\qquad
\qquad
\qquad
(1) John C.Lunds MSc thesis, 1966
(2) Empine Der Co's 1961 Status repont

STRUCTURAL GEOLOGY OF EMPIRE MINE

EMPIRE DEVELOPMENT COMPANY LIMITED PORT McNEIL, B.C.
by
John C. Land
B. Sc., University of British Columbia, 1962

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science
in the Department
of
Geology

We accept this thesis as conforming to the required standard.

PROPERTY FILE

THE UNIVERSITY OF BRITISH COLUMBIA
March, 1966

Foreword

Empire mine has been described by Jeffery (1960), Wittur (1961), Sangster (1964) and briefly by Eastwood (1965). Each of these writers has dealt essentially with general geology, mineralogy, geochemistry and ore genesis. Prior to this thesis no detailed examination has been made of structures and their relation to ore deposition.

Regional geology is based in part on work by Dr. W. G. Jeffery and in part on personal observations, as assistant to Dr. Jeffery in field seasons of 1960 and 1961 and as geologist for Empire Development Company Limited since 1962.

Both Merry Widow open pit and underground workings were reexamined, where possible, with special emphasis on structural relations. This work was supplemented by Company maps and reports by J. Lamb and the author.

It is hoped that this thesis may provide answers to at least some of the structural problems and possibly emphasize the importance of structural control in ore deposition.

Abstract

Empire mine is located on north-central Vancouver Is land about two miles south of Benson Lake. Orebodies are typical of the many contact metasomatic ira doposits of the West Coast of British Columbia. They occur in Lonanza volcanic rocks and Quatsino limestone of Upper Triassic age near the margins of a small granitic stock of intermediate composition.

Structural controls at Empire mine are in part the configuration of the intrusion contact and in part the intersection of steep northeasterly faults with (a) folded and fractured volcanic rocks at the Merry Widow deposit and (b) with swarms of northwesterly striking greenstone dykes in the Kingfisher deposits. The Kingfisher fault transects both the Merry Widow and Kingfisher orebodies as well as the West Pipe and is considered one of the main channels for mineralizing solutions.

Relatively intense folding occurs near margins of the Coast Copper stock. In the Merry Widow area, plot of poles to bedding on Schmidt equal area net indicate a north-northwesterly plunging major fold. Superimposed on this are minor drag and disharmonic folds. Fold axes all strike northerly sub-parallel to the intrusion contact and folding is considered a direct response to emplacement of the Coast Copper stock.

Relation between intrusive greenstone and local folding would suggest that final stages of Bonanza volcanism, regional folding and emplacement of the stock with local folding and mineralization may be nearly contemporaneous.
TABLE OF CONTENTS Page
Foreword ii
Abstract iii
Acknow ledgments iv
Chapter I
INTRODUCTION 1
Location and Access 1
Physiography and Climate 2
CHAPTER II
REGIONAL GEOLOGY 4
Vancouver Group 4
Karmutsen Group 4
Quatsino Formation 5
Bonanza Group 5
Intrusive Rocks 7
Structural Geology 8
CHAPTER III
LOCAL GEOLOGY 10
Petroiogy 14
Spherulitic Lavas 14
Bonanza Volcanics 15
Diorite-Gabbro 16
Breccia 16
Page
Intrusive Greenstone 17
Andesite 18
"Dacite" 19
Granite Dykes 19
Feldspar Porphyry 20
Post-Ore Basic Dykes 20
Metasomatic Vein Rock 21
Siliceous Bands in Limestone 22
Ore Zones 22
 23 26 27
West Pipe 27
Zoning 28
Greenstone Relation 28
Structural Geology of the Mine 32
Folds 33
Faulting 37
Kingfisher 37
South Fault 38
Main Thrust 38
Time Relation Between Geologic Events 39
CHAPTER IV
SUMMARY AND CONCLUSIONS 41
BIBLIOGRAPHY 59

The Vancouver group is cut by a host of dykes, sills, and small irregular-shaped masses of greenstone. These intrusions vary in composition and texture but are essentially fine-grained greenish andesite, very casily confused with extrusive rocks of Karmutsen and Bonanza groups which they invade. Jeffery (1960) and Hoadley (1953) have suggested that these greenstones are genetically related to Bonanza volcanism.

Structural Geology

Rock units mapped to southeast and northwest of Empire mine, not affected by possible disturbance during emplacement of Coast Copper stock, have a persistent northwesterly-southeasterly strike and southwesterly dip. Jeffery (1960) has described these units as forming part of a southwesterly dipping monocline. Eastwood (1963) reports rocks resembling Karmutsen in character near Power River, 16 miles southwest of Empire mine. He has also noted a limestone unit, much thinner than Quatsino, overlain by rocks resembling those of Bonanza group. It is probable that rocks mapped in the Empire area form the eastern limb of a broad syncline folded about a northwesterly trending axis.

Bedded Quatsino limestone strikes northwesterly and dips southwesterly at 25° to 35°. Small variations in strike and dip reflect gentle flexures. Immediately east and extending along the Coast Copper stock, limestone strikes northerly, generally parallel to the axis of elongation of intrusion. At the north end of the stock it swings sharply northwest. At first glance the sharp change in strike appears to mark the
nose of a southwesterly plunging syncline with Coast Copper stock intruded into this nose. Change to a northerly strike is confined to rocks adjacent to and east of Coast Copper stock. It is likely that this change in strike is due in part to intrusion of the stock. This stock, therefore, is not intruded into the nose of a southwesterly plunging syncline (Sangster 1964 p 185) but rather the rocks are deformed as a result of the intrusion. Where the intrusion has invaded volcanic rocks, these have only been mildly deformed. Where limestone is in contact with the intrusion, folding is more pronounced. In Craft Creek Quatsino Iimestone is folded into isoclinal folds against Coast Copper stock.

Faulting is prevalent in three sets: northwesterly, northerly and northeasterly faults. Northwesterly faulting is more prevalent in the Alice Lake area northwest of Empire. Here, along a ridge between Neroutsis Inlet and Alice Lake, a prominent northwesterly fault has thrown Quatsino limestone against Cretaceous sandstones (Jeffery 1962). Northwesterly faults near Empire mine show little or no displacement. The valleys of Kwois Creek to the south, Benson River, Maynard and Three Isle Lakes, east of the mine, form a prominent north-south topographic lineation that may reflect north-south faulting.

North-striking Benson River fault, east of Empire mine, has a left lateral displacement of one mile and a dip slip component of movement estimated as 4,000 feet. Faults repeat Quatsino limestone to the east. Northeasterly faults near the mine show small displacements only. Rainier, Merry Widow, South and Marten Creeks are expressions of northeasterly faults. These cut Quatsino limestone and Bonanza rocks as well as those of Coast Copper stock.

CHAPTER III
 LOCAL GEOLOGY

Magnetite at Empire mine occurs in limestone and volcanic rocks near the margin of the Coast Copper stock. The Merry Widow and Raven deposits are in a small wedge of volcanic rocks, the Kingfisher completely within limestone. All are near the upper contact of Quatsino limestone. Geology at Empire mine area is shown on Map A (in pocket).

Bedded Quatsino limestone strikes northerly and dips westerly at moderate angles toward the stock. Strike generally parallels intrusive contacts. Local variations in attitudes reflect gentle open folds. Most prominent change in strike occurs near a bulge in the Coast Copper stock north of Empire mine. Intensity of deformation increases toward intrusive contact. Near Merry Widow deposit, limestone dips steeply to the east; to the north near the Shamrock and Blackjack showings, limestone dips steeply near intrusive contacts. In Craft Creek limestone in contact with the intrusion is isoclinally folded about a west-northwesterly axis.

Bonanza rocks overlie the limestone and occur as a discontinuous rim around margins of the Coast Copper stock. North of Empire mine, rocks previously mapped as Bonanza volcanics are not considered part of extrusive Bonanza rocks, but rather one of the many greenstone masses found near the mine. If these are Bonanza rocks there is a stratigraphic problem. Limestone at the Merry Widow deposit is nearly 4,000 feet thick, near Blackjack and Shamrock, 3,000 feet. At the bulge in the stock, between the Blackjack and Merry Widow, it is 1,600 feet thick. There is 1,400 feet of Quatsino limestone missing in this section. There is no evidence to suggest that
this amount of limestone has been displaced by faulting. It is suggested on this basis that these rocks are part of the many intrusive greenstone masses common near the mine.

Buanza rocks consist of metamorphosed tuffs, flows and agglomerates. Bedding is poorly preserved but where visible conforms to the generally northerly trend and westerly dip. Massive rocks are fine-grained, dense, medium to dark green in colour, indistinguishable from intrusive greenstone which invade them. On the northwest and westerly wall of the Merry Widow pit, bedding is preserved as colour banding. Banding is due to segregation of light and dark minerals; light bands are predominantly feldspar, dark bands pyroxene. Result is a gneissic texture. Jeffery (1960 p 95) calls this rock a pyroxene-plagioclase gneiss. Colour banding is thought to reflect original bedding in volcanics.

