520298

REPORT ON

PHASE 2 EXPLORATION PROGRAMMES GEOCHEMICAL SOIL SAMPLING, TRENCHING, AND DIAMOND DRILLING

RAVEN 1 CLAIM LILLOOET MINING DIVISION BRIDGE RIVER AREA, B.C.

Latitude: 50°36'N

Longitude: 122°10'W

N.T.S.: 92-J-9E

for

REESE RIVER RESOURCES CORPORATION Suite 400 - 455 Granville Street Vancouver, B.C. V6C 1T1

Vancouver, B.C. 28 August 1991

Chris J. Sampson, P.Eng. Consutling Geologist

J. Miller-Tait, B.Sc.

INDEX

		<u> Page</u>
1.	SUMMARY AND CONCLUSIONS	1
2.	RECOMMENDATIONS AND COST ESTIMATES	4
3.	INTRODUCTION	5
4.	PROPERTY, LOCATION, ACCESS	. 5
5.	HISTORY	7
6.	REGIONAL GEOLOGY	10
7.	PROPERTY GEOLOGY	12
8.	GEOCHEMICAL SOIL SAMPLING	13
9.	TRENCHING PROGRAMMES	15
10.	DIAMOND DRILLING RESULTS	16
11.	REFERENCES	20
12.	CERTIFICATE	21

APPENDICES

A: Geochemical Soil Sampling ResultsB: Assay CertificatesC: Drill Logs

LIST OF FIGURES

		Follows Page
1.	Location Map	5
2.	Claim Map	5
3.	Topographic Map	5
4.	Regional Geology Map	10
5.1	Geology & Sample Location Map (North Sheet)	In Pocket
5.2	Geology & Sample Location Map (South Sheet)	In Pocket
6.	Trench Plans	In Pocket
7.	Cross Sections: Trench 9 Area	In Pocket
8.	Cross Sections DDH 91-7, 91-8, 91-10	In Pocket
9.	Geochemical Soil Sampling Results:	
	Gold and Silver	In Pocket
10.	Geochemical Soil Sampling Results:	
	Copper and Arsenic	In Pocket
11.	Geochemical Soil Sampling Results:	
	Lead and Zinc	In Pocket

1. <u>SUMMARY AND CONCLUSIONS</u>

- 1.1 The 20 unit Raven 1 claim of Reese River Resource Corporation is located 15 kilometres southwest of Lillooet in the Lillooet Mining Division of B.C.
- 1.2 The claim is easily accessible by use of logging roads and contains gold bearing shear zones of varying widths and attitudes in carbonate altered Bridge River green stones and cherty argillites.

The area was not extensively prospected in the past and there is no record of the showings in government files. The showings were found in 1990 by tracing the source of pyrite bearing float which assayed 0.356 oz/ton gold and was found on the logging road which runs along the southern boundary of the Rayen 1 claim.

1.3 The initial discoveries of significance consisted of a boulder composed of quartz vein material in altered green stone which contained 1-3 mm blebs of native gold and grab sample from arsenopyrite-pyrite-galena mineralization in a quartz vein (in place) which assayed 0.102 oz/ton gold.

In addition, 35 soil samples were collected some of which contained anomalous gold and arsenic values (up to 1.01 ppm gold and 1004 ppm arsenic).

1.4 The writer examined the property 24 August 1990 and collected grab samples from mineralization in the quartz veins in place in various outcrop locations.

One sample (16652) consisting of powdery arsenopyrite in a quartz vein in altered Bridge River green stone assayed 19.906 oz/ton gold. A further grab sample from another area of quartz vein (16654) assayed 0.129 oz/ton gold

Trenching programmes in September, November 1990 subsequently identified three gold showings designated zones A, B and C.

1.5 Geochemical soil sampling in November 1990 (Report on Geochemical Soil Sampling and Trenching Programmes 18 December 1990), had outlined an area of coincident strong copper-gold-arsenic anomalies trending approximately north-south between lines 5N and 9N. In early May 1991, a further trenching programme using a Caterpillar 225 backhoe explored this area of geochemical anomaties and discovered a new gold bearing structure designated zone D.

Chip sampling across the D zone quartz vein and mineralized shear exposed in trench RTR-9 returned assays of 0.842 oz/ton gold across 3.5 metres (11.48 feet).

1.6 Diamond drilling, consisting of 10 BQ holes totalling 1577 feet (480.65 metres) was done (May-July 1991) in order to further explore the A, B, C and D zones.

The two holes 91-1, 91-2 drilled to explore zone A did not intersect mineralization. It is probable that the mineralized shear structure (zone A) is folded, i.e. it is synformal and thus the holes drilled from either side of it were completely in argillite.

Topography in the area of zone B is very steep and rockyand it wasn't possible to construct an access road to this showing and carry out backhoe trenching. The showing was explored by blasting and hand mucking, which indicated that the zone B showing consists of two quartz veins folded into an antiformal (arch like) structure which plunges at a shallow angle probably 20-30° in direction 020. Due to the locally steep terrain, and locational difficulties the one hole that was drilled in this area, 91-9, did not intersect the plunging antiformal structure.

Locally, steep topography also proved to be a problem in drilling zone C. Two holes, DDH91-7 and 8, were drilled from one set-up on the west side of the C zone structure. Neither of the holes intersected mineralization, and it is

probable that the structure dips more steeply than originally predicted from exposures in the trenches. Ideally, the structure should be drilled from the east side, but the mountain side is steep and rocky in this locality.

Five holes were drilled to explore the D zone (DDH's 91-3, 4, 5, 6 and 10). The 4 holes drilled from the western side of the showing all intersected the principal mineralized shear and quartz veining. Due to the narrow diameter of the core (BQ) and the vuggy and fractured nature of the mineralization and country rocks, core recoveries were poor and since values obtained from sludge samples were considerably higher than values reported from core at comparable depth, it is apparent that gold values were lost from the core.

Since the country rook is fractured, even values obtained from sludge samples were probably below "in place" or actual grade due to gold particles being lost in the walls of the drill holes.

RECOMMENDATIONS AND COST ESTIMATES

The following programmes of exploration are recommended for Phase 3 on the Raven 1 claim:

- 1. Diamond drilling using HQ diameter core and a larger machine (such as a Longyear 38). The B and C showings were not adequately explored by the drilling done in Phase 2 (as outlined in this report). Longer (i.e. 100 m. 330 ft.), steeper (i.e. 60-70°) dipping holes are required in each locality. The D showing should also be explored at greater depth by a programme of 100 m. HQ holes.
- 2. The drill programme would require support by a bulldozer (D6 Caterpillar) and backhoe (225 Caterpillar) or equivalent in order to move the larger drill into positions on the steep, narrow road system. The backhoe could also be used for two days to trench the geochemical soil anomalies located by the Phase 2 sampling programmes in the grid area between lines 9N and 14N.

Cost estimates are as follows:

2000 ft. (600 m.) at \$16/ft.		\$32,000
Backhoe, bulldozer		5,000
Assays, supervision, report preparation	•	13,000
		•

\$50,000

-5-

INTRODUCTION

This report gives details of the results of the Phase 2 exploration programmes

carried out on the Reese River Resources Raven 1 claim in April-August 1991.

These programmes were recommended in the 18 December 1990 Report on

Geochemical Soil Sampling & Trenching Programmes (which outlined the results

of exploration programmes that had been done in Phase 1).

The exploration programmes, detailed in this report, are as follows:

a) The grid had been extended 500 metres further north to line 9N in

November 1990 and geochemical soil sampling of this area had located strong

gold, arsenic and copper anomalies. The grid was therefore mapped and

prospected and a new detailed geological map constructed at 1:1000 (figures

5.1, 5.2).

b) A programme of trenching, using a Caterpillar 225 backhoe, explored the

areas of copper, arsenic and gold anomalies in the L5N to L9N grid area, and

resulted in the discovery of a new gold bearing zone called Zone D.

c) A programme of diamond drilling explored the 4 gold bearing zones, A

through D.

d) In view of the encouraging results obtained from the trenching and drilling

programmes the geochemical soil coverage was extended further to the north

(from Line 9N to Line 14N).

PROPERTY, LOCATION, ACCESS

The Raven 1 claim is situated on the north side of Downton Creek, which is a

tributary of Cayoosh Creek. The centre of the claim group is approx. 15 kms.

southwest of Lillooet, B.C. in the Lillooet Mining Division.

SAMPSON ENGINEERING INC.

Access to the property is easily gained by using 2-wheel drive vehicle by driving southwest from Lillooet along the Duffey Lake road which runs along the east side of Cayoosh Creek, then crossing the creek, and following a main haulage logging road which runs along the north side of Downton Creek and hence along the southern boundary of the Raven 1 claim. From this logging road, a four-wheel drive road leads up the property to the showings.

The topography of the Raven claim is relatively rugged. Altitude ranges from approximately 1060 m. (3500 ft.) on Downton Creek at the southern edge of the property to slightly over 2280 m. (7500 ft.) on the ridge on the northern edge of the property. The tree line in this area is at approximately 2100 m. (7000 ft.) and much of the property is covered by mature stands of spruce and some pine, which gives way to alpine vegetation on the ridge top on the northern part of the claim.

Since the property is situated on the eastern side of the Coast Range mountains, its climate is relatively dry. Summers are warm and sunny, winters - fairly cool. The lower slopes of the property are generally covered by snow from December until April.

Claim details are as follows:

Name	Record Number	<u>Units</u>	Record Date	Expiry Date
Raven 1	4489	20(4W×5N)	18 July 1990	17 July 1992

5. HISTORY

1

The area on the west side of Cayoosh creek, i.e. in the vicinity of Downton creek was not extensively prospected during the periods of intense prospecting activity that occurred in the Lillooet and Bridge River districts late in the 19th century and during the 1920s and 1930s, when the Bralonne-Pioneer mines were in their most active period of production.

The 1896 report of the Minister of Mines contains a good description of the history of gold mining in the Cayoosh creek district. The writer indicates that prospectors arrived in the area from 1858 onwards. These prospectors were from California and had only a limited knowledge of placer mining and very little knowledge of bedrock mining. They had the impression from experience in the Cascade Range that gold could not be found in payable quantities in granite masses. "Hundreds of these miners wintered in Lillooet and thousands of them have passed by Cayoosh creek to and from the The gigantic mass of Mount Brew to the southwest to the town of Lillooet and the granitic talus scattered from its base across Cayoosh creek and extending out to the north shore of Seaton Lake, there to be met by a similar fermation, was significant evidence to the early gold hunter in this province to avoid Cayoosh creek as worthless. Whether I am correct in this hypothesis is immaterial. The fact remains that it continued untouched and in the state of nature until the spring of 1866 when a flock of Chinese quietly settled down on it, and Mr. Phair, mining recorder, reported to me in December of that year that he had recorded for them 190 claims and for white Mr. A. Smith reported to me at the same time that during that miners 16. year he had bought 725 oz of Cayoosh creek gold, adding his belief that there was as much more in the hands of the Chinese miner. In 1887 parties here grub staked two miners and sent them out to endeavor to locate the sources of the gold found in the creek. They left here in August of that year and followed the northwest side of the creek, some 15 or 20 miles above the Chinese claim, but without finding anything, either in the creek or mineral in They returned by the southeast side of the creek and at a point place. within the lines of the "Mary Ann" claim on Mr. Burnet's plan discovered a large boulder composed of quartz and slate, which have evidently been broken off the mountain side high above them. Without appliances to break the boulder, they burnt a fire on it and after heating well, poured water on it and thus broke it up when gold was easily to be seen in it. It was an easy matter then to trace the line of descent and after a little search the place was found on the Bonanza ridge at which point between the second and third location up from the river and where gold bearing specimens could be found here in abundance.

The prospectors returned here and the six claims were recorded on the 12th September 1887. The find soon leaked out and the next claim recorded was on the 26th October that year, about 2000 feet above the creek, and nearly opposite of the "Bonanza", and afterwards abandoned. From that time on to the spring of this year, a few claims were annually recorded as a rule only to be abandoned without any attempt at development or exploration. In December 1887 Mr. A.W. Smith reported his purchases of gold for that year at \$65,696 a large proportion of which was from the Chinese claims on Cayoosh creek. In 1888 his purchases amounted to close to \$60,000, 7/8th of which was estimated to be from Cayoosh creek. In 1889, the amount bought by Mr. Smith dropped to \$39,000 with the exception of about \$100 worth, all bought from the Chinese Summed up, the Chinese were the discoverers of gold in Cayoosh From Mr. Smith's accurate returns, we find that he bought from them in 3 years, Gold amounting in round figures, say, \$103,000. within the mark allowed 1/2 of that amount as carried away by them, and we have a total of \$154,500 for the three years. The whole of this was taken from, say, five miles of the creek, and all below the line of the "Bonanza" group."

Discovery of gold in place by following up the source of the placer gold in Cayoosh creek lead to the eventual establishment of the Ample or Golden Cache mine, which started production the following year in 1897 but failed in 1898. Some limited production was achieved in 1901. Total production 1897-1901 was 2789 metric tonnes, which contained 22,611 grams gold, or 726 oz in 3070 short tons ore. (.23 oz/ton gold grade)

The mineralization at Ample (Gold Cache) is described as pyrite and arsenopyrite with gold occurring in quartz veins randomly oriented throughout a 10 metre wide fault zone in a schistose phyllitic unit mapped as Bridge River group. Siderite is common throughout the schist and as 3 cm. wide veinlets in the quartz veins. The schist has two planes of schistocity and is overlain by more competent impure grey quartzite.

The area on the west side of Cayoosh creek and along Downton creek saw only limited prospecting, even in the years immediately following the discovery of the Golden Cache probably due to its relative inaccessibility. It represented a significant distance to travel on horse back from any of the roads in the district during the 20s and 30s or from the B.C. Railway. Even when use of helicopters became general in the exploration industry during the 1960s, the area was still a difficult one to prospect due to the stands of very large timber which would have required construction of helicopter pads by falling Thus the showings which are now of interest were not discovered until the recent construction of the main haulage logging road The discovery of significant pyrite, arsenopyrite in along Downton creek. float on this logging road caused Gary Polischuk to search for the source of the float on the mountain side above the logging road and by means of geochemical soil sampling he was able to trace the mineralized float uphill to the mineralized outcrops in July 1990.

6. REGIONAL GEOLOGY

The area immediately to the west of Cayoosh creek has not been extensively mapped by either the Geological Survey of Canada or the B.C. Department of Mines. Extensive geological mapping has however been done in the Bralorne Gold Mining District which is approximately 45 kms to the northwest and the detailed knowledge of geology which was established in that district was extended into the Cayoosh creek area by mapping by Roddick and Hutchinson (Geological Survey Paper 73-17 1973).

Mapping by Roddick and Hutchinson indicates that the Raven claim area is underlain by rocks of the Bridge River (Fergusson) group. The regional description of this major gold bearing sequence is quoted from Roddick and Hutchinson as follows:

"Bridge River (Fergusson) Group (Map-unit 1)

The oldest stratified rocks, with the probable exception of units A and B whose ages are not known, form the Bridge River Group (unit 1), and are exposed mainly along the wide axial zone of a broad, complex, antiformal structure that plunges to the northwest along an axis that passes through Shalalth and Tyaughton Lake and contains the main valleys of Bridge River and Seton lake.

Drysdale (1916) introduced the term 'Bridge River series' for these rocks and the usage was continued by McCann (1922). Cairnes (1937) maintained, however, that the term was not sharply defined by Drysdale and had been variously applied by other workers. He therefore proposed the term 'Fergusson series', derived from Mount Fergusson, and applied it to a comparatively small area near the Bridge River gold mining camp. In modern usage 'Group' has supplanted 'series', and Fergusson Group and Bridge River Group are used synonymously. Since the strata underlie nearly the whole of Bridge River Valley, Bridge River Group is the more appropriate of the two terms and is preferred in this report.

The group consists mainly of a thick sequence of thin-bedded chert, cherty argillite, and argillite intercalated with altered basaltic flows and minor limestone. Although apparently considerable, the thicknese of the assemblage is not known because of complex folding and faulting, and the lack of easily recognizable marker horizons. The base of the unit has not been observed.

		Map No.	
		92J- 1	Bralorne (Au, Ag)
		2	Blackbird and Ida May (Au)
	EGEND FROM MAP 13-1973	3	Alma (Au)
		4	Pionoer (Au)
		5	Mix (Au)
- 1		G	Native Son (Au)
- 1	JURASSIC AND CRETACEOUS	7	Coronation (Au)
	UPPER JURASSIC AND LOWER CRETACEOUS	8	Holland (Au)
- 1		9	Pioneer Extension (Au)
	RELAY MOUNTAIN GROUP	10	Paymaster (Au)
	6 Argillite; greywacke and pebble conglomerate	11	Butte - IXL (Au)
2	o in ginite, grey waste and possite congressioner at	12	Red Hawk and Dan Tucker (Au)
0		13	Bramoose (Au)
>3	WITH A SIGNA	14	Royal (Au)
83	JURASSIC	15	Standard (Au)
MESOZOIC	LOWER JURASSIC	16	Short o' Bacon (Au)
~		17	Grull (Au)
	5 Argillite and shale; minor sandstone, limestone and pebble conglomerate	18	Success (Au)
1		19	Waterloo (Au)
		20	California (Au)
1	TRIASSIC	21	Whynot (Au)
- 1	UPPER TRIASSIC	22	Gloria Kitty and Jewess (Au)
- 1		23	Forty Thieves (Au)
- 1	U Ultrabasic rocks	24	Arizona (Au)
- 1		25	Golden Gate (Au)
		26	Haylmore (Au)
- 1	HURLEY FORMATION: Thin-bedded limy argillite, phyllite, limestone,	27	Pilot (Au)
1	tuff, conglomerate, agglomerate, and minor chert	28	B & F (Au)
- 1	confront and afformatural andonesis and united ones.	29	Congress (Au, IIg)
	Provide Population Co	30	Wayside (Au)
	PIONEER FORMATION: Greenstone derived from andesitic flows and	31	Veritas (Au)
	pyroclastic rocks; 3a, andesite breccia, tuff and flows, greenstone;	32	White and Bell (Au)
- 1	minor rhyolitic breccia and flows, slate, argillite, limestone and	33	Reliance (Sb, Au)
	conglomerate	34	Spokane (Åu)
- 1	Congromerate	35	Summit (Au)
		36	Empire (Au)
- 1	NOEL FORMATION: Thin-bedded argillite; chert, conglomerate and	37	Wide West
1	greenstone	38	Stibnite (Sb)
1	- Department of the control of the c	39	Primrose (Au)
		40	Benn Expl.
- 1	MIDDLE TRIASSIC AND (?) OLDER	41	Charlotte, Ann (lig)
		42	London (Cu, Fe)
- 1	BRIDGE RIVER GROUP (FERGUSSON GROUP)	43	Chalco 5 (W, Cu)
- 1	Chert, argillite, phyllite and greenstone; minor limestone, schist;	44	Chalco 12 (W, Cu)
- 1	la, metamorphosed rock of map-unit 1; mainly biotite schist	46	N. Texas, Flo, Pen (Cu, Au, Ag, Fe)
(47	Apex (Fe)
		48	Copper Queen (OWL CR. A Zone) (Cu, Mo)
		49	Azure (Cu)
		52	Lucky Strike, Ricky
	METAMORPHIC AND PLUTONIC ROCKS	53	Paul (Ilg)
	(Mostly of unknown age)	54	Owl Cr. B Zone (Cu, Mo)
		55	Owi Cr. C Zone (Cu, Mo)
	B Metasedimentary rocks, mainly micaceous quartzite, biotite-hornblende	56	Eagle (Cu, Fe, Zn)
	schist, and minor schists bearing garnet, staurolite and possibly		
			lake (Cu. Fe. Zii)
	sillimanite	57	Lake (Cu, Fe, Zn) Boulder (Cu, Zn, Ag, Fe)
	sillimanite	57 58	Boulder (Cu, Zn, Ag, Fe)
		57 58 59	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn)
	Granitoid gneiss, migmatitic complexes, minor amphibolite and	57 58 59 60	Boulder (Cu, Zn, Ag, Fe)
		57 58 59 60 61	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, lig) Seneca (Cu, Fe)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist	57 58 59 60 61 62	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Iig) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu)
	Granitoid gneiss, migmatitic complexes, minor amphibolite and	57 58 59 60 61	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, lig) Seneca (Cu, Fe)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist	57 58 59 60 61 62 63 64	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, lig) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite	57 58 59 60 61 62 63 64 65	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, lig) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pomberton (Cu)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist	57 58 59 60 61 62 63 64 65	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite	57 58 59 60 61 62 63 64 65 66	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, lig) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pomberton (Cu)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite	57 58 59 60 61 62 63 64 65 66	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, lig) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pomberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite	57 58 59 60 61 62 63 64 65 66 67 69	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kol (Gridfron) (Ag, Pb, Zn, Au) Pomberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Ovl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite	57 58 59 60 61 62 63 64 65 66 67 69 74	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite	57 58 59 60 61 62 63 64 65 66 67 69 74 75	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kol (Gridfron) (Ag, Pb, Zn, Au) Pomberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Ovl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Iig) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Bell (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridfron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoen (Ag, Pb, Zn)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Ilg) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) LI-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoen (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Iig) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) LI-Li-Kel (Gridfron) (Ag, Pb, Zn, Au) Pomberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Ilg) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) LI-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoen (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Iig) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Slibnito (Lost Gold) (Sb)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Ilg) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoen (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Stibnito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Iig) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Slibnito (Lost Gold) (Sb)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87 88	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kol (Gridfron) (Ag, Pb, Zn, Au) Pomberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoen (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Silbuito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Ovi Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Silbnito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro U Ultrabasic rocks: serpentine, peridotite, dunite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87 88	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Iig) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Silbnito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu) Suo (Cy, Mo)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 84 87 88	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, IIg) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoen (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Stibnito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu) Sno (Cy, Mo) Ample, (Golden Cache) (Au)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro U Ultrabasic rocks: serpentine, peridotite, dunite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87 87 89 80 81	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Sencea (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoen (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Silbrito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu) Sao (Cy, Mo) Ample, (Golden Cacho) (Au) Rod Eagle (Hg)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro U Ultrabasic rocks: serpentine, peridotite, dunite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87 88 90 91 92 96 96 97 90 90 90 90 90 90 90 90 90 90	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Iig) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Silbnito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu) Soo (Cy, Mo) Ample, (Golden Cache) (Au) Rod Eagle (Iig) Golden Eagle (Iig)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro U Ultrabasic rocks: serpentine, peridotite, dunite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87 88 90 91 92 96 102 103 114	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Iig) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kei (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Slibnito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu) Sno (Cy, Mo) Ample, (Golden Cacho) (Au) Ilod Eagle (Iig) Goldon Eagle (Iig) Goldon Eagle (Iig) Bonboo (Au, Ag)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro U Ultrabasic rocks: serpentine, peridotite, dunite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87 88 90 91 92 96 102 103 114 115	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Senoca (Cu, Fe) Wonder (Pb, Zn, Cu) Sliver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridfron) (Ag, Pb, Zn, Au) Pomberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crowa (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoen (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Slibnito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu) Sno (Cy, Mo) Ample, (Golden Cache) (Au) Rod Eagle (Hg) Bonboo (Au, Ag) Barkley Valley Minos (Au, Ag)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro U Ultrabasic rocks: serpentine, peridotite, dunite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87 89 90 91 91 91 91 91 91 91 91 91 91	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Hg) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boll (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Ovi Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoen (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Silbrito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu) Sno (Cy, Mo) Ample, (Golden Cache) (Au) Rod Eagle (Hg) Golden Eagle (Hg) Benboe (Au, Ag) Barkley Valley Minos (Au, Ag) Golden Contact, (Brett Group) (Au)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro U Ultrabasic rocks: serpentine, peridotite, dunite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87 88 90 102 103 114 115 116 117	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, Iig) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Silbnito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu) Sno (Cy, Mo) Ample, (Golden Cache) (Au) Rod Eagle (Iig) Golden Eagle (Iig) Benboe (Au, Ag) Barkley Valley Minos (Au, Ag) Golden Contact, (Brett Group) (Au) Excelsior, (Jumbo) (Cu, Au, Ag, Pb)
	A Granitoid gneiss, migmatitic complexes, minor amphibolite and biotite schist P6 Granite P5 Quartz monzonite P4 Granodiorite; 4a, miarolitic granodiorite and syenodiorite P3 Quartz diorite P2 Diorite; 2a, Bralorne Intrusions: Augite diorite, gabbro, minor soda granite and quartz diorite P1 Gabbro U Ultrabasic rocks: serpentine, peridotite, dunite	57 58 59 60 61 62 63 64 65 66 67 69 74 75 76 78 79 80 81 82 83 86 87 88 90 102 103 114 115 116 117	Boulder (Cu, Zn, Ag, Fe) Moffat (Eva) (Cu, Ag, Zn) Copper Mountain (Fe, Cu, Zn, IIg) Seneca (Cu, Fe) Wonder (Pb, Zn, Cu) Silver Boil (Pb, Ag, Au, Cu, Zn) Li-Li-Kel (Gridiron) (Ag, Pb, Zn, Au) Pemberton (Cu) Margery (Zn, Fe, Au, Pt) Fitzsimmons (Cu) Owl Mountain (Northstar) (Fe, Au, Ag) Crown (Ag, Zn, Cu, Pb, Fe) Gold King (Ag, Au, Zn, Pb) Cougar (Fe) Index (Mo) Silver Quoon (Ag, Pb, Zn) Patrick, (Ag, Pb, Zn) J (Py) Gin (Yes) (W, Cu, Zn) Lubra (Flora) (W, Mo) Silbnito (Lost Gold) (Sb) Truax (Spruce) (Au, Sb) Rock (Ag, Sb) RM (Cu) Suo (Cy, Mo) Ample, (Golden Cacho) (Au) Rod Eagle (IIg) Bonboe (Au, Ag) Barkley Valley Minos (Au, Ag) Golden Contact, (Brett Group) (Au) Excelsior, (Jumbo) (Cu, Au, Ag, Pb) Congress (Au)

Dark to light grey weathering chert and dark cherty argillite are the most abundant rock types but locally dark argillite is dominant. The chert commonly forms lensoid and nodular layers up to about 3 inches thick separated by thin films of dark argillite. Consequently the rock has been referred to as ribbon-chert even though few outcrops present a strongly laminated appearance owing to intense crumpling, minor faults and myriad closely-spaced quartz stringers. Close-spaced joints in the argillite and chert result in a characteristic chunky rubble.

Grey-green to chocolate-brown weathering, massive greenstone gives the impression of being more abundant than it actually is because of its high resistance to weathering. Most oucrops appear to have been flows or breccias of basic endesite to basaltic composition, judging from specific gravity determinations which commonly fall between 2.93 and 3.00. Most of the greenstone is intensively shattered. Fresher specimens are dark green or brown on the weathered surface and dark green on the fresh surface. Locally it is amygdaloidal and exhibits pillow structure. At the head of Copper Creek the greenstone is e volcanic breccia containing some fragments of limestone as well as highly fractured volcanic rock.

Pods of light grey to buff-grey weathering limestone are scattered throughout the Bridge River Group. Most are 50 feet thick er less, with a few as thick as 300 feet, and only rarely are they traceable for more than a few hundred feet along strike. On the west side of Shulaps Creek, however, about 4-1/4 miles from its mouth, a bed of limestone 30 feet thick can be traced for at least 3,000 feet. It is not known whether the sparse isolated occurrences of limestone are the result of intricate faulting or discontinuous original disposition. Most of the limestone is extensively veined by recrystallized carbonate. Recrystallization has destroyed most fossils, but one the east side of Tyaughton Creek immediately above the Bridge River road, an assemblage of conodonts was collected by J.W.H. Monger and identified as Middle Triassic by B.E.B. Cameron (Cameron and Monger, 1971).

Most of the exposed Bridge River Group exhibits only a pumpellyite-prehnite metamorphic grade but near Bendor pluton, along the northeast side of Shulaps Range, and in the valley of Cayoosh Creek higher metamorphic grades are found. In those places the group is represented by rocks such as phyllite, biotite-quartz schist (locally garnetiferous), micaceous quartzite, chlorite and graphitic schist, and rare skarn and dioritized greenstone. From the ridges of the Shulaps Range into Yalakom Valley, pumpellyite-prehnitebearing rocks appear to grade into biotite schist. Outcreps are nto continuous, however, and structural breaks may be present. Evidence there and in Cayoosh Valley suggests that the deeper parts of the group are If this inference is valid then the apparent aureole of metamorphosed. metamorphosed rocks around Bendor pluton mey represent higher grade rocks dragged up from depth rather than contact thermal effects. At the eastern contact of the granodiorite body underlying the lower part of Lost Valley Creek (east side of Anderson Lake), the intrusive sharply crosscuts the Bridge River Group and has induced some plastic flowege in phyllitic sediments."

Further detailed work by the B.C. Department of Mines during the past five years has attempted to subdivide the Bridge River group. Church et al, Open File Map 1988-3 Geology of the Bralorne Map Area, regarded the volcanic component of the Bridge River group as of probable Pioneer Formation age, i.e. younger than was originally thought by McCann and Drysdale and equivalent in age to the Bralorne Intrusives. Church therefore designated the sediments of the originally named Bridge River group as Fergusson group and included the volcanics in the Pioneer Formation. The writer (Chris J. Sampson) does not support this subdivision and favors the original designation of the overall group as Bridge River Group, i.e. following the system originally proposed by Roddick and Hutchinson.

7. PROPERTY GEOLOGY

The Raven claim consists almost completely of a steep (20-30°) slope, which faces south. But inspite of the steep terrain and southern aspect, outcrop is limited. The property is covered by what is probably only a thin (1-2 metres depth) but extensive veneer of overburden, which supports excellent stands of timber. The limited outcrop in the vicinity of the showings was examined. This consists of carbonate quartz altered greenstones of the Bridge River group. The carbonate alteration is extensive and the original composition of the country rock cannot be identified with certainty, but relict textures indicate that the carbonate is replacing original Bridge River greenstones. These vary from andesite flows to medium grained diorites, as is common elsewhere in the Bridge River group. The carbonate altered outcrops alternate with relatively unaltered areas of argillites and cherts, which again are typical of the Bridge River series and as is common in other areas, show significantly less alteration than the Greenstones.

The carbonate alteration is generally referred to as listwanite in other areas of the Bridge River group, but in order to conform with the term sensu-stricto, the blue green chromite mineral mariposite should be present. In the Downton creek area mariposite is relatively rare but some occurrences were noted. The carbonate altered outcrops contain extensive quartz veins which vary from a few centimetres to 2-3 metres in thickness. They show generally irregular thickness and pinch and swell extensively. Attitudes i.e. dips and strikes are also mostly irregular but a principal set of veins striking approximately north/south and dipping vertically is seen. These are interspersed with flat lying quartz veins which dip generally northeast. There are however numerous other quartz veins showing different strikes and dips.

As described in the section on the History of the Raven claim, the showings were found by Gary Polischuk by tracing the source of gold bearing pyrite float (0.356 oz/ton gold), which he had found on the logging road at the southern end of the claim just above Downton creek. This pyrite float was traced up the hill side by means of soil geochemical sampling which lead to the extensively altered outcrops which show some mineralization and while investigating a strong arsenic gold soil anomaly, Polischuk located a 40 cm. diameter boulder consisting of quartz vein material in altered greenstone, which contained 1-2 mm. width blebs of native gold. The writers examined this float which is almost certainly locally derived. The gold bearing boulder is angular and of similar composition to the nearby (less than 5 metres distance) country rocks. The examination of mineralization in veins and alteration in the greenstone coutry rock reveals presence of blebs of arsenopyrite up to 3 cms. in diameter and some galena and sphalerite.

GEOCHEMICAL SOIL SAMPLING

1

In July 1991, the line grid on the central part of the Raven claim was extended 500 metres further north to line 14N. The 100 metre spaced cross lines were extended east and west as far as topography would permit. 125 soil samples were collected from the grid area. These were obtained by using a small trowel to dig down to the orange-brown B soil horizon, which varies from 5 to 10 centimetres thickness. Samples were placed in numbered Kraft bags and

shipped to Min-En Laboratories in North Vancouver, where they were analyzed for silver, arsenic, copper, lead, antimony, and zinc by ICP and for gold by fire assay. The resultant values were combined with those for the samples that had already been collected from the lower part of the grid (line 1N through 9N) and results were plotted assuming a log normal distribution. From the resultant histograms the following anomalous values were established:

Silver 1.75 ppm
Arsenic 89 ppm
Copper 181 ppm
Lead 39 ppm
Zinc 190 ppm
Gold 80 ppb

Results for antimony did not show any significant anomalous values. The distribution of values for the six elements which showed anomalous concentration were plotted on 1:2000 sheets as follows:

Gold and silver Figure 9
Copper, arsenic Figure 10
Lead and zinc Figure 11

The distribution of anomalous lead, zinc, silver values is seen to be quite erratic and does not appear to be of much use in locating mineralization in Copper, arsenic and gold anomalous values show strong continuous anomalies trending generally north-south across the grid area. There is strong correlation between anomalous gold and arsenic values and in some cases between copper and arsenic values. This is hardly surprising since the mineralization that was sampled from the showings consists of pyrite with varying amounts of chalcopyrite and arsenopyrite with gold. The anomalies are obviously caused by this type of mineralization in bedrock but due to the 20-30° slope of the terrain the anomalous values for each of the three elements are probably both mechanically fragments transported down slope mineralization and by downward migration of ground water.

2696 West 11th Avenue Vancouver U.C. V6K 216

TRENCHING PROGRAMMES

In the first two weeks of May 1991, a Caterpillar 225 backhoe operated by Randy Polischuk was used to extend the road from line 6N to beyond line 9N and excavate approximately 12 trenches on geochemical soil targets and features of geologic intest such as extensive listwanite alteration, quartz veining, etc. Some of these test pits contained nothing of significance and were backfilled. The others, designated RTR6, 7, 9, 10, 11 and 12 were mapped and sampled and are shown in figure 6.

Gold values obtained from trenches RTR-6,7 and 10 were substantially below ore grade (maximum 630 ppb gold in trench RTR-10). Higher values were obtained from RTR-11 (grab sample assaying 0.123 oz/ton) and R/TR-12 (1 metre chip sample assayed 0.243 oz/ton gold). But by far the best gold values obtained from the trenching programme were from RTR-9 on what was designated as:the D zone showing. Chip sampling over a width of 3.5 metres (11.5 feet) across the mineralized shear structure and quartz vein assayed 0.84 oz/ton gold. Chip samples taken over 1 metre widths across shears and veins exposed in the northern part of the trench returned 0.177 oz/ton gold, and 0.101 oz/ton gold across 1 m. widths.

DIAMOND DRILLING RESULTS

During the period 3 May - 12 July, a BBS1 light drill was used to drill 10 BQ diamond holes, totalling 1577 feet (480.65 metres). The holes explored the zones as follows:

Zone A	DDH 91-1,2
Zone B	DDH 91-9
Zone C	DDH 91-7,8
Zone D	DDH 91-3,4,5,6,10

Drilling was performed on a day shift only basis, 5 days per week, which combined with wash outs of the Downton Creek access road caused by heavy rains and occasional equipment breakdowns lead to slow progress of the drilling.

Recovery was generally poor for the following reasons:

- a) Because the holes were short (average 157 feet) and at shallow angles (45-50°) in relatively steeply sloping terrain, the holes were never far from bedrock surface. The ground is generally very badly broken up with open fractures which cause loss of return to the drill and subsequent problems such as drill rods jamming, fracturing, etc.
- b) The mineralized zones are vuggy, i.e. there is appreciable open space in the mineralized zones, some of which is due to original vugs, and other space is caused by the fractured nature of the ground and oxidation and leaching of some minerals, principally pyrite leaving open space. This resulted in poor core recovery and in some cases total loss of core in more friable zones.
- c) Sludges were collected whenever sufficient drill fluid return permitted collection of such samples. In nearly all cases, gold values obtained from sludges were considerably higher than values obtained from core at corresponding depths. It seems most likely that due to the fractured character of the zones intersected in the shallow drill holes, gold values were washed out

of the core and reported in the drill fluid return. It is also probable that gold values were lost in the walls of the holes and even the gold values reported from sludges are considerably lower than in place "or actual" grade. This would explain why values obtained from chip sampling of the trenches were generally higher than those obtained from sludges and considerably higher than values reported from drill core. Results obtained from the 4 zones are as follows:

Zone A: As shown on figure 5.2, holes 91-1 and 91-2 were 45° holes that were drilled from either side of the showing which is exposed in trench RTR-2. Neither of the holes intersected the mineralization that had been observed in the trench, both were almost completely in argillite. Further examination of the mineralization in zone A indicates that probably it and the country rock argillite are folded into a tight synclinal structure, thus there is no depth to the showing. The two drill holes passed underneath zone A, which probably extends to only 3-4 metres below trench RTR-2.

The topography in this location is very steep and rocky with very little overburden, and it was not possible to build an access road to zone B. Thus the closest location to the showing, from which drilling could be done, was the short road running southwest from L6N. Hole 91-9 drilled from this road intersected some of the quartz veins that are seen in outcrop in this vicinity but it did not locate extensions to the mineralization seen in zone B. of · blasting mucking programme and hand Α of zone B showing indicated that it consists of two subparallel quartz veins, which have been folded into an arch, i.e. anticlinal structure that has an apparently shallow plunge of approximately 20° in direction 020. veins are situated in listwanite altered green stone. The upper quartz vein is approximately 20 cms wide and is approximately 1 matre above the main quartz vein which varies from 2-2.5 metres in width and consists of massive white quartz with varying amounts of arsenopyrite and pyrite.

Zone C: As shown on figure 5.1 and figure 8, holes 91-7 and 91-8 were located in order to explore the zone C gold bearing structure which had been originally explored by trench RTR-5. Although both of the holes intersected

the listwanite altered green stone, which is the host for the gold bearing shear, neither of the holes intersected signficant gold mineralization. It seems most likely that the C zone structure dips more steeply than is apparent in trench RTR-5. Logically, a hole should have been drilled from southeast to northwest across the structure, but unfortunately the mountain side is extremely steep in this location and the site from which holes 91-7 and 91-8 were drilled is the only easily accessible location from which to drill the showing.

Zone D: As shown in figures 6,7 & 8 DDH's 91-3,4,5,6 & 10 were drilled to explore the zone D gold bearing zones which had been located by trench RTR-9. The major gold bearing structures strike at 320-350 and dip 50-60° to the west. These were intersected by DDHs 3,4,5 & 6. Gold assay results were as follows:

HOLE	C	DRE			SLUD	GE
NUMBER	From(ft)	To (ft)	Gold oz/t	From(ft)	To (ft)	Gold oz/t
91-3	55.5 60.0	60.0 <u>64.0</u>	0.176 0.163	55.5 60.0	60.0 66.6	0.653 <u>0.372</u>
i.e.	55.5	64	0.160	55.5	64	0.510
91-4	62.0	63.0	(460ppb)	56.5	60.0	0.153
91-5	51.5	56.5	0.098	51.0 <u>54.5</u>	54.0 56.5	0.335 0.167
			i.e.	51.0	56.5	0.260
91-6	62.0 67.0	67.0 72.0	0.505 (450ppb)	61.0 65.5	65.5 71.0	0.720 <u>0.169</u>
			i.e.	61.0	71.0	0.416

Since the gold bearing structure at the northern end of the trench which assayed 0.177 oz/ton gold over 1 metre, strikes 330 and dips 50° to NE. It was decided to drill Hole 91-10 from the northeast side of the trench across the

2696 West 11th Avenue Vancouver, B.C. V6K 216 structure. The hole failed to intersect gold bearing mineralization. It is possible that the structure seen in the trench, either pinches out or is faulted off.

2696 West 11th Avenue Vancouver, B.C. V6K 216

REFERENCES

B.C. Department of Mines:

Assessment Reports 10136 Barker/Smith 1981

11871 Bonanza 1983

12358 Placer Dome 1984

14878 Goldey 1986

15860 Varous 1987

Annual Reports 1896-547, 1897-556, 560, 619, 1898-1100, 1900-909, 1904-240, 1910-134, 1929-235, 1930-202, 1932-211, 1933-262, 1935 F 8.00, 1946-121, 1947-136.

Annual Report 89-1E pp. 169-175.

Geological Survey of Canada:

Camsell C. Reconnaissance along the Pacific Great Eastern Railway...

Sum. Report 1917, Pt. B, pp. 12-133.

Roddick and Hutchinson: Pemberton (East Half) Map Area, Paper 73-17 (O.F. 482).

Walker J.F.: G.S.C. Special Report 1933A (Fig. 5).

Miller-Tait J., Sampson, C.J. Report on Geochemical Soil Sampling and Trenching Programmes Raven 1 Claim for Reese River Resource Corporation, 18 December 1990.

CERTIFICATE

1, Christopher J. Sampson, of 2696 West 11th Avenue, Vancouver, B.C. V6K 2L6, hereby certify that:

- 1. I am a graduate (1966) of the Royal School of Mines, London University, England with a Bachelor of Science degree (Honours) in Economic Geology.
- 2. I have practised my profession of mining exploration for the past 25 years in Canada, Europe, United States and Central America. For the past 15 years I have been based in British Columbia.
- 3. I am a consulting geologist. I am a registered member in good standing of the Association of Professional Engineers of British Columbia.
- 4. I have written other reports on the Raven 1 claim but not on other properties within 10 kms of the Raven 1 claim.
- 5. The present report is based on visits to the property in August-November 1990, May-June-July-August 1991, study of published and unpublished reports, and supervision of work programmes.
- 6. I have not received, nor do I expect to receive any interest, direct or indirect, in the properties or securities of Reese River Resources Corp. or in those of its associated companies.
- 7. Reese River Resource Corp. and its affiliates are hereby authorized to use this report in, or in conjunction with, any prospectus or statement of material facts.
- 8. I have no interest in any other property or company holding property within 10 kilometres of Raven 1 claim.

Vancouver, B. 28 August 1991

CHRIS J. SAMPSON

BRITISH

COLUMBINA

VGINEER

Christopher J. Sampson, P.Eng.

Consulting Geologist

APPENDIX A

GEOCHEMICAL SOIL SAMPLING RESULTS

12

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver BC: V6K 216

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

100220			64200		723	45	100		(2515)			4	(500,1955)									1	
F	-	00	سے رکر	. 377	7 8	 t A	יר ל	-	7	"	- 7	~	, , , , , , , , , , , , , , , , , , ,		-	<u></u>	7	F	7	_	\Rightarrow	* .	_
-	_	- ·	H of home	242		 -		-	-	7 -			1	9	4	~-	-			-		F	-

5

1V-0254-SG1

Company:

REESE RIVER RESOURCES

Date: MAR-14-91

Project:

Copy 1. REESE RIVER RESOURCES, GOLDBRIDGE, B.C.

Attn:

JIM MILLER-TAIT

He hereby certify the following Geochemical Analysis of 1 SOIL samples submitted MAR-11-91 by JIM MILLER-TAIT.

Sample AU-WET Number PPB

Certified by

MIN EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS • ANALYSTS • GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958

FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

G	= 0	00	1) =	777	ż	0	2	I	1	> :	77	a	1	4	5	ż	5	·C	·	,-	t	ż	f	i	~	2	t.	=

1V-0254-RG1

Company:

REESE RIVER RESOURCES

Date: MAR-14-91

| Project:

Copy 1. REESE RIVER RESOURCES, GOLDBRIDGE, B.C.

Attn:

JIM MILLER-TAIT

He hereby certify the following Geochemical Analysis of 1 ROCK samples

submitted MAR-11-91 by JIM MILLER-TAIT.

Sample

AU-WET

Number

PPE

20

Certified by

MIN-ÉN LABORATORIES

COMP: REESE RIVER RESOURCES

ATTN: JIM MILLER-TAIT

PROJ:

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0254-SP:

DATE: 91/03/14 * SOIL * (ACT:F26)

SAMPLE NUMBER	AL203	BA	· BE	CAO	co o	CR203	cũ	FE203	K20	MGO	MNO2	MO	NA20	NB	NI	P205	PB	RB	\$102	SN	SR	T102	v	W	ZN	2
YUMBER #1	AL203 X 13.16	.050	.001	14.54	.005	.02	.020	8.16	1.17	2.96	.20	.005	2.18	.01	.005	.16	.025	.01	55.36	.010	.03	.85	.020	.005	.055	.00
																	1									
																		 -								
																										
									*								-									
																										
													· .							· · · · · · · · · · · · · · · · · · ·						
																	i				-					
						<u>.</u>										-	<u> </u>	٠.,								
												3														
	<u>.</u>													-	·		:									
						·····								-									•	·		
									•		_															
					-											4	i			-						
															•		٠.					:		•		
			1								••	, 1									1. 1. 1. 1. 1.					
									+1 																	
			•	· .								_									1-				10 (10 m) 10 (10 m)	<u>4:</u> 7
					γ 2		.77							7							2.					

COMP: REESE RIVER RESOURCES

MIN-EN LABS - ICP REPORT

PROJ:

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 1V-0254-RP1 DATE: 91/03/14

TH: JIM HIL	LER-TAIT									(604)	980-58	314 OR	(604)98	88-452	4								*	ROCK	* (#	CT:F2
SAMPLE NUMBER	AL203	BA %	BE X	CAO	CO (CR203	CU %	FE203	K20 %	MGO %	MN02	MO %	NA20 %	NB %	NI %	P205	PB %	RF	S 5102	2 SN % %	SR X	T102	v x	u X	ZN %	ZR %
#2	17.35	.045	.001 3	50.73	.005	.04	.005	5.08	.01	.22	.13	.005	.01	.01	.005	.10	.020			0 .005	.01	.22	.040	.005		
	+																									
	+	 				·																				
																				4						
	-																- :									
	+														<u></u>											
	-		-																				·			
																	<u> </u>									
																	,									
														<u> </u>			:									
						<u>··</u>									<u> </u>											
				-																		·				
																	•		•		•					,
	-					<u> </u>									<u> </u>		-	-		· · · · · · · · · · · · · · · · · · ·	•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	is is	
			• •								•															
		· . · . · ·												· 												
		i k																			ita Mariaka A				in in the second	
	1				:															***						

COMP: REESE RIVER

ATTN: J. MILLER-TAIT

MIN-EN LABS — ICP REPORT
705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0407-SJ1 DATE: 91/05/11

* SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PPB					
E-1	.4	128	52	6	1	120	18					
						,	.•			٠		
									•	•		
										•		
						· · · · · · · · · · · · · · · · · · ·						
											•	
					•							
						•						
						 						
						·						
										•		•
												
		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				
												•
					. -					· · · · · · · · · · · · · · · · · · ·		

COMP: REESE RIVER RESOURCES

MIN-EN LABS - ICP REPORT

PROJ: RAVEN

ATTN: J.MILLER-TAIT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0546-SJ1 DATE: 91/06/19

* SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	P8 PPM	SB PPM	ZN PPM	AU-WET PPB		<u> </u>	
8-01 8-02 8-03 8-04 8-05	1.3 1.3 1.1 .8 1.5	1 1 1 1	60 88 89 82 67	52 47 38 37 43	1 1 1 1	184 120 67 73 86	10 5 5 5 10			
B-06 B-07 B-08 B-09 B-10	1.2 1.6 1.2 .8 1.2	1 1 1 1	63 70 70 51 67	40 40 43 36 40	1 1 1 1	154 66 105 103 84	5 5 5 5 5			
GCD-1 GCD-2	1.5	1	153 47	68 47	1 1	129 101	5			
				· · · · · · · · · · · · · · · · · · ·	•					
				· · · · · · · · · · · · · · · · · · ·						
									· ·	
						<u> </u>				<u> </u>
						<u> </u>				
								<u></u>		
			- · · · -···							
			·							

COMP: REESE RIVER RESOURCES

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 PROJ: RAVEN ATTN: J.MILLER-TAIT

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0808-SJ1+2 DATE: 91/08/14

* SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU-WET PPB	
BL9+25N RAVEN BL9+50N RAVEN	.2 .1	10 20	64 80	15 11	1 1	170 104	10 5	
BL9+75N RAVEN	.5	7	46	10	1	(215)	5	•
BL9+100N RAVEN BL9+125N RAVEN	.2 .9	16 11 -	70 36	15 10	1	135	5 5	<u>:</u>
BL9+150N RAVEN	.1	28	67	9	1	110	10	
BL9+175N RAVEN BL9+200N RAVEN	.3 .8	18 9	47 44	12 13	1	151 (1970	5 5	
BL9+225N RAVEN	.2	24	45	13	1	134	5 5	
BL9+250N RAVEN BL9+275N RAVEN	.1	30 12	<u>98</u> 31	11	1	132	5	
BL9+300N RAVEN	.2	23	35	12	į	167	10	
BL12+29N RAVEN BL12+50N RAVEN	.1 .1	45 14	72 65	16 16	1	178 123	5 5	
BL12+75N RAVEN	.7	6	112	20	1	127	5	
BL13+00N RAVEN	.7	4	119 139	17 22	1	128 145	5 5	
BL13+25N RAVEN BL13+50N RAVEN	.7 .8	1 2	113	17	i	147	10	
BL13+75N RAVEN	.9	4	96	18 24	1	121 140	5 5	
BL14+00N RAVEN R-L10+00N 20E	.5	11 25	120 93	9	1	113	10	
R-L10+00N 40E	.4	18	64	10	i	119	5	
R-L10+00N 60E R-L10+00N 80E	.5 .4	9 10	25 31	11 7	1	128 105	5 5	
R-L10+00N 100E	.1	66	89	11	i	83	20	
R-L10+00N 120E	1	26	67	11	1	108	5	
R-L10+00N 140E R-L10+00N 160E	.1	19 33	58 73	10 12	1	99 88	10 5	•
R-L10+00N 180E	.1	23	38	12	į	100	5	
R-L10+00N 200E R-L10+00N 220E	.1	21 45	32 84	14	1	125	5	
R-L10+00N 240E	.1	20	62	26	i	106 (225)	5	
R-L10+00N 260E R-L10+00N 280E	.1	30 34	50 52	15 14	1 1	120 132	10 5	
R-L10+00N 300E	.2	25	65	15	i	136	5	
R-L10+00N 320E	.2	18	54	20	1	162	5	
R-L10+00N 340E R-L10+00N 360E	.1	27 8	95 61	15 16	1 1	123 153	5 5	
R-L10+00N 380E	.2	16	80	14	1	113	5	
R-L10+00N 400E R-L10+00N 420E	.1	20 11	90 59	18 16	1	138	<u>5</u>	
R-L10+00N 440E	.2	11	50	13	i	115	5	
R-L10+00N 460E R-L10+00N 480E	.1 .3	12 8	69 33	14 11	1	112 146	10 5	
R-L10+00N 500E	.1	21	59	15	i	110	5	
R-L11+00N 20E	.1	16	53	9	1	148	10	
R-L11+00N 40E R-L11+00N 60E	.4 .8	8 2	25 10	12 7	1	126 99	5 5	
R-L11+00N 80E	.1	17	98	12	1	119	- 5	
R-L11+00N 100E R-L11+00N 120E	.2	19	128	12	. 1	120	<u>5</u>	
R-L11+00N 140E	.1 .1	26 33	128 116	11 17	1	119	10	
R-L11+00N 160E R-L11+00N 180E	.3 .1	22 23	71 54	16 15	1	118 142	5 15	
R-L11+00N 100E	:1	23 17	39	13	1	129	5	
R-L11+00N 220E	.2	19	38	11	1	133	5	
R-L11+00N 240E R-L11+00N 260E	.2 .2	11 16	35 42	10 12	1	145 151	5 5	
R-L11+00N 280E	.1	19	55	11	1	106	5	
R-L11+00N 300E	.1	38	78	11	1	109	5	

MIN-EN LABS - ICP REPORT

PROJ: RAVEN

ATTN: J.MILLER-TAIT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0808-SJ3+4 DATE: 91/08/14 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU-WET PPB	
R-L11+00N 320E R-L11+00N 340E	.1	16 8	78 55	20 23	1 1	166 140	5 5	
R-L11+00N 360E R-L11+00N 380E R-L11+00N 400E	.2 .1 .1	9 19 18	55 89 84	21 16 21	1 1	128 127 107	5 5 5	
R-L11+00N 420E R-L11+00N 440E	.3 .1	24 28	77 113	16 21	1	138 91	5 5	
R-L11+00N 460E R-L11+00N 480E R-L11+00N 500E	1.1 .5 .2	9 9 1	92 96 37	12 15 16	1 1	109 109 128	5 10 5	
R-L12+00N 20E R-L12+00N 40E	.9 .8	34 1	107 107	18 13	1	108 150	10	
R-L12+00N 60E R-L12+00N 800 R-L12+00N 100E	.3 .4 .8	15 13 18	74 53 92	22 16 11	1 1 1	147 132 123	(450) 45 5	
R-L12+00N 120E R-L12+00N 140E	.5 .1	11 34	44 65	20 12	1 1	140 101	5. [.]	
R-L12+00N 160E R-L12+00N 180E R-L12+00N 200E	.1 .1 .1	22 20 37	54 89 109	14 14 (40)	1 1 1	123 98 104	5 5 (80)	
R-L12+00N 220E R-L12+00N 240E	.5	23 34	58 100	16 27	1	137 104	45 10	And the second s
R-L12+00N 200E R-L12+00N 280E R-L12+00N 300E	.1 .2 .7	38 34 18	96 116 101	18 19 19	1 1 1	104 117 (193)	5 5 5	
R-L12+00N 320E R-L12+00N 340E	.6 .6	21 10	101 55	28 17	1 1	179 127	5 5	and the second
R-L12+00N 360E R-L12+00N 380E R-L12+00N 400E	.3 .3 .1	18 23 34	85 74 123	35 27 35	1 1 1	138 120 133	5 10 5	
R-L12+00N 420E R-L12+00N 440E	.2	25 38	123 130	35 32	1 1	163 133	10 5	
R-L12+00N 460E R-L12+00N 480E R-L12+00N 500E	.1 .2 .4	32 33 11	104 193 53	24 21 23	1 1 1	150 146 139	5 10 5	
R-L13+00N 20E R-L13+00N 40E	.2	23 26	49 51	19 15	1	111 114	5 10	
R-L13+00N 60E R-L13+00N 80E R-L13+00N 100E	.1 .4 .4	35 18 13	64 33 33	18 16 17	1 1 1	113 133 150	5 5 5	
R-L13+00N 120E R-L13+00N 140E	.3	22 39	53 95	15 15	1	148 105	5 5	
R-L13+00N 160E R-L13+00N 180E R-L13+00N 200E	.4 .1 .2	22 14 7	76 63 63	41 14 12	1 1	116 105 131	5 5 5	
R-L13+00N 220E R-L13+00N 240E	.2	18 22	89 89	16 21	1	110 110	10 5	
R-L13+00N 260E R-L13+00N 280E R-L13+00N 300E	.1 .3 .4	12 15 17	93 127 86	26 37 35	1 1 1	(18) (17)	5 5 5	
R-L13+00N 320E R-L13+00N 340E	.5	13 18	106 162	29 34	1 1	181 173	5 5	
R-L13+00N 360E R-L13+00N 380E R-L13+00N 400E	.4 .3 .1	14 3 25	36 54 73	17 18 26	1 1 1	77 101 (191)	10 5 5	
R-L13+00N 420E R-L13+00N 440E	.7	45 34	149 107	33 28	1 1	167 181	5 5	
R-L13+00N 460E R-L13+00N 480E R-L13+00N 500E	.1 .1 .7	31 28 11	107 120 92	16 19 23	1 1	95 142 145	5 5 5	

MIN-EN LABS - ICP REPORT

PROJ: RAVEN

1

ATTN: J.MILLER-TAIT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 1V-0808-SJ5 DATE: 91/08/14

* SOIL * (ACT:F31)

NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU-WET PPB	_		
R-L14+00N 20E R-L14+00N 40E	.1	22 13	61 63	26 18	1	124 117	5 5			
R-L14+00N 60E	: 1	5	28	17	i	142	5			
R-L14+00N 80E	.4 '	9	3 3	14	1	152	10			
R-L14+00N 300E	.4	6	26	19	1	167	5			
R-L14+00N 120E	.1	10	29	16	1	122	5			
R-L14+00N 140E	.3	13	23	16	1	120	5			
R-L14+00N 160E R-L14+00N 180E	.3 .4	11 19	28 90	14 14	1	150 111	5 5			
R-L14+00N 200E	.4	20	46	18	i	153	10			
R-L14+00N 220E	.3	15	68	23	1	141				
R-L14+00N 240E	.5	18	81	22	i	(194)	5 5 5 5			
R-L14+00N 260E	.6	12	105	28	1	157	5			
R-L14+00N 280E	.4	13	72 115	23 24	1	163 122	5 5			
R-L14+00N 300E	.1	32	115		1					
R-L14+00N 320E	.1	33	103	24	j	95	5			
R-L14+00N 340E R-L14+00N 360E	.1 .1	41 36	94 1930	23 32	1	92 114	5 10			
R-L14+00N 380E	.2	50	(186)	29	i	92	5			
R-L14+00N 400E	.1	19	53	21	i	78	Š			
R-L14+00N 420E	.2	16	52	20	1	69	5			
R-L14+00N 440E	.1	25	94	21	4	87	10			
R-L14+00N %60E	.2	26	58	18	11	119	5			
R-L14+00N 480E	.1	21	91	20	1	100	5			
R-L14+00N 500E	.3	15	94	25	1	149	5	· · · · · · · · · · · · · · · · · · ·		
								•		
1										
l										
										
ļ										
i										
1										
ł										
										
										
·										

APPENDIX B

ASSAY CERTIFICATES

BAMPBON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958

FAX (807) 623-5931 SMITHERS LAB.:

TELEPHONE/FAX (604) 847-3004

Assay Certificate

1Y-0407-RA1

Company:

REESE RIVER

J. MILLER-TAIT

Date: MAY-11-91

THE STREET STREET AND STREET

Project: Attn: -----

Copy 1. REESE RIVER, VANCOUVER, B.C.

2. REESE RIVER, GOLDBRIDGE, B.C.

He hereby certify the following Assay of 7 ROCK samples submitted MAY-08-91 by CHRIS SAMPSON.

Sample	AU	AU	TRENCH RTR 91-9
Number	g/tonne	oz/ton	
17256 17261 17263 17265 ¹⁷ 26 4 17266	4.00 3.46 75.40 16.13 8.42	.117 .101 2.199 .470 .246	Im CHIP Im. CHIP CHIP. 3.5m, 11.48 Ft 0.842 02/100
17269	102.50	2.990	GRAIS
17270	4.20	.123	GRAIS

LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (804) 980-5814 OR (804) 988-4524 FAX (604) 980-9821

THUNDER BAY LAB.:

TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (804) 847-3004

ASSAY Certificate

1V-0407-XA1

Company:

REESE RIVER

Date: MAY-15-91

Project: Attn:

CHRIS SAMPSON

Copy 1. REESE RIVER, VANCOUVER, B.C.

2. REESE RIVER, GOLDBRIDGE, B.C.

He hereby certify the following Assay of 1 ROCK samples submitted MAY-13-91 by CHRIS SAMPSON.

Sample

ΑU

ΑU

Number

g/tonne

17264

1.28

.037

Certified by_

MIN-EN LABORATORIES

COMP: REESE RIVER

ATTN: J. MILLER-TAIT

MIN-EN LABS - ICP REPORT

PROJ:

State !

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0407-RJ1 DATE: 91/05/11

* ROCK * (ACT:F31)

	1		614			~			
SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PPB		
17251	.1	256	74	14	1	40	36		
17252 17253	.3	245 51	124 49	21 17	1	49 72	67 4		
17254	1.5	397	268	24	1	148	320		0\ A
17255	.1	201	51	10	1	68	142	TRENCH	RTR 91-9
17256	.8	2364	82	24 11	1	92 31	2900 305		
17257 17258	.1	188 76	26 18	6	1 1	21	196		
17259	.1	162	33	9	1	49	178		
17260	.5	104	61	9	1	85	21		······································
17261 17262	1.3	278 251	63 96	15 28	2 3	81 105	<u>5450</u> 69		
17263	<u>18.3</u>	<u> 3811</u>	488 210	19	25 T	125 231	76000		
17264 17265	3.0 7.1	5041 11133	210 371	27 13	27	231 129	2100 15000		
17266	9.1	6296		31	11	148	8700		
17267	7.1	774	<u>418</u> 25	4	1	38	240		
17268	.3	1295	55	18	2	51	<u>182</u> >90000		
17269 17270	30.2	2 4915 83219	114 1089	34 1	38 1	28 171	275°		
			·						
						•			
	l								
							•		
	 								·
	†								
									· · · · · · · · · · · · · · · · · · ·
		<u> </u>							
									·
	-					· · · · · · · · · · · · · · · · · · ·			
			•						

COMP: REESE RIVER PROJ: RAVEN ATTN: JIM BAYLIS

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0452-RJ1 DATE: 91/05/23

* ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PP8		•
17282 17283 17284 17285	.8 3.5 3.9 2.4	780 1237 5371 5351	76 174 153 150	137 29 19 19	1 1 8 8	82 138 132 95		DH 91-3	46.0 - 51.0 FT 51.0 - 55.0 55.5 - 60.0 60.0 - 64.0
	,								
					-				-
				· · · · · · · · · · · · · · · · · · ·					

LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9821

THUNDER BAY LAB.:

TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Metallic Assay Certificate

1V-0452-RM1

Company:

REESE RIVER

Date: MAY-23-91

Project:

RAYEN

Copy 1. REESE RIVER, VANCOUVER, B.C.

Attn:

JIM BAYLIS

2. REESE RIVER, GOLDBRIDGE, B.C.

3. SAMPSON ENG, VANCOUVER, B.C.

He hereby certify the following Metallic Assay of 4 METALLIC samples submitted MAY-21-91 by CHRIS SAMPSON.

Assay Value Au | | Total Weight Au | | Metallic Au | | | Net Au # Total # +120 M # (q/t) \$ (oz/ton) * Wt (g) * Wt (g) * +120(q/t) -120(q/t) * +120(mg) -120(mg) * (oz/ton) .53 1 0.37 1 0.89 1.63 F 195.44 0.201 0.291 1 0.011 0.026 # 550.03 # 17283 **#** 1851.59 **#** 17.59 **#** .54 .70 # 0.009 1.284 # 0.000 0.01 # 0.020 0.70 # 1627.70 # 48.70 # 6.08 1 17284 4.26 0.207 9.600 \$ 0.004 0.13 * 0.176 6.03 17285 **#** 1721.30 **#** 52.30 **#** 12.45 5.38 \$ 0.651 3.979 \$ 0.011 0.38 1 0.163 5.59

> 4.5 ft. } 0.176 0.163

Certified by

MAN-EN LABORATORIES

EN LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (804) 847-3004

Assay Certificate

1V-0461-RA1

And the house

Company:

REESE RIVER

Date: MAY-28-91

Project:

RAVEN

Copy 1. REESE RIVER, VANCOUVER, B.C.

Attn:

J.MILLER-TAIT/C.SAMPSON

2. REESE RIVER, GOLDBRIDGE, B.C.

He hereby certify the following Assay of 5 ROCK samples submitted MAY-23-91 by .

Sample Number	AU g/tonne	AU oz/ton	TRENCHES
17273	1.05	.031	RTR 91-11 W 0-1 M.
17274	1.18	.034	RTR 91-11 1-2 m.
17276	3.38	.099	RTR 91-12 0-1 m
17277	8.34	.243	RTR 91-12 1-2 m.
17281	1.99	.058	GRATS 91-12.

Certified by_

MIN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.:

TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Metallic Certificate ASSAY

1V-0461-RM1

Company:

REESE RIVER

Date: MAY-28-91

Project: Attn:

24

RAVEN

J.MILLER-TAIT/C.SAMPSON

Copy 1. REESE RIVER, VANCOUVER, B.C.

2. REESE RIVER, GOLDBRIDGE, B.C.

He hereby certify the following Metallic Assay of 11 METALLICS samples submitted MAY-23-91 by . -----

	****													******				
Sample		ţ	Total	1	+120) M	1	Assay Va	lue Au	ŧ	Total W	leight Au	1	Metalli	c Au	\$	Net	Au
luaber		1	₩t (g) :	t Wt	(g)	ţ	+120(g/t)	-120(g/t)	\$	+120 (ag)	-120 (ag)	\$	(oz/ton)	(g/t)		(oz/ton)	(g/t)
********	****	k k	******	# #1	****	***	##1	********	215744444	ļļ	********	******	**1	**********	******	‡ ‡‡	*********	******
i8-21 <u></u> ∽	Ì		384.3	5		1.35	1	19.59	4.72	\$	0.081	1.794	\$	0.006	0.21	#	0.142	4.88
1-31			2050.8	0	1 65	5.80	ţ	.96	.54	¥	0.063	1.072	1	0.001	0.03	ŧ	0.016	0.55
1-36]	*	2318.3	0 :	118	3.30	‡	1.31	1.91	*	0.155	4,202	ı	0.002	0.07		0.055	1.88
6-41			2775.9	0	133	5.90	ŧ	1.60	.85	Į	0.217	2.270	ŧ	0.002	0.08	1	0.026	0.90
11-45	M	1	1528.7	0	33	3.70	1	.30	.22	\$	0.010	0.329	ţ	0.000	0.01	1	0.006	0.22
6-51	5	t	2635.5	0	81	50	1	12.37	2.12	1	1.008	5.417	‡	0.011	0.38	1	0.071	2.44
1-55 1/2	1	ŧ	1658.1	0 1	1 83	3.10	İ	1.99	. 59	ŧ	0.165	1.087	ŧ	0.003	0.10		0.022	0.76
5 1/2-60	1 2	İ	604.7	0	t 9	7.70	t	31.39	22.25	İ	0.304	13.239	ţ	0.015	0.50	1	0.653	22.40
0-56	IA	ŧ	1637.2	0	62	2.20	1	18.33	12.55	ŧ	1.140	19.766	1	0.020	0.70	*	0.372	12.77
6-70		ţ	1323.6	0	28	3.60	1	2.97	.74	\$	0.085	ù.958	t	0.002	0.06	t	0.023	0.79
71 1/2-74 1/2	2		1394.9	o :	49	7.90	1	2.43	.30	1	6.121	0.403	;	0.003	0.09	1	0.011	0.38

DDH 91-3 : SLUDGES

Certified by_

MYN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay Certificate

1V-0546-RA1

A STATE OF THE STATE OF

Company: Projed Attn: Project: REESE RIVER RESOURCES

RAVEN

J.MILLER-TAIT

Date: JUN-21-91 Copy 1. REESE RIVER RES., VANCOUVER, B.C.

2. REESE RIVER RES., GOLD BRIDGE, B.C.

He hereby certify the following Assay of ROCK samples

submitted JUN-13-91 by J.MILLER-TAIT.

Sample Number	AU g/tonne	AU oz/ton			
17018] 17151	1.05 1.68	.031	91-4	- No. 1 Annual Control of the Contro	
17168	3.37	.098	91-5		
17176 g 17191	17.30 .16	.505 .005	9176	,	Service of the servic
17289	1.48	.043	91-3		
35-40 56 1/2-60	1.56 5.24	.046 .153	91-4 (SLUDGE)	•	
의 91-5 51-54 - 91-5 54 1/2-56 1/2	11.47 5.73	.335 } .167 }	91-5 (SLUDGE)	5 FT / 0.20	oz/ten
71-6 25-31 91-6 61-65 1/2	1.14 24.70	.033	91-6 (SLUDGE)	10 FT 0 · 42	oz/ton.
91-6 65 1/2-71	5.80	.169 J			

Certified by____

MIN-EN LABORATORIES

LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9821

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Metallic Certificate ASSAY

1V-0546-RM1

Company:

REESE RIVER RESOURCES

Date: JUN-27-91

Project:

RAVEN

Copy 1. REESE RIVER RESOURCES, GOLDBRIDGE, B.C.

Attn:

J. MILLER-TAIT

2. REESE RIVER RESOURCES, VANCOUVER, B.C.

He hereby certify the following Metallic Assay of 7 REJECT samples submitted JUN-21-91 by .

1111111111111111111	***	* * † † *	***	##1	111	† † †	***	******	*******	###	******	********	111	*********	****	***	iikiikiiiiii	*****
Sample	t	Tot	aì	1 4	120	K	1	Assay V	alue Au	1	Total .	Weight Au	1	Metallio	. Au	ं‡	Net	Au
Number	1	Wt	(g)	ţ	₩t	(g)	\$	+120(g/t)	-120(g/t)	‡	+120(mg)	-120(ag)	1	(oz/ton)	(g/t)	1	(oz/ton)	(g/t)
	***	****	1711	##	111	111	***	*******	*******	111	************	*****	111	HILLIAN	ШШ	111	11111111111	HIIII)
17168(DDH91-5)	\$	1482	. 13	1	47	.13	1	6.31	3.28	ţ	0.321	4.707	1	0.006	0.22		0.099	3.39
17176 (300H 91-6)	1	2173	. 33	\$	113	. 33	1	10.93	15.90	Į	1.239	32.754	ŧ	0.017	0.57	1	0.456	15.64
56 1/2-60 (DDH 91-	砂	574	. 33	1	39	. 33	1	6.18	3.13	ţ	0.243	1.675	1	-0.012	0.42	. ‡	0.097	3.34
DDH 91-5 51-54	ı	1613	. 11	ţ	23	.11	ŧ	24.02	11.23	Į	0.555	17.856	ŧ	0.010	0.34	ŧ	0.333	11.41
200H 91-5 54 1/2-56 1/	2 #	162	. 87	\$	12	. 87	!	-10.19	5.48	‡ 	0.131	0.822	t 	0.023	0.81	1	0.171	5.85
DDH 91-6 61-65 1/2		705	. 05	1	45	. 05	1	13,19	22.45	ı	0.594	14.817	t	0.025	0.84	1	0.638	21.86
DD>H 91-6 65 1/2-71	Ì	789	. 65	ŧ	29	. 65	1	4.15	5.64	ŧ	0.123	5.414	1	0.004	0.12	į	0.163	5.60

91-4,5,6 DRILL HOLES

Certified by_

PROJ: RAVEN

ATTN: J.MILLER-TAIT

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0546-RJ1+2 DATE: 91/06/21

* ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU-WET PPB	
17018	2.4	8717	129	51	10	53	1010	*
17151	.6	1898	99	48	1	71	1450	•
17152	.1	449	118	50	1	85	100	
17153	.1	111	140	62	1	59	30	~~·· 01 11
17154	.2	307	198	56	7	58	5 (DDH 91-4
17155	.6	221	120	36	4	43	10	
17156 17157	.6 .3	134 143	132 99	30 45	1	27 51	20 5	
17158	.3 .1	220	86	64	•	53	10	
17159	.1	426	65	63	i	37	70	
17160	.3	131	85	58	1	48	160	
17161	.2	339	97	62	1	52	70	1
17162	.6	165	135	56	8	48	5	
17163	.3	105	88	53	1	47	10	
17164	.2	150	87	58	1	46	5	
17165	-4	91	103	58	1 .	55	5	SAMPLES FROM
17166		<u>54</u>	50	 37		<u>22</u> 54	5_	GOLDEN CACHE
17168	. i	3846	192	114	20_	108	2500	DDH 91-5
17169	.2	240	32	27	5	19	120	· -
17170	.2	269	71	61	11	41	40	
17171	.2	125	72	66	1	56	5	
17172	.6	196	70	55	1	51	50	
17173	.4	89	28	34	1	25	5	
17174	1	155	83	65	1	62	5 _	
17175	.1	54	42	84	1	77	5 7	
17176 17177	<u>.1</u>	9183	351	238	1	124	9600	· .
17178	. <u>1</u>	1114 307	302 89	140 74	1	123 97	450 30	
17179	. i	70	98	60	i	92	10	
17180	.1	36	85	60	1	96	25	
17181	.1	1120	206	81	1	122	605	
17182	.8	313	75	48	18	41	55	2
17183 17184	1.0 .9	260 395	51 77	45 52	7	32 43	40 85	7 DDH 91-6
					5			
17185 17186	.3	588	101	59	4	52 50	90 770	
17187	1.5 .4	321 105	67 74	56 58	1 1	50 50	770 30	
17188	.3	65	75	48	i	44	5	
17189	.5	70	66	47	1	41	5	
17190	.7	557	87	52	1	48	45	
17191	1.2	282	130	54	1	49	1250 _	<u>,</u>
17286	.1	1358	128	80	1	103	125	
17287 17288	.1 .9	65 273	62 127	42 48	1 6	68 46	15 75	
17289								<u> </u>
17289	1.0 1.0	181 100	<u>84</u> 57	40 41	<u>3</u>	<u>38</u> 38	1350 50	> DDH 91-3
17291	.3	63	71	44	i	43	35	
17292	.4	89	81	55	i	51	5	
17293	7	91	77	56	11	70	15	
17294	.6	110	65	52	1	45	یہ 10	
17295	1.1	3790	126	78	1	85	460	
17296 17297		241	80	61 55	1	54 50	55 40	1
17298	.5 .4	176 75	76 76	55 48	1 1	50 49	40 25	4-10 HOCT
17299	.1	262	155	79	1	86	20	7 000 11
17300	.5	262 156	130	44	1	66	20 60	
ROCK #1	.6	30	18	29	i	55	10	,
I								

MIN-EN LABS -- ICP REPORT

PROJ: RAVEN

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 1V-0546-RJ3 DATE: 91/06/21

ATTN: J.MILLER-TAIT

(604)980-5814 OR (604)988-4524

* ROCK * (ACT:F31)

<u> </u>								
SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PP M	SB PPM	ZN PPM	AU-WET PPB	
25-30								
30-35	.3	29 628	114 197	60 77	1	106 113	5 240	
35-40	.7	856	69	33	ż	57	1500	· .
40-45	.7 .2	1229	125	55		94	450	
45-50	.1	87	116	53	1	102	75	DDH 91-4 (SWDGES)
50-55	1.3	51	208	61	1	95	5	
55-60	.1	145	154	48	1	96	5	1
56 1/2-60	.5	1131	206	75	11	108	3750	·
60-65	.5 .4 .1	1458	153	58	1	83	730)
91-5 25-30		84	148	53	1	158	5 ^	
91-5 30-35	_ <u>.3</u>	509	254	57	2	142	510	İ
91-5 35-41	.2	201 165	208	55 57	1 1	131	45	
91-5 41-46 91-5 46-51	.1 1	1158	143 33 9	57 58	3	107 89	125 705	
91-5 51-54	1.5	3663	492	163	38	140	11000	> DDH 91-5 (SLUDGES)
91-5 54 1/2-56 1/2		3252	311	115	8	159	5500	
91-5 61-65 1/2	1.4	314	114	61	1	100	440	}
91-6 25-31	,i	1052	214	53	i	147	1050	វ
91-6 31-35	.1	306	162	52	1	91	335	
91-6 35-41	.4	980	317	54	2 .	80	780	
91-6 41-46	.1	407	181	57	1	93	75	
91-6 46-51	.1	150	118	58	1	91	70	DDH 91-6 (SLUDGES)
91-6 51-56	-1	93	107	52	1	87	15	, , ,
91-6 56-61	.1	206	177	59	7	126	45000	
91-6 61-65 1/2	3.2	9610	327	165	20	91	15000	
91-6 65 1/2-71	<u>.1</u>	3687	550	198		160	5300	
91-6 72-74 NO NUMBER	.1	946 88	222 158	115 52	1	109 103	910 90	
NO NOTICER	• •	•	170	76	•	103	,, ,	J
								·
								
1								
1 1								
ł								
,								
1								
1								
								•
1								

MIN-EN LABS - ICP REPORT

PROJ: RAVEN

**

ATTN: J.MILLER-TAIT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 1V-0808-RJ1+2 DATE: 91/08/13 * ROCK * (ACT:F31)

APPENDIX C

DRILL LOGS

1

BAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver Bt: V6K 216

Angle Reading Corrected Hole No. Sheet No. -45° Date Begun 1 May 1991 Date Finished 5 May 1991 Date Logged 22 May 1991	Dep Bearing				Total D	. 27			
	-				Logged Claim_	Ву	-	:.(83.5m	.)
DESCRIPTION	SAMPLE No.	FROM	ат	GOLD ppb/oz. ton	As ppm	FROM	TO	GDLD ppb/oz t.	As ppm
Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ¼" ON WIDTH DISS. THROUGHOUT CORE 1% SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A.									
GREENSTONE DYKE WITH QTZ SMALL (1") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY E.O.H.									
	Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ¼" ON WIDTH DISS. THROUGHOUT CORE 1% SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A. GREENSTONE DYKE WITH QTZ SMALL (¼") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY	Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ½" ON WIDTH DISS. THROUGHOUT CORE 1% SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A. GREENSTONE DYKE WITH QTZ SMALL (½") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY	Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ½" ON WIDTH DISS. THROUGHOUT CORE 1% SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A. GREENSTONE DYKE WITH QTZ SMALL (½") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY	Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ½" ON WIDTH DISS. THROUGHOUT CORE 1% SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A. GREENSTONE DYKE WITH QTZ SMALL (½") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY	Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ¼" ON WIDTH DISS. THROUGHOUT CORE 1% SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A. GREENSTONE DYKE WITH QTZ SMALL (¼") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY	Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ½" ON WIDTH DISS. THROUGHOUT CORE 1% SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A. GREENSTONE DYKE WITH QTZ SMALL (½") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY	Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ½" ON WIDTH DISS. THROUGHOUT CORE 1% SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A. GREENSTONE DYKE WITH QTZ SMALL (½") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY	Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ½" ON WIDTH DISS. THROUGHOUT CORE 1Z SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A. GREENSTONE DYKE WITH QTZ SMALL (½") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY	Casing ARGILLITE, BLACK GRAY BEDDING/SCHISTOCITY AT VERY LOW ANGLES, APPROX. 5° TO CA BROKEN GROUND TO 6.7 M. AFTR 6.7 M. CORE BROKEN ALONG PLANES AT BEDDING/SCH. AT LOW ANGLES CUBIC PYRITE APPROX. ½" ON WIDTH DISS. THROUGHOUT CORE 1% SMALL ½" QTZ BARREN EXEPT FOR MINOR PY CUTTING ARGILLITE THROUGHOUT SECTION AT HIGH 45° ANGLES TO C.A. GREENSTONE DYKE WITH QTZ SMALL (½") EYES DYKE BLEACHED CONTACT AT 68.2 M. APPROX. 30° AT 70.7 APPROX. 10° NO SX IN DYKE QTZ EYSE MAY HAVE FILLED PYRITE BOXWORK TEXTURE IDENTICAL ARGILLITE UNIT IS IN 2.1-68.2 WITH SAME AMOUNT OF PY

		PR	OPERTYRAVE	N				HOLE No	R-91	-2		_	
		Ditage	Angle Reading Corrected 45°	Hole No	Lat _ Dep _ Bearing _ Elev. C	o			Total De	pth 1 By RAV	JMT EN	(42-7-	, ,
		1		Date Finished MAY 16, 1991 Date Logged MAY 16, 1991			COF	SE				LUDGE	
DE I FROM	TO	RECOVER	ry .	DESCRIPTION	SAMPLE No.	FROM	מד	GCILD ppb/oz. ton	As ppm	FROM	מד	GOLD ppb/oz. t.	As ppm
<u>o</u>	9.4	0%	CASING	······································	,								
9.4	42.6	85%	SCHISTOCITY P HARDER ARGILL AFTER MINOR I SIZE ∠1% MIN OF SX AT 10± 2	OKEN GROUND THROUGHOUT ALONG BEDDING LANES WHICH ARE APPROX 90° TO C.A. ITE GREY-BLACK UNTIL ²⁷ , 7m THEN BLACK DISS EUHEDRAL PY XTALS Z !" IN NOR QTZ STRINGERS Z !" BARREN TO C.A. SOME BOXWORK TEXTURE IN EAS BOXING E.O.H.									
								•			 -		······································
				•									
											·····		<u> </u>
													 ,
								,					
				· · · · · · · · · · · · · · · · · · ·									

		PRO	PERTY	RAVEN				HOLE N.	R-9	1-3		-	
		•	Angle Reading Corrected -53°	Hole No. R91-3 Sheet No. Section 13 May 1991 Date Begun 16 May 1991 Date Finished 30 May 1991	Den	0			Logged Claim_	Ву		(36.6m.)	
DEF		RECOVERY		DESCRIPTION	SAMPLE No.	FROM	TO	GULD ppb/oz. ton	As ppm	FROM	מד	GDLD ppb/oz.t.	As ppm
0	6.4		CASING										
6.4	21.9			RED). LISTWANITE ALTERED WITH				490/0.026 705/0.020				.142	
				OW WEATEHRED TO IRON OXIDE	· ————			6700/0.17			<u> </u>	.026	
			10.4-10.5 VUG	GY QV BROKEN CONTACTS CORE	17286	19.5	20.4	125	1358	14.02	15.54		
			VERY BROKEN D	UE TO FRACTURING SOME LOSS OF CORE	·	 	21.9		65	15.54	16.9	.022	
					·		23.4		273	1		.653	
21.9	33.1			LT TO LISTWANITE) CARBONATE	` L			1390/0.04		18.3			
			ALTERED 26.91	-27.0 GR 20° C.A.	17290	<u> </u>			100	1		.023	
·					17291	ł			63	21.8	22.7	.011	
33.1	36.5	1	ARGILLITE PAR	TLY ALTEREDTO LISTWANITE	17292	<u> </u>			89				
							30.8		91				
			E.O.H.		17294	30.8	32.3	10	110				· · · · · · · · · · · · · · · · · · ·
				///					· · · · · · · · · · · · · · · · · · ·	·			
-													
									-				
										 			
!		· · · · · · · · · · · · · · · · · · ·	!		!	: 	!	!		·		·	

		•	DIAMOR	ND DRILL N	ECURI	,							
Pl	ROPERTY	R	AVEN	-				HOLE N	R-91-	-4			
	DIP TEST												
	Ап	gle	P-01-4							1:	21 64/	20.0-	\
99	Reading	Corrected	Hole NoR-91-4	_ Sheet No	Lat							39.92 m	
	-70	·	Section		_ Dep				Logged	Ву	JM	T	_
			Date Begun 17M		_ Bearin	g			Claim	•	RAVEN		
			Date Finished 23	MAY 1991 .	Elev C	ollar			Core Si	reI	30		
		L	Date Logged M/	AY 30, 1991			CDF	RE .				LUDGE	
RECOVE	COVERY		DESCRIPTION		SAMPLE No.	FROM	מד	GEILD ppb/oz. ton	As ppm	FROM	ТО	GOLD pob/oz t	
0%	CASI	NG								7.6	9-1	5	Γ

	PTH	RECOVERY	OFF CONTROL	SAMPLE	FROM	ТО	GOLD	As	FROM	TO	GOLD	As
FROM	 	ļ	DESCRIPTION	No.		''-	ppb/oz. ton	ppm	I KUN	10	ppb/oz t	ppm
0	6.7	0%	CASING						7.6	9-1	5	
L						<u> </u>			9.1	10-6	240	
6.7	94		GROUND BROKEN LISTWANITIZED ARGILLITE + PY.						10.6	12-1	1500/04	
			RELICT BOXWORK TEXTURE BEDDING APPROX 60° TO CA						124	13.7	450	
				17300	10.4	10-6	60	156	13-7	15.2	75	
10.3	10.6		MINOR OXID (BROWN) GROUND QTZ CONTACT? IN DIST	17151	11.6	11.9	1450/-049	1898	15.2	16.7	5	
			ARGILLITE	17152	11.9	14-2	100	449	16.7	18.3	5	
				17295	18.9	19-2	460	3190	17.2	10.3	3750/153	
10.6	114		LIST ARGILLITE WITH RELICT PY BOXWORK TEXTURE	17296	19.2	207	55	241	15.9	19.8	730	
			BEDDING APPROX 60° to CA	17297	20.7	21-6	40	176				
				17298	21.6	23.1	25	75				
11.4	11.8		OXID LIST ARGILLITE + GROUND QTZ OXID	17299	23.1	25.6	20	262				
				17153	25.6	26.5	30	111				
11.8	18.9		ALT ARGILLITE TO LIST CARB ALT CONTACT?	17154	26.5	27.4	3	307				
			BEDDING APPROX 60° TO CA OXID GROUND QTZ at 62	17155	27.4	28.6	10	221				
				17156	28.6	29.4	20	134				
10.9	23,5		LIST GREENSTONE WITH MINOR SMALL &" OXID QTZ/	17157	29.4	30.9	5	143				
			CARB STRINGERS (OXID) AT VARIOUS ANGLES TO CA	17158	35-3	36-3	10	220				
				17:59	36.3	36.7	70	426				
<i>2</i> 3,5	246		HEAVILY OXID LIST + BOXWORK TEXTURE	17160	36.7	37.8	160	131				
				17161	37.8	38.7	70	339				

		PI	ROP	ERTY	-	RAVEN				HOLE N.	. ————			_	
	Foo	tage .		TEST_An eading		Hole NoR-91-4 Sheet No2 Section Date Begun Date Finished Date Logged	Dep Bearin	9			Claim_	Ву		SLUDGE	
DE FROM	РТН ТО	RECOVE	ERY			DESCRIPTION	SAMPLE No.	FROM	ТО	GOLD ppb/oz. ton	As ppm	FROM	סד	GOLD ppb/oz. t.	As ppn
24.6	26.5			LIST	FR + OXII	D BOXWORK TEXTURE									
26.5	27.8				ND MUD EXC	CEPT FOR 5 CM REPRESENTING LOSS. QTZ							·		
27.0	28.8			LIST	WANITIZED	ALTERED GR WITH OXID ALONG FRACTUR	RES								
288	29.2					IN WITH OXID ALONG CONTACT AT LOW									
29.2	36.3				GR WITH I	MINOR RELICT PY BOXWORK TEXTURE	-			·					
36.2	37.0			OXID	MUD WITH	QTZ FRAGMENTS THROUGHOUT									
37.0	38.4				ILY ALT L	IST FR CONTACT OXID MUD AT 126	_							·	
38 A	<i>9</i> 9.9					UNALTERED ARGILLITE, BEDDING APP	ROX				•				
	60° TO CA E.O.H.				.О.Н.		`								

RAVEN

		PRO	PERTY	RA	VEN				HOLE N	R-	91-5		_	
-		DIF	TEST	ale									6,	
	Foo	otage O	Reading -53	Corrected	Hole No. R-91-5 Sheet No. Section 27 May 1991.	Dep				Logged	Ву		(36.57	•
ŀ	-				Date Finished 31 May 1991 Date Logged				<u> </u>	Core Si				·
DE FROM	РТН ТО	RECOVERY	_		DESCRIPTION	SAMPLE No.	FROM	TO	GOLD ppb/oz. ton	As ppm	FROM	מד	GDLD ppb/oz. t.	As ppm
0	79		CASI	NG	· · · · · · · · · · · · · · · · · · ·		ļ	 			7.6			
7.9	22.2	CORE VER		-	TERED) VARIES FROM GREY TO BLACK							12.5	 	
		CORE VER			CTURED DUE TO BREAK ALONG SCHISTOCI ING ALONG FRACT NUMEROUR DISSEM	Y						14-0		
		PY RELIC			W WEATHERED TO IRON OXIDE	17168	157	17.2	2500/0.098	2014	1	15.5	11000/.3	<u> </u>
		75.54-16,			GY QV RUSTY NUCH CARB SOME PY	17169		23.0		240			5500/0-16	
			17.07	-17.22		17162	23.0	24.3	5	165	18.5	19.9	440	
22.2	30.8		GREE	NSTONE (A	LTERED TO LISWANITE) GRAY GREEN	17170 17163		24-6		269				
			1		LTERATION PERVASIVE ABUND DISSEM	17164	 	268		105				
					PORPHYROBLASTS OPEN FRACTS TO	17165		29.3		91				
 		!		<u> </u>	WEATHERS TO ORANGE STAIN GY QV CONTACTS BROKEN PROBABLY	17171		28.6 29.4		125				
			+		MISTY, 29.36-30.02QV HW CONTACT	<u> </u>		29.8		89				
			25°	TO C.A.	FW 45° TO CA	17174	29.8	101	5	155				
30.8	36.5		ARGI	LLITE ALT	ERED WITH DISSEM PY RELICTS									
				E,0.H										

R-91-6

		PR	OPERT	Y RAV	EN				HOLE N	R-	-91-6		_	
ŗ			IP TEST											
	Foo	rtag e	Reading	Corrected	Hole No. R-91-6 Sheet No. 1 Section	Dep				Logged	Bv	JMT	44·5m)	<u>.</u> -
- [0	-7 0	0	Date Begun 3JUNE 1991					Claim_	·]	RAVEN		
E					Date Finished JUNE 5, 1991 Date Logged JUNE 7, 1991	Elev. C	ollar	CO		Core Si	20 R(•	SLUDGE	<u>-</u>
DE I	ТО	RECOVE	RY		DESCRIPTION	SAMPLE No.	FROM	מד	GOLD ppb/oz. ton	As ppm	FROM	то	GDLD ppb/oz.t.	A≤ ppm
<u>Q</u>	26 f		CAS	ING			<u></u>				7.6	9.4	1050/033	1052
<i>o</i>	4.92										9.4	1	335	306
26	60		ARG	ILLITE WIT	H RELICT BOXWORK OXID PY APPROX 5%						10-6	12-5	780	980
7.4	18.31	1	BED	DING APPRO	x 70° to ca blocky core					_	125	14-0	75	407
											14.0	155	70	150
	60.5	-	OXI	D LIST GR	WITH 5% PY CONTACT APPROX 70°						1	17.7		93
18.3	18.41	TO CA MINOR BARREN QTZ/CARB STRINGERS AT RAN					18.1	18.9	5	54	†	18-5		206
				"s TO	CA	17175			9600/0.505		185	19.9	0.720 15.000 0.169	9610
						17177		21.9		1114	19.9	21.6	0.169 5300	3687
60.5	70 214		HEA	VILY OXID	DEEP BROWN/YELLOW QTZ VEINING WITH	17178		23.0		307	21.9	Į.		946
104	2141	1	PY,	ASPY APPR	OX 1% LEFT UNOXID PHOTO TAKEN	17179	23.0	24.3	10	70				
			ALL	CORE ASSA	YED RELICT BOXWORK TEXTURE	17180	24.3	25.6	35	36				
			THR	OUGHOUT.		17181	25.6	26.5	605	1120				
						17182	265	28.0	56	313				
70.5	85 25.9 H	···	ARG	ILLITE WIT	H RELICT BOXWORK OXID PYAPPROX 5%	17183	28.0	29.5	40	260				
			SAM	E AS 7.9-1	₹.3 M.									
05	0.7		- Ones	TATE OF THE CO	TO BY ACRY ORTOTALIAN OUT OF		-	[
3.9	87 26-5				TZ PY ASPY ORIGINALLY OXID OUT	ļ	 	 						<u>.</u>
<u> </u>			GRO	IND 1 FEE	r	<u> </u>	<u> </u>	 			-			
87.s	134.	95%	LIST	r gr + mar	IPOSITE +3% PY QTZ STRINGERS									

