

AFPTLTATTOLS OF PROPESSOR Re K KORANOWSKI -
ASSOCIATE PROFESSOR OF MINING GEOLOGY,
UIIVERSITY OF NORTH DAKOTA AND ASSISTAITT STATE GBOLOOIST STATE OF NORTH DAKOTA

```
Americen Institute of Mining and Motallurgical Engineers (M.1937)
Pan american Institute of Mining Enginoerin and Geology (M.1944)
Colorado School of :(1nes Alumani Assn. (M.1932)
Academy of Sciences of North Dakota (M.1949)
Sigma Gamma Epsilon Geologic Fraternity (M. 1950)
American Association of Iniversity Professors (M.1949)
Sigma Xi Researoh Society (M.1951)
Geological Society of America (M.1951)
Geologisal Society of North Dakota (M.1951)
```

TABLE OF CONTENTS
PareLetter of Tranamittal
Object of Bxamination 1
Location 1
Mining * Development in the Past 1
Present 8 tatus of The Mine 4
Sampling 5
Ore Reserves 7
Geology of The Rocher de Boule Deposit 9
Mineralization 14
Leaching and Secondary Enrichment 17
Summary 17

A plan of the 1200 level, showing its geology and the writer's sampling is attached to the original of this report.

December 12th, 1951 1209 - 5th Ave. Horth, Grand Forks, N.D. D. $\mathrm{B}_{\text {. }} \mathrm{A}_{0}$

Mir. James Mackee, 604 Hall Bldg. Vancouver, B. C., Canada.

Dear Sirs
I am pleased to submit herewith my
report of examination of the ROCHER DE BOULE mining property.

> Yours very truly,
NLcholas N. Kohanowski,"
Associate Professor of
Mining Geology,
University of North
Dakota, U.S.A.

Ces J. Mackee - 2nd Mail,
A. I. Clark, N.N.K. Files.

Object of Examination

The writer of this Report was engaged to examine the mining property ROCHER B BOULE with a view of determining its economical possibilities and making suggestions as to its development in future.

Leantion

The property is situated in the Cassiar District, near Hazelton, B.C., Canada. It is connected with Skeena Crossing, a railroad stop by a truck road about 11 giles long.

The lowermost, 1200 level lies at an elevation of 4167 feet above sea level. The uppermost, 100 level has an elevation of 5302 feet above sea level.

Mining and Development, in the Past

The Rocher de Boule mine consists of IIve levels and several small surface diggings.

Its history is known incompletely. The property was started in 1914 by the Montana Development Company, which continued its operations until 1913.

In 1929 the property was reopened for a short time, but no essentially important work was done durin; this second period.

Recently the property was taken over by the Western Uranium Cobalt Mines Lta. Their work to date may briefly be summed up as having consisted of cleaning and rehabilitation of oli workings, some sampling and a few drives. A considerable construction work was and is being done by this Company on surface. These constructions are so desigmed as to service the two adjoining properties as wel - the Victoria and the Red Rose.

For purposes of this Report it is necessary to consi or only the operations of the Montana Development Company, 1914-1918.

That company has done an enomous amount of underground development. As scalad off the map of 1913, the linear footage may be distributed as follows:-

Drifting and Grossoutting

$$
\begin{aligned}
& 1200 \text { Level, } \begin{array}{c}
\text { Drifting on Vein \#2 } \\
\\
\\
\\
\text { Crifting on other veins } \\
\text { Total, } 1200 \text { level }
\end{array} \\
& 1000 \text { Level, } \begin{array}{l}
\text { Drifting on Vein } \\
\\
\\
\\
\\
\text { Drifting on other veins } \\
\text { Crosseutting } \\
\text { Total, loon level }
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
2,100 \mathrm{ft} \\
970 \mathrm{ft} \\
3,200 \mathrm{ft}
\end{array}
$$

$$
6,270 \mathrm{ft} .
$$

1,340 ft. 290 ft. 200 fin

500 Level.	Drifting on Vein Crosscutting Total, 500 level	$\begin{aligned} & 730 \mathrm{ft} \\ & 140 \mathrm{ft} \end{aligned}$	870 ft.
300 Level.	Drifting on Vein Crosscutting $\text { Teal, } 300 \text { level }$	$\begin{array}{r} 1,150 \mathrm{ft} \\ 910 \mathrm{Et} \\ \hline \end{array}$	2,060 ft.
100 Level,	```Drirting on Voin 埀 Drifting on other veins Crosscutting zotal, 100 level```	$\begin{aligned} & 730 \mathrm{ft} \\ & 20 \mathrm{ft} \\ & 160 \mathrm{ft} \end{aligned}$	910 etr

Crosscutting represents 41% of the total lateral development. Almost all of it had to be lone to reach the veins 22 and 4 . Crosscuts to probe vein wall and the adjacent ground are insufficient.

The vertioal deve!opment can be evalueted only insufficiently.

Considering vein dips and interlevel spacings, the amount of vertical development is much too small to develop the drifted lengths of veins.

Gtopepreparation

Stope preparation is altogether impossible of any estimate. Obviously, stopes were being prepared for mining by rill methods. However, sone sudden and drastic change in plans stopped all auch work at an early time. Subsequent mining and soavenging, desiged to tear out the best looking and the casient to get at portions of ore, has destroyed any stope preparation.

