THIS PROSPECTUS CONSTITUTES A PUBLIC OFFERING OF THESE SECURITIES ONLY IN THOSE JURISDICTIONS WHERE THEY MAY BE LAWFULLY OFFERED FOR SALE AND THEREIN ONLY BY PERSONS PERMITTED TO SELL SUCH SECURITIES. NO SECURITIES COMMISSION OR SIMILAR AUTHORITY IN CANADA has in any hay passed upon the merits of the securities offered for sale by this PROSPECTUS AND ANY REPRESENTATION TO THE CONTRARY IS AN OFFENCE.

ne ste PROPERTY FILE

CANADIAN IMPERIAL MINES INC. (the "Issuer")
(Incorporated in British Columbia)

DEC 171991

Geological Survey Branch
MEMPR
COMMON SHARE OFFERING: $\mathbf{6 0 0 , 0 0 0}$ COMMON SHARES

	Price to Public	Commission (1)	Net Proceeds to the Issuer
Per Share	$\$ 0.40$	$\$ 0.04$	$\$ 0.36$
Total	$\$ 240,000$	$\$ 24,000$	$\$ 216,000$

FLOH-THROUGH COMMON SHARE OFFERING: 200,000 COMMON SHARES

Per Share	Price to Public	Commission ${ }^{(1)(3)}$	Net Proceeds to the Issuer
Total	$\$ 0.40$	Nil	$\$ 0.40$

(1) In addition, the Agent will be granted Agent's Warrants as described in the section captioned "Plan of Distribution".
(2) Before deduction of the balance of costs of this Prospectus estimated at $\$ 30,000$.
(3) The Issuer will pay a fee of $\$ 8,000$ to the Agent, from general working capital, in respect of the sale of the Flow-Through Common Shares.

THE PRICE TO THE PUBLIC WAS ESTABLISHED PURSUANT TO NEGOTIATIONS BETWEEN THE ISSUER AND THE AGENT.
there is presently no market through which the securities of the issuer may be sold and a PURCHASE OF THE SHARES OFFERED BY THIS PROSPECTUS MUST BE CONSIDERED A SPECULATION. THE ISSUER'S MINERAL PROPERTY IS IN THE PRELIMINARY STAGES OF EXPLORATION AND DEVELOPMENT AND THERE IS NO KNOWN BODY OF COMMERCIAL ORE PRESENT ON THE PROPERTY. REFERENCE IS MADE TO THE SECTIONS CAPTIONED "RISK FACTORS" AND "DILUTION".

NO PERSON IS AUTHORIZED BY THE ISSUER TO PROVIDE ANY INFORMATION OR TO MAKE ANY REPRESENTATION OTHER THAN THOSE CONTAINED IN THIS PROSPECTUS OR IN CONNECTION WITH THE ISSUE AND SALE OF THE SECURITIES OFFERED BY THE ISSUER.

THE OFFERING OF FLOW-THROUGH COMMON SHARES IS INTENDED TO ALLOW INVESTORS TO ACHIEVE CERTAIN TAX BENEFITS IN THE YEAR OF SUBSCRIPTION. THE ACHIEVING OF SUCH BENEFITS BY THE INVESTORS AND THE INCURRING OF EXPENDITURES BY THE ISSUER ON BEHALF OF THE INVESTORS ARE SUBJECT TO RISK AND UNCERTAINTY WHICH ARE DESCRIBED IN THE SECTIONS CAPTIONED "CANADIAN INCOKE TAX CONSIDERATIONS OF FLOW-THROUGH SHARES" AND "RISK FACTORS".

ONE OR MORE OF THE DIRECTORS OF THE ISSUER ARE DIRECTORS OF OTHER NATURAL RESOURCE COMPANIES AND HAVE POTENTIAL CONFLICTS OF INTERESTS WHEN SERVING IN SUCH CAPACITIES. REFERENCE IS MADE TO THE SECTION CAPTIONED "DIRECTORS AND OFFICERS".

FOR COMPARISON OF THE SHARES BEING OFFERED TO THE PUBLIC FOR CASH AND THOSE ISSUED TO PROMOTERS, DIRECTORS AND OTHER INSIDERS, REFERENCE IS MADE TO THE SECTION CAPTIONED "PRINCIPAL SHAREHOLDERS". UPON COMPLETION OF THIS OFFERING, THE SECURITIES OFFERED HEREUNDER WILL REPRESENT 29.244% OF THE ISSUED SHARES OF THE ISSUER THEN OUTSTANDING WHILE THE DIRECTORS AND SENIOR OFFICERS OF THE ISSUER WILL HOLD 49.323% OF THE ISSUED SHARES THEN OUTSTANDING. THE PUBLIC WILL EXPERIENCE DILUTION OF $\$ 0.28$ PER SHARE OR 70\%. REFERENCE IS MADE TO THE SECTIONS CAPTIONED "DILUTION" AND "PRINCIPAL SHAREHOLDERS".

THE AGENT'S WARRANTS HAVE BEEN DISTRIBUTED UNDER THIS PROSPECTUS. ANY SHARES ACQUIRED BY THE AGENT UNDER THE GUARANTEE WILL ALSO BE DISTRIBUTED UNDER THIS PROSPECTUS THROUGH THE FACILITIES OF THE VANCOUVER STOCK EXCHANGE AT THE MARKET PRICE AT THE TIME OF SALE. REFERENCE IS MADE TO THE SECTION CAPTIONED "PLAN OF DISTRIBUTION".

THE VANCOUVER STOCK EXCHANGE HAS CONDITIONALLY LISTED THE SECURITIES OFFERED PURSUANT TO THIS PROSPECTUS. LISTING IS SUBJECT TO THE ISSUER FULFILLING ALL THE LISTING REQUIREMENTS OF THE EXCHANGE ON OR BEFORE DECEMBER 11, 1991 INCLUDING PRESCRIBED DISTRIBUTION AND FINANCIAL REQUIREMENTS.

WE, AS AGENT, CONDITIONALLY OFFER THESE SECURITIES SUBJECT TO PRIOR SALE, IF, AS AND WHEN ISSUED BY THE ISSUER AND ACCEPTED BY US IN ACCORDANCE WITH THE CONDITIONS CONTAINED IN THE agency agreement referred to in the section captioned "plan of distribution".

THIS PROSPECTUS IS DATED THE 4TH DAY OF NOVEMBER, 1991.

AGENT
 BRINK HUDSON \& LEFEVER LTD. 1200 - 595 Burrard Street Vancouver, B.C. V7X 1J1

EFFECTIVE DATE: NOVEMBER 5, 1991

REVISED GEOLOGICAL REPORT

MIDDLE VEIN PROSPECT

in the

Mount McQuillan Area Victoria Mining Division, B.C.
for

CANADIAN IMPERIAL MINES INC. \#777 - 1177 West Hastings Street Vancouver, B.C. V6E 2K3

By

Kucera \& Associates Consultants Richard E. Kucera, Ph.D.

September 20, 1991

SUMMARY

Canadian Imperial Mines Inc. holds seven reverted Crown Grants (Middle Vein Prospect) in the Mt. McQuillan area, located 21 kilometres southeast of Port Alberni, Vancouver Island, B.C. (92F/2). Elevations range from 1200 to 1500 metres. Present access to the property is either by helicopter or by trail from China Creek or Nitinat River. The end of an old logging road lies 2.2 kilometres southeast of the property.

The Middle Vein Prospect is located on the Cowichan-Horn Lake Uplift, a geologically favourable area and contains past producers of the Mt. McQuillanChina Creek mining camps. The property is largely underlain by the lower part of the Sicker Group rocks, represented here by the Duck Lake Formation, composed of grey to greenish andesite, dacite tuffs and breccias. Gabbroic rocks (Island Intrusions) also occur locally.

Mineralization on the property consists of lenticular quartz-carbonate veins, up to 5 metres long and 20 cm wide, associated with a very strong and persistent NNE trending shear zone 2 to 3 metres wide that cuts light to dark brown weathered andesite. This mineralized zone has been referred to as the Middle Vein. The Middle Vein is exposed only in the Middle Vein workings for a distance of 5 metres. The veins and shear zone at this locality strike N 10 degrees to 18 degrees East and dip 78 degrees to 85 degrees East. Some of the veins are found associated with light-coloured feldspar-hornblende dykes that are as much as 2 metres wide. One 20 cm channel sample assayed $0.88 \mathrm{oz} /$ ton Au .

Although the shear zone is largely obscured by overburden, it is also exposed for a distance of 350 metres on the northern portion of the property. There is no indication of the Middle Vein shear zone by VLF-EM survey on the Apex and Skyline claims nor on the War Lion and Conqueror claims.

Exploration by Canadian Imperial Mines Inc. in 1989 and 1991 included establishing grid lines, collecting chip and channel samples, geological mapping and geophysical surveys. The writer has taken no independent check samples but he directed sampling by employees of the vendor.

Individual quartz veins assay up $1.4 \mathrm{oz} /$ ton Au across widths of up to 10 cm . Sampling by Sawyer Consultants (1980) reported values of up to $2.20 \mathrm{oz} /$ ton Au and $2.09 \mathrm{oz} /$ ton Ag .

The Middle Vein is judged to be a good target. A two stage exploration program is recommended. Stage One would consist of detailed geological mapping and sampling, aerial photo interpretation and trenching. Stage Two would consist mainly of diamond drilling.
SUMMARY i
INTRODUCTION 1
SOURCE OF INFORMATION 1
LOCATION AND ACCESS 2
PHYSIOGRAPHY 4
PROPERTY STATISTICS 4
HISTORY OF EXPLORATION 7
REGIONAL GEOLOGY 8
Stratigraphy 8
Structure and Igneous Intrusions 11
LOCAL GEOLOGY 11
Middle Vein Workings and Mineralization 14
RECENT EXPLORATION 18
Geophysical Surveys 19
Results of Sampling 22
CONCLUSIONS AND RECOMMENDATIONS 25
STAGE I 26
Aerial Photos - Base Map 26
Geological Mapping - Prospect Middle Vein 26
Legal Survey 26
Trenching 26
STAGE II 27
Drilling Program 27
RECOMMENDED PROGRAM AND COST ESTIMATES 28
Stage I
Stage II
SELECTED REFERENCES 29
CERTIFICATE OF QUALIFICATION 30

APPENDICES

Appendix A Rock Sample Descriptions (1989, 1991)
Appendix B Analytical Results (1980, 1983, 1989, 1991)
Appendix $C \quad$ Interpretation of the Geophysical Survey on the Apex Group, Figure G-1, G-2, G-3

Appendix D Geophysical Field Data Worksheets (1989, 1991)
Appendix E Geophysical Equipment Specifications
Appendix F Petrographic Analysis Reports (1989, 1991)

ILLUSTRATIONS

Figure 1 General Location Map 3
Figure 2 Claim Sketch Map 5
Figure 3 Mt. McQuillan Area Property Ownership Map 6
Figure 4 Geological Sketch Map of Vancouver Island, B.C. 9
Figure 5 Geology of Mt. McQuillan Area, Vancouver Island 10
Figure 6 Middle Vein Prospect (Geology Map, 1991) 12
Figure 7 Location Sketch of Middle Vein 15
Figure 8 Middle Vein - North Part 16
Figure 9 Total Field Magnetic Contours 1991 20
Figure 10 VLF-EM Profiles 1991 21
Figure 11 Rock Sample Locations and Results 1991 24
In Pocket
Figure 6 Middle Vein Prospect (Geology Map, 1991)
Figure 8 Middle Vein - North Part
Figure 9 Total Field Magnetic Contours 1991
Figure 10 VLF-EM Profiles 1991
Figure 11 Rock Sample Locations and Results 1991
Figure G-1 VLF-EM Profiles
Figure G-2 Total Field Magnetic Profiles
Figure G-3 Total Field Magnetic Contours

INTRODUCTION

This report was prepared at the request of Mr. Clive Ashworth, on behalf of Canadian Imperial Mines Inc. The purpose of this report is to describe the results of geological exploration and assess the potential of the Middle Vein Prospect (seven reverted Crown grants) held by Canadian Imperial Mines Inc. in the Mt. McQuillan area, southeast of Port Alberni, Vancouver Island.

The report discusses the results of mapping, sampling and geophysical surveys carried out by Ashworth Explorations Limited in 1989 and Hi-Tec Resource Management Ltd. in 1991. In addition, observations made in conjunction with a drilling program carried out on an adjacent property in the early 1980's have been useful in this report.

The primary target is a mineralized zone (Middle Vein) consisting of quartzcarbonate veins associated with a very strong and persistent NNE trending shear zone. Examination of existing data followed by the 1989 and 1991 work programs have demonstrated the presence of gold anomolies in rocks with values up to $1.4 \mathrm{oz} /$ ton across widths of up to 10 cm .

Certain recommendations are made in this report to explore the Middle Vein on the surface as well as at depth. The writer judges the exploration merit of the property to be good.

SOURCE OF INFORMATION

The primary source of information of which this report is based on included geological data, maps, and assays contained in a report by Mr. Hugo Laanela, Consulting Geologist, Nanaimo, B.C. In his report of August 8, 1989, for Ashworth Explorations Ltd., he summarized the work done on the property during the late 1970's and early 1980's by Lode Resources Corp. Laanela also reports on some geophysics and prospecting carried out in the summer of 1989 by Ashworth Explorations Ltd.

In addition, the present writer has drawn upon other appropriate sources including Annual Reports by the Minister of Mines, GSC Papers, and unpublished geological and geophysical reports on adjoining properties. He also had numerous discussions with Mr. Fayz Yacoub, Project Geologist for Ashworth Explorations Ltd.

The writer examined the northern part of the Middle Vein Prospect on October 16, 1989 and mapped a portion of the geology in the vicinity of the Middle Vein on the Apex claim. He was also accompanied by Mr . Yacoub and supervised sampling of the Middle Vein workings.

The results of geologic mapping, rock sampling and geophysical work by Hi-Tec Resource Management during June 1991 have been incorporated in this revised report.

LOCATION AND ACCESS

The Middle Vein Prospect is located 21 kilometres southeast of Port Alberni, Vancouver Island, B.C. (NTS map sheet $92 \mathrm{~F} / 2$). The geographical coordinates are 49 degrees $06^{\prime} \mathrm{N}, 124$ degrees $35^{\prime} \mathrm{W}$ in the Victoria Mining Division.

The property is located along the east flank of McQuillan Ridge, the southern spur of Mt. McQuillan. The area lies west of the headwaters of the Middle Fork of Nitinat River.

Present access to the property is either by helicopter (12 minutes from Nanaimo) or by trail from China Creek or Nitinat River. However, a network of roads do exist in the area. The terminus of an old logging road located at the headwaters of the Middle Fork of Nitinat River lies 2.2 kilometres southeast of the workings at the Middle Vein.

FIGURE I

PHYSIOGRAPHY

The Claim Group lies along the west flank of a ridge extending south of Mt. McQuillan. The area is bounded on the east by the steep valley of Nitinat River (Middle Fork). Elevations on the property range from about 1500 metres along the northern part of the ridge to about 1200 metres toward the eastern and southern parts. The easterly-facing slopes on the property average about 30 degrees - 45 degrees, often with steep rocky cliffs or gullies. Short stream courses drain the property and some segments exhibit distinct structural control. Summit Lake lies at the headwaters of China Creek, 0.5 km . northeast of the Apex Claim, at an elevation of 1020 metres. The property is covered with some heavy stands of timber, with dense underbrush. There are some open areas on the property.

PROPERTY STATISTICS

The Middle Vein Prospect consists of seven reverted Crown Grant 2-post claims (from Laanela, 1989). The property is owned by Mr. Clive Ashworth of West Vancouver, B.C.

Lot \#	Record \#	Record Date	Claim Name	Area (hectares)
99G	1577 (9)	Sept. 9, 1985	Apex	12.75
100G	1578 (9)	Sept. 9, 1985	Skyline	14.97
152G	1541 (7)	July 4, 1985	War Lion	19.78
153G	1542 (7)	July 4, 1985	Conqueror	16.83
154G	1543 (7)	July 4, 1985	Majestic	14.25
155G	1544 (7)	July 4, 1985	Empress of India	20.90
156G	1545 (7)	July 4, 1985	IXL	20.90
			Total Hectares (297.5 acres /	$\begin{array}{rr} = & 120.38 \\ 1.204 & \text { sq. } \mathrm{km} .) \end{array}$

The claim group is held under option by the Canadian Imperial Mines Inc. The Apex and Skyline claims were surveyed by J.E. Anderson and Associates, Surveyors and Engineers during June, 1989.

The Crown grants and claims are shown on the B.C. Dept. of Energy, Mines and Petroleum Claim Map M92 F/2E as well as on Figures 2, 3, and 5 of this report. The locations of the 7 Crown Grant claims were not verified in the field as none of the claim posts or survey pins were inspected.

HISTORY OF EXPLORATION

The following summary of exploration and mining activity in the general area of the Middle Vein Prospect is condensed from a report by Mr. H. Laanela, 1989, Consulting Geologist.

Gold in the area was first discovered in the gravels of China Creek, just north of the Middle Vein property in 1862, followed by staking rushes and much mining activity. The Mt. McQuillan-China Creek area contains several modest past producers and numerous $\mathrm{Au}-\mathrm{Ag}$ prospects, mostly vein-type, including the Black Panther mine, Havilah, Debbie Propsect, Golden Eagle, plus several less explored prospects in the area. These various mineral occurrences and the old mines are described by Stevenson (1945) in his report on the China Creek area.

During the 1960's Gunnex Ltd. carried out various regional and detailed surveys for minerals on the E and N Railway Land Grant on Vancouver Island. The results of these programs later led to the staking of favourable properties on Mt . McQuillan.

During the late 1970's and early 1980's Lode Resources Corp. had secured most of the favourable ground in the Mt. McQuillan area, including the High Grade Vein and Middle Vein area. Lode Resources sampled and drilled several of these properties including the High Grade Vein with encouraging results during 1980 and 1983. The High Grade Vein is located just west and outside of the Middle Vein Prospect, dipping steeply to the west of the property boundary. (See Figure 5).

REGIONAL GEOLOGY

The Middle Vein Claim Group is located on the Cowichan-Horn Lake Uplift, a geologically and economically favourable area on Vancouver Island. This uplift is some 125 kilometres long and 15-22 kilometres wide and it contains the past producers of the Mt. McQuillan - China Creek mining camps. The area is underlain by the Sicker Group volcanics and associated sedimentary rocks. (Figure 4).

Stratigraphy

The regional stratigraphy has been studied by the GSC (Muller, 1977, 1980 and updating of the Sicker Group by Massey et al, 1988). Laanela, 1989, summarizes the pertinent stratigraphy related to Mt. McQuillan.

Era	Period or Epoch	Name	Lithology
CENOZOIC	Early to Middle Tertiary	Catfish Intrusions	Sills, dykes and small plutons of feldspar hornblende-plagioclase) porphyry. Associated with mineralized veins.
	Upper Cretaceous	Nanaimo Group	Conglomerate, sandstone, shale and coal

Early and Middle Jurassic	Island Intrusions	Granitoid batholiths and stocks, largely dioritic composition.		
MESOZOIC	Early	Bonanza Group		
Jurassic				Lava, tuff and breccia of basaltic and
:---:				
rhyolitic composition.				

Mount Mark fm - crinoidal limestone, chert, argillite.

Devonian

PALEOZOIC
Cameron River fm - ribbon chert, argillite, limestone, sandstone.

McLaughlin Ridge fm - tuffite, feldspar - crystal tuff, breccia, dacite. Nitinat fm - meta basaltic lavas, agglomerate, massive tuffite.

Duck Lake fm - pillowed and massive basaltic flows, breccias, cherty tuff, massive dacite and rhyolite. Largely occupies the Middle Vein property area.

Stucture and Igneous Intrusives

The Sicker Group rocks are buried under the Mesozoic cover except where they are now exposed in major uplift areas, such as the Cowichan-Horne Lake Uplift. The structure of the Sicker Group appears to be the result of a complex structural history including normal and transcurrent faulting and folding. The rocks are steeply folded and are in places highly sheared and metamorphosed to chloritic schists.

Sicker rocks in the vicinity of Mt. McQuillan were affected by several intrusive events. Triassic diabasic and gabbroic sills and dykes were probably intruded in conjunction with extrusion of Karmutsen basalt followed by early Jurassic Island Intrusions (McQuillan stock) and the early Tertiary sills and dykes composed of light-coloured hornblende-plagioclase porphyry (Catfish Intrusions).

LOCAL GEOLOGY

The Middle Vein Prospect is largely underlain by the lower part of the Sicker Group represented by the Duck Lake formation. It is composed of grey to greenish andesite, dacite, breccia and tuffs. The volcanic rocks are usually aphanitic to very fine-grained and massive. Porphyritic dacite occurs locally and features flow-banding and prominent iron-manganese staining. Veinlets of quartz are abundant that are up to 5 cm wide.

Petrographic examination by Vancouver Petrographics Ltd. show that the andesite is composed of approximately 65% plagioclase and 20% chlorite with accessory quartz and opaques.

The Duck Lake volcanics are altered to a purplish-brown colour at the location of fracture zones. Visible sulphides, mainly pyrite, occur only near geologic contacts and fracture zones. Some malachite staining was noted by Hi-Tec Resource Management geologists in two outcrops represented by rock sample numbers MV/91 FR-4 and MV/91 FR-17 during the 1991 work program. Grab samples FR-4 assayed 20 ppb Au and FR-14 assayed no detectable gold.

Mapping by Hi-Tec Resource Management shows that gabbro, diorite and quartzdiorite rocks (Island Intrusions) outcrop on the IXL and Empress of India claims, at the south end of the property (Figure 6). The writer also mapped gabbroic intrusive rocks on a portion of the Apex claim.

A thin-section of the gabbro show that it is fine to medium-grained, composed essentially of an intergrowth of plagioclose (50\%) and pyroxene (40\%). The plagioclase shows strong saussuritization. The rock is notably low in opaques.

Generally, the rocks are quite fresh and unaltered but show more epidote, chlorite, quartz-calcite veining and pyrite adjacent to the contact of the Duck Lake formation. Geological mapping indicates the contact is gradational within a zone of $30-50$ metres. Within this zone both rock units are usually highly altered, and the volcanic rocks are light green with intense chlorite and sericitic alteration. Fractures are more intense with iron-manganese staining.

Mapping shows the presence of quartz-feldspar porphyry dikes in several places on the War Lion and Conqueror claims and also at the Middle Vein workings on the Apex claim. They are 1 to 2 metres wide and strike N 10 degrees E at the Middle Vein workings to N 20 degrees W at $\mathrm{L}+50 \mathrm{~S} 0+65 \mathrm{~W}$.

In thin-section, the porphyry of dacitic composition, is composed of phenocrysts of plagioclase (20\%), quartz (15\%) and minor altered mafics in a microgranular groundmass of fresh plagioclase (50\%) with minor intergrowth quartz (6\%) and chlorite (4\%). The plagioclase phenocrysts show mild pervasive epidotization.

Early geological explorations refer to a mineralized vein on the property as the Middle Vein. The term Middle Vein as used in this report refers to narrow quartz lenses associated with a very well-defined structure, a 2-3 metre wide shear zone that strikes N10 degrees to 18 degrees E and dips 78 degrees to 85 degrees E. Although the shear zone can be traced on aerial photographs for a distance of at least 500 metres on the Apex, Skyline and War Lion claims (Figure 7), the associated quartz lenses are exposed only in the vicinity of the Middle Vein workings for 5 metres. Samples collected from the Middle Vein and shear zone are designated MV (see page 23).

The Middle Vein and associated shear is exposed in the early workings and in rock cuts adjacent to a small tributary creek located in the centre of the Apex claim (L99G). To the south, the shear zone is seen in a very steep rocky ravine on the Skyline claim (100G). This ravine owes its existence to differential erosion of the NNE trending shear zone.

According to Laanela (1989) the shear zone becomes hidden by a small snowbank on the War Lion claim (152G) but it probably continues farther south along the steep east slope of McQuillan ridge, where it trends northeast along the line of the old Crown Grants (L153G to 156G). (See Figure 5). Recent mapping by Hi-Tec Resource Management has not confirmed the presence of the shear zone nor the Middle Vein on the War Lion and Conqueror claims (Figure 6).

To the north, the veins and attendent shear zone, while being covered by overburden near the workings on the Apex claim, reappear in the China Creek headwaters, on the Golden Eagle claim. As Laanela (1989) points out, the Golden Eagle vein may be the northern extension of the Middle Vein, as both appear to have a similar attitude.

Immediately south of the Middle Vein workings, the Middle Vein structure is obscured for a distance of 110 metres by glacial debris, capped by rock rubble that was swept out of a ravine by debris flows and landslides from the eroded shear zone at the northern border of the Skyline claim. The presence of a quartz vein at depth is suggested by mineralized float located immediately downstream from its postulated trend.

Middle Vein Workings and Mineralization

The fault zone at the Middle Vein workings on the Apex claim consists of two distinct shears. The main shear is exposed near the base of the rocky cliffs, just south of an east flowing stream. The shear is one metre wide and strikes N 18 degrees E and dips 78 degrees E . The shear cuts grey andesite that is moderately silicified and strongly weathered with light to dark brown rusty colour. Sulphide minerals are 1-2\% fine-grained pyrite with traces of malachite.

Mineralized quartz-carbonate lenses up to 10 cm thick and 5 metres long are hosted by sheared, rusty light to dark brown andesite. A 10 cm chip sample (MV89-14) across a quartz-carbonate vein assayed $1.42 \mathrm{oz} /$ ton Au. Isolated pyrite-rich lenses occur in the andesite west of the shear zone. The andesite in this area is cut by intersecting joint sets of $N 20$ degrees W and $N 40$ degrees W.

The writer has observed another shear that occurs 14 metres west of the main shear. It is exposed at its top of 10 metre high bluff, along the south side of the same creek that flows past the main shear. The shear is . 5 to 1.0 metre wide, strikes N 10 degrees E and dips 85 degrees E . This shear has not been sampled.

A light coloured feldspar-hornblende porphyry dike, 1-2 metres wide is found associated with this shear. The dike weathers a light brown. The feldspar porphyry dike, in which the vein occurs, is very similar in appearance to numerous Tertiary porphyry intrusions occurring elsewhere in the area. Refer to a petrographic analysis by Vancouver Petrographics of a specimen of this dyke material (Appendix F).

A mineralized quartz-carbonate vein, 8 to 20 cm wide is associated with the shear zone as mentioned in the above paragraphs. One channel sample MV89 R20 collected across 20 cm of quartz vein strikes N 10 degrees E , and dips 85 degrees E. The vein is mineralized with 20% sulphides mainly pyrite, chalcopyrite and galena. Copper staining is associated with light brown feldspar porphyry. Sample MV89 R20 assayed $0.88 \mathrm{oz} /$ ton Au. An old trench, 2 metres long, occurs at creek level here. Another trench 20 metres to the south, attempted to reach the vein through rock rubble.

Samples MV89 R11 to MV89 R15 were collected from the Middle Vein structure (the shear zone) where a small quartz carbonate vein, 10 cm wide, is exposed for 5 metres. It is represented by chip sample MV89 R14 which returned a value of $1.42 \mathrm{oz} /$ ton Au . Refer to Appendix A for the gold content and width of samples MV89 R11 to MV89 R15.

The writer has mapped gabbroic dike rock cutting massive andesite north of the creek about 80 metres east of the Middle Vein workings. It trends N 20 degrees to $N 40$ degrees W and is as much as 10 metres wide. Its southern extension is covered with overburden. (See Figure 8).

The strong shear structure and associated mineralized veins appear to terminate at this creek on the north side of the workings. Although overburden (landslides and moraine) mantle the bedrock north of the creek, it might be possible that lateral movement of a cross fault has offset this shear zone toward the northwest. Inspection of the aerial photographs reveal a subtle lineament that extends N40 degrees W from the northeast corner of the Skyline claim, across the "flat" area of the Apex claim where it fades out in the bedrock bluff northwest of the Middle Vein workings.

RECENT EXPLORATION

Canadian Imperial Mines Inc. did work on the Apex Group property during June and July, 1989 under the direction of Mr. F. Yacoub, Project Geologist, Ashworth Explorations Ltd. This work included:

1. Established grid lines.
2. Legal survey to relocate the Apex and Skyline claims on the ground by J.E. Anderson and Associates, Surveyors and Engineers.
3. VLF-EM and Magnetic survey by Ashworth Explorations Ltd. with interpretation by Mr. T. Matich, Geophysicist of Interpretex Resources Ltd.
4. At the request of Canadian Imperial Mines Inc., Dr. Kucera visited the property on October 16, 1989 and was accompanied by Mr. Yacoub. Dr. Kucera mapped a portion of the Apex claim and supervised sampling of the Middle Vein.

Hi-Tec Resource Management did work on the southern portion of the Middle Vein Prospect during June 1991. This work included geological mapping prospecting, rock sampling and a magnetometer and VLF-EM survey. Three
kilometres of grid lines were surveyed on the War Lion and Conqueror claim blocks.

Geophysical Surveys

Ashworth Explorations Ltd. conducted a combined VLF-EM and magnetometer survey on the Apex and Skyline claims. The survey was run on an E-W line grid, totalling 3 line kilometres, using a Scintrex Omni Plus combined VLF-EM and magnetometer. A total of 12 lines, located at 50 metre intervals were established nearly perpendicular to the strike of the known vein system with station spacing at 12 metres.

The field data was processed, plotted and interpretated by Mr. Tom Matich, Geophysist of Interpretex Resources Ltd., Surrey, B.C. The following is condensed from the interpretive report by Mr. Matich. This entire report is enclosed here as Appendix "C".

Three magnetic trends, labelled L1, L2, and L3 on field magnetic profile and contour maps, (see figures G1, G2, G3 in Pocket) were delineated by comparing profile characteristics from line to line.

Magnetic lineament $L 1$ consists of two parallel magnetic high trends in the northern portions of the Apex Claim, east of the Middle Vein. Lineament L2 also consists of two parallel magnetic highs which may be the southern continuation of L1. Lineament L3 trends N-S and lies closer to the Middle Vein.

Mr. Matich interprets these lineaments to represent basic dykes containing magnetite. Kucera has mapped coarse gabbroic rocks in the same area as the L1 trend. Here, the gabbro intrudes andesitic rocks along a N20-40 degrees W trend.

The only evidence of the EM conductivity on the 1989 grid was the moderate NNW trending conductor Cl on line $2+50 \mathrm{~S}$ to $3+50 \mathrm{~S}$ (See figure G1). It is in the same area as the Middle Vein - shear zone structure that trends in a NNE

direction. Mr. Matich interprets Cl to be a structural feature, such as a splay fault, subparallel to the fault associated with the Middle Vein. It is possible that the location of samples R8 and R9 (see Figure 7) are on the Conductor Cl trend rather than an extension of the Middle Vein shear zone. There was no noticeable magnetic low response to the feldspar-hornblende dykes or major structure associated with the Middle Vein.

During the 1991 exploration program, a VLF-EM and a magnetometer survey was performed on the 1991 grid over sections on the War Lion and Conqueror claim blocks. An EDA Omni-Plus system was used to simultaneously measure total field magnetics data and VLF-EM data. Parameters measured were total magnetic field strength and VLF-EM field strength and in-phase dip angle. The field data was computer processed and plotted as a contour map on a 1,2,000 scale map (Figure 9). There was no indication of any continuous shear structure along the postulated Middle Vein shear from the VLF-EM surveys by Ashworth Explorations and by Hi-Tec Management.

The 1991 magnetic survey outlined a number of anomolies on the southern part of the field but no responses were evident in the VLF-EM survey (Figure 10). The magnetic anomalies at stations $3+00 \mathrm{~S}-1+00 \mathrm{E}$ and $3+50 \mathrm{~S}-0+50 \mathrm{E}$ cover an area not mapped by the 1991 program due to snow cover. However, a disseminated sulphide pod has been located at line $4+25 \mathrm{~S}-0+90 \mathrm{E}$ that measures 3 metres long and 1 metre wide. A chip sample (FR-21) collected from the pod returned values of 130 ppb Au and 411 ppm Cu over a width of 50 cm .

Results of Sampling

Laanela (1989) reported on assays of samples collected in 1980 and 1983 from various parts of the Middle Vein. Four selected samples from the Middle Vein in the old workings, gave assays ranging from 0.58 to $2.20 \mathrm{oz} \mathrm{Au} /$ ton and from 0.89 to $2.09 \mathrm{oz} \mathrm{Ag/ton}$, Au and Ag. A mineralized boulder containing pyrite and galena from the shear zone about 200 metres south of here, assayed $0.689 \mathrm{oz} \mathrm{Au} /$ ton and 0.60 oz $\mathrm{Ag} /$ ton. No samples were taken from the shear zone at this locality. Chip
samples across one metre of the mineralized vein/dyke further to the south below the snowfield (Skyline Claim) assayed $0.028 \mathrm{oz} \mathrm{Au} /$ ton and $0.20 \mathrm{oz} \mathrm{Ag} /$ ton.

Samples collected during the 1989 exploration program include the following:

Sample \#	Au	Sample Width (cm)	Type
MV R5	$0.044 \mathrm{oz} /$ ton	---	Grab
MV R7	90 ppb	20	Chip
MV R8	2900 ppb	100	Chip
MV R9	220 ppb	100	Chip
MV R10	$0.169 \mathrm{oz} /$ ton	20	Channel
MV R11	50 ppb	100	Chip
MV R12	1430 ppb	100	Chip
MV R13	360 ppb	150	Channel
MV R14	$1.420 \mathrm{oz} / \mathrm{ton}$	10	Chip
MV R15	230 ppb	200	Chip
MV R16	570 ppb	200	Chip
MV R17	60 ppb	40	Chip
MV R18	40 ppb	30	Chip
MV R19	80 ppb	100	Chip
MV R20	$0.882 \mathrm{oz} /$ ton	20	Channel

The author took no independent check samples. Samples MV R11 to MV R15 and MV R20 were collected under the supervision of Dr. R. Kucera. The samples were brought to Vancouver and sent to Vangeochem Lab Limited under the author's direction. Sample locations for 1989 are indicated on Figure 8 (in pocket). See sample descriptions and analytical results in Appendix A and B.

Thirty-eight samples were collected during the June 1991 exploration program. The following samples contained gold values.

Sample \#	Au (ppb)	Cu (ppm)	Sample Width (cm)
MV/91 FR4	20	3290	---
MV/91 FR5	20	614	100
MV/91 FR8	510	58	120
MV/91 FR9	10	129	60
MV/91 FR14	520	67	60
MV/91 FR15	540	73	100
MV/91 FR19	60	67	100
MV/91 FR20	40	37	100
MV/91 FR21	130	411	50
MV/91 FR22	90	1952	30
MV/91 PR1	60	11	60
MV/91 PR7	730	132	100

Rock sample locations and analytical results for gold and copper are plotted on Figure 11 at a scale of $1: 5,000$.

Summary statistics for 38 rock sample analyses for Au and Cu suggest that 60 ppb Au and 130 ppm Cu might be considered geochemically anomalous and >500 ppb Au and $>400 \mathrm{ppm} \mathrm{Cu}$ as highly anomalous. No predictable relationship exists between high Au and high Cu values. Because of the small sample of Au and Cu values, a statistical test is not easily supported.

CONCLUSIONS AND RECOMMENDATIONS

The 1980 and 1983 program by Lode Resources, and the 1989 work program by Ashworth Explorations Limited and the 1991 program by Hi-Tec Resource Management on the Middle Vein Prospect have demonstrated the presence of gold. Gold values range up to 2900 ppb across 100 cm of the shear zone whereas individual quartz-carbonate veins assay up to $1.4 \mathrm{oz} \mathrm{Au} /$ ton across widths of up to 10 cm . Exploration potential of the Middle Vein Prospect is judged to be good. Further development of this property is justified.

A two-stage program is recommended to explore the Middle Vein on the surface and at depth. The initial stage consists of aerial photo coverage, stereo-photo interpretation, compilation of a topographic base map, legal surveys, detailed geologic mapping, extensive sampling and surface trenching. The second stage of work, contingent on obtaining encouraging results from the first stage, is also recommended. This stage consists of 600 metres of diamond drilling to explore the Middle Vein at depth.

STAGE I

Aerial Photographs - Base Map

Low-level aerial photographs should be obtained of the property and used for stereo-photo interpretation and compilation of a topographic base-map. Careful stereoscopic examination of the aerial photos will help delineate rock types, locate very subtle fractures and facilitate tracing of the NNE shear-vein structure on the steep slopes of the southernmost claims.

Because of abrupt topographic relief on the property, a map produced directly from photo overlays will exhibit severe scale differences across the map area. Because of this, I recommend that a topographic map be compiled from the aerial photos. Using this map as a base, the geologic information on the aerial photos can be transferred to the base map, including all mineral outcroppings, trenches and sample locations.

Geological Mapping - Prospect the Middle Vein

Trace the vein structure and sample the Middle Vein particularly toward the south along the main ridge. Any new mineralized zones should be examined and sampled. Helicopter reconnaissance and stereoscopic study of the aerial photographs will prove useful.

Legal Survey

Claim boundaries on the southern part of the property may also have to be relocated on the ground by legal survey, similar to the recent survey on the Apex and Skyline claims. The location of the Middle Vein should be surveyed and accurately shown on the base map.

Trenching

Trenching by a small backhoe, brought in by helicopter, has to be considered the next logical step to explore the vein below the surface.

STAGE 11

Drilling Program

I recommend a diamond drilling program, initially on the Apex Claim. Drill sites would be on gently sloping ground east of the Middle Vein and have a nearby water supply.

Drill sites located approximately 40 metres east of the shear-vein structure seem reasonable. Drill holes at - 45 will intersect the vein at depths ranging from 40 to 60 metres. Additional holes at - 70 should be drilled from the same initial set-ups.

Drilling along additional sections farther to the south should then be considered if the results of surface sampling warrant it. Although the topography is quite precipitous, a few drillsites could be located south of the rocky ravine on the Skyline and War Lion claims.

RECOMMENDED PROGRAM AND COST ESTIMATES

Stage I
Establish additional grid - 10 km 1,500
Topographic Base Map from photos 4,000
Aerial Photo Interpretation 2,500
Geologic Mapping (20 days © \$500/day) 10,000
Sampling (250 samples @ \$40/sample) 10,000
Legal Surveys 7,500
Transportation (helicopter @ $\$ 600 / \mathrm{hr}$) 18,000
Trenching 8,000
Reporting and Administration 7,000
Contingency Allowance 6,500
ESTIMATED STAGE I COSTS \$75,000

Stage II

A second stage program contingent on obtaining encouraging results from Stage I is recommended. It would include diamond drilling to test the middle vein at depth, assays and further geological work.

KUCERA \& ASSOCIATES CONSULTANTS

buchan. Klucear

Richard E. Kucera, Ph.D.

SELECTED REFERENCES

Carson, D.J.T., 1972: The Plutonic Rocks of Vancouver Island, Geol. Surv. Can. Paper 72-44.

Hi-Tec Resource Management, 1991: maps and summary notes.

Laanela, H., 1989: Preliminary Report on the Middle Vein Prospect (Apex Group) in the Mount McQuillan Area, Victoria Mining Division, B.C. for Canadian Imperial Mines Inc., dated August 8, 1989.

Massey, N.W.D., and Friday, S.J., 1988: Geology of the Alberni - Nanaimo Lakes Area, Vancouver Island, in Geological Fieldwork 1988, in B.C. Geol. Survey Branch Paper 1989-1, pp. 61-74.

Muller, J.E., 1977: Geology of Vancouver Island, Geol. Surv. Can. Open File 463; map and marginal notes (3 sheets).

Muller J.E., 1980: The Paleozoic Sicker Group of Vancouver Island, B.C.; Geol. Surv. Can. Paper 79-80.

Sawyer Consultants, 1980: Report on 1980 Diamond Drilling Program on the Summit Lake, High Grade, and Black Panther veins on the Jan-Mar-Remy claims for Jan Resources Ltd.

Stevenson J.S., 1945: Geology and ore deposits of China Creek area, Vancouver Island, B.C., in Annual Report of B.C.M.M., 1944, pp. A143-A161.

CERTIFICATE OF QUALIFICATION

I, Richard E.Kucera, hereby certify:

1. That I am an associate of Kucera \& Associates Consultants of \#201, 810 West Broadway, Vancouver, B.C., V5Z 4C9.
2. That I am a Fellow of the Geological Association of Canada and a Member of the American Association of Petroleum Geologists and Geological Society of America.
3. That I hold B.Sc. and M.Sc. degrees from Ohio State University, U.S.A. and a Ph.D. from the University of Colorado, U.S.A.
4. That I have been practicing my profession as a Geologist for over 25 years.
5. That I have no direct or indirect interest nor do I expect to have any direct or indirect interest in the properties or securites of Canadian Imperial Mines Inc. I have no direct or indirect interest in the properties of the vendor.
6. That the statements made in Kucera \& Associates Consultants report of July 15, 1991 on the Middle Vein Prospect were based on an examination of the property on October 16, 1989 and from information as specified in the report.
7. That the report has been prepared for exclusive use of participants of the project and no part of it shall be reproduced, distributed or made available to any other person, company, regulatory body or organization without the complete context of the report or without my permission.
8. Consent is hereby granted to use the report, in its complete form only, in a Filing Statement, Statement of Material Facts, or Prospectus by Canadian Imperial Mines, Inc.

Dated at Vancouver this 20th day of September, 1991.

\qquad

ROCK SAMPLE DESCRIPTIONS

1989

Sample No.	Sample Description	Width (cm)	Au ppb
HG89 R7	Chip sample across 20 cm of altered grey, fine-grained volcanic andesite, quartz vein 3 cm wide mineralized with 2% fine-grained pyrite, minor green malachite. Sample taken at $\mathrm{L} 3+50 \mathrm{~S} 2+70 \mathrm{~W}$.	20	90
HG89 R8	Chip; shear zone of light brown buff volcanic andesite, rusty on weathering surface hosting quartz vein 5 cm wide, mineralized with 1% pyrite, vugs filled with dark oxide minerals. Sample across the shear zone and the vein at $3+50 \mathrm{~S} 3+00 \mathrm{~W}$.	100	2900
HG89 R9	Chip; shear zone of light to dark brown altered volcanics with slickenside striated surface, 20% dark brown rusty oxides in vugs, minor silicification. Sample at L $3+50 \mathrm{~S} 3+00 \mathrm{~W}$.	100	220
HG89 R10	Channel; quartz vein, 10 cm wide, massive quartz in a shear zone strikes N 10 E , dipping 75 W , mineralized with 2% fine-grained pyrite, 1% chalopyrite, minor galena, the vein exposed at $\mathrm{L} 3+40 \mathrm{~S} 3+60 \mathrm{~W}$.	20	$\begin{array}{r} .169 \\ \text { oz/ton } \end{array}$
MV89 R11	Chip; well defined shear zone, dark grey andesite moderately silicified with 5% quartz, rusty oxedized sulphide on weathered surface quartz-carbonate vein up to 5 cm wide, strikes N18 E, dips 78 E.	100	50
MV89 R12	Chip; shear zone, grey andesite, some silification, 1-2\% fine-grained pyrite, weathered buff to dark brown, quartz vein up to 3 cm wide.	100	1430
MV89 R13	Channel, quartz-carbonate vein 10 cm wide fine-grained volcanic andesite with minor silicification, $1-2 \%$ pyrite.	150	360

Sample No.	Sample Description	Width (cm)	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$
MV89 R14	Chip across 10 cm wide quartz carbonate vein up to 8% sulphides (5% pyrite, 3% chalopyrite) and copper staining, intercalated with grey andesite, vein at contact with shear zone (east) and grey andesite (west), fine-grained sulphides, pyrite decrease from about 8% at contact of andesite and vein to less than 1% in the andesite in a distance of 100 cm .	10	$\begin{array}{r} >10,000 \\ (1.42 \\ \text { oz/ton) } \end{array}$
MV89 R15	Chip across two metre, shear zone, aphanitic andesite moderatly silicified with 10% quartz.	200	230
MV89 R16	Chip; well defined shear zone, buff to dark brown, rusty fine-grained volcanic andesite, 1-2\% fine-grained pyrite dissemination, minor silicification. Slickenside and scratched surface two metres wide, strikes N 10 E .	200	570
MV89 R17	Chip across 40 cm of massive, barren quartz lense in a shear zone of buff fine-grained volcanic andesite, no obvious sulphides.	40	60
MV89 R18	Chip across 30 cm of the same quartz lense as above in R17. No sulphides.	30	40
MV89 R19	Chip sample collected across one metre of a shear, dark brown, rusty fine-grained volcanic andesite with 1-2\% fine-grained disseminated pyrite.	100	180
MV89 R20	Channel sample collected across 20 cm of quartz vein, strikes N 10 E , dips 85 E , mineralized with 20% sulphides, copper staining, associated with light brown feldspar porphyry.	20	$\begin{array}{r} >1000 \\ \text { (.882 } \\ \text { oz/ton) } \end{array}$

ASSAY RESULTS 1989
$\begin{array}{lllcccccccc}\text { Sample No. } & \begin{array}{ll}\mathrm{Au} \\ \mathrm{ppb}\end{array} & \begin{array}{c}\mathrm{Au} \\ \mathrm{oz} / \mathrm{t}\end{array} & \begin{array}{c}\mathrm{Ag} \\ \mathrm{ppm}\end{array} & \begin{array}{c}\mathrm{As} \\ \mathrm{ppm}\end{array} & \begin{array}{l}\mathrm{Cu} \\ \mathrm{ppm}\end{array} & \begin{array}{c}\mathrm{Pb} \\ \mathrm{ppm}\end{array} & \begin{array}{c}\mathrm{Zn} \\ \mathrm{ppm}\end{array} & \begin{array}{c}\text { Type of } \\ \text { Sample }\end{array} & \begin{array}{c}\text { Width } \\ (\mathrm{cm})\end{array}\end{array}$

HG89 R5		.044	6.5	1287	112	3435	3740	Grab	---
HG89 R7	90		2.0	55	4177	39	32	Chip	20
HG89 R8	2900		7.6	1571	225	70	29	Chip	100
HG89 R9	220		2.9	106	327	51	57	Chip	100
HG89 R10		.160	3.4	198	34	182	160	Channel	20
MV89 R11	50		1.5	23	913	129	115	Chip	100
MV89 R12	1430		2.5	224	117	171	39	Chip	100
MV89 R13	360		3.3	74	5779	358	183	Channel	150
MV89 R14	>10000	1.420	>50.0	>2000	825	$>20000>20000$	Chip	10	
MV89 R15	230		1.2	46	70	778	590	Chip	200
MV89 R16	570		0.6	4	97	103	113	Chip	200
MV89 R17	60		0.3	41	696	88	213	Chip	40
MV89 R18	40		0.2	9	33	53	43	Chip	30
MV89 R19	180		4.6	70	956	66	395	Chip	100
MV89 R20	>10000	.882	30.7	1997	284	6828	5860	Channel	20

MIDDLE VEIN PROSPECT

Rock Sample Descriptions
1991

Sample No.
Description
Width (cm)

FR-4	Grab Sample; rusty, dark grey to black massive volcanic basalt, mineralized with copper staining trace of fine-grained pyrite.	
FR-5	Chip sample across one metre of altered, light grey massive volcanic andesite, strong hematitic alteration, silicification with fine to very fine-grained pyrite.	100
FR - 6	Chip; altered limonitic volcanic andesite outcrop, 1% fine-grained pyrite.	100
FR-7	Brecciated light brown altered volcanic outcrop, moderate limonitic alteration, no sulphides. Chip sample over 60 centimetres.	60
FR-8	Chip sample across 120 centimetres of feldsparhornblende porphyry dyke, light brown hematite along fractures, altered hornblende.	120
FR-9	Weathered, altered light grey, fine-grained volcanic andesite, moderate silification with up to 3% secondary quartz, fractures oriented $\mathrm{N}-20$ degrees east filled with oxides (limonite). Chip sample over 60 centimetres.	60
FR - 10	Silicified zone hosted by fine-grained volcanic andesite, secondary quartz in cavities, the zone exposed for 5 metres, 30 centimetres wide. Chip over the width of the zone.	30
FR - 11	Grab; light grey, fine-grained volcanic andesite outcrop, quartz veinlets up to 1 cm wide, minor epidote.	---
FR - 12	Grab; strong silicified zone at the contact between feldspar porphyry dyke and basic altered volcanic andesite, 25% brown, rusty hematite.	---
FR - 13	Chip; silicified zone of subcrop volcanic andesite with up to 20% brown, hematitic quartz disseminated with $<1 \%$ very fine-grained pyrite, trace of galena, the zone can be followed for 10 metres, 60 centimetres wide, strike 240 degrees.	60

Sample No.	Description Wi	Width (c)
FR - 14	Chip sample collected from the same silicified zone as in FR-13, possible native copper.	60
FR - 15	Chip; altered bleached volcanic andesite (subcrop), strong silicification, $\langle 1 \%$ sulphides mainly pyrite and galena, 10% manganese oxide.	60
FR - 16	Chip; small fracture zone within massive dark grey volcanic outcrop, .5 cm quartz vein strike 320 degrees, hosted by the same outcrop. No mineralization.	30
FR-17	Grab; fresh, light green plagioclase porphyry dyke strike N-10 degrees east, small $2-3 \mathrm{~cm}$ bands of malachite staining. The dyke is two metres wide hosted by volcanic andesite.	
FR - 18	Altered bleached volcanic andesite, rusty dark brown Fe02, <1\% fine-grained disseminated pyrite. Shear zone strike 240 degrees exposed for 10 metres. Chip over 1 metre.	100
FR - 19	The same as FR-18. Chip sample taken across another shear zone strike 310 degrees, 10 metres north of FR-18. Chip over one metre across the shear zone.	8. 100
FR - 20	Chip; quartz lense, brown hematitic quartz <1\% pyrite dissemination, hematite staining between fractures. Light grey fine-grained silicified volcanic andesite host rock.	100
FR - 21	Sulphide pod 3 metres long, 50 centimetres wide, strike 290 degrees, mineralized with 5% oxidized finegrained pyrite.	50
FR - 22	Reddish to dark brown bleached volcanic outcrop, moderate to strong manganese oxide. Chip across 30 cms .	S. 30
FR - 23	Grab; light grey slightly mineralized volcanic andesite outcrop, $<1 \%$ disseminated pyrite, trace of galena.	---
FR - 24	Chip across 1 metres of disseminated volcanic andesite $<1 \%$ fine-grained pyrite intense oxidation, limonite veinlets.	100

Sample No.	Description W	Width
PR - 1	Slightly sheared basic volcanics, trace of finegrained pyrite, Mn stain/Fe rust. Chip over 60 cms .	60
PR - 2	Silicifed dark grey volcanic andesite outcrop, quartz veinlets up to 15 mm thick. No visible mineralization. Chip sample over 30 cms .	30
PR-3	Intrusive diorite 60% plagioclase, 40% hornblende, quartz veinlets $1 \mathrm{~mm},<1 \%$ pyrite. Fractures within the rocks 146 degrees/70 west, Mn -staining. Chip sample over 30 cms .	30
PR-4	Fine to very fine-grained diorite hosting quartz veinlets $<1 \mathrm{~cm}$, fractures/joints 20 degrees/90 degrees. Chip sample.	30
PR-5	Chip; fine to medium-grained diorite, 2% disseminated pyrite, 1% in quartz veinlets 2 mm thick.	30
PR - 6	Chip; medium-grained intrusive diorite intercalated with altered to light grey volcanics (contact zone) up to 5% disseminated pyrite, chalcopyrite, $1-2 \mathrm{~mm}$ quartz veinlets.	30
PR-7	Chip sample over 1 metre of shear zone trending 315 degrees, dip approximately 80 degrees west, quartz veins $1-15 \mathrm{~mm}$ within the zone disseminated with 1% pyrite and galena, hosted by slightly sheared basic volcanics with strong Mn stain and Fe rust.	100
PR - 8	The same shear zone as PR-7 quartz veins $2-40 \mathrm{~mm}$ with $2 \% \mathrm{Py}<1 \%$ galena hosted by slightly sheared volcanics with intense Mn and Fe staining. Chip sample over 1 metre.	h 100
PR - 9	The same shear zone on the same trend as PR-7 and PR-8, quartz vein $<2 \mathrm{~cm}$ wide, 1% disseminated pyrite, hosted by basic volcanic andesite. Chip over 1 metre of the shear zone.	100
PR - 10	Quartz veinlets, swarms and blebs <2 mm up to 7\% pyrite in volcanic host, along the same trend with PR-7, PR-8 and PR-9. Chip sample over 1 metre.	100
PR - 11	Slightly sheared dark volcanic andesite, silicification with up to 3% pyrite dissemination along the same strike as PR-7 - PR-10. Chip sample.	100

PR - 12	Sheared basic volcanics with quartz blebs/veinlets, 1% disseminated pyrite, $\mathrm{Fe} / \mathrm{Mn}$ stained.	100
	Chip sample.	

PR - 13	Sheared zone of basic volcanics, 1% disseminated pyrite, $F e / M n$ stained, quartz blebs and quartz veinlets. Chip sample over 1 metre.	100

PR - 14 Chip; porphyritic basic unaltered volcanic, $\langle 5 \mathrm{~mm}$phenocrysts, flow/shear texture aligned with fractureddirection 360 degrees/90 degrees.
PR - 15 Chip over 4 metres of sheared basic volcanics, 2% 400 disseminated pyrite. Shearing 309 degrees and vertical, fractures at 301 degrees/70 degrees south.
PR - 16 Grey, reddish basic volcanic hosting quartz veinlets 100with 1% disseminated pyrite chip over 1 metre.
PR - 17 Highly silicified basic volcanics, white and red 100
bleached, rusted rocks with $>30 \%$ quartz; $\mathrm{Fe} / \mathrm{Mn}$ stained, 3% Py mostly oxidized. Chip sample over 1 metre.

APPENDIX B

ANALYTICAL RESULTS

(1980, 1983, 1989, 1991)

\rightarrow
Certificate of Analysis

VANGEOCHEM LAB LTD.
1521 PEMBERTON AVE.,
NORTH VANCOUVER, BC..
TELEPHONE: 986.5211

CANADA VIP 2S3

Certificate of Geochemical Analyses

- Specialising in Trace Elements Analyses •
-IN ACCOUNT WITH-
Lode Resources Corp. Suite 1020-475 Howe Street Vancouver, B.C. V6C 2B3
Attention:

Report No: 83-01-046 Page 1 of 1
Samples Arrived: October 3, 1983
Report Completed: October 13, 1983
For Project: MIDDLE VEIN Job No. 83-381
Analyst: D. Chin

Invoice No. 7554

Peinarks: One copy sent to AShworth Exploration Ltd.
Signed:
Registered/Assayer

USO VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 IRIUMPH SI VANCOUVER, BC V5I IK!, - (604) 251.565

BRANCH OFFICES

IE:AF FEOE:HEMIEAL ANALYSIS

ANOMALOUS RESULTS:
FURTHER ANALYSES
by alternate
METHODS SUGGESTED

CLIENT: ASHWDRTH EXPLORATION LTD.
DATE: OCT. 25 198Э
ADDRESS: 718 - 744 w. Hastings St.
: Vancouver, EC
REPORT\#: 890765 GA
: VOC $1 A 5$
JOE\#: 890765

PROJECT\#: 287
SAMPLES ARRIVED: OCT. 181989
REPORT COMPLETED: OCT. 251989
ANALYSED FOR: Au (FA/AAS) ICP
INVOICE\#: 8907E5 NA
TOTAL SAMPLES: 13
SAMPLE TYPE: 13 ROCK
REJECTS: SAVED

SAMPLES FROM: MR. F. YACOUE
COPY SENT TO: ASHWORTH EXPLORATION LTD.

PREPARED FOR: MR. F. YACOUB

ANALYSED EY: VGC Staff
SIGNED:

ASEAV ANALVTITAL REPDRT ㅍ = = = = = = = = = = = = = = = = = = =

CLIENT: ASHWORTH EXPLDRATION LTD. ADDRESS: 718 - 744 w. Hastings St. : Vancouver, BC : VEC 1AS

PROJECT\#: 287
SAMPLES ARRIVED: OCT. $181 \ni 89$ REPORT COMPLETED: OCT. 251989 ANALYSED FOR: AU

DATE: OCT. 251989

REPORT\#: 890765 AA
JOE\#: 8GO765

SAMPLES FROM: MR. F. YACOUE
COPY SENT TO: ASHWORTH EXPLORATION LTD.

PREPARED FOR: MR. F. YACOUB

ANALYSED EY: Raymond Chan
SIGNED:

MAIN OFFICE
1988 TRIUMPH ST VANCOUVER, BC V5L 1 K 5 - (604) 251.5656

- FAX (604) 254.5717

SAMPLE \#
All
$0.0 / 5 t$

MV 8G R14
1.420

MV 89 R2O
.882

CLIENT: HI-TEC RESOURCE MANAGEMENT LTD. DATE: JUNE 281991
ADDRESS: 1500 - 409 Granville $S t$.
: Vancouver, BC REPORT: 910079 GA : V7Y 1G5 JOB\#: 910079

PROJECT\#: MIDDLE VIEN
INVOICE\#: 910079 NA
SAMPLES ARRIVED: JUNE 271991 REPORT COMPLETED: JUNE 281991

TOTAL SAMPLES: 38
SAMPLE TYPE: 38 ROCK
ANALYSED FOR: AU (FA/AAS) ICP

SAMPLES FROM: CANADIAN IMPERIAL MINE INC. COPY SENT TO: HI-TEC RESOURCE MANAGEMENT LTD.

PREPARED FOR: CANADIAN IMPERIAL MINE LTD.

ANALYSED BY: Raymond Chan
SI GNED :

hi-TEC resource mant Lid.
PROJECT: MIDOLE VIEM
OATE IM: JUNE 27 I991 OATE OUT: JUNE 281991 ATEENTION: CAMADLAN IMPERINL MIUE INC.
PAGE I of 1

Sasple Mase	Ag	Al	As	* Al	Ba	$8 i$	ca	Cd	Co	Cr	Cu	re	k	Mg	hn	Mo	Mo	Mi	P	Pb	5b	Sn	58	U	v	1 n
	ppo	8	090	ppb	Ppt	DPO	6	ppo	ppo	900	Ppe	1	1	1	Opo	DOE	1	DOE	1	ppe	P00	p00	peo	ppe	p00	000
WegI FR4	2.2	2.79	<3	20	76	(3	1.40	3.5	42	33	3290	5.17	<0.01	2.21	869	(1)	<0.0)	86	0.07	16	12	$(2$	118	<	(3	51
WV91 [RS	10.1	2.41	(3	20	13	(3	0.36	10.1	23	39	614	5.06	<0.01	2.52	160	(1)	<0.01	(1)	0.01	(2	12	(2	23	15	(3)	76
Weg FR6	$(0.1$	3.46	<3	<5	(1)	(3)	0.17	2.4	31	32	169	6.10	<0.01	3.85	921	11	(0.01	(1	0.07	<2	(2	(2	1	(3	13	151
W991 fr7	<0.1	3.13	<3	(5	6	13	0.36	<0.1	33	9	71	6.32	<0.01	3.14	761	1	(0.01	6	0.09	12	12	<2	6	< 5	(3)	120
WSI [RE	(0.)	2.11	13	510	<1	<3	0.13	<0.1	11	61	58	4.58	<0.01	2.17	653	(1)	<0.01	11	0.04	(2	(2	<2	1	<	13	118
	<0.1	3.08	(3)	10	2	<3	0.22	80.1	31	39	129	6.11	<0.01	3.76	1654	(1)	80.01	23	0.04	<2	(2	<2	2	(s	(3	105
Wegl frio	<0.1	2.32	(3	<5	9	<3	0.11	<0.1	25	67	129	3.68	<0.01	2.93	911	1	<0.01	17	0.03	<2	$(2$	<2	1	(5	13	65
WWSI TRII	0.1	1.73	<3	< 5	4	<3	0.28	<0.1	29	76	40	2.97	<0.01	2.35	975	1	<0.01	21	0.02	$(2$	12	(2	12	<	<3	30
W91 frit	<0.1	0.47	(3	(5	8	<3	0.08	<0.1	13	109	28	1.49	<0.01	0.42	468	1	0.02	<1	0.01	$(2$	2	<2	2	< 5	(3)	19
WY91 FRI3	<0.1	0.83	(3	<	59	(3	0.20	<0.1	13	32	47	1.68	<0.01	0.19	407	$(1$	0.08	8	0.05	9	$(2$	(2	6	(s	(3)	39
WV91 frid	0.2	1.92	13	520	15	(3)	0.12	<0.1	18	64	67	3.67	c0.01	1.89	719	$(1$	10.01	10	0.04	$(2$	<2	(2	1	(5	(3	100
WWII FRIS	0.1	1.80	<3	540	3	13	0.08	<0.1	18	50	13	3.43	(0.01	1.90	860	$(1$	20.01	(1	0.03	12	<2	(2	1	(5	(3)	86
W91 FRI6	<0.1	2.71	(3	(5	5	(3)	0.98	<0.1	33	67	45	3.84	(0.01	3.68	1399	11	<0.01	30	0.03	2	(2	12	1	(5	(3	56
WYII FRIT	<0.1	1.14	(3	(5	1	(3	0.12	<0.1	16	62	779	1.72	<0.01	1.00	501	1	0.07	11	0.03	$(2$	(2	(2	16	(s	(3	28
W91 FRIB	<0.1	1.73	<3	< 5	16	(3	0.14	<0.1	47	32	422	4.39	<0.01	1.59	331	(1	0.03	11	0.06	12	<2	(2)	5	(5	<3	29
WVS FRIS	<0.1	3.05	13	60	26	13	1.00	<0.1	40	93	67	5.08	<0.01	2.14	914	$(1$	<0.01	38	0.07	<2	<2	12	24	(5	(3	42
HV91 FR20	(0.1	1.87	<3	40	9	(3	0.21	0.3	13	79	31	3.78	<0.01	2.12	692	(1)	10.01	15	0.03	17	<2	12	3	(3	<3	305
Wegl fr2t	0.7	0.79	${ }^{(3)}$	130	11	13	0.10	<0.1	25	95	411	1.12	<0.01	0.64	220	(1)	10.01	11	0.03	21	12	<2	4	< 5	13	97
W991 [822	1.4	2.35	(3	90	(1)	(3	0.12	1.2	19	59	1952	9.10	<0.01	2.04	453	(1	<0.01	(1)	0.04	<2	<2	<2	<1	(5	(3	69
WH91 FR23	10.1	3.31	<3	(5	(1	13	0.17	<0.1	25	15	292	6.93	<0.01	3.11	826	(I)	10.01	11	0.08	(2	<2	<2	<1	(5	(3	216
HV91 [R24	0.2	2.74	<3	(5	61	<3	0.36	<0.1	25	24	56	4.99	<0.01	2.81	1170	11	(0.01	104	0.07	4	<2	12	5	(5	<3	189
WYSI PRI	0.2	1.10	(3	60	19	13	0.12	<0.1	8	135	11	2.28	(0.01	1.16	471	1	<0.01	8	0.02	20	12	12	2	(5	(3	44
NYSI PR2	0.2	2.06	(3	<5	12	(3	0.21	(0.)	22	35	108	3.94	<0.0)	2.21	641	11	<0.01	+	0.07	$(2$	<2	<2	6	(5	<3	14
Al91 PR3	<0.1	2.39	(3)	(5	4	(3)	0.70	(0.)	25	101	244	2.14	<0.01	2.38	452	1	0.03	67	0.02	(2)	12	12	15	(5	(3	4
NVII PRS	<0.1	1.89	(3	(5	(1)	<3	0.71	<0.1	31	63	106	2.12	<0.01	1.89	447	(1)	0.01	21	0.02	15	<2	<2	32	(5	(3	35
KY91 PR5	<0.1	1.70	${ }^{(3)}$	$\stackrel{1}{4}$	$\stackrel{1}{1}$	13	0.60	<0.1	31	19	188	2.49	<0.01	1.64	616	1	0.02	1	0.03	<2	(2	<2	23	<	¢3	45
NV91 PR6	0.1	3.20	(3)	(5	<1	<3	1.12	<0.1	49	31	212	5.32	<0.01	1.91	687	(1)	0.18	11	0.02	<2	12	$\stackrel{1}{2}$	36	(s	(3	10
nust PR7 WVI PR8	0.1 0.1	3.34 2.97	13 4	$\begin{array}{r}130 \\ \\ \hline 5\end{array}$	56 143	<3 <3	0.40 0.15	0.1 $\langle 0.1$	31 26	34	132	4.74	<0.01	4.25	1103	<1	(0.01	6	0.03	17	(2	$\stackrel{2}{2}$	10	(5	(3	114
	0.1	2.97	(3		143	(3	0.15	<0.1	26	32	282	4.28	<0.01	4.16	990	1	<0.01	6	0.05	91	(2	(2	4	(5	(3	165
NY91 PR9	<0.1	4.14	(3	(5	48	(3	0.12	(0.)	30	28	141	5.35	<0.01	5.92	1298	$(1$	10.01	11	0.05	12	(2)	(2	11	(5	¢ 3	171
WVSI PRIO	<0.1	3.64	<3	(5	3	(3)	0.13	<0.1	25	26	88	5.43	<0.01	4.72	1413	<1	<0.01	6	0.07	(2	(2	(2	(1)	(5	<3	249
WVSI PRII	$\langle 0.1$	3.72	${ }^{(3)}$	(S	1	(3	0.30	(0.1	22	15	101	5.16	<0.01	4.50	1109	(1)	<0.01	$(1$	0.07	(2	12	12	4	(5	<3	213
NY91 PR12	<0.1	3.15	(3	<	6	(3)	0.14	<0.1	35	24	110	5.84	<0.01	4.48	1052	<1	<0.0)	15	0.10	(2	(2	<2	8	(5	<3	298
WY1 PR13	80.1	3.87	13	(5)	1	13	0.90	(0.1	35	39	122	6.05	(0.01	4.61	1355	11	c0.01	25	0.11	<2	<2	<2	19	(5	<3	361
NV91 PR14	<0.1	3.69	(3)	(5	156	13	1.95	10.1	41	201	93	5.06	<0.01	5.50	1331	11	(0.01	174	0.15	<2	(2	<2	63	(5	(3	147
NV91 PR15	<0.1	3.16	<3	< 5	41	(3	0.82	<0.1	35	69	110	6.02	10.01	4.84	1462	<1	10.01	42	0.07	(2	<2	<2	20	(5	(3	326
HVg1 PR16	10.1	3.66	(3)	(5	18	(3)	0.54	<0.1	35	50	144	5.56	c0.01	3.01	1376	$(1$	<0.01	38	0.06	<2	12	<2	13	< 5	<3	169
HY91 PRIT	<0.1	1.88	(3)	(s	12	(3	0.18	<0.1	13	113	56	3.98	<0.0!	1.99	673	<1	<0.01	21	0.05	18	(2	<2	3	(s	(3	67
Minioua Detection	0.1	0.01	3	5	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maxieve Detection	50.0	10.00	2000	10000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
(-Less Than Minisus)-6	reater	Than Maxio		is - Insu	ullicient	Sapple	e ns	- No Sapl		i Au Ana	Dont	be by fire													

APPENDIX C

INTERPRETATION OF THE GEOPHYSICAL SURVEY ON THE APEX GROUP

FIGURE G-1, G-2, G-3:

1. INTRODUCTION

A geophysical program consisting of electromegnetic (VLF-EM) and magnetic surveys was carried out on a single grid located in the Victoria Mining District near Port Alberni. B.C. The survey was cerried out in July 1989.

2. OBJECTIVES

- to establish a correlation between magnetic minerals and mineralized trends,
- to test the effectiveness of VLF-EM in following possible mineralized trends and to establish new unrecognized conductive trends,
- to establish geophysical areas of interest for future exploration.

3. SURVEY SPECIFICATIONS

Survey Parameters

- survey line separation - 50 m
- survey station spacing - 12.5 m
- VLF-EM survey total 3.0 km
- magnetic survey total 3.0 km

Equipment Parameters

- VLF-EM and Magnetic Surveys
- Scintrex Omni Plus combined VLF-EM and magnetometer
- Dip Angle (in-phase) and Duedratur (out-of-phase) measured in percent at each static
- VLF-EM Field Strenath measured at each station
- transmitting stations used - NLK (24.8 kHz) - Seattle, Wash. - NAA (21.4 kHz) - Cutler. Ma.
- earth's total magnetic field measured in gammas (nT)
- magnetic variations controlled by automatic magnetic base station recording every 30 seconds
- instrument accuracy +/- 0.1 gamma
- station repeatability better than +/- 3 gammas in low gradients.

Equipment Specifications - see Appendix I
4. DATA

Calculations

Total Field Magnetic Survey
Total field magnetic readings were individually corrected for variations in the earth's magnetic field using magnetic base station values. The formula used for magnetic corrections was:
$C T F R=T F R+(D B L-B S R)$
where: CTFR = Corrected Total Field Reading
TFR = Total Field Reading
DBL = Datum Base Level = 56800 gammas BSR = Base Station Reading

Presentation

- VLF-EM in-phase, out-of-phase and field strength readings are presented in profile form on Figure \#G-1 at a scale of 1:1000
- Magnetic data were profiled and are presented on Figure \# G-2 at a scale of 1:1000
- Magnetic data were contoured and are presented on Figure \# G-3 at a scale of 1:1000
- Field readings and calculated values are listed in Appendix II.

4. INTERPRETATION

Discussion of Results

Total field magnetic data in the Middle Vein area were quiet with no cultural sources observed. Magnetic readings range from 55000 nT to 57700 nT within a relatively stable beckground of approximately 55900 $n T$. Three magnetic high trends were delineated by comparing profile character from line to line. Magnetic lineamenta are labeled "Li". "L2" and "L3" on the total field magnetic profile and contour maps, Figure \#2 and Figure $\# 3$ respectively.

Magnetic lineament "LI" consists of two parallel magnetic high trends in the northern portion of the Middle Vein grid. Lineament "L2" also consists of two parallel magnetic highs which may be the southern continuation of "Li". Due to steep terrain it was not possible to continue surveying line 200S, making delineation between "Li" and "L2" difficult. Magnetic highs on line 5005 and 5505 may indicate that "L2" continues to the south, but again incomplete coverage due to extreme terrain prevent delineation of these anomalies. Both "Li" and "L2" exhibit anomalies ranging from 500 nT . to 1500 nT . above background. Located on the western edge of the grid, lineament "L3" trends north-south and runs 50 meters to the east of conductor "C1". "L3" exhibits anomalous magnetic highs from 300 nT . to 500 nT . above the background of 55900 nT .

Within the survey area VLF-EM data show a response to topography seen as a positive bias on in-phase results. The topographic effect is not considered to be a problem because the slope was relatively even and therefore the topographic effect was fairly constant.

VLF-EM results over the Middle Vein grid were quiet. Only one conductor, labeled "C1" on figure \# 1, was observed on the grid. Conductor "Ci" is a north-south trending, weak to moderate conductive feature characterized by moderate in-phase, strong field strength and weak positive quadrature response. The magnitude of the field strength response may be amplified due to better reception as the operator approached the top of the ridge.

Conclusions

Magnetic results have delineated a number of magnetic high trends which, due to the long narrow geometry of these features, are interpreted to represent basic dykes containing magnetite. There was no noticeable magnetic low response to feldspar-hornblende dykes or major structure associated with the Middle Vein, perhaps due to deep overburden or insuficient sampling intervals.

The only evidence of conductivity on the Middle Vein grid was conductor "C1". Conductor "Ci" is a NNW trending, moderate conducto" located in the same area as the NNE trending Middle Vein structure. "Ci" is interpreted to be a structural feature, such as a splay fault, sub-parallel to the fault associated with the Middle Vein. There are a number of reasons why the Middle vein and associated structure did not respond to the VLF-EM method. One possibility is that the fault containing the Middle Vein was rehealed, perhaps by the Middle Vein itself. While conductive overburden does not eppear to be present, it is possible that conductive overburden may have masked any response from the Middle Vein fault.

5. RECOMMENDATIONS

The VLF-EM and magnetic method did not appear to be succesful in delineating the Middle Vein structure. However conductor "C1" may reflect a conductive fault, therefore geological investigation of this conductor is recommended. While there is no magnetic response to known structure in the area, magnetic anomalies, interpreted as basic dykes, should be investigated to determine if any mineralization is present. The Middle Vein fault and associated feldspar-horneblende dykes would be expected to give a magnetic low response and thus a detalled gradient magnetic survey may help delineate structure in the area. An induced polarization/resistivity survey may be helpful to determine the extent of disgeminated mineralization in the area and is recommended if further geophysical surveys are planned.

AUTHOR'S NOTE

Data interpreted in this report were accumulated without supervision by Interpretex Resources Ltd. end were supplied by the Client to the writer (s). These data and the locations on the ground from which these data were accumulated are, except when specified otherwise by the writer (s), assumed to be reliable and correct and were interpreted using this assumption.

Respectfully Submitted

```
INTERPRETEX RESOURCES LTD.
Vancouver. British Columbia
```


Consulting Geophysicist

PERMIT TO PRACTICE INTERPRETEX RESOHRCESTTD.

Signature

PERMIT NUABER: P 3100
The Association of Professional Engineers,
Geologists and Geophysicists of Alberta

APPENDIX D

GEOPHYSICAL FIELD DATA WORKSHEETS

(1989, 1991)

E／W N／S

-350									
－350	－350	－350	56020.0	23.6	15.0	410.5	4.1	11.0	7.1
－337．5	－350	－337．5	56114.3	22.5	15.1	412.9	5.7	11.3	7.4
－325	－350	－355	55340.7	24． 3	12.3	485.6	4.4	9.7	7.6
－312．5	－350	-310.5	55956．8	3 E .3	13.7	418.9	3.4	5.3	7.5
－300	－350	－300	55354.3	36.3	12.5	410.1	2.5	4.7	7.5
－287．5	－350	－287．5	56：06． 3	37.5	12.8	401.0	1.5	6． 3	7.5
－i75	－350	－̇̇T	5 ± 297.7	38.0	11.5	395.1	0.3	4.1	7.6
－262．5	－350	－26\％． 5	56449.4	33.8	11.3	378.5	1.6	5.3	7.7
－250	－350	－30	55978.3	35.0	8.6	372.6	1.6	：：	7.5
－237．5	－350	－257．5	560162． 6	32．E	10.8	365.6	－1．3	$\therefore 1$	4.9
－205	－350	－でき	55530	3 Ci .7	8.2	353.3	－̇． 3	－． 6	7.8
－çく． 5	－350	－ごこ．5	55847.4	31.8	7．5	358.3	－1．ci	5	7.7
－200	－350	－200	55624． 5	30.3	8.1	350.6	－1．5	50	7.8
－187．5	－350	－187． 5	55739.5	28.0	7.3	350.6	－3．4	4.5	5.10
－175	－350	－175	5033． 2	25． 8	6.2	347.7	－3．9	4.3	8.0
－16．5	－350	－1EC． 5	56533.9	20.9	5.4	347.5	－6．2	E．？	4.2
－150	－ 0	-150	55909.6	24.0	1.3	342.4	－4．7	：．	8.1
－137．5	－350	－137．5	55E72．6	22.1	0.8	342.8	－6．3	9． 5	8.6
－125	－3500	－125	55797．0	23． 3	1.1	341.7	－4． 5	i． 4	8.3
－112．5	－350	－112．5	55755.7	13.5	2.7	346.4	－6．6	8.9	8.5
－100		－100	55734．1	20.8	－1．0	335.3	－5．6	1．0	8.4
－87．5	－350）	－87．5	55797.7	18.3	－2． 1	338.8	－7．4	$\therefore 3$	8.7
－75	－350	－75	55643.2	17.8	－3．1	35.5	－6． 8	－2．0	9.5
－62．5	－350	－6．5	55755.4	15.6	－5． 5	332.9	－7．3	－6．2	8.6
－50	－350	－50	5464．6	13.4	－2． 4	335.0	－8．8	$-: .4$	8.8
－37．5	－350	－37．5	55561.1	10.3	－3．2	331.9	－11．1	－3． 9	8.7
－25	－350	－25	55668.4	9.5	－4．1	330.0	－12． 9	－4．2	8.6
－12．5	－350	－！	55507.8	9.2	－4． 3	327.9	－12．6	－4．5	8.6
0	－350	0	55450.0	9.0	－4． 8	327.3	-13.3	－5．0	8.6
line $\quad-300$									
－350	－300	－350	5979.1	28.4	16.6	419.0	6.6	11.3	7.2
－337．5	－300	－337．5	56026.8	29.1	16.4	426.4	7.7	10.5	7.1
－325	－300	－325	56135.1	36.0	17.7	433.3	6.5	11.4	7.0
－312．5	－300	－312．5	56c05． 4	42.8	19.2	414.6	8.4	3.4	7.4
－300	－300	－300	55964．4	34.9	21.1	359.5	8.0	1.3	7.8
－287．5	－300	－287．5	55975.7	34.2	19.4	361.0	8.3	2.9	7.8
－275	－300	－275	56326.7	33.5	18.3	354.9	4.2	3.0	8.4
－262．5	－300	－262．5	56335.7	32.8	17.3	351.2	4.7	8． 4	7.7
－250	－300	－250	56098.6	31.3	13.1	346.9	5.5	5.8	7.9

Currerit file Nane：MGDAT．WF Früm File：MG．xyz

DAIA DETAILS：
Corrected total magnetic field Facing westerly usirig Seattle Transa Facing westerly using Seattle Transe Seattie total field strength Facirig westeriy usirig Cutler Transmi Facing mesterly usirig Cutler Trarism： Cutler tota：field sirerigth

	-237.5	-300	-237.5 5	56151.1	30.6	11.9	347.9	2.9	6.2	8.0
1	-225	-300	-225	55976.8	28.4	13.4	341.0	4.4	6.8	8.1
!	-212.5	-300	-212.5	56004.6	28.3	11.4	340.1	3.0	6.5	8.0
	-200	-300	-200	56073.1	27.3	9.4	338.5	3.1	6.0	8.1
	-187.5	-300	-187.5	56119.3	26.8	11.0	334.8	2.4	6.6	8.1
	-175	-300	-175	56330.4	25.6	10.5	334.9	2.8	6.2	8.3
1	-162.5	-300	-162.5	56339.0	24.9	10.0	334.0	3.3	6.1	8.2
	-150	-300	-150	56420.3	23.7	9.3	331.6	2.7	6.0	8.3
	-137.5	-300	-137.5	56224.3	23.6	10.0	323.5	4.8	2.2	8.6
	-125	-300	-125	56481.7	22.2	4.8	331.2	2.1	5.4	8.5
	-112.5	-300	-112.5	56460.1	21.5	7.6	324.7	3.3	5.8	8.6
	-100	-300	-100	56027.6	19.4	5.7	325.6	1.8	5.4	8.6
	-87.5	-300	-87.5	55892.7	19.4	6.0	325.4	2.8	3.1	8.7
.	-75	-300	-75	55695.1	17.1	3.1	326.5	0.2	1.8	8.3
	-62.5	-300	-62.5	55660.5	13.9	3.3	327.6	-1.0	3.3	3.0
,	-50	-300	-50	55548.4	14.0	3.7	329.5	-1.0	3.1	9.0
-	-37.5	-300	-37.5	55672.5	13.3	3.4	330.0	-1.0	3.1	9.1
	-25	-300	-25	55528.3	12.0	2.7	329.2	-1.2	1.0	9.0
	-12.5	-300	-12.5	55568.1	11.8	3.5	331.0	-2.2	1.3	9.0
	0	-300	0	55571.5	9.7	1.5	332.2	-4.2	0.2	9.2
	line -250									
	-350	-250	-350	56025.1	26.3	17.9	422.5	9.2	7.7	6.8
I	-337.5	-250	-337.5	56064.1	31.9	19.4	423.8	7.5	5.6	6.7
3s	-325	-250	-325	56165.3	37.4	22.8	400.1	8.6	6.6	6.9
	-312.5	-250	-312.5	56164.8	37.7	22.0	389.1	20.9	15.8	6.6
	-300	-250	-300	56375.1	37.9	20.6	373.8	7.6	8.9	7.2
I	-287.5	-250	-2B7. 5	56239.8	36.8	22.9	358.0	10.2	11.8	7.0
	-275	-250	-275	55730.3	38.9	23.2	357.3	12.7	7.1	7.3
	-262. 5	-250	-2もट. 5	55851.7	33.4	18.4	356.6	6.0	9.7	7.5
	-250	-250	-250	55903.6	33.4	17.6	353.1	6.3	8.9	7.3
	-237.5	-250	-237.5	56180.3	32.2	18.1	347.1	5.0	9.1	7.4
	-2<5	-250	-225	56897.5	31.6	17.1	34.4	3.5	3.5	7.4
	-212.5	-250	-212.5	55976.1	29.7	15.8	346.3	3.6	9.4	7.6
J	-200	-250	-200	56474.4	28.5	14.8	337.2	4.1	10.5	7.7
	-187.5	-250	-187.5	56416.2	28.6	14.1	333.4	3.3	9.8	7.6
-	-175	-250	-175	56886.3	28.5	13.1	331.2	3.9	8.6	7.7
1	-162.5	-250	-162.5	57107.6	27.5	12.4	331.0	3.7	9.5	7.7
	-150	-250	-150	56393.8	25.3	13.8	325. 7	2.4	9.4	7.8
	-137.5	-250	-137.5	55838.1	25.1	13.2	332.0	3.8	8.8	7.8
	-125	-250	-125	55971.6	25.3	12.2	328.7	3.4	9.1	7.7
1	-112.5	-250	-112.5	56058.8	24.7	14.3	327.1	7.2	5.5	8.2
	-100	-250	-100	55824.6	23.2	13.1	325.8	2.4	9.0	7.9
	-75	-250	-75	55627.2	21.1	7.7	325.3	1.3	9.1	8.5
\cdots	-62.5	-250	-62.5	55526.5	19.4	6.0	323.7	-0.3	8.4	8.7
	-50	-250	-50	55627.1	19.6	5.6	323.7	-0.3	7.3	8.9
$\%$	-37.5	-250	-37.5	55896.5	17.1	5.0	322.3	-3.2	6.5	8.7
	-25	-250	-25	56035.0	17.0	3.8	324.3	-3.6	5.6	8.8
	-12.5	-250	-12.5	56090.2	14.0	2.5	349.0	-3.5	4.6	8.8
	0	-250	0	55714.1	12.9	2.3	321.1	-5.1	3.4	8.9
	line -	200								
s	-125	-200	-125	56353.0	19.2	10.8	310.8	6.2	6.2	8.3
	-112.5	-200	-112.5	56146.7	17.6	9.2	315.1	1.8	11.1	8.2
	-100	-200	-100	55957.7	18.3	9.2	319.3	3.0	10.7	8.3
-	-87.5	-200	-87.5	55998.1	19.0	9.4	320.3	4.0	11.4	8.4
	-75	-200	-75	56743.3	18.3	9.5	319.2	3.8	11.9	8.4
1	-62.5	-200	-62.5	56384.9	17.0	9.1	320.6	3.2	11.1	8.5

-50	-200	-50 5	55662.6	12.6	7.6	323.8	2.0	9.0	8.8
-37.5	-200	-37.5 5	55638.1	12.7	7.1	324.2	0.0	8.4	8.7
-25	-200	-25 5	55511.6	11.7	6.9	324.3	-0.3	5.3	9.0
-12.5	-200	-12.5	55497.3	11.8	5.9	325.3	-0.4	5.6	3.1
0	-200	0	55502.4	12.3	6.4	323.3	1.0	5.9	9.1
line -150									
-275	-150	-275	55679.4	33.5	12.6	332.2	4.4	7.1	6.9
-262. 5	-150	-262.5	55649.0	33.8	13.3	333.1	7.0	6.4	7.1
-250	-150	-250	55566.0	30.7	12.5	334.0	3.2	7.9	7.1
-237.5	-150	-237.5	55561.7	30.5	10.9	332.3	5.2	4.8	7.4
-225	-150	-225	55606.6	28.9	9.4	330.4	1.7	6.2	7.3
-212.5	-150	-212.5	55739.5	28.1	10.3	328.4	1.3	7.1	7.5
-200	-150	-200	55738.1	26. 7	9.0	329.1	1.0	6.4	7.6
-187.5	-150	-187.5	55702.0	24.8	8.4	329.8	0.6	6.7	7.6
-175	-150	-175	55942.0	22.6	6.7	325.2	0.2	5.7	7.6
-162.5	-150	-162.5	55968.5	20.9	5.1	325.7	0.3	4.7	7.7
-150	-150	-150	56051.3	19.1	4.8	325.7	0.3	6.8	7.8
-137.5	-150	-137.5	56108.7	17.3	3.3	328.0	0.6	6.3	7.7
-125	-150	-125	56317.7	17.7	3.9	322.0	0.8	5.9	7.9
-112.5	-150	-112.5	56090.7	16.2	3.1	321.8	0.0	5.3	7.8
-100	-150	-100	55960.1	14.9	2.8	32.1	-1.9	3.6	7.8
-87.5	-150	-87.5	56032.9	15.1	2.6	322.0	-1.3	2.8	7.7
-75	-150	-75	56530.4	16.4	5.5	323.4	0.8	6.4	7.7
-62.5	-150	-62.5	56724.2	16.1	5.6	323.4	1.9	7.5	7.8
-50	-150	-50	55874.8	13.9	6.8	324.7	1.5	7.0	8.0
-37.5	-150	-37.5	55633.1	13.2	5.9	325.7	2.0	7.1	8.1
-25	-150	-25.	55776.8	11.9	6.0	329.1	1.7	7.2	8.1
-12.5	-150	-12.5	55526.9	11.0	4.8	327.7	1.5	6.3	8.3
0	-150	0	55511.4	10.6	6.2	331.2	0.1	6.4	8.5
line $\quad-100$									
-300	-100	-300	55671.6	29.9	5.7	39.9	-4.0	4.4	6.8
-287.5	-100	-287.5	55632.3	28.2	4.7	330.4	-3.1	4.1	6.7
-275	-100	-275	55528.0	28.6	4.9	330.4	-1.1	5.4	7.1
-262.5	-100	-262.5	55521.1	29.7	4.5	332.3	-3.5	7.1	7.8
-250	-100	-250	55E03.2	28.3	4.5	330.5	-1.9	4.7	7.2
-237.5	-100	-237.5	55872.6	28.2	4.3	327.5	-1.6	6.1	7.4
-225	-100	-2c5	55935.4	27.3	2.8	326.6	-1.6	4.8	7.4
-212.5	-100	-212.5	55870.1	25.8	2.3	324.7	-1.5	4.5	7.5
-200	-100	-200	55905.7	23.7	2.5	324.6	-2.8	4.1	7.5
-187.5	-100	-187.5	56074.5	23.2	2.0	324.1	-3.0	4.6	7.5
-175	-100	-175	56236.4	23.3	2.2	325.2	-1.9	5.7	7.6
-162.5	-100	-162.5	56233.2	23.0	2.4	325.0	-1.3	5.7	7.6
-150	-100	-150	56022.2	19.4	1.7	325.3	-1.5	5.7	7.7
-137.5	-100	-137.5	56033.1	19.1	1.6	324.7	-2.0	6.1	7.8
-125	-100	-125	56252.5	17.8	1.6	324.8	-1.4	6.3	7.8
-112.5	-100	-112.5	56493.3	18.2	2.8	325.5	-1.7	6.2	7.8
-100	-100	-100	56155.1	17.8	1.0	323.8	-0.7	5.4	8.0
-87.5	-100	-87.5	56120.8	15.9	0.1	328.2	9	4.0	8.1
-75	-100	-75	56134.1	14.6	0.3	329.0	-c. 1	3.7	8.1
-62.5	-100	-62.5	56072.2	10.7	2.0	324.6	-4.7	5.4	8.1
-50	-100	-50	55586.4	10.4	2.3	325.9	-4. 2	4.4	8.0
-37.5	-100	-37.5	55439.4	7.9	2.7	328.1	-4.8	5.0	8.2
-25	-100	-25	55667.3	9.4	4.1	329.0	-2.8	5.2	8.2
-12.5	-100	-12.5	55447.0	11.7	4.3	331.1	-0.8	5.1	8.3
0	-100	0	- 55519.5	11.5	5.3	333.3	-1.0	5.8	8.5
line	50								

	-300	-50	-300	55575.1	29.3	5.5	330.1	0.6	1.6	7.3
	-287.5	-50	-287.5	55570.8	28.6	5.0	327.0	2. 6	1.4	7.3
;	-275	-50	-275	55482.9	24.9	3.5	328.7	2.0	3.1	7.1
	-262.5	-50	-262.5	55485.9	25.3	3.7	327.0	0.9	3.6	7.2
	-250	-50	-250	55541.5	25.2	4.5	322.2	1.0	3.3	7.3
	-237.5	-50	-237.5	55730.5	25.5	3.1	325.3	0.2	3.1	7.3
	-225	-50	-225	55789.7	23.0	3.3	325.9	-0.4	3.9	7.4
	-212.5	-50	-21e. 5	55880.5	23.1	3.0	327.5	1.0	3.6	7.6
	-200	-50	-200	55893.4	21.4	2.4	325.7	0.0	4.3	7.4
	-187.5	-50	-187.5	55993.2	20.7	1.8	326.5	0.3	3.4	7.5
	-175	-50	-175	56048.1	20.1	1.4	327.8	0.0	3.1	7.6
	-162.5	-50	-162.5	56053.1	18.3	0.8	327.9	0.3	3.0	7.7
,	-150	-50	-150	56150.8	18.1	0.5	327.5	0.0	2.3	7.8
	-137.5	-50	-137.5	57689.2	19.2	0.8	324.7	0.5	4.1	7.8
	-125	-50	-125	56494.6	14.9	1.9	322.4	0.6	4.2	7.8
I	-112.5	-50	-112.5	56156.1	14.7	2.8	326.4	1.0	4.7	7.9
1	-100	-50	-100	55240.4	12.5	3.3	330.8	0.0	5.7	8.0
	-87.5	-50	-87.5	54984.9	12.2	3.0	337.0	0.5	5.6	8.3
	-75	-50	-75	55467.7	12.5	3.5	335.9	1.1	4.5	8.2
	-62.5	-50	-62.5	55987.0	13.1	4.1	335.6	2.4	5.2	8.2
	-50	-50	-50	55368.6	12.4	6.4	341.6	3.6	6.9	8.5
	-37.5	-50	-37.5	55321.2	13.3	7.0	338.8	4.7	7.2	8.4
,	-25	-50	-25	55464.4	12.6	7.3	338.8	3.8	7.3	8.6
8	-12.5	-50	-12.5	55347.6	11.8	6.3	335.7	4.0	6.0	8.5
	0	-50	.	55566.3	11.5	9.6	33.9	4.6	7.7	8.5
	line									
	-300	0	-300	55405.8	27.3	2.1	329.9	-4.8	2.6	7.3
	-267.5	0	-287.5	55473.5	24.7	1.0	327.5	-5.1	c. 3	7.3
	-275	0	-z75	55518.0	23.8	0.1	วิ์ง. 6	-3.3	2.3	7.4
	-262.5	0	-262.5	55380.1	24.3	-0.7	388.8	-4.2	:. 3	7.4
	-250	0	-250	55459.7	25.9	-0.1	328.0	-4.7	1.5	7.5
	-237.5	0	-237.5	55544.7	23.7	-0.2	332.6	-5.6	:. 6	7.6
	-225	0	- 225	55687.8	22.3	-0.3	333.2	-4.6	2.6	7.6
	-212.5	0	-212.5	55523.3	21.4	-0.3	330.3	-3.9	3.5	7.8
	-200	0	-200	55449.3	19.0	0.0	332.1	-4.5	3.3	7.9
	-187.5	0	-187.5	55559.9	20.9	-0.1	331.8	-3.3	3.9	7.9
	-175	0	-175	55355.4	19.5	0.4	335.7	-1.5	4.4	8.0
	-162.5	0	-162.5	55532.7	18.9	1.5	337.6	-1.7	4.5	8.0
	-150	0	-150	55587.8	18.5	1.7	338.2	-1.1	5.3	8.1
	-137.5	,	-137.5	55383.3	19.5	2.5	337.9	-0.1	5. 3	8.2
	-125	0	-125	55907.9	21.7	3.6	340.5	1.3	5.9	8.3
	-112.5	0	-112.5	55998.2	20.1	6.0	340.7	1.6	8.0	8.3
	-100	0	-100	55371.0	19.9	7.0	341.8	2.0	9.9	8.6
\checkmark	-87.5	0	-87.5	55158.0	19.5	8.9	342.5	1.9	9.7	8.5
	-75		-75	55278.7	18.5	9.5	341.5	3.4	10.5	8.6
917	-62.5	0	-62.5	55169.4	16.9	10.3	337.0	1.6	10.0	8.7
	-50	0	-50	55222.0	17.4	10.0	338.7	3.2	10.1	8.7
	-37.5	0	-37.5	55270.6	17.7	11.4	355.3	3.1	10.5	10.7
	-25	0	-25	55283.8	15.7	10.5	358.4	3.6	9.1	:0.3
,	-12.5	0	-12.5	55277.8	12.6	11.2	355.9	2.1	8.1	10.3 10.4
	0	0	0	55295.7	12.5	9.9	355.3	2.4	6.2	10.4
	line	-550							6.2	10.4
	-250	-550	-250	56148.1	24.3	8.1	370.3	-7.2	-5.2	8.3
	-237.5	-550	-237.5	56203.9	25.0	6.5	363.4	-7.0	-4.2	8.2
	-225	-550	-225	56224.0	22.9	5.3	362.5	-9.2	-5.5	8.2
1	-212.5	-550	-212.5	56137.1	23.0	4.7	350.7	-7.0	-4.6	8.4

-200	-550	-200 5	56103.2	22.8	3.2	342.3	-6.8	-5.5	8. 3
-187.5	-550	-187.5 5	56241.3	20.0	2.7	343.7	-9. 9	-3.2	8.7
-175	-550	-175 5	55976.0	19.6	1.4	339.2	-11.7	-4.6	8.4
-162.5	-550	-162.5	55949.1	18.1	2.5	336.9	-11.2	-4.1	8.4
-150	-550	-150	55912.7	18.8	0.8	332.4	-10.1	-4.1	8.5
-137.5	-550	-137.5	55907.0	18.4	2.8	332.6	-10.1	-5.0	8.5
-125	-550	-125	55972.6	16.1	2.0	328.2	-10.3	-2.6	8. 5
line -500									
-250	-500	-250	56142.1	30.3	4.6	357.9	-9.4	-3.9	8.3
-237.5	-500	-237.5	56494.0	30.4	3.0	354.4	-8.4	-2.も	8.4
-225	-500	-225	56404.0	28.4	1.5	349.1	-9.9	-4.8	8.3
-212.5	-500	-212.5	55767.9	26.2	0.2	341.3	-10.9	-3.3	8.4
-200	-500	-200	55882.9	26.1	0.4	342.2	-10.4	-3.7	8.4
-187.5	-500	-187.5	56161.8	25.0	-0.3	338.1	-11.9	-4.5	8.4
-175	-500	-175	56068.6	24.8	0.7	334.0	-11.4	-5.2	3.4
-162.5	-500	-162.5	55875.4	21.8	0.3	331.2	-13.5	-3.7	8.3
-150	-500	-150	56003.9	21.3	-0.7	328.9	-12.9	-3.5	8.3
-137.5	-500	-137.5	55953.8	19.7	-1.6	323.5	-12.1	-4.5	8.4
-125	-500	-125	55769.3	19.4	-1.8	323.5	-12.7	-3.0	8.4
-112.5	-500	-112.5	55908.0	16.9	-1.8	327.3	-:3.6	-3.3	8.5
-100	-500	-100	55935.6	16.6	-2.3	3¢2.5	-14.4	-4.5	3.6
line -450									
-275	-450	-275	56261. 5	28.5	8.1	368.9	-1.8	-3.1	8.4
-262. 5	-450	-262. 5	55314.2	26.4	4.5	366.0	-3.8	-č. 8	8.4
-250	-450	-250	56274.0	26.5	5.6	360.3	-2.4	-2.9	8.5
-237.5	-450	-237.5	56204.4	24.2	¢. 6	355.3	-3.7	-4.1	8.4
-2¢25	-450	-225	56119.5	21.1	-0.4	355.1	-7.8	-4.1	8.5
-212.5	-450	-212.5	56076.3	21.7	-0.6	352.2	-7.4	-4.5	8.4
-200	-450	-200	56234.5	20.6	-0.1	344.3	-5.5	-5.7	8.5
-187.5	-450	-187.5	55950.3	19.8	0.3	342.9	-6. 9	-5.8	8.4
-175	-450	-175	56052. 2	18.1	-0.4	342.8	-9.1	-5. 4	8.5
-162. 5	-450	-162.5	56096.3	19.0	0.3	339.7	-7.2	-5.5	8.5
-150	-450	-150	$55912 . \hat{c}$	17.2	0.2	339.4	-8.8	-4.6	3.4
-137.5	-450	-137.5	55647.8	15.8	0.6	340.2	-9.0	-3.3	8.6
-125	-450	-125	55677.7	14.6	0.7	337.1	-8.6	-3.5	8.5
-112.5	-450	-112.5	55836.3	14.2	0.9	335.5	-9.5	-3.8	8.E
-100	-450	-100	55413.2	14.4	0.3	337.7	-8.1	-4.3	9.7
-87.5	-450	-87.5	55472.7	12.9	-0.8	336.4	-9.4	-4.0	8. 8
-75	-450	-75	55447.1	12.2	-1.1	336.9	-9.2	-4.6	8.9
-62.5	-450	-62.5	55361.0	11.2	-2.1	338.8	-10.3	-5.2	8.8
-50	-450	-50	55626.2	10.6	-1.8	334.1	-10.9	-5.4	8.9
-37.5	-450	-37.5	55638.0	9.4	-2.2	331.3	-10.6	-6.6	8.9
-25	-450	-25	55475.3	7.1	-3.6	3.32 .0	-11.6	-7.3	9.0
-12.5	-450	-12.5	55486.4	4.6	-3.0	330.4	-14.8	-5.8	8.9
0	-450	0	55476.4	3.5	-2.8	329.0	-15.5	-6. 9	8.9
11 re - 400									
-150	-400	-150	55813.0	23.1	-1.4	334.7	-8. 2	-3.2	8.6
-137.5	-400	-137.5	55815.1	24.6	-0.8	338.0	-5.5	-1.8	8.5
-125	-400	-125	55784.6	21.7	-2. 4	333.0	-7.9	-3.1	8.6
-112.5	-400	-112.5	55832.8	21.1	-2.4	328.2	-7.7	-1.6	8.6
-100	-400	-100	55724.8	19.5	-2.3	329.2	-7.3	-2.1	9.0
-87.5	-400	-87.5	555439.0	17.2	-1.7	326.4	-10.6	-2.1	8.7
-75	-400	-75	55601.5	18.4	-4.8	323.0	-8.8	-3.0	8.8
-62.5	-400	-62.5	555741.7	13.7	-3.7	321.6	-11.0	-3.3	8.9
-50	-400	-50	55578.0	13.8	-4.1	319.7	-12.5	-3.3	8.9
-37.5	-400	-37.5	555600.5	12.2	-4. 4	317.6	-11.5	-4.6	8.9

$$
\begin{array}{rrrrrrrrrr}
-c-5 & -400 & -25 & 55412.5 & 11.4 & -4.6 & 314.5 & -12.7 & -4.2 & 8.9 \\
-12.5 & -400 & -12.5 & 55375.9 & 12.3 & -3.9 & 313.1 & -12.3 & -4.0 & 8.3 \\
0 & -400 & 0 & 55444.6 & 9.1 & -4.4 & 311.3 & -17.2 & -5.9 & 8.8
\end{array}
$$

 Line \& Station \(+=\) Northings and Eastings
 - = Southings and Westings
 Area : Port Alberni
Grid : Middle Vein
Date : June, 1991

Data Type(s)
\#1. Total Field Magnetic Values
\#2. VLF-EM In-Phase Values
\#3. VLF-EM Quadrature (out of Phase)
\#4. VLF-EM Field Strength
\#5. VLF-EM In-phase Values
\#6. VLF-EM Quadrature (out of Phase)
\#7. VLF-EM Field Strength

Data Details

Corrected Total field
Westerly using Annapolis station Westerly using Annapolis station Annapolis Total Field Strength
Westerly using Hawaiian station Westerly using Hawaiian station Hawaii Total Field Strength

The instrument used was the EDA VLF-EM/Magnetic System in gathering all of the above data types.

line		0		56181.4	5.3	14.5	7.17
	-50	0	-50				
-10.2	1.3	10.65					
	-37.5	0	-37.5	56235.3	4.9	14.3	7.26
-8.900001		1.311	1.45				
	-25	0	-25	56213.1	5.8	13.6	7.55
-6.5	. 9	11.99					
-12.5		0	-12.5	56173.5	5.8	13.1	7.44
-6.4	. 3	11.96					
	0	0	0	56000.91	*	*	*
line		$-50{ }^{\text {* }}$					
	-150	-50	-150	56034.3	-14.1	. 7	6.97
-16.9	8.6	11.29					
	-137.5	-50	-137.5	56010.8	-16.3	3.8	6.8
-21.3	7.2	10.72					
-125		-50	-125	56036	-21.8	3.2	6.67
-27.1	6.2	10.62					
	-112.5	-50	-112.5	56081	-15.5	3.3	6.82
-29	5.1	10.99					
-100		-50	-100	56210.6	-13.6	5.2	6.82
-27.9	4.1	11.41					
	-87.5	-50	-87.5	56556.8	-13.7	5.5	6.94
-30.4	42.7	11.46					
	-75	-50	-75	55742.4	-11.7	5.9	7.17
-25.9	- 1.2	11.51					
	-62.5	-50	-62.5	56052.2	-10	6	7.1
-27.1	10	11.6					
	-50	-50	-50	56076.4	-7.8	6.4	7.19
-19.4	4 . 1	13.33					
	-37.5	-50	-37.5	56157.7	-11.9	5.3	7.11
-31.3	$3-1.6$	11.81					
	-25	-50	-25	56276.7	-7.5	4.3	7.21
-33.2	$2-2.3$	12.47					
	-12.5	-50	-12.5	56390	-8.400001	4	7.04
-36.7	$7 \quad-2.5$	12.52					
	0	-50	0	56192.8	-8.400001	4.3	7.26
-34.8	$8 \quad-3.5$	12.14					
	12.5	-50	12.5	55964.8	-9.2	2.9	7.39
-40.2	$2-6.5$	12.94					
	25	-50	25	55968.3	-7.9	2.8	7.22
-38.4	$4 \quad-4.8$	14.05					
	37.5	-50	37.5	55756.7	-2.2	6.3	7.36
-26.9	$9 \quad 3.8$	14.61					
	line	-100					
	-125	-100	-125	56379.4	-12.2	-4.8	6.59
-8.7	4.5	13.23					
	-112.5	-100	-112.5	56025.1	-11.3	-5.5	6.88
7.2	5.5	12.81					
	-100	-100	-100	56252	-8.8	-3.4	6.67
2.6	1.9	11.63					
	-87.5	-100	-87.5	56385.9	-7	-2.3	6.66

4.7	1.1	11.57					
	-75	-100	-75	56323.6	-7.6	-1.7	6.74
-. 7	-1	11.14					
	-62.5	-100	-62.5	56016	-3.1	-. 5	6.73
1.8	-5.3	11.18					
	-50	-100	-50	56058.5	-3	-1.1	6.29
-9.7	-9	10.33					
	-37.5	-100	-37.5	56118.2	-5.1	-1.7	7.12
-4.2	-8.5	11.4					
	-25	-100	-25	56173.7	-3.7	-1.8	6.82
-2.8	-9.3	10.95					
	-12.5	-100	-12.5	56218.4	-6.9	-2.5	7.06
-9.1	-9.8	11.6					
	0	-100		$0 \quad 56210.8$	-6.5	-1.4	6.88
-8.400	0001 -1	-11.5 11					
	12.5	-100	12.5	56227	-2.9	-1.7	6.87
-9.900	0001	-9.1 11	1.53				
	25	-100	25	56116.7	-4.3	-1.3	7.02
-10.4	-8.8	$8 \quad 11.35$					
	37.5	-100	37.5	55939	-5.3	-2	7.14
-15.9	-9.3	311.33					
	50	-100	50	55826.8	-. 2	-. 2	7.03
-16.8	-10.3	310.76					
	62.5	-100	62.5	55843	-4.2	-1.1	7.05
-16.7	-9.900001	11.33					
	75	-100	75	55837.7	-. 4	-. 3	6.91
-22.5	-12.8	- 10.79					
	87.5	-100	87.5	55878.7	-2.1	. 7	7.21
-20.6	-11.9	- 11.52					
	100	-100	100	55855.4	-2	3.1	7.28
-29.2	-11.1	111.5					
	line	-150					
	-112.5	-150	-112.5	56051.2	-17.4	-5.5	6.93
-13.3	10.1	$1 \quad 10.96$					
	-100	-150	-100	56068.4	-20.9	-5.7	6.81
-21.2	8.3	310.5					
	-87.5	-150	-87.5	56065.6	-17.9	-5.4	6.96
-27.7	5.5	$5 \quad 11.61$					
	-75	-150	-75	56098.4	-14.5	-4.4	7.1
-14.4	- 2.5	$5 \quad 12.52$					
	-62.5	-150	-62.5	56116	-16.1	-4.3	6.93
-20.2	-1.4	$4 \quad 12.53$					
	-50	-150	-50	56138.2	-17.4	-4.4	6.94
-29.4	-2.3	311.36					
	-37.5	-150	-37.5	56161.6	-16.5	-3.2	6.97
-26.2	-5.2	211.29					
	-25	-150	-25	56235	-18.2	-3.9	7.06
-34.4	-7.6	$6 \quad 11.71$					
	-12.5	-150	-12.5	56185.5	-19.9	-3.5	6.08
-29.5	$5 \quad-11.6$	$6 \quad 10.74$					
	0	-150	0	56190.7	-19.4	-4.3	6.93
-39.3	-13.7	$7 \quad 11.4$					
	12.5	-150	12.5	55989.8	-20.4	-5.9	7.18
-45.3	$3-12.6$	$6 \quad 12.89$					

-18.8	-15	12.46					
	37.5	-200	37.5	55982.9	-19.2	-9.5	7.09
-30.1	-15.8	12.64					
	50	-200	50	55999.2	-15	-9.3	7.01
-29.9	-15.2	12.66					
	62.5	-200	62.5	55964.9	-13.4	-8.400001	7.1
-22.1	-15	12.49					
	75	-200	75	55604.9	-17.5	-8.6	7.37
-28.9	-14	12.66					
	87.5	-200	87.5	55650.7	-15.4	-8.5	7.13
-23.2	-13.4	12.71					
	100	-200	100	55780.4	-15.8	-9.5	7.07
-27.8	-12.5	12.73					
	112.5	-200	112.5	55834	-17.2	-8.3	7.28
-34.2	-14.7	12.69					
	125	-200	125	55896	-13.4	$4 \quad-7.2$	$2 \quad 7.12$
-43.6	-18.5	12.98					
	137.5	-200	137.5	55926	-14.2	-7.6	7.21
-41	-17.7	12.63					
	150	-200	150	55947.1	-14.1	-6.8	$8 \quad 7.34$
-44.3	-17.8	12.99					
	162.5	-200	162.5	56022.1	-13.2	-6.4	7.47
-45.6	$6 \quad-18.5$	13.25					
	175	-200	175	56053.6	-14.6	-6.9	7.37
-51.1	-22.9	13.56					
	187.5	-200	187.5	56182.3	-9.3	-6.6	7.6
-46.4	4 -22	12.99					
	200	-200	200	56026.6	-13.4	-6.8	7.62
-53	-22.2	13.34					
	line	-250					
	-200	-250	-200	56641	-14.2	-3	9.42
6.7	17.7	13.01					
	-187.5	-250	-187.5	56341	-14.1	-2.5	9.55
4.3	18	13.29					
	-175	-250	-175	56184.4	-13	-3.3	9.84
6	15	15.49					
	-162.5	-250	-162.5	56098.9	-13.8	-3.2	9.78
3.5	15.9	14.64					
	-150	-250	-150	56357.7	-14	-2.8	9.44
10.2	19.2	12.66					
	-137.5	-250	-137.5	56107.2	-12	-3	10.18
10.2	15.5	15.66					
	-125	-250	-125	55965.8	-15.4	-3.7	9.71
. 8	17.5	13.85					
	-112.5	-250	-112.5	55921.3	-15.3	-3.5	9.599999
-1.9	18.6	13.57					
	-100	-250	-100	55968.8	-13.4	-3.3	9.48
4.6	18.8	13.54					
	-87.5	-250	-87.5	56052.9	-15.6	-3.8	9.52
-5.3	16.1	13.62					
	-75	-250	-75	56100.9	-15.6	-4	9.59
-8.8	12	13.96					
	-62.5	-250	-62.5	56180.1	-14.1	-4.5 9.8	9.849999
-12	5.3	14.13					

	-50	-250	-50	56205.5	-15.2	-5.7	9.87
-19.8	2.2	14.25					
	-37.5	-250	-37.5	56266.7	-15.6	-5.4	9.96
-25.9	-3.3	14.64					
	-25	-250	-25	56268.6	-15.9	-6.2	9.88
-27.2	-6.1	14.38					
	-12.5	-250	-12.5	56255.6	-18.7	-7.1	9.889999
-37.9	-12.7	13.97					
	0	-250	0	56148.6	-18.6	-6.1	9.82
-35.8	-11.9	13.79					
	12.5	-250	12.5	55812.4	-17.4	-5.5	9.86
-33.5	-11.5	13.4					
	25	-250	25	55913	-16.2	-5.2	10.13
-36.2	-11.7	14.59					
	37.5	-250	37.5	56105.7	-16.2	-5.3	10.26
-37.2	-11.5	14.91					
	50	-250	50	56286.6	-15.9	-5.4	10.15
-36.1	-12.4	14.45					
	62.5	-250	62.5	55691.5	-15.7	-5.4	10.3
-34.5	-14.4	16.12					
	75	-250	75	56031.2	-15.6	-4.7	10.08
-33.8	-10.4	14.29					
	87.5	-250	87.5	55660.1	-16	-5	9.66
-37.6	-12.2	13.16					
	100	-250	100	55744.8	-17.6	-6.2	9.79
-42.3	-13.5	13.32					
	112.5	-250	112.5	55626	-19.2	-5.7	9.349999
-43.5	-14.6	13.12					
	125	-250	125	55839.8	-17.2	-5.1	9.91
-41.8	-12	13.47					
	137.5	-250	137.5	56165.6	-16.2	-5.7	9.849999
-47.5	$5 \quad-13.8$	13.8					
	150	-250	150	55762.4	-15.7	-5.7	9.76
-51.4	$4-15.1$	13.93					
	162.5	-250	162.5	55945.6	-22.3-8	00001	7.46
-59.3	$3-17.1$	14.07					
	175	-250	175	55975.9	-19.6	-7.3	7.52
-58.1	-18.3	13.65					
	187.5	-250	187.5	56016	-20.9	-7	7.53
-60.6	$6 \quad-22.4$	13.54					
	200	-250	200	56129.6	-18.7	-6.8	7.54
-61.1	-20.4	13.88					
	line	-300					
	-175	-300	-175	55992	-9.2	-. 6	9.7
18.1	13	14.98					
	-162.5	-300	-162.5	55972.9	-9.6	-1 9	9.599999
16.5	17.7	13.81					
	-150	-300	-150	55916.4	-10.7	-1.4	9.09
15.6	19.1	12.72					
	-137.5	-300	-137.5	55894.2	-10.9	-1.2	9.4
13.2	19.4	12.89					
	-125	-300	-125	55899	-10.4	-1.6	9.11
14.9	18.3	12.73					
	-112.5	-300	-112.5	55878	-10.1	-. 9	9.77

15.8	18.4	14.15					
	-100	-300	-100	55903.1	-10.8	-1.1	9.719999
10.3	16.3	14.12					
	-87.5	-300	-87.5	55938.4	-11.6	-2.5	9.79
7	12.9	14.48					
	-75	-300	-75	56027.6	-12.9	-4.1	10.4
-3	7.4	16.25					
	-62.5	-300	-62.5	56013.9	-12.4	-3.6	9.88
-2.4	5.4	13.9					
	-50	-300	-50	55922.4	-11.8	-4.1	9.9
-5.7	2.6	13.06					
	-37.5	-300	-37.5	56485.6	-13	-4.2	10
-8	. 2	14.97					
	-25	-300	-25	55942.3	-11.8	-5	9.83
-12.7	-5.6	12.85					
	-12.5	-300	-12.5	56051.5	-13.8	-6.3	10.01
-20.3	-10.1	13.74					
	0	-300	0	56252.2	-14.1	-5.5	10.3
-22.7	-11.1	14.34					
	12.5	-300	12.5	55620.2	-14.5	-5	10.6
-19	-11.1	15.62					
	25	-300	25	55733.2	-15.5	-5.6	10.32
-22.1	-11.7	$7 \quad 16.28$					
	37.5	-300	37.5	56186.7	-14.6	-6	10.22
-24.8	-10.7	$7 \quad 13.52$					
	50	-300	50	55733.9	-13.6	-5.5	9.929999
-25.2	-12.3	312.94					
	62.5	-300	62.5	55883.3	-13.2	-5.8	9.82
-24	-13.6	12.83					
	75	-300	75	55712.4	-14.4	-4.9	10.32
-26.3	-10.7	713.89					
	87.5	-300	87.5	56258.8	-14.1	-5.2	10.36
-28.4	-12.3	$3 \quad 13.55$					
	100	-300	100	57613.3	-14.7	-4.9	10.25
-24.2	$2112.5^{-12.6}$		15				
-23.8	${ }^{112.5}-12.6$	$\begin{gathered} -300 \\ 14.62 \end{gathered}$	2112.5	55426.1	-14	-4.7	10.27
-23.8	$125^{-12.6}$	- ${ }_{-300}^{14.62}$	125	55668.4	-13.8	-5.4	10.39
-25.8	-12.9	$9 \quad 14.52$					
	line	-350					
	-150	-350	-150	056043.7	-9.5		. 6 9.58
8.9000	0001	12.818	8.98				
	-137.5	-350	-137.5	55999.8-9.	900001	. 5	9.71
7.7	12.4	19.3					
	-125	-350	-125	56075.3	-10.1	. 8	9.58
6.7	11.8	19.16					
	-112.5	-350	-112.5	55882.1	-10.7	. 1	9.76
5.3	11.9	19.45					
	-100	-350	-100	55873.9	-10.2	. 6	9.8
5.2	11	19.78					
	-87.5	-350	-87.5	55881.4	-11.2	-. 5	9.83
2.5	9.400001	20.11					
	-75	-350	-75	55888.7	-11.3	-1.1	9.88
-1.5	5.9	20.33					

	-62.5	-350	-62.5	56539.4	-11.6	-2.3	9.76
-5.6	4.2	19.94					
	-50	-350	-50	56350.8	-12.8	-3.4	9.77
-8.6	1.4	19.7					
	-37.5	-350	-37.5	56134.4	-13.3	-3.6	9.86
-10.6	-. 3	19.84					
	-25	-350	-25	56129	-14.8	-4.8	9.87
-14.2	-2.5	19.49					
	-12.5	-350	-12.5	56301.7	-14.1	-4.9	9.92
-15.9	-5	18.9					
	0	-350	0	55813.1	-14.1	-4.5	9.969999
-15.3	-4.8	18.59					
	12.5	-350	12.5	56016.5	-14.7	-3.7	9.79
-19.2	-4.8	18.15					
	25	-350	25	56100	-13.5	-4.3	9.73
-20.3	-4.4	17.6					
	37.5	-350	37.5	56982	-13.7	-4.2	9.59
-21.8	-5.5	17.23					
	50	-350	50	56537.3	-14.6	-4.3	9.92
-21.3	-6.5	17.33					
	62.5	-350	62.5	55891	-13.7	-4	9.82
-20.5	-6.2	17.12					
	75	-350	75	55604	-15	-4	10.01
-22.7	-6.2	17					
	87.5	-350	87.5	55400.4	-13.9	-4.1	10.03
-24.9	-6.2	16.97					
	100	-350	100	55725.6	-14.6	-4.1	10.14
-24.7	-7.2	16.65					
	line	-400					
	-150	-400	-150	55843.3	-8.6	. 7	9.54
7.4	13.8	19.21					
	-137.5	-400	-137.5	55831.9	-9.7	5	9.37
5.6	13.5	19.53					
	-125	-400	-125	55864.1	-9.5	-. 2	9.42
4.9	12.5	19.61					
	-112.5	-400	-112.5	55989.8	-9.7	-. 3	9.36
4.5	12.5	19.51					
	-100	-400	-100	55996.5	-11.1	-. 7	9.52
2.8	12.2	19.83					
	-87.5	-400	-87.5	56291.5	-11.6	-1.4	9.52
-. 6	10	19.71					
	-75	-400	-75	56274.2	-12.2	-1.5	9.45
-. 7	10.1	20.02					
	-62.5	-400	-62.5	56063.8	-11.7	-1.9 9.	599999
-2.8	7.8	20.11					
	-50	-400	-50	55998.4	-12.1	-3.4	9.65
-7.5	3.9	21.3					
	-37.5	-400	-37.5	55953.4	-12.8	-3.5	10.19
-10.9	91.6	26.23					
	-25	-400	-25	55949.2	-14	-3.5	10.64
-14.5	$5-1.1$	29.22					
	-12.5	-400	-12.5	56025.3	-13	-3.9	10.76
-15.1	1 -1.8	29.42					
	0	-400	0	0 56031	-13.7	-4.3	10.97

-16.6	-2.6	29.49					
	12.5	-400	12.5	56107	-14.9	-4.5	11.01
-17.7	-2.8	29.01					
	25	-400	25	56249.9	-14.5	-4.7	11.11
-19.5	-3.5	28.41					
	37.5	-400	37.5	56181	-15.5	-4.3	11.13
-21.8	-3.6	28.39					
	50	-400	50	56172.1	-15.6	-3.8	-11.13
-22.2	-4.3	28.12					
	62.5	-400	62.5	56388.7	-15.9	-4	11.11
-23	-4.5	27.98					
	line	-450					
	-175	-450	-175	55814.7	-8.3	3.4	9.15
8.5	13.4	22.69					
	-162.5	-450	-162.5	55791.9	-8.1	3.2	9.22
7.9	13.4	23.11					
	-150	-450	-150	55792.8	-8.1	4.2	9.099999
6.9	13.7	23.34					
	-137.5	-450 -	-137.5	55798.3	-9	2.9	9.21
5.7	12.7	23.6					
	-125	-450	-125	55899	-9.1	. 9	9.19
4.8	11.2	23.8					
	-112.5	-450	-112.5	55863.3	-9.8	1.79.	. 309999
3.2	10.7	23.85					
	-100	-450	-100	56303	-9.7	. 7	9.3
2.4	9.8	24.21					
	-87.5	-450	-87.5	56684.5	-10.3	-. 1 9.	9.469999
. 3	8.400001	24.66					
	-75	-450	-75	56199.1	-11	-. 8	9.46
-1.5	7	24.75					
	-62.5	-450	-62.5	56197.1	-11.7	-1.7	9.66
-3.6	5.7	25.06					
	-50	-450	-50	55939.3	-11.7	-1.9	9.71
-6.5	2.7	25.44					
	-37.5	-450	-37.5	55989	-12.4	-1.8	9.71
-8.2	1.2	25.36					
	-25	-450	-25	55970	-12.6	-2	9.76
-11.2	2 -1	25.63					
	-12.5	-450	-12.5	55892.7	-13.6	-2.1	9.88
-13	-2.4	26.43					
	0	-450	0	55985.1	-12.8	-3.8	10.04
-14.9	$9-2.7$	26.78					
	12.5	-450	12.5	56104.4	-14.7	-3	310.2
-17.1	$1 \quad-3.7$	27.65					
	25	-450	25	56250.6	-14.2	-3.2	10.37
-18.5	$5 \quad-3.5$	27.72					
	37.5	-450	37.5	56628.5	-15.3	-3.7	10.32
-19.4	$4-4.5$	27.83					
	50	-450	50	56621.1	-15.2	-3.9	- 10.42
-21.7	$7 \quad-4.2$	27.93					
	62.5	-450	62.5	56799.9	-15.6	-4.6	10.54
-21.6	$6 \quad-6$	28.5					
	75	-450	75	56464.2	-16.4	-4.9	10.59
-24.1	$1-8.1$	28.36					

line-175		$\begin{aligned} & -500 \\ & -500 \end{aligned}$	-175	55802.5	-9.6	. 7	8.99
7.3	12.9	22.37					
	-162.5	-500 -	-162.5	55777.5	-9.6	1.5	8.96
5.9	12.3	22.51					
	-150	-500	-150	55761.1	-9.3	. 9	9.05
4.3	12	22.41					
	-137.5	-500 -	-137.5	55744.9	-10.6	0	8.88
2.1	11.4	22.45					
	-125	-500	-125	55750.4	-11.2	-. 5	8.889999
1.1	11.3	22.26					
	-112.5	-500 -	-112.5	56294.6	-10.9	-1.8	8.97
. 3	11.2	22.08					
	-100	-500	-100	55876.4	-10.7	-1.2	8.79
-. 2	10.6	22.18					
	-87.5	-500	-87.5	55914.1	-11.7	-1.5	8.9
-1.6	9.900001	21.96					
	-75 9	-500	-75	56573.5	-13.6	-2.3	8.639999
-3.5	59	21.82					
	-62.5	-500	-62.5	56433.5	-12.6	-3.4	8.91
-4.5	7.8	21.67					
	-50	-500	-50	56244.6	-13	-2.2	8.91
-5.7	6.4	21.53					
	-37.5	-500	-37.5	56220	-13.5	-4	8.889999
-8.5	54.1	21.57					
	-25	-500	-25	55868.1	-13.9	-4.4	8.99
-9.8	2.8	21.69					
	-12.5	-500	-12.5	55807.2	-17.2	-6.1	7.54
-12.5	5 . 7	21.33					
	0	-500	0	55815.8	-18	8 -5.8	$8 \quad 7.94$
-14.6	$6-1.4$	21.99					
	12.5	-500	12.5	55930.5	-19.4	-6.3	7.84
-16.7	$7-1.6$	21.7					
	25	-500	25	55901.6	-19.1	-3.2	8.679999
-18.1	$1 \quad-3.6$	21.68					
	37.5	-500	37.5	55978.4	-20	-6.8	7.57
-21.4	$4-4.5$	21.34					
	50	-500	50	56093.1	-21.4	-6.9	7.64
-24.9	$9 \quad-6$	21.53					
	62.5	-500	62.5	56322.6	-21.2	-9	7.58
-27.3	$\begin{array}{lll}3 & -8.7\end{array}$	21.21					
	75	-500	75	56354.2	-22.6	-8.900001	7.96
-27.6	$6 \quad-8$	20.88					
	87.5	-500	87.5	55746.9	-22.3	-9.8	7.8
-29.3	3 -8.8	20.82					
	line	-550					
	-175	-550	-175	55768.5	-9.7	4.1	7.31
11.8	15.3	21.21					
	-162.5	-550	-162.5	55779.4	-9.6	3	7.28
9.5	13.2	21.9					
	-150	-550	-150	55787.4	-10.5	2.9	7.39
7.8	12.3	22.45					
	-137.5	-550	-137.5	55821.8	-10.3	3.1	7.69
5.7	12	23.19					

	-125	-550	-125	55829.5 -9.40000]		2.5	7.72
5.7	12	23.7					
	-112.5	-550	-112.5	55939.1	-10.4	1.8	7.77
2.2	10.1	23.57					
	-100	-550	-100	55986.2	-11	2.1	7.78
. 7	9.3	23.82					
	-87.5	-550	-87.5	55985.9	-11.6	1	7.73
0	9.400001	23.8					
	-75	-550	-75	55889.8	-10.9	-. 1	7.93
-1.4	7.8	24.03					
	-62.5	-550	-62.5	56533.2	-10	-1.2	7.9
-2.5	7.1	23.87					
	-50	-550	-50	56170.8	-13.2	-1.3	7.82
-4.8	5.8	23.8					
	-37.5	-550	-37.5	56399.6	-12.5	-2.9	7.7
-6.3	2.9	23.77					
	-25	-550	-25	56099.5	-14.9	-3.3	7.63
-9	1.3	23.58					
	-12.5	-550	-12.5	55754.9	-14	-2.7	8.37
-10.7	- 0	24.45					
	0	-550	0	55753.1	$1-15.6$	-6.2	7.77
-12.9	-2.5	24.23					
	12.5	-550	12.5	55776.3	-16.7	-4.9	7.8
-15	-3.6	24.19					
	25	-550	25	55718.2	$2-17.6$	-6.5	7.82
-16.4	4 -5	23.97					
	37.5	-550	37.5	55711.4	-17.8	-7	8.04
-18.2	$2-6.1$	24.62					
	50	-550	50	55803.5	-19.6	-8.1	7.96
-21	-7.7	24.66					
	62.5	-550	62.5	55952.3	-20.6	-9.1	8.24
-25.4	$4-10$	24.31					
	75	-550	75	56065.2	-22.3	-8.5	8.04
-27.8	-10.4	23.95					
	87.5	-550	87.5	56365.6	-20.1	-10.2	7.8
-30.2	-12.6	22.22					

GEOPHYSICAL EQUIPMENT SPECIFICATIONS

Specifications＊

Frequency Tuning Range
15 to 30 kHz ，with bandwidth of 150 Hz ；tuning range accommodates new Puerto Rico station at 28.5 kHz

Transmitting Stations Measured．	Up to 3 stations can be automatically measured at any given grid location within frequency tuning range
Recorded VLF Magnetic	
Parameters ．．．．．．	Total field strength，total dip，vertical
	quadrature or alternately，horizontal amplltude）
Standard Memory Capacity	.800 combined VLF magnetic and VLF electric measurements as well as gradiometer and magnetometer readings
Display	Custom designed，ruggedized liquid crystal display with built－in heater and an operating temperature range from $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ．The display contains six numeric digits，decimal point，battery status monitor，slgnal strength status monitor and function descriptors．

RS232C Serial I／O interface ．．．．．． 2400 baud rate， 8 data bits， 2 stop bits，no party
Test Mode
A．Dlagnostic Testing ddata and programmable memory
B．Self Test（harJware）

Sensor Head	Contains 3 orthogonally mounted coils with automatic tilt compensation
Operating Environmental	
Range	$-40^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C}$ 0－100\％relative humldity； Weatherproof
Power Supply	Non－magnetic rechargeable sealed lead－acid 18 V DC battery cartidge or belt； 18 V DC disposable battery belt；12V DC external power source for base station operation only．

Weights and Dimensions
Instrument Console
2.8 kg ． $128 \times 150 \times 250 \mathrm{~mm}$

Sensor Head ．．．．．．．．．．．．．．．．．． $2.1 \mathrm{~kg}, 130$ dia．$\times 130 \mathrm{~mm}$
VLF Electronics Module．．．．．．．． 1.1 kg ， $40 \times 150 \times 250 \mathrm{~mm}$
Lead Acld Battery Cartridge $. .1 .8 \mathrm{~kg}, 235 \times 105 \times 90 \mathrm{~mm}$
Lead Acld Battery Belt ．．．．．．．． $1.8 \mathrm{~kg}, 540 \times 100 \times 40 \mathrm{~mm}$
Disposable Battery Belt ．．．．．．． $1.2 \mathrm{~kg}, 540 \times 100 \times 40 \mathrm{~mm}$

EDA mistrumento inc．
4 Thomaliffe Park Dive．
Toronto，Ontarto
Cancoa mah 1 HI
Tetex： 052322 EOA TOR．
cabtes：instrumenes toro 410 425－7800

inusa．

EDA Mssumenta hic．
5151 ward ROJd．
Wheat Rioge．Conr200
U．S．A 80033
（303） $422-9112$

APPENDIX F

PETROGRAPHIC ANALYSIS REPORTS
1983, 1991

As well as alteration of phenocryst, calcite forms irregular patches throughout the groundmass. These are in part alteration of groundmass, and possibly in part late patches (see below).

Chlorite forms irregular interstitial patches of very fine grained aggregates intergrown with groundmass plagioclase.

Leucoxene (almost opaque, medium brown Ti-oxide) occurs as irregular disseminated patches from 0.02-0.3 mm in size. Much of it may be after original ilmenite.

Opaque, possibly ilmenite or hematite, occurs in subhedral to irregul. patches averaging $0.02-0.05 \mathrm{~mm}$ in size, with a few irregular patches up to 0.3 mm across.

Apatite forms scattered subhedral to euhedral grains from 0.1-0.15 mm in average size. In places it is concentrated with hornblende phenocryst.

The rock contains a few well-defined, late patches up to a few mm long, dominated by fine to medium grained calcite. This forms slightly interlocking aggregates, in part with moderately abundant dusty inclusions of opaque. Plagioclase forms scattered grains and aggregates, commonly neat the borders of patches. A few unusual aggregates up to 0.15 mm in size consist of radiating clusters of extremely fine grained sericite grading outwards to a rim of chlorite. A few other sericite aggregates occur with: plagioclase grains.

This sample wen tatum by Mu. G. House from the main workings of the riddle vichy Mt. Mc Quillon, vac. $18 f$, , (due east from H.G. vera, on the lower plat), sample from poetry dike (which contains itu mineulzed quarts reined), in the weed bed.
 Inturian) intudy tanaimo sediments, it al, in the ours.

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, PhD Georboin CRAIG LEITCH, PhD Georopiat JEFF HARRIS, P nD Geotoon
KEN E. NORTHCOTE, PN.D Georgian
Report for: Fayz Yacoub,
Hi Tech Resources, 1500-609 Granville St., Vancouver, B.C. Job 204

July fth, 1991

SAMPLES:

3 rock samples, numbered MV/91 TH-1, 2 and 3 from the Middle Vein project, for sectioning and petrographic examination.

SUMMARY:
These samples are igneous rocks of hypabyssal intrusive aspect. They are generally fresh, and show no evidence of deformation, veining etc.

TH-1 is a fine-grained, non-porphyritic, meshwork-textured rock of andesitic composition. It is made up essentially of plagioclase and chlorite with accessory quartz and opaques.

TH-2 is a fine to medium-grained gabbro composed essentially of an intergrowth of plagioclase and pyroxene. Most of the plagioclase shows strong, even saussuritization, but there is also a late phase which is clear and unaltered. The pyroxene is generally fresh. It shows incipient late-magmatic modification to hornblende - which also occurs as an interstitial accessory component. The rock is notably low in opaques.

TH-3 is a typical quartz-feldspar porphyry, of dacitic composition. It is composed of phenocrysts of plagioclase and quartz (and minor altered mafics) in a microgranular groundmass of fresh plagioclase with minor intergrown quartz and chlorite The plagioclase phenocrysts show mild pervasive epidotization.

Individual petrographic descriptions are attached.

(929-5867)

ANDESITE

Estimated mode

Plagioclase	66
Quartz	5
Chlorite	22
Carbonate	3
Opaques	4

This is a fine-grained, non-porphyritic rock, having the textural aspect of a dyke.

It is composed predominantly of plagioclase as an even, interlocking, meshwork aggregate of blocky to elongate prismatic grains, $0.05-0.4 \mathrm{~mm}$ in size. The plagioclase is strikingly fresh.

Quartz is a minor accessory, as sporadic grains of similar size to the plagioclase, sometimes aggregating as clumps. It also forms a few irregular cross-cutting veinlets.

The other principal constituent is chlorite. This forms an intimately intergrown, felted-textured, interstitial phase throughout the plagioclase aggregate. It presumably represents a totally altered primary mafic component.

Opaque and sub-opaque granules, $10-50$ microns in size, sometimes forming skeletal clusters, occur more or less abundantly, in close association with the chlorite. These are probably mainly rutile and Fe-Ti oxides, but may include a proportion of very fine-grained sulfides.

Carbonate is a minor deuteric or alteration phase, as sporadic flecks and interstitial pockets. It also occurs intergrown with one of the quartz veinlets.

Estimated mode

Saussurite	45
Plagioclase	6
Pyroxene	38
Hornblende	6
Chlorite	5
Opaques	trace

This rock has a grain size range of $0.2-4.0 \mathrm{~mm}$, and shows a fine to medium-grained, hypidiomorphic granular texture of typical intrusive aspect.

The cut-off block shows the typical speckled fabric of a gabbro, consisting of intergrown dark mafics and white-etched plagioclase.

The thin section shows that the principal mafic is clinopyroxene. This forms discrete, rather coarse, subhedral grains, fresh but for minor late magmatic modification to flecks of amphibole. A few pyroxene grains appear to have been converted almost totally to fibrous, secondary-type amphibole.

The accessory mafic is brownish hornblende, as an interstitial network in partial rimming relationship to the pyroxenes.

The majority of the plagioclase in this rock shows strong saussuritization in the form of even, virtually complete alteration to turbid, brownish, sub-opaque material. This forms clusters of blocky, subhedral-prismatic grains, alternating with the mafics, and corresponding with the white-etched areas of the cut-off block.

A small proportion of clear, unaltered, well-twinned plagioclase exists, as tiny individuals and small pockets, and as partial rims and overgrowths on the totally saussuritized material. The latter was apparently an early-formed component, and the clear plagioclase a late interstitial phase.

Chlorite is the remaining accessory - as sporadic, irregular, felted-textured pockets. This presumably represents deuteric alteration of some primary mafic component.

Opaques (oxides or sulfides) are extremely minor, and the rock is also distinguished by a notable lack of such typical accessories as apatite and sphene.

Estimated mode
Phenocrysts
Plagioclase 21
Quartz 15
Chlorite) 4
Epidote)
Groundmass
Plagioclase 50
Quartz 6
Chlorite 4
Rutile trace

This is a leucocratic rock made up of phenocrysts of quartz and plagioclase in an even, microgranular groundmass composed predominantly of plagioclase.

The phenocrysts range in size from 0.2-4.0mm. The plagioclase is subhedral-euhedral in form, and commonly occurs as clumps. It is generally fresh, except for minor alteration to flecks of epidote.

The quartz ranges from anhedral to subhedral in form, and sometimes shows embayed outlines and groundmass inclusions. The quartz phenocrysts tend to be larger than the plagioclase. Minor mafic phenocrysts are now totally altered, and are represented by irregular clumps of felted chlorite and cryptocrystalline to granular epidote.

The phenocrysts are set, with random orientation, in an equigranular groundmass of grain size 20-100 microns, composed essentially of an interlocking mosaic aggregate of fresh, anhedral plagioclase. Indeterminate (but apparently minor) proportions of quartz occur sporadically intergrown, and there are scattered intergranular pockets of chlorite, and flecks of cryptocrystalline rutile.

This rock is a typical quartz feldspar porphyry, of dacitic composition. It has the texture of a hypabyssal intrusive. It is notably fresh (except for alteration of the minor mafics).

CERTIFICATES

The foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by this Prospectus as required by the Securities Act and its regulations.

DATED: November 4,1991

AGENT
To the best of our knowledge, information and belief, the foregoing constitutes full, true and plain disclosure of all material facts relating to the securities offered by this Prospectus as required by the Securities Act and its regulations.

DATED: November 4 , 1991

BRINK HUDSON \& LEFEVER LTD.

Per:

John Fathers, Vice-President.