	DIP TEST			TAVE					HOLE N	e. <u>IX 91</u>	<u> </u>		_	
		DI		ngle	P-01-6									
	Foo	otag e	Reading	Corrected	Hole No. R-91-6 Sheet No. Section Date Begun	Dep	 			Logged	Ву			-
					Date Finished					Core SI				_
į				1	Date Logged	•		CDI					SLUDGE	
DE FROM	PTH I TO	RECOVER	Y		DESCRIPTION	SAMPLE No.	FROM	מד	GOLD ppb/oz. ton	As ppm	FROM	מד	GDLD ppb/oz.t.	As ppr
			OXII	AT 28.5M	. (5 CM AT30°), 29.11M (2.5 CM	17184	29.5	31.7	85	395				
			15 4	45°), 31.3	9 (2.5 CM WELL OXID AT 30°), 33.83	M17185	31.7	32.4	90	588				
			(30°	7.5 CM),	35.36 (2.5 CM AT 45°), 39.16 M	17186	32.4	33.8	770	321				
					ALL VEINLETS HAVE APPROX. 5 CMS.	17187	33.8	35.4	30	105				
			1	LIST SEL		17188	35.4	36.6	5	65				
	CONTACT AT 4			ract at 40	.99 AT 60° TO C.A.	17189	36.6	38.1	5	70				
						17190	38.1	39.6	45	557				
41.0	44.5	80%	SAMI	E AS 7.9-1	8.3 ARGILLITE	17191	39.6	40.8	1250/0.00	5 282		,		
			E.O.	.н.										-
						`								
						`								
					,									L
														
											 			
														
											 		 	

		PRO	PERTYRAVEN					HOLE N	R-91-	-7		_	
			TEST Angle Reading Corrected Hole No. R-91-7 Shee -45° Section JUNE 1: Date Begun JUNE 1: Date Finished JULY 3	2, 1991 7, 1991	Dep Bearing	7	20°		C. (01111) —	By JI RAV	2	C. (42.06)	1.)
DE	PTH TO	RECOVERY	DESCRIPTION		SAMPLE No.	FROM	סד	GOLD ppb/oz. ton	As ppm	FROM	מד	GOLD ppb/oz. t.	As ppm
0	3.3	0%	CASING										
3.3	25.6	90%	ARGILLITE, BEDDING APPROX. 80° TO C.A. I				27.7						
			EUHEDRAL XTALS OXID BOXWORK TEXTURE				30.6						
			THROUGHOUT APPROX. 5-10%		17111	30.6	32.1	5			•		
					17112	32.1	33.6	180					<u></u>
25.6	40.5	100%	LIST GR. WITH DISS. EUHEDRAL XTALS UP TO	0.5 CM	17113	33.6	35.2	65	· <u>-</u>				
			IN DIA. OXID LIST ALONG FRACTURES AND Q	rz :	17114	35.2	35.9	20					
			VEINING UP TO 7 CMS ENVELOPE SERICITE P	RESENT	17115	35.9	37.5	5			· · · · · ·		
			WITH QTZ VEINING AT 28.65 APPROX. 2 CMS	AT 60°	17116	37.5	39.0	5					
-			TO C.A. 2 CMS AT 45° TO C.A. AT 35.2M,	35.551M	17117	39.0	40.5	15					
40.5	42.0	25%	ARGILLITE, SAME AS 3.3-25.6 M								· · · · · · · · · · · · · · · · · · ·		
			Е.О.Н.										
		· · · · · · · · · · · · · · · · · · ·											
				 _									
!	<u> </u>						:	<u> </u>		!	i	<u> </u>	

		PRO	PERTYRAV	EN				HOLE N	R-91	-8		_	
		DIII	Reading Corrected	Hole No. R-91-8 Sheet No	_ Dep _ Bearin	g		RE	Ciaim_	RAV	EN 1	. (42.97m	1.)
	PTH I TO	RECOVER	/	DESCRIPTION	SAMPLE No.	FROM	מד	GELI ppb/oz. ton	As ppm	FROM	מד	GOLD ppb/oz t.	As ppm
0	33	0%	CASING				·						
3.3	20.1	90.5%	<u> </u>	BEDDING APPROX. 80° TO C.A. RELIC	1								
	 			CONTACT AT 20.12 IS 80° TO C.A.	17192	20.1	21.9	5	 	-		 	
	 					<u> </u>	23.3					-	
20.1	41.6	100%	LIST FR WITH I	DISS AND BLEBS OF PY XTALS UP TO	17194	23.3	24.6	5					
			0.5 CM IN EUH	DRAL XTALS GR OXID ALONG	17195	24.6	25.9	5					
			FRACTURES? ANI	QTZ VEINING (STRINGERS) QTZ	17196	25.9	28.0	10					
			VEINING OXID A	T 27.43-27.7 AT 30° TO C.A.	17197	28.0	29.5	5					
			2 CMS QTZ VEIN	VING AT 5° TO C.A. FROM 31.7-32.61	17198	29.5	31.0	5					
			WITH PY ALONG	CONTACTS QTZ VEINING FROM 41.45-	17199	31.0	31.5	5					
 ~			41.6 AT 15° TO	C.A. SERICITE WITH ALL QTZ	17200	31.5	33.1	20			-		
			VEINING. SEDIN	MENT ALTERED BOXWORK PY RELICT									
			STRUCTURES FRO	OM 24.7-25.91									
41.6	42.	90%	ARGILLITE SAMI	2 AS 3.3-20.1									
	E.O.H.												
						,				!			
NEVIL	LE CROSE	PY INS	1					<u>-</u>				•	

		PR	PERT	YR	AVEN		•		HOLE N.	R-9	1-9		_	
		tage 0	P TEST A Reading	Corrected -45°	Hole No. R-91-9 Sheet No. 1 Section Date Begun Date Finished Date LoggedJULY 9/91	Dep Bearin	25	0°		Total De	opth_121 ByIN	T VEN	6.88M.) 1 SLUDGE	
DE!		RECOVER	Υ .		DESCRIPTION	SAMPLE No.	FROM	םד	GCILID ppb/d/EXXEM	As ppm	FROM	то	GOLD ppb/oz. t.	As ppm
0	3.0	0%	CAS	ING			<u> </u>							
3.0	33.8	95%			OF PY APPROX. 3% TO 1 CM WIDE	17118 17119		L						-
					ERS FROM 45-90° TO C.A. AT	17120		<u> </u>			 		1	
			10.	36 M. FOR	10 CMS AT 50° TO C.A. AT 20.27,	17121	6.7	7.9	5					
			7 C	MS OXID QT	Z AT 45° TO C.A. AT 22.55-23.16 AT	17122	7.9	9.1	5					
			AT	85° TO C.A	. OXID + PY	17123	1.	9.9			,			
			_	···		17124		L	1200/0.60					
33.8	36.8	90%			TEXTURES IN ARGILLITE. RUSTED	17125								
			PY	OXID APPRO	X. 5-10° BEDDING ANC CONTACT	17126		L						
			TA	60° TO C.A		17127	<u> </u>	l						
						17128	14.9	16.1	70	-				
			E.0	.н.		17129	l	l						
			<u> </u>		•	17130	[l .	{					
						17131	1	i .	ļ .	<u> </u>				
						17132	20.2	20.5	125					
						17133	20.5	22.1	15					
						17134	22.1	23.1	90					
							23.1	24.6	5					
						17136	24.6	26.6	5					

	· · ·	J							l	DIA	МО	ND	D	RILL	. RE	CORI)							
_		PF	ROPER	PTY.			Say	EN					_						HOLE N	R-	91-1	·		
	Foo	itag e	Read!	Ang	rected			Sect Date Date	tion _ Begi Fini	un	Ju	-Y :	3 19	91		Dep Bearin Elev. C	o2	250°		Total De Logged Claim Core Si	<u>Ray</u>	EN	!	
DE	РТН	RECOVE	- PV		 			Date	Logg	ged_s	J ur	<u>Υ</u> ٩,	1991		_	SAMPLE		COR	GOLD GOLD	As	FROM		GOLD	As
FROM	70	RECOVE					· · · · ·	DESC	<u> </u>						 ⊦	NO.		27.4	pperoz ton	ppm			ppb/oz. t.	ppn
					 						· 				[7138	27.4	28 A	5					
					 												 	30.5 31.7			 			
																7141	31.7	33.8	5					
														Ŷ										
															_									· · · · · · · · · · · · · · · · · · ·
					 										_	<u> </u>								
,														•	-		·							
					 		· · · · ·									· · · · · · · · · · · · · · · · · · ·								 -
			_		 				-		,~~~				[
					 			<u></u> -							[
					 						,				L		L			<u> </u>	<u></u>		<u> </u>	

00000000	RAVEN
PROPERTY	

[DII	P TEST]									
	Footage R		Angle		Lat				Total Depth 246FT.(79.98M.) Logged By JMT Claim RAVEN 1 Core Size BQ SLUDGE)
	PTH TO	RECOVER	r	DESCRIPTION		FROM	TD	GULD ppb/oz. ton	As ppm	FROM	םד	GDLD ppb/oz. t.	As ppm
0 7.0	7.0	0%	CASING		17142	35.4	36.8	5	137				
					17143	36.8	38.1	50	390				
.0 34.9	85%	ARGILLITE WIT	TH RELICT BOXWORK PY TEXTURES PY	17144	38.1	39.6	5	110					
			REPLACED BY	OXID BEDDING + CONTACTS AT	17145	39.6	41.1	35	106				
			20° TO C.A.		17146	41.1	42.3	5	70				
					17147	42.3	43.9	30	70				
4.9	75	90%	LISTWANITIZE	D, CARBONATE ALTERED GREENSTONE	17148	43.9	44.2	5	94				
			OXID AROUND	AREAS OF FRACTURING BLOCKY CORE	17149	44.2	45.4	25	193				
			AROUND FRACT	URES, QTZ WITH PY 2.5 CMS AT 60°	17150	45.4	46.9	5	88				
			TO C.A. AT 3	5.35 SILICOUS LIST GR WITH 1 CM	0.57201	46.9	48.3	5	70				******
			QTZ STRINGER	S PRALLEL TO C.A. TO 35.66.	0.57202	48.3	49.6	5	81				
			2 - 3CMS QTZ	STRINGERS + MARIPOSITE + SERICITE	0.57203	49.6	50.0	10	56				
			AT 70° TO C.	A. AT 53.95 M.	0.57204	50.0	50.4	5	123				
			15CMS QTZ AT	65° TO C.A. AT 50.29 M.	0.57205	50.4	41.6	5	56		· · · · ·		
			30CMS AT 6-0	8-56.39 AT 50.29 M	0.57206	51.6	53.0	5	34				
			OXID LIST AT	65.22-65.83 FLOW TEXTURES AT 68.13-	0.57207	53.0	54.5	5	46				
		_	71.32 UP TO	1 CM PY BLEBS THROUGHOUT LIST 3CM	0.57208	54.5	55.7	5	57				
			QTZ AT 74.37	UP TO 1 CM PY BLEBS THROUGHOUT LIST	0.57209	55.7	56.7	10	. 101				
			3 CM QTZ AT	74.37 AT 45° TO C.A. AT 74.67-15CMS	0.47210	56.7	57.7	5	63				
			QTZ AT 45° T	O C.A (63.09-64.00 FRACTURES-0% CORE	0.57211	57.7	49.2	5	58		· · · · · · · · · · · · · · · · · · ·		
			E.O.H.		0.57212	59.2	60.6	5	1				<u>.</u>

PROPERTY_DAVEN_				YIYAYEN_		HOLE N. H-91-10									
}		O	P TEST	Ingle											
	Foc	Footage Reading Corrected Hole No. R-91-10 Sheet No.				Lat	_,			Total Depth 246					
t					Section	Dep	2 - 4		Logged By						
ŀ					Date Begun			Claim_							
t	1 1 1 1		Date Finished Date Logged	Elev. C	oliar	ΣE	Core S	SLUDGE							
DE	PTH				pare Coggea		1			1	 		T	1	
FROM		RECOVER	Y	** **********************************	DESCRIPTION	SAMPLE No.	FROM	TO	ppb/cz. ton	As ppn	FROM	TO	pph/oz. t.	As ppn	
						0-57213	60.6	62.1	5	17					
						0-57214	62.1	63.5	5	47		·			
	ļ					0-57215	63.5	65.0	5	88					
	<u> </u>					0-57216	65.8	67.0	10	75					
						0:57217			1	46					
·						0:57218		1	4	64					
			_			0-57219	1	1		200					
						0-57220				412					
						- 0-57221	I	I	1	146					
	<u> </u>					0.5722		1	•	218					
						0-57272				226					
	<u> </u>					_[.									
		<u> </u>													
	<u> </u>														
					•										
						_									
						_					1				
							1				1				
														•	