PROPERTY FILE

016344

PROSPECTUS DATED DECEMBER 28, 1988 HAVING AN EFFECTIVE DATE OF JANUARY 9, 1989 AS AMENDED BY AMENDMENT NO. 1 DATED FEBRUARY 15, 1989
 HAVING AN EFFECTIVE DATE OF FEBRUARY 27, 1989

THIS PROSPECTUS CONSTITUTES A PUBLIC OFFERING OF THESE SECURITIES ONLY IN THOSE JURISDICTIONS WHERE THEY MAY BE LAWFULLY OFFERED FOR SALE AND THEREIN ONLY BY PERSONS PERMITTED TO SELL SUCH SECURITIES.
NO SECURITIES COMMISSION OR SIMILAR AUTHORITY IN CANADA HAS IN ANY WAY PASSED UPON THE MERITS OF THE SECURITIES OFFERED) HEREUNDER AND ANY REPRESENTATION TO THE CONTRARY IS AN OFFENCE.

\#203-698 Seymour Street
Vancouver, British Columbia V6B 3K6 (hereinafter called the "Issuer") (Incorporated under the laws of British Columbia)
500,000 COMMON SHARES WITHOUT PAR VALUE

(1) The price of the Shares has been determined in negotiation with the Agent.
(2) Before deduction of the balance of the costs of this Issue estimated to be $\$ 20,000$.

THERE IS NO MARKET THROUGH WHICH THESE SECURITIES MAY BE SOLD.
THE VANCOUVER STOCK EXCHANGE HAS CONDITIONALLY LISTED THE SECURITIES BEING OFFERED PURSUANT TO THIS PROSPECTUS. LISTING IS SUBJECT TO THE ISSUER FULFILLING ALL THE LISTING REQUIREMENTS OF THE VANCOUVER STOCK EXCHANGE ON OR BEFORE JULY 10, 1989, INCLUDING PRESCRIBED DISTRIBUTION AND FINANCIAL REQUIREMENTS. THE OFFERING WILL BE MADE WITHIN 180 DAYS FROM THE DATE UPON WHICH THE SECURITIES OF THE ISSUER ARE CONDITIONALLY LISTED ON THE EXCHANGE. A PURCHASE OF THE SECURITIES OFFERED BY THIS PROSPECTUS MUST BE CONSIDERED AS SPECULATION. THE PROPERTIES IN WHICH THE ISSUER HAS AN INTEREST ARE IN THE EXPLORATION AND DEVELOPMENT STAGE ONLY AND ARE WITHOUT A KNOWN BODY OF COMMERCIAL ORE. NO SURVEY OF ANY PROPERTY OF THE ISSUER HAS BEEN MADE AND THEREFORE, IN ACCORDANCE WITH THE LAWS OF THE JURISDICTION IN WHICH SUCH PROPERTY IS SITUATE, ITS EXISTENCE AND AREA COULD BE IN DOUBT. THE ISSUE PRICE TO THE PUBLIC PER COMMON SHARE EXCEEDS THE ISSUER'S NET TANGIBLE BOOK VALUE PER COMMON SHARE AT JULY 7, 1988, AFTER GIVING EFFECT TO THIS OFFERING BY \$0.2846, REPRESENTING AN IMMEDIATE AND SUBSTANTIAL DILUTION OF 63.24\%. REFER TO "RISK FACTORS AND DILUTION" HEREIN FOR DETAILS. NO PERSON IS AUTHORIZED BY THE ISSUER TO PROVIDE ANY INFORMATION OR TO MAKE ANY REPRESENTATION OTHER THAN THOSE CONTAINED IN THIS PROSPECTUS IN CONNECTION WITH THE ISSUE AND SALE OF THE SECURITIES OFFERED BY THE ISSUER.
UPON COMPLETION OF THIS OFFERING, THIS ISSUE WILL REPRESENT 16.67% OF THE COMMON SHARES THEN OUTSTANDING AS COMPARED TO 82.18\% THAT WILL THEN BE OWNED BY THE PROMOTERS, DIRECTORS, OFFICERS AND SUBSTANTIAL SECURITY HOLDERS OF THE ISSUER. REFER TO THE HEADING "PRINCIPAL HOLDERS OF SECURITIES" HEREIN FOR DETAILS OF COMMON SHARES HELD BY SUCH PERSONS. ONE OR MORE OF THE DIRECTORS OF THE ISSUER HAS AN INTEREST, DIRECT OR INDIRECT, IN OTHER NATURAL RESOURCE COMPANIES. SEE "DIRECTORS AND OFFICERS" FOR A COMMENT AS TO THE RESOLUTION OF POSSIBLE CONFLICTS OF INTEREST.
THIS OFFERING IS SUBJECT TO A MINIMUM SUBSCRIPTION BEING RECEIVED BY THE ISSUER WITHIN 180 DAYS OF THE EFFECTIVE DATE OF JANUARY 9, 1989. FURTHER PARTICULARS OF THE MINIMUM SUBSCRIPTION ARE DISCLOSED ON PAGE 4 IMMEDIATELY BEFORE THE CAPTION "USE OF PROCEEDS". WE, AS AGENT, CONDITIONALLY OFFER THESE SECURITIES SUBJECT TO PRIOR SALE, IF, AS AND WHEN ISSUED BY THE ISSUER AND ACCEPTED BY US IN ACCORDANCE WITH THE CONDITIONS CONTAINED IN THE AGENCY AGREEMENT REFERRED TO UNDER "PLAN OF DISTRIBUTION" AND SUBJECT TO APPROVAL OF ALL LEGAL MATTERS ON BEHALF OF THE ISSUER BY ANGUS, McCLELLAN, RUBENSTEIN \& HASLAM, BARRISTERS AND SOLICITORS.

UNION SECURITIES LTD.
\#1300-409 Granville Street
Vancouver, British Columbia V6C IT2
GEOLOGICAL REPORT ON THECOL CLAIM GROUPLatitude $55^{\circ} 15^{\prime} \mathrm{N}$Longitude $124^{\circ} 45^{\circ} \mathrm{W}$NTS 93-N-2 and 93-N-7Omineca Mining DivisionBritish Columbia
For
KOOKABURRA GOLD CORP. 203-698 Seymour Vañócouver, B.C.
BY
David M. Jenkins, M.S., F.G.A.C. May 30, 1988
Revised September 30, 1988

Table of Contents

1. SUMMARY 1
2. INTRODUCTION 2
3. PROPERTY 3
4. LOCATTON AMD ACCESS 3
5. HISTORY OF THE PROPERTY 7
б. ЗEGLOGY 8
6.1. REGIONAL GEOLOGY 8
6.2. PROPERTI GECLOGY 11
6. HINERALIZFTION 11
7. GEOPHYSICS 21
8. GEOCHEHISTE 21
9. OHCLUSIONS 22
1:. RECGMHEHDえtIOIS 22
10. CO.jT ESTIMATES 22
11. PEFEFEHCES 24
12. CERTTFTCATE 25
Appendices
A. APPEIDIX F. SUHHARY DESCRIPTIONS OF FALCONBREDGE'S DTAHOHD DRTLL HCLES 26
B. AEPENDIX B. AHALYSES BY FLACER DEVELOPMENT LIMTTED OE SAMPLES COLLECTED BY D. JEHKIIJS 38
List of Figures
13. FIGURE 1. COL CLAIM GROUP LOCATION MAF 4
14. FJGURE 2. CLIATM HAP COI, CLAIH GROUP 5
15. FIGURE 3. TOPOGRAEHY OF CDL CLAIM GROUP 6
16. FIGURE 4. REGIONAL GEOLOGY IORTHWEST OF CHUCHI LAKE 9
17. FIGHEE 5. GEOCHEIICAL AIID GEOFHYSTCAL COMPIIATJOH HLE 1.
E. FIGURE 6. COHPAFISOH OF COPPER AHD GOLD COHTENTS DOWI DRELLHOLE 1315
18. FIGURE 7. COHPARISOH OF COPPER AHD GOLD CONTENTS DOWH DEILI
HOLE 17 16
19. FIGURE 8. COMPARISON OF COPPER AND GOLD CONTENTS DOWN DRILL HOLE 21... 17
20. FIGURE 9. COMPARISON OF COPPER AND GOLD CONTENTS DOWN DRILLHOLE 12.18
10.FIGURE 10.ASSAY SECTION 20+00E 19
List of Tables
21. TABLE 1. CLAIMS COMPRISING THE COL GROUP 3
22. TABLE 2. SUMMARY OF SAMPLES COLLECTED BY D. JENRINS 14

1. SUMMARY

The property was explored as a porphyry copper target by Falconbridge Nickel Mines Limited from 1970 to mid 1972. It remained idle until 1984 when a resampling of ten foot intervals of the core identified for the first time the presence of gold in the mineralization. In the latter study, gold was found to occur in amounts up to 2.17 ppm in the higher grade copper intersections. Further study proved that gold occurred in similar amounts in at least two separate zones. This new data converted a large low grade copper prospect into an important gold exploration project with potential to develop moderate tonnages of economic grade gold/copper mineralization.

The Col Claim Group consists of 47 units divided in 3 lode claims. They are located in the Omineca Mining Division approximately 108 kilometres north of Fort St. James, British Columbia. Access to the claims is at present by foot or by helicopter, but roads lead to within 5 kilometres of the property. The intervening terrain is moderate and road construction should be neither difficult nor expensive. Rail transportation for concentrates or heavy equipment exists in fort st. James. The claims are located on a ridge between 950 and 1550 metres in elevation. Local relief is moderate and does not represent an obvious constraint to open pit mining.

The Falconbridge work program included soil geochemistry, I.P., ground magnetics, and V.L.F. surveys. A total of 7741 feet of diamond drilling was carried out. That work identified areas highly anomalous in copper and less so in molybdenum and silver. The largest anomaly has dimensions of 1450 metres by 1200 metres and is open to the northeast. Most of the geophysical signatures appear to be due to host rock lithology and do not directly identify mineralization. Weak I.P. signatures can be interpreted in light of bornite/chalcopyrite rich and pyrite poor mineralogy, which would not be expected to have a strong I.P. signature, to indicate narrow linear zones of higher grade copper mineralization. A number of these are coincident with anomalous copper geochemistry in soils and remain untested by diamond drilling.

Most of the core which was obtained in the work program was of packsack or AX size. As a consequence of the small core diameter, sulfides were lost from the core and the assays undervalue the higher grade intersections. Most of the drilling was concentrated on I.P. anomalies which occur outside of the areas of anomalous copper geochemistry. Much of this drilling failed to encounter economic sulfides. One area, zone "A", was drilled in detail and a drill indicated tonnage of $2,000,000$ tons at a grade of 0.6% copper was reported by Rivera (1973) for the zone. This specific mineralization was represented in the copper geochemical data
base as a single point anomaly. It was one of the stronger I.P. anomalies. Samples of split core have given gold analyses up to 1.68 ppm over 10 feet of core. Only one drill hole was located within the largest copper geochemical anomaly. It contained a 50 foot intersection grading 0.66% copper. Gold analyses obtained in the 1980 's ranged up to 2.17 ppm over 10 feet of core. The same zone exposed in a nearby trench was sampled by the author. Three samples collected across the 12 feet wide trench gave a weighted average of 2.24 ppm of gold and 3.15% copper, present in part in secondary carbonate minerals. Falconbridge interpreted this higher grade mineralization to be controlled by a 10 to 20 foot wide structure within a much more weakly mineralized mass.

Most of the coincident copper and I.P. anomalies were not recognized or their significances were not appreciated by Falconbridge. Most of these anomalies remain untested by drilling. More recent information indicates significant gold contents in at least some of these coincident anomalies. Because gold in the deposit was not identified by earlier workers, its distribution and tenor in the deposit are unknown. The presence of gold in potentially economic amounts in a mineralized system as large as that identified on the Col claims defines an important exploration target which warrants an expenditure of risk capital to explore it.

A two phase program is recommended. The first consists of a reassay of existing core, soil geochemical sampling and geological studies at an estimated cost of CDN $\$ 91,000.00$. Subject to satisfactory results in Phase 1, a 1000 metre diamond drilling program is recommended. It is estimated that the cost for Phase 2 will be CDNS 130,000.00.

2. INTRODUCTION

AINSWORTH-JENKINS HOLDINGS INC. (AJH) examined the Col Claim Group near Chuchi Lake in October of 1987. Kookaburra Gold Corp. (KGC) of 203-698 Seymour, Vancouver, British Columbia, requested AJH to write a report of its findings during it's study of the property and to make recommendations.

Major sources of information consulted during the course of this study include reports for Falconbridge Nickel Mines Limited by Band (1971), Harper (1972), and Wares (1971); a memorandum by Placer Development Limited's then Chief Geophysicist, R.A. Rivera; and reports by Colin Campbell, a graduate geologist who vended the Col Group to KG^{--}

An examination of the Col 'm Group was carried out by David M. Jenkins, of AJH, on the 2. \pm October 1987. He was accompanied - in the field by Colin Campb Conditions for the examination were ideal. The weather $\because . . \mathrm{s}$ clear and cool and the ground was free of snow cover.

3. PROPERTY

The Col Group consists of the contiguous Col 1, Col 2, and Kael - 2 lode mineral claims comprising a total of 47 units. Table I summarizes the record numbers, dates of record and number of units in each claim of the Group. Colin Campbell was the owner of record at the time of the examination. KGC has acquired from him a 100\% interest in the claims subject to certain annual payments and a 3% net smelter royalty. Locations of the claims are shown on figures 1 and 2.

TABLE 1. CLAIMS COMPRISING THE COL GROUP
NAME NUMBER OF UNITS RECORD NUMBER DATE OF RECORD
Col 11981 8651(8) 9 Aug. 1987
Col 218 8652(8) 5 Aug. 1987
Kael $2020653(9) \quad 28$ Sept. 1984

4. LOCATION AND ACCESS

The claims are located in the Omineca Mining Division of British Columbia, approximately 108 kilometres north of the town of Fort St. James. The exact location is on the border between N.T.S. map sheets $93-\mathrm{N}-2$ and $93-\mathrm{N}-7$ where latitude $55^{\circ} 15 \mathrm{~N}$ and longitude $124^{\circ} 45^{\prime} \mathrm{W}$ intersect in the southeast quarter of the Rael 2 claim. This location is approximately five kilometres north of the west end of Chuchi Lake.

Access to the claims is from Fort St. James to the Forestry campsite on the north end of Chuchi Lake a road distance on the order of 135 kilometres, thence 20 kilometres by boat to the southern end of the "tote road" at the west end of the lake and then up the road to the campsite on the claims. Logging roads now reach to within five kilometres east of the claims. The intervening terrain is moderate to gentle and providing vehicular access to the claims should be relatively simple and cost effective for exploration purposes. Access for production purposes would require the construction of an all weather access road north of Chuchi Lake to connect with the road from Germansen Landing to Fort St. James. Depending on the actual route chosen this would entail the upgrading or construction of between 30 and 40 kilometres of road.

The claims are located on an east-west trending ridge (Figure 3). With the exception of the northernmost units of the Kael 2 Claim the claims are on the south facing slope of the ridge and range from 950 metres to 1550 metres in elevation. The 600 metres of local relief occurs over a horizontal distance of 3250 metres. There is therefore a moderate slope which should not cause excessive problems in a development phase.

Requisite infrastructure to support a mining operation does not

exist in close proximity to the claims. Exploration must prove a deposit with sufficient tonnage and grade to support the cost of providing power, housing and transportation routes. Rail transport for supplies and concentrates is available at Fort St. James.

5. HISTORY OF THE PROPERTY

The property was staked by Colin Campbell in 1969 following a stream sediment geochemical survey. The following year it was optioned to Falconbridge Nickel Mines Limited, which company explored the claims until mid 1972. The property was explored by soil geochemical sampling and limited packsack drilling in 1970. This work identified several multi-element geochemical anomalies, the largest of which in the copper data has dimensions of 1450 metres long by 1200 metres wide inside of the 150 ppm contour. It is still open to the northeast. The other anomalies are smaller but two of them are not closed by the data. Packsack drilling results, in areas not anomalous in copper, revealed high grade copper zones (Wares, 1971). Geophysical exploration in 1971 included Induced Polarization (I.P.), ground magnetics and V.L.F. E.M. 16 surveys. Geological mapping and additional diamond drilling were completed in that year. Geophysical signatures encountered were largely controlled by host rock lithology and did not obviously identify mineralization. The I.P. results, while weak, did indicate the mineralization encountered in the drilling. Diamond drilling focused on following copper mineralization located by surface work, but which was outside of the major copper geochemical anomalies. The sulfide mineralogy of mineralization intersected in this work consisted largely of bornite and chalcopyrite. Pyrite was only a minor component. Copper grades ranged up to 1.32% copper over 60 feet (18.46 m). Only one hole, No. 17, was drilled in a major copper geochemical anomaly. At that point it coincided with an I.P. anomaly. Hole 17 contained an intersection 50 feet (15.4 m) wide which carried a grade of 0.66% copper within a zone of much lower grade. Comparison of assays of core with assays of sludge proved that the $A X$ size core significantly undervalues the mineralization due to the loss of sulfides. Exploration during 1972 consisted of a limited and unsuccessful diamond drilling program to test the strongest I.P. signatures even though they were hundreds of metres southeast from known areas of anomalous geochemistry. The project total of 7741 feet (2381.85 metres) of diamond drilling failed to find economic mineralization and Falconbridge terminated their option. Descriptions of Falconbridge's drill holes comprise Appendix A.