The Coast Copper stock intrudes both limestone and volcanic rocks. Contacts are generally steep, ranging from 70° to almost vertical. Near Merry Widow pit underground development and deep drilling show the contact near surface to dip at about 55 ${ }^{\circ}$, steepening to near-vertical at a depth of 650 feet below floor of Merry Widow pit. The effect of thermal metamorphism on limestone has been re-crystallization. Volcanic rocks near the intrusive margin are in part hornfelsic and in part "granitized." Rocks referred to as "granitized" are essentially those in which metasomatism has in effect produced a feldspathic rock, in places resembling an altered diorite. Areas of feldspathization are irregular, generally less than 10 feet in diameter and grade out into massive metamorphosed volcanics. This is most noticeable in Merry Widow pit where metasomatism has had its greatest effect.

Intrusive greenstone, commonly regarded, at least in part, as intrusive phases of Bonanza volcanism, form large irregular masses, dykes and sills. They are dense, fine-grained, greyish-green to dark green rocks, mostly andesitic or dacitic in composition. The largest greenstone mass is andesite.

Faulting is prevalent near the mine. East to northeasterly faults are numerous, and bear close spatial relation to ore deposits. These are prominent faults with a steep southerly dip. Movement has been negligible. Most can be traced into intrusive diorite and have postintrusive movements. Northerly faults, one which follows in part the Merry Widow Creek, another the Benson River, have repeated outcrops of Quatsino limestone to the east.

Movement along bedding planes is recognized in both limestone and volcanic rocks. In the Kingfisher pit, movement along the base of a westerly dipping ($20-250$) greenstone sill is recognized by gouge and slickensides, indicating reverse movement. Fragments of the skarny greenstone sill, with selvages of magnetite and chlorite are healed by coarsely crystallized calcite. The inference is that the fault is a pre-mineral break in which movement had continued during mineralization, fracturing early formed magnetite which was later healed by coarse crystalline calcite. Magnetite and calcite occur in a similar relation in the footwall. Magnetite has spread out under the sill suggesting that the sill, in part, served as an impounding structure to mineralizing solutions.

Movement has occu
long bedding planes (fig. 3, p 13). Angular fragments of volcanic material, healed predominantly by

Fig. 3
Sketch to illustrate the nature of brecciation along bedding planes in Bonanza volcanic rocks.

pyroxene, form lenses of breccia along bedding planes. Fragments show a general alignment parallel to bedding.

Petrology

Petrology is based on a study of eighteen thin sections taken from rock types which might have a direct bearing on structural interpretation. Jeffery (1960), Wittur (1961), Sangster (1964) and Eastwood (1965), have ably described common rock types and duplication of this work was not warranted. Four specimens of greenstone, including one from a large irregular mass near Kingfisher pits and three from dykes exposed underground, were examined petrologically to determine the variation in composition. Specimens from spherulitic lava, acidic dykes, breccia, banded volcanics, feldspar porphyry and limestone were also examined. Two sections across contacts between dark siliceous beds and limestone, were examined for any evidence of bedding plane movement. Each of these are described briefly below, supplemented to some extent by descriptions by early workers.

Spherulitic Lavas

A small unit of spherulitic lava outcrops west of Empire mine in a small gully on the south slope of what is known locally as "Little Merry Widow" mountain. The unit, three to six feet thick, crudely banded, is intercalated with thin-banded volcanic rocks, possibly acidic lavas.

The rock is composed of spherical forms that range in size from $1 / 4$ to $1 / 2$ inches in diameter, cemented in a green aphanitic matrix. The spherical forms have a radiating structure. Finely disseminated magnetite is distributed throughout both matrix and spherulites. The ball-like forms weather out like marbles. (Plate I p 44)

Rock consists of radiating masses of albite feldspar with interstitial quartz. Polysynthetic twinning is not common. X-ray powder photographs confirm albite and quartz. Albite is slightly cloudy, crystal boundarics are not distinct. Quartz is clear. Mafic minerals are almost completely lacking, less than 1% chlorite is present as the only mafic mineral. Magnetite is lathlike and short stubby crystals form irregular patterns crossing spherical form boundaries without interruption. Structures along which magnetite crystals have formed may be simultaneous with or later than the formation of spherical forms, depending on which origin of spherulitic lavas is accepted. Possible origins of spherulitic lavas are: (a) immiscible liquids; (b) devitrification of glass; (c) rapid crystallization of a viscous lava. Spherulitic lava near Empire mine is believed formed by devitrification of volcanic glass.

B

Bonanza Volcanics

Bedded volcanics are best exposed on the northwest rim of the Merry Widow pit where bedding is preserved as colour banding. (Plate II p 45) Rock consists of light and dark alternate bands, some bands coarsely crystalline. Lighter bands consist of predominantly plagioclase, and dark bands pyroxene. Modal analysis is 47% plagioclase, 20% pyroxene
with less than $10 \% \mathrm{~K}$-feldspar. Alteration minerals include ragged amphibole (actinolite) laths, epidote, calcite, chlorite, with accessory sphene. Prehnite forms clear crystals in lighter bands. The rock has been called a pyroxene-plagioclase gneiss by Jeffery (1960).

Dioxite-Gabbro

Diorite is a light grey to greenish-grey, medium- to coarsegrained granitic rock. Gabbroic phases are darker in colour and contain a higher percentage of mafic minerals and magnetite than diorite. Analysis by Sangster (1964) shows the basic border zone, to a distance of 800 feet into stock, to contain an average of about 8% iron. Modal analysis of gabbro by Sangster (1964) is 50% plagioclase $\left(\operatorname{An}_{53}\right)$, 39% augite, 7% actinolite, 2% opacite and 2% accessories.

Breccia

Near the diorite intrusive contact, exposed only in underground workings on the main haulage level, is a breccia zone 120 feet across separating diorite from the limestone. The rock has three distinct textures; (a) fragmental rock composed of dark greenish-grey angular rounded rock fragmentar to submarked frey to pinkish groundmass, (b) a less in in a fine pinkish-grey groundmass, and (c) a "mylonitic" rock with augenlike clusters of pyroxene. The latter rock has a marked lineation (Plate XII p 55).

The first rock type consists of rock fragments composed of anhedral grains of feldspar with 25% equant intergranular pyroxene. Clusters of larger pyroxene occurs in inter-fragment spaces. Epidote, sphene and prehnite fill fractures. Zoisite, clinozoisite (x-ray confirmation) and carbonate also occur as alteration minerals.

The second type consists of 21% albite (An9-11) and $50 \% \mathrm{~K}-$ feldspar with interstitial equant grains of augite. Clusters of larger anhedral augite grains have a tendency to be augen or lense-like. Small equant and irregular yellowish-brown isotropic garnet rarely showing crystal form, bears a close spatial relation to pyroxene. Late minerals filling fractures include calcite, K-feldspar, epidote and prehnite; apatite and chlorite occur sparingly. Fine-grained nature of rocks prohibits accurate determination of feldspars. Etch tests with HF and sodium cobaltinitrate suggest preponderance of K-feldspar. X-ray powder photographs and optical properties confirm pyroxene as augite.

The third type is much the same as the second. Pyroxene forms lense- or augen-shaped clusters with lineation near vertical. Specimen examined came from near light coloured greenstone dyke that cuts the breccia zone.

Intrusive Greenstone

Greenstone masses, dykes and sills are predominantly andesitic in composition. Of the four specimens examined, three were andesite and
one was "dacite." All had suffered some alteration, and with the exception of the "dacite," all had selvages of skarn and, in part, magnetite along the contacts.

Andesite:

Most prominene ayise underground is a large andesite dyke 35-40 fect in width that has been emplaced or at least lies along the main thrust fault that cuts into the Merry Widow pit. The dyke strikes northerly and dips at about 55° easterly. Closely spaced joints are filled with pink K-feldspar, epidote and brown garnet. Sub-parallel fractures and alteration haloes give the rock a banded appearance. The dyke is referred to as the 'West Pipe" dyke.

The specimen consists of a felted mass of feldspar microlites with intergranular equant pyroxene. Occasional untwinned feldspar phenocrysts, considerably altered to sericite and epidote are present. In one instance a feldspar crystal is completely altered and replaced by a mosaic of anhedral epidote grains. Both epidote and feldspar are cut by calcite veinlets. Epidote fills fractures, decreasing outward from the centre.

Modal analysis shows the rock to consist of 43% plagioclase (An.50), $15 \% \mathrm{~K}$-feldspar and 18% pyroxene (augite) with sphene and apatite as accessories. Alteration minerals include K-feldspar, epidote, calcite, diopside, garnet and prehnite. Opaque minerals include a few scattered grains of pyrite, magnetite and chalcopyrite.

Other dykes examined are similar in character to that described above. A 10 -inch dyke consisted of large remnant grains of pyroxene cut by laths of plagioclase in subophitic relation. Sericite, epidote and
calcite alteration obscures original nature of feldspar. Untwinned anhedral K-feldspar comprises about 20% of the rock, plagioclase 25% and intergranular pyroxene 17%. Ragged laths of amphibole occur sparingly. Calcite prehnite and epidote occur as vein minerals. Texture was likely originally diabasic.
"Dacite":

A greenstone dyke cuts the breccia zone exposed on the 1920 level. It is a fine-grained, grey-green felsitic rock composed of 30% anhedral to subhedral plagioclase, 33% anhedral K-feldspar with 23% interstitial quartz, and 1% intergranular pyroxene. Biotite and amphibole comprise less than 1%. Calcite, epidote and chlorite occur as alteration minerals; accessory minerals are apatite, magnetite and pyrite. Pyroxene, in part, forms clusters of anhedral grains. Quartz and K-feldspar are at least in part introduced or metasomatic, hence original nature of rock is obscured.