8toping			
Vein	1200 level 1000 level	$\begin{array}{r} 4,000 \text { ou.ft. } \\ 60,000 \text { ev.f. } \end{array}$	64,000 cu. ft.
Vein ma_{4}	500 level 300 level	$\begin{aligned} & 150,000 \text { cu. } t_{t} \\ & 170,000 \text { ou. } t_{0} \end{aligned}$	
	100 level	100.000 cuatin	$484,000 \text { ou. } f t_{.}$

In addition, some ore must have come out of development work. Most of that ore was probably mixed with waste and remains in dumps. It will not be considered here.

These figures are very a roximate, but afford some basis for estimation of potentialitias.

Taking the woight of ore in place at 130 pounds per cubic foot, some 43,560 short tons of ore must have been broken out in stoping and scavenging operations.

Orficial production data are:
"Shipped in 1914-1918- $-39,833$ tons with 4.214 ozs. gold, "62,865 ozs. silver, 5,746,306 1bs. copper ..."
"Ship ed in 1929 - - tons, assaying 0.14 ozs. gold, 40 oss. "silver, 4% copper ..."

Shipments of 1914-1918 may be re-ca culated to have assayed:
0.106 ost. gold, 1.53 ozs. silver, 7.2 \% copper.

Gold content is comparable in both sots of shipments, silver values are higher in the 1929 shipments, while coper is lower in 1929 shipments.

This indicates the different types of ore sorted for each set of shipments. It also shows that silver values are not exclusively associated with bronse colored copper minerals.

Altogether there were shipped 39,905 short tons of hand sorted copper ore. Subtracting this figure from the estimated tonnage of broken ore, there remains 3,655 tons. These should be in stopes as backillis and on dumps.

The writer could not see thedumps for the thick covering of snow. In any case, he would not have had time to test such dumps accurately. Various estimates of ore in dumps made in the past weres

1) 7,800 met. $t s$ of $3.8 \% \mathrm{Cu}$ on 1200 level.
2) 2,000 tons of 158 Cu on all dumps.
3) 12,000 tons of $4 \% \mathrm{Cu}$ on all dumps.

The writer further estinates that he has seen at least 2,00) tons of bacifills in atopes, which are worth milling.

Ave aging various estimates of ore on dumps and weighing In the 2,000 tons of backfills, thetotal is mach larger than 3,655 tons estimated from stoping and shipping in the past. This difference is due to ore derived in drifting operations or to larger mining widths than those reckonad, or to both.

Lack of sampling data on existing maps, therefore, should not be taken as an indieation of absence of ore.

The following summary may be made on the past operations on the property -

The Montana Development Company has originally planned a large operation. The shape of workings and the modes in which they were driven indicates that the drifting was continuous, while raising as done largely to provide ventilation. Before raising for stopes preparation could start, there must have happened sudden changes in decisions.

Firstly, there was a spurt of crossoutting, wen trey decided to cut frein on the 1200 level.

During this crosscutting, there began hurried preparations for stoping of ore that could be hand sorted. Then came a shutdown.

The curve of copper prices suggests that the decisions to start stoping and the innal shutdown might have been due t.o drop in prices.

Having postponed the building of thomill until the last, that company was actually forced out by the drop of prices.

When an attempt was made to reopen the mine in 1929 , whoever did it, did not have time for anything but the vary initial trial ahipment. The price ourve again indicated that the prices orashed at just about that time and may have oaused the shutdow.

During the 1929 operationg, the buik of their shipped ore may have come from dumps or backilils. There were found their drilied rounds in stopes. Evidently the shutdown ha pened so fast that the last rounds were never blasted.

Had there been no drops in copper prices, either group of operators would have been confronted with two large expenditures; construction of a mill and an improvement in ore handling.

Present atatue of The Nine

The present operator; the Weatern Uranium Cobalt Mnes, Itd. has now a fairly large mine. There is no immediate noed for an extensive development program, although some devalopment - eay
to the amount of 10 to 158 of total underground work, whould be carried on for best results. Thls would keep development ahead of exploitation.

Stope preparation should be started immediately. Such work will largely pay for itself, since all the preparation will be on veins.

Owing to the fact that 90% of ore will be milling ore, a mill is necessary at the very start. Purthermore, the climate is such that ore should not be stored outside over a prolonged period of time. Ore sould ireese in bins, unless it is constently moved. There is no provision underground to atore large tonnages oheaply. Therefore, the mill shoula be in condition to run, before the alll bins are filled.

Freszing of wet ore in mill bins, while the mill is being sampled, would inevitably result in serious damage to the already existing bins.

It may ve argued that production should start before the mill construction is decided upon. In this case, there is no risk whatsorver.

While not all the ore has been sampled, sampled portions oontain a surficient amount to pay for the mili and other constructions. Also the equipment cen also be used in treating of ores from other properties hald by the Company.

There will eventually be aneed of onlargins the proposed 150 ton mill, but for the present purposes it is the economic sise and is well warranted.

Sampling

No sampling data were available to the writer from the time of the Montana Development Company.

Sampling done in the recent years has been limited in extent. This was partly due to a hich cost of shippinf samiles and to a high cost of custom analyses.

To do a complete job of sampling the accessible working, some 2,000 samples should be taken over 6,600 feet of drifting, 2,350 feet of raises ani winzes and over an undeterminate footage of stope backs. Sampling of dumps vould also be an expensive prom position. Backfilis can never be samplied reliably, since trial mill runs are best for backfills. Considering salaries of supervision, labor, shipping costs and costs of analytical work, the job would easily cost 330,000 , 1.e. about one-quarter to one-third of the projected mill expenditure.

Since there has never been onough vertical development done, the results of that expensive sampling would still be questionable.

In future, it will be necessary to install a laboratory at
the property, capable of turning out 30 to 40 samples per day. The cost of analyses would thus be cut down considerably.

Then the cost of sampling will become a part of mining and milling, while at the present it is not a procedure chargeable to operating expense.

The writer has taken only 12 samples, which later were analyzed for gold, silver, copper, cobalt and torsion trioxide. Some of these sam les were taken to check previous sampling. Other were taken on the "unknown" stretches of veins.

The writer is in a complete agreement with the sampling results on Mr. Jasper's map. Furthermore, presence of ore values has been established on stretches hitherto unscmpled. Fluctuations in ore values shown by this sampling are only a normal phenomenon proper to any ore deposit.

Ore values ware found to exist in several bands flanking the main ore filling. This increases likely mining widths and also indicates that in future mining walls must be probed frequently by drill holes and stoping widths should be determined by assaying.

The 12 samples totalled about 100 to 120 pounds. These were channel samples across the veins and included all the flanking black bands. Sites were thoroughly cleaned and shipped before takeing of samples. Waste intervening between various mineralized bands was always included into a sample.

Shortness of time and lack of sampling facilities precluded taking a large number of samples. However, additional sampling at this stage would have only added to the cost without altering appreciably the results.

Samples taken by the writer are described at the continuation and are located on the accompanying map, -

Samples

\#1. Lev. 1200. Vein \#2. 35 ft . east of mark 260 (last crosscut). Check sample: $52^{\prime \prime}-0.05 \mathrm{Au}-3.40 \mathrm{Ag}-6.40 \mathrm{Cu}-0.04 \mathrm{CO}-$ $0.03 \mathrm{WO}_{3}$.
\#2. Lev. 1200 Vein \#2. 25 ft . east of wince. New samples 28 M $0.12 \mathrm{Au}-8.05 \mathrm{Ag}-6.30 \mathrm{Cu}-0.02 \mathrm{Co}-0.08 \mathrm{WO}_{3}$.
*3. Lev. 1200. Vein \#2. 35 qt. east of winze. New sample: 29" $1.54 \mathrm{Au}-5.90 \mathrm{Ag}-6.10 \mathrm{Cu}=0.17 \mathrm{Co}-\mathrm{Tr} . \mathrm{WO}_{3}{ }^{\circ}$
M. Lev. 1200. VEIn \#2. 45 ft . east of winze. New sample: $25^{\text {n }}$ $3.88 \mathrm{Au}-11.10 \mathrm{Ag}-9.30 \mathrm{Cu}$ - $0.11 \mathrm{Co}-1.42 \mathrm{W03}$.
*5. Lev. 2200 Vein \#2. 55 ft. east of winze. Hew samples 44 " $0.64 \mathrm{Au}-7.35 \mathrm{Ag}-10.90 \mathrm{cu}-0.03 \mathrm{Co}$ - Tr. WO_{3}.
*6. Lev. 1200. Vein \#2. 65 ft. east of winze. Now samples $23^{\prime \prime}$ $0.17 \mathrm{Au}-2.40 \mathrm{AB}-4.80 \mathrm{Cu}-0.04 \mathrm{CO}$ - Tr. WO 3.
47. Lev. 1200 Vein \#2. East wall of a outout near the Roeher Fault. NO VISIBLE ORE. Rew sample: $23^{\prime \prime}-0.06$ AM - 0.75 As - 0.30 $\mathrm{Cu}-0.07 \mathrm{Co}$ - $\mathrm{Tr} \mathrm{HO}_{3}$.
H8. Lev. 1000. Vein W. West face in sedimentaries. New Sample: $6^{n}-0.10$ Au- 24,05 as $-2.80 \mathrm{Cu}-\mathrm{Tr}$. Co - $0.05 \mathrm{WO}_{3} \mathrm{NO}$ VISIBLE COPPER BRONZBS.
\#9. Lev. 1200. Vein \#2. 15 ft. east of winse. New Sample: 25" $0.17 \mathrm{du}-9.50 \mathrm{ag}-3.10 \mathrm{Cu}-0.10 \mathrm{Co}-\mathrm{Tr} \cdot \mathrm{WO}_{3}$.
\#10. Lev. 1200. Vein 2. Mark 260. Check ampless 17" - 0.005 An $4.80 \mathrm{Ag}-1.10 \mathrm{Cu}-0.02 \mathrm{Co}-\mathrm{Tr} \mathrm{WO}_{3} \cdot$
 $22.85 \mathrm{Ag}-10.50 \mathrm{Ca}-0.03 \mathrm{Co}$ - Tr. W03.
(12. Lev. 300. Vein At. Eetween the last two stopes. NO VISIBLE ERON2ES. Hew sample: 17" - Tr. Au - $0.70 \mathrm{Ag}-1.40 \mathrm{Cu}$ $0.04 \mathrm{Co}-\mathrm{Tr} \cdot \mathrm{WO}_{3}$.
The average for the new "block" on the vein \#2, 1200 level is calculated att

65 feet long - $3^{\prime \prime}$ - $0.7506 \mathrm{Au}-7.5 \mathrm{Ag}-7.1 \% \mathrm{Cu}-0.07 \% \mathrm{Co}$. On the west this "bloci" merges th the ground sampled by Mr. Jasper. On the east, sampling was stopped for lak of time and facilities. Upwards the ore extends to 2000 level. Beiow this 1200 level, the ore is innown to extend throug all the length of the winze. However, there, the vein is wider than the crossesection of th winse and sampling there would have been in onclusive.