Placer Development Limited reviewed the Falconbridge Data in 1973. They recognized that the sulfide mineralogy, due to the lack of pyrite and the relative abundance of bornite, could reach ore grade and still be a very poor I.P. target. Rivera (1973) reinterpreted the data by contouring the frequency effect and concluded that as much as $20,000,000$ tons could exist at similar or
lower copper grades than Zone "A" as drilled by Falconbridge. No consideration was given to the gold potential of the mineralization in Rivera's study due to lack of information. Smith (1973) reported in a letter to Campbell that zone "A" contained a drill indicated tonnage of $2,000,000$ tons at a copper grade of 0.6%.

In 1984 Campbell sampled a small number of ten foot segments of drill core for gold. The results of his core sampling confirmed the presence of gold in the system with analyses up to 2.17 ppm ($0.063 \mathrm{oz} . / \mathrm{s}$. ton) over ten feet. While the data base is too small for formal statistical evaluation, comparison with Falconbridge's copper assays demonstrates autocorrelation between gold values in excess of 0.5 ppm and higher grade copper contents. Copper grades in the range of 1.0% or greater have significant probability of containing greater than one gram of gold per short ton. Resampling of trenches has allowed Campbell to carefully select samples which range tenor to slightly in excess of $0.5 \mathrm{oz} . / \mathrm{s}$. ton.

Because the interpretation of the I.P. data by Falconbridge failed to take into account the rather special mineralogy of the mineralization, relative to that of porphyry copper deposits, they were led into fringe area pyritic and argillic alteration with their drilling. The effect of this was their work left the areas of anomalous copper mineralization and coincident weak I.P. signatures largely untested. Placer, while recognizing the error in Falconbridge's otherwise excellent work, thought the contained metal value was too low to be economically viable due to limited tonnage at expected grades. The work by Campbell in identifying the presence of gold, in potentially economically significant quantities, with the higher grade copper suggests that the dollar value of the contained metal may be considerably higher than previously believed. A new study to determine the areal distribution and grade of gold within the deposit is warranted and could lead to identification and development of economically viable reserves.

6. GEOLOGY

6.1. REGIONAL GEOLOGY

The geology of the terrain surrounding the Col Group is illustrated on Figure 4 which is after Garnett (1978). The oldest outcropping rocks in the vicinity are the andesitic and basaltic volcanic rocks of the Triassic-Jurassic aged Takla Group. These have been intruded by various phases of the Hogem Batholith which ranges in age from Triassic-Jurassic to the Lower Cretaceous.

The Hogem Batholith is a composite least three plutons of varying
intrusion which contains at chemical composition. Garnett

LEGEND

RECENT

LOWER CRETACEOUS

 HOGEM BATHOLITH4． LOWER／MIDDLE JURASSIC CHUCHI SYENITE：

3 漻 LEUCOCRATIC SYENITE． QUARTZ SYENITE

UPPER TRIASSIC／LOWER JURASSIC HOGEM BASIC SUITE： PLAGIOCLASE PORPHYRY：

$|$| $2 a$ |
| :---: |
| $\because \because 2 b$ |

（a）MONZONITE
（b）MONZODIORITE
ETK1关分 DIORITE：minor gabbro．pyroxenite． hornblendite

TAKLA GROUP
MAINLY DARK GREEN ANDESITIC AND BASALTIC VOLCANIC ROCKS

Fracture trace linear．inferred
－．．．－Geological contacts．approx．
－．－．Intrusive boundaries． mainly gradational

FIGURE 4
KOOKABURRA GOLD CORP．
REGIONAL GEOLOGY NORTHWEST OF CHUCHI LAKE

Geology by Garnett（1978） 15 September 1988 AINSWORTH－JENKINS HOLDINGS INC．
(1978) has subdivided the Hogem Batholith into three separate phases of differing chemical composition. Phase I granodiorite and Phase III granite are best categorized as calc-alkaline intrusive rocks. Phase II syenite is alkaline and Phase I basic suite is predominately alkaline.

In the region of the Col claims Takla rocks were first intruded by diorite and subsequently by monzodiorite and monzonite of Garnett's Phase I of the Hogem Batholith. The latter two lithologies are porhyritic with plagioclase laths ranging from 2 to 5 centimetres in long dimension enclosed in a matrix of vitreous orthoclase. Mafic minerals may comprise up to 30\% of the rock. Mafic minerals are according to Garnett predominately clinopyroxene with biotite varying from an equal abundance to a minor associate.

Leucocratic syenite or quartz syenite belonging to Garnett's Phase II alkaline suite was latter intruded into Takla and Phase I rocks. Garnett calls these rocks the Chuchi Syenite and describes them as "pink, fine to medium grained, allotriomorphic granular with euhedral, twinned plagioclase laths, subordinate to interstitial and subhedral orthoclase and microcline-perthite".

Contacts with Phase I monzonite and monzodiorite are poorly exposed and not well defined. The contacts have the appearance of being gradational on a regional scale but this aspect is thought to be the result of potash metasomatism of Phase I rocks.

Contacts with the younger granite and alaskite of Phase III also appear to be gradational. While there is a possibility of a gradation from syenite to quartz syenite to granite, Garnett believes that any apparent gradation is due to contact effects.

Copper mineralization accompanies syenitic intrusions of the Hogem batholith in a number of areas. These occurrences exhibit "syngenetic characteristics and have none of the main alteration and structural features of the major Cordilleran porphyry deposits of the alkaline suite" (Garnett, 1978).

Garnett describes Phase III leucocratic granitic rocks as pink to orange and fine to medium grained with occasional miarolitic cavities. Microcline-perthite and quartz make up 90 per cent of their volume. Mafic minerals comprise less than 15 per cent of the rocks and the major mafic mineral component is biotite with minor hornblende.

Figure 4 also illustrates the presence of two directions of faulting, one of which strikes E.N.E. and the other northeast. Twenty-five kilometres to the west the batholith is bounded by a broad fault zone which strikes generally N.N.W. Topographic features suggest that another major structure with a similar strike may exist near the western boundary of the claims.

6.2. PROPERTY GEOLOGY

Geological mapping on the property predated the work by Garnett and did not benefit from the regional perspective provided by his study. The rock units identified in the property work are very similar to those mapped by Garnett and the geological sequences are also similar. The mapped rocks range from basaltic volcanics of the Takla Group as the oldest to Phase III granites as the youngest. The major difference in interpretation relates to the timing of the various intrusions.

Work on the property found all of the intrusive lithotypes mixed on an outcrop scale with a range of chemical compositions from one end point of Hogem Batholith rocks to the other. It was reported by A. Elliot (in Harper, 1972) that there were probably no clear cut boundaries between the various phases, but rather there were semi-continuous pulses of magma. The magma changed over time by decrease in proportion of ferromagnesian minerals and an increase in the proportion of potash feldspar. In single outcrops as many as five separate intrusive phases can be identified on the basis of cross-cutting relationships. Simplified property geology is shown on Figure 5.

Elliot (in Harper, 1972) describes the potash alteration of the intrusive rocks as the most obvious and important style of alteration seen on the property. Early stages of alteration in monzonitic rocks consist of fine grained pink discoloration along fractures and are accompanied by minor amounts of chlorite filling. Later and more intense stages of potash alteration lead to replacement of rock distal from fractures and a coarsening of texture. In the most intense alteration quartz becomes a significant component and the texture becomes pegmatitic.

Elliot reports that kaolinization of feldspar grains is moderate over the entire property. It preferentially alters the calcic cores of plagioclase grains in preference to the sodic plagioclase rims or orthoclase grains. He reports that this alteration is most intense in areas of potash feldspathitization. The wide spread character of kaolinization was not observed by this author.

Air-photo interpretation of topographic features suggests the presence of a number of faults. Elliot writes that these seem to be sub-vertical and strike in several direction, but the strongest faults strike at about 140°. Fracturing is most intense in the western part of the property. These are mostly subvertical with predominate strikes of 45° and 140°.

7. MINERALIZATION

Harper (1972), reported that "Practically every outcrop of intru-

sive in the central part of the property contains visible copper mineralization of one form or another". He divides the mineralization into barren country rock, fringe zone rock and high grade zone rock.

Much barren appearing syenitic rock contains patchy and weakly developed chalcopyrite and/or pyrite. Sulfide volume seldom exceeds 0.50\%. Superimposed over both monzonite and syenite are sporadically and randomly distributed shears and fractures with chalcopyrite and/or pyrite and rarely bornite. The spacing of these is sufficiently wide that the total volume of sulfides is less than 0.25\%. Leaching is extreme enough that disseminated sulfides are rarely visible at the surface and except in rare situations the fractures are leached entirely of sulfides in the top 12 inches of the outcrop.

Fringe zone rocks show an increase in the amount of disseminated sulfide and a change in mineralogy. Pyrite disappears, the volume of chalcopyrite increases and bornite appears. The increase in grade is not obvious in natural outcrops due to surficial leaching. The only outcrop of high grade mineralization in the zone "A" area drilled in detail by Falconbridge appears "barren" (quotes by Harper) and cut by abundant fractures. Minor malachite is visible on fault planes forming faces of the outcrop. Drilling below the outcrop disclosed that the fractures were filled with bands of bornite and/or chalcopyrite. Secondary malachite and/or chalcocite were observed for the first 20 feet in the drill hole but comprise a very minor component of the mineralization. Secondary enrichment is not recognized as an important aspect of mineralization on this property. This particular zone strikes approximately 120° and is nearly vertical. It is lens shaped at least 1000 feet (300 metres) long, up to 70 feet (21 metres) wide and more than 450 feet (137 metres) deep. Three of the intersections average on the order of 1.0% or greater copper in core across the structure but are separated by other intersections which average less than 0.4% copper. Comparisons between assays of core and assays of sludge prove that considerable copper was lost from the core. In some cases sludge assays are 50\% to 85\% greater than assays of core. In some high grade intervals no core assays are available.

Rivera (1973) estimated 2,000,000 tons at a weighted average grade of 0.6% copper in Zone "A". Another calculation by Campbell indicated 2,720,000 tons at a grade of 0.54% copper. In this writer's opinion the data are sufficiently flawed that a copper grade can not be confidently assigned to the zone and the calculations by the above two workers can be considered as approximations of the copper grade. Gold values obtained by Campbell, from drill intersections in this zone, are shown on figures 6, 8 and 9. Two samples were collected by this writer from hole 13 and one sample from hole 21. Both holes are in the zone under discussion. Analytical data shown in Table 2 confirm

Campbell's findings.

The mineralization reported in the trenches in Zone "C" was cut by drill hole 17 which was sampled by both Campbell and myself. His results are summarized on Figure 7 and my results are included on Table 2. Based on the Falconbridge core assays the best 50 feet long intersection (not true width) averages 0.66% copper (ignoring differences between core and sludge assays). In the drill hole I encountered a five foot interval from 174 to 179 feet in depth which contained 1.1 ppm of gold. This was a selected sample in that the interval taken was assumed to contain significant gold based on observation of samples which had higher gold contents in Campbell's study. Sampling, by the author, of the 12 feet (3.6 metres) exposed in the trench with three samples gave a weighted average gold grade of 2.24 ppm and a copper grade of 3.15\%. Two of these samples indicated that the monzonite carries approximately 2.8\% copper, partly as secondary copper carbonates and 1.4 ppm of gold. Between the two samples of monzonite a 2.5 feet long sample of fault gouge was collected which contained 4.6\% copper (occurring largely as secondary copper minerals) and 5.2 ppm of gold. Harper interprets this zone as cut in the trench and in drill hole 17 as being a 10 to 20 feet wide shear zone which strikes 120° and dips steeply to the northeast. The length of the copper-gold mineralized structure is unknown.

TABLE 2. SUMMARY OF SAMPLES COLLECTED BY D. JENRINS

SAMPLE	LOCATION	WIDTH	DEPTH	Cu	Au	DESCRIPTION
		FEET	FEET	\%	PPM	
24851	hole 17	5	174-179	1.1	1.1	Monz., bornite, dk. qtz. vnlt.
24852	hole 17	2	179-181	0.04	0.0	Monz.,k-alt., minor cpy, qtz v .
24853	hole 17	7	167-174	0.30	0.2	Monz.,k-alt., cpy, qtz. va .
24854	hole 13	8	207-215	1.68	1.4	Monz., bornite, dk. qtz. vn.
24855	hole 13	7	200-207	1.82	0.7	Monz., less vnlets. than above
24856	hole 21	10	450-460	1.48	0.5	Monz., bornite, dk. qtz. vnlets.
24857	trench		selected	13.1	0.6	Selected for high bornite
24858	trench		selected	2.85	2.3	Selected for qtz. vn .
24859	trench	6.5		2.78	1.5	Cont. chip, monz. west of 24860
24860	trench	2.5		4.60	5.2	Channel sample of gouge
24861	trench	3.0		2.79	1.4	Cont. chip, monz. east of 24860

When copper assays of core exceed 1.0\%, gold contents are elevated with a maximum reported gold content of 2.175 ppm . Copper contents of less than 0.5% appear, in the limited data base, to be accompanied by economically insignificant gold contents. In a limited review, in hand specimen of certain higher grade intersections, this author noted the presence of considerable disseminated bornite which did not appear to be on fractures and had the appearance of being an original component of the rock. A second population of bornite appears to replace or fringe biotite and

Note:

FIGURE 6
KOOKABURRA GOLD CORP.
COL CLAIM GROUP
COMPARISON OF GOLD AND COPPER ANALYSES DOWN DRILL HOLE 13

Taken from Campbell, (1986) 15 September 1988 AINSWORTH-JENKINS HOLDINGS INC

Note:
$\begin{array}{lcllllc}\text { Drill Hole Inclined } & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & \text { Au PPM } \\ 46^{\circ} \text { in direction } 051^{\circ} & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & \text { Cu PERCENT }\end{array}$

Note: Drill Hole Inclined 46° in direction 051°

FIGURE 7
KOOKABURRA GOLD CORP.
COL CLAIM GROUP

COMPARISON OF GOLD AND COPPER ANALYSES DOWN DRILL HOLE 17

Note:
Drill Hole Inclined
60° in direction 223

0.25
0.50
0.75
1.00
1.25

Au PPM

Note: Drill Hole Inclined
60° in direction 223°
152
500

FIGURE 8
KOOKABURRA GOLD CORP.
COL CLAIM GROUP

COMPARISON OF GOLD AND COPPER
ANALYSES DOWN DRILL HOLE 21
Taken from Campbell, (1986) 15 September 1988 AINSWORTH-JENKINS HOLDINGS INC.

Note:
$\begin{array}{lclllll}\text { Drill Hole Inclined } & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & \text { Au PPM } \\ 56^{\circ} \text { in direction } 233^{\circ} & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & \text { Cu PERCENT }\end{array}$

Note: Drill Hole Inclined
56° in direction 233°

FIGURE 9
KOOKABURRA GOLD CORP.
COL CLAIM GROUP
COMPARISON OF GOLD AND COPPER ANALYSES DOWN DRILL HOLE 12

Taken from Campbell, (1986) 15 September 1988 AINSWORTH-JENKINS HOLDINGS INC.

other ferromagnesian minerals. A third population of bornite was definitely associated with fractures which may or may not be accompanied by quartz. Pegmatitic veins viewed in outcrop tended to have very rich accumulations of coarse grained bornite and chalcopyrite on their borders. Based on the sampling summarized in Table 2 gold appears to be associated with bornite when accompanied by thin dark colored quartz veinlets. White quartz veinlets, veins, pegmatitic veins, and chalcopyrite did not give strong gold signatures. Selective sampling of intervals with different types of quartz mineralization indicate that it is possible to separate lower grade from higher grade gold bearing mineralization , but the specific control is unknown. White quartz sampled in drill core did not contain large amounts of gold but where sampled in a trench near drill hole 17 Campbell was able to obtain a highly selected sample with a gold content of approximately $0.5 \mathrm{oz} . / \mathrm{s}$. ton.

8. GEOPHYSICS

Ground magnetic data defined a broad belt of higher values and indicated a number of narrow linear anomalies generally trending 135° to 140°. At least in part the anomalies are related to compositional variations. They do not appear to directly identify mineralization but in a more detailed study dislocation of signatures might be used to locate faults.

Induced polarization metal factors, as interpreted by Falconbridge, identified ten weak to moderately anomalous zones. Most are narrow linear anomalies which parallel structural trends identified by other techniques. The only definite anomaly according to D. Sutherlund (in Harper, 1972) was Zone "A". The other indications are for narrow sources. Two of these were drilled. One was tested by drill hole 16 which encountered only minor sulfides. The other was tested by drill hole 17 , which was previously described, and in which interesting copper and gold grades were encountered.

The re-interpretation of the I.P. data by Rivera identified six narrow zones of moderate to strong anomalies (Figure 5) warranting additional exploration. These anomalies include all the mineralization drilled by Falconbridge. His work in contrast to that of Falconbridge identifies certain additional areas overlain by geochemically anomalous soil also as being anomalous in terms of I.P. signature and indicative of mineralization.