The dyke is cut by irregular masses of fine-grained granite which enclose angular fragments of the intruded rock.

Granite Dykes:

In underground workings cutting breccia is a grey to pinkishgrey, fine crystalline igneous rock with a composition of granite. It is composed almost entirely of large anhedral to subhedral K-feldspar and quartz. Modal analysis shows 60% perthitic feldspar, 35% quartz and 4% aegerine-augite with apatite and sphene as accessories. Jeffery (1960) describes an alaskite north of the Kingfisher pit. Near this latter occurrence, greenish-grey, medium-grained andesite is cut and brecciated by fine-grained granite. Edges of brecciated fragments are bleached by
granite. Only mineralogical change in the bleached haloes is a reduction in amount of opaque iron minerals.

Feldspar Porphyry:

Sutheriand-Brown (1962) has pointed out the ubiquitous relation between feldspar porphyry dykes and contact metasomatic deposits associated with Vancouver group rocks.

North of the Kingfisher pit, cutting brecciated intrusive andesite is a feldspar porphyry dyke which in turn is cut by later granite dykes (alaskite). It is a dark green, fine-grained rock with laths of plagioclase showing a sub-parallel alignment with dyke contacts. Laths range in size from 3 min to 7 mm . It consists of large phenocrysts of plagioclase (An56) enclosed in a felted mat of feldspar microlites with intergranular pyroxene. Epidote and calcite occur as alteration minerals along corroded feldspar grain boundaries, cleavage planes and fractures. Some feldspar are zoned, some not; all show undulatory extinction. Few ragged biotite flakes and amphibole laths occur sparingly, biotite is closely associated with pyrite.

Post Ore Basic Dykes:

In the Merry Widow and Raven ore zones, are post-ore green dykes with a coarse, sugary texture. They cut andesite dykes, ore zones and gabbro and are likely one of the latest phases of intrusion. They vary little from andesitic dykes in composition, containing 37% plagioclase, 8% K-feldspar, 25 - 30% pyroxene, 12% chlorite and 3% epidote. Long laths of plagioclase and subhedral pyroxene with interstitial chlorite form most of the slide. Pyroxene is replaced in part by calcite and in part by a
brown fibrous mineral exhibiting radiating forms. An undetermined mineral, brownish green in colour, slightly pleochroic, forms radiating masses with striking birefringent colours. It is a minor alteration mineral.

Gunning (1929 p 107A) in reference to acidic, basic and porphyry dykes found near stocks, states " - -they are believed related in origin to main intrusive bodies in that they represent differentiates from the same parent magma".

Metasomatic Vein Rock:

On the north wall of the Merry Widow pit volcanic rocks appear cut by a finely crystalline rock which shows crosscutting relations to bedded volcanics and in many respects is dyke-like. Contacts are relatively sharp and the vein in places includes fragments of wall rock in which bedding in fragments matches that in wall rocks.

The vein rock is light grey, slightly mottled, spotted with small clusters of pyroxene. It consists of large altered feldspar crystals studded with anhedral pyroxene set in a groundmass of equant plagioclase feldspar and granular pyroxene. Plagioclase for the most part does not show multiple twinning and all are unzoned. Determination of feldspars by Michel-Ievy method and refractive indecies indicates a composition of at least An32. Pyroxene (augite) forms clusters of clear crystals as well as equant grains which commonly have an alteration halo. Composition of the rock is approximately 70% plagioclase, less than $5 \% \mathrm{~K}$-feldspar and 25% pyroxene (augite) with less than 3% epidote, sphene and apatite.

Vein is considered to be a metasomatic rock in which metasomatism
has occurred along fracture systems and bedding surfaces, producing intru-sive-like characteristics (Plate II p 45).

Siliceous Bands in Limestone:

Within Quatsino limestone are thin siliceous bands that range in thickness from a fraction of an inch to three inches. They are extremely fine-grained and finely banded, dark, slightly calcareous rocks with finely disseminated pyrite. Microscopic examination shows the rock to consist of about 15% pyrite with scattered quartz grains in a fine dark brown groundmass. With the exception of pyrite, quartz and occasional carbonate grains most of the groundmass could not be identified. Contacts with limestone are sharp. Adjacent to the contacts limestone has a fine granulated texture in which occasional fragment of coarse calcite is enclosed in the finer material. Relation indicates movement along bedding planes on an extremely fine scale.

Ore Zones

Most of the production from Empire mine came from the Merry Widow and Kingfisher deposits. Approximately 20,000 tons of ore was taken from the Raven zone in 1960 but sulphide content was particularly high and the pit was abandoned. Since then it has been buried by waste. Description of the Raven zone given here is from company reports. Geology of ore zones is shown on Map B (in pocket).

Merry Widow

The Merry Widow orebodies occur as tabular-shaped masses with irregular boundaries within a wedge of meta-volcanics of the Bonanza group. This wedge is bounded to the west by the easterly dipping gabbro and to the east by westerly dipping limestone. Width decreases sharply with depth to 150 feet where it is exposed underground as a severely brecciated skarny rock. It is separated from gabbro by 15 feet of massive garnet-epidote skarn and from limestone by 10 feet of massive skarn. Diamond drill data indicates an irregular volcanic-limestone contact dipping toward the gabbro. Contact curves sharply down toward the gabbro. Intrusive contact in the pit dips easterly at 55°, steepens to 70° or 75° below the 1920 level. Magnetite layers lie parallel to the contact.

Ore occurs as massive magnetite, replacing both skarn and volcanic rocks and partially enclosed by a halo of garnet-epidote skarn. Replacement is incomplete and orebodies may have lenses of low grade to barren skarny rock interlayered with ore-grade material.

The Merry Widow deposit may be divided into three units; an upper, intermediate and a lower unit. The upper unit is a tabular body 340 feet long by 500 feet thick plunging eastward at 30°. Ore terminates abruptly down plunge against limestone. Upper termination grades sharply into skarny volcanic rocks. Lying below and separated from it by about 40 feet of relatively barren mixed skarn and volcanic rocks, is the intermediate unit. It is rabular in shape, has a length of 280 feet, thickness of 30 feet and lies parallel to the upper unit. The main thrust fault extends between these two orebodies, cutting the barren rocks. Footwall rocks have been
folded upward against the fault as evidence of reverse movement (fig. 4 p 25). The third and lowermost unit lies along the gabbro contact, separated from it in most places by a cushion of skarn. Down dip extent, defined by limits of exploration, is 540 feet, maximum thickness is 140 feet. It tapers with depth. Where the intrusive contact steepens, ore layers also steepen and at one point ore occupies an enclave in the gabbro, reflecting the close relation between configuration of gabbro contact and orebody. There is little doubt but that the form of the deposit is to some extent controlled by the intrusive contact. .

Mineralization consists of massive magnetite with associated pyrrhotite, pyrite and chalcopyrite. Other minerals found include cobaltite, arsenopyrite, sphalerite, erythrite and chalcotricite. This last group is found in small or trace amounts. X-ray powder photographs confirm chalcotrichite (cuprite). Sulphides are discussed in another section with relation to zoning.

Colloform magnetite from the Merry Widow pit has been described by Stevenson and Jeffery (1964). Formation of botryoidal forms has been ascribed to crystalization from colloidal suspension under relatively low pressures. Curvature of the forms is convex against white calcite and magnetite shows both radiating and concentric growth to botryoidal forms. Sangster (1964) has discussed possible origin of colloform magnetite and concluded that magnetite in Kingfisher deposit was deposited from a colloidal dispersion by re-deposition of earlier magnetite in a post-ore fault now cemented by calcite. The solutions which carried this calcite dissolved some of the crystalline magnetite of the brecciated ore in the

Fig. 4
Sketch showing the drag effect in volcanic rocks as a result of reverse movement on an easterly dipping fault.
,

fault and this dissolved magnetite was precipitated both as an electrolytic crystalline aggregate and also as a colloid. Skarn minerals include andradite-grossularite garnet, diopside, actinolite, epidote, pink Kfeldspar and calcite. Clear calcite rhombs have been found in a partially filled cavity wien sisociated small well formed prisms of ilvaite and cubes of pyrite.

Kingfisher

The Kingfisher has two steeply plunging cylinderical or pipelike orebodies that merge with depth. Both lie within Quatsino limestone, approximately 1000 feet from the gabbro contact. Maximum vertical extent of the two pipes is 420 feet. They taper and finger out into limestone with depth. Magnetite is massive forming sharp contacts with limestone. Skarn minerals are confined to many greenstone dykes and sills crisscrossing the ore. Skarn forms selvages along greenstone dykes and sill contacts and in part replaces large areas of the original rock. Magnetite penetrates greenstone to some extent but has favoured limestone. Replacement of limestone has been such that original bedding is preserved in magnetite (Plate III p 46).

Limestone has been folded into gentle flexures, nowhere are the rocks intensely deformed. Swarms of greenstone dykes and at least one prominent sill cuts both pipes. The Kingfisher deposit lies between two greenstone masses, one 400 feet to the southeast, the other 800 feet to the northwest, with the swarms of pre-ore dykes between. The sill exposed in the Kingfisher East dips at 25° westerly. Reverse movement has occurred
along the base of the sill. Magnetite has moved out along the base of the sill which has acted as a barrier, suggesting that mineralizing solutions were ascending.

The steep northeasterly-treading Kingfisher fault cuts both deposits. The intersection of the Kingiisher fault, with greenstone dykes and sills, is believed to provide favourable sites for deposition.

Raven Zone

The Raven orebody lies at the southwesterly end of a long northeasterly trending zone of mineralized greenstone associated with a northeasterly trending fault. It consists of magnetite with associated sulphides, pyrrhotite, pyrite, sphalerite and chalcopyrite. The orebody occurs as a tabular mass surrounded in part by massive garnet and epidote skarn and plunges steeply to the southeast. High sulphide content made the deposit uneconomic and after extracting about 20,000 tons of ore the deposit was abandoned.

West Pipe

In early exploration, a magnetic high was obtained west of the Kingfisher central deposit and was named the West Pipe. Diamond drilling has indicated the existence of mineralization but not enough to make an orebody. Mineralization consists of massive magnetite as a tabular body immediately overlying the West Pipe dyke. Its occurrence coincides with
the intersection of the dyke and the Kingfisher fault. Small lenses of pyrrhotite, pyrite, arsenopyrite and chalcopyrite with associated gold in calcite gangue lie along the hangingwall of the West Pipe dyke.

Within the Merry Widow and particularly in the Raven zone, magnetite has associated with it pyrrhotite, pyrite and chalcopyrite. Sulphides occur as small masses, commonly associated with white calcite and as disseminated grains distributed throughout the massive magnetite. Pyrrhotite is most abundant. Ratio of sulphides to oxides in general increases with increased distance from the gabbro toward the limestone contact. Closely spaced test holes in the Merry Widow pit between elevation 2260 and 2220 were sampled at 10 feet intersections during mining. Copper content of the 10 foot intersections has been plotted on plans for the 2260 and 2220 levels to show relation to magnetite. Results indicate that sulphide concentration is peripheral to massive magnetite. Greatest concentration is along the northeastern margin of the Merry Widow orebody (fig. 5 and 6 pp 29 and 30). Occurrence of sulphides is erratic and a continuous zonal arrangement could not be established.

Greenstone Relation

A significant feature at Empire mine is the presence of irregular masses, dykes and sills of what is known at Empire as "intrusive greenstone." Megascopically and microscopically, these are all similar. With

Fig. 6
some exceptions, most have intergranular texture, in part diabasic, consisting of a felted mass of feldspar microlites with intergranular augite. Feldspar in one dyke showed subophitic relation to pyroxene. Chlorite and epidote alteration is common.

The larger masses shown on Map A (in pocket) are dark green to grey-green aphanitic rocks with little variation in texture. Contacts are generally steep and in places, show fault contacts with limestone. Intrusion has produced some bleaching of limestone, but little evidence of deformation. Commonly associated with these greenstone masses are small deposits of magnetite. Associated with some but not all deposits, are northeasterly trending faults.

Greenstone dykes invariably have selvages of skarn and/or magnetite along margins which may project into limestone. There is little doubt that these dykes are pre-ore and have served, in part, as guides to metasomatizing solutions. Greenstone dykes are cut by granitic rocks thought to be related to the Coast Copper intrusions and are, therefore, probably pre-intrusion. .

Relation of greenstone to folding is not so clearly defined. Configuration of some dykes and their relation to limestone suggest possible intrafold emplacement. Some of the relations observed are:

1) A broken dyke with fragments displaced by movement or adjustment within limestone may occur within 10 feet of a similar dyke which remains intact, undeformed (Plate X p 53).
2) A greenstone sill following the crest of a gentle open fold has been cut by a later dyke with a slight displacement on the limestone (Plate XI p 54).
3) A greenstone sill, 3 to 4 inches thick, fragmented with small displacement of fragments, follows crest of a small fold. A similar sill follows over the crest of a small fold unbroken (Plate V p 48).
4) Dykes are commonly emplaced along axial surfaces of open folds.
5) Dykes side by side may have different contact relation. Narrow silllike projections from larger dyke with ragged contacts are cut by later dyke with clean contacts and chilled margins (Plate VIII p 51).
6) Some small greenstone masses exposed underground have very irregular shapes with arm-like protrusions that suggests both rocks were "- - - - - . highly mobile."

Carlisle and Susuki (1965 p 464) describes similar relations at Open Bay on Quadra Island and conclude that " - . . . - andesite pods and sheets are intrusive bodies, most of which were emplaced after an initial period of strong folding."

The writer suggests that in the Empire area, greenstone dykes are mostly pre-folding but that intrusion of greenstone continued into early stages of folding prior to or during emplacement of Coast Copper stock.

Structural Geology of Mine

Structural geology does not appear to be particularly complex. Of the thirteen magnetite deposits associated with the Coast Copper stock, eight lie along northeasterly faults. The Kingfisher, Merry Widow, Raven, Shamrock and Blacijaci iie in enclaves or re-entrants in the stock. Where these re-entrants have occurred, limestone has been deformed. All lie in or near greenstone masses or are cut by greenstone dykes, and where these intersect northeasterly faults, they provide favourable loci for deposition.

There is little surface indication of folding. The Quatsino limestone is relatively pure and contains no structures which might indicate tops or bottom of beds, hence presence or absence of overturned beds is based on interpretation of data.

Folds

Relict bedding in meta-volcanics near the gabbro contact, has a northerly strike and steep westerly dip. On the headwall of the Merry Widow pit, dip at the contact is from 80° westerly to vertical. The dip decreases with increase distance from the gabbro to a westerly dip of 25 to 30°. Change in dip defines the westerly limb of a northerly trending anticline. Where alteration is intense near the orebody, volcanic rocks have a hornfelsic texture and bedding is obscured by alteration. Poles to bedding, plotted on a Schmidt equal area net, lower hemisphere, form a broad girdle along a great circle defining a fold with axis at 354° and plunge 18° (fig. 7 p 34). Attitudes of beds (100 points) within the

Figure 7

Plot of poles to bedding in the Merry Widow area indicate a north-northwesterly plunging fold. Fold axis of measured folds are indicated by small x.

Merry Widow area only were used. Trace of the fold axis conforms generally to the gabbro contact. Underground development and diamond drilling outline an irregular but upfolded volcanic limestone contact, dipping westerly, thus supporting the surface evidence for folding (Map C in pocket).

Limestone near the surface expression of the limestone-volcanic contact has a steep easterly dip and north-northwesterly to northeasterly strike. Dips range from 60° to 85° easterly. At the entrance to Merry Widow pit, left wall, the western limb of an overturned fold can be traced. Axial plane strikes east of north and dips 55° easterly. (Plate IV p 47). To the right of the pit entrance limestone folds sharply down to the west. West of this point beds have a steep easterly dip and east of this point dips are 10 to 20° easterly. Axial plane dips easterly at 50 to 57°. In the main haulage level underground, east of the West Pipe dyke, limestone is sharply folded into an overturned anticline with strike of axial plane west of north and dip 57° easterly. West of this fold, limestone dips steeply and is intensely deformed. East of the fold dip of limestone is more gentle, deformaftion less intense. This fold is an underground expression of the fold indicated on the surface and the projected axial plane between them is sub-parallel to the West Pipe dyke. In the underground, the main thrust lies along the footwall of this dyke. The same stresses which caused the thrust movement also produced the overturned fold. Volcanic rocks were more resistant and small drag folding only occurred. In the Merry Widow pit, bedded volcanics are folded against the fault indicating a reverse movement with hangingwall rocks moving westerly relative to footwall rocks.

A third type of fold, seen only in underground, are folds of small amplitude generally 2 to 10 feet, occurring west of the West Pipe dyke. These are similar type folds with near-vertical to steep easterly dipping axial planes and northerly plunging fold axis (Plate V p 48). Observed relation to larger folds indicate that these occur principally on the western limb of the larger main fold.

Superimposed on bedding in the limestone are minor disharmonic folds with an amplitude of less than one foot. Fold axis may plunge either to the north or south but strikes generally within 10° of north. Axial surfaces are highly irregular, thin beds, inches apart, will have totally different configuration (Plate VIII p 51). Thin, brittle beds within limestone may be folded and broken with fragments displaced (Plate VI p 49).

During emplacement of the Coast Copper stock, limestones and volcanic rocks were locally folded about a northerly axis forming an asymmetric fold with steep easterly dipping axial plane. Superimposed on this main fold is a sharp overturned anticline in limestone folded against the West Pipe dyke. At some stage during this minor folding a break occurred along the base of the West Pipe dyke. Small reverse movement on the fault occurred accompanied by drag folding, both in limestone and volcanic rocks. Limestone responded to stresses by folding, the more brittle volcanic rocks by fracturing. Greenstone sills and dykes broken during deformation, form boudinage structure (Plate VII p 50). Limestone has moved in to fill space between fragments. Greenstone boudin commonly have a thin selvage or rim of skarn clearly showing that boudinage structure was formed prior to mineralization.

There is a close correspondence between attitude of axial planes which would suggest that these are related to one period of deformation. Folds are nearly parallel to the intrusive contact and are confined to a small area within an embayment in the Coast Copper stock. Relatively intense folding associated with orebodies at Empire mine is considered to be a direct response to intrusion of the stock.

Folding in the Kingfisher deposit is less intense than in the Merry Widow. In Kingfisher East, rocks are folded into a gentle northwesterly plunging anticline. In the Kingfisher Central, limestone is relatively undeformed, beds generally strike northeasterly and dip northwesterly.

Faulting

Faults occur in three sets: north trending steep normal faults, east to northeasterly high angle faults and northeasterly reverse faults with moderate easterly dips (50 - 57°). Three of the more prominent faults are discussed in some detail below.

Kingfisher Fault

The Kingfisher fault is not the most prominent fault exposed but is the most persistent, both laterally and vertically. It has been traced in the underground at all levels as a tight break, cutting the orebody. It is a northeasterly-striking fault with a steep southeasterly dip. Where
exposed on the headwall, it has a steep southerly dip which decreases sharply at the foot of the wall to about 69°, then increases to 80 or 85° in the bottom of the pit (Plate XV p 57).

The fault makes a broad swing to the northeast, maintaining a steep dip and extends through the Kingfisher Central and Kingfisher East orebodics. Where this fault has been observed underground, it has selvages of magnetite and/or skarn along it. Within the Kingfisher deposits, brecciated magnetite along the fault suggests post-ore movements. Also within the Kingfisher deposit magnetite apparently replacing limestone outward from the fault suggests a pre-ore break. The Kingfisher fault with a persistent lateral and vertical extent, is considered to be one of the more important controls in deposition in both the Kingfisher and Merry Widow deposits.

South Fault

Along the south wall of the Merry Widow pit is a prominent steep, rusty easterly-striking fault (see Plate XVI). Fault surfaces are lined by calcite crystals coated with a brown earthy mineral. Thickness of calcite filling is as much as 8 inches.

Main Thrust

The main thrust exposed in the Merry Widow pit strikes east of north and dips easterly at 50 to 55° (Plate XIII p 56). It shows several
subsidiary breaks, some healed with calcite, others showing slickensided skarn. On the north rim of the pit, skarny rocks are thrust on top of less altered volcanics. Footwall rocks, where relict bedding is preserved, are folded upwards. Where this fault occurs underground it lies along the footwall of the easterly dipping West Pipe dyke. Limestone is folded sharply in what is interpreted as an overturned fold, against the greenstone dyke. Whether this fold has been formed as a result of reverse movement on the fault, is not clear. The upper contact of the dyke does not appear to be a fault contact. Selvages of magnetite and skarn occur along the fault where it is exposed underground (Plate V p 48). Aside from the main thrust at least three other faults of this attitude are recognized but do not show the same reverse movement. These cut the Merry Widow zone below and subparallel to the main thrust, less prominent than the latter.

Time Relation Between Geologic Events

The suggestion has been made earlier in this report that greenstone dykes, sills and masses, in part, have been emplaced during folding of limestone. It has further been suggested that folding at Empire mine is related to the Coast Copper intrusion. Hoadley (1953 p 37) has suggested that the pronounced lineation of the Coast intrusions of Northern Vancouver Island -

> "- - - - more or less parallel with the general fold structure of the invaded rocks indicates that the intrusions were associated with orgenic disturbances and that they were intruded at about the time the invaded rocks were folded."
> Evidently the final stages of Bonanza volcanism, regional folding,
intrusion of Coast Copper stock with associated local folding and mineralization, were more or less contemporaneous. The close time relation between intrusion and orogeny may in fact have been a significant factor in the formation of ore deposits associated with Coast Copper stock.

The Merry Widow, Kingfisher and Raven ore deposits occur at the contact between Quatsino limestone and overlying Bonanza volcanic rocks near the margins of the Coast Copper stock. The stock is a composite intrusion consisting of a two-phase early system of diorite with gabbroic border phases later cut by a more acidic monzonite intrusion. Deposition of magnetite has occurred within an embayment in the stock where country rocks have been more intensely deformed. Both limestone and volcanic have been locally deformed, the limestone folding in response to stresses; the volcanic rock fracturing.

The Merry Widow deposit occurs as easterly plunging tabular orebodies within a wedge of meta-volcanics that have been folded into a north-westerly-trending anticline. Shape of the orebodies to some extent, reflects the configuration of the fold but also corresponds closely to easterlydipping intrusive contact along which it lies. Superimposed on the westerly limb of this fold is an overturned fold possibly a drag-fold in limestone trending east of north and dipping easterly. The overturned limb abuts against the upper contact of an easterly-dipping andesite dyke. Along the lower contact of the dyke, is a thrust fault with strike and dip almost parallel that of the axial plane of the fold. Relations suggest that during emplacement of the Coast Copper stock, both volcanic rocks and limestone responded to the stresses produced by forceful intrusion, first by folding, then as stresses increased by fracturing of volcanic rocks. Limestone responded by folding, controlled somewhat by the West Pipe dyke, forming the overturned fold. A break occurred along the base of the dyke and a small reverse movement caused dragfolding on footwall volcanic rocks.

Away from the contact folding is less intense. In the Kingfisher zone, deformation has been mild.

The Kingfisher, Merry Widow and Raven deposits, all lie along northeasterly faults. The Kingfisher fault cuts through both Merry Widow and Kingfisher deposit. I believe this fault has provided the necessary channel for mineralizing solutions. Where it intersects fractured volcanics of the Merry Widow, upper contact of the West Pipe dyke, and crisscrossing greenstone dykes of the Kingfisher, there has been a concentration of magnetite. Structural controls then at Empire mine are: -

1) Configuration of the intrusive contact. Of thirteen magnetite deposits along or near the margin of the stock productive deposits and those near economic size lie in re-entrants in the stock.
2) Deformation of the country rocks. Fracturing of volcanic rocks during folding provided easy access for mineralizing solutions.
3) Northeast faulting, in particular the Kingfisher fault, provided the main channel-ways for mineralizing solutions.
4) Presence of greenstone dykes and sills in the Kingfisher deposit where these intersect the Kingfisher fault, provide favourable sites for deposition of ore.

Greenstone dykes and faults, where observed underground and in deep drilling, have selvages of magnetite and/or skarn along them. Magnetite occurs along the base of the limestone below the Merry Widow and following the intrusive contact. Mineralizing solutions were, for the most
| part ascending and where these solutions reached favourable sites deposition occurred.

Raporsume

Brarg idede -

7tHEETS

Marge -

KEKSid2d

BROVB282

A1膍

gux 42
 12
 12
Kfugthater 13
2. k. .2as 23
2. Shanroek. 13
6. Snovbled ε10666720
y

922 $16 E 6$

 $921-44$,$45,46,4$,
$42,40,4$,

Rent3$?$345
\square
\square
\square
5
\square . -

739造
 Maray itidow Oxa zane 3
That Ajest hyes (40 nende) II
Shetarook - Diegk \%uok tria (100 80310) 1X2
Qsologital PMan (5c0 senda) IV
Gaobion K-105 (200 , priat) Hawny Hxdow is zingetahor Qza inatios

$$
\begin{aligned}
& \text { hey } 23 \text { to Reptringose } 25 \text {. }
\end{aligned}
$$

itey 9 to suagteator 26.

> isky 9 de Septrablier 16 .
> y_{0} A. Goukta $=$ Gredinats (1960) In flomera Gue iogt Eaptoabes 20 to Desuabaz 5.

Beloy is a dist of areat of progothe on whsoh mgloratiaa way
 labes ith dotasy.

 gealrogienal inppinge

 durking the asotuar.
3. KEXGTRN:

Stuklag oletas nate cewlocating the ald tradl frow Kathlasa Lete.

5o ARAT
Dabisied peoingles mapiog und dip meodid amprys.

 and elakn madidago

 Baps ro and tomet fagpor grownd

Whree ennth erologetwal pheva aspplag in who Bapluwo Gaent Dopper slosnsty by a garky of two was.