Returms on turgten trioxide content of these twelve asmples are misleading. While schoelite is contained in the main vien filling and in various bands flanking the main body of the vaing the sampling included more width than neoessary. Also, the fact that scheelite is erratioaily distributed, accounts for low reaults. Sampling of scheelite is very difficult, unless it is done by buik ampling.

The visual appraisal of scheelite content on the lower vorkings of 2 vein was fised by the writer at $2 \% \mathrm{WO}_{3}$. Later, an analysis arrived from Wah Chang on the 500 Lbs. bulk sample. That sample was analysed to contaln $1.93 \% \mathrm{WO}_{3}$.

In aotual mining, soheelite will have to be mined somewhat separately from copper. Say, scheelite will be taken out in narrow cuts, which later might be widenod to take out the remainder of copper ore.

Ore Romaryes

The problea of evaluation of ore reserves is complicated by a number of factors.

Veing are complex shear fractures, consisting of overlapping lenses. Drifts prospecting these veins deviata from one lens on to
another. Thus four such lenses were drifted upon on the 1200 level without an apparent discontimuity. Raises likewise shifted from on lens on to another. There are not enough raises to divide the veins into some form of "blocks".

Therefore, it is necessary to speak of (indicated)ore, rather than probable and possible.

The following a sumptions are made here:

1. All ore is a milling ore.
2. Combined values of gold, silver and cobalt should increase the value of ore by US $\mathbf{\$ 1 0 , 0 0}$ per short ton.
3. Tungsten content is left to be the same as estimated befors - 31,680 tons of $2 \% \mathrm{WO}_{3}$, contained in the lower jortion of the vein.
4. In view of generally high coper recoveries and because of various approximations, all copper content mentioned in the tabulation below is recoverable.

Ore reserves are calculated at:

Vein	$\begin{aligned} & \text { Reasonable } \\ & \text { Ascured } \end{aligned}$	Short Ton Indeated	20 tal
*2	47,808	267,192	315,000
\cdots	20,000	44,000	64,000
	67,808	311,192	379,000

Lack of samples (some 2,000 samples would havo been necessary) and the fact that many samples cannot represent the full vein width preclude procise estimates of tenor. It is believed nevertheless, that the 47,808 short tons of reasonably assured ore on the 2 vein should average bettor than 66 Cu . Reasonably assured ore on fir should be very much the same.

An overall tenor of the total reserve should fluctuate closely to 4% Cu recoverable.

To estimate the values and the costs, the last November's mal quotations are taken - 54 US cents per pound of Ioreign copper and US $\$ 72,00$ per unit W_{3}. It may be that the prices have risen since. Inere is a delinite and rayid upward trend in metal prices.

The value of $4 \$ \mathrm{Cu}$ ore plus $\mathrm{CB} \$ 10,00$ for gold, silver and cobalt, less the premiun for WO_{3}, 1 s calculated at is $\$ 53,20 \mathrm{per}$ short ton.

The ralue of tuagsten trioxide containad in ore should be US $\$ 3,421,440,00$ assuming 75% reoovery and no penalties.

The total value of ore reserves sums up to:

67,808 ts reas. assured
311,192 ta indicated scheelite content

GROSS VALUE

U8
18 3,607,385.60 $16,556,414.40$ $3,421,440,09$

U8 $\$ 23,584,240,00$

Cost of mining, milling, $\$ 17,00 /$ ton $\$ 6,443,000,00$
Cost of shipping \& amelting, prorated - $\$ 17.00 /$ ton

Profit in perspective:
US $\$ 10.698 .240 .09$
In figuring costs, data on a similar operation in 1949 wore taken as a basis. 40 was then added to allow for inorease in costs of materials and labor.

Under the "reasomably assured" ore the writer lumps various blooks sampled. Estimates of ore on the fein do not include ore possbly exdsting in the flooded portion of the mine.
sinco vein widths are at times wider than raises or the winses, sampling does not represent the oorreot width in ail cases, of the velins. Presence of ore minerals in black bands flanking the main vein flllings may appreciably add to the tenor of ore. It is estimated that certain black bands may add up to 25% to the widths of veins.

Assuming that a 150 ton mill is ready at the very wart of mining, the tonnage estimated should be worked out in 8 years. However, there exfst good possibilities for finding additional extensions of ore.

Geology of The Rocher de Boule Deposit

The deposit occurs within and near a granodiorite intrusion. This intrusion - a stock - iles in sedimentaries of Jurassic - Lower Cretaceous age, which have become metamorphosed during the intrusion.

Petrography of the stock and of the surrounding strata was worked out by members of the geological staff of the Department of Mines and Technical Surveys of Canada. Nothing essentially important can be added to their descriptions at this time.

The contact between granodiorite and adjoining sedimentaries is exposed in main drifts of the 1000 and the 1200 levels. There it shows an intense metamorphism of stratified rocks, characterized by:
2. silification,
b. developinent of amphiboles. c. development of chlorites, particularly bistuk d. development of magnetite.

Ages of granodiorite intrusion and of other events aannot be fixed accurately. In any case, the intrusive body had coolad off completely by the time mineralizing solutions arrived.

Phenomena subsequent to intrusion of granodiorite are in agreement with the general structural pattern of Canada of late Tertiary Pleistocene.

The second igneous activity must have taken place at the close of Tertiary. The new intrusive was termed "fine grained granite" by the Canadian Survey. The writer has collected a specimen of rhyolite, which may represent a chilled border of the Rocher de Boule Dyke.

Rocher de Boule dyke is the largest dyke known on the property, but not the only one. It strikes approximately $\mathbb{N} 10^{\circ} 30^{\prime} \mathrm{s}^{\circ}$ Its generalized dip is calculated at $56^{\circ} 55^{\circ}$ West, although the walls would give very variable direct readings. Rocher de Boule dyize is definitely premineral and has suffered displacements by faults. Thus, in an exposure of the Rocher dyise at the end of the crosscut 1003 on the 1000 level, the horizontal displacement of the dylse by the fault-vein is about 60 feet to east. Due to this displacement the eastern face of \#3 vein drift is stili within the dyke, while the western face of the longest drift there is in granodiorite. The dyke may be seen in the footwall of \#3 faultovein through the whole extent of the drift but the last 10 to 15 feet.

Veins \boldsymbol{p}_{2} and $\mathbb{A} 4$ do not appear to have displaced this dyke horizontally, but may have done so vertically.

Width of the Rocher dyke varles upward of 40 feet. On the 300 level this dyke was cut but not completely traversed. In the region of the vein \#2 Rocher dyke does not show any apophysae. In the region of the fault-vein \#3a on the 1000 level a nearness of an intersection of dykes.

A second dyke, only 2 to 4 feet wide, was encountered on the 1200 level near exposures of the Juniper fault. The rock of this second dyke is identical with the rock of the Rocher dyka. This second dyke is cut by the Juniper fault at a sall angle and must be displaced by it. The intersection is in solid ground and could not be seen. However, the calculated displacement of this second dyke by the Juniper fault shows to be much smaller than the presumed displacement on the vein $\% 2$ (also by the Juniper fault).

The two dykas should intersect at about 270 feet nor th of the north face of the arosscut 1003 on the 100) level.

Syenite porphyry is found on the hanging wail of the vein 33 on the 12 level. Its significance and senetio relationships cannot be worked out from that exposure alone.

The auove desorited assembly of igneous rocks become sheared at a still later date, shearing resulting in vein formation.

There are several veins known to exist on the property and several more may be expected to exist in unoxplored blosks of ground.

The known veins have the following elements:-

Yein	Widths	Strite	Din	Remorke
"Calcite"	$1{ }^{1} \mathrm{f}$ ¢.	$861^{\circ} \mathrm{W}$	560 W	1200 Level
\#2 (W. of Juniper)	1 t to 6 ft	S $72{ }^{\circ} \mathrm{W}$	510 NW	Calc.dip
Vein E. of Juniper	2 ft	S $860 . W^{\circ}$	3901	
\#2-a	1 ft 。	$882^{\circ} 30^{\prime}$	34018	Water Ralse
Pault-vain \#3-a	$8{ }^{\prime \prime}$	$380^{\circ} \mathrm{W}$	$36^{\circ} \mathrm{N}$	1000 Level
*3	$1 \mathrm{ft}$. plus	$873^{\circ} \mathrm{W}$	$38^{\circ} \mathrm{n}$	1200 Level
\%	12 to 9 ft .	$8770{ }^{\text {W }}$	$52^{\circ} 1$	

Tin H2. This vein is a complex shear zone containing a number of overlapping minersiised lenses. Individusi lenses are aparently arranged in an echelon-1ike formation. At least three such lenses may be seen in the western drift on the vein on the $\mathbf{1 2 0 0}$ level. The shape of the drift indicates that the original crew must have hed difficulties of findin: a nev lens aach time the old lens pinched out. In driving eastward, the correct lons was lost in the very orossout. mon driving eastward proceeded on some lens to the Juniper fault.

The tentative rule for inding new lenses as the old one pinches out is:
"when driving westward, a nev lens should be in the hanging "wall. Correspondingly, in easterly drives another lens "ghould lie in the foot - or southern wall."

The vein in the drift aast of the Juniper fault on the 1200 level may not be the faulted section of 42 vein at all. Several evidenees support such a view. The strike of the vein east of the Junper fanlt is larger than the generalised strike of the $\$ 2$ by som 140 . Thls cannot be explained by shifts in faulting. On the other haxd, the vein $2-a$, known miner the water raise in the main crosscut hes a similar characteristic.

Another supporting evidence is furnished by the intersection of the Juniper fault and the second, narrow dyice of fine grained granite. As it plots out on the map, the horizontal displacement of the dyise due to Juniper faulting should ve 30 to 40 feet. The presumed horisontal displacement on the 2 vein is 100 feat, if the vein east of the Juniper fault were the lost $\# 2$ vein.

Reconstructing conditions as they existed before Juniper fanlting the picture appears to be as followe:-

The $\# 2$ vein is split up into a number of narrow and widely aparated stringers in the region between the main orosscut and narrow dyke. All known intersections of dykes with the veins on the property show to be barren of ore mineraly, vein continuing through the iykes in form of paper thin fractures. Impoverishing of the vein is not restrioted to the dyke width alone but extenis for some distance around. Thus the already spilt stringers of the z_{2} vein should have become even more barren in the visinity of the dyke.

Juniper fault cut the barren stretch of W2 vein just two to four feet west of the dyise. It is ontirely possible that fractures corresponding to the faulted portion of the $\% 2$ vein hed actually been cut in the winding drive within a short distance from the Juniper fault. Such fractures could not have been told apart from other fissures on a casual examination.

