(TAKEN FROM CONSOLIDATED CAPROCK RESOURCES LTD PROSPECTUS REPORT JULY 4, 1990)

REPORT ON THE CONSOLIDATED CAPROCK RESOURCES LTD.
KERR PROJECT

ISKUT RIVER AREA, BRITISH COLUMBIA

B. Dewonck, F.G.A.C.

June 22, 1990

SUMMARY

Consolidated Caprock Resources Ltd. has the right to earn a 100% interest in the Kerr Project, which consists of the Kerr 1-6 mineral claims comprising 112 units. The property is situated within the Liard Mining Division. Extensive exploration for precious metals is ongoing at a rapid pace in the area and numerous discoveries have been made, of which several are in advance stages of exploration, development or, in the case of Skyline Gold Corporation, in production. Prime Resources Group Inc./Stikine Resources Ltd.'s Eskay Creek 21 zone is located 32 kilometres to the southeast of the property while Cominco/Prime Resources Corporation's Snip deposit and Skyline Gold Corporation's Johnny Mountain Mine are 27 kilometres to the west-southwest. The Bell II service centre on the Stewart-Cassiar Highway is 60 kilometres to the southeast.

The Kerr Project was staked in 1987 and 1988 as a result of reconnaissance exploration by Pamicon Developments Ltd., whose principals are owners of the property. Since that time the property has received only minimal attention in the form of reconnaissance prospecting rock and stream sediment sampling. Regional geological maps indicate the project area to be underlain almost entirely by intrusive rocks however the limited work done suggests that the central claims area is underlain by volcanics with interbedded limestone and clastics. The possibility exists that the intrusive rocks may be coeval with a major mineralizing event identified within the Stewart Complex, an assemblage of Upper Triassic to Middle Jurassic volcanic and sedimentary rocks to the south.

Four styles of mineralization have been defined on the Kerr Project to date:

- 1. magnetite/pyrite/chalcopyrite skarn mineralization
- 2. pyrite quartz stockwork breccia mineralization
- 3. silver/gold bearing tetrahedrite/chalcopyrite/malachite/azurite quartz veining
- 4. auriferous pyrite quartz veining

The first style has produced anomalous silver, copper and zinc values, the third copper, antimony and silver values with weak gold and the fourth anomalous gold and silver, including float samples assaying up to 1.060 oz/ton gold.

Exploration success on Avondale Resources Incorporated's nearby Forrest Project, staked as a result of the same reconnaissance work which produced the Kerr Project, suggests that the latter warrants further evaluation. A Phase I program, estimated to cost \$75,000, is recommended to conduct detailed mapping and systematic sampling of the known occurrences as well as continued prospecting of the rest of the property. A second phase would ensue from encouraging Phase I results and include trenching, geophysical survey and possibly limited diamond drilling. A budget of \$100,000 is allocated to this Phase II work.

TABLE OF CONTENTS

Summary	
Introduction	1
Location and Access	1
Physiography and Vegetation	2
Claim Status	3
Gemeral Area History	4
Property History	16
Regional Geology	16
Property Geology and Mineralization	18
Magnetite/Pyrite/Chalcopyrite Skarn	19
Pyrite Quartz Stockwork Breccia	20
Silver/Gold Bearing Tetrahedrite/Chalcopyrite	
Quartz Veins	21
Auriferous Pyrite Quartz Veining	21
Conclusions and Recommendations	23
Budget Estimate	
Statement of Qualifications	
B. Dewonck, F.G.A.C.	
Bibliography	

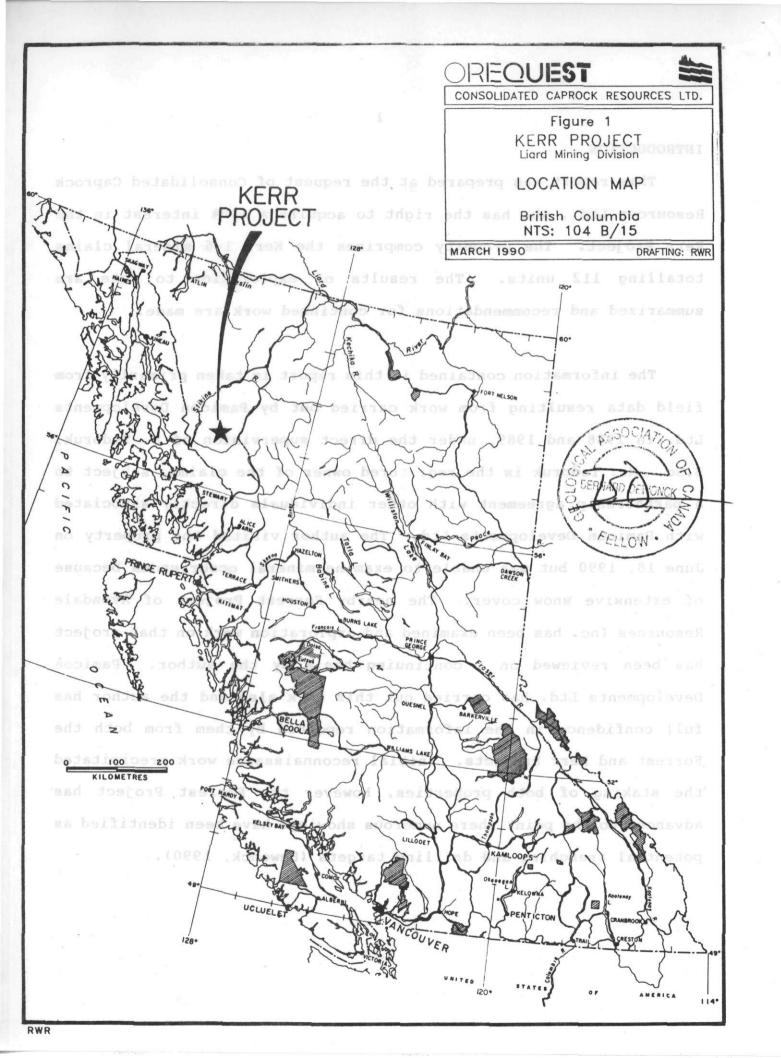
LIST OF FIGURES

Figure	1	Location Map	Following	Page	1
Figure	2	Claim Map	Following	Page	3
Figure	3	Regional Claim Holdings	Following	Page	3
Figure	4	Regional Mineral Occurrence Map	Following	Page	4
Figure	5	Regional Geologic Setting	Following	Page	16
Figure	6	Regional Geology	Following	Page	17
Figure	7	Rock and Heavy Sediment/			
		Silt Sample Location Map	Following	Page	19

LIST OF TABLES

Table 1 Claim Infomation Page 3

LIST OF APPENDICES


Appendix I Assay Certificates

Appendix II Rock Sample Descriptions

INTRODUCTION

This report was prepared at the request of Consolidated Caprock Resources Ltd., who has the right to acquire a 100% interest in the Kerr Project. The property comprises the Kerr 1-6 mineral claims totalling 112 units. The results of exploration to date are summarized and recommendations for continued work are made.

The information contained in this report is taken primarily from field data resulting from work carried out by Pamicon Developments Ltd. in 1988 and 1989, under the direct supervision of S. Todoruk, B.Sc. Mr. Todoruk is the registered owner of the claims, subject to a partnership agreement with other individuals directly associated with Pamicon Developments Ltd. The author visited the property on June 18, 1990 but was unable to examine mineral occurrences because of extensive snow cover. The nearby Forrest Project of Avondale Resources Inc. has been examined and exploration work on that project has been reviewed on a continuing basis by the author. Developments Ltd. has carried out this work also and the author has full confidence in the information reported by them from both the Forrest and Kerr Projects. Initial reconnaissance work precipitated the staking of both properties, however the Forrest Project has advanced to the point where numerous showings have been identified as potential trenching and drilling targets (Dewonck, 1990).

LOCATION AND ACCESS

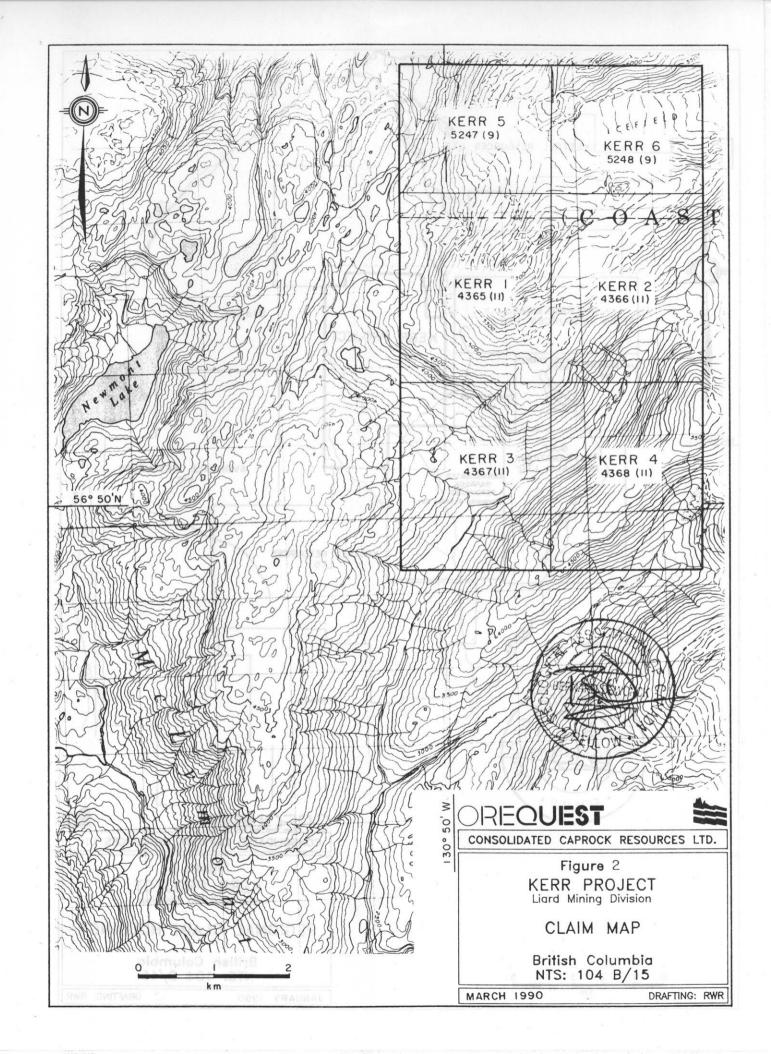
The Kerr Project is located approximately 100 kilometres northwest of Stewart in the rugged terrain of northwestern British Columbia. It can be reached by helicopter only, from several transfer points in the area. The Stewart-Cassiar highway passes to the east, with road services and a field helicopter base located 60 kilometres from the property at Bell II. A wide variety of fixed wing aircraft service both the Bronson Creek airstrip (Cominco Ltd./Prime Resources Corporation's Snip deposit) and the Johnny Mountain Mine airstrip (Skyline Gold Corporation) from Smithers, Terrace and/or Wrangell, These airstrips are situated 27 kilometres southwest of the project area. Helicopters are based at Bronson Creek throughout the exploration season. An exploration camp has been established at the headwaters of Forrest Kerr Creek, 7 kilometres to the north, serviced by a short naturally occurring airstrip. A year round, helicoptersupported camp established by Prime Resources Group Inc./Stikine Resources Ltd. at their Eskay Creek deposit lies 30 kilometres to the southeast. Map reference for the area is 104B/15 and coordinates are 50°50'N latitude and 130°50'W longitude.

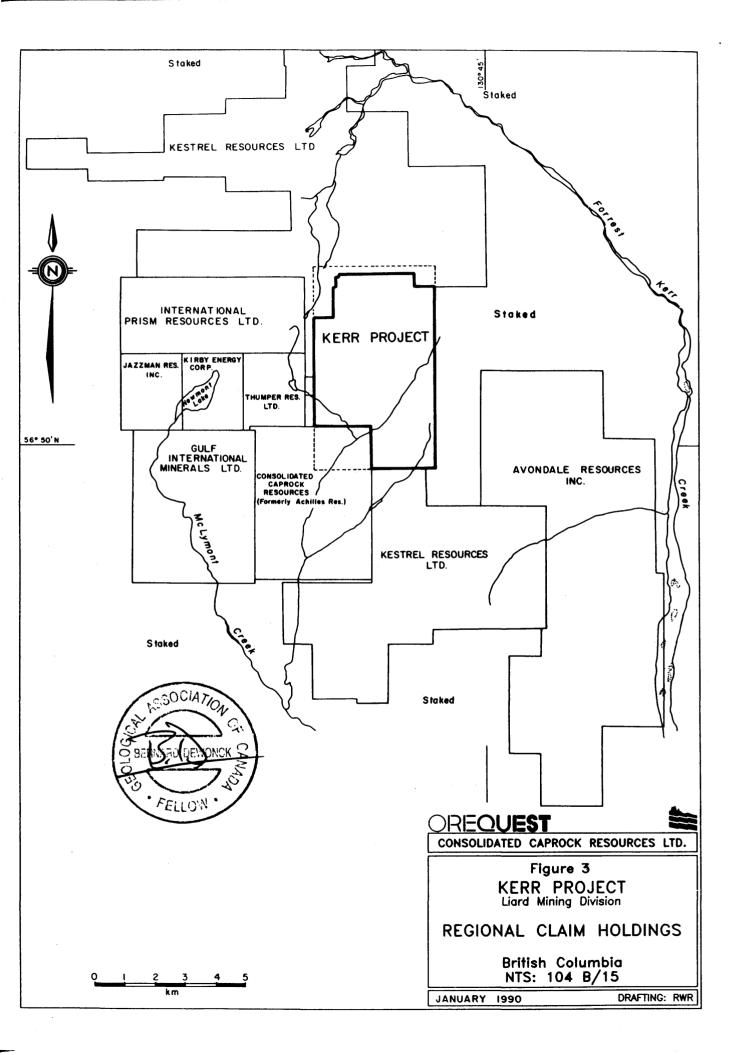
PHYSIOGRAPHY AND VEGETATION

Elevations on the property range from less than 1000 metres to 2000 metres. The claims encompass the headwaters of a tributary of McLymont Creek as well as two ridges with moderately steep to precipitous slopes. Extensive snow cover precludes exploration before July, particularly in the high, north-central portion of the claim

area, and may curtail activity by late September. Moderate forest cover is limited to lower portions of the creek valley below 1370 metres; much of the area is well exposed except for permanent snow and/or ice cover at the highest elevations.

CLAIM STATUS

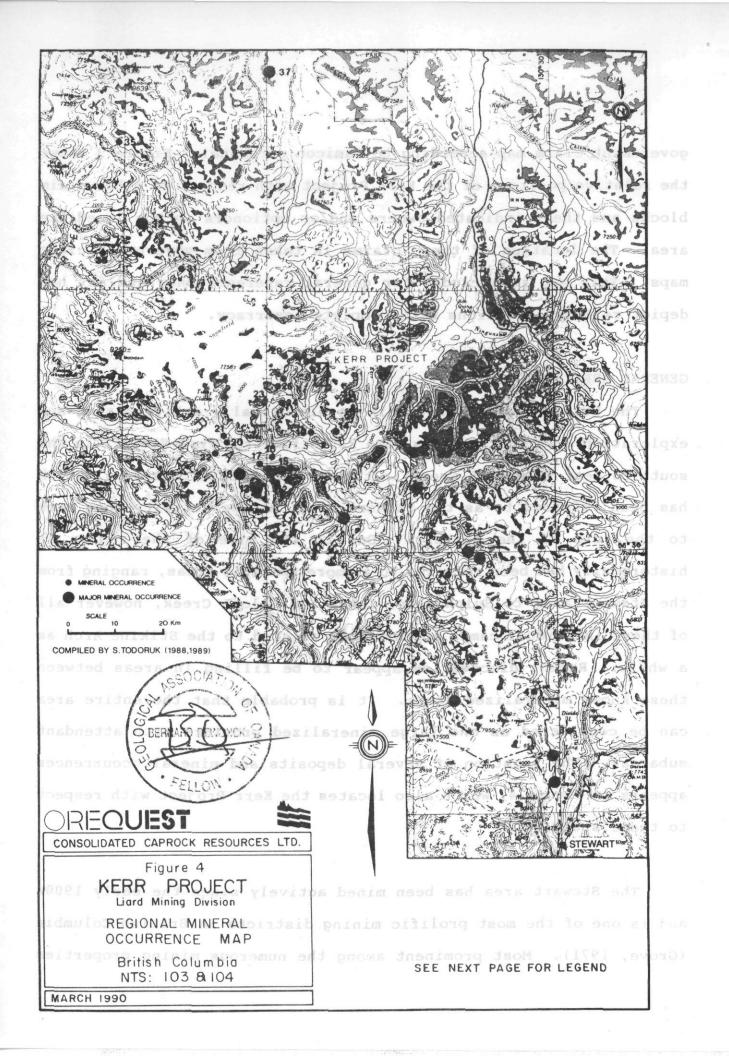

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the following claims are owned by Mr. Steve Todoruk. Mr. Todoruk is presently holding the claims subject to a partnership agreement in which he and other principals in Pamicon Developments Ltd. are participants.


TABLE 1
CLAIM INFORMATION

Claim Name	Record No.	No. of Units	Record Date	Expiry Date
Kerr 1	4365	20	Nov. 24, 1987	Nov. 24, 1990
Kerr 2	4366	20	Nov. 24, 1987	Nov. 24, 1990
Kerr 3	4367	20	Nov. 24, 1987	Nov. 24, 1990
Kerr 4	4368	20	Nov. 24, 1987	Nov. 24, 1990
Kerr 5	5247	16	Sept. 4, 1988	Sept. 4, 1991
Kerr 6	5248	16	Sept. 4, 1988	Sept. 4, 1991

Assessment work credits have been filed on Kerr 1-4 which, when approved, would see all claims in good standing until 1991.

Claim location is shown in Figure 2. The indicated position of the Kerr 1-4 claims is as verified by Pamicon personnel in 1988, which differs from that shown on the government claim map. The Kerr 5 and 6 claims, however, are correctly indicated on both Figure 2 and the



government claim map according to Pamicon personnel. Figure 3 shows the relative position of the Kerr Project with respect to other claim blocks and their indicated owners and/or optioners in the immediate area. The location of these claims is taken from government claim maps. This map is included for general reference only and may not depict relative positions with complete accurracy.

GENERAL AREA HISTORY

The Kerr Project lies within an historically active mining and exploration area that extends some 225 kilometres from Stewart in the south to near Telegraph Creek in the north. Within this area, which has been referred to as the Stikine Arch, mining activity goes back to the turn of the century. Due to the size of the region it historically has been referred to as more specific areas, ranging from the Stewart area to Sulphurets, Iskut and Galore Creek, however all of these individual camps appear to be related to the Stikine Arch as Recent discoveries appear to be filling in areas between these known mineralized camps. It is probable that the entire area can be considered as one large mineralized province with attendant subareas. The location of several deposits and mineral occurrences appears in Figure 4, which also locates the Kerr Project with respect to these sites.

The Stewart area has been mined actively since the early 1900s and is one of the most prolific mining districts in British Columbia (Grove, 1971). Most prominent among the numerous mining properties

LEGEND FOR FIGURE 4

PROPERTY OWNER

- 1 Westmin Resources Ltd./Silbak Premier Mines
- 2 Westmin Resources Ltd./Tournigan Mining Explorations Ltd.
- 3 Noranda (Todd Creek Project)
- 4 Scottie Gold Mine
- 5 Granduc
- 6 Echo Bay Mines/Magna Ventures/Silver Princess Resources (Doc Project)
- 7 Western Canadian Mining (Kerr Project)
- 8 Catear Resources Ltd.
- 9 Newhawk/Lacana/Granduc (Sulphurets Project -West Zone)
- 10 Calpine/Consolidated Stikine Silver Ltd. (Eskay Creek Project)
- 11 Consolidated Silver Standard Mines Ltd. (E & L Deposit)
- 12 Inel Resources Ltd.
- 13 Skyline Explorations Ltd. (Stonehouse Gold Deposit)
- 14 Kestrel Resources Ltd.
- 15 Hector Resources Inc. (Golden Spray Vein)
- 16 Tungco Resources Corp.
- 17 Winslow
- 18 Cominco/Prime Resources Corp. (Snip Deposit)
- 19 Pezgold Resource Corp.
- 20 Meridor Resources Ltd.
- 21 Delaware Resource Corp./American Ore Ltd. /Golden Band
- 22 Magenta Development Corp./Crest Resources Ltd.
- 23 Ticker Tape Resources Ltd. (King Vein)
- 24 Pezgold Resource Corp.
- 25 Consolidated Sea-Gold Corp.
- 26 Gulf International Minerals Ltd. (Northwest Zone)
- 27 Kerr Claims
- 28 Pezgold Resource Corp. (Cuba Zone)
- 29 Pezgold Resource Corp. (Ken Zone)
- 30 Avondale Resources Inc. (Forrest Project)
- 31 Pass Lake Resources Ltd. (Trek Project)
- 32 Galore Creek
- 33 Continental Gold Corp.
- 34 Bellex Resources Ltd./Sarabat Resources Ltd. (Jack Wilson Project)
- 35 Pass Lake Resources Ltd. (JD Project)
- 36 Lac Minerals (Hankin Peak Project)
- 37 Schaft Creek
- 38 Paydirt

MINERAL RESERVES AND/OR ELEMENTS

6.100,000 tons 0.064 oz/t Au, 2.39 oz/t Ag

1,860,000 tons 0.09 oz/t Au, 0.67 oz/ton Ag

10.890.000 tons 1.79% Cu

470,000 tons 0.27 oz/ton Au, 1.31 oz/ton Ag Cu. Au

146,437 tons 0.827 oz/ton Au

854,072 tons 0.354 oz/t Au, 22.94 oz/ton Ag

Au, Cu, Ag

3,200,000 tons 0.80% Ni, 0.60% Cu

Au, Ag, Cu, Pb, Zn

876,000 tons 0.55 oz/ton Au, 1.0 oz/ton Ag

Au, Ag, Cu, Pb, Zn

Au, Ag

Au, Ag, Cu, Pb, Zn

Au, Ag, Cu, Pb, Zn

1,032,000 tons 0.875 oz/ton Au

Ag. Au

Au

Au

Au, Ag, Cu, Pb

Au

Au

Au

Au, Ag, Cu

Ag, Cu, Au

Ag, Pb, Zn

Cu, Au

Au, Ag, Cu

Cu. Au

125,000,000 tons 1.06% Cu, 0.397 g/t Au.