Doretts the yome a mumber of pappor and tion prongenta
 eat ropeqtind ofio

 The KingRInher was waricod ont in Augnt while tho Marry Widow aombinead to the oad of the suscoa. In addition o suall beunage was rised derling the smanor from the Ravis gito

To the end of the pwolretine gane 423,812 Zang tome of ounovutrets verw produost frats 592,274 lang toas of ore millod. Concentrete
 ta.lpthur in cerkain whlpeseste

3fnse tiniar momanesd thred grare afo the folsowlng tomngen of eossankroto have bora prodineeds

Tarry पintour	76\%,500
thagrishar *	366,597
Bewas	20,765

 If not goasible toves the sbove flgarec are only an approxisatifaso

2y tha yeer ond wluligg had adramond well. divm in the dapp ore
 rapered from thin heabrall of sho gith wat the fiosr utoed at olorations 20342 seat.
 foet vore gat dewn io obook prnvious axe peasove eatisates and tsot all
 now know thents
(e) the deey are projectsons are axbetantinliy es pioturect fro ywaxs ago. Norkinabely noar the preacht pSt RToer a mepponed mprosd af restas rodk returman two ore bands torned cat to do lergoly orep, meating thet is moh highar guantity wis wspoe ats shis lawh theil wae gatialyebocs
 lomenath wise South pits
(9) Whe ors leyaph with tho matepson of the 2 owest ens next to

(d) *here in is mertohio msiqheto opmtent in the magnetsta of the tetg ory gat is is highent arownd the north ored of the ope boudil.

 appe puge), the atrong ghaarsug bind tha ove bodias ayleg vishea 12 s

 Blavevilutatiote

 preseatig thoy supearad to to str kerteg patolyy unsses Fethor than is

 glegtocoleat oryenthls of calolto in as gragy famit cons enstung a. band

 of suok sryataln.

 sees tw o

 anst oif the Euet pitip
(s) nusese the pereent ore pipos at appth by ardilidg bolow "the git 8200%.

 minvable asn fat this areno
 s3ouy the Zingtiohein funit sone Eniled to Zeeste any megnotite minamalu Iaptions.

Def131. ore pipen asrge nt e dapth of 200 fent sad voathine to si laset alavation

 gratiag 46.58 Eron (vithout tilestion), thieh is equivalent 'te 220,000 tont

 both plyon

 eagsebith werve found aies in thin nruas. llobh of thars seanrvenese, while
 of formation of the oron as jrepition fir e thbithos of depth it foliowa
 nsurtnee.

The finmbler apre, a for husired fout anet of acid belom the

 Surther explorablello.

8期

The aro Gentained nore Abamainatied ealphidas then the eflery
 yyrite and ovan ephuleshke (Buiphide of zine). It it the whly nocartenea

 stone?

gexatio

Tho deanily of dip neodle rexaiap was saareskad from the 50 foot efild puttors of the 2959 surgny to is 25 coot peatere thia yoers. 'ria

 asono) santust. It reven 2 ed diansubtamias minaralisation in she fore of

 ahow Litty. indiostion of weking an ore body.

 orove grentod oladisis atthough only savan alnise werp rocerdute This gtaking had tho parpsode of aovering a giontop erea ziong the diopledo

ATAX (Figure 2, appaste page)
The AJex sone Lioe oa tho Ooweto Ooppor olulay olat Spost Mon 6 (il 1503) a epprozleately 2700 feet servin of the hood of the trescosy.
 alope, noverad ulth heavy Fovestg hetweea olevaifone 2500 and 2200 feoto This eppor shorfinis tonetet of marron magnotito hands zoplesting siturng valcento rooteg uith an inturlacling of auadi sagumatse volsiotso Thoy

 eugneblite dipe 30 degrosis soathyeatarly (into the hid1)。 The magnotite is glocked with wach graan chlorita hat appeasw to be othexukew aluasto fins outtreg suadures shout 50 ivy 40 foet.
 eonteat, sbout 500 reet wovehenst of the anda diprite oondaet. Tho

 botvequ theoe roolos. The writer feala shnt the lawis of oonforambin
 Folcasion belong to the tatrasive gresenetoso group rethor thas ta the Bquanss groxp.

 peale.

The A.jar showingt in thyngelvas are not ingreeolvis now do they 2ook prombasingo the uppez onow fre, entathorod apd low grade waside the lousy

 prosent showiugso

The 1060 unslavablon Expret os Boant Copper ground was tha Dreok
 explerod daring the yoar bots bacese of secondary importanes to tha Shanzaets

The wotk twe perfomed in the fellminef smanera

 the Neart Lake dradnage balln tron thet of the Bnisea. Rivare it

 7ithe

 daak ans blensont ernss to previde olones onntrole
 ht 100 foot inturvala to epver the utbonalous nenss. Toptgraple
 foot dntarvals on eseh liate. Tino reseise wert later pletient ats mapte Pollowiog en massemint of these reculte, thas fiolt work
 information sis thim tiportunt arters?

 $309 \% 5$ feat.

 vidit of 50 reato the lavar pert of tha shanotis io masswe alant

 feet so the woas at alevation 20940 foas.

 underlates lyy. 1.inentonto

It As olviows thab thers wnet bo mpre magnutites ta the

(A) Inyorn of atgnotite Atpgisg tovare tha Aloplso epatapt and replacies dian tosetg
(1) siringate exs A mpogeint poils of mathepsibe ensovisted with the thia aglvedge o? valeanle rookar hathwets 15wos bone end dractbe

 from one wo the othes witbia si ehost diskunto. These orcatio mediags are
 topography, where tha hasisontal attruotsen en e asodle sa oftes es givong of atroager than tha corlicak。
 indsontod on the mig (Figare 3)。 Tio hisi alde in this vioinsty in vasy eteop and Porested and the drill, wet woted ahout with dintiendby. The

 The bolor wove to bo driklet from the diartite in en anstoriy direction tm

Trilisne reamita te date have beon dismppotathay. They Ivaleabe

 moderate grede sad whith and wore eqporated in barpea intetelosi of siferay pote

To date no elpeah2e ore bet besn Zoontod by drillisng in the

 Is mot arifo just stuaralineldons

Tho 1 insatonempicento oontact appeers froa dri2k hole intasio

 otrustare of the ares. Around Mpry MI son Fivnt (two wilas aunthwese

 introuswa pink syanitio rooko Its pelasionshis to other rucho or to miongallentiac ds not knoms.
 Iroa tins Kiblaitey zacit sone morth and went to Grnft Croeks, a dis Enneco

 thins out soxesen the ghamrooh ciedin ta a biarrow guivedge less thea 200
 easit of wad downilsid fron the voleade speko the foleando embibiseg

 type of racky knows lociliy at sxtitusifo graendinato on the napkerh

 Garmaten meleante ropkts A ahort disternes loth to the enrth and to
 thess points in ulnd the uriter fanzo that the oposinse in gquestios is
 It fallows than that the wolagule roule in gat of the Boanaen, fathor
 In the 1960 onuloratien raport (2), pege 3 mades the handing rThe Qreenatione Frobleme.

 Zvede to the spenelymipe thet the recket verve stoplaped inder the agnt etruatape 1 anintrel.

As a tresent of thelle early in the your boturoen the urdioy and

 on Suptrets property. Thay wide no aktaupt to vouteg the detnil elrogdy dane hy the keplire ethefft rether were they owheerned ulth tho brnator
 hepe is wals continwe aext season.

Goverownt mapping atoh ss thin, catag it tho loag suag, only bo of

 bogtrontag of t boverer uuserabenatity of thaso

 durtog the youso Bach of thase sus TVporled on wader saphrabe povero

 haver wore wowioved in Yobrausy by fo Lambo

 in Marah.

On slatuoy zatot, Vaunourer zaland, this old eoppor sine was crasheed hy Jo homb and Po Ho BXIwid3er ia Itnyo

 July hy I. Kawh and F. Mo Btilat.

 for hilberte Cons 104.

7o katicnet tiventris

Thie pryperty wat exwininod by Dra Bo. Po Fisloy in dugatto

 revidorad sa Detoper by to banto.

 Navmeber.

 Nopramber by \%o Aio Oosies.

21. 88gitivi

 zette in Joveabur by J_{0} Lenh and Bo Be Dateno

 and Fo. Mo lishorllioure

 Inveetignvios wes made in Dosmibser by 3o A. Soutes.

 Oetobor by Jo lamb nant Po No Estlos.

2103

Ineterntion thls conting seasoa is of prime fipportance to the
 If the operetsing is to tontsuas is 19\%\%. Pest oxploration Jocseed

 relatively fos terstebs ${ }_{g}$ thene batisg dipeesaed below.

2. Ifenvo mine

 ninsebits.
 ntisud. Fo other form of tryioration io remomended.

 ourta

3. 㬱空

 - yood dip poodle at an approxdmate opasing of 25 foet fracoad of the
 pith thio murfase outcropsg is fey ehort axyloratory dtucont drtil tuleo WI21 to juntiftod.

At Leeat thrat more heles alowld bs dralled es the good showinge

 more dredzeng will be reguired.

 roselin drillisg shonid souttaitog othoruleo furthor work 10 apt wavenisumtat.

 the Shasspok is temoved three or fomt short holes should be drid. tad_{g} oapontailiz anilar the vont and of the sento glurthor marts would elepond upen the reaste of this dratiting.

Bech jees this swnote sone hes bean sousidered but in the prowe

 surwoy sumb is that tom leat yoar an the shomroeko Furthar aploratios wid be degendiont on the rempite of this asirvegy.
 sasoovered thers would monh e whole tur mine got fust another othe body.

$$
-14=
$$

 from the aveilabia fuoto, therecose is whis mongensary that the orplorntion bo thorvent and inciotrt.