9. GEOCHEMISTRY

The property was sampled on grid lines established at 400 foot intervals and along which samples were collected at 200 foot intervals. Samples were collected from the "B" horizon. The dried samples were screened through nylon screens to remove the minus 80 mesh fraction which was analyzed by Falconbridge for silver,
copper and molybdenum. Silver and copper were extracted by boiling in 10\% nitric acid. The metal contents were then determined by atomic absorption techniques. Molybdenum was determined colorimetrically after leaching a fused aliquot.

Copper was determined to have a local threshold of 150 ppm and was contoured at 150, 300 and 600 ppm levels. Concentrations of copper in soils ranged up to 2500 ppm . Within the 150 ppm contour a number of anomalous areas were identified (Figure 5). The largest of which is 1450 metres long and 1200 metres wide where defined by the data, but it is open to the northeast. Drill hole 17 is located within this anomaly.

Zone "A" mineralization is not well indicated by the copper data or any of the other geochemical data. There is a single sample anomaly within the zone and a much more intense anomaly down slope which may have an origin as a hydromorphic dispersion from this zone. The lack of response in the geochemical data to this strong mineralization led to the recommendation by their geochemist to examine all copper anomalies irrespective of size. Copper data only are shown on Figure 5.

Silver data range up to 2.2 ppm above a local threshold of 0.9 ppm. None of the data are particularly anomalous but do provide an areally restricted support for the copper anomalies.

Molybdenum contents range up to 31 ppm above a local threshold of 5 ppm . These data also provide support for the copper anomaly but are much more restricted in distribution. In a general sense the strongest molybdenum values correlate with the best defined copper anomalies.

10. CONCLUSIONS

It is concluded that:

1. the work by Falconbridge identified a large multi-element geochemical anomaly with partially coincident anomalous I.P. signatures
2. these coincident geochemical and geophysical anomalies probably identify copper/gold mineralization
3. these anomalous conditions remain largely untested, in part due to their perceived potential for only moderate tonnages of copper mineralization relative to the porphyry copper exploration target of the first explorers
4. the recent recognition of gold mineralization with the higher grade copper mineralization has the potential for significantly changing the economic parameters of the project
5. the deposit warrants the expenditure of additional funds to
identify the distribution and tenor of the contained gold.

11. RECOMMENDATIONS

It is the recommendation that Kookaburra Gold Corp. undertake an evaluation of the copper/gold mineralization on the Col Claim Group.

Phase 1. They should build a road to the property and reestablish the camp to provide a base from which to work. The core from drill holes should be relogged and any interval containing more than 0.3% copper should be assayed for gold as should any shear zones or quartz veins. The portion of the property which was anomalous in copper during the initial soil survey should be resampled as should those areas where anomalous I.P. signatures were encountered. Sampling should be completed on lines spaced at 200 foot (61.5 m) intervals and samples should be collected at 100 foot (30.7 m) intervals. "B" horizon soils should be collected and the fraction to be analyzed should be selected on the basis of results from an orientation survey over the falconbridge zone "A" and the trench at drill hole 17.

Phase 2. Subject to satisfactory results in the first phase of exploration a "Phase 2" program of diamond drilling is recommended. This program will test the prospective targets identified by the combined results of the Falconbridge geophysics and geochemistry and the Kookaburra gold geochemistry. An initial drilling program will require a budget for a minimum of 1,000 metres of drilling using $N Q$ size wireline equipment.

12. COST ESTIMATES

Phase 1.
Build road access $\$ 10.000 .00$
Establish camp \$ 7.500.00
Assays (200 © $\$ 22.75$ each)
Geochemical analyses (1,400 © $\$ 18.25$ each) $\$ 25,550.00$
Geochemical sampling (30 days $\$ 250 /$ day) $\$ 7.500 .00$
Geology and supervision (3 months $\$ 5,000$) $\$ 15,000.00$
Geological assistant (2 months $\$ 3,000$) $\$ 6,000.00$
Transportation (3 months rental + mileage) $\$ 3,400.00$
Sustenance (200 man days $\$ 20 /$ day) $\$ 4,000.00$
Fuel (gas, propane, stove oil) $\$ 1,500.00$
Freight
Supplies
Communication
Report
Total
$\leqslant 1.000 .00$
\$ $2,000.00$
S $1,000.00$
S $2,000.00$
$\$ 91,000.00$
Phase 2. Costs
Diamond drilling (1,000 metres $\$ 80 /$ metre) $\$ 80,000.00$
Mobilization and demobilization $\$ 4.000 .00$
Assays (550 \$22.75 each) $\$ 12.512 .50$

Transportation (2 months)
Fuel (gas, propane, stove oil)
Sustenance (275 man days \$30/day)
Freight
Supplies
Communication
Geologist (2.5 months $\$ 5,000$)
Geological Assistant (2 months $\$ 3,000$)
Total Phase 2.
Rounded to
$\$ 2,500.00$
\$ 1,000.00
\$ 8,250.00
\$ $1,500.00$
\$ 2,000.00
\$ $1,500.00$
$\$ 7,500.00$
$\$ 6,000.00$
$\overline{\$ 126,762.50}$
\$130,000.00

13. REFERENCES

Band, R.B., 1971, Geochemical Report On The Chuchi Group-Col Claims; Unpublished report for Falconbridge Nickel Mines Limited, 4pp.

Campbell, C., 1986, Lithogeochemical Survey of The Kael \#2 Mineral Claim, Omineca Mining Division; B.C. Assessment Report Number 15423, 20pp.

Campbell, C., 1988, Summary Report 1988 of The Col Copper - Gold Property, Omineca Mining Division; Unpublished report, 9pp.

Garnett, J.A., 1978, Geology and Mineral Occurrences of the Southern Hogem Batholith; Bulletin 70, Province of British Columbia Ministry of Mines and Petroleum Resources, 75pp.

Harper, G., 1972, Progress Report For 1971 On The Chuchi Lake Option - P.N.161, Omineca M.D., N.T.S. No. 93-N-2; Unpublished report for Falconbridge Nickel Mines Limited, 66pp.

Harper, G., 1972, Quarterly Report (\#3-72) Describing Work Undertaken On The Optioned Col Claims Between The 1st May And The $31 s t$ July 1972 And Also Being A Final Report on Work Completed; Unpublished report for Falconbridge Nickel Mines Limited, 5pp.

Rivera, R.A., 1973, Review Of Geophysical Data On The Falconbridge Chuchi Lake Property, B.C.; Unpublished memorandum, 3pp.

Smith, T., 1973, Letter to Colin Campbell from Placer Development Limited.

Wares, R., 1971, Report On The Campbell Option, Chuchi Lake, Omineca M.D.; Unpublished report for Falconbridge Nickel Mines Limited, 13pp.

Woodcock, J.R., 1972, Chuchi Lake Coppery Property; Unpublished letter to Colin Campbell, 6pp.

14. CERTIFICATE

I. David M. Jenkins of the Township of Langley, Province of British Columbia hereby certify as follows:

1. I am a geologist residing at 9820, 216th Street, Langley, B.C. and am employed by Ainsworth-Jenkins Holdings Inc., with an offire at 525, 890 West Render Street, Vancouver, B.C..
2. I am a Fellow of the Geological Association of Canada. I graduated with a B.A. in geology from the University of South Florida in 1963. I was granted an M.S. degree in geology from the University of Florida in 1966. Subsequently I was enrolled in a Ph.D. program at the University of Cincinnati between 1967 and 1970.
3. I have practiced my profession continuously since 1970. I was employed by the Exploration Division of Placer Development Limited from 1970 to 1986 in mineral exploration in Canada, United States of America, all of the Central American countries, Colombia and Suriname.
4. I am the author of this report which is based on published and unpublished reports and examinations of the subject claims on the 23rd of October 1987. I am familiar with the very minor amount of work completed on the claims in the 11 months since my examination of the property. No new information has come to light which would cause me to alter my recommendations in this report. This report fairly and accurately describes the property at the time of my examination and at present.
5. I have neither an interest, direct or indirect, in the property discussed in this report or in the securities of Kookaburra Gold Corp. nor do I expect to receive any.
6. I consent to the use of this report to satisfy the Stock Exchange and Securities Commission requirements.

Dated at Vancouver, B.C. this 30 th day of May 1988 and revised the 30th day of September 1988.

David M. Jenkins, M.S., F.G.A.C. Ainsworth-Jenkins Holdings Inc. Geologist

Appendix A. SUMMARY OF FALCONBRIDGE'S DIAMOND DRILL HOLES

The data included in this appendix was largely extracted from drill hole summaries prepared by Falconbridge geologists. Their work was carried out using feet and inches to measure distances and lengths. Because little would be gained and in fact accuracy would be lost by conversion of even foot measurements to rounded metric measurements, the system of measurement used by the original workers has been retained in this appendix.

Inclination $\mathbf{- 4 5}$ degrees Length 38 ft. 11.58 m . Core Size XRPS			
Footage Description			
0'-38'Monzon actino greate chalco	Monzonite: biotite hornblende altering to actinolite, fractures broadly spaced at $1^{\prime \prime}$ or greater, minor malachite top 10 feet, only trace chalcopyrite and bornite on fractures at depth		
Hole No.PS-5-70	Northing 7+50S	Easting 9+80E	Bearing 315 degrees
Inclination $\mathbf{- 4 5}$ degrees Length 22 ft . $6.71 \mathrm{~m} . \quad$ Core Size XRPS			
Footage Description			
0'-22'	Monzonite: biotite, slightly weathered with minor iron oxides on fractures. Occasional trace malachite on fractures, estimated less than $0.1 \% \mathrm{Cu}$.		
Hole No.PS-6-70	Northing 12+00S	Easting $1+50 \mathrm{~W}$	Bearing 045 degrees
Inclination -45	degrees Length 50	ft. 15.24 m .	Core Size XRPS
Footage	Description		
0'-10'	Monzonite: biotite hornblende with plagioclase phenocrysts, joint lamination at 5 degrees to core axis		
10-40'	Monzonite; strong K -feldspar alteration, bornite and chalcopyrite on fractures		
40-50'	Monzonite as above with reduction in fracture intensity		
Hole No.PS-7-70	Northing 12+00S	Easting $1+50 \mathrm{~W}$	Bearing 315 degrees
Inclination -45	degrees Length 54	ft. 16.46 m .	Core Size XRPS
Footage		Description	
0'-54'	Monzonite: biotit iron oxides on fr mineralization. 20^{\prime} to depth.	ornblende, oxidi ures, no visible zonite is fresh	with
Hole No.PS-8-70	Northing 11+70S	Easting 2+50E	Bearing 045 degrees

Inclination -45	degrees Length 54 ft. 16.46 m . Core Size XRPS
Footage	Description
0'-54	Monzonite: biotite hornblende, partially oxidized with sparse sulfides present from 10° to 54^{\prime}
Hole No. 9	Northing $13+00 S$ Easting $16+00 \mathrm{E}$ Bearing 228 degrees
Inclination -62 degrees Length 256 ft. 78.03 m . Core Size AQ	
Footage	Description
$\begin{array}{r} 0-22^{\circ} \\ 22-256^{\circ} \end{array}$	Overburden Monzonite; biotite hornblende over whole length. Increasing hornblende towards bottom of hole. Patchy R -feldspar alteration associated with K -spar aplite dikes and pegmatite dikes which cut section. 22'to 40° minor chalcopyrite with trace pyrite or bornite, 40 to 110^{\prime} abundant bornite and chalcopyrite, 110 to 152^{\prime} minor chalcopyrite with trace bornite, 152 to 256° occasional copper sulfide. Best grade sections due to sulfides on close spaced fractures.
Hole No. 10	Northing 13+00S Easting 16+00E Bearing 035 degrees
Inclination -45	degrees Length 300 ft. $91.44 \mathrm{~m} . \quad$ Core Size AQ
Footage	Description
0- 32.	Overburden
32-76'	Monzonite; biotite hornblende, patchy R-feldspar alteration, aplite and syenite dikes
76-117'	Syenite: fine to medium grained, 10\% hornblende and 58 secondary biotite
117-139 ${ }^{\circ}$	Monzonite; biotite hornblende, patchy K -feldspar alteration, aplite and pegmatite dikes
139-154'	Syenite dike
154-214'	Monzonite as 117-139 ${ }^{\circ}$
214-224'	Monzonite; hornblende strongly altered to aegirine
224-250 ${ }^{\circ}$	Monzonite as above but alteration weaker
250-300 ${ }^{\circ}$	Monzonite; hornblende
	Chalcopyrite and pyrite occur in small amounts through length of core on sparse fractures coated with epidote and chlorite. Traces of disseminated fine grained chalcopyrite and pyrite occur in syenite dikes.

coated fractures at 0.5 to $3^{\prime \prime}$ intervals

Hole No.PS-23	Northing 14+40S	Easting 6+40E	Bearing 040 degrees
Inclination -49	Length 52	ft. 15.85 m .	Core Size XRPS
Footage		Description	

0- 52' Monzonite; biotite hornblende, slightly weathered with limonite, epidote and chlorite coated fractures at 0.5 to $3^{\prime \prime}$ intervals, trace chalcopyrite and bornite on fractures

| Hole No.PS-24 Northing $11+80 S$ | Easting $0+20 \mathrm{~W}$ | Bearing 219 degrees |
| :--- | :--- | :--- | :--- |
| Inclination -67 degrees Length $18 \quad$ ft. 5.49 m. | Core Size XRPS | |
| Footage | Description | |

0- 18' Monzonite; biotite hornblende, slightly weathered moderately K-feldspar altered, cut by numerous syenitic aplite bands, with limonite, epidote and chlorite coated random fractures
Hole No.PS-25 Northing $13+00 S \quad$ Easting $3+00 \mathrm{~W} \quad$ Bearing 231 degrees
Inclination -64 degrees Length $19 \quad$ ft. $5.79 \mathrm{~m} . \quad$ Core Size XRPS
Footage
$0-18^{\circ}$ Monzonite; biotite hornblende, slightly weathered,
strong K-feldspar alteration, malachite and
limonite on random fractures, chalcopyrite
and trace bornite on some fractures

| Hole No.PS-26 Northing $13+00 S$ | Easting $3+00 \mathrm{~W}$ | Bearing 051 degrees |
| :--- | :--- | :--- | :--- |
| Inclination -65 degrees Length 22 | ft. 6.71 m. | Core Size XRPS |

Footage Description
0- 18' Monzonite; biotite hornblende, slightly weathered strong $K-f e l d s p a r ~ a l t e r a t i o n, ~ m a l a c h i t e ~ a n d ~$ limonite on random fractures, chalcopyrite and trace bornite on some fractures

Inclination -90 degrees Length $348 \mathrm{ft}$.106.07 m . Core Size B.Q.
Footage
$0^{\prime}-348^{\circ}$ overburden

Appendix B. ANALYSES BY PLACER DEVELOPKENT LIMITED OF SAMPLES COLLECTED BY D. JENKINS

$P L A C E R D D M E I$ IV C

(VANC OUVE
CEOCHEMICAL DATA LISTING: COL GROUP CHUCHI CU
POL lab data 1|lo:
P7253
ARFA:
$\begin{array}{ll}\text { MAFSNEET NU: } & \text { COL GROUP } \\ \text { VENTURE: } & \\ \text { GEOLOGIST: } & \text { O JLMKINS }\end{array}$
LABPROJFCT NU: 7253
A B OR A TORY)

PLEASE DISTRIBUTE KESULTS TO: D JENKINS \#: LAB \#\#
B. HOLGSON N. GAREAU
"PROPERTY EXAM; PLEASE RUSH;"
"COPY TO AINSWORTH-JENKINS HULDINGS; 330-84U W PENDER ST; VANCOUVER BC;"
"VGC $1 \mathrm{JQ"}$

STANNARD ANALYSIS METHOOS USED BY POL GEOCHEM LAB AKE LISTED BELOW:
ALL RESULTS F:XPKESSEO AS INUICATED IN UNITS CULUIN BELOW AITY EXCEPTIUNS FUK MHIS PRUJECT ARE NUTEO ABUN

REMAPKS: INTERNAL LAB STANUAROS HAVE BEEN INCLUDED FOR REFERENCE. SAMPLE NUMBERS FOLLOWED BY * ARE DUPLISATE ANALYSES.