7.94 g/t Ag

Au, Ag, Cu

Au, Cu

Au, Cu

Au

910.000.000 tons 0.30% Cu, 0.020% Mo, 0.113

g/t Au, 0.992 g/t Ag

200,000 tons 0.120 oz/ton Au

are the Silbak - Premier, Big Missouri and Granduc deposits, located 13 km north, 20 km north and 39 km northwest of Stewart respectively.

The Premier vein system, first staked in 1910, produced in excess of 1.8 million ounces of gold and 41 million ounces of silver from 4.7 million tons (to 1968). The nearby Big Missouri deposit, first staked in 1904, did not produce until 1938 and then only until 1942. During this time 847,615 tons were mined, producing 58,384 ounces of gold and 52,677 ounces of silver. Both these deposits, however, have recently been re-evaluated by Westmin Resources Ltd. who is placing them both into production with announced reserves of 6.1 million tons grading 0.064 oz/ton gold, 2.39 oz/ton silver and 1.86 million tons grading 0.09 oz/ton gold and 0.67 oz/ton silver respectively (Canadian Mines Handbook, 1989-90).

The Granduc deposit, a massive sulphide copper orebody, was discovered in 1951 and put into production in 1971 with reserves of 39.32 million tons grading 1.73% copper with minor gold and silver values. Production ceased in 1978 but the mine was reactivated in 1980 until early 1984. Production to 1978 totalled 13,423,340 tonnes grading 1.32% copper and later production (1981-82) was 1,114,271 tonnes grading 1.17% copper.

Scottie Gold Mines commenced production on a vein deposit at the north end of Summit Lake in 1981 with reserves of 186,680 tons grading 0.76 oz/ton gold. It closed in 1985, having experienced financial

difficulties brought on by depressed metal prices and loss of infrastructure as a result of the closure of the nearby Granduc facilities.

Bond International Gold Inc. recently announced the initial drill results from their Red Mountain Project (News Release, September 29, 1989). One discovery, referred to as the Marc Zone, produced a 66 m drill intersection grading 9.88 g/ton gold and 49.29 g/ton silver. Another area, the Willoughby Gossan Zone, produced a 20.5 m intersection grading 24.98 g/ton gold and 184.21 g/ton silver. These occurrences lie approximately 15.5 km and 23.5 km respectively east-northeast of Stewart.

The Kerr Project lies on the northern fringe of the Iskut-Sulphurets area which has seen extensive exploration in the last three years. The Iskut area originally attracted interest at the turn of the century when prospectors, returning south from the Yukon goldfields searched for placer gold and staked bedrock gossans. In the 1970s the porphyry copper boom drew exploration into the area. The new era of gold exploration began with the 1979 option of the Sulphurets claim block by Esso Minerals Canada and the 1980 acquisition of the Mount Johnny claims by Skyline Explorations Ltd. Skyline commissioned its mill in July, 1988. Cominco Ltd. and Prime Resources Corp. are projected to announce a feasibility decision on the adjacent Snip deposit in early 1990. There has been limited

production from Catear Resources Ltd.'s Goldwedge Zone where the mill was commissioned in June, 1988.

Beyond these projects, and except for limited early placer gold recovery from some creeks, the area has had no mineral production history. Since 1979, more than 70 new mineral prospects have been identified, though ground acquisition was relatively slow until the fall of 1987 when the promising results of summer exploration programs became known and the provincial government announced the upcoming release of analytical results from a regional stream sediment survey. By April 1988, all open ground had been staked. More than 60 companies hold ground in the Iskut-Sulphurets belt but to date only small areas within this 40 x 80 km district have received extensive exploration.

In the Sulphurets Creek camp 57 km southeast of the Kerr property near Brucejack Lake, the vein-hosted West Zone of Newhawk Gold Mines Ltd. / Granduc Mines Ltd. / Corona Corporation is reported to contain 715,400 tons grading 0.431 oz/ton gold and 19.70 oz/ton silver (GCNL Feb. 12, 1990) while the Snowfield Gold Zone and Sulphurets Lake gold zone are bulk tonnage low grade deposits containing 7.7 million tons of 0.075 oz/ton gold and 20 million tons of 0.08 oz/ton gold respectively (GCNL Aug. 24, 1989). Catear Resources Ltd.'s Gold Wedge Zone is reported to contain 146,437 tons of 0.827 oz/ton gold in a similar setting (Canadian Mines Handbook, 1989-90).

The Doc deposit located 62 km southeast of the Kerr property hosts 470,000 tons grading 0.27 oz/ton gold and 1.31 oz/ton silver, within a series of high grade but narrow quartz veins.

On the Snip property situated 27 km to the west-southwest, the Twin Zone, a 3 to 25 ft thick discordant shear vein cuts a thickly bedded sequence of intensely carbonatized feldspathic wackes and siltstones. Twin Zone reserves in all categories have been reported as 1,032,000 tons of 0.875 oz/ton gold (Prime Resources, 1989). This does not include additional reserves which may be developed outside the Twin Zone when mining begins. Twin Zone mineralization occurs in a banded shear zone comprising alternating bands of massive clacite, heavily disseminated to massive pyrite, crackle quartz and thin bands of biotite-chlorite.

At Skyline's nearby Johnny Mountain Mine, reserves in all categories are estimated at 876,000 tons of 0.55 oz/ton gold and 1.00 oz/ton silver with copper, zinc, and lead (Northern Miner, Aug. 21, 1989). Five major areas of gold-bearing sulphide are known. The most important Stonehouse Zone consists of sulphide-potassium feldsparquartz vein and stockwork systems which have been only partly explored.

The most recently discovered and perhaps the most exciting gold mineralization occurs on the Eskay Creek property of Calpine Resources Incorporated/Stikine Resources Ltd., located 32 km southeast of the

Kerr property. At the original 21 Zone discovery gold grading up to 0.73 oz/ton over 96.5 ft (hole CA88-6) occurs in several distinct lithologies in a 300 foot wide fault zone at a contact between Lower Jurassic Mt. Dilworth Formation volcanics and sediments (Northern Miner, 1988, p.20; Calpine Resources Incorporated News Release, January 6, 1989). Numerous Calpine/Stikine news releases have announced results from over 600 drill holes completed from 1988 to the present, the most spectacular of which is hole CA-89-109 which produced 682.2 feet of 0.875 oz/tong gold. Preliminary reserve calculations were recently published, indicating probable geological reserves of 1,256,000 tons grading 1.52 oz/ton gold and 38.9 oz/ton silver (GCNL, February 16, 1990).

The E & L deposit is also situated in the area southwest of the Kerr property. This deposit was worked in the 1960s and early 1970s by trenching, drilling and 460 m of underground development, and has proven reserves of 3.2 million tons of 0.8% nickel and 0.6% copper (BCMEMPR Minfile). Mineralization consisting of disseminated pyrrhotite, chalcopyrite with minor pentlandite, pyrite and bornite occurs in a small stock of altered coarse grained gabbro.

The northwest portion of the Stikine Arch, known as the Galore Creek area, was the focus of widespread exploration in the 1950's, 1960's and 1970's for large tonnage porphyry copper deposits. Two major discoveries were made and exploration work defined reserves of 125 M tons grading 1.07% copper, 0.397 g/t gold and 7.94 g/t silver

at Galore Creek, and 910 M tons grading 0.30% copper, 0.113 g/t gold, 0.992 g/t silver and 0.02% molybdenum at Schaft Creek. More recently several companies have been restaking ground in this area to evaluate the gold potential. The Galore Creek deposit itself is the subject of renewed interest as it may include potentially gold enriched portions. Gold exploration is still at an early stage, however several prospects are likely to receive further attention in 1990.

In the more immediate project area, Gulf International Minerals Ltd. has been actively exploring its McLymont property, situated 7 km to the southwest, since 1986. The Gulf property was previously staked by Dupont Canada Explorations Ltd. in 1980 on the basis of a regional stream sediment survey, optioned to Skyline Explorations ltd. and Placer Developments Ltd. in 1983 and allowed to lapse in 1986. Gulf has concentrated its efforts on the Northwest Zone (northwest corner of the property) where it has drilled in 1987, 1988 and 1989. The targets are gold-bearing replacement deposits within marble units which are spacially related to a significant regional, northwest-trending structural break (McLymont Fault). Highlights of drilling results to date are as follows:

Drill Hole	Length (ft).	Au (oz/t)	Ag (oz/t)	Cu (%)
87-25	30.0	0.404	0.11	0.23
87-29	36.5	1.605	1.16	0.97
88-28	15.1	0.810	0.29	0.41
88-35	6.9	3.551	1.80	0.58
89-11	21.1	0.770	1.74	0.47
89-23	17.9	0.401	0.28	0.20
89-29	6.3	0.970	1.09	0.45
89-51	1.3	8.079	4.11	0.32

Continued work in the form of underground exploration and development is planned for 1990 (company news releases: 1988, 1989).

Jazzman Resources Inc. conducted an exploration program in 1988 on the claim immediately north of the Northwest Zone, which includes a continuation of the McLymont Fault and locally marblized crinoidal limestone (Todoruk and Ikona, 1989b). The favourable horizon, which passes about one kilometre west of Newmont Lake, was drilled in two areas.

The first is immediately north of the Gulf/Jazzman claim boundary where two vertical holes intersected the limestone. Neither hole returned significant gold values, however the more westerly hole is suggested to be closer to potential mineralization based on increased pyrite content and more recrystallization of the limestone.

The second area lies some 600 metres to the northeast, at the southwest end of a strong airborne magnetic anomaly, coinciding with well mineralized recrystallized limestone that produced gold values up to 0.379 oz/ton from grab samples. Three drill holes intersected well recrystallized limestone, one of which contained moderate magnetite-jasper-chalcopyrite-pyrite mineralization over 2.2 metres. Again gold values are low, however the intercepts are similar in nature to Gulf's Northwest Zone both geologically and mineralogically.

Recommendations were made to carry on exploration by doing ground geophysics and drilling to further evaluate the favourable horizon but this has not been done to date.

During 1988 Pezgold Resource Corporation held an option on claims orth and east of the Jazzman property (the International Prism ground on Figure 3). Exploration by Pezgold was directed at numerous showings throughout the claim area which includes further northeast extension of the McLymont Fault (Kiesman and Ikona, 1989a). The Ken Zone, first identified by Newmont Mining in 1961, comprises garnet-magnetite-epidote skarns conformable with tuffaceous volcanics, cherts and argillites. Situated in the northwest corner of the property, the showing produced gold grade averages of 0.113 oz/ton from grab samples, 0.111 oz/ton from trench samples and 0.136 oz/ton from trench muck samples. Six drill holes were completed, successfully confirming downdip continuity of the skarns and producing two intercepts of 0.082 oz/ton gold, .832% copper and 0.076 oz/ton gold, .940% copper over 5.4 metres and 6.0 metres respectively.

The Glacier Zone, situated 600 metres south of the Ken Showing and comprising similar skarn occurrences, produced gold values to 1.19 oz/ton in grab samples however lower values prevailed in both trenching and drilling results. Trench values are commonly below 500 ppb, with a high of 0.112 oz/ton, and drill intercepts (from two holes) range from <.005 oz/ton to 0.024 oz/ton over 1 metre intervals within the principal skarn zones.

Two showings known as the North and South Cuba Zone occur 600 metres apart in the southeast corner of the Pezgold property, near the western boundary of the Kerr Project. Silver with attendant lead/zinc mineralization occurs in sheared barite-calcite-limestone crackle breccia. The north part of the North Cuba Zone, sampled in 1.5 metre intervals along strike, produced silver values ranging from 3.1 ppm to 3.11 oz/ton, zinc values to 9.5% and lead values to 2.3%. A 1.5 metre sample across strike produced 12.09 oz/ton silver and >10% zinc. The southern part produced silver values to 3.90 oz/ton over 1.5 metre (across strike) and to 1.93 oz/ton over 0.6 metre (along strike).

The South Cuba Zone assayed as high as 29.14 oz/ton silver, 2.9% lead and 9.2% zinc in separate samples however drilling in two holes did not encounter comparable grades. A 7.5 metre interval averaged 1.64 oz/ton silver and 4.88% zinc.

Recommended exploration including grid controlled geological mapping, geophysical and geochemical surveys and diamond drilling of the principal showings has not been carried out to date. Several other occurrences remain to be evaluated as well.

Also located immediately west of the Kerr Project are two claims optioned to Kirby Energy Corp. and Thumper Resources Ltd. respectively (Figure 3). Both properties were explored to a limited extend in 1988 and minimal work was carried out on Kirby's ground in 1989. The Kirby property exhibits gossanous fracture systems following creek

cuts up to 500 metres long. Anomalous arsenic values up to 7,990 ppm were recorded in grab samples (Kiesman and Ikona, 1988). Soil sampling completed in 1989 across the northeast end of Newmont Lake produced arsenic values ranging from 62 to 2000 ppm and zinc values ranging from 50 to 2494 ppm (Todoruk, personal comm.). Work on Thumper's claim produced silver values to 9.58 oz/ton from grab samples of fractures in limestone carrying galena, sphalerite + malachite intermittently hosted in a barite gangue (Kiesman and Ikona, 1989b).

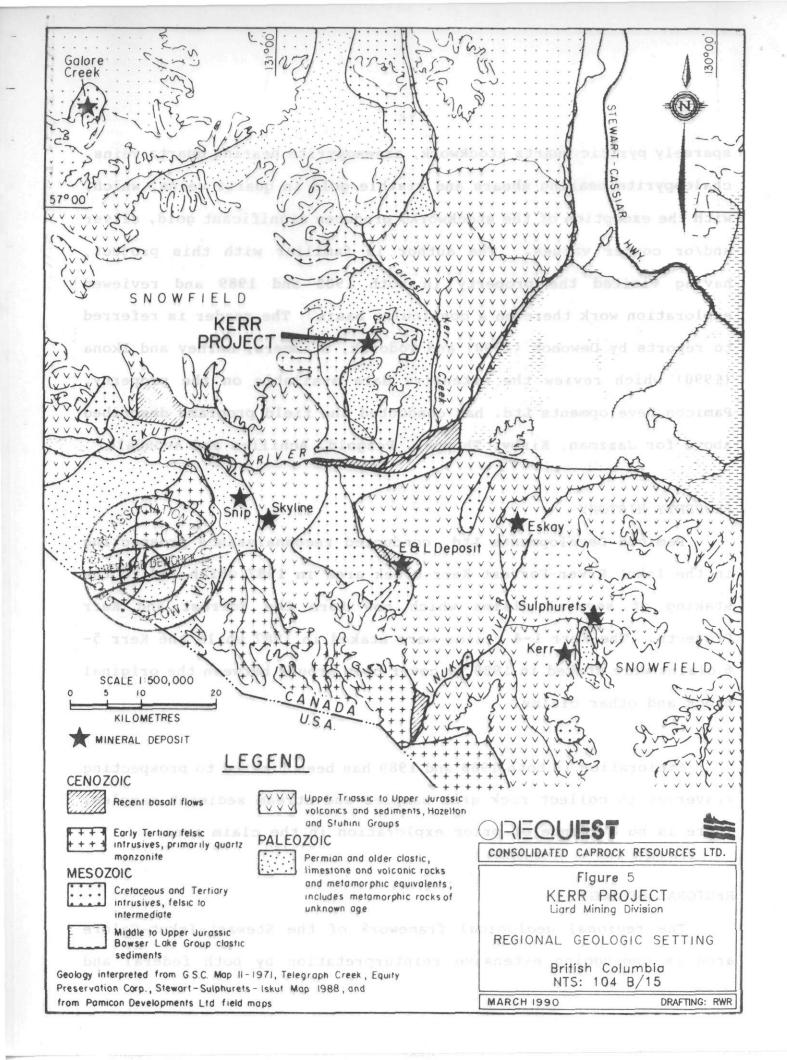
The larger claim block immediately east of Gulf's property was previously held under option by Achilles Resources Ltd. and is now similarly held by Consolidated Caprock. Work in 1988 by Achilles (Kiesman and Ikona, 1989c) identified mineralized skarns in the northwest portion of the property (Ridge Showing). Two zones were defined, the North Zone along 120 metres and up to 1.2 metres wide, the South Zone along 600 metres and up to 3.0 metres wide. Silver and zinc values from grab samples range up to 2.70 oz/ton, 2.44% (North zone) and 1.85 oz/ton, 8.31% zinc (South zone). More extensive evaluation of the Ridge Showing itself and the property in general was hampered by snow cover.

Kestrel Resources Ltd. have acquired numerous claim blocks in the Iskut River area generally and in the Kerr Project area in particular. These claims were reviewed in a report prepared for Kestrel's prospectus dated August 16, 1989 (Buchholz, 1989). The report

describes mineralization hosted by veins, fractures and fault zones as well as massive sulphide skarns, all grab sampled in a cursory fashion during a preliminary evaluation of the claims. Host rocks include monzonite intrusions, limestones or their altered equivalents and volcanic rocks. Numerous samples were collected, producing elevated to anomalous gold and/or silver values. The assay values from such a broad based exploration program serve primarily to indicate the potential for varied types of mineralized environments rather than to quantify the occurrences found to date, therefore specific values are not included here. The reader is referred to Buchholz's report in the Kestrel prospectus for greater detail. Kestrel conducted an exploration program during 1989 to follow up many of the target areas outlined by Buchholz, however detailed results are not available to the author. Some of these claim holdings have recently been optioned to several parties under conditions which include substantial work commitments for 1990 (Kestrel news release, February 21, 1990).

Also of note in the Kerr Project area is Avondale Resources Incorporated's Forrest Project immediately to the southeast (Figure 3). The principals involved in the Kerr Project also staked the Forrest Project as a result of reconnaissance exploration in the general area. Unlike the Kerr Project, the Forrest Project has been the object of detailed exploration in 1989 that has identified nineteen separate occurrences, of which several will advance rapidly to the drill stage (Dewonck, 1990). Mineralization is found in

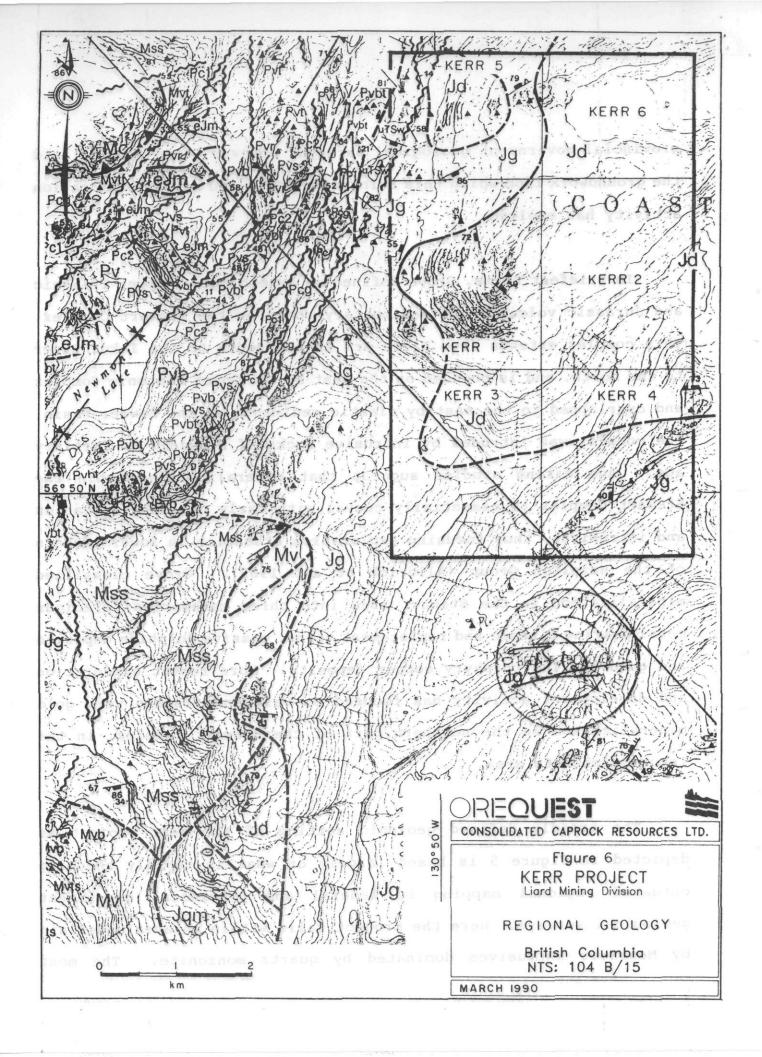
sparsely pyritic quartz stockwork, arsenopyrite bearing quartz veins, chalcopyrite bearing shears and visible gold in quartz veins, which, with the exception of the stockwork, produces significant gold, silver and/or copper values. The author is familiar with this project, having visited the property in both 1988 and 1989 and reviewed exploration work there on a continuing basis. The reader is referred to reports by Dewonck (1990) and Todoruk, Stammers, Darney and Ikona (1990) which review the extensive data available on the property. Pamicon Developments Ltd. has conducted the field programs described above for Jazzman, Kirby, Thumper, Pezgold, Achilles and Avondale.


