
Surface phase subtotal:
$\$ 71,110.00$
Underground (Items 1-2 refer to Recommendations 1-2)

1. Sampling

Assays, 300 sampies @ $\$ 20.00$ each

$$
\begin{aligned}
& 6,000.00 \\
& 6,000.00
\end{aligned}
$$

Equipment time, rehabilitation,
10 hours @ $\$ 40.00 / \mathrm{hr}$.
2. Geological mapping

$$
\underline{10,000.00} \quad 10,000.00
$$

3. Supervision

Reporting
$6,500.00$

$5,000.00$ | $11,500.00$ |
| :--- |
| $\$ 33,900.00$ |

Total - both phases:
\$105,000.00
Contingency @ 20\%
21,000.00
TOTAL

ENGINEER'S CERTIFICATE

1. I, Locke B. Goldsmith, am a Registered Professional Engineer in the Province of Ontario and a Registered Professional Geologist in the State of Oregon. My address is Box 29, Silverton, B.C., VOG 2BO.
2. I have a B.Sc. (Honours) degree in Geology from Michigan Technological University and have done postgraduate study in Geology at Michigan Tech, University of Nevada and the University of British Columbia. I am a graduate of the Haileybury School of Mines and am a Certified Mining Technician. I am a member of the Society of Economic Geologists, the AIME, and the Australasian Institute of Mining and Metallurgy.
3. I have been engaged in mining exploration for the past 21 years.
4. I have written the report entitled "Surface Geology and Soil Geochemistry, Enterprise Mine, Slocan Mining Division, B.C.". The report is based upon field work conducted by the author.
5. I control, with associates, 100% interest in the property.
6. I consent to the use of this report in a prospectus or in a statement of material facts related to the raising of funds.

Silverton, B.C.
November 30, 1979

REFERENCES

1. B.C.D.M. Annual Report, 1947

2. Cairnes, C.E., Descriptions of Properties Slocan Mining Camp, B.C.: G.S.C. Memoir 184, 1935, p. 172 - 174.
3. University of British Columbia, MINDEP computer files.
4. Wage Scales:
L. B. Goldsmith, Consulting Geologist

Sept. $16, \frac{1}{2} 21, \frac{1}{2} 22, \frac{1}{2} 29,30$, Oct. $\frac{1}{2} 1,2,4, \frac{1}{2} 5, \frac{1}{2} 6, \frac{1}{2} 7$, $\frac{1}{2} 8, \frac{1}{2} 9, \frac{1}{2} 10, \frac{1}{2} 11, \frac{1}{2} 12,13,14, \frac{1}{2} 15,16, \frac{1}{2} 18, \frac{1}{2} 19, \frac{1}{2} 22$, $24, \frac{1}{2} 25,26,27,28, \frac{1}{2} 29, \frac{1}{2} 30, \frac{1}{2} 31$, Nov. $\frac{1}{2} 1,2,3,4, \frac{1}{2} 5$, $6,7,8, \frac{1}{2} 9, \frac{1}{2} 10,11,12,13, \frac{1}{2} 14, \frac{1}{2} 17,22,23,24,25$, $26,27,28,29,30$.

Total 42 days @ $\$ 200 /$ day
\$ 8,382.93
G. B. Bennett, Prospector

Aug. $16,17,18$, Sept. $16, \frac{1}{2} 21, \frac{1}{2} 22, \frac{1}{2} 29,30$, Oct. $\frac{1}{2} 1$, $2,4, \frac{1}{2} 5, \frac{1}{2} 6, \frac{1}{2} 7, \frac{1}{2} 8, \frac{1}{2} 9, \frac{1}{2} 10, \frac{1}{2} 11, \frac{1}{2} 12,13,14, \frac{1}{2} 15$, $16, \frac{1}{2} 18, \frac{1}{2} 19, \frac{1}{2} 22,24, \frac{1}{2} 25,26,27,28, \frac{1}{2} 29, \frac{1}{2} 30, \frac{1}{2} 31$, Nov. $\frac{1}{2} 1,2,3$.

Total $26 \frac{1}{2}$ days @ $\$ 80 /$ day
P. Harker, Prospector

Sept. $\frac{1}{2} 21, \frac{1}{2} 22, \frac{1}{2} 29,30$, Oct. $\frac{1}{1} 1,2,4, \frac{1}{2} 5, \frac{1}{2} 6, \frac{1}{2} 7, \frac{1}{2} 8$, $\frac{1}{2} 9, \frac{1}{2} 10, \frac{1}{2} 11, \frac{1}{2} 12,13,14, \frac{1}{2} 15,16, \frac{1}{2} 18, \frac{1}{2} 19, \frac{1}{2} 22,24$, $\frac{1}{2} 25,26,27,28, \frac{1}{2} 29, \frac{1}{2} 30, \frac{1}{2} 31$, Nov. $\frac{1}{2} 1,2,3,4, \frac{1}{2} 5$, $6,7,8, \frac{1}{2} 9, \frac{1}{2} 10,11, \frac{1}{2} 14$.