It will be a worth winile drive to put in a crosscut to south, 1.e. Into the footwall at about 200 feet east of the Juniper pault. At a spot like trat the vein should again be consolidated. This crossout may eut the lens within 10 to 30 feet.

The lens assembiy of the vein $\# 2$ and the vein $\# 2$ a appear to come to a junction at a point 160 feet east of the easternmost face. The "calcite" vein should join them some 500 to 60 feet further, if it continues that far.

Junctions themselves are expected to be poor to berren, but there Is no reason phatsoever why there should not be more workable ore lenses within each vein - as long a s veins are separated.

The succession of overlaping lanses is also noticesble in ralses and in the winee. All such workings show "rolls" that have caused deviations in drives. In each suoh roll the drive had to follow only one atringer or lens in order to maintain the contract dimensions of the drive. In each case stringers had to be left off in a wall. The new stringer to be followed was probably the widest of the set, but not necessarily the best. Again the same rule applies here - junctions are poor.

The recently received assay map made by Messrs, Hill and Legg shows a great copper contant in the inze below the 1200 level on the / 2 vein, than was axpected by the writer on basis of visual appraisal. The ooppar content there must be largely due to grey minerals ilke chalcocite and coveliite. At the same time, it is obvious that in driving the winte, the main lens was left off in the footwall.

In view of this finding by Messrs. Hill and Legg, the writer is inclined to expect a somewhat greater downward extent of ore on the W2 vein than he originally figured on. While Messrs. Hill and Legg did not average up their samples in the winse, the assays look very attractive. Inis winse certainly deserves attention as one of the places to start first operations.

Appraising possibilities on the drifted stretches of the $\# 2$ vein, it is suggested that short crosscuts should be put in at intervals to probe the walls for additional bands and lenses.

An indication of lens succession in horizontal plan is given by a presence of crossfaulting. Several such orossfaults have been seen on each level. For example, there are two crossfaults in the western drift on the 22 vein on the 1200 level. One lies at about 17 feet west of the main crosscut and appears to be faulted by the 2 vein. Another crossfault lies within the focher dyice further west in the same drift.

In the last place, the crossfault seems to out off the vein. Actually it cut off a southern split, while the northern split has deviated into the northern wall before reaching the Rocher dyice.

Nothing much is known about continuity of ore into sedimentaries. Such a posibility, however, must be considered in future. Sample 8 has yielded a better ore value than was expected, ore minerals changing to gray copper, high in silver and gold. An increase in scheolite may woil be significant - since it is accompanied by a higher gold content.

Yein ata Is apparently of the same age and characteristios as the \#2 veln. Widths appear to be greater.

The succession of lenses is well defined. A roll was found just above the long sublevel between 300 and 100 level, A considerable quantity oi ore was left there in the hanging wail as the raise followed the roll into footwall. Near the eastern face of the long sublevel a crossfault terminated that particular lens. The new ore should be looked for in the southern wail and at apoint some 20 feet ahead of the cross-fault. On the east, the Rocher dyke was reached but not traversed on the 300 level. At the intersection the vein impoverishes, as expected, and splits on to two fractures. Going on the same theory as before, the northern split should become mineralised some 25 to 30 feet on the other side of the dyke.

Workings of the 500 level are flooded, water standing at about 2 feet below the 300 level. The writer, howevar, talked with Mr. C.F. MeKenzie, the Manager of the Columbia Drilling Co. Mr. MoSensie recolleats something about that flooded level. According to Aim, ore widths were good throughout. Also he says, there was a vinse sumk on the vein, about 50 feet deep. All of the winge was in a good ore.

The vein $\mathbf{A l}_{4}$ wes apparently cut on the 1200 level, 1.0 . some 800 feet vertically below the 500 level. Ore evidently ends above the 1200 level, but no samples nor detailed examination were taken or made. The air is bed in that portion of the 1200 level and those drifts need being blown out.

However, the proximity of the Rocher dyke might have had some* thing to do with an impoverishment on the \mathbb{A}_{4} vein on the 1200 level. A more detalled study is necessary there.

选 Veins This vein is a fault of large displacements. It is known only on the 1200 level, where it shows syenite porphyry in the hanging wall. Its study would require more time than could be allotted to it during the writer's visit.

The fault vein \#3-a, cut by the crosscut 1003 on the 1000 level is very much similar in its characteristics to the \# 3 vein. However, dips measured actually on each vein do not check with the calculated average.

The same discrepancy is true in other cases - of the veins \#t and \mathbb{A}_{4}. On these veins discrepancies between measured and calculated dips are due to the veins consisting of a number of lenses. This may be true for the $\# 3$ vein, although the discrepancy is too great.

Other veins: Several small dark veins have been noted west of the Juniper fault on the 300 level. Structurally, onlyone of these belongs to the pattern of veins known on the property. It is possible though that the compass survey was wrong. These veins contain a large amount of magnetite and the workings should be surveyed with a transit to avoid undue magnetic declinations.

Recently a diagonal drive was made off the main erosscut on the 300 level to find the faulted section of the $h \neq v e i n$. This diagonal drive cut the Juniper fault and shortly afterwards a barren vein. The strike of this barren vein was read at 11180 E , corrected north. However, the compass readings are not reliable in that ground.

The doubts about the displacements by the Juniper fault on the 1200 level apply here as well. This new vein cannot be the faulted section of the A_{4} vein.

These veins and the \#3 and \#3-a do not fit into the structural pattern of the region and may indicate a superimposition of another - local structural pattern. A more detailed study, both underground and on surface is advisable.

Mineralization

The discussion of veins on previous pages was made on basis of their structural characteristics. In this section, peculiarities of mineralization will be taken up, which apply to all the veins in general, on the property.

About four pounds of small samples were taken for purposes of microscopic examination. A number of sections were prepared and studied by optical and milerochemical methods.

The following minerals were identifieds-
A. Metamorphic Minerals (Contact and Dynamic)

Hornbiende (in part lin brg)
Quartz
Magnetite

Clinoohlore
Unidentified chlorite
Chloritold
Hydrobiotite
B. "Primary Nineralination"

Chaloopyrite, cures $_{2}$
Cubani te $\mathrm{Cu}_{2} \mathrm{~S}, \mathrm{Fe}_{4} \mathrm{~S}_{5}$, magnetio, platy,
Galena, Pbs
Sphalerite, ZnS_{2} dark brown
Nolybdenite, HOS_{2}
Safflorite (Co. Fo) Ass
Arsenopyrite, FeAss
Pyrrhotite, Fel-xs
Pyrite Pes
Uraninite, OO_{3}, identified by Geiger Counter
Quarts, SiO_{2}
Hornblende
Kagnetite
Chlorites
C. "Secondery Enrichment"

Bornite, cuspest
Chalcocite, Cuzs
Covellite, CuS
Sphalerite, Zns, light colored
Gold, native - inferred from assays
Marcasite, FeSz
Sohelite, CaWO 4 , 11. bluish white
Powellite, $\mathrm{Ca}(\mathrm{W}, \mathrm{Mo}) \mathrm{O}_{4}$ - fl. golden yellow
Lardite, $\mathrm{SSIO}_{2}, \mathrm{nH}_{2} \mathrm{O}$, fl . white
Chalcedony, $\mathbf{S H O}_{2}$, f1. greenish when fresh
quartz, SiO_{2}
Magnetite, $\mathrm{Pe}_{3} \mathrm{O}_{4}$
Calcite, CaCe3, sometimes Il. orange red
Siderite, FeCO_{3}
Chlorites
D. Altaration-Oxidation Mingrele

Chaloanthite, culd 20
Melanterite, $\mathrm{PeSO}_{4}, \quad 7 \mathrm{H}_{2} \mathrm{O}$
Erythrite, 3 CoO , $\mathrm{As}_{2} \mathrm{O}_{5} \mathrm{CH}_{2} \mathrm{O}$
Tenorite, CuO
Limonite
Coethite, $\mathrm{Fe}_{2} \mathrm{O}_{3}$. $\mathrm{2H}_{2} \mathrm{O}$
Hydrohematite, $\mathrm{Fe}_{2} \mathrm{O}_{3}$. $3 \mathrm{H}_{2} \mathrm{O}$
Manganese Hydroxides, undifferentiated - Wed.
Undoubtediy some minerals were missed. There is a possollity that in addition to chalcocite, stromeyerite (Cu2s. As28) is present. Some other sulfates of copper and iron might have been present in samples but were not difforentiated.

On the whole sulfates of copper are found only in wet portions of stopes and then in unimportant amounts.

The following annotations are of interest to both a minerand a millman:-

Chalcopyrite does not show any graduation into cupriferous pyrite, and, therefore, should contain the maximum of copper. Cupriferous pyrite, on the other hand, would have had predominant iron.

Cubanite (chalmersite) is somewhat later than chalcopyrite and is magnetic. A care should be exercised in using magnotic eeparators. Cubanite is also distinguished by 1 ts cleavage and intense yellow color with shimmering luster.

Chalcocite is a grey mineral when rough, silvery grey when poliahed.

When contrasted with megnetite, chalcooite has a brownish tinge. When crystalline, it is orthorhombic but may appear in hexagonal rosettes because of twinning. Magnetite is mostly octahedral in this mine. When with chalcopyrite, it replaces the latter and then may appear silvery gray because of color contrast. When in black bands with magnetite, it is difricult to distinguish, unless the sample is pulverized and magnetite is picked off with a magnet. The writer's sample \quad contained entirely chalcooite and covelifte.

Covellite - blulsh dark gray, sooty or platy. Replaces both chalcocite ani chaloopyrite. May give a small trouble in flotation, since it reacts differentiy from chalcocite.

Sphalerite and galena are spotty in occurrence.
Hornblende is coarser on upper levels then it is on lower. A pseudomorph of chalcopyrite after a corroded hornblende was found in one specifmen. This bears out a theory of B.D. Kindle of replacement.

Scheelite was found only in the secondary onrichment zone. A speak of scheelite was seen on the 300 level, but was not studied under mieroscope. There appears to be two generations of scheelite, but the primary tungsten mineral was not established.

Powallite occurs in very small amounts.
Lardite and chalcedony are abundant in the sone of secondary scheellte only.

Calcite has evidently been produced in two ways. In sedimentaries It may have been derived from the calcareous content of strata during the metamorphism.

Within igneous rocks, it is the result of intersection of mineralixing solutions with the plagioclase of granodiorite. This may partly be the reason for inpoverishing of velns when traversing dykes, the latter being poor in calci plagioclases.

Other reasons for an impoverishment of mineralization around dyies ares Impermeability of miorogranite, ete.

The deposit obviously has miergone a succession of mineralization. Formation of ore lenses and of black bands flanking the main vein fillings were the results of those successive mineralizations.

The core of each ore lens consists of quartz-chaleopyrite filiing. It is flanked on both sides by black bands of hornblende and magnetite, with riciable amounts of chalcopyrite, chalcocite and covellite. This assembly is surrounded on edges by an envelope of quarts, calcite and chlorite.