PROPERTY HISTORY

Pamicon Developments Ltd. conducted reconnaissance prospecting in the Iskut River-Forrest Kerr Creek area in 1987 which led to the staking of several claims which now form the Forrest and Kerr Projects. The Kerr 1-4 claims were staked in 1987 while the Kerr 5-6 claims were staked in 1988 to cover open ground between the original block and other claims.

Exploration in both 1988 and 1989 has been limited to prospecting traverses to collect rock grab samples and stream sediment samples. There is no evidence of prior exploration in the claim area.

REGIONAL GEOLOGY


The regional geological framework of the Stewart-Iskut-Galore area is undergoing extensive reinterpretation by both federal and

provincial government geological surveys, however Grove (1986), laid the groundwork from which this reinterpretation and recent exploration activity has evolved.

In briefest terms, Grove defined an assemblage of Upper Triassic and Jurassic volcanic and sedimentary rocks as the Stewart Complex. This complex extends from Alice Arm in the south to the Iskut River to the north, and is bounded on the west by the Coast Plutonic Complex and overlapped to the east by clastic sediments of the Bowser Basin. The complex was intruded by intrusive rocks of Mesozoic to Tertiary Age dating studies suggest that mineralization within the Stewart Complex is essentially coeval with early Jurassic volcanics and intrusives, thus focusing exploration attention on lower members of the Hazelton Group (Alldrick et al, 1989). Grove classified mineralization in the Stewart area into three categories: precious metal bearing fissure and replacement veins, massive sulphide deposits and gold-bearing porphyry copper deposits. More recent exploration and development activity has focused on vein and fissure vein gold mineralization in the northern part of the Stewart Complex, in the Iskut-Sulphurets area.

The broadly defined geologic setting of the Kerr Project as depicted in Figure 5 is based largely on what is rapidly becoming outdated regional mapping by federal and provincial government geological surveys. Here the project falls within an area underlain by Mesozoic intrusives dominated by quartz monzonite. The most

LEGEND FOR FIGURE 6 NTS 104B/15 AND PART OF 104B/10

JAMES M. LOGAN, VICTOR M. KOYANAGI, JOHN R. DROBE

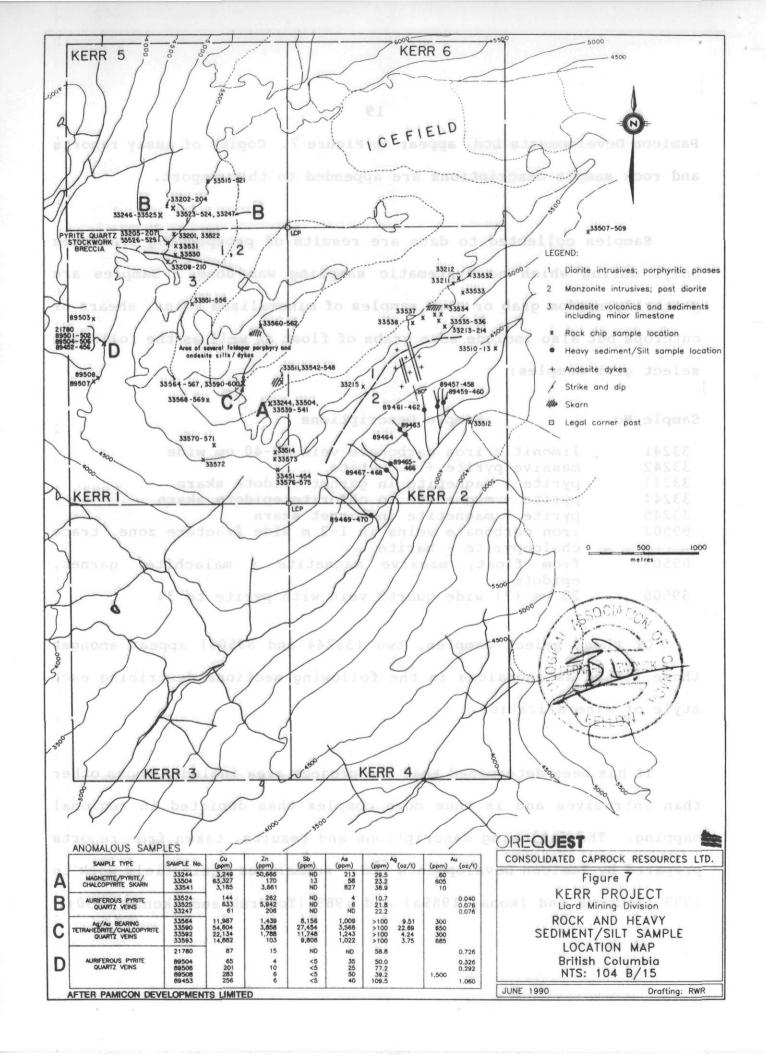
SCALE 1:50 000

UPPER TRIASSIC STUHINI GROUP
UTSW TUFFACEOUS WACKE, ARGRUTTE LIMESTONE: CARBONACEOUS AND CALCAREOUS SELTSTONE INTERBEDDED WITH PINE GRAINED SANDSTONE AND MINOR CONGLOMERATE; MARCON VOLCANS CONGLOMERATE WITH LIMESTONE CLAST SUITSWEG)
eidi io noiltog A
need and entitue to Pv UNOMDED PERMAN VOLCANICS AND SEDMENTS NO 3 DELIDER OF BUSINESS OF B
PVI LAPILI AND PLAGIOCLASE CRISTAL TUFF, FELSIC WELDED ASH TUFF, THINLY BEDDED SUCCOUS, LIMESTONE LENSES; RHYDLITE FLOWS (PV); YOLCANIC SANDSTONE, SU TSTONE AND MAROON SHALLOWIT) WATER CONGLOMERATES (PV).
PC2 ALGAL LIMESTONE; THIN-LAMINATED, DARK GREY TO BLACK, LOCALLY FETD, WEATHERS BUFF, INSOLITE-FRICH BEOS AND CLISPATE STACKED CONCAVE ALGAL STRUCTURES COMBINED.
PVD HORNELINGE-PLAGOCLASE PROPHENTIC MODESTE BRECOM IT ONS LOCALLY MATCHAL DOM, CONTINAND SO TO AN INFOCRET CHE CHAIL WHITE PLAGOCLASE AND IS PERCENT ON ORITIC ACCILLAR HORNELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHELENDE CHISTALS, MARCON JUMA AND LARELLY TUFF PROCENT ON ORITICAL CHAIL PROPHEL CHAIL P
Pc1 BIOCLASTIC LIMESTONE WITH CHERTY INTERBEOS, MEDIUM BEDDED TO MASSIVE GREY BIOCLASTIC CALCARENTE AND LESSER BUFF SALTY OCCUMENTS. THEN BEDDED SECTIONS CONTINUE AND CANCER TO PLE LOWER BUFF AND PROPOLOGY SUCK BUFF TO 20 CENTUMETERS THOCK SOLUTIANT CORALS, FORMAMBERA, BRYOZOAM, CRIMONOS AND VARIOUS BRACHOPODOS ARE LOCALLY ABBIDDANT.
Pog THICK BEDDED, BOULDER TO PEBBLE CONGLOMERATE, CLASTS ARE AUGITE PHYRIC, PRAGOCULASE HHRICA, NIDESTIE, BASALT, AND LIMESTONE CLASTS.
MISSISSIPPIAN - PENNSYLVANIAN
DOCIDENT BI BILLIA BEDGES MBB SLISTONE-SANDSTONE TURBICITES AND LESSER CHERTS
MC THICK-BEDDED CANNOIDAL CALCARENTE WITH INTERBEDDED SILICEOUS SILTSTONE MY UNDOWDED VOLCANICS
MVI MARIC TO INTERMEDIATE SCORIACEOUS LAPILUI TUFF: SUCCOUS OUST TUFFS AND EPICLASTICS (MMs); INTERMEDIATE TO FELSIC ASH FLOW AND WELDED TUFFS (MMs)
property itself has been trav snors und detail during the course of this jurassic and younger(?)
BIOTITE GRANTE: PINK, COARSE TO MEDIUM GRANED, EQUIGRANILLAR TO QUARTZ EYE' PORPHARITIC, LESS COMMONLY HORNIBLENDE IS THE MAPIC CONSTITUENT, QUARTZ EXCEDS 30 FERCENT, QUARTZ RICH PHASES (50 PER CENT) ARE SPATUALLY RELATED TO FAUL I STRUCTURES
Jd HORNBLENDE DIORITE, HORNBLENDE OUARTZ DIORITE; HORNBLENDE IS CHLORITIC AND COMPRISES MORE THAN 40 PERCENT OF THE ROCK.
The assigned age of the intrusives is important to note in view of the
HOPHREENDE-PLAGICOLASE-PORPHYRITIC MONITOWITE: OCCURS AS DIVES, SILLS AND PLACE CHARACTERIZED BY A HEMATITIC GROUNDMASS & TERED WITH PANK SUBMEDRAL TO ELECTRICAL ASSICULATION OF PERCENT AND HOPHRELENDE CHISTIALS, TRACHTIC TEXTURES ARE COMMON, STRONGLY MAGNETA.
defined confines of the Complex itself, in reviewing the Furrest submyreyam
Project of has already been suggested that the age of the host ruck
(0.00 E otonowed) 3.09 Geological contact (defined, approximate, assumed)
Unconformable contact (defined, assumed)
Foliation
Fault (observed, inferred)
Thrust or high angle reverse fault (defined, assumed)
Anticline (direction of plunge indicated)
Syncline (direction of plunge indicated)
Minor fold axis
خر89
*
Vein

recently released regional mapping the project area was conducted by the British Columbia Ministry of Energy Mines and Petroleum Resources (Open File Map 1990-2; Logan, Koyanagi and Drobe). A portion of this map appears as Figure 6, on which the Kerr Project outline has been Again, essentially all of the property is indicated to be added. underlain by intrusives, which are more specifically defined as Jurassic and younger (?) biotite granite and hornblende diorite to quartz diorite. A structurally complex assemblage of Paleozoic volcanics and sediments which includes carbonaceous units is mapped to the west and southwest of the Kerr Project, in both intrusive and fault contact with the intrusive bodies. Very little of the Kerr property itself has been traversed in detail during the course of this regional mapping, allowing ample opportunity to improve the geological picture with data that would be gathered during detailed exploration. The assigned age of the intrusives is important to note in view of the postulated lower Jurassic mineralizing event that characterizes the Stewart Complex. While the Kerr Project lies outside the presently defined confines of the Complex itself, in reviewing the Forrest Project it has already been suggested that the age of the host rock may be less important than that of the intrusive event (Dewonck, 1990) if it is coeval with and related to a major event within the Complex.

PROPERTY GEOLOGY AND MINERALIZATION

Minimal geological mapping has been carried out on the Kerr Project. Work to date comprises reconnaissance prospecting and stream ediment sampling. Locations of all samples collected to date by


Pamicon Developments Ltd. appear on Figure 7. Copies of assay reports and rock sample descriptions are appended to this report.

Samples collected to date are results of prospecting traverses only, during which no systematic sampling was done. Samples are primarily random grab or chip samples of mineralized veins, shears or outcrops but also include some grabs of float as well as the following select grab samples:

Sample No.	Sample Descriptions
33241	limonitic iron carbonate vein 30-40 cm wide
33242	massive pyrite + magnetite
33243	pyrite + magnetite in garnet epidote skarn
33244	pyrite + magnetite in chlorite epidote skarn
33245	pyrite + magnetite in garnet skarn
89502	iron carbonate veins in 1-2 m wide fracture zone, trace chalcopyrite + barite
89503	<pre>from float, massive magnetite + malachite, garnet, epidote</pre>
89506	25 cm (?) wide quartz vein with pyrite to 3%

Of these select samples, two (33244 and 89506) appear amongst those listed as anomalous in the following sections describing each style of mineralization.

It has been determined that the project area includes rocks other than intrusives and is thus more complex than depicted in regional mapping. The following descriptions and results, taken from reports prepared by Pamicon Developments Ltd., summarizes their field work in 1988 (Todoruk and Ikona, 1989a) and 1989 (Todoruk and Ikona, 1990).

Andesitic volcanics with interbedded limestone and clastics appear to underlie the majority of the central claims area. A large dioritic intrusive appears to underlie the west and southwest parts of the Kerr 1 and 3 claims. Satellitic dykes and sills of diorite and syenitic (feldspar porphyry) composition intrude the volcanic sediments throughout the property. The known mineralization is often found proximal to several of the intrusives.

Figure 7 presents the geology as understood to date.

Property work in 1988 discovered four different styles of mineralization on the Kerr claims:

- magnetite/pyrite/chalcopyrite skarn mineralization
- pyrite quartz stockwork breccia mineralization
- silver/gold bearing tetrahedrite/chalcopyrite/malachite/azurite
 quartz veining
- auriferous pyrite quartz veining

Magnetite/Pyrite/Chalcopyrite Skarn

Skarn pods mineralized with magnetite/pyrite/chalcopyrite have been identified and sampled on the Kerr 1 and 2 claims (Figure 7) with similar occurrences within the Kerr 5 and 6 claims reported by Pamicon prospectors (Todoruk, personal comm.). Skarned and mineralized pods measuring 3 to 7.5 metres long have been found to occur around the entire ridge which transects the Kerr 1 and 6 claims. On the west side of this hill, a flat-lying skarned limestone unit hosting

magnetite/pyrite/chalcopyrite mineralization was noted by prospectors. The limestone may trend through the hill near the centre of the claims where skarn mineralization was sampled. In this area, mineralization is usually hosted within volcanic sediments. Sills and/or dykes of intermediate composition intrude these rocks. Anomalous assay values obtained from these skarn style showings are listed below:

Sample No.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Sample Description
33244	60	29.5	3,249	50,666	<pre>select grab: skarned limestone band</pre>
33504	605	23.2	63,327		grab: massive py/cpy/mag. zone
33541	10	38.9	3,185	3,661	grab: chalcopyrite in small shears 6-8 cm x 3-4 m/

Pyrite Quartz Stockwork Breccia

In the north central area of the Kerr 1 claim, north and west of where the skarned limestone described above is located, a quartz stockwork breccia zone measuring greater than 100 metres in diameter has been identified. Open space vugs within the breccia vary in size up to at least 10 x 25 cm and are usually completely infilled with medium to coarse grained pyrite. Outcrop is generally limonitic. This feature is not unlike the much larger stockwork system evident on the Forrest Project, where it is viewed as an indicator of a substantial hydrothermal event which may have generated the numerous occurrences identified to date (Dewonck, 1990).

Silver/Gold Bearing Tetrahedrite/Chalcopyrite Quartz Veins

These quartz veins are located near the east central area of the Kerr 1 claim uphill from several skarn pods. The veins appear to cut the volcanic sediments. Several intermediate and feldspar porphyry dykes/sills are located in this immediate area. At least one of the mineralized veins has been followed for approximately 75 metres along strike with widths varying up to 80 cm. Mineralization consists mainly of tetrahedrite with lesser amount of chalcopyrite, malachite and azurite. Associated anomalous values in arsenic and antimony are reported. Anomalous values are listed below:

Sample No.	Cu ppm	Sb ppm	Au ppm	Ag ppm	oz/t	Sample Descriptions
33564	11,987	8,156	300	>100	9.51	grab: malachite, cpy <u>+</u> arsenopy in quartz breccia
33590	54,604	27,454	650	>100 2	2.69	grab (float): chalcocite, tetrahedrite and
33592	22,134	11,748	300	>100	4.24	chalcopyrite in quartz vein grab: quartz vein breccia with chalcocite, tetrahedrite, chalcopyrite
33593	14,882	9,806	685	>100	3.75	in andesite as above.

Auriferous Pyrite Quartz Veining

Several subparallel quartz veins containing pyrite mineralization with associated gold values occur within a diorite intrusive in the south central part of the Kerr 5 claim. Vein widths vary between 10 and 20 cm. Individual quartz veins are spaced approximately 50 cm apart. Assay values of interest from grab samples are listed below:

Sample No.	Au oz/t	Sample Descriptions
33524	0.040	grab: pyritic quartz vein 5-10 cm wide
33525	0.076	grab: quartz vein in diorite hosted shear (.2 x 25m)
33247	0.076	resample of 33524.

Quartz vein material with disseminated pyrite discovered in the northwest corner of the Kerr 1 claim along the western claim line hosts anomalous gold and silver values. Assay results of this sample are:

Sample	Ag	Au	Sample Descriptions
No.	ppm	oz/t	
21780	58.8	0.726	grab: massive, dark grey quartz lens with disseminated pyrite in syenite-monzonite hosted fracture.

The sample was reported on and described in Kiesman and Ikona's report on the Gab 7, 8 and 10 claims for Pezgold Resource Corp. (1989a) as its location was first thought to be within this property. Follow up work in 1989 determined that it was in fact within the Kerr Project area, as plotted on Figure 7.

The veining occurs within a large syenite-quartz monzonite stock mapped in the area. Similarly mineralized quartz veining occurs on properties to the southwest where a vein has been traced for approximately 400 to 500 metres with widths up to 2.0 metres. Results include grab samples up to 2.893 oz/ton gold and a chip sample grading 1.83 oz/ton gold across 1.05 metres.

During the limited program on the Kerr Project conducted in 1989, rock chip sampling was only carried out to follow up the quartz pyrite vein on the Kerr 1 claim from which sample 21780 was obtained. A total of 14 samples were collected from this vein and other rocks of interest in this area during the program. Four of the more encouraging samples of the mineralized vein produced the following results:

Sample No.	Ag ppm	Au ppb	oz/ton	Sample Descriptions
89504	50.0		0.326	grab: 10-30 cm wide limonitic quartz vein,
89506	77.2		0.292	minor pyrite select grab: pyritic, limonitic quartz vein, + 25 cm wide
	39.2 109.5	1,500		<pre>grab (float): similar to aboe vein samples grab (float): quartz with ~ 3% pyrite.</pre>

In addition, 11 heavy sediment and 8 silt samples were collected from traverses along a major creek drainage on the Kerr 2, 3 and 4 claim. Anomalous values of 80 and 170 ppb gold were obtained from heavy sediment sample number 89458 and 89466, respectively (Figure 7).

CONCLUSIONS AND RECOMMENDATIONS

The Kerr Project comprises the Kerr 1-6 mineral claims in the Iskut River area of northwestern British Columbia. The area in general is currently the focus of extensive exploration for precious metal deposits on numerous claim blocks. Several showings have been evaluated in the immediate project area, where precious metal and base metal values are recorded in skarns and/or altered carbonates, quartz and/or quartz-carbonate veins, fracture fillings and fault zones.

The most advanced projects nearby belong to Gulf International Minerals Ltd. who plan to proceed with underground development in 1990, and Avondale Resources Incorporated, whose Forrest Project has a recommended 1990 exploration program including mapping, sampling, trenching and drilling estimated to cost \$1,500,000. The Kerr Project has its beginnings in the same reconnaissance program which led to creation of the Forrest Project however the latter has been explored much more intensely and therefore is more advanced. Exploration programs conducted on behalf of others in the immediate project area have produced erratic results however recommendations have been made to pursue these projects further to more extensively evaluate geologically favourable target areas.

Quartz stockworks are a feature common to both the Kerr and Forrest projects, albeit more prominent on the latter, however both are postulated to be indicative of a significant hydrothermal event which may have been the source of the numerous showings identified to date. The suggested age of intrusives in both project areas (Lower Jurassic) is also a positive factor in view of conclusions drawn that a major mineralizing event occurred during the Lower Jurassic, related to intrusive activity. Exploration successes to date have occurred primarily within the Stewart Complex, an assemblage of Upper Triassic to Middle Jurassic volcanics and sediments, however the number of mineral occurrences identified in older rocks is encouraging.

The Kerr Project has received only minimal exploration, primarily in the form of reconnaissance prospecting and rock grab sampling. The work has, however, indicated that the property is underlain by more complex geology than that outlined by regional mapping. In addition to Jurassic (?) intrusives andesitic volcanics with interbedded limestone and clastics have been identified.

Four styles of mineralization have been defined to date:

- 1. magnetite/pyrite/chalcopyrite skarn mineralization
- 2. pyrite quartz stockwork breccia mineralization
- 3. silver/gold bearing tetrahedrite/chalcopyrite/malachite/
 azurite quartz veining
- 4. auriferous pyrite quartz veining

The first style has produced anomalous silver, copper and zinc values, the third copper, antimony and silver values with weak gold and the fourth anomalous gold and silver, including float samples assaying up to 1.060 oz/ton gold.

The Kerr Project is essentially at the same stage as was the Forrest Project in 1988 - several mineral occurrences of varied styles in unmapped territory, lacking systematic evaluation. Exploration successes evident throughout the Iskut River area, many after several seasons of perseverance, indicate that the Kerr property warrants further work.

A Phase I program of detailed mapping and systematic sampling, grid controlled where possible, is recommended for the known occurrences. In conjunction with this work the rest of the project area should be systematically prospected.

Costs for this program are estimated at \$75,000. A Phase II program, contingent on positive results from Phase I, would include trenching of primary targets, magnetic and VLF-EM surveys (to trace skarn deposits and vein/structurally controlled sulphide occurrences respectively) as well as follow up sampling and mapping of any new discoveries. Provision is made in this phase for a limited drill program however these funds should be used for additional trenching or other groundwork if more useful information can be obtained in this manner. A budget of \$100,000 is allocated for Phase II.

BUDGET ESTIMATE

Phase I

Mobilization/Demobilization	\$ 6,000
Field Costs (Labour, Camp)	33,000
Support Costs (Fixed Wing, Helicopter, Freight,	
Expediting)	15,000
Assays	5,000
Report	4,000
Administration Fee on Disbursements @ 15%	5,200
Contingency @ 10%	6,800
Total Phase I	\$75,000

Phase II

Mobilization/Demobilization Field Costs (Labour, Camp)	\$ 6,000 22,000
Support Costs (Fixed Wing, Helicopter, Freight,	,
Expediting)	15,000
Equipment Rentals, Trenching Supplies	2,000
Assays	8,000
Diamond Drilling 200 m @ \$100/m (contract costs only)	20,000
Report	10,000
Administration Fee on Disbursements @ 15%	8,000
Contingency @ 10%	9,000
Total Phase II	\$100,000

CERTIFICATE of QUALIFICATIONS

- I, Bernard Dewonck, of 11931 Dunford Road, Richmond, British Columbia hereby certify:
- 1. I am a graduate of the University of British Columbia (1974) and hold a BSc. degree in geology.
- 2. I am an independent consulting geologist retained by OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I am a member of the Canadian Institute of Mining and Metallurgy.
- 6. This report is based on a review of information listed in the Bibliography, a review of currently available field data and familiarity with the general project area gained during property examinations of the Forrest Project of Avondale Resources Inc., as well as supervision of numerous exploration projects in the Iskut River area in 1988 and 1989. I visited the property on June 18, 1990.
- 7. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property or in the securities of Consolidated Caprock Résources Ltd.
- 8. I consent to and authorize the use of the attached report and my name in the Companies' Prospectus, Statements of Material Facts or other public document.

Consulting Geologist

DATED at Vancouver, British Columbia, this 22nd day of June, 1990.

BIBLIOGRAPHY

ALLDRICK, D.J.

1989: Volcanic Centres in the Stewart Complex, B.C.E.M.P.R. Paper 1989-1, p.223-240.

ALLDRICK, D.J., DROWN, T.J., GROVE, E.W., KRUCHKOWSKI, E.R., & NICHOLS, R.F.

1989: Iskut-Sulphurets Gold Northern Miner Magazine January p.46-49.

BOND INTERNATIONAL GOLD INC.

1989: News Release September 29, 1989.

BRITISH COLUMBIA MINISTRY OF ENERGY MINES AND PETROLEUM RESOURCES Minfile

BUCHHOLZ, JOHN

1989: Kestrel Resources Ltd., 1988 Summary Report, Iskut River Mineral Claims in Company Prospectus Dated August 16, 1989.

CALPINE RESOURCES INCORPORATED

1989, 1990: Company News Releases.

CANADIAN MINES HANDBOOK, 1989-1990.

DEWONCK, B.

1990: Summary Report on the Avondale Resources Inc. Forrest Project, Iksut River Area, British Columbia for Avondale Resources Inc.

GEORGE CROSS NEWSLETTER (GCNL)

August 16, 1989; February 12, 1990; February 16, 1990.

GROVE, E.W.

1971: Geology and Mineral Deposits of the Stewart Area, B.C. <u>British</u> Columbia Dept. of Mines and Petroleum Resources Bulletin No. 58.

1986: Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area, B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 63.

KIESMAN, W.D., IKONA, C.K.

1988: Geological Report on the Gab 5 Mineral Claim, Iskut River Area, for Kirby Energy Inc.

1989a: Geological Report on the Gab 7, 8 and 10 Mineral Claims, Iskut River Area for Pezgold Resource Corporation.

1989b: Geological Report on the Gab 6 Mineral Claim, Iskut River Area, for Thumper Resources Corp.

KIESMAN, W.D., IKONA, C.K.

1989c: Geological Report on the Gab 1-4 Mineral Claims, Iskut River Area, for Achilles Resources 1td.

KESTREL RESOURCES LTD.

1990: News Release February 21, 1990.

LOGAN, J.M., KOYANAGI, V.M., DROBE, J.R.

1990: Geology, Geochemistry and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern British Columbia, British Columbia Ministry of Energy Mines and Petroleum Resources, Open File Map 1990-2.

NORTHERN MINER

1988: Calpine Results Verify Potential, Vol. 74, No. 41, p-1, December 19, 1988.

1989: Johnny Mountain Turnaround, Vol. 75, No. 24, p-1, August 21, 1989.

1989: Calpine Hole Kick Starts VSE, Vol. 75, No. 25, p-1, August 28, 1989.

PRIME RESOURCES CORPORATION

1989: Special Report - the Iskut Sulphurets Area.

TODORUK, S.L., IKONA, C.K.

1989a: Geological Report on the Kerr 1-6 Mineral Claims - Iskut River Area.

1989b: Geological Report on the Gab 9 Mineral Claim - Iskut River Area, for Jazzman Resources Inc.

1990: Geological Report on the Kerr 1-6 Mineral Claims - Iskut River Area.

TODORUK, S.L., STAMMERS, M.A., DARNEY, R.J. & IKONA, C.K. 1990: Forrest Project - Summary of 1989 Exploration on the Forrest 1-15 Mineral Claims.

APPENDIX I ASSAY CERTIFICATES

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

	REPORT NUMBER	R: 881417 6A	JOB NUMBER: 8814	17 PAMICON DEVELOPMENT LTD.	PAGE 1 OF 1
	SAMPLE #		Au		
			ppb		
,	33241		15		
/	33242		140		
-	33243		110	•	
	33244		60		
•	33245		300		
,	33246		340		
_	33247		2600		

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881417 AA

JOB NUMBER: 881417

PANICON DEVELOPMENT LTD.

PAGE 1 OF 1

SAMPLE #

Au

oz/st

33247

.076

DETECTION LIMIT
1 Troy oz/short ton = 34.28 ppm

.005

1 ppm = 0.0001Z

= parts per million

(= loce that

signed:

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT AMALYZED

COMPANY: PATTENTION: PROJECT:		ODOR	UK					REPOR JOB#: INVO	881	417					DAT	E CO	CEIV MPLE NT T	TED:	98/09 88/1	9/21 10/14					ANAL	YST_	1	Lef	/ .
									٠													F'A6	E 1 DF	1				-11	
SAMPLE NAME	AG PPM	AL I	as Ppr	AU PPM	BA PPM	BI PPM	CA I	CD PPM	CO PPM	CR FPM	CU PPM	FE 1	K	MG I	AN PPH	MO PFM	NA I	N1 PPM	P	PB PPM	PD PPM	PT PPM	SB PFM	SN PPM	SR PFM	U PPM	N PPM	ÎN PPN	
33241 33242 33243 33244 33245	.; 13.6 1.5 29.5 2.9	.55 .22 .29 .59	ND 1055 52 213 200	ND ND ND ND	23 5 5 8 3	ND 7 5 3 5	16.06 .98 .85 1.32 1.54	.1 4.2 3.1 173.1 7.3	11 310 301 293 457	77 32 18 49 27	19 4726 914 3249 3485	23.09 15.97 5.30	2.31 .90 .64 .36 .83	2.31 .25 .24 .70	2527 871 504 540 730	1 6 4 24 8	.01 .07 .04 1.26 .07	27 19 24 58 14	.01 .01 .03 .06	15 40 17 805 31	DH DK DH DH	ND ND ND ND	ND ND ND ND	ND ND ND 3 ND	96 3 3 32 1	DH DH DH DH CH	ND ND 330 ND	29 757 79 50666 1382	
33246 33247	4.4 22.2	.38	5 X D	DM DM	18 7	ND 3	.17	.6 1.2	19 24	127 80	124 61	2.14 6.50	.09	.36 .31	254 120	;	.01	6 11	.01	14 23	ND ND	ND NO	MD MD	ND ND	1	MD DN	ND OM	271 206	
DETECTION LIMIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	. 01	1	i	.01	i	.01	2	3	5	2	2	1	5	3	1	

DE DE LES SER

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881342 GA

JOB NUMBER: 881342

PAMICON DEVELOPMENT LTD.

PAGE 1 OF 1

SAMPLE #

Αu

ppb

33455

30

ANLLOCHEM & B LIMITED

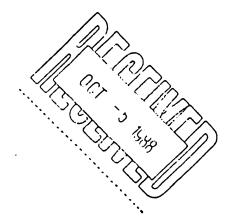
MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,NN,FE,CA,P,CR,NG,BA,PD,AL,NA,K,M,PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON ATTENTION: S. TODORUK PROJECT: KERR REPORT#: 881342PA JOB#: 881342


INVOICE#: 881342NA

DATE RECEIVED: 88/09/13 DATE COMPLETED: 88/10/05 COPY SENT TO:

ANAL YST

PAGE 1 OF 1

SAMPLE NAME	ag PPM		AS PPM				CA I						K I							PB PPM							W PPM	
33455	.4	1.06	7	MD	19	NO	1.09	.8	11	116	1021	2.15	.29	.10	411	4	.01	6	.03	18	ND	ND	ND	1	91	ND	ND	19
DETECTION LIMIT	.1	.01	3	3	1	3	.01	.1	i	1	1	.01	.01	.01	1	1	. 01	1	.01	2	3	5	2	2	1	5	3	1

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 2S3 (604)251-5656 FAX:254-571778

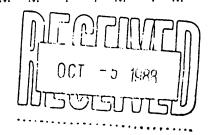
BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

	REPORT NUMBER: 881310 GA	JOB NUMBER: 881310	PAMICON DEVELOPMENT LTD.	PAGE 1 DF 1
	SAMPLE #	Au		
		ppb		
_	33216	nd		
_	33217	40		
_	33218	nd		
_	33219	nd	·	
/	33220	nd		
	33221	nd		
	- 33222	nd		
	33223	nd		
	33224	nd		
/	33225	nd		
	33226	nd		
	33227	nd		
	33228	nd		
	33229	nd		
,	33230	40		
	33231	20		
	33232	20		•
/	33233	10		
	33234	15		
\smile	33235	10		
	33236	10		
	33237	nd		
	33238	nd		
	33239	10		
7	33240	nd		
	33549	10		
1	33550	nd	•	

OFF 19 RIUM TREE ANCL R B. 5L 1 H: (1...251-1.... TELL...4-3921/8 BKMNCH OFFICE: 1630 PANDORA STREET. VALUETEER B.C. VSL 1L6 PH: (604) 251-7282 FAX: (604) 254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,NM,FE,CA,P,CR,MG,BA,PD,AL,NA,K,N,PT AND SR. AU AND PD DETECTION IS 3 PPM.


15= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON ATTENTION: S. TODORUK PROJECT: KERR REPORT#: 881310PA JOB#: 881310 INVOICE#: 881310NA DATE RECEIVED: 88/09/09 DATE COMPLETED: 88/10/04 COPY SENT TO:

ANAL YST

P	46	ξ	1	0F	1

SAMPLE NAME	AG PPM	AL I	AS PPM	AU PPM	BA PPM	BI PPM	CA	CD PPH	CO PPM	CR PPM	CU	FE	K 1	MG 1	NN PPN	MO PPM	NA I	N I PPM	P	PB PPM	PD PPM	PT PPM	SB PPM	SN PPN	SR PPM	U PPM	W PPM	(ZA PPM
33216 33217 33218 33219 33220	.5 .9 .3 .1	.11 .25 .18 .29 .25	22 11 9 5 10	ND ND ND ND	183 150 17 11	3 7 5 3 ND	.03 .01 2.19 .17 .25	1.3 1.5 1.3 .8	8 7 36 23 10	118 144 75 85 140	182 495 404 220 78	7.03 8.21 6.91 5.53 2.32	.80 .85 1.01 .55 .20	.03 .04 .62 .18	96 76 1011 259 142	124 28 7 45 8	.01 .01 .01 .01	18 5 10 8 4	.01 .01 .01 .01	30 78 19 17	ND ND ND ND	ND ND ND ND	0M 0M 0M 0M	3 4 3 3	6 8 14 3 5	ND ND ND ND	MD MD MD MD	18 15 18 22 14
33221 33222 33223 33224 33225	.1 .1 .1	.14 .07 .12 .07	8 7 8 6	ND ND ND ND	15 32 70 23 16	D ND ND ND ND	.11 .09 .02 .04	.5 .2 .1 .2 .1	20 11 3 7 4	110 160 208 108 105	160 101 41 86 52	4.62 2.69 2.24 2.77 1.72	.49 .28 .23 .31 .25	.12 .02 .08 .02	155 126 87 96 89	21 4 43 15 3	.01 .01 .01 .01	6 5 5 3 8	.01 .01 .01 .01	13 14 11 10 8	ND ND ND ND	D D D D D D D	DM DM DM OM DM	2 1 1 1	2 1 1 3 1	DM DM DM DM DM	ND ND NO NO	16 7 14 6 7
33226 33227 33228 33229 33230	.1 .1 .1 .1	.02 .02 .98 .73 .46	8 9 9	MD MD MD MD	11 20 24 58 54	ND 3 MD ND	.15 .02 .06 .12 .07	.1 .8 .3 5.5	7 9 11 9 6	229 184 163 104 110	150 72 85 424 1549	2.43 1.98 4.86 2.96 1.62	.21 .13 .49 .27	.06 .01 .95 .71	245 87 771 694 182	9 1 13 20 15	.01 .01 .01 .01	8 6 7 8 11	.01 .01 .01 .02	9 13 23 18 15	ND ND ND ND	ND ND ND ND	MD MD MD MD	1 3 2 1	1 ND 2 3	DN DN DN DN	ND ND ND ND	6 6 162 122 1486
33231 33232 33233 33234 33235	.1 .1 .1 1.6	.11 .33 .30 1.82 .17	8 7 7 13 ND	ND ND ND NO	8 24 27 11 53	3 ND 4 7	.01 .02 .01 .23	.8 .1 .8 1.3	7 4 8 17 13	222 177 108 66 88	83 313 553 138	5.27 2.45 6.24 5.32 6.96	.57 .22 .66 .54 .76	.03 .25 .15 1.69 .06	47 202 121 2212 337	68 5 15 4 46	.01 .01 .01 .02	9 6 8 12 3	.01 .01 .01 .13	13 16 17 36 15	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	2 1 2 10 2	2 1 1 13 2	ND ND ND ND	ND ND ND ND	89 51 30 436 26
33236 33237 33238 33239 - 33240	.3 .5 .1 .5	.99 .17 .73 2.80	8 11 8 9 5	ND ND ND ND	19 145 9 188 49	S ND S 7 ND	.14 .02 .16 .90	2.5 .8 1.3 1.8	29 8 20 22 12	165 178 151 50 223	668 237 220 138 78	6.18 4.82 6.28 5.74 2.18	.68 .48 .70 .65	.97 .05 .77 2.47	758 164 614 3070 374	11 23 14 3 5	.02 .01 .01 .02	48 8 10 22 7	.01 .01 .01 .13	27 15 22 47 8	ND ND ND ND	ND ND ND ND	ON DN GN GN	3 2 3 7 1	3 4 5 20 8	ND ND ND ND	ND ND ND ND	541 59 141 579 33
33549 33550	.1	.06 .83	13 25	ND ND	13 18	MD 3	. 90 . 06	.6 1.1	11 11	96 91	283 214	3.66 5.52	.47 .60	.35 .76	799 246	83 65	.01	5 6	.01 .01	12 24	ND ND	DN ON	DH DH	1 4	40 6	DN ON	ND ND	13 67
DETECTION LINIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	I

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881270 AA

JOB NUMBER: 881270

PANICON DEVELOPMENT LTD.

PAGE 1 OF 1

SAMPLE #

Au

oz/st

33524

.040

33525

.076

DETECTION LIMIT
1 Troy oz/short ton = 34.28 ppm

.005

1 ppm = 0.0001%

< = less that</pre>

signed:

= parts per million

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881270 GA	JOB NUMBER: 881270	PAMICON DEVELOPMENT LTD.	PAGE 1 OF 1
SAMPLE #	Au		
	ppb		
√ 33201	nd		
⁻ 33202	250		
√ 33203	240		
/ 33204	260		
√ 33205	40		
√ 33206	60		
33207	10		
/ 33208	60		
√ 33209	10		
✓ 33210	30		
J 33211	nd		
√ 33212	nd		
√ 33213	nd		
~ 33214	nd		
→ 33215	nd		
∕33522	150		
/ 33523	390		
∕ 33524	1310		
√ 33525	2700		
√ 33526	70		
√ 33527	60		
√ 33528	20		
∕33529	70		
~ 33530	30		
√ 33531	10		
/ 33537	nd		
> 33538	10	•	
~ 33539	nd		
~ 33540	60		
√ 33541	10		
√ 33542	nd		
√ 33543	nd		
33544	80		
~ 33545	140		
33546	nd		
> 33547	190		
/ 33548	20		

'A マロ LM EI

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

COMPANY: PAMICON

PROJECT: KERR

DETECTION LIMIT

.01

3

3

3 .01

ATTENTION: S. TODORUK

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 HINUTES AND IS DILUTED TO IT WITH HATER. THIS LEACH IS PARTIAL FOR SN, MM, FE, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PB DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE. ND= NOT DETECTED. -= NOT ANALYZED

> **REPORT#: 881270PA** JOB#: 881270 INVOICE#: 881270NA

MAIN OFFICE: 1988 TRIUMPH STREET, VAN

DATE RECEIVED: 88/09/07 DATE COMPLETED: 88/09/28 COPY SENT TO:

PAGE 1 OF 1

XA NI PB PĐ PT 58 SII SR U ďι CA CD CO CR FE MO SAMPLE MANE AS AU BA 11 CU KN PPH I PPN 1 PPN 1 PPN PPM PPH PPN PPH PPN 1 PPH PPH PPH PPN PPN PPH 1 ı PPM PPN 1 PPN PPH PPN PPN 938 33201 18.23 16 10 75 .24 3.22 2617 .02 12 .01 34 126 33202 14.2 2.47 15 59 1.12 5.7 34 139 13573 5.74 .18 2.18 1273 9 .01 12 .01 47 MB 20 ND ND 387 2.7 15 135 622 5.65 ΧĐ XO ΧĎ 66 33203 .60 ND. 38 .05 .6 .01 . 39 331 25 .01 5 .01 20 KĐ MD 2 3 98 163 KD KD 26 MD 19 .04 3.77 .01 .04 142 36 .01 .01 13 ND MD 33204 3.8 .13 ND .2 X6 27 XD. 10 ND X0 28 154 3493 5.79 .15 2.87 1779 .01 15 52 KD KD X0 265 33205 3.8 3.38 55 1.05 .04 1.46 156 139 .20 .98 18 92 33206 .3 1.24 1.1 6.10 854 .01 28 MD 2 33207 NB MĐ 26 154 169 4.59 . 24 1.65 1162 13 29 ND. KĐ H5 2 22 MB MO .1 1.49 39 1.94 .7 2 .01 .01 114 37 33208 .71 5 MO 12 3 10.85 3.1 136 31 3179 16.32 .31 .14 1886 .02 14 .01 10 MD 12 KD 17 1.1 33209 50 36 805 .33 .20 X0 MO NO .81 wn 11 18.10 1100 5 .02 33 26 21 .5 4.84 3.1 .01 33210 16 42 1348 . 36 51 MD MB MD 2.2 .70 ND 42 7.83 1.1 91 8.77 80. 1430 .01 13 .01 MB 15 ΧĐ 12 33211 ND 1.33 37 127 102 11.18 10 .32 .18 .24 231 .01 5 26 MB ٠١ 2.1 .01 33212 .1 .70 ND MD 404 ND 5.06 .1 5 14 30 2.06 .37 .63 1896 .01 .01 25 MO 409 MB 26 53 33213 ٠.۱ 3.35 MD MD 1492 ND 1.36 1.1 14 100 1706 5.92 . 23 2.09 2786 .01 .17 ΧĐ XĐ 67 ΝĐ MB 176 33214 .5 4.26 8 MD 379 XD . 68 1.6 17 82 4118 8.27 . 16 2.22 3449 5 .01 7 .07 65 ND MD MD 5 18 KB MD 213 33215 2.82 19 ND 22 ND .53 2.1 24 37 701 6.20 .11 2.67 1076 10 .06 53 MD MD Xô 12 ΝĐ 288 .01 33522 3.4 17 20 .63 313 206 1587 .12 109 .01 32 22 1.11 .6 .31 138 11 .01 33523 6.2 .21 NO 38 .03 18 177 89 5.65 .02 .10 155 17 .01 6 .01 21 NO KD MB 3 NĐ KO 35 228 262 33524 25 .07 144 15 32 MB MB 10.7 . 56 ND 3 3.3 17 4.46 . 02 .45 144 .01 12 .01 MD MD. NO 33525 21.8 . 22 NO .22 115.1 15 116 633 4.23 .04 .21 162 9 .11 8 .01 22 ND ĸO 2 MĐ ΚĐ 5342 33526 1.4 1.95 76 ND .97 3.4 19 230 104 3.69 .16 1.63 934 30 .01 11 .02 36 ND 10 KO 5 12 ND ND 283 33527 23 MĐ 3.49 131 663 6.39 .34 .58 23 .01 25 31 .1 1.1 46 .01 33528 ND 13 .1 1.60 ND 61 1.68 .2 145 61 3.34 . 25 1.28 947 .04 30 MB ĦĐ 10 15 KD XD 116 .01 15 ΧĎ 33529 ND 1.75 98 164 .25 11 .04 MÔ MĐ 20 ND XD 34 . 26 3 31 26 4.76 . 96 639 2 .01 .1 . 19 MS MĐ 3 NB ND 11 33530 ΚĎ 137 210 .03 . 05 53 23 .01 19 MD 3.1 MD 7 6 .10 1.4 16 9.11 .02 6 26 ND 2 36 NO NO. 94 33531 NB 58 ΧĎ 14 159 50 .35 1.15 1592 .01 8 .01 .1 1.40 ND 4.12 .1 3.46 .07 33537 .1 .06 ΝĐ 313 ND .34 5 .17 .03 168 ND .01 ND .01 879 .1 33538 . \$ 1.22 5 МĎ 32 ΝĐ .76 .1 28 79 873 2.43 .12 .19 168 3 .01 .05 26 ND ND ΝĐ 138 XD MD 17 33539 29 ND . 64 1.3 98 123 910 .51 760 . 28 24 NĐ MD MD 5 23 NĐ K) 111 1.2 . 69 ND 5.97 .14 205 16 . 02 H8 35 NB. NO 203 33540 .52 47 135 3213 .54 36 188 .06 30 NO ΧĐ 3.8 1.12 12 MD 39 MĐ 2.3 3.28 .10 193 .01 79 KD 3661 ND ND NB 33541 38.9 1.59 827 129 ND 12.81 49 44 3185 6.00 .33 3.71 3189 .08 46 .02 468 152 67 33542 1.1 .45 27 204 MĐ 3.87 20 65 4747 3.29 .36 1.60 941 -01 16 33543 12 MD 152 .1 1.88 14 ND 74 KD 10.61 2.1 11 33 1599 8.86 .37 .43 4826 3 ..01 .01 43 ND MD MD. 6 ND ND. KD 25 33544 1.1 .17 73 MD .82 5.7 663 59 752 36.31 .07 .10 536 12 .05 24 .01 38 ND MD MD 33545 123 10111 27.30 13 51 ND 9 ND ND 107 3.2 .66 50 KB 3.41 5.5 74 . 28 .09 2994 .04 .01 MD 65 ND 2 KD KB 177 .01 41 ND 5 33546 .3 1.11 • MD 43 3 10.54 3.2 131 59 9669 11.49 .36 .05 5215 5 -02 63 33547 .03 32 XD ND 12.4 .49 14 18 5 3.81 6.1 493 36 45773 25.83 . 29 .09 2628 10 2 .01 KD ND MD. 175 33548 .58 12 KD 7 3 11.12 47 63 10690 12.97 .34 .05 4219 .02 XĐ .01 36 ND K9 X0 5 NO 3.1 4.1

.01

.01

.01

.01

.01

3

5

BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH: (604)251 7282 FAX: (604)254-5717

VER B.C. V5L 1K5 PH: (604)251-5656 TELEX: 04-352578

1988 ----ANALYST

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 3 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

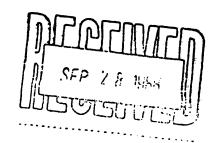
REPORT NUMBER: 881264 GA	JOB NUMBER: 881264	PANICON DEVELOPMENT LTD.	PAGE 1 OF 1
SAMPLE #	Au		
	ppb		
33515	nď		
√ 33516	240		
_~ 33517	300		
× 33518	nd		
_{>} 33519	55		
✓ 33520	30		
√ 33521	20		
/ 33532	25		
33533	nd		
✓ 33534	10		
√ 33535	nd		
/ 33536	40		

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2D AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PO, AL, NA, K, W, PT AND SR. AU AND PO DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED


COMPANY: PAMICON ATTENTION: S. TODORUK PROJECT: KERR REPORT#: 881264PA

JOB#: 881264 INVOICE#: 881264NA DATE RECEIVED: 88/09/07 DATE COMPLETED: 88/09/27

COPY SENT TO:

ANALYST

																						PAG	E 1 OF	1				
SAMPLE NAME	A6 PPM	AL 1	AS PPM	AU PPM	BA PPH	BI PPM	CA 1	CD PPM	CO PPM	CR PPM	CU PPM	FE 1	K	MG I	MN PPH	MO PPM	MA I	NI PPH	P	PB PPM	PO PPM	PT PPM	SB PPM	SM PPM	SR PPM	U PPM	u PPn	IN PPN
33515 33516 33517 33518 33519	1.6 5.1 4.8 .5	.56 .10 .03 .38	5 7 3 4 5	ОМ ОМ ОМ ОМ	85 17 7 23 14	ND ND ND 6	.17 .01 .01 .03	.3 .1 .1 .6	14 2 3 12 9	197 263 170 92 202	194 39 90 38 53	2.47 .85 1.16 3.87 1.11	.04 .01 .01 .01	.34 .06 .01 .25 .05	540 63 29 247 64	8 16 9 17 25	.01 .01 .01 .01	19 6 5 6	.01 .01 .01 .01	18 8 9 16 8	ND DN DN DN	ND ND ND ND	ND ND ND ND	2 ND 1 2 ND	2. ND ND 2	DE DE DE DE DE	DN DN DN DN	66 64 39 183 26
33520 33521 33532 33533 33534	.3 .1 2.7 4.3	.30 1.52 .45 .26	ND 6 16 4490 90	ОН СМ ОК ОК	11 108 83 72 68	S NO ND ND	.22 .58 .28 3.04	5.9 .2 .2 15.1	13 33 14 26 23	192 94 138 27 50	34 456 7181 24076 556	6.41 2.11 1.54 3.00 2.29	.04 .11 .06 .30	.24 1.20 .16 .16	357 330 95 794 226	17 2 4 5 3	.03 .01 .01 .07	6 14 12 9	.01 .01 .01 .01	17 27 156 73 14	ND ND ND ND	XD MD MD MD	ND NB ND 2674 ND	3: 2: 2: 2: 1:	3 10 26 20 5	DH DK DK DH	DH DH OH CH	89 46 3257
33535 33536 Detection likit	.1 4.5	.24 3.54	260 3	ND ND	12 10	ИD 3	.35 .07	.5 16.7	92 101	70 16	108 731	4.80 9.50	.06 .01	.19 4.32	139 589	2 6	.01 .04	5 104 1	.03 .05	15 223 2	- ND DN 3	ND ND 5	NO ND	2 5 2	3 2	OK On 2	0K 0k 3	

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NU	MBER: 881139 GA JOI	3 NUMBER: 881139	PANICON DEVELOPMENT LTD.	PAGE	1	OF	1
SAMPLE #	A	1					
	ppt)					
40RR SS -	1 40)					
KERR SS -	2 45	j	•				
KERR SS -	3)					

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 MCL TO MMO3 TO M20 AT 95 DEG. C FOR 90 MIMUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MM, FE, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, MD= MOT DETECTED, -= MOT ANALYZED

		DEVELOPMENTS
PROJECT:	11, S TODO	DRUK
PROJECT:	4800	
	i come.	

REPORT#: 881139 PA JOB#: 881139 INVOICE#: 881139 NA DATE RECEIVED: 88/08/27 DATE COMPLETED: 88/09/11 COPY SENT TO:

ANALYST

PAGE 1 OF 1

																												V	
SAMPLE MANE	AG PPM	AL I	AS PPH	AU PPH	BA PPN	B1 PPH	CA I	CD PPH	CO PPN	CR PPH	CU PPM	FE I	K I	MG I	MN PPM	MO PPM	MA I	NI PPH	PI	PB PPM	PD PPM	PT PPH	SB PPM	SN PPN	SR PPM	U PPM	W PPM	ZN PPH	
KERR SS-1 KERR SS-2	.2	2.85 1.91	14 30	MD MD	201 566	ND 6	.20 .13	.1	23 28	24 19	493		.04	1.52	6190	2 2		21 26	.06		ND ND	MD MD	ND ND	6 5	17 6	ND MD	ND ND	116 98	
KERR SS-3	1.1	3.22	27	KD	291	3	.15	.1	23	22	354	6.38	.05		2381	2	.04	23	.16	43	MD	ND	XD	7	11	ND	NO	141	
DETECTION LIMIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1	

1521 PEMBERTON AVE.
NORTH VANCOUVER, B.C. V7P 2S3
(604) 986-5211 TELEX: 04-352578

1630 PANDORA ST. VANCOUVER, B.C. VSL 1L6 (604) 251-5656

	REPORT NUMBER: 881126 GA	JOB NUMBER: 881126	PANICON DEVELOPMENT LTD.	PAGE	1	OF	1
	SAMPLE #	Au					
		ppb					
	33511	170					
/	33514	50	•				

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH: (604) 251-5656 TELEX: BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH: (604) 251-7282 | FAX:

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WIT THIS LEACH IS PARTIAL FOR SM.MM.FE,CA.P.CR.MG.BA.PD.AL.MA.K.W.PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, MB= MBT DETECTED, -= MOT AMALYZED

OMPANY: PAMICON TTENTION: MR. S. TODORUK ROJECT: KERR

REPORT#: 881126PA JOB#: 881126 INVOICE#: 881126NA DATE RECEIVED: 88/08/27 DATE COMPLETED: 88/09/13 COPY SENT TO:

ANALYST

PAGE 1 OF 1

SR UNPLE NAME PPM PPM 371 3511 3514 33.1 3.27 64 33961 14.66 .01 .89 28 1080 43 1.3 3.16 20 . 10 33 10 5894 23.48 .02 3.02 .02 7 .03 ND ND 296 ETECTION LIMIT .01 .01

> ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH: (604)251-5656 TELEX: 04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HMO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS BILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PD, AL, NA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPM.

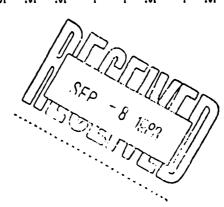
IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON ATTENTION: MR. 8. TODORUK PROJECT: KERR

) [

)

)


REPORT#: 881026PA JOB#: 881026 INVOICE#: 881026NA DATE RECEIVED: 88/08/17 DATE COMPLETED: 88/09/06 COPY SENT TO:

ANALYST

PAGE 1 OF 1

SAMPLE MANE 31 CA CB CO CR CU FE XI. 78 PS 71 53 PPN 46 5438 3.65 MD HD. 29,71 .01 3003 .01 10 72 514 3.81 773 m n 33 m KĐ 147 33508 2.19 18 34 KD. 1.67 1.2 47 .21 1.73 .01 25 .02 47 MB 33509 13 119 10 . 58 60 1246 12.99 .07 .77 371 6 .04 141 .07 42 MB HĐ MB 38 MB. H0 95 2.3 1.42 3.2 358 55 173 10 10 43 M 16 43 94 4.12 .30 3.64 2288 2 .01 23 .01 10 33510 .17 25 119 , ND 13.19 .1 .1 26 52 3.68 .01 4.92 2648 .01 5 .01 20 49 1.22 29.86 25 1 33512 .1 24 227 .01 19 33513 .77 .01 .01 .01 .01 2 2 DETECTION LIMIT .01 .01 .01

ANOMALOUS RESULTS:
FURTHER ANALYSES
BY ALTERNATE
METHODS SUGGESTED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881017 AA	JOB NUMBER: 881017	PANICON DEVELOPMENT LTD.	PAGE 1 OF 1
SAMPLE #	Ag oz/st		
33564	9.51		
3 3590	22.69		
33592	4.24		
33593	3.75		

DETECTION LIMIT
1 Troy oz/short ton = 34.28 ppm

.O1
1 ppm = 0.00012

pp = parts per million

< = less than</pre>

signed:

nd = none detected

-- = not analysed

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

SAMPLE Au ppb 33501	R	EPORT	NUMBER:	881017	6A	J08	NUMBER:	881017	PANICON DEVELOPMENT LTD.	PAGE 1 OF
33501 40 33502 50 33503 53 33504 605 33505 40 33506 20 33551 5 33552 20 33553 270 33555 450 33555 450 33555 20 33555 20 33555 20 33556 315 33557 200 33558 20 33551 35 33552 20 33552 20 33558 20 33556 210 33552 20 33556 210 33560 210 33561 35 33562 20 33564 300 33565 430 33565 20 33565 60 33566 280 33567 230 33569 60 33570 190 33571 110 33571 110 33571 110 33571 110 33571 110 33571 100 33571 110 33571 110 33571 110 33571 110 33571 110 33571 100 33571 100 33571 110 33571 100 33572 100 33572 100 33573 100 33573 100 33574 100 33578 100 33580 100	9	SAMPLE	•			Au				
33502 50 33503 55 33504 605 33504 605 33505 40										
33503 55 33504 605 6										
33504 605 33505 40 33506 20 33551 5 33552 20 33553 270 33554 130 33555 450 33556 315 33557 200 33559 50 33560 210 33561 35 33562 20 33563 60 33564 300 33565 430 33566 280 33567 230 33569 60 33570 190 33571 110 33572 20 33573 130 33574 40 33575 89 33578 nd 33579 50 33580 60 33581 30 33582 nd										
33505										
- 33506										
33551 5 33552 20 33553 270 33554 130 33555 450 33557 200 33557 200 33558 20 33550 210 33561 35 33562 20 33563 60 33564 300 33565 430 33566 280 33567 230 33568 90 33570 190 33571 110 33572 20 33573 130 33574 40 33575 30 33576 890 33577 20 33578 nd 33579 50 33580 60 33581 30 33582 nd	/ 3	3505				40				
33552 20 33533 270 33554 130 33555 450 33556 315 33557 200 33558 20 33559 50 33560 210 33561 35 33562 20 33563 60 33564 300 33565 430 33566 280 33567 230 33568 90 33569 60 23570 190 33571 110 33572 20 33573 130 33574 40 33576 890 33577 20 33578 nd 33581 30 33582 nd	/ 3	3506				20				
33553 270 33554 130 33555 450 33556 315 33557 200 33558 20 33559 50 33561 35 33562 20 33563 60 33564 300 33565 430 33566 280 33567 230 33568 90 33570 190 33571 110 33572 20 33573 130 33574 40 33575 50 33578 nd 33579 50 33581 30 33582 nd	/ 3	3551				5				
33554	J 3	3552				20				
33555	/ 3	3553				270				
, 33556 315 , 33557 200 , 33558 20 , 33559 50 , 33560 210 , 33561 35 , 33562 20 , 33563 60 , 33564 300 - 33565 430 , 33566 280 , 33566 280 , 33567 230 , 33568 90 , 33570 190 , 33571 110 , 33572 20 , 33573 130 , 33574 40 , 33575 50 , 33576 890 , 33576 890 , 33578 nd , 33579 50 , 33580 60 , 33580 60 , 33578 nd , 33579 50	/ 3	3554				130				
, 33557 200 , 33558 20 , 33559 50 , 33560 210 , 33561 35 , 33562 20 , 33563 60 , 33564 300 , 33566 280 , 33567 230 , 33568 90 , 33570 190 , 33571 110 , 33572 20 , 33573 130 , 33574 40 , 33575 50 , 33576 890 , 33577 20 , 33578 nd , 33579 50 , 33580 60 , 33581 30 , 33582 nd	J 3	3555				450				
33557 200 33558 20 33559 50 33560 210 33561 35 33562 20 33563 60 33564 300 33565 430 33566 280 33567 230 33568 90 33570 190 33571 110 33572 20 33573 130 33574 40 33575 50 33576 890 33577 20 33578 nd 33580 60 33581 30 33582 nd										
, 33558 20 , 33559 50 , 33560 210 , 33561 35 , 33562 20 , 33563 60 , 33564 300 - 33565 430 , 33566 280 , 33567 230 , 33569 60 , 33571 110 , 33572 20 , 33573 130 , 33574 40 , 33576 890 , 33577 20 , 33578 nd , 33579 50 , 33580 60 , 33581 30 , 33582 nd										
, 33559 50 , 33560 210 , 33561 35 , 33562 20 , 33563 60 , 33564 300 - 33565 430 , 33566 280 , 33568 90 , 33569 60 - 33570 190 , 33571 110 , 33572 20 , 33573 130 , 33574 40 , 33576 890 , 33577 20 , 33578 nd , 33579 50 , 33580 60 , 33581 30 , 33582 nd										
/ 33561 35 / 33562 20 / 33563 60 / 33564 300 - 33565 430 / 33566 280 / 33567 230 / 33588 90 / 33570 190 / 33571 110 / 33572 20 / 33573 130 / 33574 40 / 33576 890 / 33578 nd / 33579 50 / 33580 60 / 33581 30 / 33582 nd										
/ 33561 35 / 33562 20 / 33563 60 / 33564 300 - 33565 430 / 33566 280 / 33567 230 / 33588 90 / 33570 190 / 33571 110 / 33572 20 / 33573 130 / 33574 40 / 33576 890 / 33578 nd / 33579 50 / 33580 60 / 33581 30 / 33582 nd	/ 3:	3560				210				
33562 20 33563 60 33564 300 - 33565 430 - 33566 280 - 33568 90 - 33569 60 - 33571 110 - 33572 20 - 33573 130 - 33574 40 - 33576 890 - 33578 nd - 33579 50 - 33580 60 - 33581 30 - 33582 nd										
33563 60 33564 300 33565 430 33566 280 33567 230 33588 90 33579 60 33571 110 33572 20 33573 130 33574 40 , 33575 50 , 33576 890 , 33577 20 , 33578 nd , 33579 50 / 33580 60 , 33581 30 , 33582 nd										
- 33564 300 - 33565 430										
- 33567	ر ع	3565				430				
✓ 33568 90 ✓ 33570 190 ✓ 33571 110 ✓ 33572 20 ✓ 33573 130 ✓ 33574 40 ✓ 33576 890 ✓ 33577 20 ✓ 33578 nd ✓ 33579 50 ✓ 33580 60 ✓ 33581 30 ✓ 33582 nd	ر 33	3566				280				
, 33569 60 , 33570 190 , 33571 110 , 33572 20 , 33573 130 , 33574 40 , 33575 50 , 33576 890 , 33577 20 , 33578 nd , 33580 60 , 33581 30 , 33582 nd	- 3	3567				230				
33570 190 33571 110 33572 20 33573 130 33574 40 33575 50 33576 890 33577 20 33578 nd 33580 60 33581 30 33582 nd	/ 3:	3568				90				
/ 33571 110 / 33572 20 / 33573 130 , 33574 40 / 33575 50 / 33576 890 , 33577 20 , 33578 nd , 33579 50 / 33580 60 , 33581 30 , 33582 nd	, 3 .	3569				60				
/ 33571 110 / 33572 20 / 33573 130 / 33574 40 / 33575 50 / 33576 890 / 33577 20 / 33578 nd / 33579 50 / 33580 60 / 33581 30 / 33582 nd	· 33	3570				190				
33573 130 33574 40 33575 50 33576 890 , 33577 20 , 33578 nd , 33579 50 / 33580 60 , 33581 30 , 33582 nd						110			•	
33574 40 33575 50 33576 890 , 33577 20 , 33578 nd , 33579 50 - 33580 60 , 33581 30 , 33582 nd	/ 3:	3572				20				
33575										
33576 890 33577 20 33578 nd 33579 50 33580 60 33581 30 33582 nd	/ 33	3574				40				
33576 890 33577 20 33578 nd 33579 50 33580 60 33581 30 33582 nd										
33578 nd 33579 50 33580 60 33581 30 33582 nd	/ 33									
33579 50 33580 60 33581 30 33582 nd										
✓ 33580 60 ✓ 33581 30 ✓ 33582 nd										
→ 33581 30 → 33582 nd	· 33	3579				50				
√ 33582 nd										
						30				
× 33583 60										
	/ 33	3583				60				

is = insufficient sample

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

	REPORT NUMBER:	881017 GA JOB	MUMBER: 881017	PANICON DEVELOPMENT LTD.	PAGE	2	0F	2
	SAMPLE #	Au						
		ррь						
/	′ 33584	20						
,	33585	70						
,	33586	nd						
	33587	100		•				
1	33588	30						
/	33589	20						
1	33590	650						
	33591	240						
	33592	300						
,	33593	685						
,	33594	40						
ر	33595	1980						
	33596	780						
,	33597	100						
,	33598	515						
,	33599	250						
Ź	33600	60						