Regusdlese of the outoone of future explorebian ne Faplroge

 expertamee should siske casier the assenamoat of ether doposits that tho Glowpany way conesder.

Teacauverp Bb U. Jenuary 25_{8} 1\%5\%.

(2) Quology and Bxploration of the gutialav Proposity of

by John tanby, Pobseavy 1959\%
(2) Bxplareskien and Anologyp Dapire Bevelogment Cowpany

by folas Eamb dontury 1960 .
(3). Bepzovetion of the 具avan Ione

 Mortheva Vasseuver Zalund。
by Ao 6o Skerdo Amputh 1960 o
 Wapthern Wencouver Inlaud

(6) W. O. Jefforge B_{0} Os Departinat ot Mines, persenal. opmaveloatson.

$$
\begin{aligned}
& 922-44,45, \\
& 50,46,44,43, \\
& 48,49
\end{aligned}
$$

The Qaatadise froh property ef Eiptre Developenent Coapenty is in north eobernt Jaheoraver Zolotho It has in the past two grass proditect $375_{0} 000$ tens of conembtrati nan hoe abous thrve mare jears orv reserves, as present enthreablios rates. A15 the genasvor ags sontolaed ini the
 other soutbe of minethlasailon ase lowev.

To date $2 s_{0} 000$ sont of atenend drililng has buba done 4 andthtion to oncollerable geologieaz und goojhyuticat moptinto

 on the infitish columble esento. The angmetite orw
 spelis is somes of lites aliteote elterntises.

Contsumed exploratton vil2i bo noesestary. to Fillur ecplolt sil poestluthttee fou owe end to gais
 ef lvon topondt.

comexice

reas
TWKRODVCRTOI 1
 2
HotDreis E
Toroonaris alib ownats 2
ESpIDRAGTOM 20 DATK 3
Diemond Brijilies Obologlani Mapting
Geophyaleal Otrvegu 4
neronay ampoer 4
rooal anoroor 3
 7
Morry Whanvi. 7
ElagtiahesWartea9
Raven 9
Wifistioy abolt - 10
Sumble 70
Ranblep Frumbian 10
Zeyptone 21
Sumbly 12
 21
Reglonal 18
tocit 4
Marry WIAcw 훌 tingrialiot 23
Raven 38 38
Teyatort 3
Siountrl 2
Eouthouly Litionalos of Conteat Iose 26

$$
\begin{aligned}
& \rightarrow \text { 号 } \\
& \text { Fixise } 2
\end{aligned}
$$

Ziatre
 Goele $2^{n} 120 \cdot n \mathrm{n}^{\circ}$
 Sosio $2^{2 \prime}$ is 8 al. Valcotvia retam
Goese $2^{17}-1$ mid.

Soalo $2^{5 \prime}=1$ me
2 AnSonic $2^{\prime \prime}$ in 8 al.

VAncomvis resamEvelo $2^{\prime \prime}-1$ nit.
 etoteaze sispoonMige Mup 5
Docto $2^{6}=5001$

 armbontis Secie $\mathrm{I}^{0}=300^{\circ}$
ormantm
Sonle $2^{\circ}=2000$
MPERE DEFETOPMENE COMFA潼
liceto $2 \pi=2000$
 9 *oeto 2 " $=2001$

 10

 11
 O. T 78
 Tancotetit ritumg ino Bo

by
30淒 1aM
2 matatic 1098

THungexiok

The Ima ninlng, proporty of Buplre Downlopesat Coupany 11 es
 Figo 1). Darlat the past goar and a ha18, 379,000 20ng buas of
 to supell.

At the elace of the staptecnth enotury the firmet inawe of prospeotias Ploodad the Guatsing digtriat bat fow roeorts aro 2.0 th of twe paselige. In 292 high grade eopges ove wins found in the

 that theb. The nagnotste ontioreps vere voll aearuhed fea copporp

 Incorporatod in is99 and logean to aequipo mont of the elalwa that

 pouttetpated in the forwation of hapipo Bevaiopmint Onapany, for The perrpase of eperreting the propepty. Produetion of eoneentipatede tegan in Stoptonbos 2987.

Thin knous separive ave appsorkinately $1_{0} 700_{9} 000$ tens of ase at a grade of 448 fron. These reservan are all eomteined in two

 gesevres are nhown for theno

Orv in nittot ty en open olt bemohing mothol and londed ky pereur ahovels into duep troelse. Ranled about likif a sile to e
 to the nill whore a atentght mierpette separablee produsod a ceat

 on the northoust oonat of Vanoouver Ialend (ese mip, Figs 2)。

A muaber of peoplo heven sondributed intpsiacton and sdren for this Eeport mat-hhedr heip is herely selmoviedged. Asong thee aret

A. Bankt
Po Mo Stine Mamis O6. NAA。

Soporral rege apd tinwinge vope preparsd hy z_{0} Wits ant P_{0} BLJusiles, thofst hely beting mets opproelatodo

Hopwnyg

The propediy eontrolied Dr Baplwo Dovalepanat Goapany complate

 of thass cintres art in ono cotpest gruet; whils eleven knmus es the

 Oompany.

A osmp aceotmodaling oves 200 amployoun Is altuated elose to
 near Port Mothes21.

\qquad
 frou go0 to 4600 foet alows eee lovied. The maln elatean eovap the
 sear the weatom efge of the property nt 2500 elowntrisp, vilise the eomeentrater is notse tha ocup is tho nettea of the vaileg.

 meppting"

Ativation anyerent

A totsel of 1/4 holee have beom difliled on Zapirotg Quabsino
 this trituling.

 18,6 on the Kingtimber.

sinvarget Magernt

 Inoh to 100 foeto in 1997 G.Zoh, Whata atoged tho matn elala gsoup
 types.

 podle and limited reovashlessase vas done in the dinteleto Goologhete of the Consalhailtod Mintuy and Smelting Gonpminy aou-

In 2egn matnotrovtop and Alpmoodlo eusvoys wore perfornod In the Jomy Whdow, Ringitelser end Bmowhed aroes. Porthes magueto-
 Whiskey Jook and Keystone Zonse. It sddstiong mach of the mountala
 earess the Donteat slaine, loanted at the martheast eomers of the anin oleive.
 part of the distritet in 3957 with an atroborne magnothootes and poblished a unp af the sceultes ta e senie of tee lnoh te hals e atile (10)。

The encof ralto sf tho teophypieal auspoge was in oubliming

 The 2953 stililing on the Morry Widum and Kingtleher Zones proved that the eoophysinal anomily outilines vepe ofly epprovimafely eorreots.
 for purpoges of stine plomsing vare oosrooted wbes the drli3lis orldopeo bseatth avatimlap.

Bingotak gaptrax

 2ebullon aroa to the cont wae mopped ton yuare eces ly buedlay (7)
 intio. Some attenpte voro miso Austing tho geart to mop gielvity em Loend alating propurtices.

With the ebove infompution to bross on and with some orighmal observathow, the writer eoxepiled a evological map on the aileo sate
 to bo a fals approximation of 施e aspas geviogy, sulbjeet to ailsorntSion whas further information toanien evailabieo

The Fouks of the citetrlet' ape eomponed of voleanie and bellawntary forwathois frendseg northosathaziy opd dipping to
 tubloriain by the Kainitesith Urvop, a moleanic entcoblays of bestaids and andoultas lavio ovntaiaing atnor greselies and oectimentary layers. Shene poolio ero voli .ergosed on tho anda roed to Pert Ilotionil betwers ITan lake and Roegh lake. Mepo
 Anygdaloldaz struotaros are somene in theoe soche.

 huplvols elakes, sheire to mppeary to be elout 3000 fost Chisko
 15sed to eonrae yilite marble. Mo3s proserved focelfs have beun

 In ege.

 thers roche truige itt celor fyem green to brown te dinde wed. The
 be in the viatatly of the Dletry Villan orviodys

 eseave grasined grear to biapkiphy grundise torktised goeles, with a

 ece ternart helous the -ptite

All the abeve elder woiks sif tetierneotad by tate volonithe

 -

 loy the alorstemgablero of the Conas Ooppor Sboake Outasupplas ovet

This coatogt, rumale ferns the plane of the 03A 3port eopper nisoraldmatlon.

Around the eastera boustary of the property near the Boneon hlver bridre, ertenatve outesope of voleande lareoetis, actlomarate and alner flove ororlile the 1 treetone. Theee zoelic trene fochtaMmpoly
 In corroets, it momen that both the top ams botbors of the graterten cutorop is the valleg a short distanae agart. Punaitile taplanstiform of Chise edourrenge ato *

30 the oosvelatilos is isworrarty
Io foustitns hat Atopintot tho uppes Guatioling dara terte tite valleg.
 outerop throngtiont the Limestane. Elownal of the langoe vodien form

 and pareteliy dovalapped the the veleante sopke. The botding ins

 overtharied folatinge The groscat feeling le that the sholo goek

 Alpptig rooht are ronpotistitin fion tho wito vartation in stritheo tho
 ake eursod by thto type of stalinge.
 stoop sins fenkta shous ou mipe and elp prebtagnepha and ointrole to
 Is aome Atipisement on thoes fenites trut it is psobebily eneil. Ia

[^0]
THE 05egox

the Korry Wildes oselody is mado up of plation of sunsine

 The prolinngation of eve town the dip of the hayere is net lenovt.

 DFIL1 holes os ethor aectione telicesto thte to to the exso turt 20 Is apt got undanetzod vilg.

Th plan the Nerry Ilido orobady so 200 feot loath nerthesoothy.
 this Bouth plla.

The angatite is binet and enssive, varying frow ovarabiy

 a prebree in mastatatity the opeoteleationa of the find from oent

The awquase of etgornitentive fa thought to be -
 orvokiting and leneotiatsong

 fratinote lisseofation.

The folloufing krove olenento of Whazy Widow etruebure ases
A. The wosanaloulimentone somitnet peases Chrough the lorcy Medoen.

So The vantovis Aipplact diossuo nomtent foims a ateep floos hereath the ore some.

So BodAed roole in the plt heebrul2 alp veetorly.

a. Lusbatone bate trond saremaneteaply and dip gonely to tho norktumety fot arround the ose wone nhew meny enomaiove dipto.

50 Aqueral prosinmet FII favitis puas through the ons ateat.

Putaste logethos Classe eleneata producun the ptoture aliwn is phan oas geotloit ean the oppositio page (FIg. 21). It surgeste the

 for intnoraliting gaulds and explate the 1otadion of the oreboly at that pelitit.

Luncersix - (7iguras 6 end 7)

 2952 oubliwod a wavrow stmealots sene trealieg enab-torthentit foim

 stoenty to the sortateato the larger Cacticel Plpe, suteropplag so
 to 2100 elerctios. Noth are ogen wh tho letton nad is 18 zot have how mesti deopor tho elinersistetton apes.

 segrottio is donpo, blimerisist fr color and fuelinod to bo britile
 argatiels to fina grolivid soci-plenitine materie.

 the ense of these-afteeg the nleam is weasily dimiset to nascow buedia slons the eouthetio.

Ia the Kivetishes avoe the Kiveetoub uhove fatrly govi boctligy

 The pluage of the pipe is epproximabely perpeotienlar to the plonn of this omnilitg.
 Fone. The festa of the octrumbinas exvt

 oed dilp gontiy to the nepthrents
 pate throuch the tionos.

 of tranturos axe the iosolsolige ogints for the Kisgrtaher plpos, in
 The dopesialan of the orv ang heve been partly ing replagenone and
 volvat in this dugostition that arn aot elvions to the goologhat in the fielid.

Thiti masil move, lyfing sasote 8 oteop marrou goloh from tho

dutil (7ics. 5 and 6)

This reaeg, 500 fads gersh of the illorry Widow pithy whe cestisued

 funit is an nancelshego of Antrubtre grosastindig. bredectur ond ithero

Ta 1990 five heles drilied in the Risvon tian suoesoded In Pink \& While so minumbis ars wis joented, thure ore onecgh latsestiond to
 of the abroathure and altorntion which If mponeletiod vith ore in the

 oruppinite ef efnemeisned akave st a plato whore a readdund ped of

 stone on the east oud ej3lesove sijtarad groenatione on the wewts. The

the ia it has ant bowi ncharastively divl2tot, the Whinkey sook is
 The wriber hadiowes that to ofentifloast tommge of open-pAt orv is avaliabie is the firwt hundeat fees of doptho

3unce (7se. 3)

Lying aleas to the narthreve borstary of the olatuel, the Sumast

 orop (20 log 30 feet) is a mand of. high grodo encratite projaetlis fiso the ground.

 sose. Copo sthovery thas less than 105 end rweults vors almouts

 tot hasem whethep shle reterind is fros a fanic sone or a busled betwo
 onso (rig. 9).

a 30 I 6 feet outesiop of high grode macnatita oa the olt elue कsast. In the tame jwas twa short holec wewe didilat, with
 on the theorsog.

Broviche (FAE. 3)

 ghowings ere loogteil on onothas moumtain twe alles mopthoues of

 atper suggrest it ta aloes to the susteat batweas the Dount Copper Stoole sud Contolap Linontronto

semmernit e

 where such continate ase fa proriulty to loptios of adystailitue Agmocue rocles of grmuedtoritise the gatbroide ivpes.

 the widterlt viown

Bo The orighant sourse of the iswa is tho veleante otrutisy moekn (Bonases Groug) olaleh have a byghas than avorago eveteat of alvono

Bo Proevesez favelving lava sut prearase vithits tho aurth ts orase haveg at eorhata jocationisg drivim the irote out of cheas spelits stowerkind it isto
tho tozia of magratite woil conpenstatoel it
da cearorishle crephe
a. LEeatons is sereasary to allien tha chomeres

do Btrusturelty Atoturboa arvan antiable for theme moactlote nive often foad for the formation it

 Inbrodubsa analiar rook bypa on the srou witioh farthay cemplieates the dotails of a crustusnal. obitulo
 to moawn fer angratite depoettess
 Sha soatenat seroloest.

 whore mbh eapheots ere elowe to gront tiontypo losdion of ropte.
 aroes. Then vork olavila inelude a olose vievni ise

 Equile.

 of eonetal Drition Colsublat atal the proaeot voanty goologteel Informem
 be long enil esperasive.

200Mb Fepranatrit -

Bonnago is wiak afrestar and the ekope of the ogobodied it axmashle

 be apetol, where applismila.

 oxtonadan of the Morry Whiot aze Ingont Fogatro doop

 probabiy Tomutro tmintiverina setrackiong oft dittting vould grovide vatal tentometion on tho antare and mablo at theise megnobite areioditis.
 eootion 205), Is a some in theeh taformathon in leohing. Drililing gisictratad enty 100 geas boleu awwhae las Tubbie and owvod matorial bot did zet wesen tolld zonifo

The Xlagefiehar gebpignelend anomaly, superthposed on the
 phps sucure at a pavaliaeys bulge in the anornious euto
 Whieh dereatod the SLFst drs2idis silderpto
 Contral opon pit, voula adeguately thept the mone for Ohe
 angretitho fay are fonal woula jrohabity xopaliss an voilorgroumd aypreache.
 onst pise in A yoan then rocut som friequos dutaslad gope

 the diontev eontast wound teat this arce for ary posistbia turuthint entonatom of the ©iseg ove zagento

荡登 -

The Tames Frenlit fons atheula bo mapped in detadx and olonely
 Smpreseed with tha eppaseriads of the whals some.

cerswiss -

The enenaloue sonve inhould be atripped te soroal thas noturs of
 by havd labore or by is belldonar. If nemaly aro owr

Bowasa -

Beane ia a lodntion rowoto from all progund fask1188es, tho Suwbive explomelae will be mere azpensivs than in the ehtove

 degens on the rowulise of ohfs atrialy.

A pelatively wherplesod nement of goologlenily ferrorablis ground errhonda for oves helf a msle soekt of the Mavery iftiow
 and proanmaliy the dierite body in mot far diotant. The
 out the arvit.
 fraveng constelg swis wastwasd fron the wper 2 og of the tebo woul. Dand on thla suwvery oione geologidal mpptag and dtponeodla travomstes abould bo donco purthor espigirntion urgald depesse an roputio of the abown wort (0ns Fiso St。

Aswores to perto of the probleos of ase eacuryonee on che Gustatims olintins huve alraady seen fousd. The engorticneo of elose

 Ine tos ore on the giredons propirily but it hay niso be agpliod oo tht

Toha Zexbo Pa_{0} Raso
Caclogiat.

2. Anmanl Reporta of the MEristor of Minee of B. Coy

Terlows oupiey betwana 1922 nati 1952.
ae Guatasing Blound of Gertasin Minerna pepenstin on the Weot Goast of
Veavonvar Ialand, S. Gop by 7o Dolangeo Geologieal Suzvay of Cnseda. Stumary Ropyevt, 1919, Pert B.
3. Tho Miping Property of quatelas Hazes LAteg

Quatialm 3thiting DEvishong Bo OJg
Prolininary Reppest by Bo. W. Wo MnDerupa21. 2906o
4. Aaport on Conteniop Copposh-603d Ervape
by $\mathrm{F}_{\mathrm{o}} \mathrm{W}$. Guerzeos. 2980.

Goologleal Survoy of Cetriodap
3vatigy Repert: 19\%9, Part Ae
6. Ropert on Qustequo Boppencola : Winnes I4A

February 2955, by Io to lis32, Polingo
7. Coulogy i Mtausal Deponite of tha foha2lotestaplifish Arots

Vanecurar Ioland, 5. Coo by Jo I. Moediloy, Geolegfee 1 theryey of Canala; Momate $37 \mathrm{R}_{\mathrm{p}}$.1953.
8. Report on the daology of the Romire Devoloperat Irou Kine Northern Vampouvor Jolema, B. Coe

90 A furvery of the Iron Ove Inluatry is Cosada tarring 1956 and 1957 by Fo. Ho Jenne

10. Bertsish Dolunbse Departant of Kiave Airtosas Magnstomenter Surverg, Alice Pree Avae - Funeotrver Yoland, 1956。

Shat 3- Draw Ck.

[^0]:

 - + -