$\begin{aligned} & \mathrm{MO} \\ & \mathrm{CU} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { UNITS } \\ & \text { PPM } \\ & \text { PPM } \end{aligned}$	$\begin{aligned} & W T . G \\ & 0.5^{\circ} \\ & 0.5 \end{aligned}$	ATTACK USED C HCLC4/HNOB C HCLO4/HNO 3
7. N	PPM	0.5	C HCLUTTHNO3
PB	PPM	0.5	C HCLO4/ HNOL_{3}
CD	PPM	0.5	C. HCLO 4 / HNO 3
NI	PPM	0.5	C HCLO4/HNO3
C.	$P P M$	0.5	C HCLCM/HNO3
AGI	PPM	0.5	C HCLO4/ HNO 3
AU	PPM	10.0	AUUA KECIA
U	PPM	0.25	DIL HNOI3
V	PPM	0.3	
W	PPM	0.5	
F	PPM	0.25	NA2CO3/KNO3 FUSION
$A S$	PPM	0.5	C HCLO4/HNO3
$S B$	PPM	0.5	C HCE/HNO3
n1	PPM	0.5	C HCLOM/IINO 3
MN	PPM	0.5	C HCLO4/HNO3
FE	\%	0.5	C HF: / HCLO4/HNU3/HCL
H,	PPT	0.25	UTL HINT 3 TTCL
BA	$\%$	0.25	C HF/HI/OXALIC
NA	\%	0.5	C HF/HCLO4/HNO3/HCL
K	\%	0.5	C HF/HCLO4/HNU3/HCL
CA		0.5	C HE/HCLO4/HNO3\%HCL
SR	PPM.	0.5	C HF/HCL(14/HNU3/HCL
MG	$\%$	0.5	C HF/ HCLO4/HNU3/HCL
SN	PPM	1.0	$\mathrm{NH}_{4} 1$ FUSIUN
LU	7	1.0	ASR bOO UEC

WEIGH RESDUE

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
GEOCHEMICAL PROGRAM SUPPLEMENT TO THE
GEOLOGICAL REPORT ON THE
COL CLAIM GROUP
(Dated September 30, 1988)
Latitude $55^{\circ} 15^{\prime N}$
Longitude $124^{\circ} 45^{\prime} \mathrm{W}$
NTS 93-N-2 and 93-N-7Omineca Mining DivisionBritish Columbia
For
KOOKABURRA GOLD CORP.203-698 SeymourVancouver, B.C.
By
David M. Jenkins, M.S., F.G.A.C. November l, 1988
Suite 525

Table of Contents

1. SUMMARY 1
2. INTRODUCTION 1
3. GEOCHEMICAL WORK PROGRAM 2
4. GEOCHEMICAL RESULTS 2
5. CONCLUSIONS 10
6. RECOMMENDATION 10
7. COST ESTIMATE 10
8. REFERENCES 12
9. CERTIFICATE 13
Appendices
A. APPENDIX C. GEOCHEMICAL ANALYSES 14
List of Figures
10. FIGURE 11. TOPOGRAPHY AND LOCATION MAP 3
11. FIGURE 12. CONTOURS OF COPPER GEOCHEMICAL ANALYSES 4
12. FIGURE 13. CONTOURS OF ARSENIC GEOCHEMICAL ANALYSES 6
13. FIGURE 14. CONTOURS OF GOLD GEOCHEMICAL ANALYSES 7

1. SUMMARY

Kookaburra Gold Corp. has completed most of the Phase 1 program recommended by the writer in the portion of this report dated September 30, 1988. Road access to the property has been established by 6.5 km of new construction which connects the Germansen-Indata Forestry road to the existing "tote road" between the Lake and the Camp (Figure 11).

A new sample grid was established over part of the area which was anomalous in the Falconbridge surveys conducted during the early 1970's (Figure 11). This work established the presence of gold over large areas of the new grid. The spatial distribution of gold identifies eight multi-station gold anomalies with gold content in soils ranging up to 0.495 ppm . A large number of single sample anomalies of much lessor immediate importance also occur in the gold data.

The combined gold and copper data identify two strong multielement anomalies with lengths of 900 and 1200 metres. The scale of both of these anomalies is such that either one could be the indicator of a viable ore body. A third gold anomaly 500 metres long lacks the coincident copper but is supported by anomalous arsenic in soils. Drilling of these anomalies is recommended for Phase 2 at an estimated cost of $\$ 70,000$.

2. INTRODUCTION

The Col Claim Group was examined by the Author in October of 1987. A geological report was written for Kookaburra Gold Corp. in May of 1988. That report was revised September 30, 1988. In order to satisfy conditions of the option agreement, Kookaburra completed a portion of the Phase 1 program recommended in the initial report. This supplement to my report dated September 30,1988 discusses the work then in progress and is meant to be read in conjunction with that report.

Kookaburra has now opened vehicular access to the claims by means of a newly constructed 6.5 km access road. This new road connects the Germansen-Indata Forestry Road with the "tote road" between Chuchi Lake and the camp on the claims. The junction with the "tote road" is approximately 0.5 km north of the west end of Chuchi Lake and approximately 5 km south of the camp.

This year Kookaburra completed a geochemical soil sampling program. This work was sited over a portion of the Falconbridge sample grid which had been found to be geochemically or geophysically anomalous by the earlier workers. This document describes Kookaburra's work, reports the results and discusses their relevance to the conclusions and recommendations of my report dated September 30, 1988.

3. GEOCHEMICAL WORK PROGRAM

Kookaburra re-established the base line used by Falconbridce but chose to establish metric cross lines at 100 metre intervals. The origins of the two grids are identical but due to different line intervals the cross lines of the two grids are different. Kookaburra sampled every 25 metres along grid lines except where terrain conditions (outcrop, swamp, etc.) prevented acquisition of a sample. In most cases the sample medium collected was "B" horizon soil. A total of 24 line kilometres were sampled and 878 samples were sent for analysis.

Soil samples were shipped to Min-En Laboratories Ltd. in North Vancouver, B.C.. The samples were sieved to separate a minus 80 mesh fraction from which an aliquot was taken for a six element I.C.P. analysis of silver, arsenic, copper, iron, lead and zinc contents. A separate aliquot was taken for geochemical analysis of gold. This aliquot was subjected to aqua regia attack followed by complexing with MIBK reagent. The gold content was determined by atomic absorption spectrometry.

The results were hand posted on plans at $1: 2500$ scale and the results were contoured by John Nebocat, a geologist employed by Kookaburra Gold Corf.. Statistical treatment of the data to establish anomaly thresholds was deemed to be inappropriate because most of the samples were collected in areas previously found to be anomalous. Contour intervals were selected on the bases of inspection of the data and experience of the interpreter.

4. GEOCHEMICAL RESULTS

The analyses for silver, lead, zinc and iron did not provide data Which added materially to the search for economic gold/copper mineralization. With minor exceptions the ranges of analytical values for these elements are narrow or fail to plot in interpretable patterns. These data will not be discussed further. The data are listed in Appendix C. of this document.

The copper data range from less than 10 ppm up to 5213 ppm. Nebocat chose to contour copper values above 250 ppm. An inspection of the data by the author led him to concur with Nebocat's selection of a chreshold as it adequately separates clearly anomalous popuiations of data from background populations.

Figure 12 illustrates contours drawn from the copper data. The 250 ppm contour encloses several regions of anomalous soils. Comparisons with plans from the early work by falconbridge (Figure 5, and Figure 12 of this supplement) show similar regional distributions of copper in the two surveys. There are however differences in details of elemental distribution. Mineralization indicated by the Falconbridge survey, such as that

near drill hole 17, is also obvious in the Kookaburra data set. The projected outcrop of the copper/gold mineralization explored in zone "A" is not clearly indicated by the copper geochemistry in either data set.

Differences in detail between the contour patterns developed on the two data sets are in part artifacts of the contour intervals chosen for the two data sets. They are in part normal variation to be expected between two soil surveys of the same area using different sample grids, samplers, laboratories and analytical techniques.

Nebocat's contouring of the data (Figure 12) does emphasize northwesterly trends in the distribution of copper in soil. His interpretation suggests the presence of five or more bands of soil 25 to more or less 150 metres wide which contain geochemically anomalous copper. These bands of soil are separated by similar width bands in which the soil contains background levels of copper. The azimuth of the various bands ranges from approximately 300° to 330° but is most commonly $315{ }^{\circ}$. Earlier workers identified a very similar azimuth for the strongest fracturing and faulting occurring on the property. A provisional interpretation, subject to a field check, is the anomalous copper in soil represents multiple zones of mineralization related to northwesterly trending faults or fracture zones.

Arsenic in soils ranges only up to 203 ppm above a detection limit of 1 ppm . The arsenic analytical data define only seven weakly anomalous regions and a smaller number of single sample anomalies when contoured at the 30 ppm level (Figure 13). The arsenic data are of value because they provide support for one population of anomalous gold values and provide evidence of zoning within the copper/gold mineralization. The arsenic data will be briefly discussed in conjunction with individual gold anomalies.

It is common practice in the industry for laboratories to report the results of geochemical analyses for gold in parts per biliion and analyses for gold in ores in parts per million or in grams per tonne. The gold analyses for Kookaburra's samples are reported in parts per BILLION in the laboratory report by Min-En Laboratories Ltd. That laboratory report comprises Appendix C of this document. Gold contents in the September 30, 1988 report are reported in parts per MILLION. In the interests of consistency the Min-En analytical values have been converted to parts per MILLION when they are cited in this document or posted on the plans.

The data range for gold is from the detection limit for the method, 0.005 ppm , up to 0.495 ppm . Nebocat chose 0.015 ppm as the threshold between anomalous and threshold populations. An in-

spection of the gold contour patterns (Figure 14) shows clearly that the 0.015 ppm contour separates large areas of near detection limit gold values from several coherent anomalous regions. A total of eight anomalous regions, numbered 1 thru 8, are defined by the spatial distribution of three or more anomalous sample stations. Approximately 20 one or two station anomalies also appear in the data.

Five of the numbered gold anomalies comprise important exploration targets which warrant follow up drilling during Phase Two of the exploration program. These anomalies, 1 to 4 and number 7 , are identified on Figure 14 and are discussed briefly in following paragraphs. Anomaly number 6 is also discussed briefly in a following paragraph. Anomaly numbers 5 and 8 are only marginally anomalous and are not discussed further in this document.

Anomaly No. 1 (Figure 14) is 900 metres long and up to 75 metres wide as contoured by Nebocat. Gold contents of the soil range up to 0.250 ppm (approximately a quarter of a gram/tonne) in the north-western half of the anomaly. The gold values are 0.015 and 0.020 ppm on the last four lines to the southeast. In the northwestern part of the anomaly higher gold contents define two parallel trends separated by weakly anomalous or background levels of gold.

Copper provides strong support for gold anomaly no. 1. Anomalous copper contents occur in soils for 800 metres of the 900 metre long gold anomaly. There is not a simple one to one relationship between the distribution of gold and copper as the higher gold values on the southwest side of the anomaly are not coincident with anomalous copper contents in soil.

The strongly anomalous gold content, support by the copper data and large dimensions of gold anomaly no. 1 make it an important exploration target.

Gold anomaly no. 2 (Figure 14) is defined by analyses of samples from three grid lines. The analyses range up to 0.495 ppm slightly less than 0.5 gram/tonne). Anomaly no. 2 has dimensions of at least 200 metres long and on the order of 125 metres at its widest point. Only one line with background gold values separates anomaly no. 2 from anomaly no. 3. If for any of several common reasons the data from this line do not truly represent the gold content of underlying rocks then the gold bearing feature indicated by anomalies two and three could have a length in excess of 500 metres. A similar argument can be made for including anomaly no. 7 with anomalies 2 and 3 to give a combined length in excess of 800 metres.

The copper data provide strong support for the gold values in anomaly no. 2 in that most of the anomalous gold values in that
anomaly are coincident with anomalous copper contents. It can be concluded that anomaly no. 2 probably represents underlying gold/copper mineralization.

The distribution of copper adjacent to gold anomaly no. 2 suggests that there is continuity not only with gold anomaly no. 3 to the southeast but also with gold anomaly no. 7 to the northwest.

Gold anomaly no. 3 (Figure 14) is defined by anomalous gold data on three lines, 1 East to 3 East. The anomalous region has a width on the order of 75 metres. Gold content of soil in this anomaly ranges up to 0.160 ppm in the Kookaburra data set. The northwest end of the gold anomaly is also anomalous in copper. The geochemical data do not indicate copper support for the anomalous gold values on the southeastern most line of this anomaly. This is however only 60 metres distant and along strike from the northwest end of Zone "A" copper/gold mineralization as intersected in Falconbridge's drill holes.

Gold anomaly no. 3 from the Kookaburra data set is probably an extension of Falconbridge's Zone "A" copper/gold mineralization. If this interpretation is correct the zone of copper/gold mineralization indicated by the combination of the three named gold anomalies, numbers 2,3 and 7 , and the drilling in Zone "A" has a minimum length in the order of 1200 metres.

Gold anomaly no. 4 as contoured by Nebocat is defined by anomalous gold geochemistry on five lines. The maximum width of the anomaly is approximately 100 metres. The anomalous gold values range up to a maximum of 0.180 ppm . The most anomalous gold values on each line define a linear trend bearing 308°.

Copper data do not support this anomaly. There is support for the gold anomaly in the form of anomalous arsenic values. Three of the most anomalous arsenic values found in this survey are associated with this anomaly and the most anomalous arsenic value determined in the survey is only one station removed from the anomalous gold region.

The very linear aspect of this gold anomaly suggests a strong structural control. The virtual absence of anomalous copper and presence of anomalous arsenic suggests that this anomaly is fundamentally different from the previously described gold/copper anomalies. Based on observed spatial relationships between copper, arsenic and gold in the Kookaburra data set, this difference in geochemical signature is probably related to zoning within the mineralizing hydrothermal event rather than a second mineralizing event. This anomaly warrants at least one drill hole in Phase Two exploration.

Anomaly number 6 ranges up to 0.180 ppm of gold in the several
anomalous samples collected on lines 3 West and 4 West. The data suggest a width on the order of 25 to 50 metres for this anomaly. There is strong support for the anomalous gold data in the copper data. All of the anomalous gold values are coincident with anomalous copper. This anomaly, at least in part, is due to the copper/gold mineralization intersected in drill hole 17 which was discussed under the heading MINERALIZATION in my report of September 30, 1988.

5. CONCLUSIONS

The new geochemical data collected by Kookaburra on the Col claims has identified a number of important exploration targets which provide a much sharper focus for continued exploration.

At least two of the multi-element anomalies are large enough and intense enough to be the signatures of two separate ore bodies.

The work has considerably enhanced the value of the property as an exploration play with potential for eventual commercial production.

The drilling program proposed for Phase two is warranted on the basis of exploration results to date.

6. RECOMMENDATION

It is recommended that Kookaburra proceed with Phase Two drilling program. Five drill hole are recommended for the sites illustrated on Figure 14 in order to explore the indicated geochemical anomalies. Actual site locations are to be selected by the project geologist after an inspection of the anomalies in the field.

Contingent on obtaining favorable results in Phase Two further drilling is recommended as a third phase of exploration. Phase Three will require at least 2000 metres of drilling.

7. COST ESTIMATE

Phase Two
Site preparation \$4,000.00
Drilling (500 metres @ $\$ 80 / \mathrm{m}$) $40,000.00$
Mobilization and demobilization 4,000.00
Assays
Food ($\$ 30 /$ day for 150 mandays) 4,500.00
Geologist (1.5 months @ $\$ 3,500 /$ month) $5,250.00$
Assistant (1.5 months @\$2,500/month) 3,750.00
Fuel
1,000.00
Freight 250.00
Supplies 500.00
Camp supplied by drillers 00.00

Communication	250.00
Transportation	$\$ 7 \frac{1}{0} 000.00$
Total Phase Two	$\$ 7000$

Phase three which is contingent on favorable results being obtained in Phase Two will require funding in the amount of $\$ 280,000.00$.

Wacern
David M. Jenkins

8. REFERENCES

Jenkins, David M., 1988, Geological Report On The Col Claim Group (revised September 30, 1988); unpublished report for Kookaburra Gold Corp., 40pp.

Nebocat, John, October 27, 1988, Personal communication of details of Kookaburra Gold Corp.'s exploration program and results.

I, David M. Jenkins of the Township of Langley, Province of British Columbia hereby certify as follows:

1. I am a geologist residing at 9820, $216^{t h}$ Street, Langley, B.C. and am employed by Ainsworth-Jenkins Holdings Inc., with an offire at 525, 890 West Render Street, Vancouver, B.C..
2. I am a Fellow of the Geological Association of Canada. I am registered as a Professional Geologist in the state of South Carolina. I graduated with a B.A. in geology from the University of South Florida in 1963. I was granted an M.S. degree in geology from the University of Florida in 1966. Subsequently I was enrolled in a Ph.D. program at the University of Cincinnati between 1967 and 1970.
3. I have practiced my profession continuously since 1970. I was employed by the Exploration Division of Placer Development Limited from 1970 to 1986 in mineral exploration in Canada, United States of America, all of the Central American countries, Colombia and Suriname.
4. I am the author of this report which is based on published and unpublished reports and examinations of the subject claims on the $23^{r d}$ of October 1978.
5. I have neither an interest, direct or indirect, in the property discussed in this report or in the securities of Kookaburra Gold Corp. nor do I expect to receive any.
6. I consent to the use of this report to satisfy the Stock Exchange and Securities Commission requirements.

Dated at Vancouver, B.C. this 1st day of November 1988.