Intermittent additions of material caused intermittent extensions of veins both in leagth, width and on dip. Thickening of ore lenses led to crossfaulting, which relieved the strain.

Such crossfaults are not necessarily younger than the noarby ore lenses. Rather the development of ore lenses and of crossfaults ooncurred in time. Crossfaults may not be long at all, extending only slightly beyond the extreme lenses of each vein. wherever seen, these crossfaults ranged from an assembly of paper thin fractures to gouge filled faulta up to 6 inches in width.

Teaching and Secondary Mariohment

Leaching near the surface could not be studied because of a thick covering of snow.

Secondary enriohment was sufficiently extensive to be reckoned with in mining operations.

Spmany

Ore reserves at the Rocher de Boule property are estimated at 67,808 short tons of reesonably assured ore,
311,192 short tons of indicated ore,
which total 379,000 tons and should contain $4 \$$ recoverable copper plus cortain values in gold, silver, cobalt and tingsten.

The grosa value of this tomnage is estimated to be 0S $\$ 23,584,240,00$.
The net profit to be expeatad is in the neighborhood of US \$20,698,240,00.

There exists a good possibility that the metal prices would keep on raising, this rise being ahaad of rising costs.

There are good ohances of finding xtensions of ore on the known veins, as well as of finding new vains on the property.

Tonnage of reasonably assured ore fully justifies an immediate construction of a 150 ton mill, shops ani camps.

Assuming a 150 ton mill. size, the life of the mine should be at least 8 years. should more ore beund, iffe expectations would change accordingly.

The property is very attractive as a "rembabilitation" project.

Development work, done and paid for by a previous operator, is a good asset to the present company.

A number of stopes may be prepared in a short time, ore paying for such preparations. The number of stopes to be thus prepared for exploitation is dependent largely on the equipment available and on the completion of the mill.

While old dumps were not examined by the writer, such dumps nere favorably reported upon by others. They should contein some 12,000 tons of 4/ ore.

In ining within the known areas it is advisable to probe vein walls for additional ore lenses.

Possibilities of finding ore on both ends of both 42 and veins have not been exhausted.

Tungsten mineralization appears to be restricted to the known lower portions of the 2 vein. It should yield a handsome profit, even though the ordinary sampling failed to give good results. In mining, narrow outs should be taken first to remove tungsten ore. Stopes may be widened afterwards to take the remaining copper bearing bands.

February 27, 1952.

Comments on the KOHANOWSKI REPORT on the ROCHER DE BOULE MINE,
by S. S. Hollande

Page 3

Page 4 para. 2

Pages 4 and 5

I do not think that his data is sufficiently accurate to say that because 39,905 tons of ore were shipped that a remainder of 3,655 tons must exist as backfill or on dumps. In the first place he does not know how much waste was sorted from the ore as originally mined. Consequently this calculation cannot be used to support the belief that there is any tonnage of ore on the dumps. The only way to prove that the dumps contain copper ore is to sample them.

Statement that "lack of sampling data on existing maps, therefore, should not be taken as an indication of absence of ore", is not a logical conclusion from the argument that precedes it. The fact of the matter is that there are no proper assay maps of the property.

The whole section on "Present Status of the Mine" is predicated on the existence of large tomage of milling grade ore.
"No imnediate development is needed" - if the ore is present.
"Stope preparation should be started imnediately" if the ore is present.
"Such work will largely pay for itself" - if the wein material is of ore grade.

Page 5 Para. 5

Page 5

Page 7

Page 7

Pages 7, 8 and 9

I doubt whether the statement "sampled portions contain a sufficient amount to pay for the mill and other construction", is correct.

It is true that a large number of samples should be be taken and that it would entail considerable expense, yet that is the only firm basis for an estimate of ore tonnage and grade. establish that on the 1200 level, \#2 vein, east of the winze, that a short oreshoot exdsts. This corresponds to one oreshoot where tonnage was estimated by Hill and Legg.

The content of tungstic oxide by assay is exceedingly low and is difficult to reconcile with the visual estimate of Kohanowski of $2 \% \mathrm{WO}_{3}$. The result of the bulk sample must be ignored unless the method of its taking is known. Ore Reserves - The assumption that "all ore is milling ore" cannot be substantiated by assays or by visual estimates of the grade of the vein mineralization.

No vein width, average or assumed, is stated. On_\#2
yein it would appear that he has estimated the "reasonably assured ore" as constituting blocks $15,16,17,5,6,12,13$, 14, and 3 on the attached section. He includes in this block far more vein area than the available information warrants.

The balance of the "indicated ore" in \#2 vein includes a vein area west of the sedimentary contact that is extremely uncertain.

The rest of the vein area in the estimate may be of
somewhat higher order of certainty but is still far from being "indicated" ore according to accepted standards. The statement that the overall tenor of the total reserve should fluctuate closely to 4% recoverable" cannot be supported by assays or by estimated grade of ore in the workings that have not been sample. It is a ridiculous stabment wien the shipments of sorted ore from the $\# 4$ vein averaged only about 7% copper. As a consequence the gross value of the ore, based on 54%. S. per pound of copper, is completely unreasonable.

On geology are reasonably good and show his interest

Page 17 Summary - The only additional point that needs comment is in the vein structure and mineralogy. the statement that the dumps "should contain some 12,000 tons of 4% ore". I am sure that if they did the presence of 4% copper ore would be far more apparent than it is.