Total 29浆 days @ \$80/day 2,360.00
N. Stacey, Geologist

August 16, 17, 18. Total 3 days @ \$110/day
2. Food:

Total expenditure of $\$ 186.36$ divided by 101 man days $=$ rate of $\$ 1.85 /$ day, to be prorated to the days worked in item 1.
Accommodation charges @ \$4.80/man day, total \$484.80

3. Transportation:

Approximately 30 mile round trip to the property from Silverton; 37 trips $=1,100$ miles $@ \$.20 / \mathrm{mile}=\$ 220.00$, prorated as to the dates worked in item 1. Gasoline expenditure $=\$ 52.66$.

4. Surveys

Grid: L.B. Goldsmith; Sept. 16, $\frac{1}{2} 21, \frac{1}{2} 22$. Total 2 days @ $\$ 200 /$ day $\$ 400.00$
G. Bennett; Aug. 16, 17, 18, Sept. 16, $\frac{z_{2}}{2} 21, \frac{1}{2} 22, \frac{1}{2} 29,30$, Oct. 121 . Total 7 days @ $\$ 80 /$ day 560.00
P. Harker; Sept. $\frac{1}{2} 21, \frac{1}{2} 22, \frac{1}{2} 29,30$, Oct. $\frac{1}{2} 1,2,4, \frac{1}{2} 5, \frac{1}{2} 6, \frac{1}{2} 7$. Total $6 \frac{1}{2}$ days @ $\$ 80 /$ day 520.00
Expenses (prorated) 100.00
Mileage (prorated) $\quad 40.00$
$\$ 1,620.00$
$\$ 1,620$ divided by 8 km of grid $=\$ 202.50 / \mathrm{km}$.
Geology: L.B. Goldsmith, field geology Oct. $14,16, \frac{1}{2} 18, \frac{1}{2} 19, \frac{1}{2} 22,24, \frac{1}{2} 25,26$, $27,28, \frac{1}{2} 29, \frac{1}{2} 30, \frac{1}{2} 31$, Nov. $\frac{1}{2} 1,2,3,4$, $\frac{1}{2} 5,6,7,8, \frac{1}{2} 9, \frac{1}{2} 10,11,12, \frac{1}{4} 13$.
Total 19-3/4 days @ \$200/day
(approximated to balance figures) \$3,932.93
N. Stacey, field geology

Aug. 16, 17, 18
Total 3 days @ \$110/day 330.00
Expenses (prorated) 287.02
Mileage (prorated) $\quad 85.00$
$\$ 4,634.95$
Geochemical Survey:
L.B. Goldsmith

Sept. $\frac{1}{2} 29,30$, Oct. $\frac{1}{2} 1,2,4, \frac{1}{2} 5$.
Total 4 $\frac{1}{2}$ days @ $\$ 200 /$ day
900.00
G. Bennett

Oct. $2,4, \frac{1}{2} 5, \frac{1}{2} 6, \frac{1}{2} 7, \frac{1}{2} 8, \frac{1}{2} 9, \frac{1}{2} 10$, $\frac{1}{2} 11, \frac{1}{2} 12,13,14, \frac{1}{2} 15,16, \frac{1}{2} 18$ Total 10 days @ $\$ 80 /$ day 800.00
P. Harker

Oct. $\frac{1}{2} 8, \frac{1}{2} 9, \frac{1}{2} 10, \frac{1}{2} 11, \cdot \frac{1}{2} 12,13,14$, $\frac{1}{2} 15,16, \frac{1}{2} 18, \frac{1}{2} 19, \frac{1}{2} 22,24, \frac{1}{2} 25,26$.
Total 10 days © $\$ 80 /$ day 800.00
Expenses (prorated) 150.00
Mileage (prorated) 50.00
5. Analyses:

170 soil samples, cost $\$ 399.05=\$ 2.35 / \mathrm{sample}$.
4 rock samples, cost $\$ 86.00=\$ 21.50 /$ sample.
6. Report:
L.B. Goldsmith: Nov. $\frac{1}{4} 13, \frac{1}{2} 14, \frac{1}{2} 17,22,23,24,25$, 26, 27, 38, 29, 30 . Total 101/4 days @ $\$ 200 /$ day $=\$ 2,050.00$

APPENDIX

COST STATEMENT FOR MEIP
Summary of Contracts 非, 6, 7

1. Grid:
L.B. Goldsmith, 2 days @ $\$ 200 /$ day
G. Bennett, 7 days @ $\$ 80 /$ day
P. Harker, $6 \frac{1}{2}$ days @ $\$ 80 /$ day

Expenses (prorated)
Mileage (prorated)
2. Prospecting:
L.B. Goldsmith, 5 days @ \$200/day
G. Bennett, 81/2 days @ $\$ 80 /$ day
P. Harker, 12 days @ $\$ 80 /$ day

Expenses (prorated)
Mileage (prorated)
3. Geological Surveying:
N. Stacey, 3 days @ \$110/day 330.00
L.B. Goldsmith, 14 days @ $\$ 200$. day