David M. Jenkins, frS., F.G.A.C. Ainsworth-Jenkins Holdings Inc. Geologist

Appendix A. APPENDIX C. GEOCHEMICAL ANALYSES

2080	. 6	7	198	29930	1331	5	7+00	0+50 S
2081	. 7	7	158	45570	1783	5	$7+0011$	0+75s
2082	. 6	2	31	34250	1261	10	$7+00 \mathrm{I}$	$1+00 \mathrm{~s}$
2083	. 7	8	80	49620	1261	5	$7+00$ K	$1+25 \mathrm{~s}$
2084	. 6	10	233	40550	1749	5	$7+00 \mathrm{O}$	$1+50 \mathrm{~s}$
2085	. 5	4	72	38080	1346	5	$7+00 \mathrm{I}$	1+75 S
2086	. 6	7	19	28530	1333	5	$7+00 \mathrm{~W}$	$2+00 \mathrm{~s}$
2087	. 7	27	123	42110	1358	5	$7+00$	$2+25 \mathrm{~s}$
2088	. 9	39	220	63130	2064	5	$7+00$	$2+50 \mathrm{~S}$
2089	. 8	34	2097	31090	2359	5	$7+00$:	2+75 S
2090	. 8	11	113	39790	1960	5	$7+00$ W	$3+00 \mathrm{~s}$
2091	. 8		168	59310	2182	10	$7+00 \mathrm{~K}$	$3+25 \mathrm{~s}$
2092	. 7	3	42	41030	1240	5	$7+00$:	$3+50 \mathrm{~s}$
2093	1.0	28	234	69290	2675	5	$7+001$	3+75 S
2094	1.0	23	358	52170	2888	5	7+00	$4+00 \mathrm{~S}$
2095	. 8	4	52	51510	1460	5	$7+00$ \#	$4+25 \mathrm{~S}$
2096	. 7	1	11	35670	1555	5	7+00	$4+50 \mathrm{~s}$
2097	. 7	6	11	35650	1242	5	7+00	$4+75 \mathrm{~s}$
2098	. 6	1	105	30980	1140	5	7+00 1	$5+00 \mathrm{~S}$
2099	. 7	2	57	32260	1135	5	$5+00 \mathrm{~s}$	$6+7511$
2100	. 6	3	21	36050	1187	5	$5+00 \mathrm{~S}$	$6+50 \mathrm{I}$
2101	. 6	1	8	31510	1136	5	$5+00 \mathrm{~S}$	$6+25$
2102	. 6	2	59	28350	1833	10	$6+0011$	$5+00 \mathrm{~s}$
2103	. 7	5	60	48770	19138	5	$6+0011$	$4+75 \mathrm{~s}$
2104	. 7	1	17	43440	1758	10	$6+0011$	$4+50 \mathrm{~s}$
2105	1.0	16	14	64930	17102	5	$6+00 \mathrm{I}$	4+25 S
2107	1.2	25	326	71010	24114	5	$6+0011$	3+75 s
2108	1.0	31	512	65630	2483	5	$6+00 \mathrm{~V}$	3+50 S
2109	1.1	21	187	60370	2495	5	$6+00$	$3+25 \mathrm{~s}$
2110	. 7	2	125	42350	1567	5	$6+0011$	$3+00 \mathrm{~s}$
2111	1.1	22	157	71060	26110	5	$6+00$ V1	$2+75 \mathrm{~s}$
2112	. 8	8	787	11440	2597	10	$6+0011$	$2+50 \mathrm{~S}$
2113	. 9	37	1739	37160	2073	5	$6+0011$	$2+25 \mathrm{~s}$
2114	. 8	30	339	50950	2166	10	$6+001$	$2+00 \mathrm{~s}$
2115	. 7	12	283	31570	1263	5	$6+0011$	1+75 s
2116	. 9	-	313	51170	1970	5	$6+0011$	$1+50 \mathrm{~s}$
2117	1.1	35	224	68560	2182	5	$6+00 \mathrm{H}$	$1+25 \mathrm{~s}$
2118	. 1	3	6	28810	1225	5	$6+0011$	$1+00 \mathrm{~s}$
2119	. 7	11	99	47220	$15 \quad 51$	5	$6+001$	$0+75 \mathrm{~s}$
2120	. 9	25	180	73320	2371	5	$6+001$	0+50 S
2121	. 8	2	86	32970	1333	60	$6+0011$	0+25 s
2122	. 8	3	368	33340	2146		$6+00$ V	0+25
2123	. 1	11	513	26750	2345	5	$6+0011$	O+50 1
2124	. 8	6	48	46580	1451	10	$6+00$ \}	0+75 1
2125	. 8	1	84	39940	1752	5	$6+0011$	$1+00 \mathrm{~N}$
2126	. 8		129	40020	1650	5	$6+00$ \#	$1+25$ M
2127	. 7	1	83	45090	1586	5	$6+0011$	$1+50 \mathrm{n}$
2128	. 9	1	259	61170	1578	5	$6+0011$	$1+75$ \#
2129	. 7	3	44	43400	3054	5	$6+0011$	$2+00 \mathrm{~N}$
2130	. 8	8	40	32710	1242	10	$6+0011$	$2+25 \wedge$
2131	. 8	7	56	41170	1237	5	$6+0011$	$2+50 \mathrm{~N}$
2132	1.2	19	307	10300	2193	5	$6+00$ II	$2+75$
2133	1.2	17	416	79980	22113	5	$6+0011$	$3+00 \mathrm{n}$
2134	. 8	1	33	54190	1451	5	$6+0011$	$3+25 \%$
2135	1.2	16	89	73660	1795	10	$6+0011$	$3+50 \mathrm{n}$

2136	. 8	11	11	42760	17	58	5	$6+00 \mathrm{~N}$	3+75 N	
2137	1.1	19	59	80060	18	78	5	$6+00 \mathrm{~N}$	$4+00 \mathrm{~K}$	
2138	. 8	6	52	49170	15	69	5	$6+00$ \#	4+25 N	
2139	. 7	12	23	34030	15	45	5	$6+00$ \#	$4+50 \mathrm{I}$	
1113208	.	9	267	55100	31	18	10	$6+00$ -	1+75	
$\because 1$.	.	:	$\because:$	diais	:	j5	\%	icisi	5+3	
2142200	1.0	10	489	47880	21	11	5	$6+50 \mathrm{~W}$	$5+00$	
214320N	. 9	17	412	41030	27	67	5	$6+25$ \#	5+00	
214420M	. 1	6	156	32480	16	42	5	$6+00$ W	5+00	
214540M	. 6	9	129	30100	86	47	5	$5+75$ II	5+00	
2146	. 6	10	30	40680	13	54	150	$5+50$ II	$5+00$	
2147	. 8	14	27	45300	20	66	5	$5+25$	5+00	
2148	. 1	1	21	37650	20	58	5	$5+00$ \#	5+00	
214940M	. 8	19	689	57780	13	83	10	$4+75$	5+00	
2150	. 1	10	42	33310	16	59	5	4+50	$5+00$	
2151	1.0	9	113	42700	24	63	5	4+25	5+00	
2152	. 9	8	126	40350	20	55	5	$4+00$ V1	$5+00$	
2153	1.0	9	202	47360	22	67	5	$3+75$ \#	$5+00$	
2154	. 9	9	352	45560	23	61	10	$3+50 \mathrm{~V}$	$5+00$	
2155	. 9	16	203	44950	17	74	5	$3+25$ \|		$5+00$
2156	. 8	19	260	13630	14	49	10	$3+00 \mathrm{~N}$	$5+00$	
2157	1.2	37	190	81280	16	88	5	$3+75$ V	$5+00$	
2158	. 7	6	19	36260	16	56	10	$2+50$ V	$5+00$	
2159	. 6	1	29	25960	12	31	5	$2+25$ \#	$5+00$	
2160	. 1	2	80	45480	15	39	5	$2+00$ W	$5+00$	
216120M	1.0	16	477	45130	23	63	5	$1+75$	$5+00$	
2162	. 8	10	110	55920	16	82	5	$1+50$	$5+00$	
2163401	. 7	10	193	42920	17	42	5	$1+25$	$5+00$	
2164401	1.3	17	775	55670	28	72	5	1+00 \%	$5+00$	
2165	. 7	1	48	43850	16	69	10	$0+75$	$5+00$	
2166	. 8	11	11	46090	12	64	5	$0+50$	$5+00$	
2167	1.2	17	98	11840	19	132	5	$0+25$ \%	$5+00$	
2168	. 7	11	36	37310	11	51	5	$0+00$ N	$5+00$	
216940M	. 8	1	87	52620	13	66	5	$0+258$	$5+00$	
2170	. 6	6	10	30120	11	34	5	$0+50$ E	$5+00$	
2171	. 8	10	30	43260	11	63	5	0+75 E	$5+00$	
2172	. 6	3	15	33790	17	45	10	1+00 E	$5+00$	
2173	. 7	5	85	33640	14	35	5	$1+25$ B	$5+00$	
2174	. 7	14	95	36700	15	47	10	$1+50 \mathrm{E}$	$5+00$	
2175	. 8	10	96	41470	15	47	10	$1+75$ B	$5+00$	
217640M	. 8	12	161	11340	20	52	5	$2+00$ B	$5+00$	
2177	. 8	9	104	40040	18	51	5	$2+25$ B	$5+00$	
217840M	. 6	2	96	28020	10	50	5	$2+50 \mathrm{E}$	$5+00$	
2179	. 6	2	54	30840	18	40	5	$2+758$	$5+00$	
2180	. 6	6	32	30570	12	46	5	$3+00$ E	$5+00$	
2181	. 9	6	21	25250	11	50	5	$3+25$ B	$5+00$	
2182	. 1	2	24	29040	14	41	5	$3+50$ E	$5+00$	
2183	. 8	10	35	28690	18	39	5	$3+758$	$5+00$	
2184	. 7	1	8	19150	14	23	40	$4+00$ E	$5+00$	
2185	. 8	2	52	44630	15	96	5	4+25 B	$5+00$	
2186	. 7	1	27	32790	10	35	10	$4+50$ E	$5+00$	
2187	. 7	7	67	48540	13	61	5	$4+75$ B	$5+00$	
2188	1.0	1	40	40330	17	46	5	5+00 E	$5+00$	
2189	1.3		84	18670		120	5	$5+25$ B	$5+00$	
2190	. 9	9	173	19160	15	92	5	$5+50 \mathrm{~B}$	5+00	

219:	1.88	85	57920	21100	5	5+75	5+10 11	
2198	. 3 :	123	51920		.	$6+303$	5 $+50!$	
2193	. 912	134	45160	22140	5	$6+25$ E	$5+00 \mathrm{~N}$	
2194	1.013	215	52200	24 7?	;	6 6 +50	5-60 !1	
2195	. 10	64	37300	1439	J	6.75 三	$5+00 \mathrm{~N}$	
2196	. 810	107	49530	1837	15	7+00 :	5-00 1	
2197	. 3	:40	44080	17 57	10	$7+25$ E	$5+001$	
2198	1.021	158	67500	2381	5	$7 \cdot 50$ \&	5+02 : 8	
2199	:.3 17	121	65680	17167	5	7-75 E	5+00 K	
2200	.7	42	384:0	:546	j	3+00 E	$5+0081$	
2301	. 6	:6	28630	1732	10	$8+25$ E	$5+00 \times$	
2202	. 6	10	32960	$13 \quad 35$	5	$3+50$ E	$5+001$	
2203	. 67	52	32660	1528	;	8+75 :	$5+00 \mathrm{n}$	
2204	.7 : 3	322	34740	2246	5	9+00 E	$5+00: 1$	
2205	.63	55	33420	:5 43	10	$3+2 \mathrm{E}$ E	$5+60 \\|$	
2206	.87	86	45680	14 53	5	9+50 E	$5+80$	
2207	. 86	59	39080	1940	5	9.75 :	$5+20$	
2208	.	32	28060	$15 \quad 51$	5	0000	$5+30 \mathrm{~s}$	
2209	. 74	8	29380	1759	5	$3+00$ E	$4+75$ s	
2210	. 6	39	35410	$16 \quad 54$	5	$0+02 \mathrm{z}$	4+50 §	
2211	1.16	198	43130	2192	,	0+90 E	$4+258$	
2212	. 3.4	276	39460	16 50	10	O+00 E	$4+30 \mathrm{~s}$	
2213	. $9: 4$	940	48040	2251	10	O+DC E	i+i5	
2314	. 73	122	41490	1748	200	0+30 E	i+50 S	
21540.	. $8: 12$	1436	32970	1953	5	0+00 E	3+25s	
221620M	. 45	617	2158	$12 \quad 33$	5	O+COE	$3+70 \mathrm{~s}$	
2219	. 51	58	46410	$13 \quad 48$	5	cobe E	$2+75 \mathrm{~s}$	
2218	.7 10	53	56930	1354	10	0-30 E	$2+50 \mathrm{~s}$	
2215	. 66	49	4:200	1136	5	0.00 E	$2+25 \mathrm{~S}$	
2220	. 66	102	38900	1819	5	0+20 E	$2+30 \mathrm{~S}$	
222!	. 88	355	55900	1589		0+00 E	$1+758$	
2222	. 72	326	51500	16 30	j	0+30 E	$1+50 \leqslant$	
2223	. 95	414	49550	2294	5	0+00 E	$1+25 \mathrm{~s}$	
2224	. 1	27	31490	113	95	3+00	1+30	
2225	$\therefore .114$	432	61880	2193	10	$6+00$:	6+75 s	
2226	. 313	379	46940	1943	25	$0+005$	3+50 S	
2227	. 310	289	43660	$16 \quad 35$	80	$0+008$	0+25s	
2228	. 3	316	$\bigcirc 0320$	18	5	j+00:	0+25 E^{5}	
22.29	. 5	72	36:40	1943	5	$0+0081$	0+5C E	
223049 M	. 20	1233	70380	3238	19	3+0. ${ }^{1}$	3475 E	
223120\%	14	485	3680	1181	5	$0+00 \mathrm{E}$	$1+05$ E	
2232	.	68	38440	$\therefore \quad 43$	40	$0+03: 1$	1+25 5	
2233	. 7	10	51370	1431	5	$0+00: 1$	1+50	
2234	. 15	155	58000	17 5:	\therefore	$0+30.1$	$1+758$	
2235	. 78	105	49670	1747		9+00 !	$2+00$ E	
2236239	1.124	1682	50210	2480	;	3+30:11	2+25 3	
22.37	. ${ }^{\text {a }}$	167	38270	1249	5	0+05!	$2+505$	
223819 M	1.020	970	49330	2460	5	$0+00 \mathrm{~N}$	$2+758$	
2239	. 71	53	24200	1236	5	$0+00 \mathrm{~N}$	$3+00 \mathrm{E}$	
2240	.6 1	13	39430	1433	;	$0+00 \mathrm{~N}$	3+25	
2241	1.011	19	41380	2231	10	$0+00: 1$	$3+50$ E	
224249 M	. 813	33	33510	1333	5	$0+00.1$	3-758	
22:340\%	. 7	127	26940	1943	5	0.00 li	$4+008$	
2244	. 814	356	35990	$23 \quad 56$	5	$0+30 \mathrm{st}$	$4+25$ E	
2245	. 810	716	37450	$24 \quad 53$	5	O+OC 1	$4+50 \mathrm{E}$	

2301	1.1	13	181	34820	25	54	5	$9+008$		$1+25$ \\|
2302	1.1	32	772	65900	30	79	5	$9+00 \mathrm{~B}$	B	$1+00$ \
2303	1.0	12	225	47560	13	65	5	$9+008$	8	0+75 N1
2304	. 9	2	36	20810	18	21	10	$9+00 \mathrm{~B}$	8	0+50 1
2305	. 8	11	25	51450	12	33	5	$9+00$ B	B	0+25 1
2307	1.0	13	36	78320	20	73	5	$8+00$	B	0+50 11
2308	. 7	1	15	10020	10	39	5	$8+00$	8	0+75 11
2309	. 9	10	147	37170	19	51	10	$8+00$	8	$1+00$ \|
2310	. 8	13	332	39740	20	53	5	$8+00$	B	1+25 1
2311	1.0	18	285	18490	16	67	5	$8+00$	8	1+50 \%
2312	1.0	44	1257	43860	27	75	5	$8+00$	8	1+75 N
2314	1.0	35	594	54210	26	66	10	$8+00$	B	$2+25$ \#
2315	1.0	19	158	56170	19	66	10	$8+00$	B	$2+50 \mathrm{~N}$
2316	. 8	4	34	33770	17	37	5	$8+00$	B	$2+75 \mathrm{~N}$
2317	. 9	11	232	41460	21	47	20	$8+00$	B	$3+00 \mathrm{~N}$
2318	. 7	6	108	30400	11	34	5	$8+00$	B	$3+2511$
2319	. 8	11	148	44300	16	38	5	$8+00$	B	$3+50 \mathrm{~N}$
2320	. 8	8	71	42920	11	53	5	$8+00$	B	3+75 1
2321	1.0	12	60	42100	17	51	5	$8+00$	B	4+00 N
2322	. 9	15	255	48810	18	50	5	$8+00$	B	$4+25$ N
2323	. 9	11	164	13590	13	46	5	$8+00$	E	4+50
2324	. 9	12	48	46700	21	79	10	$8+00$	B	4+75 11
2325	. 9	9	114	16870	16	62	30	7+00	E	4+75 N
2326	. 8	7	21	35830	17	56	5	$7+00$	B	$4+50 \mathrm{~N}$
2327	. 9	15	170	49060	15	48	5	$7+00$	E	$4+25 \mathrm{~N}$
2328	1.4	24	279	66420	18	94	5	7+00	B	4+00 N
2329	1.0	9	39	43730	15	71	15	7+00	B	$3+75 \mathrm{~N}$
2330	. 8	7	43	35550	11	51	70	7+00	E	3+50 N
2331	. 8	4	45	11060	12	63	5	$7+00$	B	3+25 N
2332	. 8	10	98	14550	20	56	200	$7+00$	E	$3+00 \mathrm{~N}$
2333	1.3	15	232	15020	24	61	5	$7+00$	E	$2+75 \mathrm{~N}$
2334	1.1	13	147	37480	17	48	5	$7+00$	B	$2+50 \mathrm{~N}$
2335	. 9	19	127	40320	16	55	5	$7+00$	B	$2+25 \mathrm{~N}$
2336	. 9	6	84	25870	14	35	5	$7+00$	B	$2+00 \mathrm{~N}$
2337	. 7	4	28	34970	13	46	5	$7+00$	B	1+75 N
2338	1.0	15	188	48100	13	46	10	$7+00$	B	$1+50 \mathrm{~N}$
2339	. 8	1	45	41890	13	62	5	$7+00$	B	$1+25 \mathrm{~N}$
2340	. 8	11	131	43650	13	44	5	$7+00$	B	$1+00 \mathrm{~N}$
2341	. 9	10	28	46760	15	67	5	$7+00$	B	0+75 N
2342	. 9	26	460	53540	15	46	5	$7+00$	B	0+50 1
2343	. 7	4	15	34440	12	32	5	$7+00$	B	0+25 N
2344	. 8	7	97	42290	10	57	15	$6+00$	B	0+25 11
2345	. 7	5	50	33400	13	30	5	$6+00$	B	0+50 N
2346	. 6	1	36	27200	10	31	5	$6+00$	B	0+75 11
2347	. 8	13	40	42340	12	78	5	$6+00$	B	$1+00 \mathrm{~N}$
2348	1.0	50	298	56500	23	135	10	$6+00$	B	1+25 11
2349	. 8	7	50	18460	10	87	5	$6+00$	B	$1+50 \mathrm{n}$
2350	. 8	19	308	40090	15	57	5	$6+00$	B	$1+75$ ¢
2351	. 8	11	64	47170	13	60	5	$6+00$	B	$2+00 \mathrm{n}$
2352	. 8	8	187	42720	13	67	5	$6+00$	B	$2+25$ K
2353	. 6	1	25	35360	11	12	5	$6+00$	B	$2+50 \mathrm{~N}$
2354	1.1	11	205	68320	23	132	5	$6+00$	B	$2+758$
2355	. 7	12	235	40090	14	59	5	$6+00$	\&	3+00 1
2356	1.0	16	135	67120	18	122	5	$6+00$	B	$3+25 \\|$
2357	1.0	13	149	54560	17	105	10	$6+00$	8	$3+50$

