

PROPERTY FILE,

A Report on the

.

۲

۲

.

۲

۲

1

.

۲

۲

٦

۲

1

CU-MOLY PROPERTY

Billygoat Creek, Lillooet Lake Area New Westminster Mining Division 92 J 2E

For

MT. GARIBALDI MINERALS INC. Box 518 Pemberton, B.C. V0N 2L0

By

Harold M. Jones, P.Eng. HAROLD M. JONES & ASSOCIATES INC.

September 20, 1993

HAROLD M. JONES, P. Eng. CONSULTING GEOLOGIST VANCOUVER, B.C.

HAROLD M. JONES & ASSOCIATES INC. CONSULTING GEOLOGISTS

605 - 602 WEST HASTINGS STREET, VANCOUVER, B.C. V6B 1P2

TELEPHONE: (604) 689-5533

A Report on the

CU-MOLY PROPERTY

Billygoat Creek, Lillooet Lake Area New Westminster Mining Division 92 J 2E

For

MT. GARIBALDI MINERALS INC. Box 518 Pemberton, B.C. V0N 2L0

the second s

Harold M. Jones, P.Eng. HAROLD M. JONES & ASSOCIATES INC.

September 20, 1993

TABLE OF CONTENTS

		Page
SUMMARY	• • •	1
INTRODUCTION	 • •<	3 3 3 4 4
GEOLOGY Regional Geology Property Geology	•••	5 5 6
MINERALIZATION(a) No. 1 Showing(b) No. 2 Showing(c) No. 3 Showing(d) Other Showings	• • • • • •	7 8 9 10 13
GEOPHYSICS	• • •	13
DISCUSSION	•••	14
CONCLUSIONS	•••	15
RECOMMENDATIONS	•••	15 15
REFERENCES	• • •	17
CERTIFICATE	•••	18

List of Illustrations

Figure 1	Location Map	3
Figure 2	Claim Map	3
Figure 3	Regional Geology	5
Figure 4	Property Geology	In Pocket
Figure 5	Property Geology with 1993 Sample Locations	In Pocket
Figure 6	VLF-EM Survey, Grid I	In Pocket
Figure 7	VLF-EM Survey, Grid II	In Pocket

SUMMARY

The Cu-Moly property, consisting of 14 claims totalling 37 units, is located in the New Westminster Mining Division of southwestern British Columbia, approximately 88 kilometres north-northeast of Vancouver. Locally, it is near the south end of Little Lillooet Lake. It is readily accessible by paved highways and a gravel forest access road.

The general area has a long history of prospecting and exploration, commencing in the 1860's. A number of gold quartz veins, massive sulphides and porphyry-type copper molybdenum occurrences were located and explored throughout the general area.

The Cu-Moly property has been explored intermittently from 1966 to the present. During this period a number of operators conducted exploration programs including Vanguard Exploration in 1966, Sveinson Way Mineral Services in 1980, and Pemgold Resources Inc. in 1985. Work included geological mapping, soil and rock sampling, and geophysical surveys. Limited diamond drilling was also conducted. Mt. Garibaldi Minerals Inc. are currently conducting sampling, geological mapping, VLF-EM surveying and road building.

In addition to the above, George Nagy, property owner, conducted limited trenching, stripping and mined a small tonnage of high grade Cu-Mo "ore". The latter was processed through a small mill on site, producing a molybdenum concentrate.

The property is situated on the western edge of a late Triassic to Jurassic pendant within the Upper Cretaceous Coast Plutonic Complex. The pendant includes a variety of sedimentary and volcanic units, many of which are altered by regional and local metamorphism related to repeated orogeny. The intrusive complex includes a number of separate bodies, including the Pemberton Dioritic Complex which underlies the western part of the property.

The Lillooet River fault zone, a prominent regional zone of faulting, lies immediately east of the property. Many faults and shears present on the property are probably related to this structure.

Three main mineralized areas are known on the Cu-Moly property. No.1 Showing consists of a zone of strong faulting and shearing over widths from 12 to 20 metres in metaconglomerate and metasandstone. A mineralized zone up to 2 metres wide occurs in the shear. It consists of massive pyrite with lesser chalcopyrite and minor bornite. Assays from this zone are low in precious and base metals.

No.2 Showing consists of a shear zone in metaconglomerate and metasandstone well mineralized over 10 to 50 cm. Assays from this zone range from trace to over 2 oz gold/ton. The zone is exposed over a 32-metre length, where it is lost in the road to the north and in overburden and talus to the south.

No.3 Showing consists of a diatreme breccia pipe in metasediments which is well mineralized with chalcopyrite and molybdenite, and locally with narrow gold-bearing shears. The pipe is approximately elliptical in shape, and is about 270 metres long by 200 metres wide, containing coarse chalcopyrite and molybdenite as disseminations and fracture fillings in the breccia matrix and as coarse masses in fragments and along fragment boundaries. Various samples taken from the breccia over a mineralized length of 65 to 90 metres average 0.16% to 0.26% Cu and 0.062% to 0.096% MOS_2 . Gold values are very low.

HAROLD M. JONES & ASSOCIATES INC.

No.1 Showing is located on Billygoat Creek several hundred metres west of the main road, while the other showings are located along the main road. Most of the previous exploration was conducted very close to the road.

Mt. Garibaldi Minerals Inc. are currently exploring the claims. Their sampling of No.2 and No.3 Showings confirm the grades obtained by previous workers. Their roadwork in the southwest part of the property opened up an area of interbedded tuffs and limestone in the metasediments. Several zinc assays to 8.89% Zn were obtained in this area.

Limited VLF-EM surveys suggest that some of the shears noted along the road cuts are being reflected in the survey results.

It is concluded that the Cu-Moly property hosts significant copper-molybdenum mineralization in a diatreme breccia pipe intruding metasediments, and that significant gold values are present in narrow shears cutting both the breccia and the metasediments. It is further concluded that the property warrants additional exploration to better define the size and grade of the breccia pipe and to search for extensions and intersections of the known and other gold-bearing shears.

It is recommended that a grid be established over most of the property to cover the area underlain by the metasediments, the diatreme breccia pipe, and the contacts with the granodiorite to the west. Using the grid for control, detailed geological mapping, soil sampling, and VLF-EM and magnetic surveys should be conducted. This work would be conducted as Stage I at an estimated cost of \$154,000. A Stage II program, contingent on Stage I and estimated to cost \$229,000, should be conducted to test anomalous areas located from the previous work. Stage II would include trenching, rock sampling and diamond drilling.

INTRODUCTION

This report was prepared at the request of Mr. George Nagy, President, Mt. Garibaldi Minerals Inc. The purpose of the report is to review the geological setting of and the mineralization on the Cu-Moly property, which is located on the Lillooet River 35 kilometres southeast of Pemberton, B.C. and to recommend additional exploration, if warranted.

The writer examined the property on September 1, 1993. He also reviewed the data listed under "References", which forms a part of this report.

LOCATION AND ACCESS

50°02' north latitude) to approximate centre 122°32'west longitude) of claims

The Cu-Moly property is located in the New Westminster Mining Division of southwestern British Columbia approximately 88 kilometres north northeast of Vancouver and 35 kilometres southeast of Pemberton (Figure 1 and 2). Locally, it is situated immediately east of Garibaldi Provincial Park and lies along the west side of Lillooet River, near the south end of Little Lillooet Lake.

The claims are readily accessible from Vancouver via highway 99 to Pemberton, then by the Pemberton-Mt. Currie-Harrison Lake road to the property, a total distance of approximately 185 kilometres. The section from Mt. Currie to the property is mostly a forest access gravel road which follows the east side of Lillooet Lake, then crosses the river at the narrows to follow the west side of Little Lillooet Lake south to the claims. The latter section of the road passes through the property.

Access within the claims is limited to the main logging road, which passes through the eastern edge of the property, and to several short exploration roads. A new road is now being built giving limited access to the southern part of the property.

TOPOGRAPHY AND VEGETATION

The general area is characterized by high, rugged mountains deeply incised by river and creek valleys. Elevations in the area range from approximately 215 metres along the Lillooet River to 3000 metres at the peaks. Glaciers and snowfields are common at the higher levels.

All slopes on the property are moderate to steep, with the only relatively flat areas being in the valley bottom adjacent to the river. One major stream, Billygoat Creek, trends easterly through the northern part of the property draining into Lillooet River. Elevations on the claims range from approximately 215 metres to 1400 metres.

Parts of the lower slopes were logged in the past and are now covered with thick second growth. Most of the claims area is well forested with mature Douglas fir and cedar. Local stream gullies have thick brush.

PROPERTY

The property consists of 14 claims totalling 37 units (Figure 2). They are:

<u>Claim name</u>	<u>No. of Units</u>	Record No.	Expiry Date
Irene 7	1	2759	Dec. 31, 1995
Irene 10	1	2762	Dec. 31, 1995
Cu-Moly 2	2	3110	Feb. 24, 1995
N-Pluton 1	1	3317	Jan. 27, 1994
N-Pluton 2	1	3318	Jan. 27, 1994
Nagy Pluton 5	2	3360	June 6, 1995
N-Pluton 3	6	4022	June 25, 1994
Nagy's Pluton 4	4	4131	Nov. 29, 1993
Bunny 1	4	4198	Mar. 16, 1996
Bunny 2	2	4224	April 24, 1996
Bunny 3	2	4225	April 27, 1995
*Bandit I	8	-	Sept. 13, 1994
*Bandit II	2	-	Sept. 13, 1994
*Bandit III	1	-	Sept. 13, 1994

*These claims were recently staked, then recorded on September 13, 1993. Their record numbers are not yet available.

The claims are beneficially owned by Mt. Garibaldi Minerals Inc., Box 518, Pemberton, B.C. They are registered in the name of Irene E. Lappi, 706-1555 Esquimalt Avenue, West Vancouver, B.C., a principal in the company.

Any legal aspects pertaining to the claims is beyond the scope of this report.

HISTORY

The Harrison Lake-Lillooet River area has a long intermittent history of mineral exploration. This area was on the original route taken by the prospectors to gain entry to the Cariboo gold camps. Consequently, considerable prospecting was conducted in the area resulting in the discovery of a number of mineral occurrences. These included gold quartz veins at what is now Harrison Hot Springs, also similar veins in the Fire Lake area and along Lillooet River and Lillooet Lake. Copper-molybdenum porphyry-type mineralization was located in the late 1960's at Salal Creek, in a Tertiary stock, 100 kilometres to the northwest of the Cu-Moly claims and massive sulphides were located at the south end of Harrison Lake in 1971. In 1975 George Nagy located gold mineralization at Doctors Point on Harrison Lake. Considerable work has been conducted on this property from discovery up to the present with significant results being obtained.

On the present Cu-Moly property Vanguard Exploration, in 1966, diamond drilled three holes. One hole intersected over 100 feet which assayed between 0.10% and 0.15% MoS₂. This tested copper-molybdenum mineralization in a diatreme breccia pipe. In 1977 George Nagy staked the

above ground and has controlled it to the present. Since acquiring the ground, it has been intermittently explored. During 1978-79 Mr. Nagy mined approximately 20 tons from a high grade copper-molybdenum section in the diatreme breccia and processed it in a small mill located on the property, producing a molybdenite concentrate. In 1980 Sveinson Way Mineral Services of Calgary conducted a program of geological mapping, geochemical soil sampling, and rock sampling, mostly within the area of the mineralized breccia. In 1985 Pemgold Resources Inc. conducted a geological mapping and rock sampling program over the area encompassing Nos. 2 and 3 Showings, as well as covering a small area around No.1 showing. Some road building and trenching was also done during this period. Currently, Mt. Garibaldi Minerals Inc. are conducting additional rock sampling, road work to expose bedrock, mapping of new work, and local VLF-EM and Self Potential surveys.

The following report summarizes the significant data from all of the above exploration programs.

GEOLOGY

REGIONAL GEOLOGY

The general Harrison Lake-Lillooet River area is underlain by granitic rocks of the Coast Plutonic Complex which intruded older volcanic and sedimentary units, resulting in a number of pendants in the complex (Figure 3). The property hosts a part of one of these pendants, the Lillooet River pendant, which is more or less continuous as a long (150 km) northwest trending, often fault controlled, body of various sedimentary and volcanic formations ranging in age from late Triassic to Jurassic.

The granitic rocks were subdivided into a number of separate bodies which locally include the Pemberton Dioritic Complex and the Spetch Creek Pluton, as well as numerous stocks, plugs, and dykes of various compositions and ages. While most of the plutonic rocks in the district range in age from about 50 my to 85 my (Upper Cretaceous), those immediately east of the property were dated as 16 my (Miocene), which is among the youngest of the plutons in the Coast Plutonic Complex.

The rocks in the pendant include a variety of sedimentary and volcanic units, many of which were altered by regional and local metamorphism related to repeated orogeny. Rock formations within the pendant are not well correlated, consequently the Fire Lake Group, inferred to be present on the property, is now thought to possibly include rocks of other formations as well.

The Lillooet River fault zone, a major zone of faulting and shearing, is a prominent structural feature in the area. It extends along Harrison Lake and Lillooet River northwesterly to at least the north end of Little Lillooet Lake, a distance of 100 kilometres. Northern extensions of this structure are inferred to at least 60 kilometres northwest of Pemberton. Many parallel, branching and cross-faults are related to this main structure, resulting in the sedimentary-volcanic units in the pendant being displaced, terminated, reduced to wedges, etc. Several hot springs, one of which is located near Skookumchuck 13 kilometres southeast of the Cu-Moly property, occur at fault intersections along this trend.

As mentioned under "History", a number of mineral occurrences are known along the length of the Lillooet River pendant. Many are gold quartz veins in altered sedimentary rocks near intrusive contacts, some may be stratiform massive sulphides in altered sedimentary rocks, one consists of a stockwork of gold veins in intrusive rocks and one is a copper-molybdenite porphyry in a Tertiary stock.

PROPERTY GEOLOGY

The Cu-Moly property lies almost entirely on the west side of the Lillooet River (parts of two claims extend across the river) and on the western edge of the Lillooet River fault zone (Figure 3). Geology on the property is either well exposed as rock cuts along the main road and exploration roads and in large rock bluffs on the steep sidehill or is hidden beneath thin to thick overburden and glacial till beneath a mature forest cover. Locally, talus obscures the bedrock.

The geology consists of intercalated metasandstone, metaconglomerate and metasiltstone intruded by plutonic rocks of the Pemberton Dioritic Complex. The sedimentary units range in age from Upper Triassic to Jurassic. They were originally considered a part of the Fire Lake Group of Lower Cretaceous but including some rocks of Upper Jurassic. Fossils found by George Nagy on Billygoat Creek, at the north end of the property, were identified as Jurassic age. These rocks could correlate with some of those in the Bridge River area(?).

The metasediments include fine to medium grained felsic sandstone, pebble conglomerate, occasional pebble conglomerate in sandstone and dark siltstone. The finer grained rocks show thin bedding and/or banding. These rocks are fairly well exposed in the eastern part of the property on Nagy's Pluton 4 and Cu-Moly 2 claims. A new exploration road at the southern end of the claims exposes finely bedded metavolcanics - finely bedded, green weathering tuffs - and weakly marbleized limestone as intercalations in the metasedimentary package. The bedding in all areas varies from approximately N30W to N20E, dipping steeply to both the east and west.

The metasediments show the effects of shearing along the Lillooet River fault zone and the intrusion of the plutonic rocks. The pebbles in the conglomerate are weakly to strongly deformed, i.e., stretched or flattened, while the finer sediments show weakly to moderately strong foliation and schistosity. The latter are hornfelsed to hard, dark green to black rocks in proximity to the intrusive bodies and dykes.

The intrusive rocks are mainly hornblende diorite and granodiorite of the Pemberton Dioritic Complex. These occur as tongues extending eastward from the main pluton, cross-cutting the sediments. Narrow diorite and lamprophyre dykes also intrude the sediments, following fractures and shears.

The contact between the main intrusive bodies and the metasediments is not well defined except along the main road in proximity to No.3 showing. Here, hornblende diorite has cut easterly across weakly foliated sandstone and pebble conglomerate to form a crude ring-dyke-like complex which may be partially cut off by the Lillooet River fault zone. The dykes in the complex are medium to coarse grained, white weathering, pinkish grey hornblende diorite very similar in aspect and composition to the main pluton to the west (and that to the south near Skookumchuck). A short adit, put in several years ago by the property owner, explored a shear zone from which three samples - nos. 4165, 80131 and 80139 - assayed respectively 2.018, 0.287 and 1.90 oz gold/ton. This opening exposes strongly sheared, brecciated, dark grey, fine grained sediments with altered clasts of pebble conglomerates. Shears, ranging from N10W to N20E are accompanied by narrow bands of clay gouge.

A diatreme breccia pipe occurs between the north and south segments of the ring-dyke complex. It is more or less elliptical in shape, approximately 270 metres long north-south and 200 metres wide east-west. The latter dimension is either terminated or displaced to the east by the Lillooet River fault zone. The composition of the diatreme breccia and the size of the breccia fragments vary within the pipe. The main components of the pipe include weakly to strongly deformed host rocks - pebble conglomerate and sandstone - and granodiorite which is present as both fragments and matrix. The west half of the pipe includes relatively small blocks of sandstone, rounded cobbles and pebbles of granodiorite and has a granodiorite matrix. In contrast, the eastern half includes compacted angular blocks of deformed pebble conglomerate generally ranging in size from 1 to 2 metres across. Granodiorite occurs only as a rare block but is present as a thin interfragmental matrix. Fragment size also appears to decrease both north and south along with a general increase in granodiorite content toward the margins. A zone of intense fracturing and more intense granite replacement occurs along the main road, which is thought (Groves 1986) to approximately follow the north-south axis of the diatreme. This fracture zone appears to contain the highest concentration of chalcopyrite and molybdenite within the diatreme.

The granodiorite fragments in the breccia are very similar to that in the ring-dyke complex, indicating that the diatreme is younger than the main pluton and the sediments and is probably of Miocene age.

Numerous faults are present cutting all rock types. Many of these trend approximately N30W to N15E and are probably splays or branches off the main Lillooet River fault zone. Faults trending N30E to N60E are also common, cross-cutting the geology and that of the former fault trend. Many of these structures, where exposed along the main road, are accompanied by thin gouge and heavy iron staining. Rocks adjacent to shears are often strongly fractured.

MINERALIZATION

A number of mineral occurrences are known on the Cu-Moly property, three of which received most the of the exploration to date. The latter include sulphide and gold-bearing shear zones and a copper-molybdenum-bearing diatreme breccia. Other showings, which include gold-bearing quartz veins and possibly copper-zinc-bearing skarns, are also present but to date have received little work. The following summary on mineralization was compiled mostly from the data listed under "References" in this report. Since all data - reports, maps, assays, etc. - are on file at the company's office, they will not be attached to this report. The three main occurrences are:

(a) No.1 Showing

This showing is located at the north end of the property on Nagy Pluton No.5 claim. It consists of two mineralized exposures, one on the north side and the other on the south side, of Billygoat Creek. These are approximately 130 metres apart, separated by the creek and its boulder till-filled channel.

On the north side of the creek the showing occurs in heavily iron stained, finely bedded metasandstone cut by a number of north-trending fault and shear zones. This strongly broken zone is at least 12 metres wide. Within this setting, a mineralized zone up to 2 metres in width, consisting of massive pyrite with lesser chalcopyrite and minor bornite and cut by quartz veins, occurs within the sheared rocks. Pyrite also occurs in the metasediments as fine replacements along bedding and foliation planes. Narrow diorite and andesite dykes occur in proximity to the mineralization as well as in or adjacent to other shears. Bedding in the metasediments ranges from N20W to N10E, dipping steeply east.

A large block of rubble, lying near No.1 Showing, contained massive bands of pyrite locally accompanied by coarse masses of sphalerite in quartz epidote skarn. This rock was not seen in outcrop. Specimens of this mineralized rock - sample 5005 - were taken by the writer for assaying. It assayed 0.010 g/t Au, <4g/t Ag, 0.31% Zn. These values are similar to the others taken from this area.

Geology on the south side of the creek is similar, but the faulting and shearing occur over a wider section, about 20 metres, and trend northwesterly. This change in attitude suggests an east-west fault is probably present along Billygoat Creek. If there is, displacement must be very slight.

Many samples were taken from No.1 Showing and reported on by others (Pemgold Resources Inc., 1985; Tully, 1985). These assayed from 0.006 to 0.028 oz gold/ton and 0.03 to 0.15 oz silver/ton over 1.9 to 3.0 metres on the north exposures but only trace to 0.005 oz gold/ton and trace to 0.04 oz silver/ton over 0.2 to 1.5 metres on the south exposures. When assayed, copper, lead, and zinc values were very low.

In 1985 three holes were diamond drilled on the northern exposure. Their locations and drill directions appear to have mostly straddled the main mineralized shears and consequently did not adequately test the showing.

While assay results from No.1 Showing are very low, it is apparent that a relatively broad structural zone is present, intruded by narrow dykes, and containing appreciable sulphides. From the data made available to the writer, it appears that little or no work was conducted along the trend of the zone. It is suggested that its southern trend should be examined on the N-Pluton No.3 claim.

(b) No.2 Showing

The No.2 Showing is located along the west side of the main logging road approximately 2.5 kilometres south of Billygoat Creek. It was initially exposed during the construction of the road. The showing consists of a narrow shear zone located at the base of a 3 to 4 metre high, vertical, iron-stained face. Backhoe trenching exposed the shear over a length of 32 metres (Figure 4, inset A). It consists of bands of grey and black gouge and crushed rock with sections of redbrown limonitic gouge. The shear varies from 10 to 50 cm in width within walls of massive, deformed pebble conglomerate.

A small remnant of a quartz carbonate vein, well mineralized with sphalerite and lesser galena, occurs on the vertical west wall. The limonite gouge seen in the shear probably reflects a crushed and altered portion of this vein.

The writer took samples of the shear - samples nos. 5006 and 5008 - and sample 5007 of the mineralized vein. These assayed respectively: 1.10g/t Au, 18g/t Ag; 12.0g/t Au, 137g/t Ag; and 19.5g/t Au, 157g/t Ag, 0.46% Cu, 0.46% Pb, and 9.44% Zn. These results confirm the presence of significant gold in this shear.

Many samples have been taken from No.2 Showing by others prior to the current exploration program being conducted by Mt. Garibaldi Mineral Inc. These include samples by: Sveinson Way, 1980; Fahrni, 1984; Tully, 1985; and Pemgold Resources Inc., 1985. Since all results are similar, only those taken by Mt.Garibaldi Minerals Inc. in 1993 are listed below (Figure 4, inset A).

<u>Sample No.</u>	Width (cm)	<u>oz/ton Au</u>	<u>oz/ton Ag</u>
557533	40	0.488	1.86
557532	25	0.003	0.16
557531	20	0.012	0.23
557530	20	< 0.002	0.06
557529	25	0.05	0.19
557528	30	0.005	0.16
557527	50	0.030	0.35
557526	25	0.227	1.35
557525	20	0.880	5.92
557524	25	0.180	2.25
557523	30	0.190	1.67
557522	25	0.095	1.67
557521	25	0.020	0.29
557520	20	0.014	0.23
557519	20	0.033	0.48
557518	25	0.340	1.34
557517	20	0.197	0.61
557516	30	<0.002	0.06
557515	20	0.463	2.28
557514	25	0.044	0.61
557513	35	0.254	4.57
557512	15	0.399	1.57

HAROLD M. JONES & ASSOCIATES INC.

Cu-Moly Property

Sample No.	Width (cm)	oz/ton Au	oz/ton Ag
557511	15	1.150	5.18
557510	15	0.120	0.93
557509	40	0.070	0.38
557508	40	0.010	4.34
557507	40	0.018	0.39
557506	40	0.025	0.32
557505	53	2.000	5.69
557505	. 33	2.000	5.69

A number of other mineralized shears were located along the main logging road, some of which were sampled (see Figure 4). These are at scattered locations extending up to 500 metres north of No.2 Showing. All are northwest and northeast trending shears in metasediments. They commonly range from 5 to 50 cm wide, some of which are accompanied by fracture zones up to 2.5 metres bordering the shears. One shear 1.2 metres wide and trending N40W/60SW is also strongly fractured over an additional 2.1 metres in the footwall. The shear is strongly iron stained, and contains quartz veins and masses well mineralized with pyrite. Assays from this zone were very low in all metals.

One diamond drill hole tested No.2 Showing in 1985. It intersected 0.5 metres of sheared rock and gouge which assayed 0.016 oz gold/ton and 0.21 oz silver/ton. The above surface samples indicate that gold values are variable within the structure and that the results of one hole are of little value.

No.2 Showing and other mineralized shears in its proximity are all exposed along the main logging road. Very little exploration was conducted to the west of the road where geology is similar. Exploration should be conducted in this area to search for extensions of known mineralized shears as well as looking for mineralized structural intersections and contacts with the plutons to the west.

(c) No.3 Showing

No.3 Showing is located along the main road, centred approximately 380 metres south of No.2 Showing (Figure 4, inset B). It was probably the first mineralized zone recognized on the property, being "opened up" during construction of the road. Considerable exploration was conducted on this showing from 1966 to the present, including detailed geological mapping, rock and soil sampling and diamond drilling (see History).

The showing area is located within the diatreme breccia pipe described under "Property Geology". Mineralization in No.3 Showing consists of chalcopyrite and molybdenite occurring as coarse grained veins, lenses, streaks and specks concentrated along fragment boundaries and in the granitic matrix. Locally, these minerals form massive crystalline masses up to 5 cm diameter. They also occur on fractures in the breccia as well as in the indurated country rocks adjacent to and near the granodiorite dykes. Abundant pyrite (marcasite) occurs on joint surfaces in the dykes.

In 1978-79 George Nagy mined a small tonnage of "ore" from a high grade section and processed it through a small mill on the property, producing a saleable molybdenum concentrate.

The No.3 Showing was sampled in detail by Sveinson Way (1980); Pemgold Resources Inc. (1985); and locally by Mt. Garibaldi Minerals Inc. in 1993. Also, assays from selected samples were reported by Cominco Ltd. (1979) and Tully (1985). The zone was also tested by three holes diamond drilled by Vanguard Exploration in 1966, and three diamond drill holes by Pemgold Resources in 1985. The following are some of these assay results:

(a) Sveinson Way (1980) - sampled only areas of apparent mineralization and good exposures. They collected 79 two-metre channel samples. Of these, 36 were more or less continuous along the road, representing a length of approximately 65 metres of diatreme breccia along the road. The assays from this section averaged 0.16% Cu and 0.062% Mos₂. Within this section the highest copper and molybdenum assays were respectively 0.32% Cu and 0.178% MoS₂.

(b) Pemgold Resources Inc. (1985) - sampled essentially the same section as that above but over 90 metres at 2-metre intervals. Seventy metres of this section averaged 0.26% Cu, 0.057% Mo $(0.096\% \text{ MoS}_2)$. The 20 metres sampled to the north of this section assayed much lower in all metals (Figure 4, inset B).

(c) Mt. Garibaldi Minerals Inc. (1993) - sampled part of that area along the road sampled by Sveinson Way (1980), as well as the walls of the adit. The assays obtained from the samples were similar to those of the previous sampler (see Figure 4, inset B).

Numerous northeast-striking shears were present within the above sampled area, some of which were sampled separately. These assays were not included in the averages shown above.

Sample No.	Width (cm)	Gold oz/ton	Silver oz/ton	Cu %	Mo %
4161	40	0.120	0.96	0.18	0.01
4165	10	2.018	22.78	- - -	0.41
80086	grab	0.135	1.78	-	-
80131	12	0.287	2.72	0.44	0.062
80139	10	1.900	11.55	3.78	0.103

The following are samples from shears in No.3 Showing:

Pemgold (1985) also diamond drilled three holes in No. 3 Showing, two of which (D.D.H.85-1 and -4) tested the long section sampled along the road and some of the ground to the west of the road, while D.D.H.85-3 tested the north contact area between the metasediments and the breccia. The significant intersections were as follows:

Hole N	<u>o. 85-1</u>					
From (m)	To (m)	Width (m)	Cu %	Mo %	Gold oz/ton	Silver oz/ton
0.6	23.6	23.0	0.38	0.099	0.003	0.08
28.0 31.0 37.5 52.5 55.0 74.0	30.0 36.0 46.5 54.5 57.5 74.5	2.0 5.0 9.0 2.0 2.0 0.5	$\begin{array}{c} 0.35 \\ 0.16 \\ 0.14 \\ 0.08 \\ 0.04 \\ 0.25 \end{array}$	$\begin{array}{c} 0.045\\ 0.029\\ 0.045\\ 0.016\\ 0.004\\ 0.003\end{array}$	0.002 0.004 <0.002 <0.002 <0.002 0.537	0.05 0.02 0.02 0.03 0.02 0.82
Hole N	<u>o. 85-4</u>	a for en former en en en Afrika en en en argeneret Afrika en				
From (m)	To (m)	Width (m)	Cu %	Mo %	Gold oz/ton	Silver oz/ton
12.6 22.6 28.1 39.6 52.1	16.1 26.1 30.1 41.6 54.1	3.5 3.5 2.0 2.0 2.0	0.21 0.35 0.41 0.17 0.10	0.116 0.155 0.042 0.108 0.132	0.003 0.002 0.002 <0.002 0.002	0.02 0.04 0.15 0.02 0.02
0.6	26.1 72.6	25.5 72.0	0.21 0.16	0.085 0.054	0.002 0.002	0.025 0.037

These holes were entirely within the diatreme breccia pipe. The drill hole assays are similar to those obtained from surface rock samples from the mineralized outcrops.

Hole 85-3 collared in breccia but passed into fresh granodiorite at 19.5 metres, and was terminated in this unit. The granodiorite is probably a part of the ring-dyke complex rather than an underlying part of the main pluton. This hole had three sections containing significant molybdenite. They are:

Hole N	No. 85-3					
From (m)	To (m)	Width (m)	Cu %	Mo %	Gold oz/ton	Silver oz/ton
5.5 5.5	8.5 13.0	3.0 7.5	0.06 0.04	0.217 0.143	<0.002 <0.002	0.02 0.02
1.5	13.5	12.0	0.03	0.107	<0.002	0.02

In the short adit in No.3 Showing, coarse blebs of chalcopyrite with lesser molybdenite occur within the fine grained matrix as well as within breccia fragments. In 1993 Mt. Garibaldi Minerals Inc. conducted some sampling in and around the adit. Each sample was taken as chips over a one metre interval. These values were averaged over 10 metres or less. They ranged from 0.11%-0.346% Cu; 0.019%-0.223% Mo; tr to 0.012 oz/ton Au and 2.4-4.0 oz/ton Ag over 4 to 10 metres (Figure 4, inset B).

The above results confirm those taken by others and demonstrate that significant coppermolybdenum mineralization accompanied by narrow, gold-bearing shears are present within the diatreme breccia pipe in No.3 Showing. The detailed work indicates the mineralized length is about 80 metres, but that the zone is not well defined to the north and definitely not to the west. Talus and overburden obscure most of the immediate area not explored in detail. It is suggested by the writer that additional detailed work will significantly expand the known mineralized portion of the diatreme breccia.

(d) Other showings

Sulphide mineralization in metasediments and a sulphide-bearing quartz stockwork were located near the northwest side of the diatreme breccia (No.4 Showing). These showing have not yet been explored in detail but they do indicate that mineralization does extend to the west where very little has been done to date.

A new road being built at the south end of the property on the north side of Nagy Creek exposed metavolcanics and metasediments, from which one sample assayed 8.89% zinc. In the same area, a small piece of massive chalcopyrite float was found, but the source of this interesting mineralization is not known.

GEOPHYSICS

During the 1985 field work by Pemgold Resources Inc. they conducted short VLF-EM and magnetometer surveys over the three main showing. While results were inconclusive they did suggest continuity of the No.1 Showing mineralization between the north and south exposures.

In 1993, Mt. Garibaldi Minerals Inc. conducted VLF-EM surveys over two grids. Gird I, located at the south end of the property and west of the road, consisted of lines at 25-metre separations and stations at 12.5-metre intervals. Grid II, located west of No. 2 showing, consisted of lines at 15-metre separations and stations at 5-metre intervals. The surveys were made using a Saber VLF-EM, taking readings on the Seattle station. The survey was made by R. Simpson. His maps accompany this report as Figures 6 and 7.

A conductor was recorded on Grid I which appears to reflect a N10-20W-trending fault noted during mapping along a road. Segments of a conductor were recorded on Grid II. These probably reflect a N10E shear noted in outcrop about 25 metres north of No. 2 showing. The significance of these structures is not known.

These surveys indicate that the VLF-EM may be a useful tool for searching for possible mineralized shears and faults on the Cu-Moly property.

DISCUSSION

Exploration to date on the Cu-Moly property indicates that significant copper and molybdenum mineralization are present in the diatreme breccia pipe. Significant gold is also present in narrow shears in both the breccia and the adjacent metasediments. Assays of the latter mineral range from trace amounts to greater than 2 oz/ton gold over widths of 10 cm to 2.0 metres.

Most of the gold-bearing faults and shears are located along the main road where they are well exposed and convenient for sampling. Very little exploration was conducted west of the road except in proximity of No.3 Showing, where geological mapping covered an area extending for approximately 250 metres west of the road and for 500 metres north. This mapping also extended about 60 metres east of the road, where outcrops were lost due to glacial till covering the low ground near the river. Elsewhere, exploration was limited to a narrow strip following the road outcrops and for a short distance up Billygoat Creek. Since a number of mineralized faults and shears are present, striking northwesterly, northerly, and northeasterly, and the projection of these structures (and their intersections) is into the little explored ground to the west, it is readily apparent that this ground warrants detailed exploration for precious metals.

Similarly, significant copper and molybdenum mineralization is present within the diatreme breccia. Detailed exploration of this large structure was also restricted to the same narrow area as described above, leaving a large part of the diatreme relatively unexplored. The diatreme as a whole and its contacts in particular warrant detailed exploration.

The No.1 Showing occurs within a well mineralized, strongly fractured shear zone. While samples taken from this showing assayed low in gold it does not preclude other sections of the shear zone being gold-bearing. This is premised on the fact that assays from many of the shears along the road returned low to significant values in gold and that the gold content of a shear can be extremely variable. This is clearly illustrated by the assay results from detailed sampling in No.2 Showing, where two consecutive samples at the north end of the trench assayed 0.488 and 0.003 oz/ton gold, and seven consecutive samples in the southern part of the trench assayed, respectively, 0.044, 0.254, 0.399, 1.150, 0.120, 0.070, and 0.010 oz/ton gold. All samples were at one metre intervals. It is readily apparent that gold content changes rapidly within a very short distance, consequently those samples from No.1 Showing may not be representative of the grade along strike. For this reason, the southern trend of this structure on N-Pluton No.3 claim warrants detailed exploration. The north extension is also very prospective ground but it trends off the claims.

No.2 Showing, while locally containing impressive values in gold, is narrow and offers limited tonnage potential. Its northern extension trends across the road into lower, till-covered ground near the river, while the southern extension is lost in overburden and talus. The latter area should be examined for a possible widening of this shear.

Mineralization commonly is concentrated at structural intersections. Because of the amount of faulting in this area, mostly related to the Lillooet River fault zone and subsequent cross-cutting faults, any future work on the property should include detailed VLF-EM surveys to help delineate structures.

CONCLUSIONS

It is concluded that the Cu-Moly property hosts significant copper-molybdenum mineralization in a diatreme breccia pipe intruding metasediments, and that significant gold values are present in narrow shears cutting both the breccia and the metasediments. It is further concluded that the property warrants additional exploration to better define the size and grade of the breccia pipe and to search for extensions and intersections of the known and other gold-bearing shears.

RECOMMENDATIONS

It is recommended that a grid be established over most of the property to cover the area underlain by the metasediments, the diatreme breccia pipe, and the contacts with the granodiorite to the west. Using the grid for control, detailed geological mapping, soil sampling, and VLF-EM and magnetic surveys should be conducted. Anomalous areas located from this work should be trenched, rock sampled, and diamond drilled, if warranted.

COST ESTIMATE

Stage I	Geological-geochemical-geophysical surveys - Time estimate -	2 months
1 A A A A A A A A A A A A A A A A A A A		

Grid layout - grid lines at 50-metre spacing, stations at 25	-metre	
- Baseline 3.5 km @ \$300/km	5 1.050	
- Grid lines estimate 93 line km @ \$85/km	<u>7,905</u> \$	8,955
Soil sampling - estimate 3,770 samples	40.000	
- Sample collection, allow	10,000	5 9 10
- Assays, ICP + Au, @ \$12/sample	<u>45,240</u> 5	5,240
VLF-EM and magnetometer survey - 96 km @ \$200/km b	y contract 1	9,200
Geological mapping	1	8,000
Supervision	n Series Marine and Series and	8,000
Vehicle - rental, fuel, insurance, etc 2 months		4,000
Room & board @ \$45/man/day, 5-man crew	1 1	3,500
Report and maps	a an	7,000
Subtotal	13	3,895
Contingencies	_2	<u>:0,105</u>
TOTAL STAGE I*	\$ <u>15</u>	4,000
* Estimate based on detailed surveys. Costs may be reduced	bv	

using a wider line spacing, but this is not recommended.

HAROLD M. JONES & ASSOCIATES INC.

Stage II	Trenching, rock sampling, drilling	
	Trenching, including road building, allow	\$ 25,000
	Samples and assays, allow	5,000
	Geology and supervision	9,000
	Diamond drilling, including site construction say 1,000 metres @ \$150/metre, all inclusive	150,000
	Data compilation, report	6,000
	Subtotal	195,000
	Contingencies	30,000
riteria de la Aquer Nacional	TOTAL STAGE II	\$ <u>225,000</u>

Respectfully submitted,

Harold M JONEAN PSE

HAROLD M. JONES & ASSOCIATES INC.

REFERENCES

Groves, E.W. (1986) - Geological Report and Work Proposal on the Pemgold Resources Inc. Cu-Moly Property, Lillooet River Area, New Westminster M.D., report for Pemgold Resources Inc.

Mt. Garibaldi Minerals Inc. (1993) - field maps and assays, 1993 field program.

Pemgold Resources Inc. (1985) - numerous maps and assays.

Way, B. and Allen, G. (1980) - Geology and Rock Sampling of the Cu-Moly Prospect, New Westminster M.D., for Sveinson Way Mineral Services Ltd.

Woodsworth, G.J. (1977) - Geology, Pemberton (92J) Maps - Area, Geol. Surv. Canada Open File 482.

Tully, D.W. (1985) - Report on the Eileen - Cu Moly Claim Group (30 units), Lillooet Lake-Billygoat Creek Area, New Westminster Mining Division, Pemberton, B.C., for Pemgold Resources Inc.

Cu-Moly Property

CERTIFICATE

I, Harold M. Jones, of the City of Vancouver, British Columbia, do hereby certify that:

- 1. I am a Consulting Geological Engineer with offices at 605 602 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia in Geological Engineering, 1956.
- 3. I have practised my profession as a Geological Engineer for over 35 years.
- 4. I am a member of the Professional Engineers of British Columbia, Registration No. 4681.
- 5. I examined the property on September 1, 1993 and reviewed all of the data listed under "References" in this report.
- 6. I have no interest in, nor do I expect to receive any, in the Cu-Moly Property or in the securities of Mt. Garibaldi Minerals Inc.
- 7. Mt. Garibaldi Minerals Inc. is hereby given permission to reproduce this report, or any part of it, in a prospectus, Statement of Material Facts or other documents as required by the regulatory authorities, provided, however, that no portion may be used out of context in such a manner as to convey a meaning differing from that set out in the whole.

Dated at Vancouver, B.C., this 20th day of September, 1993.

Harold

HAROLD M. JONES & ASSOCIATES INC.

ىلكى .

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

**

P.O. BOX 518 PEMBERTON, BC V0N 2L0

Page Number :1-A Total Pages :1 Certificate Date: 09-AUG-93 Invoice No. :19318330 P.O. Number : Account :LAE

Project : Comments: CC: GEORGE NAGY

								CERTIFICATE OF ANALYSIS A9318330								
SAMPLE	P: C	rep Ode	Au oz/T	A g oz/T	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)
557542 557543 557544 557545 557546	208 208 208 208 208 208	274 274 274 274 274 274	0.005 0.008 < 0.001 < 0.001 < 0.001	0.09 0.13 0.01 0.02 0.02	3.0 5.0 1.0 < 1.0 < 1.0	5.86 6.10 6.55 7.68 8.13	120 40 590 470 330	2.0 3.0 3.0 2.0 2.0	< 2 < 2 < 2 < 2 < 2 < 2 6	18.55 21.7 13.70 8.09 8.33	< 0.5 5.5 < 0.5 < 0.5 < 0.5 < 0.5	65 78 18 17 20	198 217 143 82 79	1440 3190 116 143 124	7.29 7.42 4.30 4.31 4.78	0.50 0.11 1.07 1.12 0.70
557547 557548 557549 557550 557551	208 208 208 208 208 208	274 274 274 274 274 274	0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.07 0.04 0.03 0.01 0.04	2.0 1.0 1.0 1.0 1.0	5.83 6.02 2.93 1.37 5.14	70 30 30 30 50	2.5 2.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 4 4	22.4 23.2 >25.0 >25.0 >25.0	0.5 < 0.5 0.5 < 0.5 < 0.5	25 26 12 2 13	176 283 124 22 165	440 214 81 34 50	7.41 6.96 3.12 1.21 3.36	0.18 0.01 < 0.01 < 0.01 < 0.01 < 0.01
557552 557553 557554 557555	208 208 208 208	274 274 274 274	< 0.001 < 0.001 0.001 < 0.001	0.03 0.04 0.15 0.03	< 1.0 1.0 4.0 < 1.0	7.11 5.34 9.52 3.68	520 350 940 340	1.5 1.0 2.0 0.5	14 10 8 6	1.46 1.13 1.11 2.52	< 0.5 < 0.5 2.0 < 0.5	14 21 30 12	240 232 152 276	161 221 2980 150	4.01 4.15 5.98 4.17	2.03 1.53 2.55 0.63
														Tant	· Juck	ler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC V0N 2L0

Page Number :1-B Total Pages :1 Certificate Date: 09-AUG-93 Invoice No. :19318330 P.O. Number . Account LAE

Project : Comments: CC: GEORGE NAGY

CERTIFICATE OF ANALYSIS

**

A9318330

														l		
SAMPLE	PR	ep)De	Mg % (ICP)	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
557542 557543 557544 557545 557545 557546	208 208 208 208 208	274 274 274 274 274 274	1.19 1.55 1.69 2.13 2.50	2560 2920 2200 1450 1385	< 1 1 < 1 & 1 3	0.77 0.29 1.78 3.28 3.18	33 74 37 30 30	960 1720 1790 940 1430	32 16 16 8 8	205 146 386 539 623	0.63 1.12 0.33 0.35 0.44	174 312 169 155 201	< 10 < 10 < 10 < 10 < 10 < 10	1850 974 162 124 100		
557547 557548 557549 557550 557551	208 208 208 208 208 208	274 274 274 274 274	2.01 2.17 2.19 0.90 2.47	3550 2030 790 705 1080	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.09 0.11 0.04 0.11	30 40 26 13 51	800 970 560 490 750	8 8 < 8 < 8 < 8 < 8	79 61 331 296 261	0.40 0.53 0.27 0.08 0.26	132 196 111 40 116	< 10 < 10 < 10 < 10 < 10 < 10	464 160 60 28 58		
557552 557553 557554 557555	208 208 208 208	274 274 274 274	1.19 0.87 1.66 1.23	710 490 4400 1010	141 22 603 < 1	1.02 0.68 1.78 0.61	66 67 69 33	790 930 970 400	8 16 112 8	115 81 193 143	0.35 0.25 0.48 0.23	140 102 198 80	< 10 < 10 < 10 < 10 < 10	90 72 364 66		
													, ,			
													4	The state	Sich	ler.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC V0N 2L0

Page Number :1-A Total Pages :1 Certificate Date: 16-AUG-93 Invoice No. :19318746 P.O. Number Account :LAE

Project : Comments: ATTN: GEORGE NAGY

CERTIFICATE OF ANALYSIS

**

A9318746

SAMPLE	PRE CODI	P	Au FA g/t	Ag FA g/t	Ag ppm AAS	A1 % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)
557556 557557 557558 557559 557560	208 2 208 2 208 2 208 2 208 2 208 2	74 74 74 74 74	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07	<pre>< 3 < 3 < 3 < 3 < 3 < 3</pre>	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay
557561 557562 557563 557564 557565	208 2' 208 2' 208 2' 208 2' 208 2' 208 2'	74 74 74 74 74	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07	< 3 < 3 < 3 < 3 < 3 < 3	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay
557566 557567 557568 557569	208 2 208 2 208 2 208 2	74 74 74 74	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07	< 3 < 3 4 < 3	< 1.0 < 1.0 6.0 3.0	delay delay delay delay delay	delay delay delay delay	delay delay delay delay delay	delay delay delay delay delay	delay delay delay delay	delay delay delay delay	delay delay delay delay delay	delay delay delay delay	delay delay delay delay	delay delay delay delay delay	delay delay delay delay
CERTIFICATE INCOMP	PLETE					<u> </u>	l	<u> </u>	· · · · · · · · · · · · · · · · · · ·	I	CEF			hah	· Vm	h

And the comparison of the

L

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

**

P.O. BOX 518 PEMBERTON, BC VON 2L0

Page Number :1-A Total Pages :1 Certificate Date: 21-SEP-93 Invoice No. : 19321151 P.O. Number : Account :LAE

Project : Comments: CC: GEORGE NAGY

									CERTIF	ICATE	OF AN	ALYSIS	<u> </u>	932115	51	
SAMPLE	P) C(rep Ode	Au FA g/t	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
557580 557581 557582 557583 557583 557584	208 208 208 208 208 208	274 274 274 274 274 274	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.65 7.08 8.44 7.98 8.33	170 290 580 580 660	< 0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	9.90 1.33 2.82 2.28 2.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	42 37 15 10 18	146 180 148 92 122	460 160 62 102 57	6.87 8.26 4.41 3.80 4.01	0.48 0.77 1.60 1.24 1.33	3.34 2.97 2.08 1.26 1.48
557585 557586 557587	208 208 208	274 274 274	0.07 0.17 0.14	< 0.2 9.0 42.8	8.12 5.15 3.16	930 10 < 10	0.5 1.0 < 0.5	< 2 < 2 < 2 < 2	2.42 20.1 23.3	< 0.5 10.5 23.0	13 41 74	102 331 166	43 5290 5380	4.14 4.49 5.34	1.40 0.07 0.02	1.46 3.16 1.17
								X X								
		4														
															-	
											CEI		45	utts	uchl	er

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC VON 2L0 Page Number :1-B Total Pages :1 Certificate Date: 21-SEP-9 Invoice No. : I9321151 P.O. Number : Account :LAE

Project : Comments: CC: GEORGE NAGY

CERTIFICATE OF ANALYSIS

A9321151

**

SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)			
557580 557581 557582 557583 557584	208 274 208 274 208 274 208 274 208 274 208 274	1170 1300 1125 825 950	1 1 2 6 6	1.04 0.80 2.41 2.71 2.53	60 67 32 15 18	980 900 970 970 880	6 10 72 14 16	620 72 271 282 286	1.34 0.96 0.57 0.48 0.48	410 312 144 98 104	20 10 < 10 < 10 < 10	60 104 80 60 44			
557585 557586 557587	208 274 208 274 208 274	910 2840 3210	1 32 7	2.51 0.11 0.02	15 185 355	860 930 330	14 26 1560	313 51 36	0.48 0.35 0.20	111 209 254	< 10 10 20	62 1690 3260			
												150	A.	echl,	

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC V0N 2L0

Page Number :1 Total Pages :1 Certificate Date: 10-SEP-93 Invoice No. : 19320540 P.O. Number : LAE Account

e.

Project : Comments: CC: HAROLD JONES

CERTIFICATE OF ANALYSIS A9320540 Pb PREP Au FA Ag FA Cu Zn SAMPLE CODE a/t a/t % % % 5005 208 274 0.10 < 4 0.06 < 0.01 0.31 208 274 5006 1.10 18 ____ ____ _ _ _ _ _ 208 274 19.50 157 0.46 0.98 9.44 5007 5008 208 274 12.00 137 ____ ----____ ____ 5009 208 274 0.07 16 0.54 ____ 208 ____ 5010 274 0.10 4 0.32 _ _ _ _ _ _ 7 5011 208 274 0.07 0.35 ____ ____

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

3V-0311-RA1

Company: Project:	MT. GARIBALDI MINE	RALS		Date: JUL-09-93 copy 1. MT. GARIBALDI MINERALS, VANCOUVER, B.C
Attn:	GEORGE NAGY / ROB SIM	IPSON		
We hereb submitted	by certify the following Assay I JUL-05-93 by ROB SIMPS	of 3 ROCK s	amples	
Sample Number	AU g/tonne	AU oz/ton	ZN %	
04117 04120	6.52 27.20	. 190 . 793	1 00	
04121 04124 04135	3.78	. 110	.86	

Certified by

MIN-EN LABORATORIES

COMP: MOUNT GARIBALDI MINERALS PROJ:

1

ATTN: GEORGE NAGY / ROB SIMPSON

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 3V-0284-RJ1+2 DATE: 93/07/02 * ROCK * (ACT:F31)

ſ	SAMPLE NUMBER	AG PPM	CU %	MO %	ZN %	AU-FIRE PPB	
ł	MG-93-01	3.4	.3942 -	.0392	.0050	64	· · ·
	MG-93-02	3.1	.3315	.0481	.0047	54	
	MG-93-03	3.2	.2479	.0309	.0085	73	
	MG-93-04 MG-93-05	3.5	.3546 -	.0550	.0061	85 86	
ł	MG-93-06	3.3	.2011	.0937	.0051	104	
	MG-93-07	4.5	.3334	• .1328 -	.0085	72	
	MG-93-08	3.7	.3042 -	.0957	.0087	55	
	MG-93-09	3.1	.2578 -	.0540	.0063	61	
	MG-93-10	9.0	.3851	.0104	.0181	117	
	MG-93-11	22.5	6285 *	.0246 🔨	.0507	. 20401 *	11 11
	MG-93-12	4.3	.3751	.0412	.0110	69	
	MG-93-13 MC-07-1/	0.U 7 7	• 3243 ×	.0440	.0104	67 67	
	MG-93-14 MG-93-15	4.3	-2873	.0348	.0102	54	
ŀ	MC-03-16	7.6	321/ /	021/	0088		
	MG-93-17	4.4	.3852	.0110	.0069	63	
	MG-93-18	3.6	.3720 /	.0242	.0083	95	
	MG-93-19	4.9	.2699 /	.0069	.0160	69	
	MG-93-20	2.9	.2228 -	.0128	.0089	47	
ſ	MG-93-21	5.4	.3321 /	.0144	.0397	62	
	MG-93-22	3.3	.3889	.0268	.0101	100	
	MG-93-23	2.4	.3102	.0843	.0116	53	
	MG-93-24		.2269	.0584	.01/5	40	
-	MG-93-20	3.5	.0904	.0265	.0106	12	
	MG-93-26	1.9	.1299	.0585	.0108	25	
	MG-93-27	4.9	.2524	.0752	.0158	47	
	MG-93-20 MG-03-20	3.0	2722	.0352	0097	51	
	MG-93-30	3.8	.3955	.0355	.0091	77	
ł	NC-07-71	1.7	0000	0385	00/7	24	
	MG-93-32 MG-93-32	4.4	. 2941 -	.0305 .0822 #	- 0081	97	
	MG-93-33	3.2	.1565	.0171	.0080	32	
	MG-93-34	2.3	.1398	.0062	.0093	22	
	MG-93-35	5.3	🔨 (.4044 🔪	.0273	.0113	,00109	
. [MG-93-36	4.3	.2645 /	.0268	.0096	66	
	MG-93-37	1.1	.0381	.0263	.0040	13	
	MG-93-38	2.9	.2019	.0346	.0076	74	
	MG-93-39 MG-93-40	4.0	1276	.0455 0222	.0155	62 46	
	NC 07 /1	2.0	120/	0//5	0050	E1	
	MG-93-41 MG-93-42	2.9	1004 - 10	.0445 N627	8200.	20	
	MG-93-43	5.8	.1376	.0192	.0146	26	
1	MG-93-44	3.1	.1856	.0366	.0071	91	
· .	MG-93-45	1.1	.0565	.0085	.0087	7	
	MG-93-46	1.0	.0239	.0058	.0169	3	· · · · · · · · · · · · · · · · · · ·
	MG-93-47	2.4	.0221	.0177	.0338	5	
	MG-93-48	2.4	.0615	.0292	.0125	8	
. 1	میں ایک ایک کی میں میں میں ایک میں ایک میں ایک میں ایک	4					Herman (1999),

COMP: MOUNT GARIBALDI MINERALS PROJ: ATTN: GEORGE NAGY / ROB SIMPSON

1

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 3V-0284-RJ3 DATE: 93/07/02 * ROCK * (ACT:F31) ŧ

	SAMPLE NUMBER	AG PP m	CU %	MO %	ZN %	AU-FIRE PPB	
	MG-93-49 MG-93-50 MG-93-51 MG-93-52 MG-93-53	2.0 7.0 4.6 3.8 2.2	.0797 .0988 .2621 * .1495 .0585	.0324 .0488 .0400 .0563 .0062	.0094 .0210 .0114 .0074 .0123	33 44 76 43 4	
- ^t erra	MG-93-54 MG-93-55 MG-93-56 MG-93-57 MG-93-58	1.7 1.9 1.7 1.0 2.4	.1736 .0335 .0485 .0276 .0183	.0202 .0045 .0057 .0018 .0001	.0187 .0123 .0080 .0073 .0013	16 5 4 2 9	
			-				
							<u>, , , , , , , , , , , , , , , , , , , </u>
						<u></u>	
		L					

COMP: MOUNT GARIBALDI MINERALS PROJ: ATTN: GEORGE NAGY

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 3V-0291-RJ1 DATE: 93/07/02 * ROCK * (ACT:F31) 2

12

ſ	SAMPLE NUMBER	AG PPM	CU %	MO %	ZN %	AU-FIRE PPB	
	MG-93-04101 MG-93-04102 MG-93-04103 MG-93-04103 MG-93-04104 MG-93-04105	2.1 2.2 3.8 1.8 2.5	.0780 .0940 .0853 .0803 .0969	.1167 * .0540 .0314 .0383 .0293	.0043 .0050 .0060 .0056 .0057	72 35 43 26 32	
	MG-93-04106 MG-93-04107 MG-93-04108 MG-93-04108 MG-93-04109 MG-93-04110	2.9 3.9 2.0 3.4 2.5	.1368 .1704 .1048 .1246 .0829	.0294 .0875 .0385 .0217 .0063	.0059 .0057 .0035 .0068 .0052	24 45 37 33 22	
	MG-93-04111 MG-93-04112 MG-93-04113 MG-93-04113 MG-93-04114 MG-93-04115	2.1 2.3 4.4 3.7 1.7	.0929 .0679 .4556 .2646, .0247	.0635 .0392 .2911 .4973 .0049	.0049 .0038 .0076 .0098 .0255	14 16 42 29 11	
		·					
			al 20. group the state of the s	- <u></u>			
					ana i e nome		
		n malant i na na na malant ina é n marcul - na na na marcul - na na na marcul - na na na na marcul - na na na marcul - na na na marcul - na na m na na n				Handelander H	
	9 S.						
	{	1					

COMP: MT. GARIBALDI MINERALS

•

PROJ: ATTN: GEORGE NAGY / ROB SIMPSON MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 3V-0311-RJ1+2 DATE: 93/07/09 * ROCK * (ACT:F31)

SAMPLE NUMBER	AG g/tonne	AG oz/t	CU %	MO %	ZN %	AU-FIRE PPB	AU-FIRE g/tonne	AU-FIRE oz/t			
04116	1.3	.04	.0049	.0003	.0033	4	.01	.001			
04117	9.0	.26	.0583	.0033	.1690	5640	5.64	.164			
04118	3.4	.10	.0353	.0042	.1380	614	.61	.018			
04119	2.9	.08	.0186	.0013	.0913	63	.06	.002			
04120	27.3	.79	.0784	.0058	.1122	10000	10.00	.292			
04121	2.9	.08	.0997	.0005	.9309	300	.30	.009			
04122	12.5	.30	.0090	.0006	.3/00	49	.05	.001			
04123	10.2	.10	.0100	.0038	7910	15	.03	.001			
04125	2.8	.08	.0208	.0010	.0631	222	.02	.001			
04126	2.5	07	0124	0001	0326	6	.01	.001		· · · · · · · · · · · · · · · · · · ·	
04127	2.4	.07	.0111	.0001	.0162	4	.01	.001			
04128	3.3	.10	.0244	.0001	.0691	23	.02	.001			
04129	4.0	.12	.0649	.0001	.0466	50	.05	.001			
04130	4.0	.12	.0198	.0004	.1503	636	.64	.019			
04131	2.9	.08	.0137	.0001	.0285	16	.02	.001			
04132	2.5	.07	.0107	.0002	.0163	18	.02	.001			
04133	2.3	.07	.0279	.0001	.0328	26	.03	.001			
04134	1.2	.03	.0198	.0005	.0566	3	.01	.001			
04135	8.2	.24	.0252	.0008	.0408	4465	4.47	.130			
04136	2.6	.08	.0202	.0001	.0349	66	.07	.002			
04137	2.4	.07	.0140	.0003	.0428	13	.01	.001			
04138	5.0	.15	.0195	.0004	.0983	14	.01	.001			
04139	3.0	.09	.0122	.0002	.0633	5	.01	.001			
04140	1.0	.05	.0577	.0004	.0159		.01	.001			
04141	7.2	.21	.0478	.0007	.0791	458	.44	.013			
04142	2.0	.06	.0298	.0001	.0044	12	.01	.001			
04145	2.0	.00	0078	0001	0216	37	.01	001			
04144											
									·····	· · · · · · · · · · · · · · · · · · ·	
					•						
·····									••••••••••••••••••••••••••••••••••••••		
					•						
					•						
			<u>,</u>					<u></u>			
										;	
									••••••••••••••••••••••••••••••••••••••		
									••••••••••••••••••••••••••••••••••••••		

Certified by

.

MIN -EN LABS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

• EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

(DIVISION OF ASSAYERS CORP.)

3V-0284-RA1

Company:	MOUNT GARIBALDI MINERALS	Date: JU	L-02-93
Project: Attn:	GEORGE NAGY / ROB SIMPSON	Copy 1. MOUNI GARIBALDI, VA	NCOUVER, B.C.
We hereb submitted	y certify the following Assay of 1 ROCK samples I JUN-24-93 by R. SIMPSON.		
Sample Number	CU %		
MG-93- 11	. 691		
an an an an an			
a ⁿ a ana			
	an a		
	and an		•
an a star an an Arabana An Arabana An Arabana	a na sa ang ang ang ang ang ang ang ang ang an	alaanse teen opgaaren en teen op aan op de sterne s Gesterne besterne gespaaren gesterne gesterne de sterne de sterne de sterne de sterne de sterne de sterne de st	
, and the system	a a service a service a service de la se La service de la service de La service de la service de		
н на селоти н	and a start of the second of the second s Second second s	na se en anteres en anteres de la companya de la co	
	andar 1997 - Angele States, and an angele states and an angele states and an angele states and an angele states and 1997 - Angele States, and an angele states and an angele states and an angele states and an angele states and a	All.	
	Certified by	¥/./	
	and the second	MIN_EN I ABORATORIES	

-

Chemex Labs Ltd.

and the second second second bits

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC V0N 2L0 Page Number : 1-A Total Pages : 1 Certificate Date: 22-JUL-93 Invoice No. : 19317194 P.O. Number : Account : LAE

Project :

Comments: ATTN: LARRY NAGY/ADB SIMPSON

**

								CERTI	FICATE	OF AN	ALYSIS	<u> </u>	4931719	94	
SAMPLE	PREP CODE	Au oz/T	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
04146 B 04147 B 04148 B 04149 B 04150 B	208 274 208 274 208 274 208 274 208 274 208 274	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002	< 0.2 0.4 0.6 0.8 0.6	10.15 8.14 7.35 7.97 8.05	280 290 190 150 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2.70 2.79 1.75 13.50 6.96	< 0.5 1.0 3.5 10.0 1.5	31 30 40 25 28	178 139 122 238 371	180 164 188 428 432	6.96 7.10 9.33 5.64 6.60	0.83 0.63 0.43 0.47 0.56	2.14 1.61 1.94 3.68 4.80
21351 21352 21353 21354 21355	208 274 208 274 208 274 208 274 208 274 208 274	< 0.002 < 0.002 < 0.002 < 0.011 0.025	3.6 1.4 0.4 9.4 10.6	2.51 1.40 0.69 8.99 5.87	20 50 90 780 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	26 10 < 2 < 2 < 2 < 2	21.8 11.25 0.28 5.91 24.0	69.5 572 15.0 18.5 34.5	34 128 11 47 52	69 82 442 65 136	417 115 58 >10000 4840	13.80 7.73 3.62 4.23 5.19	< 0.01 0.03 0.02 2.49 0.30	0.74 1.22 0.17 2.29 1.14
21356 21357 21358	208 274 208 274 208 274	< 0.002 < 0.002 < 0.002	0.6 0.6 0.4	4.37 8.34 2.70	10 90 < 10	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	21.7 10.45 22.8	5.5 1.0 2.0	13 35 11	141 496 80	203 196 67	11.25 5.95 14.00	0.04 0.50 < 0.01	1.09 5.15 0.73
					l	1				1		4	utt	Ital	<u>ــــــــــــــــــــــــــــــــــــ</u>

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC V0N 2L0 Page Number :1-B Total Pages :1 Certificate Date: 22-JUL-93 Invoice No. :19317194 P.O. Number : Account :LAE

19

Project : Comments: ATTN: LARRY NAGY/ADB SIMPSON

CERTIFICATE OF ANALYSIS

A9317194

SAMPLE	PR CO	ep)De	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)	Zn % calc.	
04146 B 04147 B 04148 B 04148 B 04149 B 04150 B	208 208 208 208 208 208	274 274 274 274 274 274	1070 985 1485 2350 1295	14 1 4 9 3	1.79 2.30 1.13 1.32 2.54	47 29 55 62 109	670 660 660 1020 1180	14 32 144 16 4	273 395 153 272 328	0.70 0.91 1.13 0.67 0.84	252 275 344 208 225	20 10 10 20 10	120 154 440 1165 252	0.01 0.02 0.04 0.12 0.03	
21351 21352 21353 21354 21355	208 208 208 208 208 208	274 274 274 274 274 274	>10000 >10000 3950 1870 2610	44 21 4 31 3	0.05 0.05 0.03 2.71 0.56	16 53 20 58 36	480 1200 360 2250 1000	134 20 4 < 2 < 2	17 74 14 311 134	0.16 0.14 0.02 0.52 0.36	79 62 17 156 129	20 30 50 < 10 10	>10000 >10000 1945 3100 3180	>1.00 >1.00 0.19 0.31 0.32	
21356 21357 21358	208 208 208	274 274 274	3140 955 3250	3 17 1	0.09 1.17 0.02	10 179 29	700 440 1010	10 < 2 40	10 468 12	0.19 0.44 0.14	79 246 189	40 10 40	782 126 220	0.08 0.01 0.02	
		-													
		,													
													de	white	

ware the and the second second second second

		Analytical Che 212 Brookst British Colur PHONE: 604	mists • Ge bank Ave. nbia, Can I-984-022	X L ochemists , North V ada V 21	abs • Register ancouver 7J 2C1	B L1 ed Assaye	t d. ars		Proje Com	P.O. BC PEMBE V0N 2L ct : ments:	ATTN: G	C EORGE I	NAGY					Total Pa Certifica Invoice N P.O. Nur Account	ges :: te Date: 2 No. :1 mber : :1	1 23-JUI 19317 LAE
		1			80					CE	RTIFI	CATE	OF A	NAL	YSIS		\9317	499		
SAMPLE	PREP CODE	Au oz/T	Ag oz/T	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	ŀ
557501 557502 557503	208 27 208 27 208 27	4 < 0.002 4 < 0.002 4 < 0.002	< 0.01 < 0.01 0.01	< 0.2 < 0.2 0.2	2.71 1.94 2.19	< 2 8 22	340 310 600	< 0.5 < 0.5 < 0.5	8 8 6	0.60 0.53 0.36	< 0.5 < 0.5 < 0.5	16 19 9	152 104 68	31 188 53	4.61 4.47 2.77	< 10 < 10 < 10	< 1 < 1 < 1	1.03 0.40 0.57	< 10 10 10	1.6 1.2 0.6
																·				

SAMPLE

557501

557502

557503

PREP

CODE

208 274

208 274

208 274

Mn

ppm

750

410

300

Mo

ppm

< 1

18

26

Chemex Labs Ltd.

Na

0.17

0.14

0.06

%

Ni

ppm

31

14

5

₽

ppm

730

660

620

Pb

ppm

16

36

8

Analytical Chemists • Geochemists • Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC V0N 2L0 Page Number :1-B Total Pages :1 Certificate Date: 23-JUL-93 Invoice No. :19317499 P.O. Number : Account :LAE

a' DMa

A9317499

Project : Comments: ATTN: GEORGE NAGY

CERTIFICATE OF ANALYSIS

Ti W Zn Tl υ V Sb Sc Sr % ppm ppm ppm ppmppm ppm ppm ppm < 10 66 23 32 0.40 < 10 < 10 134 4 132 68 44 0.22 < 10 < 10 < 10 2 18 40 < 10 56 2 22 0.03 < 10 < 10 8

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To	MT	GARIBA	INFR	ALS:	INC
10.	1111.	GANIDA	11 1	760	INVO.

**

P.O. BOX 518 PEMBERTON, BC VON 2L0

Page Number :1 Total Pages :1 Certificate Date: 17-AUG-93 Invoice No. :19319250 P.O. Number : Account :LAE

Project : Comments:

			CERTIFIC	ATE OF ANALYSIS	A9319250	-
SAMPLE	PREP CODE	Au FA g/t				
557504 557534 557535 557536 557537	244 244 244 244 244	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07 < 0.07				
557538 557539 557540 557541	244 244 244 244	< 0.07 < 0.07 < 0.07 < 0.07 < 0.07				
	L				1. Thick	Vmh

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

**

P.O. BOX 518 PEMBERTON, BC V0N 2L0

Page Number :1-A Total Pages :1 Certificate Date: 09-AUG-93 Invoice No. :19318151 P.O. Number : LAE Account

Project : Comments:

	s.,								CERTI	FICATE	OF AN	ALYSIS	; /	\93181 5	51	
SAMPLE	P) C	rep Ode	lu Fl g/t	λg Fλ g/t	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)
557504	208	274			< 1.0	7.82	850	0.5	< 2	1.52	0.5	8	134	41	2.52	2.14
557505	208	274	62.20	177												
557506	208	274	0.79	10												
557507	208	274	0.58	12												
557508	208	274	0.45	135												
557509	208	274	2.30	12							~					
557510	208	274	3.98	29]		
557511	208	274	35.90	161												
557512	208	274	12.40	49												
557513	208	274	7.89	142												
557514	208	274	1.37	19												
557515	208	274	14.40	71												
557516	208	274	< 0.07	2												
557517	208	274	6.14	19												
557518	208	274	10.60	42												
557519	208	274	1.03	15												
557520	208	274	0.45	7												
557521	208	274	0.69	9												
557522	208	274	2.95	52												
557523	208	274	5.83	52												
557524	208	274	5.45	70												
557525	208	274	27.50	184												
557526	208	274	7.06	42												
557527	208	274	0.93	11							~					
557528	208	274	0.17	5												
557529	208	274	1.54	6												
557530	208	274	< 0.07	2												
557531	208	274	0.38	7												
557532	208	274	0.10	5												
557533	208	274	15.20	58												
557534	208	274	**		< 1.0	9.06	390	< 0.5	< 2	4.77	1.5	17	148	41	4.87	0.90
557535	208	274			< 1.0	8.71	440	< 0.5	< 2	4.52	2.0	16	150	67	4.79	0.88
557536	208	274			< 1.0	9.63	330	< 0.5	< 2	3.32	1.5	15	96	25	5.09	0.86
557537	208	274			< 1.0	8.85	490	< 0.5	< 2	3.16	< 0.5	7	82	107	3.98	1.28
557538	208	274			< 1.0	9.03	510	< 0.5	< 2	3.72	1.5	14	150	40	4.29	1.10
557539	208	274			< 1.0	8.65	830	< 0.5	< 2	3.43	< 0.5	10	159	57	3.62	1.42
557540	208	274			< 1.0	8.82	420	1.5	< 2	3.12	0.5	7	42	40	4.73	1.10
557541	208	274			< 1.0	7.90	370	0.5	2	0.41	1.5	8	183	61	2.86	1.81
					L	L	L	L	L	L		I	1.	LJ	0 0	
											CEF	RTIFICATIO	N:	Vair	1 Juch	les-

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC V0N 2L0 Page Number :1-B Total Pages :1 Certificate Date: 09-AUG-93 Invoice No. :19318151 P.O. Number : Account :LAE

chler

tand

\sim	
1 'omn	nonto
	neius.

Project :

CERTIFICATE OF ANALYSIS

**

S A9318151

SAMPLE	PF CC	rep DDE	Mg % (ICP)	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
557504	208	274	0.66	745	11	3.07	7	580	24	285	0.30	47	< 10	48		
557505	208	274														
557506	208	274													1	
557507	208	274														
557508	208	274														
557509	208	274														
557510	208	274														
557511	208	274	·													
557512	208	274														
557513	208	274														
		· · · · ·	ļ		l		L	ļ	ļ				ļ	ļ		
557514	208	274														
557515	208	274]	
557516	208	274														
557517	208	274														
557518	208	274														
				 		<u> </u>				ł		<u> </u>	<u> </u>	<u> </u>		
557519	208	274														
557520	208	274														
557521	208	274														
557522	208	274														
557523	208	274														
FERFOA	200	074		<u> </u>	{		+	<u> </u>	<u> </u>	<u> </u>	1	· · · · · · · · · · · · · · · · · · ·		i	1	
557525	208	4/4														
557525	200	4/1														
557520	200	274														
557529	200	274														
557526	400	4/4]									
557529	208	274														
557530	208	274														
557531	208	274														
557532	208	274														
557533	208	274														
			l	ļ	ļ	ļ	ļ	ļ		 	ļ	J	ļ	 	ļ	
557534	208	274	2.33	960	1	2.47	35	650	16	466	0.35	173	< 10	80		
557535	208	274	2.21	930	1	2.50	36	600	24	430	0.44	170	< 10	86		
557536	208	274	1.71	880	< 1	2.07	11	730	8	402	0.35	170	< 10	82		
557537	208	274	1.42	820	9	2.63	8	580	8	398	0.27	125	< 10	54		
557538	208	274	2.07	860	< 1	2.65	29	640	24	440	0.35	143	< 10	80		
557539	208	274	1.19	895	< 1	2.49	8	440	16	445	0.22	106	< 10	62		
557540	208	274	1.37	790	2	2.38	1 7	1200	16	354	0.63	147	< 10	86		
557541	208	274	0.41	460	37	2.08	7	740	16	110	0.21	71	< 10	46		
			1	1	1	1	1		ł	1	1	1]			
							1		1	1			1			
			1	l	1		1	1	-]			
L			L	L		L	I	L	1	L	1	L	1	L		L

L

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC V0N 2L0 Page Number :1-A Total Pages :1 Certificate Date: 09-AUG-93 Invoice No. :19318330 P.O. Number : Account :LAE

Project : Comments: CC: GEORGE NAGY

									CERTI	FICATE	OF AN	ALYSIS	; <i>4</i>	\93183 3	80	
SAMPLE	PRE COD	ep De	Au oz/T	λg oz/T	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)
557542 557543 557544 557545 557546	208 2 208 2 208 2 208 2 208 2 208 2	274 274 274 274 274	0.005 0.008 < 0.001 < 0.001 < 0.001	0.09 0.13 0.01 0.02 0.02	3.0 5.0 1.0 < 1.0 < 1.0	5.86 6.10 6.55 7.68 8.13	120 40 590 470 330	2.0 3.0 3.0 2.0 2.0	< 2 < 2 < 2 < 2 < 2 6	18.55 21.7 13.70 8.09 8.33	< 0.5 5.5 < 0.5 < 0.5 < 0.5 < 0.5	65 78 18 17 20	198 217 143 82 79	1440 3190 116 143 124	7.29 7.42 4.30 4.31 4.78	0.50 0.11 1.07 1.12 0.70
557547 557548 557549 557550 557551	208 2 208 2 208 2 208 2 208 2 208 2	274 274 274 274 274 274	0.002 < 0.001 < 0.001 < 0.001 < 0.001	0.07 0.04 0.03 0.01 0.04	2.0 1.0 1.0 1.0 1.0	5.83 6.02 2.93 1.37 5.14	70 30 30 30 50	2.5 2.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 4 4	22.4 23.2 >25.0 >25.0 >25.0	0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	25 26 12 2 13	176 283 124 22 165	440 214 81 34 50	7.41 6.96 3.12 1.21 3.36	0.18 0.01 < 0.01 < 0.01 < 0.01 < 0.01
557552 557553 557554 557555	208 2 208 2 208 2 208 2 208 2	274 274 274 274	< 0.001 < 0.001 0.001 < 0.001	0.03 0.04 0.15 0.03	< 1.0 1.0 4.0 < 1.0	7.11 5.34 9.52 3.68	520 350 940 340	1.5 1.0 2.0 0.5	14 10 8 6	1.46 1.13 1.11 2.52	< 0.5 < 0.5 2.0 < 0.5	14 21 30 12	240 232 152 276	161 221 2980 150	4.01 4.15 5.98 4.17	2.03 1.53 2.55 0.63
														tart	Bil	te.

ener and a

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC V0N 2L0 Page Number :1-B Total Pages :1 Certificate Date: 09-AUG-93 Invoice No. :19318330 P.O. Number : Account :LAE

Project : Comments: CC: GEORGE NAGY

CERTIFICATE OF ANALYSIS

**

A9318330

SAMPLE	PREP CODE	Mg % (ICP)	Mn ppm (ICP)	Moyom (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
557542 557543 557544 557545 557545 557546	208 274 208 274 208 274 208 274 208 274 208 274	1.19 1.55 1.69 2.13 2.50	2560 2920 2200 1450 1385	< 1 1 < 1 < 1 3	0.77 0.29 1.78 3.28 3.18	33 74 37 30 30	960 1720 1790 940 1430	32 16 16 8 8	205 146 386 539 623	0.63 1.12 0.33 0.35 0.44	174 312 169 155 201	< 10 < 10 < 10 < 10 < 10 < 10	1850 974 162 124 100		
557547 557548 557549 557550 557551	208 274 208 274 208 274 208 274 208 274 208 274	2.01 2.17 2.19 0.90 2.47	3550 2030 790 705 1080	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.09 0.11 0.04 0.11	30 40 26 13 51	800 970 560 490 750	8 8 < 8 < 8 < 8 < 8	79 61 331 296 261	0.40 0.53 0.27 0.08 0.26	132 196 111 40 116	< 10 < 10 < 10 < 10 < 10 < 10	464 160 60 28 58		
557552 557553 557554 557555	208 274 208 274 208 274 208 274 208 274	1.19 0.87 1.66 1.23	710 490 4400 1010	141 22 603 < 1	1.02 0.68 1.78 0.61	66 67 69 33	790 930 970 400	8 16 112 8	115 81 193 143	0.35 0.25 0.48 0.23	140 102 198 80	< 10 < 10 < 10 < 10 < 10	90 72 364 66		
														•	
							<u> </u>					1.	fait	Buch	ler

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vanceuver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC VON 210

Page Number 1-B Total Pages 1 Certificate Date:3-SEP-93 Invoice No. I-9319237 P.O. Number : Account

Project : Comments: ATTN: ROBERT SIMPSON CC: G. NAGY

								CERTI	FICATE	OF AN	ALYSIS	i #	1931923	87	
SANPLE DESCRIPTION	PREP CODE	Ng % (ICP)	Han ppm (ICP)	No ppm (ICP)	Ba % (ICP)	Wippm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W PPm (ICP)	Zn ppm [ICP]	Zn ¥	
557570 557571 557572	208 27 208 27 208 27	4 0.8 4 1.1 4 1.5	9 2520 2260 1 3430	90 4 3	0.08 0.04 0.07	46 106 50	1610 700 1670	144 136 128	107 62 41	0.17 0.20 0.14	63 111 169	< 10 40 < 10	434 >10000 194	3.66	
											and a state of the				
				· · ·											
										7					

2:56PM CHEMEX LABS VHX-THX

> ٢ t

09/03/93

- August

1.198.443445

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

-HUMAN

To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC VON 2L0

Project : Comments: ATTN: ROBERT SIMPSON CC: G. NAGY Page Number 1-A Total Pages 1 Certificate Date:3-SEP-93 Invoice No. I-9319237 P.O. Number : Account :

								CERTI	FICATE	OF AN	ALYSIS		4931923	;7	
SAMPLE	PREP	Au FA	Ag FA	Ag ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppu (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)
DESCRIPTION 557570 557571 557572	208 274 208 274 208 274	< 0.07 < 0.07 < 0.07 < 0.07	4	6.0 6.0 < 1.0	2.54 3.32 2.56	70 10 10	< 0.5 < 0.5 < 0.5	€ 2 < 2 < 2	1. 4. 20 23.2 20.7	3.0 400 0.5	64 170 9	188 177 93	3460 3129 130	15.55 7.57 12.65	0.13 0.91 0.02
	and the second									•					
	nja (* california) da Mananer Tradaa Bolo														
	بالله ۱۹۰۰ میلاد و ایران میلاد ایران میلاد. مراجع														
						a contra da contra d				- -					
												-			
				i poj konstruijoj (na sementalno me											
					!										

.

Baria and

abs Ltd. Chemex L

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518 PEMBERTON, BC VON 2L0

Page Number :1-A Total Pages :1 Certificate Date: 23-AUG-93 Invoice No. : 19319237 P.O. Number : Account :LAE

Project :

Comments: ATTN: ROBERT SIMPSON CC: G. NAGY

CERTIFICATE OF ANALYSIS

**

A9319237

				1	T			T	1							
SAMPLE	P) C(REP ODE	Au FA g/t	Ag FA g/t	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)
557570 557571	208 208	274 274	< 0.07 < 0.07	4	delay delay	delay delay	delay delay	delay delay	delay delay	delay delay	delay delay	delay delay	delay delay	delay delay	delay delay	delay delay
557572	208	274	< 0.07	< 3	delay	delay	delay	delay	delay	delay	delay	delay	delay	delay	delay	delay
											9					
					ч.											
					- -											
				5												
				:												
		2														
	:															
		-														
		1														

CERTIFICATE INCOMPLETE

Analytical Chemists • Geochemists • Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

TO: MIT. GARIDALDI WIINERALS INC	To:	MT.	GARIBAI	LDI MIN	IERALS	INC.
----------------------------------	-----	-----	---------	---------	--------	------

P.O. BOX 518 PEMBERTON, BC V0N 2L0 Page Number :1 Total Pages :1 Certificate Date: 09-AUG-93 Invoice No. :19318414 P.O. Number : Account :LAE

Project : Comments: ATTN: LARRY NAGY, BOB SIMPSON

CERTIFICATE OF ANALYSIS A9318414

**

·

SAMPLE	PR CC	EP DE	Cu %	Zn %	MnO %		499		
21351 21352 21354	244 244 244	 	 	0.88 ~8.19	delay delay 				
								÷	
			-						

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

**

P.O. BOX 518 PEMBERTON, BC V0N 2L0

Page Number 1-A Total Pages 1 Certificate Date03-SEP-93 Invoice No. I-9319788 P.O. Number Account

Project :

٢-

Comments: CC: GEORGE NAGY

SAMPLE DESCRIPTION PREP CODE Au g/t Ag ppm AAS Al % (ICP) Ba ppm (ICP) Bi ppm (ICP) Ca % (ICP) Cd ppm (ICP) Cr ppm (ICP) Cu ppm (ICP) Fe % (ICP) K % (ICP) 557574 208 274 < 0.07 0.4 8.58 650 < 0.5 < 2 2.34 < 0.5 13 116 100 5.12 2.7 557574 208 274 < 0.07 < 0.2 8.71 500 < 0.5 < 2 3.45 < 0.5 13 116 100 5.12 2.7 557576 208 274 < 0.07 < 0.2 8.83 470 < 0.5 < 2 3.45 < 0.5 13 110 80 4.30 1.4 557576 208 274 < 0.07 < 0.2 8.73 420 < 0.5 < 2 3.49 < 0.5 10 94 42 2.97 1.4 557578 208 274 < 0.07 < 0.2 8.73 450 <	Mg % (ICP) 9 1.43
557573 208 274 < 0.07 0.4 8.58 650 < 0.5 < 2 2.34 < 0.5 13 116 100 5.12 2. 557574 208 274 < 0.07 < 0.2 8.71 500 < 0.5 < 2 3.45 < 0.5 15 110 80 4.30 1. 557575 208 274 < 0.07 < 0.2 8.83 470 < 0.5 < 2 3.45 < 0.5 15 110 80 4.30 1. 557576 208 274 < 0.07 < 0.2 8.83 470 < 0.5 < 2 3.49 < 0.5 17 78 65 4.86 0.4 557577 208 274 < 0.07 0.2 7.91 540 < 0.5 < 2 2.15 < 0.5 10 94 64 2.97 1. 557578 208 274 < 0.07 < 0.2 8.73 450 < 0.5 < 2 3.98 2.0 19 140 92 4.23 0.9 557579 <th>9 1.4:</th>	9 1.4:
557578 208 274 < 0.07 < 0.2 8.73 450 < 0.5 < 2 3.98 2.0 19 140 92 4.23 0.1 557579 208 274 < 0.07	2 2.08 8 1.59 5 1.01

Anatytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MT. GARIBALDI MINERALS INC.

P.O. BOX 518
PEMBERTON, BC
VON 2LO

Page Number 1-B Total Pages 1 Certificate Date03-SEP-93 Invoice No. I-9319788 P.O. Number : Account

Project :	
Comments:	CC: GEORGE NAGY

CERTIFICATE OF ANALYSIS

A9319788

SAMPLE DESCRIPTION	PREI CODI	P E	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)	· ·	,
557573 557574 557575 557576 557576 557577	208 2 208 2 208 2 208 2 208 2 208 2	74 74 74 74 74	640 815 970 835 535	8 25 22 25 19	2.26 2.47 2.34 2.36 2.11	9 27 26 16 9) 290 730 880 810 620	8 < 2 < 2 2 4	406 405 406 381 275	0.40 0.41 0.49 0.44 0.31	135 146 177 170 84	<pre>< 10 < 10</pre>	116 58 62 50 26		
557578 557579	208 2 208 2	74 74	785 635	9 7	2.40 2.61	40 25	490 470	4	429 446	0.36 0.33	130 121	< 10 < 10	764 82		
						•									
						•									
		:												: : :	
						i : : :									
						: : :									

CHONG

and the second sec

CHONG

-