2,800.00
L.B. Goldsmith, reporting,

10\% days @ $\$ 200 /$ day
2,050.00
Expenses (prorated)
Mileage (prorated)
4. Geochemical Surveying:
L.B. Goldsmith, $4^{\frac{1}{2}}$ days @ $\$ 200 /$ day
G. Bēnnett, 10 days @ $\$ 80 /$ day
P. Harker, 10 days @ $\$ 80 /$ day

Expenses (prorated)
Mileage (prorated)
900.00
800.00
800.00
150.00
50.00

1,620.00

2,900.00

5,480.00

2,700.00
5. Assaying:
485.05
6. Consulting:

L. B. Goldsmith, 5-3/4 dyas @ \$200/day (approximated to balance figures)	1,132.93	
Expenses (prorated)	57.02	
Mileage (prorated)	15.00	1,204.95

7. Miscellaneous:

Road repairs:
L.B. Goldsmith, $\frac{1}{2}$ day @ $\$ 200 /$ day 100.00
G. Bennett, 1 day @ $\$ 80 /$ day
P. Harker, 1 day @ $\$ 80 /$ day

Maximum M.E.I.P. Commitment: \$4,883.33 The author certifies that the Cost Stat men ${ }^{\text {ROFESSIO }}$ in every respect.

TO: .. LOCKE B . GOLDSMITH
Box. 95
Silverton, B.C. \qquad
VOG 2 BO \qquad

File No. .. 17925
Date \qquad October 5, 1979 Samples .. \qquad
...........cc:-.....Ga..Bennat.t-New Denver

$$
\begin{aligned}
& \text { Loving Laboratories Ltd. }
\end{aligned}
$$

Page \# I

Rejects Retained one month.
Pulps Retained one month unless specific arrangements made in advance.

TO: LOCKE BA.COLDSMTH: \qquad . Box. 95 \qquad
Silverton, B.C. \qquad VG iBO \qquad

File No. ... 17925
Date \qquad October. 5,. 1979

Samples ..Soil. \qquad
\qquad
\qquad
cc: :....G...Bennet-New.. Denver.
$\theta^{\text {Denver }} \begin{aligned} & \text { ASSAY } t_{e}\end{aligned}$
Coring LaBORATORIES LTD.

Page \# 2

Rejects Retained one month.
Pulps Retained one month unless specific arrangements made in advance.

TO: ...IONS E. .GOLDSMITH
Ex. 95 \qquad
Sinvertiong, BaG.
YO G 280 \qquad

File No. ... 18043
Date \qquad Octaber-22,.. 1979 Samples ..Roc k.Chip. \qquad

Rejects Retained one month.
Pulps Retained one month unless specific arrangements made in advance.

To: ...IOCKこ.E. GOLDSMITH \qquad Box. 95 \qquad
.Silverton. B.C.
VG $2 B O$
\because

File No. .. 18046
DateOctober.22, 1979
Samples .Soil. \qquad

Page \# 1

Rejects Retained one month.
Pulps Retained one month unless specific arrangements made in advance.

TC: ..IOCRE Be GCIDSMITH

VG 2BO
\qquad

File No.28046.
Date \qquad October. 22,.. 1979
SamplesSoil \qquad

Loring Laboratories Ltd.

Page \# 2

Rejects Retained one month.

TO: .. LOCEE Ba GOLDSMLTHं \qquad
Box 5
Sinverton, .B.C. \qquad
VOC. 23 \qquad
.ac:.....G....Bennet-New. Denver.

Page \# 3

Rejects Retained one month.
Pulps Retained one month unless specific arrangements made in advance.

T̄०; ...
Box. 95
Silverton, . Be.C. \qquad
VOG.2BD \qquad

File No. .. 27925.
Date \qquad Qct-ober . 5... 1979
Samples ..-Soil. \qquad
c.c:.....Ga.. Beanet-New...Denver.

Loring Laboratories Ltd.

Page \# 4

Rejects Retained one month.
Pulps Retained one month uniess specific arrangements made in advance.

TO: ...LOCKE.B. GOLDSMITH \qquad

File No. ... 17925 \qquad
Date \qquad October 5: 5 . 1979

Samples \qquad
Sjlverton, B.C. VG iBO \qquad
 Loring Laboratories Ltd.

Page \# 5

Rejects Retained one month.


```
o a Boildings (collapsed)
```

$t=-\quad$ Road
$--\quad$ Trair
Mn: Straiom
: .:.: Outcrop
-... - : Arsumed contact

Clair boendaries scaled from 1i50,000 ta, segraphic muf. Á́ comer post's were heoted.

3
 SLOCAA AFHMNG D/V15HOF,B.C. MTS $82 \mathrm{~F} / 14 \mathrm{~W}$
3
SUAFACZ GEOLOGY ESOIL GEOCHEANSTAY Scale: $1^{\prime \prime}=200^{\circ}$
$\mathrm{lcm}=24.016 m e t r e s$

feet metres

ARCTEX ENGINEERING SERVKES
LOCKE B. GOLDSMITH, PIENE.
Consuiting Geologist NOVEMBER, 1979

IRON HORSE "? $\angle 5663$

45

8,