2358	. 9	7	110	49560	16	78	5	$6+00$ E		$3+75 \mathrm{~N}$	
2359	. 8	1	76	41370	11	46	5	$6+00$ E		$4+00 \mathrm{~N}$	
2360	1.0	11	72	53730	21	80	5	$6+00 \mathrm{~B}$		$4+25 \mathrm{~N}$	
2361	. 9	22	65	59810	23	82	5	$6+00$ B		$4+50 \mathrm{~N}$	
2362	. 9	3	55	55340	26	74	145	$6+00$ E		$4+75 \mathrm{~N}$	
2363	1.1	10	9	41910	20	74	5	$5+00 \mathrm{E}$,	4+75 N	
2364	1.1	18	145	64960	26	127	5	$5+00$ E		$4+50 \mathrm{~N}$	
2365	. 9	8	155	53930	19	65	5	$5+00$ E	8	$4+25 \mathrm{~N}$	
2366	1.0	16	117	59660	20	69	5	$5+00$ E	E	$4+00 \mathrm{~N}$	
2367	1.1	10	175	56770	24	85	5	$5+00 \mathrm{~B}$	B	$3+75$ N	
2368	1.2	32	374	69160	18	110	5	$5+00 \mathrm{~B}$	\&	$3+50 \mathrm{~N}$	
2369	. 9	13	171	55510	24	74	5	$5+00$ E	8	$3+25$ N	
2370	. 8	3	267	47540	22	100	5	$5+00 \mathrm{~B}$	B	3+00 N	
2371	. 8	7	168	48540	16	80	5	$5+00 \mathrm{~B}$	B	2+75 N	
2372	. 6	1	71	29660	14	34	5	5+00 E	E	2+50 N	
2373	. 6	5	90	36790	20	44	5	$5+008$	8	$2+25$ N	
2374	. 6	2	156	33680	8	46	5	$5+00 \mathrm{~B}$	8	$2+00 \mathrm{~N}$	
2375	. 6	1	133	30860	12	29	5	$5+00 \mathrm{~B}$	B	1+75 N	
2376	. 8	14	490	47780	20	79	5	$5+00$ B	\&	$1+50$ N	
2377	. 6	1	53	30950	10	36	5	$5+00$ B	B	$1+25$ N	
2378	. 6	2	150	37340	25	36	335	$5+00$ 8	B	1+00 N	
2379	. 1	10	279	39450	20	51	5	$5+00$	B	0+75 N	
2381	. 8	14	380	35530	18	61	5	$5+00$ B	E	0+25 \$	
2382	. 7	11	120	39070	13	65	5	$4+00$ B	B	4+75 N	
2383	. 1	11	86	37160	18	88	5	$4+00$	8	4+50 N	
3384	. 8	12	146	51420	22	82	10	$4+00$	E	1+35	
2385	. 6	8	97	33410	12	56	5	$1+60$	R	$1+00$ K	
2387	. 6	3	22	33490	15	36	5	$4+00$	B	$3+50 \mathrm{~N}$	
2388	. 6	1	47	28350	11	31	5	$4+00$	E	$3+25$ N	
2390	. 5	1	39	36320	10	27	5	$4+00$	B	$2+75$ N	
2391	. 6	5	71	28720	11	36	5	4+00	E	$2+50$ N	
2392	. 5	1	31	29140	8	27	5	$4+00$	B	$2+25$ N	
2393	. 6	8	203	37670	18	41	5	$4+00$	E	$2+00$ N	
2394	. 7	16	430	38960	17	45	5	4+00	B	$1+75$ N	
2395	. 1	14	410	42670	18	54	5	$4+00$	B	$1+50 \mathrm{~N}$	
2396	1.0	6	46	30320	20	58	5	4+00	B	$1+25$ \\|	
2397	1.1	12	434	49230	26	61	5	$4+00$	8	$1+00 \mathrm{~N}$	
2399	1.1	26	756	56150	27	85	5	4+00	B	0+50 11	
2401	. 9	17	121	36000	16	45	5	$3+00$	B	0+25 N	
2402	. 8	3	22	33060	12	37	5	$3+00$	B	0+50 N	
2403	. 8	17	38	38930	16	40	5	$3+00$	B	0+75 N	
2404	. 9	13	62	41260	12	38	5	$3+00$	B	1+00 N	
2405	. 8	15	45	45180	15	55	40	$3+00$	8	1+25 \}	
2406	. 8	1	124	42240	11	43	5	$3+00$	B	$1+50$ \\|	
2407	. 8	6	88	38610	13	41	5	3+00	B	$1+75$ N	
2408	. 9	14	116	45340	16	68	5	$3+00$	B	$2+00 \mathrm{~N}$	
2409	1.1	32	860	66750	29	106	15	$3+00$	B	$2+25$ N	
2410	. 8	9	72	45640	14	58	10	$3+00$	B	2+50	
2411	.9	8	67	47420	16	75	5	$3+00$	E	2+75 N	
2412	. 8	6	38	22570	15	38	5	$3+00$	B	$3+00 \mathrm{~N}$	
2113	1.0	23	377	50340	24	73	5	$3+00$	E	$3+25$ \$	
2414	. 9	12	130	37930	17	10	5	$3+00$	B	$3+50 \mathrm{~N}$	
2415	. 8	11	61	37100	10	46	5	$3+00$	E	$3+75 \mathrm{~N}$	
2416	. 8	6	38	32890	13	43	10	$3+00$	E	$4+00 \mathrm{~N}$	
2417	. 7	7	35	24270	13	46	5	$3+00$	E	$4+25 \mathrm{~N}$	

. 8	5	67	44230	20	$\hat{6}$	J	$3+005$	60 1	
. 9	13	19	53450	i4	94	5	$3+100$	4-75 !	
,	14	172	38540	19	58	5	2.00 E	$4+75 \mathrm{~N}$	
. 3	20	66	35100	$\therefore 3$	52	j	$2+00$ E	$4+5: \mathrm{N}$	
. 8	8	30	28290	13	46	5	2+005	$4+25$!	
.?	1	24	28210	12	38	;	$2+30$ E	$4+00$:1	
. 8	12	45	< 28840	12	46	5	$2+00 \mathrm{E}$	3+75 N	
. 8	! 6	206	34450	:1	52	5	$2+03 \mathrm{E}$	$3+50$!	
. 8	12	98	34620	14	45	5	$2+00$ E	$3+25$!	
.?	2	19	21400	12	1	,	2-90 E	$3+30 \mathrm{~N}$	
. 3	16	48	28490	25	43	10	$\hat{\text { c }}+00 \mathrm{E}$	$2+75 \mathrm{~N}$	
1.0	10	12	31760	i?	43	5	$2+005$	$2+50 \\|$	
1.0	19	195	39810	20	$4 ?$,	$2+005$	$2+25 \mathrm{~N}$	
1.1	10	577	46670	23	62	15	$2+00$ -	$2+00 \mathrm{~N}$	
1.0	18	486	33120	19	47	20	$2+00$ E	1+75 !	
. 8	11	123	34860	17	39	5	$2+00 \mathrm{E}$	- +50 N	
.	1	19	26520	16	28	,	$2+00-$	$1+25 \mathrm{~N}$	
1.0	23	1712	52150	$3:$	78	15	$2+00 \mathrm{E}$	1+30 N1	
. 8	11	551	36970	$1 ?$	44	:5	$2+005$	O+75 N	
1.3	29	$2 \hat{2} 3$	35700	29	63	25	$2+005$	0+50 \%	
1.0	25	971	40720	25	71	J.	$2+00$ E	O+澈 N	
. 7	11	98	32710	16	50	10	1+00	4+75 N1	
. 8	8	45	29040	12	45	5	1-00 E	$4+50$.	
. 8	11	38	43870	19	58	5	$1+008$	4-25 !	
. 7	13	74	34910	16	41	5	$1+00 \mathrm{E}$	$4+00 \mathrm{~N}$	
\therefore	13	83	35610	13	50	? 0	$1+02 \mathrm{E}$	$3+75!$	
. 7	12	54	33050	15	45	5	$1+30$ E	$3+50 \mathrm{~N}$	
. 5	15	88	54490	14	6 ?	3	$1+00$ E	3+25 N	
. 7	?	56	37450	13	43	10	$1+00$ E	3-00 \1	
. ${ }^{\text {a }}$	2	60	31630	13	36	20	$1+005$	$2+-511$	
. 6	8	45	32840	15	42	5	- +00 E	$\hat{2}+50: 3$	
.	6	75	28890	13	46	5	- +00 E	$2+25:$	
	11	223	38670	$1 ?$	53	5	1+00E	$2+00 \mathrm{~N}$	
	12	30	39100	11	4 ?	3	1+1]	2-75 !1	
. 7	2	26	35076	13	44	5	1+50 5	$1+50.2$	
. 8	4	10 ?	39483	15	43	5	$1+30=$	1-25 !	
1.1	$3:$	212	439?0	16	63	10	$1+008$	$1+00$ \#1	
.?	9	113	32680	15	40	5	$\therefore+008$? + 3 !	
. 7	14	190	33970	$1 ?$	45	5	1-0: E	$0+50 \mathrm{~K}$	
. 9	: 4	1805	33920	24	63	5	$\therefore-00 \mathrm{E}$	D+25 1	
. 7	c	1480	$\vdots 300$	24	$5 i$	15	$0+30$ E	0+25 N	
1.0	17	:54	32330	22	43	5	O.035	0+50 !	
. 3	12	205	35300	18	51	5	3+00 5	C+75 N	
1.3	13	343	43500	26	60	3	$0+00$ E	1+0? \|\%	
. 8	\cdots	209	34770	15	52	30	$0+0: 5$	$1+25.8$	
.?	5	37	38670	21	52	5	$0+00$ E	$1+50.1$	
. 8	17	600	43180	24	65	: 5	$0+505$	$1+75$	
. 8	16	147	36240	:	51	5	$0+00 \mathrm{E}$	$2+30.4$	
. 7	10	133	30550	18	42	j	C+00 E	$2+25$ N	
. 7	1	28	30370	10	i1	5	O+03 E	2+50 N1	
. 8	7	113	34640	17	41	5	0+00 E	$2+75$ \$	
. 7	8	71	36740	15	43	j	$0+00$ E	$3+0 . \mathrm{N}$	
. 8	13	57	47848	18	62	\vdots	$3+30 \leq$	$3+25!$	
.	2	53	28010	: 1	3 12	5	$0+90$ E	$3+50 \mathrm{~N}$	
. 7	5	25	32350	16	45	5	$0+00$ S	$3+75$ N	

2492	. 9	29	123	50570	:8	76	5	0+60 E	- +00.1
293	. 8	14	101	47920	21	58	5	$3+30$:	4-25
2194	1.1	10	18?	59930	21	93	5	0+00 E	$4+50$:1
2475	. 7	,	1480	3300	24	53	15	$0+00$ E	0+25 ॥1
2358	1.0	$1 ?$	354	32330	22	43	5	$0+50$ E	O+50 N
2159	. 9	12	205	35300	18	51	J	0+00 E	0+75 N
2400	1.0	18	34.	43500	26	60	5	0+50 E	$1+50 \mathrm{~K}$
2461	. 8	$?$	209	34770	15	52	3	0+09 E	: 225 !
2402	.?	5	37	386? ${ }^{\text {a }}$	21	52	j	0+00 8	$1+50 \mathbb{1 1}$
2465	. 3	17	600	46180	20	39		$\therefore+00 \mathrm{H}$	$3+50$ \#1
2482	. 7	13	32	39710	11	36	5	$1+00$ K	$3+25 \Leftrightarrow$
2483	. 7	10	80	32600	16	46		1+00 K	$3+00 \mathrm{~N}$
2484	. 8	15	209	31550	17	49	5	$1+00$ in	2+75 K
2485	. 8	11	134	57909	20	43		$1+00 \%$	2+50 N
2486	. 1	14	293	36420	23	52	5	$1+00 \mathrm{~K}$	$2+25:$
2487	1.3	14	427	30440	29	43	5	$1+00 \mathrm{~W}$	$2+00 \mathrm{~N}$
2488	1.2	16	916	40510	33	5 ?	20	$1+00 \mathrm{~K}$	1+75 N
2489	. 8	4	708	9890	14	48	15	$1+00 \mathrm{~K}$	$1+50 \mathrm{~N}$
2498	1.2	28	1278	61400	58	80	15	$1+00 \mathrm{~W}$	1+25 N
2491	.?	11	-9	46980	22	44	20	$1+00$ K	$1+00 \mathrm{~N}$
2492	. 8	9	87	45460	19	51	10	1+00	0+75 \#1
2493	. 8	12	218	54280	12	59	15	1+0) W	0+50 II
$2 \div 94$. 7	8	146	48630	15	4	35	! +00 K	0+25 N
2495	. 7	5	29	43710	11	14	5	$2+30$ \%	$4+7511$
2496	\therefore	5	10	34470	13	45	5	$2+50$ K	$4+50 \mathrm{~N}$
2497	.	;	-4	33460	:2	4	;	$2+00 \mathrm{~N}$	$4+25$ N
2499	1.0	11	$3:$	46990	13	72	5	$2+\mathrm{COH}$	$4+0081$
2499	1.3	26	322	53670	24	75	j	$2+30 \mathrm{~N}$	$3+751$
2550	. 6	3	18	27655	14	41	5	$2+10 \%$	$3+50 \mathrm{l}$
2501409	. 5	,	48?	11490	10	60	5	2-00\%	j+25
2502	. 7	21	451	44240	15	55	10	$2+00 \mathrm{~F}$	3+0. 11
2503	. 3	15	343	40140	19	60	5	2-00 \%	$2+75$
2504	. 7	13	249	46190	15	6	5	$2+00 \mathrm{~K}$	2+50 N
2505	. 9	7	938	24510	18	36	5	2+03 W	$2+25:$
2506	. 6	8	134	43690	19	51	5	2000 K	$2+00 \mathrm{~N}$
2507	. 8	10	49	45120	27	79	5	$2+00 \mathrm{~W}$	1-75:
2508	. 8	20	344	29596	41	78	5	$2+00$ "	$1+50 \mathrm{~K}$
2509	. 9	20	271	51120	38	83	5	2-00 W	- +25 :
2513	. 9	21	145	67830	28	81	10	$2+80$ \%	1+00 N
2511	. 8	16	22	39580	12	45	5	$2+30 \mathrm{~K}$	0+75 N
2512	1.1	23	344	71820	20	101	5	$2+00 \mathrm{H}$	0+50 !
2513	. 8	-	114	43700	12	37	5	$2+00 \mathrm{~W}$	0+25
2514	. 3	3	232	29450	12	61	5	$4+50 \mathrm{n}$	$4 \div 75 \mathrm{k}$
2515	. 8	13	110	45030	11	68	5	$4+00$ "	4-50:
2516	. 7	2	223	39170	12	86	5	$4+00 \mathrm{~N}$	$4+25 \mathrm{~N}$
2517	. 9	3	58	44770	23	51	5	$4+00 \mathrm{~W}$	$4+00 \mathrm{~N}$
$25: 8$. 8	7	46	34430	16	51	10	$4+0 \mathrm{CW}$	$3+55 \mathrm{~N}$
2519	. 8	9	21	42170	19	64	-	$4-90 \mathrm{~W}$	$3+5011$
2520	. 7	3	11	38200	14	43	5	S +100	3+25
2521	. 9	9	757	47100	28	65	5	i +00 K	$3+00 \mathrm{~N}$
2522	. 8	?	85	42690	17	61	5	$4+00 \mathrm{~K}$	$2+75 \mathrm{~N}$
2523	.	$?$	95	53030	13	59	5	$4+20$ \%	$2+50 \mathrm{ll}$
2524	1.1	5	73	58740	20	9	5	$4+00 \mathrm{n}$	$2+25$!
2525	. 5	\%	28	35200	16	54	5	4-09 1	$2+90.5$
2566	. 5	!	225	42720	21	80	5	S-00 1	1+75:

2527	． 1	1	29	40810	16	59	5	$4+00 \mathrm{~N}$	$1+50 \mathrm{~N}$	
2528	． 1	12	59	48990	17	73	5	4＋00 II	$1+25 \\|$	
2529	． 6	12	192	12390	19	11	5	$4+00 \mathrm{~N}$	1＋00 N	
2530	． 6	1	14	39740	13	54	10	$4+00$	$0+75$ ॥	
2531	． 8	8	199	39620	16	55	5	$4+00$ II	O＋50 N	
2532	． 8	12	909	39220	19	50	45	$4+00 \mid 1$	0＋25	
2533	． 8	11	254	44790	24	71	5	$4+0011$	0＋25s	
2534	． 7	8	21	48080	11	62		$4+001$	0＋50 S	
2536	． 9	8	273	49530	16	110	5	$4+00$ \＃	0＋75 S	
2537	． 1	6	201	40010	13	56	5	$4+00$	$1+00 \mathrm{~s}$	
2538	． 9	11	262	66620	17	17	5	$4+00$	$1+25 \mathrm{~s}$	
2539	1.1	13	663	58100	28	100	5	$4+00$ V	1＋50 S	
2540	1.1	26	1315	12760	29	117	5	$4+00$	1＋75 S	
2541	1.0	25	1574	58790	32	78	5	$4+00 \mathrm{~N}$	$3+00 \mathrm{~S}$	
2542	． 1	5	138	11690	19	35	10	$4+00 \mathrm{~N}$	$2+25 \mathrm{~S}$	
2543	． 8	13	158	38940	18	44	5	4＋00	$2+50 \mathrm{~S}$	
2544	． 8	3	1178	18500	18	78	5	$4+0011$	2＋75 s	
2545	． 9	19	311	10460	19	114	5	$4+001$	$3+00 \mathrm{~s}$	
2546	1.1	21	1171	64050	25	98	40	$4+001$	3＋25 s	
2547	1.0	17	720	54790	29	116	5	4＋00 V	3＋50 S	
2548	1.0	17	719	57210	15	112	130	4＋00	$3+75 \mathrm{~s}$	
2549	． 7	4	73	33150	11	53	5	$4+001$	$4+00 \mathrm{~S}$	
2550	． 7	4	34	34700	10	51	20	4＋00	4＋25 S	
2551	． 7	5	14	29330	1	33	10	1＋00 1	$4+50 \mathrm{~s}$	
2552	． 1	9	140	34070	9	19	5	4＋00	4＋75 S	
2553	． 7	7	80	50290	12	56	10	$5+0011$	$4+75 \wedge$	
2554	． 1	16	54	38510	12	76	5	$5+00 \mathrm{H}$	$4+50 \mathrm{~N}$	
2555	． 8	11	22	45080	11	63	5	$5+00$ \＃	4＋25	
2556	． 7	10	67	39110	14	79	5	$5+00$ II	$4+00 \mathrm{n}$	
2557	． 8	9	53	11420	14	40	5	$5+00$ V	3＋75 1	
2558	． 8	7	199	11310	13	11	5	$5+00 \mathrm{~N}$	$3+50 \mathrm{~N}$	
2559	1.0	16	617	61820	23	99	10	$5+00$ V	3＋25	
2560	1.2	22	291	71380	17	101	5	$5+00 \mathrm{~N}$	3＋00 N	
2561	1.3	11	116	59700	13	131	5	$5+00 \mathrm{I}$	2＋75 N	
2562	1.1	19	289	71330	28	140	5	$5+00$	$2+50 \mathrm{~N}$	
2563	． 7	6	23	36670	15	37	5	$5+00$ II	$2+25$ 凡	
2564	1.0	26	144	68320	12	93	5	$5+0011$	$2+00 \mathrm{~N}$	
2565	． 8	17	134	51130	17	86	5	$5+00$ II	$1+75$ ॥	
2566	． 8	14	154	51670	17	85	10	$5+00$	$1+50 \mathrm{~N}$	
2567	1.0	17	174	80650	12	89	5	$5+00$	$1+25$ II	
2568	． 6	10	47	45490	20	66	5	$5+00 \mathrm{~K}$	$1+00 \mathrm{~N}$	
2569	． 6	5	32	30280	10	33	5	$5+00$ 『	0＋75 1	
2570	． 8	3	26	37120	14	13	d	$5+00$ \}	O＋50 N	
2571	． 7	2	85	45430	13	10	10	$5+00$	0＋25	
2572	． 8	12	22	42160	27	65	5	$5+00$ II	0＋25 s	
2573	． 8	16	21	41670	15	61	5	$5+00$ \％	0＋50 S	
2574	1.0	1	224	62260	19	98	5	$5+00$ II	$0+75 \mathrm{~s}$	
2575	． 9	18	104	48860	17	59	5	$5+00$ 『	$1+00 \mathrm{~s}$	
2576	． 5	．	808	32990	19	13	5	$5+00$－	1＋25 s	
2571	． 9	33	427	59360	17	61	5	$5+00$ \}	1＋50 S	
2578	． 9	21	441	47690	18	53	15	$5+00 \mathrm{~V}$	1＋75 s	
2579	． 9	13	96	46000	19	16	175	$5+00$ I	$2+00 \mathrm{~s}$	
2580	1.0	15	1645	45870	22	85	10	$5+00 \%$	$2+25 \mathrm{~s}$	
2581	． 7	5	101	29570	17	16	5	$5+00$ 》	$2+50 \mathrm{~s}$	
2583	． 7	3	36	36530	15	57	5	$5+00$ \＃	2＋75 S	

2584	. 7	12	252	38140	12	60	5	$5+001$		$3+00 \mathrm{~S}$
2585	. 8	$1 i$	656	47470	25	80	15	$5+00 \mathrm{H}$		$3+25 \mathrm{~S}$
2587	. 8	15	347	43720	21	68	10	$5+00$		$3+75 \mathrm{~s}$
2588	. 7	12	258	37160	17	50	5	$5+00$ W		$4+00 \mathrm{~S}$
2589	. 7	9	106	36830	11	51	10	$5+00$ H\|		4+25 S
2590	. 7	14	60	35450	13	40	5	$5+00$ \#		$4+50 \mathrm{~S}$
2591	. 7	7	40	34820	15	41	5	$5+00 \mathrm{~W}$		4+75 S
2592	. 7	4	36	33650	16	32	5	$5+00 \mathrm{~S}$		5+75 W
2593	. 7	5	27	32750	12	51	5	$5+00 \mathrm{~S}$		5+50 W
2594	1.0	35	1346	49470	23	77	15	$5+00 \mathrm{~S}$		$5+25$ H
2595	. 7	6	65	31780	15	52	5	$5+00 \mathrm{~S}$		$5+00$ II
2596	. 8	4	82	29520	12	42	5	$5+00 \mathrm{~S}$		$4+75$
2597	. 1	6	12	33750	10	45	5	$5+00 \mathrm{~S}$		$4+50$ \#
2598	. 7	1	9	28040	12	35	5	$5+00 \mathrm{~S}$		$4+25$ N
2599	. 7	5	12	24090	10	47	10	$5+00 \mathrm{~S}$		$4+00 \mathrm{~N}$
2600	. 6	9	15	26820	16	51	5	$5+00 \mathrm{~S}$		$3+75$ H
2601	. 1	11	86	34580	10	39	5	$5+00 \mathrm{~S}$	S	$3+50 \mathrm{~N}$
2602	. 6	2	26	32520	10	40	5	$5+00 \mathrm{~S}$	S	$3+25$ \#
2603	. 7	13	181	35550	13	40	5	$5+00 \mathrm{~S}$	S	$3+00 \mathrm{~N}$
2604	. 1	6	36	36870	10	41	5	5+00	S	$2+75$
2605	. 6	4	18	29330	13	48	5	5+00	S	$2+50 \mathrm{~W}$
2606	. 8	10	206	36040	16	45	5	$5+00$	S	$2+25$ V
2607	. 6	4	82	29400	14	46	5	$5+00$		$2+00 \mathrm{~N}$
2608	. 1	6	184	30230	11	38	5	$5+00$	S	1+75 K
2609	. 6	8	36	29150	13	38	5	$5+00$	S	$1+50 \mathrm{H}$
2610	. 6	4	5	24390	14	31	5	$5+00$	S	$1+25$ K
2611	. 6	1	21	31230	19	58	5	5+00	S	1+00
2612	. 6	8	5	28350	16	40	5	$5+00$	S	0+75
2613	. 6	3	8	23380	13	40	5	$5+00$	S	0+50 W
2614	. 6	4	13	30560	17	49	5	$5+00$	S	$0+25$ II
2615	. 6	4	284	30290	15	40	10	$5+00$	S	0+25
2616	. 6	1	28	31010	16	33	5	$5+00$	S	0+50 \#
2617	. 6	1	16	31030	14	32	5	$5+00$	S	0+75 W
2618	. 6	3	4	30620	14	50	5	$5+00$	S	$1+00 \mathrm{~K}$
2620	. 6	3	5	29510	16	35	5	$5+00$	S	$1+50 \mathrm{~W}$
2621	. 6	1	5	27610	13	40	5	$5+00$	S	$1+75$ K
2622	. 6	5	6	29200	13	34	5	$5+00$	S	$2+00 \mathrm{~W}$
2623	. 7	9	53	30190	18	66	5	$5+00$		$2+25$ WI
2624	. 7	8	36	32870	15	41	5	$5+00$	S	$2+50 \mathrm{H}$
2625	. 7	8	43	36470	18	40	5	$5+00$	S	$2+75$ K
2626	. 8	12	64	40930	30	59	5	$5+00$	S	$3+00 \mathrm{~N}$
2627	. 8	6	37	38920	19	48	5	$5+00$	S	$3+25$ K
2628	. 7	10	204	32820	20	35	5	$5+00$	S	$3+50 \mathrm{~N}$
2629	. 7	9	45	34570	15	38	5	$5+00$	S	$3+75$
2630	. 1	12	67	30890	18	42	5	$5+00$	S	$4+00 \mathrm{H}$
2631	. 7	12	51	28910	13	39	5	$5+00$	S	$4+25$
2632	. 6	8	20	28240	17	38	5	$5+00$	S	$4+50$ II
2633	. 6	8	6	32250	12	42	5	$5+00$	S	4+75
2634	. 6	3	16	30910	17	38	5	$5+00$	S	$5+00 \mathrm{~N}$
2635	. 6	9	32	34700	10	37	5	$5+00$	S	$5+25$ N
2636	. 6	2	9	38520	15	49	5	$5+00$	S	$5+50 \mathrm{~W}$
2637	. 7	J	21	31590	11	33	10	$5+00$	S	5+75
2638	. 7	5	171	38800	16	46	5	$5+00$		$6+00$ II
2639	. 7	8	115	22230	17	40	5	$5+00$		6+25 \#
2640	. 6	6	16	25760	15	33	5	$5+00$	S	$6+50$ II

2641	． 813	13	35690	15	4	5	$5+30$ s $5+75 \mathrm{~K}$	
2642	． 319	14	2417	18	42	5		
2643	． 8 ？	i	22？30	15	35	50	$5+00 \mathrm{~S} \mathrm{7+25-1}$	
2548	$\therefore: 0$	？	31040	： 3	49	；	5＋00 s $3+50 \%$	
$26: 5$	$\therefore 16$	8 ？	28：00	：4	48	5	5＋00 S $7+730$	
2646	． 17	166	34450	23	54	10	5＋00－8 $8+60$ k	
2647	．7 15	27	21520	18	54	5	$5+00$ S 8＋25	
2615	.68	，	27573	9	36	；	$5+30-8+50 \%$	
2649	． 3	11	23390	9	3	：	5－90 S 8＋75 k	
2650	ct 12	49	25100	：4	38	5		
2651	． 725	136	36930	16	3	5	$5+20$ \＆ $3+25 \mathrm{~K}$	
－652	． $5: 4$	88	28590	19	49	：	5－20 s 9＋50 ii	
2653	．6 12	32	22310	14	31	5	$5+00 S^{\text {S }} 9+75$ K	
2654	．6 10	：24	18350	15	31	－	5＋30 ： $10+50$ \％	
2655	． 88	45	36470	16	50	5	： 200 W $4+75$ 日	
2556	$\therefore 14$	149	40800	：3	56	5	$3+30 \times 4+50.1$	
2657	． 824	383	42700	23	58	5	$\therefore+00 \% 4+25!$	
2658	1.222	1042	59370	35	：04	15	3＋00 in $4+00: 1$	
2659	． 716	10.	35850	12	49	，	$3-90$ k $3+75$－	
2600	． 822	223	45540	16	74	5	$3+09$｜ $3+50$ ：	
2661	． 7	14	38780	14	62	5	$3+00$ k $3+25$ k	
3062	．2 23	258	51：60	23	81	10	$3+00 \times 3+00$ 日	
266：	． 813	468	48046	61	59	15	$3+00$ K $2+75$ ！	
？ 6.64	$\therefore 7$	103	29410	14	35	5	3－90 \％ $2-30 \mathrm{C}$	
2665	． 23	116	37990	19	53	5	$3+00$ \＃ $2 \cdot 2501$	
20000	．6：3	53	33160	15	35	5	$3+60 \times 2+5081$	
$266 ?$	． 816	77	39970	38	62	5	$3+00 \% 1+75 \%$	
2658	1.828	67	57580	40	78	15	$3+00 \times 1+50.3$	
2669	． 15	30	39310	15	38	5	$3+00 \mid 1+25 \\|$	
2673	． 319	135	$5: 520$	16	54	5	$3+00 \times 1+00-1$	
2571	.84	64	27110	14	34	18：	$3+00 \% 0+75 \%$	
2678	． 921	218.	46：20	24	51	25	3＋30 \％ $0+50$ ॥1	
2673	1.010	495	40970	21	55	20	$3+00 \sim 0+25 \\|$	
2674	． $9: 2$	$6: 2$	57470	27	3	15	$3+10 \% 0-15$ ：	
2075	1.327	2318	68300	23	17	： 5	$3+00 \% 6+50-5$	
2676	1.223	1608	65070	25	13	15	$3+00$－ 20.758	
$26 ?$	． 8 I2	19%	42500	19	43	5	$3+90 \times 1+60 \mathrm{~S}$	
2678	． $8: 0$	： 47	42070	19	45	5	$3+30 \% 1+258$	
2679	． 5	144	44493	18	86	10	$3+60 \sim 1+508$	
2685	． 8 ： 0	261	37650	20	53	；	$3+30$｜ $1-75$ s	
3681	4.0	364	$49: 80$	$2 ?$	128	＝	$3-90 \% 2+005$	
2682	．7 19	389	35490	18	${ }^{6} 3$	；	$3+00$－ $2+25$ s	
2683	． 812	891	46730	23	72	15	$3+80$－ $2+50 \leqslant$	
2684	． 7	60	16：00	15	36	i0	$3+00 \times 2+758$	
2655	． 7	34	31160	11	74	5	$3-00 \% 3+005$	
2686	－	181	27940	i3	4 ？	－	$3-90 \chi^{4} 3+25$ s	
2637	1.123	1675	59070	38	80	20	$3+00 \% 3+50 \mathrm{~S}$	
2688	． 812	305	43270	30	125	10	$3+0281835$	
2689	$\therefore 18$	：99	45640	23	100	5	$3+00 \mathrm{~K} \quad 4+30 \mathrm{~S}$	
2690	． 914	$25 ?$	$3: 160$	16	33	三	？+90 W 4＋25 8	
$263:$	． 810	92	44920	23	100	5	$3+00 \% 4+50$ S	
2692	． 5	39	32530	： 6	51	；	$3+00$－ $4+75$ S	
2693	． 922	$3 i^{\circ}$	48230	22	63	5	$2+00 \mathrm{KO} 0+25 \mathrm{~s}$	
2694	． $8: 4$	257	\＄7510	2：	51	250	$2+30$＊ $3+50$ s	
2695	． 812	220	54160	26	143	三	$2+00 \mathrm{~K} 9+75 \mathrm{~s}$	