DFF 199 TUHIN TREE 'ANU R B. 15L PH: 1251 6 TE :04- 78 B. ... H DF. 102: 1000 PANDUKA STREET. VA JVER B.C. VSL 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 HL WITH WATER THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PD, AL, MA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPH.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON DEVELOPMENTS ATTENTION: MR. S. TODORUK PROJECT: KERR REPORT#: 881017PA JOB#: 881017 INVOICE#: 881017NA DATE RECEIVED: 88/08/\data COMPLETED: 88/08/22 COPY SENT TO:

AUG 28 19HH III

																					D_{Ω}							()
SAMPLE MAME	AG PPM	AL I	AS PPM	AU PPM	BA PPM	B [PPM	CA I	CD PPM	CO PPM	CR PPM	CU PPM	FE 1	K I	M6 1	MN PPM	MO PPM	NA I	N E PPM	P	PB PPM	PD		SB PPM	SN PPN	SR PPM	U PPM	W PPM	ZN PPH
33501 33502 33503 33504 33505	1.7 2.2 1.7 23.2 1.7	.72 2.08 2.91 1.66 2.71	32 30 26 58 ND	ND ND 3 ND ND	12 66 9 9	123 51 132 ND 26	.23 .23 .07 .21 1.83	9.1 4.5 9.1 10.8 2.5	27 36 79 414 31	18 93 18 50 53	2976 5010 3325 63327 4703	34.09 12.14 30.38 29.53 4.88	.21 .13 .16 .20	.56 .95 2.46 .97 2.00	452 618 1336 607 1100	8 30 7 11 4	.11 .05 .11 .11	2 13 25 133 12	.05 .05 .01 .01	37 26 36 10 22	DM OM OM OM	ND ND ND ND	61 MD 69 13 MD	4 MD 2 6 MD	3 3 2 4 73	ND ND ND ND	ND ND ND ND	138 84 272 170 123
33506 33551 33552 33553 33554	.6 1.5 2.2 3.2 8.1	1.20 2.00 1.66 1.70 1.66	24 17 19 10	ND ND ND ND	20 44 18 110 86	27 32 34 11 13	14.26 .47 .43 .90 .69	4.3 2.7 2.9 1.7 2.5	14 42 119 31 20	27 62 53 64 63	4542 230 166 3654 8453	8.17 5.93 7.15 2.79 3.12	.65 .14 .13 .19	.58 1.75 1.25 1.35 1.50	4314 824 597 601 678	4 5 4 2 4	.03 .02 .02 .01	9 13 14 15 15	.01 .07 .05 .10	26 63 131 17 15	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	87 54 83 86 38	ND ND ND ND	ND ND ND ND	191 115 87 75 104
33555 33556 33557 33558 33559	14.5 8.3 5.5 1.7	1.27 1.25 2.29 .59 .05	15 8 32 39 4	MD MD MD MD	30 42 18 30 15	11 7 55 6 ND	1.08 .52 .16 .47	1.7 1.6 4.3 1.7	47 29 55 23 2	83 52 52 42 42 242	6764 4906 598 280 83	3.28 2.78 11.35 3.66 .87	.20 .11 .10 .11	.43 .92 .95 .30	233 550 646 198 46	3 10 6 4 1	.01 .01 .03 .01	13 13 17 11 5	.28 .11 .07 .15	33 26 32 18 7	ON ON ON ON	0M 0M 0M 0M	ND ND ND ON	ND ND 1 ND ND	159 50 13 16 3	MD MD MD MD	ND ND ND NO	39 71 71 28 11
33560 33561 33562 33563 33564	3.2 2.1 1.7 2.2 >100	.87 1.54 .67 .31	23 57 23 1009	ND ND ND NB ND	19 16 7 19 57	ND 20 95 ND ND	1.04 5.47 1.27 1.77	2.7 3.4 7.1 1.6 7.1	16 15 8 4 25	37 48 22 227 101	4369 1729 360 1173 11987	1.37 5.91 23.39 1.85 1.31	.19 .51 .33 .28	.53 .33 .31 1.29 .03	639 3943 1166 668 142	2 3 7 2 4	.03 .02 .07 .01	6 3 ND 12 8	.14 .01 .01 .01	11 22 37 10 2	ND ND ND ND	ND ND ND ND	ND NO 32 40 8156	ND ND 4 ND ND	49 13 5 7 6	00 08 08 08 08	MD MD MD MD	707 208 45 31 1439
33565 33566 33567 33568 33569	9.8 9.6 6.5 4.1 3.1	1.39 1.95 1.66 1.25 1.04	27 26 15 13	MB MB MD MD MD	28 27 219 42 13	28 44 18 14 9	1.02 .63 .68 .67 .83	3.5 5.1 2.5 1.7 1.7	62 64 34 23 30	63 89 48 49 70	5588 7249 6818 1000 385	6.57 8.35 4.17 3.30 4.05	.21 .16 .16 .16 .19	.68 1.16 1.25 .81	468 550 792 790 389	4 4 5 38 4	.02 .05 .02 .02	15 10 11 10 4	.13 .13 .15 .29	22 24 21 32 20	ND ND ND ND	0 M 0 M 0 M 0 M 0 M	37 ND NO NO NO	10 0 0 10 0 10	65 45 50 31 59	64 64 64 64 64	0K 0k 0k 0k	86 256 131 86 39
33570 33571 33572 33573 33574	9.6 6.8 .1 2.2 4.6	2.62 1.62 .85 .40	28 8 16 31 14	ND ND ND ND	31 14 5 3 28	19 7 27 73 25	.63 .69 .59 .30 .65	4.8 2.1 3.1 5.9 2.5	92 35 173 360 33	104 77 107 73 97	20045 4972 261 2520 516	7.00 3.16 8.58 18.64 5.88	.15 .15 .15 .16	1.85 .79 .23 .19	427 291 147 67 394	21 65 4 11 6	.03 .01 .02 .07	26 13 9 69 8	.07 .10 .03 .05	3 14 22 29 22	DM DM DM DM	0 M 0 M 0 M 0 M 0 M	ND ND ND 12 ND	ND NO 2 ND	74 83 75 40 44	00 00 00 80 00	ND ND ND ND	158 69 19 13 27
33575 33576 33577 33578 33579	2.1 .1 1.5 1.2 2.2	.90 1.12 2.30 .16 .92	8 139 57 4 31	ND ND ND ND	13 17 27 15 13	6 27 37 ND 75	3.57 7.33 4.93 .14 .23	1.7 2.5 3.2 .4 5.3	10 20 18 3 254	98 45 67 144 45	1337 135 772 30 962	3.83 5.43 6.58 .38 15.73	.41 .56 .50 .05	.35 3.58 3.79 .05	2463 2063 2183 68 247	6 4 3 3742 50	.01 .02 .02 .01	5 22 20 5 10	.07 .01 .03 .01	16 28 22 13 36	NO NO NO NO	08 08 08 08 08	ND ND 208 ND 4	ND ND ND ND	20 37 14 4	0M 0M 0M 0M 0M	ON ON ON ON	29 58 72 6 30
33580 33581 33582 33583	1.7 1.2 1.5 2.2	.86 1.43 1.02 1.22	22 8 6 8	MD MD MD MD	13 7 15 96	37 6 ND ND	.34 .72 .70 .75	3.4 1.2 1.1 1.5	76 16 33 15	36 95 82 81	417 912 77 2419	8.75 2.50 2.24 2.20	.11 .14 .15 .15	.56 1.02 .15 .67	195 301 90 349	12 13 3 4	.03 .01 .01	9 3 4 9	.05 .10 .07 .05	25 11 14 46	ND ND ND ND	0 K 0 M 0 M	00 ND ND NO	ND ND ND	47 63 84 133	ND ND ND NO	MD ON D HD	23 36 6 37

,

)

.

DETECTION LIMIT

CLIEN.	DE	Э	ITS .	310	17	ī: 1	(EA	IRT:	B t						- -							!		PAGE	2 OF 2			•	
SAMPLE MANE		AS PPN	AL 1	as PPR	au PPN	BA PPN	BI PPM	CA I	CD PPM	CO PPM	CR PPM	CU PPM	FE I	K 1	MS I	HM PPM	MO PPM	NA Z	NI PPM	ř	PB PPR	PD PPH	PT PPM	SB PPH	SN PPR	SR PPH	U PPN	N PPH	ZN PPH
33584		5.1	1.38	152	MS	33	39	.06	3.1	38	189	607	9.28	.07	.56	267	23	.03	110	.03	140	MĐ	ND	36	ND	3	XD	MD	100
33585 33586 33587 33588 33589		3.7 .9 3.7 2.7 1.1	1.70 1.16 2.87 2.22 4.19	10 21 14 20 4	CK CR CR CM CM	134 17 46 47 73	29 60 34 51 39	.98 1.87 .64 .22 .86	2.4 4.8 3.2 3.2 3.2	32 36 68 103 73	54 33 40 43 65	3827 1055 2534 1026 1590	5.16 14.35 7.54 8.03 6.05	.19 .32 .17 .08	1.70 .83 1.02 2.11 3.74	706 895 228 438 843	5 5 4 4	.03 .05 .04 .03	13 12 13 20 24	.07 .02 .14 .01	26 30 32 26 28	ND ND ND ND	ON ON ON ON	15 47 39 31 36	ND ND ND 3	75 18 67 15 142	en On On On On	63 63 63 64 64	148 90 112 117 136
33590 33591 33592 33593 33594	:)100 12.1)100)100 3.8	.15 1.51 .17 .41 .32	3568 46 1243 1022 45	ND ND ND ND	58 210 129 113 720	ND 15 ND NG ND	.04 .83 .86 .88	47.4 2.7 19.6 12.8 1.2	41 42 30 37 6	189 42 149 172 162	54604 7502 22134 14882 971	1.21 3.40 1.43 3.12 1.21	.02 .17 .16 .17	.06 1.67 .34 .34 .35	98 937 400 427 424	5 3 3 3	.17 .02 .08 .06	10 8 9 17 12	.01 .20 .01 .07	ND 22 ND 12 10	ир Ир Ир Ир	ND ND ND ND	27454 299 11748 9806 237	4N 2N 4N 6N 6N	11 42 5 9	MB MB MB MB MD	ND ND ND ND	3858 185 1788 1374 73
33595 33596 33597 33598 33599	1	7.6 10.3 2.1 4.5 4.5	1.58 1.29 1.21 .96 .88	11 43 15 21	DH DH DH DH DH	121 69 30 11 97	15 30 19 26 NB	.83 .56 .85 .76 .85	2.2 3.7 2.5 3.5 1.3	23 147 55 210 37	57 86 66 80 74	6170 10820 700 19352 6778	4.72 8.75 6.25 8.99 2.87	.17 .16 .17 .19	.98 .61 .56 .51	577 397 417 270 193	4 5 3 5 4	.03 .04 .02 .03	12 20 25 44 15	.26 .20 .08 .16 .22	23 22 26 14 16	ND ND ND ND	ND ND ND ND	39 64 52 28 5	ND 1 ND ND	72 67 84 53 80	ND ND ND ND	OK OX OX	103 120 56 36 30
33600		3.4	1.79	15	MD	46	18	. 93	2.5	33	68	919	5.75	.19	1.16	474	4	.03	17	. 28	30	MD	ND	24	ı	96	ND	MD	102
DETECTION LINE	ī	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1

.

.

MAIN OFFICE AND LABORATORY
1989 Triumph Street
Vancouver, B.C. V5L 1K5 ³
(604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. VSL 1L6 (604) 251-5656

DETECTION LIXIT

nd = none detected

5

-- = not analysed

is = insufficient sample

NAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. VSL 1L6 (604) 251-5656

REPORT NUMBER: 881491 AA

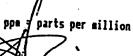
JOB NUMBER: 881491

PANICON DEVELOPMENT LTD.

PAGE 1 OF 1

SAMPLE #

Au oz/st


21780

726

DETECTION LIMIT
1 Troy oz/short ton = 34.28 ppm

signed:

-005 1 pps = 0.00012

< = less than</pre>

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1KS PH: (604)251-5656 TELEX: 04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH: (604)251-7282 FAX: (604)254-5717

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND 15 DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SH, MM, FE, CA, P, CR, MG, DA, PD, AL, MA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPN. IS= INSUFFICIENT SAMPLE, NO= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON ATTENTION: PROJECT:

REPORT#: 881491 JOB#: 881491 INVOICE#: 881491NA

DATE RECEIVED: 88/09/28 DATE COMPLETED: 88/10/21 COPY SENT TO:

K NG NN NO NA NI P PB PD X X PPN PPN X PPN X PPN PP SAMPLE NAME PPK or I ... PPK PPK

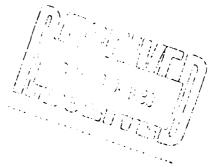
3 77 87 2.95 .11 .05 94 142 .01 4 .01 34

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

... PAMICON DEVELOPMENTS LIMITED


711 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N4

Project : Comments: KERR

Page Nun._gr:1-A Total Pages: 1 Invoice Date: 25-OCT-89 Invoice No.: I-8927990 P.O. Number: NONE

CERTIFICATE OF ANALYSIS	A8927990
-------------------------	----------

SAMPLE DESCRIPTION	PREP CODE		Au ppb FA+AA	Au FA 02/T	Al 1	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	ppm Co	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg
89451 89452 89453 89454 89455	205 2 205 2 205 2 205 2 205 2	38 38 38	25 >10000 210	1.060	0.18 1.60 0.05 2.91 0.24	1.6 0.4 109.5 0.6 0.8	255 55 40 5 15	20 70 40 100 750	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.11 0.26 0.02 0.13 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	282 25 11 15 4	33 23 195 100 216	1055 : 373 256 18 17	>15.00 9.20 3.71 6.71 2.76	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.19	< 10 < 10 < 10 < 10 < 10	0.08 1.14 0.01 3.03 0.16
89456 89501 89502 89503 89504	205 2 205 2 205 2 205 2 205 2	38 38 38	100 10	0.326	0.24 0.23 0.58 1.64 0.13	0.4 1.2 < 0.2 < 0.2 50.0	35 40 < 5 20 35	560 770 3900 150 270	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.05 0.03 13.05 9.67 0.12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 4 12 36 2	188 198 80 42 203	19 52 149 2280 :	2.30 3.80 4.26 >15.00 2.50	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 12	0.01 0.01 0.09 0.01 0.05	< 10 < 10 < 10 < 10 < 10	0.1: 0.1: 3.6: 0.2:
89505 89506 89507 89508	205 2 205 2 205 2 205 2	38 38	>10000 230	0.292	1.21 0.12 2.10 0.11	1.2 77.2 2.4 39.2	65 25 20 50	20 390 180 100	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.20 0.04 1.54 0.06	< 0.5 < 0.5 < 0.5 < 0.5	46 2 47 2	42 204 52 247	831 201 7310 283	11.90 3.91 3.85 3.06	< 10 < 10 < 10 < 10	< 1 56 < 1 < 1 <	0.04 0.02 0.02 0.01	10 < 10 < 10 < 10	0.76 0.03 1.49 0.02

CERTIFICATION:_

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

... PAMICON DEVELOPMENTS LIMITED

711 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N4

KERR

Project : Comments:

Page Number: 1-B
Total Pages: 1
Invoice Date: 25-OCT-89
Invoice No.: I-8927990
P.O. Number: NONE

			
CERTIFIC	CATE OF	ANALYSIS	A892799

									CERTIFICATE OF ANALYSIS						A	3927990) 		
SAMPLE DESCRIPTION	PREP CODE	Mn ppm	Mo ppm	Na \$	Ni ppm	ppa P	Pb Pb	Sp Sp	Sc ppm	Sr ppm	Ti %	Tl ppm	ppa	V ppm	ppm W	Zn ppm			
89451 89452 89453 89454 89455	205 238 205 238 205 238 205 238 205 238	525 30 970	3 4	0.01	32 9 12 15 3	< 10 400 30 740 110	< 2 2 < 2 < 2 2	< 5 < 5 < 5 < 5 < 5	1 4 <1 10 1	65	0.01 0.09 0.01 0.16 0.03	< 10 < 10 < 10 < 10 < 10	20 < 10 < 10 < 10 < 10	48 50 4 151 19	40 < 10 10 10 < 10	46 64 6 288 12			
89456 89501 89502 89503 89504	205 238 205 238 205 238 205 238 205 238	115 3950 3580	43 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	4 5 10 6 3	40 70 10 180 60	< 2 36 < 2 < 2 12	< 5 < 5 10 < 5 < 5	< 1 1 3 4 < 1	13 34 395 < 10 7 <	0.01 0.01 0.01 0.02 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 20 < 10	15 22 41 97 10	< 10 < 10 30 80 < 10	14 16 26 50 4			
89505 89506 89507 89508	205 238 205 238 205 238 205 238	75 815	< 1	0.04 0.01 0.03 0.01	14 1 9 2	400 50 740 60	28 4 62 < 2	< 5 < 5 < 5 < 5	4 < 1 15 < 1	185	0.11 0.01 0.31 0.01	< 10 < 10 < 10 < 10	< 10 10 10	49 5 113 7	< 10 < 10 < 10 < 10	56 10 142 6			
		·																	
																			_

CERTIFICATION:

Chemex Labs Ltd Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE . NORTH VANCOUVER. BRITISH COLUMBIA. CANADA V7.J-2C1

PHONE (604) 984-0221

T. AMICON DEVELOPMENTS LIMITED

711 - 675 W. HASTINGS ST. VANCOUVER, BC

V6B IN4 Project KERR Comments: Page No 1-A Tot. Pages: 1

Date : 27-OCT-89 Invoice #: 1-8928497 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8928497

SAMPLE DESCRIPTION	PR		Au ppb F A+A A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Са %	Çd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К 66	La ppm	Mg %	Min ppm
89457	201	238	< 5	1.44	< 0.2	15	120	< 0.5	< 2	0.35	< 0.5	14	2.3	41	3.99	< 10	< 1	0.09	< 10	0.93	665
89459		238	< 5	1.68	< 0.2	15	180	< 0.5	< 2	0.39	< 0.5	18	2.5	54	4.67	< 10	₹i	0.10	10	1.09	800
89461		238	< 5	1.94	< 0.2	< 5	270	< 0.5	< 2	0.48	< 0.5	19	31	76	4.96	< 10	< 1	0.13	10	1.28	1113
89465	201	238	< 5	1.58	< 0.2	5	120	< 0.5	< 2	0.67	< 0.5	18	26	72	4.22	< 10	< 1	0.06	< 10	1.09	770
89467	201	238	20	1.51	0.2	10	100	< 0.5	< 2	1.05	< 0.5	2 2	31	91	4.72	< 10	< I	0.05	< 10	1.09	720
89469	201	238	< 5	2.97	< 0.2	10	320	< 0.5	< 2	0.59	< 0.5	24	34	79	5.40	< 10	< 1	0.14	10	1.68	1565
89554	201	238	15	2.14	< 0.2	< 5	190	< 0.5	< 2	0.85	< 0.5	26	31	170	5.33	< 10	< 1	0.09	10	1.40	925
89556		238	30	2.85	0.8	< 5	280	1.0	< 2	0.85	< 0.5	7	19	34	3.59	10	< 1	0.06	30	0.42	725
	1																				

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE . NORTH VANCOUVER . BRITISH COLUMBIA CANADA V7.1-2C1

PHONE (604) 984-0221

TO MICON DEVELOPMENTS LIMITED

711 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N4

Project : KERR Comments:

* Page No 1-B Tot. Pages: 1 Date : 27-OCT-89

Invoice #:1-8928497 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8928497

SAMPLE DESCRIPTION	PREP	Mo ppm	Na %	Ni p pm	P ppm	Pb ppm	Sb ppm	Se ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm		
89457 89459 89461 89465 89467	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 2 < 1 < 1	0.01 0.02 0.02 0.03 0.02	11 12 14 19	500 510 630 530 490	< 2 < 2 < 2 < 2 < 2	< 5 < 5 < 5 < 5	7 9 11 8 7	18 22 28 37 42	0.04 0.05 0.05 0.09 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	95 117 112 120 133	< 10 < 10 < 10 < 10	46 60 66 56 68		
89469 89554 89556	201 238 201 238 201 238	< 1 1 6	0.02 0.02 0.03	18 16 5	590 690 380	< 2 < 2 6	< 5 < 5 5	18 10 8	34 65 40	0.03 0.16 0.15	< 10 < 10 < 10	< 10 < 10 < 10	142 143 75	< 10 < 10 < 10	94 76 108		
	:																
															•		

Chemex Labs Ltd

Analytical Chemists * Geocuenilsts * Registered Assayers

212 BROOKSBANK AVE . NORTH VANCOUVER.
BRITISH COLUMBIA. CANADA V7.1-2C1
PHONE (604) 984-0221

To ICO. VELCTSTED

711 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N4

Project : KERR Comments: Page 100.
Tot. Pages. 1
Date 20-007-89
Invoice # 1-8928408
P.O. # NONE

CERTIFICATE OF ANALYSIS A8928498

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	A 1 %	Ag pjan	As pµm	Ba ppni	Be ppm	Bi opun	Ca °ò	Cd ppm	Co prin	Cr Cr	Cu ppm	Fe ^c ċ	Ga ppm	Hg ppm	K Sé	La ppin	Mg %	Mi ppii
R946 :	205 238	16	0.36	< 0.2	< 5	360	< 0 5	< 2	6.72	0.5	16	78	8	4.59	< 10	< 1	0.12	< 10	1.09	160
	;																			
	:																			
	;																			
	,																			
	!												7	M	MP	Ŋ				
													DUL	3 4 1	44.7					
												Ubr	5U7	תכז	احار					
												• • • • •		• • • • • •	••••••	• • •				

CERTIFICATION: B. Cagli

Chemex Labs Ltd

Analytical Chemists * Geomemists * Registered Assayers
212 BROOKSBANK AVE . NORTH VANCOUVER .
BRITISH COLUMBIA . CANADA V7.1-2C1

PHONE (60%) 984-0221

To AICON DEVELONMENTS DESIGNATED

711 - 675 W. HASTINGS ST. VANCOUVER. BC V6B IN4 Project: KERR Page IVO D
Tot. Pages 1
Date 26-007-89
Invoice # 1-8928408
P.O. # NONE

CERTIFICATE OF ANALYSIS A8928498

SAMPLE DESCRIPTION	PREP CODE	Nb ppn	Na %	i. i.	P ppm	Pb ppin	Sb ppm	Se ppm	Sr ppm	Ti °e	Ti ppm	U ppm	V ppm	W ppin	Zn ppn		
89463	205 738	1	0 02)	110	< 2	< 5	21	49 <	: 0 . 01	< 10	< 10	121	< 10	84	 ····	
ı																	
	,																,
															•		
		-															

Comments:

CERTIFICATION:

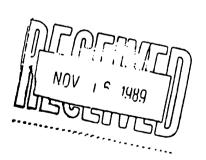
212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To AMICON DEVELOPMENTS LIMITED

711 - 675 W. HASTINGS ST. VANCOUVER, BC

Project : KERR Comments:


* Page No. .1-A Tot. Pages: 1

Date : 13-NOV-89 Invoice #:1-8928499

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8928499

SAMPLE DESCRIPTION	PRE		Au ppb FAHAA	A l %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppon	Hg ppm	К %	La ppm	Mg %	Ma ppm
89458	213	238	80	4.05	< 0.2	20	160	< 0.5	< 2	3.25	< 0.5	43	172	147	7.06	< 10	< 1	0.12	10	1.52	895
89460	213	238	< 5	3.17	< 0.2	< 5	560	< 0.5	< 2	2.30	< 0.5	39	107	167	5.68	< 10	< 1	0.09	10	1.47	765
89462	213	238	10	3.34	< 0.2	5	490	< 0.5	< 2	2.27	< 0.5	34	94	199	5.84	< 10	< 1	0.10	10	1.64	800
89464	213	238	< 5	2.63	< 0.2	15	2000	< 0.5	< 2	1.87	< 0.5	36	76	250	5.49	< 10	< 1	0.06	10	1.33	690
89466	213	238	170	2.12	< 0.2	< 5	950	< 0.5	< 2	2.08	< 0.5	33	59	195	4.01	< 10	< 1	0.04	10	0.96	640
89468	213	238	20	2.11	0.2	< 5	380	< 0.5	< 2	2.87	1.0	33	60	214	4.40	< 10	< 1	0.04	< 10	0.91	880
89470	213	238	< 5	3.78	< 0.2	20	680	< 0.5	< 2	2.51	< 0.5	32	76	140	6.34	< 10	1	0.10	10	1.49	810
89551	213	238	20	3.82	< 0.2	< 5	1430	< 0.5	< 2	2.99	1.0	2 2	128	8 2	5.47	< 10	< 1	0.08	10	1.38	825
89552	213	238	40	3.31	0.4	< 5	420	< 0.5	2	3.17	1.0	29	97	216	5.96	< 10	< 1	0.06	< 10	1.14	840
89553	213	238	10	3.12	< 0.2	< 5	60	< 0.5	< 2	2.55	1.0	10	71	20	3.64	< 10	< 1	0.03	< 10	1.12	555
89555	213	238	40	2.26	< 0.2	20	1430	< 0.5	< 2	1.82	< 0.5	4.5	63	376	5.24	< 10	< 1	0.05	10	1.07	635

CERTIFICATION :

212 BROOKSBANK AVE., NORTH VANCOUVER,

BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

711 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N4

T. . AMICON DEVELOPMENTS LIMITED

Project : KERR Comments:

* Page No. :1-B Tot. Pages:1

Date :13-NOV-89 Invoice #:I-8928499 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8928499

SAMPLE DESCRIPTION	PRE		Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	ppm Sr	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm		
89460 89462 89464	213 213 213 213 213	238 238 238	< 1 < 1 < 1 < 1	0.06 0.03 0.03 0.02 0.02	16 15 13 17	1700 740 850 880 660	< 2 2 10 10 6	< 5 < 5 < 5 < 5 < 5	16 12 14 11 7	312 245 257 269 191	0.24 0.22 0.21 0.18 0.17	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	167 135 139 121 89	< 10 < 10 < 10 < 10 < 10	82 72 110 74 50		
	213 213 213 213 213 213	238 238 238	< 1 < 1 < 1 < 1 < 1	0.02 0.02 0.04 0.02 0.03	16 15 13 12 8	590 670 330 500 350	< 2 6 6 10	\$ < \$ < \$ < \$ < \$ < \$ < \$ < \$ < \$ < \$ <	8 14 14 13	188 332 330 452 269	0.17 0.20 0.21 0.23 0.23	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	93 172 162 163 140	< 10 < 10 < 10 < 10 < 10	76 82 72 86 64		
89555	213	238	3	0.01	14	600		< 5	8	291	0.17	< 10	< 10	106	< 10	50		
				•												•		
							· · · · · · · · · · · · · · · · · · ·									-	 0 /	 0

APPENDIX II SAMPLE DESCRIPTIONS

DEVELOR MENTS LIMITED

Goodhamaal Data She - Fook Sami'llive

Sampler	L. Scroggins	/E. Debock
Date	Aug. B	188.

Project _	KERR	
Property_	KERR 1-4	

NTS	let sal male un
Location Ref	
Air Photo No	

SAMPLE		SAMPLE	Sample Width True	1-7	DESCRIPTION	N Dd		180			SAYS	
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Au	Ag	Ag 94	gom Cu
33551	5510' Eside	rock	Grabalespile	granodiente	propyllitic	P42-3/6	15-30 cm with 12 m long	5		1		
33552	1,	12	4 Talus	hornfels		2-5% 14	later what 10-19- whe pour yo	20				
33553	ŧ,	Ц	" Talus	gripher	Whered,	dd	1000 35 - 40 can	270				3654
33554	16	11	" Tales		0197	100	den sent true - sur went to	130		8.1		8453
33555	h	ч	" Talus	Monte	6 T. C	by all	In it is it is	400				6764
33556	и	и	" Tales		6 14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	were (d	3-20 con 15 mls.	315				4906
33557	50851		GRUS			Treson PT		200				598
33558	46901	¥	"	QU.		word	1x - 2 possible to debe there lay	20				
33559	46601	#1	"	Sker		dod 161	2n tran a 3n from prope defect	50				
33560	below cain	4	"	Garnet skain	-15	malachite ozurte y mal azur,	several dykes crosscut feldsper porph. within alread grandiate:	210				4369
33561	65501	n.	"	On Hykar		195	very magnetic	35		51		1729
33562	6550'	16	11	7.11	alled	magnetite	very ragnetic	20				
33563	6135'	٧	h	d. s. ta	ep d	hobsine Py)	Day Comple	60		33		1173
33564	Shear Zone	ч	Subcrap	Quest 2 breccio		taspy?	along main shear.	300			9.51	11937
33565	Shear Zone	11		g disite	Strongly	cpy +py	Imx2m	430		6.8		5588
33566	down from 33565	The E	11	dionte	Attriation	cpy xpy	1 m x 2 m	280	115		D'é	7249
33567	4 m below 33585/66		"	diente?	DESCRIPTIO	cpy+mal.	ImxIm zone	230		AS	SAVE	6818
33568	5760'	VI	"	diente	v. altered	2-57004	Yu Li	90				1000
33569	5760'	10	"	dioite	n	25topy	Local	60	er _			385
33570	5135'	11	11	Q.V + w.rldist	1	cpy, py	Some U. pressive cpy	190	s –			20045

DEVELOPMENTS LIMITED

Geochemical Data SI t - ROCK SAMPLING

		NIS
Sampler L. Sciencia / E. Rehod.	Project KERL	Location Ref
Date	Property KERR 1-4	Air Photo No

SAMPLE	La belos	SAMPLE	Sample	7 51 4	DESCRIPTION	V		730		ASS	SAYS	(86)	
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Au 0/+	Ag	As	No. M	151
33571	5n from 33570	rock	(orals	Q.U.	epidote Slice	ral, azur, tipytag	Very majnetic	110		6.8		4972	li :
33572	49901	h	11	hisite?	1		very majestic (pod/i/o)	2.0				1883	
33573	10135'	r	1	dista	epid Silic	nossive by,	very majnetic	130		2.2		2520	
33574	6550	14	1	dioite	altered	mas, py	In x 3m zone	40		4.6			
33.575	(2550)	115	11	Q.U+skarn		CHOICPYSTON	1.5 x x 5 m long	50		2.1		1357	
33576	Salan cales	Į/	11	Carbinstar	silie.	Py + CPY	Im x 10m	390				2(4)	
33577	Extension from 35576	1.15	11	Shear		44499	In from a 3m fspu proph dyke.	20					
33575	4690	1/	11	QU.		noly	vein parallel to dighe 12mx10m	nd					
33579	E086 ¹	٨	11			Massive Py		50				598	
33580	а.	+11	"		epidote ave		3-20 cm x 15 mlong	60				100	
3358	0	11 61	1	dioide	exidente zone	rals cpy	Imx 5 m lang	30				ale [
33582	11	t ("	"		opidate	84	democinthony L same zenex 20cm	nd		7			
33583		11	1	diopte	altered.	94	pod 30-40 cm	60				2419	
33584	12	Av	11	toraplaticip		py-massi-	aleycontact: 10-15cm wde/over-4m	20					
33585	5510 200	1,	11	divite	epidite	gpy 4 mel	15-20 cm wile x 2 m long	70					
33586	TO EVENOUE	LIVE	11	Skarn	Alleration	CATSPY)	3 n by x 2 m wide	nd	8.F	49		Mar.	
33587		ls	11	dionte	epidote	PÝ	30 cm x 3m lan	100		A53	0.8		
33588	4.85	V II	1	diste	aller 1	PY	20cmx tr log	30					
33589	South A	F 7504	"	diorite	exdote	rial + Chalcocite? Chalcocite?	Localic 0	20					
33590		4	11 Floor	Q.Ui		tetrah, cpy		650	3		22.69	54604	2745

DEVELOPMENTS LIMITED

Geochemical Data SI t - ROCK SAMPLING

		NIS
Sampler L. Suggest / E Debut	Project KERR	Location Ref
Date Aug 13/88	Property FERR 1-4	Air Photo No

SAMPLE		SAMPLE	Sample Width True		DESCRIPTION	١				ASS	SAYS		
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	POP	A4	Ag	1-10	1/1 M	156
33.591.	Sheer 2012	rock	Grab Fleat	desile		geodi cpy	from edge of Shear	240		17.1		7502	299
33592	Stear Zove (coso!	u	11	QU brecci)		Chalia chy	36/76 NW / in aniente hest: str. may.	300			4.24	22134	11748
33593	11	1,	11	u		cpy + letrah.	10-15 an wide	685			3.75	14832	9906
33594	20 n below 33593	71	"	Q.U + alfed WR.	We = docte Propyllitie	newochute	Shear wein splays of rainvein OBS 680	40				971	737
33.595	30 m below 33594	(1	111	altered vol?		rul, ± cpy ± py massine	Strongly magnetic	1980				6170	
33596	5m Eust of 33595	- 11	11	WR of shear ucina		massind ipy +py	strongly magnetic	780				10870	
3.3597		11	11 Suberco		epidole	Mass. py aspy	3 m wide x 4.5 m lo.	100				700	
33598	5.48 = P.C+	1Č	"	50 a feet C Cale	The Ar	Mass Py	god Bun wide x 3m high	515				19352	
33599	5ame o/c 1533548	Д	"	1 Profit		cpy + mel.		250				(778	
33600	few in's from 48 449	(t	"	duste		1-2/0 dissa	Moderately regretice	60				919	
33501	5560	N	"	Massive mynth	PAS	Cry tiral	labelled 33570 in field	40				2976	
33502	51 re 2012 45 33501	11	1	ZXO		regardita	" 33571 in fuld	50				5010	
33503	11	i	"	11		may uply	" 33572 in fuld	55				3325	E .
33504	- +11 × 11	Ŋ	11	SAA.		food cpy	Some regretite #EDOUI no feel	605		23.2	4	93317	
33505	10 m below 33501 zcre	11	11	Carlo Shar		palachite	4m legt x 50 cm with # EDCOZ in full	40				4703	
33506	LOCATION	SAMPLE VYTE	11 Float	Skain	riinor hemaliti	py, gry,	Wen bruller #ED003 in field	20				545	
33507		h	1 11	Olz+calati	Shor Zore	cpy	20 in stake legth			066	Sag	230	
33508	59 ne o/c us 33507	ıı -	11	Q.U. SUA	ERR TO	cpy + py	Sin wide AIL BH	oto h	10			166	
33509	c T	il.	11	Project _	Fractice lilling	massive py	10 m long - pods to 15 cm wide	on A	ef		3	654	
33510	BUICK	, S'rrw	11	Olz brección 20 no		py in ration	30cm ×5mlon	N.	.e		3	1453	

TANTECT. DEVELOPMENTS LIMITED

Geochemical Data St. t - ROCK SAMPLING

								N-	rs _				
Sampler]	L. Scroggins/1	E. Reboil		Project _	KERR	Lance L.	Locat	ion R	ef			1004	
Date	L. Scrogg / 1 Aug 14188			Property_	KERR 1-	.4	Air Ph	noto N	lo			100	
	3 04	la de		Cle comp	Dien der	99	ac a state to gite						
SAMPLE	T	SAMPLE	Sample Width True	3×01.00	DESCRIPTION	N SOLVED	ancies - sector a sector and a feeting			ASS	SAYS	325	
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	20				P45	
33512	10 - belos	rock	Grab	Carlo Show		dissem. Cpy + puj	10 cm with x 5 m long	40				1303	
33513	~ 400 m W A 33507))	"	Q.V. rdeid		War 1-1 ==	Samuele v 3 mlog in alto diote	1992				3711	
33,000	11	- 11		Н		lysi7 - shel		144					
33514	25 m 10 of 33513	fuck	"	Skain		14 4 C/4-121	3 m long x 30-100 cm will	150					
33451	300 m N of Kerry-4LCP	u	11 Subcrop	Skain? Skair Zone	biolite	2) by meloch.	Strat Zou Em & Garret-Boteto Schoot	40					
33452	33451	h	"	Shear Zore		1-2%	A SECOND	66					
33453	10 m West 33452	<u>ii</u>	"	Sheer Zone		520,14		250					
33454	275 m Not	fh	Tolus		chilonte biotete	500 pg	talus balder below 0/c of 35451-53	RIR					
		41			epidole	Dése. P	1 2	100				JER	
27.547	Sa kust	Ē1		46.06		PASSING	Study .	JW)					
23.54	30 = Max	17		11. 7 15	the designation	الماء عدوم	Stork on 1:	1980				PLIC	
23 500	30 7 200	10		Olles he	WE = diede	presidente	Shord win solves of some win Obstant	40				d.H	13.
22642	11	(y)		((apy 1 let rate.	10.15.00	TR			3 12		
	30-24	14		ALL MARCH		Chalter	30/ 21, 120 / comed had do	300			4.24	(S/12)	
32.501	Ch. 70130"	ш.,		de la		ged any	Land She of Sheen	SAD		137			14
SAWALE NO.	LOCATION	SAMPLE TYPE		Rock Type	Alferation	Mineralization	ADDITIONAL OBSERVATIONS	R.	NA.	L ₁		5.7	
					DECCEDENT. M					VE	V.865		
)ate _				Property_	FEET		Air Pi	1080 h	0 -				
Sampler 1		77.6 77.		Project	1-11		Locat	on R	eį —				
DEACT	DESTRUCTA	IS THA						N	2				

DEVELOPMENTS LIMITED

Geochemical Data S. at - ROCK SAMPLING

			N19
Sampler	ELMER DEBOX	Project PAMICON	Location Ref
Date	AUG 30/88	Property KERR 1-4	Air Photo No

SAMPLE		SAMPLE	Sample Width True	Jane 10	DESCRIPTIO	N SANTAGE	survey muly auty on well free ton	1		ASSAYS	
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Au 0/t		
33515	of real 1	FLOAT	15654	QTZ VN	UMONITE	CPY, ASP	CHALCO INSP IN OTTE UN; 6-8 CM	1			
516	1570	GRAB		कार ४०		PY, ASP Course	Sch to 1.2 M wide, SOM WIDE OTE UN ~ IOCH WIDE				
517	1570,	SUBCLOP		OTL VN	MOD.	1% PY	Mayou Familiars Introduces				
518	31 88 9	GRAB		ON 316		ASP, PY	dip; in diorite host.				
519		и		OF UN	ii.	Mall, Bung	edge of store your of				
520		11		QTZ UN		MSSV. PY.	5-ben vide x 6m length; that lying in divite.		1000		T
521	lue -	"		97Z VN	T OST TOTAL	Py., CPy.	flat lying in divrite. Silicitied with your in divrite. 20.25 - unde x 10m leigth.	1			T
522	4000	"		97Z U~	Janon ITE	Py., 49.	20-25c- vide x 10m length. 100 your som wide in pregnet 17e intrusive bleds of or	excl	py.		
523		"		OFF UN	Trimonite.	Py	Regnetite intrusive bleds of green uide & Gnlength; atlat lying in diarite.				
524	13.4	SUBCROP		OR UN	James 115	73	5-10cm wide .		OPOC		
525	111-21	GRAB		OF W	rod.	LA CONTRA	20cm wide x 25m length in shear in diorite		0.076		
526	ful pe	GRAZ		DICENT BEXX	- Seath	Tax auth	OPE INPLLINE UP TO 20 CM WICE breccia your 1000, x 2000 x 300				
527		GRAB		"	P CONTOURS	cubes (so- d	۵,.)				
528	Per Contract	. "		"	SWEEFIE	-	as -526	1			
529	1.00ATIO	M.M.S.E		"	DESCHILL	fine gr. py., asp., cpy.	south edge of breccin your			3 830	
530	71 W	FLOAT		वार (٧٧)		Sporadic.	20-30en boulder				
531	V V	GRAB		CITE INFILL	Ser	Py.	45 - 526 VIL	hote	No		
Sampler	V/ K	private A		P. Med	r-byw -	150°	roc	stion	Ref		
DEVE	OFME	MIS LIN		A CONTRACTOR	LUICEL MER	200667 - 1	W. OMBO CHAP		nie		
PAMIC	1			1 1 1 1 1		OE -					

PAMIC 1 DEVELOPMENTS LIMITED Geochemical Data Sheet - ROCK SAMPLING

		NTS	
Sampler AL MONTESMEST Project	PAM - KERR	Location Ref	
Date 30/AUG/88 Prope	rty teach 1-4	Air Photo No	
31/AOG/88			

SAMPLE		SAMPLE	Sample Width	SHARES (DESCRIPTION	V	true eyes of breezes your			ASS	SAYS	
NO.	LOCATION	TYPE	Width True	Rock Type	Alteration	Mineralization	, ADDITIONAL OBSERVATIONS					
33201	MU (CLMS KESO 1: -)	"GRAB"		chlorite un.		5827ac 802	len-30en vein, >50 m strike length, dorite host.					
202	1490n	SUBCROP		OV STO	1	3%-5% crs. cpy;	2cm wide uni, one of ~5 veins across 1/2m.; 20m strike length. Trom system of -202; 4cm					
203	1490m	FLOAT		11	good Timonite	py. Hels	from system of -202; 4cm wide un.					
204	1490m	GRAB		1.1	mod.	<1% cm	thon system of -202.	10 %				
205	1425m	GRAB		OTE INFILL	limonite limonite be a divite be	py, diss.	noted benly xstls 3" long.	1/2	EV.			
The state of the state of	1435~	GRAZ		1/2	Irmonite, sericite	10% crs	I'm fracture	10				
Section Consider.	1965.	GRAS !			Imonite sericite	py . cubes	19 Jane spen mar in					
	1960-	GRAZ		DWESTONE.	18.5 m S 1	Py, cpy.	10 m x /m skarn some in sed; + volc. : garnet/magnetite/epic	lote/	calci	100		
- 209%	1460m	CRAB!		A STANCE THE SALE		ezh 820 8	for vide x 60" length;					
210	1460m V	GRAB		4.00		Mal., aun.	edge of skam your of					
/ Nes	31/88 -	- 7 7 4			No.	12 to 1	and a reminder place					
352(15)	1650M	GRAB		ngrosive	iron oxide scricite(:)	2% ngr diss. py.	narrow tracture Trending northwest for ~20 m; Iron-carb. I carb. I barite veinlet					
212	1670m	GRAB		cent/bante	- 1	11.2	Iron carb. I carb. I barite veinlet 10m x /cntoxn. In diorite minor fine cpy vions tracture					
213	1630 m	GRAB		diorite	mal, hem.,	cpy (41%)	MINOY fine cpy wong tracture (Fault?) mone 2014 < m in dior	·/te				
214	1625 M	GLAB		diorite	Mel., hen	cpy	Cossociated inon carlo vein - 1					
215	1555 M	GRAB		diorite(?)	hem, ep.	cpy/py	alone tout) // as -213. MILLION ON LOUIS ON WELL Proctored wall (probably fault)			7889	8	
10. T.	9C 3O 1	g 9			Fig. 1	10-10	Air Phot	No.				
	test D	800 - 1			RICOM		Location	Ref	£			
	S. TAYLOT A.			AUNT TO				NTS				
					al Data S.	34 - FO.	SAMPLING					

the state of the s			
The same of the state of the same -			7
A A A A A A A A A A A A A A A A A A A			
		3 25 354 12	
PAMIC		1	CERTAIN NO.
BURN DOM NOT A	dia dia mandri dia man	4 833	Mark Market
The state of the s		N. W. P 540352	The state of the s
ALL SOUTH AND		-4 4c 3	The state of the s
	HENTE	13 Et 8 7 6 (
	MEHIO	LIVAL	
3 3			1

Geochemical Data Sheet - ROCK SAMPLING

	NTS
Sampler De BOC Project KELL	Location Ref
Date AUG 3/88 Property KIRL 1-4	Air Photo No
	x 40 m lon - Vusqu

The HOLE	A	SAMPLE	Sample	THE PERSON NAMED IN	DESCRIPTIO	N 10	Drivible - Extension of 33230			ASS	SAYS		
SAMPLE NO.	LOCATION	TYPE	Width True	Rock Type	Alteration	Mineralization	. ADDITIONAL OBSERVATIONS	Au	AG (PPM)	Cu	Pb (11m)	ZM	A
33532	Kall/2	CLABO		ACIDIC		CPY.	25m × Oism						- City
2533	Wig I	CRAB		DIOKITE		tetrahedrite	2-4ch wide x1-2mlength along iroll-corb, shear 25m x35m	H	1		1		
*S34		"			silica	py.	25m x35m						
535.		FLOAT.		141775		11, 30	45 33534						
536	È ,	"		distance.	8	163.	massive py. locally abundant 20-20cm dia						
537	ite -	GRAB				ba.	20-20cm dia burte vein in diorite, 10-20cm x50m. dyte i ofty material to 20 am wide and yone in diorite; 15m x 40cm.						
538	R	FLOAT				Py. 6Py.	dyte + ofto material 70						
539	ri i	CRAB		diorite	6.	M. ch.	and yone in diorite; Ism × 40cm.						
540	40	n				10	as 33539, 15m along showing chalco in small sheers:						
:541.	W.	n "			Silice	cba.	chalco in smell shears.		38.9	3185	468	3661	827
592	16	SUBCRUP			1	da. (2004)	large sheir 10n. Lide total none; ningh 3-5cm.						
543		GRAB		?	SKNEN	good CB.	6-Ben 3-4 m length large shew 10n Linde total none; ninga 3-5cm. gurnat skeira; total skurn nxine = several ningal mones						
514	7.	· ',		4	11	MSSU Py.	- as 3/242						
545	E 35 4	Jock "		**************************************	"	MICH							
546		Line 7 1		11	"	cba. 2.10	- as 35:43 choke in general exercise with many - as 27:43						
547		11		ne nea	CRIP#ON.	I MISCU / NEWILL			V	SSAY			
54-8	$\overline{\nabla}$	//		<i>II</i> .	ď	(py.(1%)	- N: 21 AZ.						
	M	坐			556		Air Photo	No					
Se 30.04	UTF				TOWN EN			112					
	MENT	FIMIL		socuemics	II naisa os	I - HOCK	SAMPLING						

DEVELORMENTS LIMITED

Geochemical Data St. 1 - HUCK SAMPLING

Sampler	E. Debock	Project	KERR 5-Le
	Sept 4, 1988	Property_	KERE

NTS ______
Location Ref _____
Air Photo No _____

SAMPLE	4	SAMPLE	Sample Width True	- 0	DESCRIPTION	N	-617 45		ASSAYS	
NO.	LOCATION	TYPE	Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS			
33216	NE WOOR	Rock	Gras	Qtz Ucin		atipq	near diarte + kepar dyke contact.			
33217	M	П	"	Otzbein		Prote the herente	15-20 cm wide, talus covered			
33218	16	EUNS	"	atz Veins	285/07	Strongly printse	6-30 cm vide, 125-150 m long	42		
33219	2 11	u GCV	V	Otz Vein		pyrite chalcomite	5 cm wide; traced for 50 m			
33220	ji - ij	. 4	"	Otz Vein	2	Pyrite + aspy	8 cm wide - splay off larger view			
33221	O K	Ц	11 subcrop	Otz Vein		Priote	10-15 cm wide x 30 n log	The state of the s		
33 222	η	15 mg/E	Suburap	Otz Vein		py + aspy	4 cm inte			
33223	g u	K COV	U	Otz. Vein		pyrite for catine length	15-30 cm wide x 125 x long			
33 224	\ u	Level	"	Ote Vein		1	vein 33223 - 8 m along strate			
33225	n n	r("	Qtz Vein		pyrite for entire length	,			
33224	μ i	"I-roy	"	Otz Vein		cpy	30-50 cm wide x 10 m long			
33227	И	II.	"	Q12 Vein		aspy	10-90cm wide × 20 n long			
33228	3 "	II.	Subcrop	Questz	S HILES	well minardized with pyrite	abundant			
33229	и	II CTY G	"	Altered		river py +	Qualz veins splay out 2 misée			
33230	tt .	11	"	Ot Vein	peg Allerell	py + nalachite chalcoute?	15 cm wide x 25 - 60 Walhindivite			
33231	ES U	V2786	"	Otz Vein	TAY DESCRIP	good pyrite	10 cmwide - extension of 33230		10000	3
33 232	li li	и	11	Otz Vein		Prifized throughout	30 cm wite x 40 n long - vuggy			
33233	110	18	"	Otz Vein	PEROT.	py throughout intensee margin	Imidex 30 n long	Photo No		
33234	и	21/300	"	Altered Introne Zone	abudat	pyrite		24,04		
33 235	TO IL	TALL VALUE	11	Otz Vein		five grains	25 cm wide x 100 m long			WILL OF CANAL

DEVELORMENTS LIMITED

Geochemical Data St. 1 - nuck SamPLing

			N15	
Sampler	E. Debock	Project KERE 5	Location Ref	
Date	Sept 4, 1988	Property	Air Photo No	

SAMPLE	LOCATION	SAMPLE	Sample Width True		DESCRIPTIO	N				ASS	SAYS	
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS					
33236	NE COINER KERE 5	Rock	Grab	Otz Vein		noderate Pyrite Pyrite Pyrite throughout	6-15 cm wide × 10m long					
33237	11	11		Otz Vein		throughout	20 cm wide					
33238	10	ιί	'	atz Vein		pyrite	20 cm wide & 60 n long					
33239	и	ι("	Altered Zone		pyrite,	25-35 n len					
33240	4	- 0.1	4 Suberop		770	noderate pyrite	25 cm wide; on edge of alkered nagrable 200					
72644	11					Myrite						
33549	11	100 €	Subetop	Qtz Vein		17 + c [9 ± arseno	6-20 cm wide					
					100 Kin. (1000001110) W. W. W. W.							
KE A Z E	24				The speed of the second of the		12 ~ 0 % = 1120	25		D'A	11	
89455	1	Flore +			The commence of the contract o	1	15 mm marks gle 4800	13.0		0.8	7.0	
24124	0 4 7 34	Flest		and or the		6224	TELLE SELL TYPE VI	5/0		0.8	1.0	
79 E.L.		100		075		143 Lips		da	1-8(0)	l mi	tat	
TJA		Corp		72 82-1982		V32-12	2361.30.2	72		TO A	111	
V. 12 ST		175777		7		1.7.		172		1.6	0.02	
L-Y		T TO SEC		Hour the	1 yüesiku	MILE SISSEC	AND ALL THE POINT TO THE AMERICAN CONTROL OF THE PARTY AND ADMINISTRATION OF THE PARTY ADMINISTRATION OF THE PARTY AND ADMINISTRATION OF THE PARTY ADMINIS	THE .	134	He	line a	
ANTAE		3A33P1 F			DESCHIB. 1		ADDITIONAL OBSERVATIONS	-14	He	A.9	EAYS	

				i mberix		CIPY	Air Ph	oto î	10			

NTS

L_VL_3 __NT_ LITTET

Sampler Ril Bilodeau

Date

Geochemical Data Short - HUCK SAMPLING

		NIS	
Project _	Pamicon	Location Ref	ent of the second
roperty_	Kerr Clms	Air Photo No	

SAMPLE		SAMPLE	Sample Width True		DESCRIPTIO	N				ASS	SAYS	
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	A4 9/1	Ag	MA	
89451		Floort		andesity dyhe:	possible	Massing pyrite	Flort on soide of	115		,	1055	
89452		Grah		syenites		pyrite	married with releases	25		0.4	373	
89453		Florat		Cots		~3°10 pgrite	2 m wich	>10,000	1060	109.5	256	
89454	N = 21750	Float		syunites andesite		pyrite	contact? Possible fault.	210		0.6	18	
89455	L?	Flout		*		11	15 m wide of vein	130		0.8	17	
89456	ы	1.		1.			15 m N of 21780	25		0.4	19	
							•					
33550	18			Of Dein		Farshab	To real bang					
33544	10	100 €				42046						
							1					
39,240		1		QL2 ()e		plivene traggedes	25 cm wides on edge of allend regulations			~		
33,157	tt.	10		Albert Zone	-	paragras	25-35 in lan					
335.0%	10	T ₁		ahe Nein		bluge	20 cm willers (a) n long					
33,135(-)		11		Jt. 152		Throat the	20 cm wide.					
72336	NE COME	6.4		3/2 Osin		Providenta.	6-15 Cm inde of 10m long					
9%) 1 8%%57	(10°% 15;24°)	INST I		Flock Type	Atteration	Min-ralization	ADDITIONAL OBSERVATIONS					
					EST EXPRION					ASS	42.	
late .	- 52 H	322		, Lebega T			All Pin	N Oid	<u> </u>			
ampler	H Turon	E		rolect	7560 9		Localid	n R	1			

PRINTED IN CANADA

proclientes para pri ci u

SEVELO MENTS LIMIT

DEVLE PMEN'S LIMITED

Geochemical Data Sheet - ROCK SAMPLING

			NTS
Sampler A. Mentiquery	Project Per	mica -	Location Ref
Date Oddoer OI 1989	Property_k_	err 48	Air Photo No

89502 89503 89504 89505 89505 89506		SAMPLE	Sample Width		DESCRIPTION	N	IC In LANCESCO WEEK	ASSAYS					
	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization		PPL	Au	A9	Cu		
39501	KIERR I 1375meleu.	greb		9tz vein	limonite	miner py.	10-30cm wishe is limenitic veggy	100		1.2	T)		
89502	20m 0220°	select		vein)	Imenite	the cay	1.20 vide fractive me =	10	<0	10.2	149		
	KERR 1 dev. 1340	off float		Sharn	limente		1mx 0.5~ boulder of mosu mg nt 1 mel, garnet, exidete	30	< 9	<0.2	2280		
89504	~ 20~ mosh	grub		वांद्र पटान	Strengte	miner	mant 1 mel., garnet, exidete 10cm-30cm unde atz vein visible in a/c ~ 0.5n - +hii 15 ~ rescripte of 1988 scripte 21780 (0.70/+Au) strengty att intrusive (uir to	70,000	0.326	50.0	65		
39505						77-	15 ~ resuple of 1988 suple		0		7		
39505	10 = east = 1 89501	1		ofts vein	thenet /d	~5% parte	36141	145	e (1.2	831		
39506	20-30m south of 21780	select		of y ver	Strente	370 PM	25en ?? Lide of z vein 5	المحراد	0.292	77.2	201		
39507	alev. 1415m	grub		underthe	limente	on frech	good py. or 0.3 m strike	230	/ <0	2.4	7310		
89508	deu 1405- 5-10.07507	Flout		atzuen	streng te		similar ven to that to the rath labore simples); san x 10 am peice.	1500	<0	39.2	283		
00000	172					201	1 1 6940 10		<0	2 1	lg		
20/4/1							. 55		48	1			
						200	4 4 99459 46		d	3 1	J		
0614-261	1080-			1					120	F	ri :		
50 4 4 3	Tres.					17.3	4 4 69457 8		d	2 1	13.		
2944T	Kari					TH	16.		3	5 1			
MC.	0.01.52	Detail Horse		ure Diamage	_ stake	ved kod	TIONAL GBSERVATIONS - REMARKS H	- V	· 1 6	5 1	A		
77.6	C TOO	5 / 5 / 6		Property	FELL	-	Air Phot	o No					
291 15 61	5 N 4	~~./\s		Project.	6000	-	Locatio	Ref					
DEAFE	DEWEL	13 PEW					*	NTS					

PENTED IN CANADA

PAMICON DEVELOPMENTS LIMITED

Geochemical Data Sheet - SOIL SAMPLING

Sampler	A. Mutquery B. Anders Project October 12 1989 Property							Panie							
Date	Octob	er 1	12 19	189	39 Property		Ker	Kerr			Air Photo No				
SAMPLE		1			DESCRIPTION)N		-				AS	SAYS		
NO.	LOCATION	Depth	Horiz	Colour	Texture	Drainage	SLOPE	VEG	ADDITIONAL OBSERVATIONS / REMARKS	An	A4 0/+	As	ppm		
89457	KEIL								sit	<5		40.2	41		
89458	1260~								N.S partner to 59457	80		40.2	147		
89459	1275								silt	<5		40.2	54		
89460	1275-								h.s partner to 89459	45		40.2	167		
29461	1295-								tilt	45		40.2	76		
29462							11-0471		h.s partner to 89461	10		40.2	199		
3463	1260~	E			24	rnew	there is	1000	grab venthar, some creek is 994	10	342	40.2	8		
99464	1235~	E	2		7-6	e upr	rap.	Area	h.s.	45	10	<0.2	250		
29465	1140~	290	¥		141	V 0617	egaran) Umanular	310	silt see si mye dis noin a	<5	0000 0	<0.2	72		
29466	145m	ol~	7		4	Lague	James	-57	his - put ner to 89465	170	dC	<0.2	195		
99467	1145-						11 minutes		silt is a combine of 1488 and	20		0.2	91		
39468			7		4	061-7	the of	5V Feet	h.s patro- to 39467	20	i cepiù	0.2	214		
89469	Kerr 4				37	~~	100-16	wy	silt more many to many	45	30	<0.2	79		
81470	1075	2070	7		- Inn	nerr	I wante	fac.	h.s putne to 89469	45	(0)	<0.2	140		
89551	400-	SA	NPLC.	M Qup	True RI	son Type	Alteration	yours	HS yery little hervies	20		40.2	82		
84552	910-			1 Carrole			ESCEIL	QVI.	HS 20th masker Rith & masker	40		0.4	216		
84553	9300	21	100		PM	perty	- COLL		HS 30/76 Repeat CUS/C myent	100	o No	<0.2	20		
E4554	/ Wange	1	-~		Pro	lect	cm/co-		silt - prine & 89553	15	ı Rei	<0.2	170		
as see											MIS	-			

FAMILUI	1		
DEVLL	IVEN	CI	Limited

Ceochamical Carla Sharman SARANI NG

SILT / HEINS Sod

Sampler	Al Montgomery +	Bruce Anderson.
Date	Oct 12/89	

NTS ______
Location Ref _____

SAMPLE NO.	LOCATION	Depth	Horiz		DESCRIPTIO	N						ASS	SAYS		
NO.	LOCATION	Берш	HOHZ	Colour	Texture	Drainage	SLOPE	VEG	ADDITIONAL OBSERVATIONS / REMARKS	Au	A4 9/+	Ag	Cu	ž.	
89555	940m.	-							HS.	40		A9 A0.2	376	180	
8955 6.	Α.								5,1+ - perties to 89555	30		0.8	34	TO SE	
												10	0	0	
-												5	Ba	R	
												3	P C L	Lig.	
												130 1-21 1-31	8 1	Dil	
								-				14	14 8	0	
					500				52		ŝ	ğ	Ĕ e	Z.	
					3				TOS		5.	17	9 4	r lon	
					Feet (III)				M H		CE	Ü	9.0	Ē	
					9				el .		000	(3)	ed (0	0	
					1				9 10 10 10 10 10 10 10 10 10 10 10 10 10	9	94 30	ini.	5.0		
				P 1	4.2		- 17	, ,	5 517 51	(ă	.120	4.5	4	
				2	P.P.			P By		Ď.	283	A GX	0 0	50	
				7	J F		8/8	Q 120	C T TO T	112	8	E G E	4 8		
				7	5		8	위 원	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		9	200	8 B	2	
1				9	- 5	20	H . 0	1 60	TAR THE STATE OF T	1	à	4	5 5	9	
2	9			D	14	ĝ	502	2 2 2	1000		OL	b	be in	23	1
0 -				g : 6	8	S N	2.00	10	Z 1000 100		OM	<u>C</u> .	102	95	

CERTIFICATE OF THE DIRECTORS AND PROMOTERS OF THE ISSUER

The foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by this Prospectus as required by the Securities Act and its regulations.

Dated at Vancouver, British Columbia this 4th day of July, 1990.

CONSOLIDATED CAPROCK RESOURCES LTD.

Robin T. Forshaw, President, Director and Chief Executive Officer

Charles S. Underhill, Secretary, Director and Chief Financial Officer

ON BEHALF OF THE BOARD OF DIRECTORS

Donald D MacFayden

Director

Assa S. Manhas

Director

PROMOTER

CLD Financial Opportunities Limited

Per:

Donald D. MacFayden

President

CERTIFICATE OF THE UNDERWRITER

To the best of our knowledge, information and belief, the foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by this Prospectus as required by the Securities Act and its regulations.

Dated at Vancouver, British Columbia, this Utiday of July, 1990.

L.O.M. WESTERN SECURITIES LTD.

Peter M. Brown