2696	. 82	35	34620	:6	48	80	2+50 K	90 :
(39	\therefore;	107	$36: 50$	17	30	13	2+00 ${ }^{\text {\% }}$	$1-25 \mathrm{~s}$
2698	.87	29	38470	15	72	5	$2+00 \mathrm{~K}$	$1+50 \mathrm{~S}$
2699	. 68	284	37460	20	48	30	2-02	$1-75$
2700	.69	135	29980	15	46	30	$2+00 \mathrm{~N}$	2+00 s
2701	. 9	106	50140	39	88	:0	2+00 K	$2+25$ s
2762	. 78	457	52140	108	457	45	$2+50 \mathrm{~K}$	$2+50 \mathrm{~s}$
2033	.8 21	346	47540	19	83	20	$2+03$	$2+75 \mathrm{~s}$
270:	. 1	31	34430	19	45	10	$2+00 \mathrm{~N}$	$3+00 \mathrm{~s}$
2795	. 13	15	34560	19	58	10	$2+00 \mathrm{~K}$	$3+25 \mathrm{~s}$
2760	1.121	91	72440	21	160	5	$2+00 \mathrm{~K}$	$3+50 \mathrm{~s}$
2707	. 924	446	71950	22	111	15	$2+00 \mathrm{~W}$	$3+75 \mathrm{~s}$
2709	. 91	302	41460	13	73	35	$2+00 \mathrm{~F}$	$4+258$
2711	. 88	25	36480	12	51	30	$2+00$ K	4+? 5 s
2712	. 78	53	32120	14	47	10	$1+00 \mathrm{~K}$	$4+75$ S
2713	1.1 ó	1199	57500	26	85	270	$1+00 \mathrm{~K}$	$4+50 \mathrm{~S}$
2714	2.08	1247	68160	19	68	495	$1+00$ "1	$4+25 \mathrm{~s}$
2715	$\therefore 25$	155	34250	18	38	15	$1+00$ \#	$4+00 \mathrm{~s}$
2716	1.01	259	45960	18	85	25	$1+00$ W	3+7Es
2717	$\therefore 3$	303	44550	16	39	30	$1+02 \mathrm{~W}$	$3+50$ =
2718	.813	187	41730	16	45	20	$1+00 \mathrm{~K}$	3+25 S
2719	. 110	57	33820	14	36	10	1 $+00 \mid 1$	$3+005$
2723	. 7	37	35720	12	33	50	$1+50$ "	2+75 s
2721	. 68	33	35750	13	41	25	$1+00$ W	$2+50 \mathrm{~s}$
272240M	. 710	2578	6090	14	64	20	$1+60 \mathrm{~K}$	$2+25 \mathrm{~s}$
2723	. 813	15	42630	15	75	20	$1+30$ *	$2+00 \mathrm{~s}$
2724	. 921	1022	61770	26	188	40	$1+00 \mathrm{~K}$	$1+75 \mathrm{~s}$
2725	1.225	365	66920	$2 \hat{2}$	98	5	$1+00 \%$	1+50 s
2726	1.013	38	54820	18	52	10	$1+03$ in	$1+25 \mathrm{~s}$
2727	.6 16	:26	38610	24	83	10	1-09	1:00 s
2728	.912	144	36510	20	45	30	$1+50 \mathrm{~K}$	$0+75 \mathrm{~s}$
2729	. 912	323	52410	19	75	20	$1+00$ W	0+50 s
2730	.87	8	59840	11	42	20	i +50 W	$0+25 \mathrm{~s}$
2731	. 22	281	32360	19	53	s	: $0+00 \mathrm{E}$	j+25 S
2732	. 817	16 ?	29190	13	41	10	10+00 E	0+50 S
2733	. 9	,	29690	15	27	5	$10+00$ E	$0 \cdot 75$ S
2734	.6 10	8	33640	15	26	10	$10+00 \mathrm{E}$	itocs
2735	. 65	12	278?0	17	23	5	$10+00 \mathrm{E}$	1+25 s
2736	. 6	-	34480	13	30	5	10+00 E	$1+508$
2737	. 75	18	29930	14	38	10	10+00 E	1.75 s
2738	. 12	123	32450	24	49	5	10+00 E	$2+00 \mathrm{~s}$
2739	. 65	19	28670	12	41	5	$10+00 \mathrm{E}$	2.25 s
2740	. 75	g	48150	13	39	5	10+00 E	$2+50 \mathrm{~s}$
2741	. 73	11	43280	15	71	10	$10+00$ E	$2+75 \mathrm{~s}$
2742	. 610	10	39920	16	58	5	10+00 E	$3+00 \mathrm{~s}$
2743	. 7	,	33520	15	37	,	10+00 E	$3+25 \mathrm{~s}$
2744	. 38	26	24020	15	25	5	$10+008$	$3+50 \mathrm{~s}$
2745	. 17	11	35060	16	34	10	$10+00$ E	$3+75$
2746	. 71	9	32770	14	33	5	$10+00 \mathrm{E}$	$4+60 \mathrm{~s}$
2747	. 75	8	28680	16	34	5	$10+00$ E	4+25 s
2748	. 810	22	:9170	14	38	5	10+50 E	$4+50 \mathrm{~s}$
2749	. 811	43	18950	17	31	,	$10+00$ E	$4+75 \mathrm{~s}$
275040以	. 89	121	20820	18	38	5	$9+00$ E	0+25 s
2751	. 320	155	35700	25	51	5	$9+005$	$0+50 \mathrm{~S}$
2752	. 73	14	26910		21	5	$9+00$ E	$0+75 \mathrm{~s}$

2753	. 712	9	38570	11	38	5	$9+00$ E	$1+00 \mathrm{~S}$
2754	. 616	8	35900	9	41	10	$9+00 \mathrm{E}$	1+25 s
2755	. 711	17	16080	16	23	5	$9+00$ E	$1+50 \mathrm{~S}$
2756	. 61	8	21860	7	13	5	$9+008$	$1+75 \mathrm{~s}$
2757	. 76	8	27610	14	31	5	$9+00 \mathrm{E}$	$2+00 \mathrm{~s}$
2758	. 712	9	28910	15	25		$9+00 \mathrm{E}$	$2+25 \mathrm{~S}$
2759	.63	8	28380	11	37		$9+008$	$2+50 \mathrm{~s}$
2760	. 14	9	29020	13	28	5	$9+00 \mathrm{~B}$	$2+75 \mathrm{~S}$
2761	. 75	9	37500	13	40	5	$9+00$ E	$3+00 \mathrm{~s}$
2762	. 614	10	30280	15	36	5	$9+00 \mathrm{E}$	$3+25 \mathrm{~s}$
2763	1.03	17	37690	12	34	5	$9+00$ E	$3+50 \mathrm{~s}$
2764	. 79	48	31290	18	38	10	$9+00 \mathrm{~B}$	$3+75 \mathrm{~s}$
2765	. 111	31	19890	13	31	5	$9+008$	$4+00 \mathrm{~s}$
2766 40KESH	. 714	90	39180	23	58	5	$9+00$ E	$4+25 \mathrm{~S}$
2767	.71)	19360	15	26	15	$9+00$ E	4+50 S
2768 40MBSH	.61	33	34220	17	47	5	$9+00 \mathrm{~B}$	$4+75 \mathrm{~s}$
2769	. 612	26	25290	13	34	5	$8+00$ E	$4+75 \mathrm{~s}$
2770	. 6	9	24210	13	24	5	$8+00$ B	$4+50 \mathrm{~s}$
2771	. 65	14	23180	21	39	10	$8+00$ E	$4+25 \mathrm{~s}$
2712	.610	30	16010	13	43	10	$8+00$ E	4+00 S
2773	. 68	14	16640	14	33	10	$8+00$ E	$3+75 \mathrm{~s}$
2774	. 613	9	27610	15	37	5	$8+00$ B	$3+50 \mathrm{~s}$
2775	.62	9	26300	12	27	5	$8+00$ E	$3+25 \mathrm{~s}$
2776	.65	10	30560	14	31	40	$8+00 \mathrm{~B}$	$3+00 \mathrm{~S}$
2717	.610	10	32340	12	34	10	$8+00$ E	$2+75 \mathrm{~s}$
2778	.62	9	22100	12	25	15	$8+00$ E	$2+50 \mathrm{~S}$
2779	.63	10	33550	12	39	10	$8+00$ E	$2+25 \mathrm{~S}$
2780	. 19	10	14890	14	22	10	$8+00$	$2+00 \mathrm{~s}$
2781	. 76	10	26210	14	30	5	$8+008$	$1+75 \mathrm{~s}$
2782	.65	23	8090	16	20	5	$8+008$	$1+50 \mathrm{~s}$
2783	. 720	153	26980	19	34	5	$8+00 \mathrm{E}$	$1+25 \mathrm{~s}$
2784	. 7	9	49060	11	39	5	$8+00 \mathrm{E}$	$1+00 \mathrm{~s}$
2785 40MESH	. 815	104	52120	19	46	5	$8+00$ E	$0+75 \mathrm{~s}$
2786 40NESH	.69	148	2290	22	84	5	$8+00$	$0+50 \mathrm{~S}$
2787	. 721	361	40640	30	62	20	$8+00$ E	$0+25 \mathrm{~s}$
2788	. 715	101	37270	13	41	15	$1+00$ E	0+25 s
2789	.814	290	47590	23	46	120	$1+00$	0+50 s
2790	. 79	34	34390	9	30	25	$1+00$	0+75 s
3791	. 110	71	57500	14	38	10	$1+00 \mathrm{E}$	$1+00 \mathrm{~s}$
2792	. 11	10	56840	10	30	10	$1+00$	$1+25 \mathrm{~s}$
2793	. 71	7	35960	11	35	5	$1+00$	$1+50 \mathrm{~S}$
2794	. 876	420	52980	34	139	20	$1+00 \mathrm{~B}$	$1+75 \mathrm{~s}$
2795	. 945	583	41070	24	61	20	$1+00$	$2+00 \mathrm{~S}$
2796	1.083	49	46230	26	97	5	$1+00$	$2+25 \mathrm{~s}$
2797	. 818	54	29890	14	45	5	$1+00 \mathrm{~B}$	$2+50 \mathrm{~S}$
2798	. 717	156	41770	21	47	10	$1+00$	2+75 s
2799	.825	1430	39540	26	67	25	$1+00$	$3+00 \mathrm{~s}$
2800	.818	78	39140	15	55	5	$1+00$	$3+25 \mathrm{~s}$
2801	.79	37	38340	9	48	5	$1+00$	$3+50 \mathrm{~s}$
2802	. 110	1	29060	10	45	5	$1+00$	$3+75$
2803	. 928	1143	51520	22	78	75	$1+00$	1+00 S
2804	1.018	405	52100	19	96	50	$1+00$	4+25 S
2805	1.216	682	67240	20	118	25	$1+00$	1+50 s
2806	. 7	112	35090	17	95	40	$1+00$	4+75 s
2807	. 11	167	22690	17	40	10	$2+00$	0+25 s

280940M	. $7 \quad 15$	1691	8140	20	61	40	$2+00$ E		0+50 S
2810	.710	66	55520	14	69	10	$2+00$ E		$0+75 \mathrm{~s}$
2811	.714	58	44090	15	39	15	$2+00$ E	E	$1+00 \mathrm{~S}$
2812	. 18	124	48300	12	31	25	$2+00 \mathrm{~B}$	E	$1+25 \mathrm{~s}$
2813	. 918	24	48310	18	51	5	$2+00 \mathrm{E}$	E	$1+50 \mathrm{~S}$
2814	.718	118	45950	13	39	5	$2+00$ B	R	$1+75 \mathrm{~S}$
2815	. 7	12	32900	12	31	5	$2+00$ E	E	$2+00 \mathrm{~S}$
2816	. 921	150	48400	25	65	5	$2+00 \mathrm{E}$	E	$2+25 \mathrm{~S}$
2817	. 936	750	60600	28	53	25	$2+00 \mathrm{E}$	B	2+50 S
2818	1.032	219	58360	20	67	10	$2+00 \mathrm{~B}$	B	$2+75$
2819	.67	24	37730	13	30	10	$2+00 \mathrm{E}$	E	$3+00 \mathrm{~S}$
2820	.62	56	30060	10	25	10	$3+00 \mathrm{E}$	E	$3+25 \mathrm{~S}$
2821	.63	34	41150	13	33	20	$2+008$	8	$3+50 \mathrm{~S}$
2822	. 611	99	48480	14	54	70	$2+00 \mathrm{~B}$	B	$3+75$ S
2823	. 110	285	39110	10	38	15	$2+00$ B	B	$4+00 \mathrm{~S}$
2824	1.09	270	43180	21	66	10	$2+00 \mathrm{~B}$	B	$4+25 \mathrm{~S}$
2825	. 813	206	35870	16	66	15	$2+00 \mathrm{~B}$	E	$4+50 \mathrm{~s}$
2826	1.116	704	63960	17	80	20	$2+00$	E	4+75 S
2827	. 710	21	37010	16	48	5	$3+00 \mathrm{E}$	E	$4+75$ S
2828	.810	138	38960	18	44	5	$3+00 \mathrm{~B}$	B	$4+50 \mathrm{~S}$
2829	.810	207	33460	14	44	160	$3+00 \mathrm{E}$	E	$4+25 \mathrm{~S}$
2830	.71	20	23850	12	20	25	$3+00$	B	$4+005$
2831	.612	33	35450	15	32	10	$3+008$	E	3+75 S
2832	.67	59	32820	14	28	15	$3+\infty$	B	$3+50 \mathrm{~S}$
2833	.62	40	51850	11	31	30	$3+008$	E	3+25 S
2834	. 714	97	11620	15	43	5	$3+008$	B	3+00 S
2835	. 852	66	41890	16	36	20	$3+00$	B	2+75 S
2836	. $6 \quad 12$	11	31250	12	30	15	$3+00$	8	$2+50 \mathrm{~S}$
2837	. $7 \quad 23$	84	39630	19	52	45	$3+00$	E	$2+25 \mathrm{~S}$
2838	. 715	48	34080	16	28	20	$3+00$	B	$2+00 \mathrm{~S}$
2839	. 717	126	48840	16	38	25	3+00	B	1+75 S
2840	.711	25	39370	15	36	5	3+00	E	$1+50 \mathrm{~S}$
2841	. 738	11	52760	15	54	10	$3+00$	E	1+25 S
2842	.816	74	48590	15	48	5	$3+00$	B	$1+00 \mathrm{~s}$
284340M	.715	672	4160	15	68	15	$3+00$	E	0+75 S
2844	. 821	460	35320	21	53	20	$3+00$	E	0+50 S
284540M	. 833	751	43730	24	71	15	$3+00$	B	0+25 S
2846	. 78	7	47530	12	38	20	$4+00$	B	0+25 s
2847	. 820	60	49460	19	66	10	$1+00$	B	0+50 S
284840K	.833	891	32530	23	51	25	$4+00$	8	0+75 S
2849	.727	18	31190	14	51	35	$4+00$	B	$1+00 \mathrm{~S}$
2850	. 110	9	41280	13	32	10	$4+00$	E	$1+25 \mathrm{~S}$
2851	. 8124	1308	64430	31	69	25	$4+00$	B	$1+50 \mathrm{~S}$
2852	. 783	65	56960	12	43	10	$1+00$	E	1+75 S
2853	. 8131	318	56230	17	46	180	$4+00$	B	$2+00 \mathrm{~S}$
2854	1.130	283	55780	29	71	15	$4+00$	B	$2+25$ S
2855	. 930	151	36630	16	52	20	$4+00$	E	2+50 S
2856	. 9178	408	55680	17	63	15	$4+00$	B	$2+75$ S
2857	. 9203	137	68290	25	81	10	$4+00$	E	$3+00 \mathrm{~S}$
2858	.817	58	36110	21	41	5	$4+00$	B	3+25 S
2859	. 714	21	28330	16	47	5	$4+00$	8	$3+50 \mathrm{~S}$
2860	. 110	24	23240	13	29	10	$4+00$	B	$3+75$
2861	.813	67	46720	16	44	5	$4+00$	8	$4+00 \mathrm{~S}$
2862	$.8 \quad 15$	21	23790	19	33	5	$4+00$	B	$4+25 \mathrm{~S}$
2863	. 716	29	41370	18	37	10	$4+00$	B	$4+50 \mathrm{~S}$

2864	.8	10	17	36250	16	45	10	$4+00$	E	$4+75$
$28650 N$.9	40	1202	35200	24	115	29	$5+00$	E	$0+25$

2919	. 714	?	51210	12	40	J	? +00 E	0+75 s
2920	. 313	8	33:09	8	34	5	$7+00$ E	O+50 s
292:	. 8 9	8	40330	13	40	5	it00 E	$0+25$ S

CERTIFICATE OF THE ISSUER

The foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by the Prospectus dated December 28, 1988, as amended by Amendment No. 1 dated February 15, 1989, as required by the Securities Act (British Columbia) and its Regulations.

DATED: February 15, 1989.

ALBERT CHRISTIAN THERON Chief Executive Officer and Promoter

DONALD CHARLES ROTHERHAM Chief Financial Officer

CERTIFICATE OF THE AGENT

To the best of our knowledge, information and belief, the foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by the Prospectus dated December 28, 1988, as amended by Amendment No. 1 dated February 15, 1989, as required by the Securities Act (British Columbia) and its Regulations.

DATED: February 15, 1989.

UNION SECURITIES LTD.

Per:

