THIS PROSPECTUS CONSTITUTES A PUBLIC OFFERING OF THESE SECURITIES ONLY IN THOSE JURISDICTIONS IN WHICH THIS PROSPECTUS HAS BEEN ACCEPTED FOR FILING AND THEREIN ONLY BY PERSONS PERMITTED TO SELL SUCH SECURITIES.

NO SECURITIES COMMISSION OR SIMILAR AUTHORITY IN CANADA HAS IN ANY WAY PASSED UPON THE MERITS OF THE SECURITIES OFFERED HEREUNDER AND ANY REPRESENTATION TO THE CONTRARY IS AN OFFENCE.

NEW ISSUE PROSPECTUS

51

 $\odot$ 

400--

V

d

In Jepen derce

DATED: APRIL 21ST, 1988

006265

NORTH AMERICAN VENTURES LTD. (the "Company") 827 West Pender Street Vancouver, B.C. V6C 3G8

#### PUBLIC OFFERING

300,000 Shares Without Par Value

| 5<br>5 | Price to<br>Public | Commission  | Net Proceeds to<br>be Received by<br>Company (1) |
|--------|--------------------|-------------|--------------------------------------------------|
| Share  | \$0.55             | \$0.055     | \$0.495                                          |
| 1      | \$165,000.00       | \$16,500.00 | \$148,500.00                                     |

(1) Before deduction of the costs of the Issue, estimated at \$15,000.

A PURCHASE OF THE SECURITIES OFFERED BY THIS PROSPECTUS MUST BE CONSIDERED AS SPECULATIVE. ALL OF THE PROPERTIES IN WHICH THE COMPANY HAS AN INTEREST ARE IN THE EXPLORATION AND DEVELOPMENT STAGE ONLY AND ARE WITHOUT A KNOWN BODY OF COMMERCIAL ORE. SEE ALSO "RISK FACTORS" ON PAGE 7.

THERE IS NO MARKET THROUGH WHICH THESE SECURITIES MAY BE SOLD.

THE VANCOUVER STOCK EXCHANGE HAS CONDITIONALLY LISTED THE SECURITIES BEING OFFERED PURSUANT TO THIS PROSPECTUS. LISTING IS SUBJECT TO THE COMPANY FULFILLING ALL THE LISTING REQUIREMENTS OF THE VANCOUVER STOCK EXCHANGE ON OR BEFORE OCTOBER 31ST, 1988, INCLUDING PRESCRIBED DISTRIBUTION AND FINANCIAL STATEMENTS.

NO PERSON IS AUTHORIZED BY THE COMPANY TO PROVIDE ANY INFORMATION OR TO MAKE ANY REPRESENTATION OTHER THAN THOSE CONTAINED IN THIS PROSPECTUS IN CONNECTION WITH THE ISSUE AND SALE OF THE SECURITIES OFFERED BY THE COMPANY.

UPON COMPLETION OF THIS OFFERING, THIS ISSUE WILL REPRESENT 19.23% OF THE SHARES THEN OUTSTANDING AS COMPARED TO 59.62%

# ROPERTY FILE

THAT WILL THEN BE OWNED BY THE CONTROLLING PERSONS, DIRECTORS, PROMOTERS AND SENIOR OFFICERS OF THE COMPANY AND ASSOCIATES OF THE AGENTS. REFER TO THE HEADING "PRINCIPAL HOLDERS OF SECURITIES" ON PAGE 14 HEREIN FOR DETAILS OF SHARES HELD BY DIRECTORS, SENIOR OFFICERS, PROMOTERS AND CONTROLLING PERSONS AND ASSOCIATES OF THE AGENTS.

ONE OR MORE OF THE DIRECTORS OF THE ISSUER HAS AN INTEREST, DIRECT OR INDIRECT IN OTHER NATURAL RESOURCE COMPANIES. REFERENCE SHOULD BE MADE TO THE ITEM "RISK FACTORS" ON PAGE 7 FOR A COMMENT AS TO THE RESOLUTION OF POSSIBLE CONFLICTS OF INTEREST.

THE PRICE OF THIS OFFERING WAS DETERMINED BY NEGOTIATION BETWEEN THE COMPANY AND THE AGENTS.

THE SHARES OFFERED UNDER THIS PROSPECTUS WILL BE SUBJECT TO A DILUTION OF \$0.39 PER SHARE (70.91%).

THE AGENTS HAVE BEEN GRANTED A GREENSHOE OPTION. REFERENCE SHOULD BE MADE TO THE ITEM "PLAN OF DISTRIBUTION" ON PAGE 5 OF THIS PROSPECTUS.

THIS PROSPECTUS ALSO QUALIFIES THE ISSUANCES OF THE AGENTS' WARRANTS. THE AGENTS MAY SELL AT THE MARKET PRICE AT THE TIME OF THE SALE ANY SHARES ACQUIRED ON THE EXERCISE OF THE AGENTS' WARRANTS, PURSUANT TO THE PROVISIONS OF THE SECURITIES ACT AND REGULATIONS, WITHOUT FURTHER QUALIFICATION.

WE, AS AGENTS, CONDITIONALLY OFFER THESE SECURITIES SUBJECT TO PRIOR SALE, IF, AS AND WHEN ISSUED BY THE COMPANY AND ACCEPTED BY US IN ACCORDANCE WITH THE CONDITIONS CONTAINED IN THE AGENCY AGREEMENT REFERRED TO UNDER "PLAN OF DISTRIBUTION" ON PAGE 5 OF THIS PROSPECTUS.

#### Name and Address of Agents

HAYWOOD SECURITIES INC. 1100 - 400 Burrard Street Vancouver, B.C.

CANARIM INVESTMENT CORPORATION LTD. 2200 - 609 Granville Street Vancouver, B.C.

EFFECTIVE DATE: MAY 3RD, 1988

ant states

#### REPORT ON THE INDEPENDANCE PROPERTY

## ALBERNI MINING DIVISION, BRITISH COLUMBIA

.

FOR

NORTH AMERICAN VENTURES LTD.

NTS 92E/15E

49° 56' NORTH LATITUDE

126° 40' WEST LONGITUDE

BY

JOHN A. MCCLINTOCK, P.Eng.

32841 Ashley Way Abbotsford, B.C., V2S 5W3

Vancouver, B.C.

February 15, 1988.

### TABLE OF CONTENTS

.

| 1 | A) | SUMMARY AND CONCLUSIONS    | l   |
|---|----|----------------------------|-----|
| F | 3) | INTRODUCTION               | 2   |
|   | 1) | Location                   | 2   |
|   | 2) | Access and Physiography    | 3   |
|   | 3) | Ownership                  | 3   |
|   | 4) | -                          | 4   |
|   | 5) | Economic Considerations    | 5   |
| C | C) | GEOCHEMISTRY               | 6   |
| I | )  | GEOPHYSICS                 | 8   |
|   | 1) | Survey Procedure           | 8   |
|   | 2) | Compilation of Data        | · 9 |
|   | 3) | Instrumentation and Theory | 9   |
|   | 4) | Results                    | 11  |
| E | E) | GEOLOGY                    | 11  |
|   | 1) | Regional geology           | 11  |
|   | 2) | Property Geology           | 13  |
|   | 3) | Mineralization             | 13  |
| E | ?) | DISCUSSION                 | 16  |
| Ċ | G) | RECOMMENDATIONS            | 17  |
|   |    | REFERENCES                 | 20  |
|   |    | CERTIFICATION              | 21  |

Page

٠

## APPENDIX I

- Rock Chip Sample Analyses
- Soil Sample Analyses

## ILLUSTRATIONS

| Figure | 1 | -           | Property Location Map (1:2,000,000) after page 2                  |
|--------|---|-------------|-------------------------------------------------------------------|
| Figure | 2 | -           | Claim Map (1:50,000) after page 3                                 |
| Figure | 3 | -           | Zeballos Gold Camp after page 5                                   |
| Figure | 4 | -           | Property Geology (1:5,000) and compilation map<br>(Back Envelope) |
| Figure | 5 | -           | Geochemical Compilation Map:<br>Silver (l:5,000) Back Envelope    |
| Figure | 6 | -           | Geochemical Compilation Map:<br>Copper (1:5,000) Back Envelope    |
| Figure | 7 | <del></del> | Geochemical Compilation Map:<br>Zinc (1:5,000) Back Envelope      |

#### A) SUMMARY AND CONCLUSIONS

The Independance property occurs in the Zeballos Gold Camp of north western Vancouver Island. The Zeballos camp has produced over 287,000 ounces of gold and 124,700 ounces of silver from narrow quartz-sulphide filled shear zones cutting volcanic, sedimentary and intrusive rocks. Although rarely exceeding 30 centimeters in thickness, the veins are persistent over considerable distances and had an average production grade of 0.44 ounces per ton gold.

On the Independance property, two westerly trending shearhosted veins cut andesitic volcanic rock. The principal vein system, known as the Main Showing, was explored by open cuts and a 150 meter adit in 1939 by Bralorne Mines Ltd. The Main zone varies in thickness from two meters to less than 30 centimeters and has been traced over a distance of 150 meters and remains open on strike and to depth. Sampling of the vein and sulphidemineralized sheared wall rock by J.W. Hoadley of the Geological Survey of Canada obtained gold values to 1.18 ounces per ton. Resampling of the adit during the current program obtained gold values to 0.528 ounces per ton.

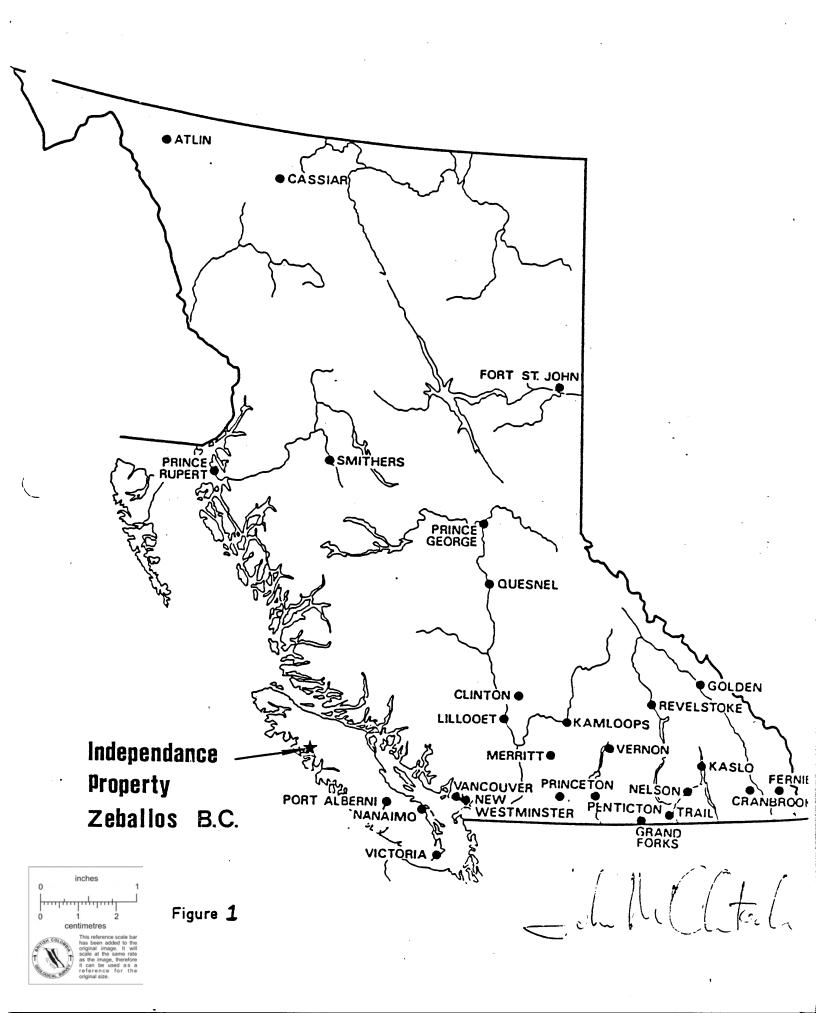
The second vein system, known as the North Shear Zone, is up to two meters wide and can be traced in outcrop for 10 meters before disappearing under overburden. A one meter channel sample across the shear-hosted vein assayed 0.036 ounces per ton gold. The North Shear Zone remains open on strike and to depth.

Soil sampling on a widely spaced grid (100 meters by 50 meters) over the central portion of the property highlighted numerous areas of the claims as anomalous for silver, copper and zinc including a copper value to 528 ppm over the North Shear. The grid was not extended far enough to the west to cover the Main Shear. Sources of the remaining silver, copper and zinc anomalies are not explained. These anomalies may be caused by shear-hosted veins concealed beneath overburden.

- 1 -

A limited geophysical program of VLF-EM and magnetometer surveying was carried out over a few lines in the east part of the geochemical grid. The contoured Fraser Filtered VLF-EM data identified several east-west trending conductors, one of which is co-incident with the North Shear.

Exploration to date indicates the Independance property to have good potential for a high-grade, vein-type, gold-silver deposit similar to those mined elsewhere in the Zeballos Gold Camp. Future exploration of the property should be designed to outline a gold deposit in narrow shear-hosted vein systems having a reserve in excess of 150,000 tons grading 0.4 ounces per ton. To this end a comprehensive, two phase exploration program having a combined cost of \$133,750 is recommended.


#### B) INTRODUCTION

At the request of J. Paul Stevenson of J. Paul Stevenson & Associates Ltd., the writer compiled this report on the Independance property situated in the Zeballos Gold Camp of Western Vancouver Island.

The report is based on a one day examination of the claim on July 11, 1987, a review of geochemical, geophysical and rock sampling data provided by Renegade Mineral Exploration Services Ltd. and a review of all available government maps and assessment reports describing work on the Independence property.

1) Location

The Independance property occurs in the Alberni Mining Division, British Columbia, approximately four kilometers north of the village of Tahsis. More exactly, it lies at 49 degrees 56 minutes north latitude and 126 degrees 40 minutes west longitude (National Topography System Map 92E/16).



2) Access and Physiography

The Independance property is readily accessible from Campbell River via Highway 28 to the village of Gold River, then by 65 kilometers of all weather gravel road to Tahsis. From Tahsis, a secondary gravel road extends to the south western corner of the claim. Access to the remainder of the claim is by foot.

The claim covers a steep, easterly facing slope overlooking the Tahsis River. Elevations vary from 30 meters at the river to over 1000 meters at the western property boundary.

Vegetation is dense, consisting of mature stands of cedar, fir and hemlock on the upper slopes and dense second growth alder, cedar and hemlock in the Tahsis River Valley. The Tahsis area receives heavy precipitation, close to 500 centimeters per year.

3) <u>Ownership</u>

At the time of the writer's examination, the Independance property consisted of a single mineral claim located under the British Columbia Modified Grid System.

| <u>Claim Name</u> | <u># of units</u> | <u>Record</u> # | Expiry Date |
|-------------------|-------------------|-----------------|-------------|
| Independance      | 20                | 3097            | Jan. 5/91   |

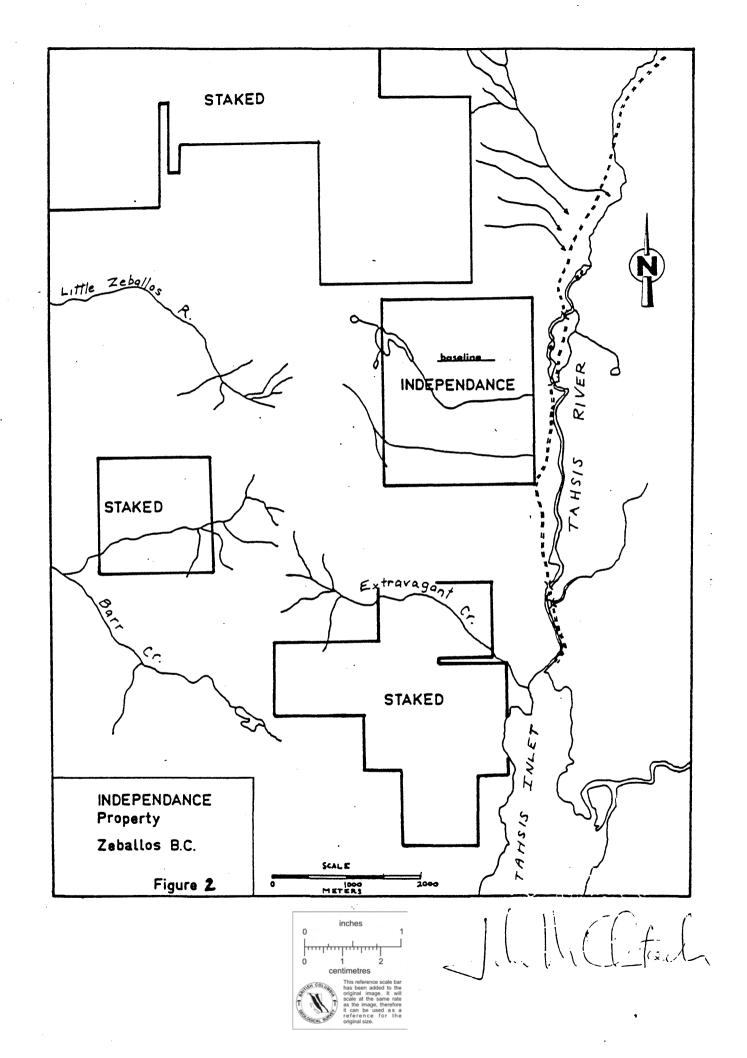
All interest in the above described claim is held by North American Ventures Ltd.

The legal corner post and claim lines of the Independance claim observed during the course of the writer's examination conformed to the regulations of the British Columbia Mineral Act.

- 3 -

#### 4) History and Previous Work

The Independance property is located five miles southeast of the Zeballos Gold Camp, one of the Canadian Cordillera's important gold producing areas (Economic Geology Report #1).


The area has a long history of exploration, development and mining dating back to the early 1900's when placer gold was discovered in the Zeballos River (Holland 1950).

In 1924, the discovery of gold-bearing quartz veins on the Tagore property sparked a flurry of exploration activity which led to the discovery and staking of over 40 gold prospects. By 1934, shipments of high-grade gold ore had been made from several properties to smelters in Trail, B.C. and Tacoma, Washington. In 1936, the Privateer Mine was discovered and by 1939 a mill had been built and the mine was in full production. Over twenty other properties were under development or in production by 1940.

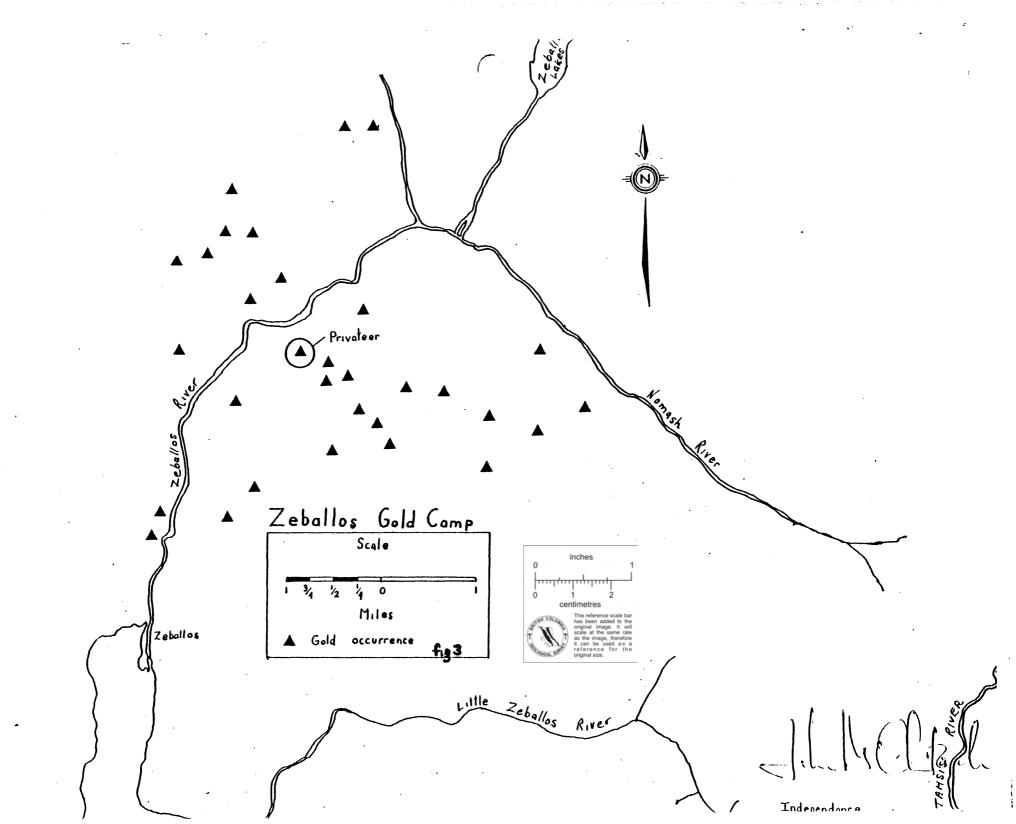
Production from the Zeballos Gold Camp continued until 1943 when the mines were closed due to labour shortages (Hoadley 1950). In 1945, the Privateer Mine was reopened and ran until 1948 when low-gold prices (\$35 per ounce) combined with rising costs caused closure. (Hoadley 1950).

Total lode gold production up to 1948 from the Zeballos Gold Camp is reported by the B.C. Department of Mines to be 287,811 ounces from 651,000 tons mined giving an average ore grade of 0.44 oz per ton. The bulk of the production was from the Privateer Mine which produced 154,381 ounces from 278,771 tons mined. Production from the various mines in the Zeballos Camp is summarized by J.F. Stevenson of the B.C. Department of Mines as follows:

- 4 -



#### Production Ounce of Gold


| Privateer        | 154,381 |
|------------------|---------|
| Spud Valley      | 54,039  |
| Mount Zeballos   | 30,525  |
| Central Zeballos | 20,472  |
| Prident          | 13,937  |
| White Star       | 7,081   |
| Others           | 7,387   |
|                  | 287,811 |

From 1948 until 1980, the area was sporadically explored by various companies and individuals. In 1983, New Privateer Mines Ltd. began re-evaluating the Privateer Mine, and planned to place the property back into production. Current reserves of the Privateer Mine are reported by New Privateer to be in the order of 135,000 tons grading 0.267 oz per ton gold. Elsewhere in the Zeballos area, the Spud Valley property, situated 12 kilometers northeast of the Independance property, is being explored by McAdam Resources. McAdam Resources report a reserve of 429,990 tons grading 0.25 oz per ton (B.C. Mineral Exploration Review 1986).

The first reported work on what is now the Independance claim was in 1938 when William Elliot, William Hamilton and George Hatlow staked claims in the area. Bralorne Mines optioned the claims and explored the gold showings with a series of open cuts and a 150 meter adit. Bralorne Mines relinquished their option in 1939. Since 1939, the vicinity of the workings has been staked by numerous individuals but no reported exploration of the property has occurred.

#### 5) Economic Considerations

The Independance property is linked to the village of Tahsis by four kilometers of gravel road. The infrastructure at Tahsis could support development in the Independance area. Electrical power is available in Tahsis and a reliable supply of



water is available from the Tahsis River. There is adequate area on the Independance property for both waste and/or tailings disposal.

#### C) GEOCHEMISTRY

During May, 1987, Renegade Mineral Exploration Services Ltd., prepared a grid and collected 290 soil samples at 100 meter intervals along east/west oriented lines spaced 50 meters apart the central portion of the Independance claim. over Unfortunately, due in part to the dense forest cover and in part to initial confusion over the precise location of the adit, Renegade Mineral Exploration Services Ltd. positioned the grid to the east of the known gold mineralization. As a result, the soil lines were stopped short of the old workings.

At each station, a sample of "B" horizon soil was collected using a Polaski tool and placed in a labeled kraft envelope. All of the soil samples were sent to Vangeochem Laboratories Ltd. in North Vancouver where they were analysed by atomic absorption for gold, silver, copper and zinc. Results of sample analyses were statistically analysed to determine the anomalous levels for each element. Since silver, copper and zinc values displayed a lognormal distribution, statistical manipulations were carried out on the logarithms of the values. Anomalous levels for the elements were taken at mean plus two standard deviations.

| <u>Elements</u> | Mean | Anamalous |
|-----------------|------|-----------|
| Gold (ppb)      | N.D. | N.D.      |
| Silver (ppm)    | 0.1  | 0.9       |
| Copper (ppm)    | 40   | 240       |
| Zinc (ppm)      | 27   | 120       |

- 6 -

All the gold, copper, silver and zinc values were plotted on Figure three. Silver, copper and zinc values displayed distinctly anomalous populations and are plotted on Figures six through eight respectively. Analytical results for all of the elements are provided in Appendix I.

#### Silver

Analytical silver results from the soil samples show six separate areas of the grid to be anomalous for silver. The location of the anomalous areas are displayed on Figure six. Of the six anomalies, three are multisample anomalies with dimensions up to 100 meters by 100 meters. The other three anomalies consist of single samples. Silver values in the anomalies are up to 2.1 ppm.

The source of the anomalous silver levels in these areas is unexplained. Since silver occurs in the known veins on the property it is possible that these silver anomalies in the soil are caused by mineralized veins concealed beneath overburden. Evaluation of the silver anomalies will require detailed prospecting and more closely spaced soil sampling.

#### Copper

The soil sampling revealed seven anomalous areas on the grid (Fig. 7). One anomaly, having 528 ppm copper, occurs in the vicinity of a gold bearing vein known as the North Shear. The remaining six anomalies are unexplained. No sulphide mineralization, which would account for these values, was noted during sampling. As copper occurs in the gold-bearing veins, these anomalous values may be caused by overburden covered auriferous veins. Investigations of these anomalous values to locate the source of the high copper will require detailed prospecting, rock and soil sampling.

#### <u>Zinc</u>

Three separate anomalous zinc areas of the grid were outlined by soil sampling (Fig. 8). The largest anomalous area measures 150 meters by 50 meters and has zinc values to 375 ppm. The other two anomalies consist of single samples. Like silver and copper, the source of the anomalous levels of zinc is unexplained. Since zinc is known to occur with gold in the veins on the property, it is possible that the anomalous zinc in soil is caused by gold-bearing veins. Evaluation of the anomalous zinc requires detailed prospecting and rock sampling to determine its source.

#### D) GEOPHYSICS

A limited geophysical program of very low frequency (VLF) electromagnetic (EM) and magnetometer surveying was carried out over the Independance property. The purpose of the VLF-EM survey was to determine its usefulness in identifying fault or shear structure which might host gold mineralized vein systems. The magnetometer survey was carried out to test its ability to assist in mapping rock types. It was hoped the magnetometer survey could be used to trace the contact between the Quatsino and Karmutsen Formations.

#### 1. <u>Survey Procedure</u>

The VLF-EM 16 survey readings were taken at 50 meter intervals along north-south lines in the eastern portion of the geochemical grid. Care was taken in regard to technique to attempt to compensate for the steep terrain present on the property. All readings were taken facing approximately perpendicular to the transmitting station at Seattle, U.S.A. The magnetometer survey was carried out along the same grid line used for the VLF-EM survey. To compensate for diurnal drift, readings were taken at timed intervals along "looped" traverses in which the initial station of the traverse was reread at the end of the traverse to determine the magnetic drift. The magnetic drift was calculated and then applied as a correction to the raw data.

#### 2. Compilation of Data

The VLF-EM readings were reduced by applying the Fraser Filter and plotted at a scale of 1:2500 (Fig. 4). Filtered data, as shown on the accompanying map, is plotted between reading stations. The positive filtered values were contoured.

The Fraser Filter is essentially a 4-point difference operator which transforms zero crossings into peaks and a low pass smoothing operator which reduces the inherent high frequency noise in the data. Another advantage of this filter is that a conductor does not show up as a cross-over on the unfiltered data.

The magnetic data, upon correction for diurnal drift, was plotted at a scale of 1:2,500 on Figure four.

#### 3. Instrumentation and Theory

A standard Geonics VLF-EM 16 was used for the VLF-EM survey. This instrument is designed to measure the magnetic component of a very low frequency (VLF) electromagnetic field. The U.S. Navy submarine transmitter located in Seattle and transmitting at 24.8 KHZ was used.

- 9 -

In all electromagnetic exploration, a transmitter produces an alternating magnetic field (primary) with a strong alternating current usually through a wire coil. If a conductive mass, such as a sulphide body, is within this magnetic field a secondary alternating current is induced which in turn induces a secondary magnetic field that distorts the primary magnetic field. It is this distortion that the VLF-EM receiver measures. The VLF-EM uses a frequency range from 16 to 24 KHZ whereas most EM instrumentls use frequencies ranging from a few hundred to a few Because of its relatively high frequency, the VLFthousand HZ. EM can pick up bodies of too low a conductivity for the other EM Also, since the signal derives from an methods to pick up. infinite source, faults of great horizontal and vertical extent give particularly strong anomalous responses.

Consequently the VLF-EM has additional uses in mapping structure and in detecting sulphide bodies of too low a conductivity for conventional EM methods and too small for induced polarization. However, its sensitivity to lower conductive bodies makes VLF-EM susceptable to clay beds, electrolyte-filled fault-shear zones and porous horizons, graphite, carbonaceous sediments, lithological contacts, and low-conductive sulphide bodies. This susceptibility to lower conductive bodies results in a number of anomalies, many of them difficult to explain and thus VLF-EM preferably should not be interpreted without good geological knowledge of the property and/or other geophysical and geochemical surveys.

The magnetic survey utilized a Scintrex MP-2 precession instrument. This instrument measures the magnetic component of the rock. The technique is useful in distinguishing between rocks with magnetic minerals and those lacking them, and in locating magnetic sulphide mineralization.

- 10 -

Magnetometer surveys are a useful tool in assisting geological mapping in overburden covered areas where rock types have contrasting magnetic signatures or in locating mineral deposits where there is a significant content of magnetic minerals.

#### 4. <u>Results</u>

Plotting and contouring of the positive Fraser Filter VLF-EM values showed a number of east-west trending conductors in the southern area of the grid. One of these conductors is co-incident with a known shear-hosted vein and a copper soil anomaly. The remainder of the VLF anomalies are unexplained and will require geological mapping to determine their cause.

The magnetometer survey showed the magnetic relief to be in the order of 3500 gammas. However, because of the limited extent of the survey and the wide spacing of the lines, no meaningful trend could be identified.

The VLF-EM and magnetometer surveys should be extended to cover the entire grid. Since the present survey readings were obtained from widely spaced stations it would greatly assist interpretation of the geophysical data if readings were collected at closer spacings of no greater than 25 meters on 50 meter spaced lines. Interpretation of the data would also benefit from a better knowledge of the geology.

#### E) GEOLOGY

#### 1. <u>Regional Geology</u>

Geologically, the Independance property lies in the Insular Belt, a northwest trending, Paleozoic to Cenozoic Age assemblage of sedimentary, volcanic and intrusive rocks underlying Vancouver Island and the Queen Charlotte Islands.

The vicinity of the Independance property is underlain by volcanic and sedimentary rocks of the late Triassic to early Jurassic Age Vancouver Group. The Vancouver Group is divisible into three distinct formations, which are from oldest to youngest: the Karmutsen Formation, the Quatsino Formation and the Bonanza Formation.

The Karmutsen Formation is a thick sequence of pillowed and porphyritic basalt with intercalated pillow breccia and tuff, and minor argillite and quartzite. Estimated thickness of this formation varies from 1500 meters to 7600 meters.

Conformably overlying the Karmutsen is the Quatsino Formation, consisting of a sequence of limestone up to 1000 meters in thickness.

The Quatsino Formation is in turn overlain conformably by the Bonanza Formation. The Bonanza Formation consists of a lower sedimentary member and an upper volcanic member. The sedimentary member is composed of shale and graywacke while the upper member consists primarily of dacitic to andesitic lavas, tuff and breccias. Total thickness of the Bonanza Formation may be as much as 3000 meters.

The Vancouver Group rocks have been gently folded along a north-northwesterly trending axis and disrupted by large-scale block faulting.

Intrusive into the Vancouver Group rocks are granodiorite to quartz-diorite of the mid Jurassic Zeballos Batholith. The Zeballos Batholith forms an easterly trending batholith seven kilometers long by up to two kilometers wide.

#### 2. Property Geology

Detailed geological mapping of the Independance property has not been carried out, and the following geological description is based on 1:50,000 scale geological mapping of the area by J.W. Hoadley of the Geological Survey of Canada and published as GSC Map 1027 (J.W. Hoadley 1950). Rock outcroppings observed during the course of the field examination confirmed the geology mapped by J.W. Hoadley.

The property straddles the northerly trending, moderately dipping contact between the underlying Karmutsen and overlying Quatsino Formations. On the property, the Karmutsen rocks are predominately massive to porphyritic andesite flows and dykes with occasional tuffaceous beds. These volcanic rocks are weakly chloritized and cut by calcite and epidote veinlets. The Quatsino limestone consists of massive to thickly bedded white and medium gray limestone.

Approximately one kilometer north of the claims, the Karmutsen rocks are in contact with granodiorite of the Zeballos Batholith.

3. <u>Mineralization</u>

The following description of gold and silver mineralization in the Zeballos Gold Camp is summarized from B.C. Department of Mines Bulletin 27 entitled Geology and Mineral Deposits of the Zeballos Mining Camp by J.F. Stevenson.

In the Zeballos Gold Camp, over 287,000 ounces of gold and 124,700 ounces of silver were produced from narrow, quartzsulphide filled, well defined fissures (Stevenson 1950). Although, rarely exceeding 30 centimeters in thickness, these veins maintain a fairly uniform strike and dip over considerable distances. Locally the quartz and sulphide fillings are absent and only sheared rock is present. The walls of the veins are sharp and usually are marked by a thin seam of gouge. Often the veins occur in sheeted zones to 1.2 meters wide which may change along strike into a narrow shear containing lenticular quartz veins.

The veins consist of suphides and gold in a gangue of quartz and lesser calcite. Sulphides form 10% to 50% of the vein and consist of pyrite, sphalerite, arsenopyrite, chalcopyrite, galena and pyrrhotite. Gold occurs in its native form and visible gold is commonly observed in the veins.

The veins occur in both the Vancouver Group rocks and the Zeballos Instrusive, however, most of the gold was produced from veins cutting andesite. Alteration of the host rock is restricted to the immediate walls of the vein and seldom extends for more than 15 centimeters from the veins. Where the veins cut andesite, the wall rock is altered to a felted mass of sericite and carbonate while in the granodiorite, alteration consists of sericitization. Limestone wall rock is generally unaltered.

Gold mineralization on the Independance property occurs in westerly trending, steeply dipping shear zones cutting andesitic, fine grained flows near their contact with overlying limestone of the Quatsino Formation. Two separate, parallel shears are present and are named the Main Shear and the North Shear zones.

The Main Shear varies in width from two meters to less than 30 centimeters and contains lenticular-shaped veins of quartz. The quartz veins, like others in the Zeballos Camp, rarely exceed 60 centimeters in thickness and are variably mineralized with pyrite, chalcopyrite and sphalerite. Total sulphide content ranges from traces to greater than 50% and averages 5%. The Main Shear has been explored by a 150 meter long adit and a few open pits. Results of Bralorne Mines Ltd. sampling of the adit were not available to the writer. However, eleven grab samples were collected from various places in the adit by Hoadley and were reported in Geological Survey of Canada Memoir 272 and assayed up to 0.19 ounces per ton gold and averaged 0.02 ounces per ton. A surface channel across an undisclosed width assayed 1.18 ounces per ton and 0.47 ounces per ton silver. The adit, which was located after the writers visit was sampled by an employee of Renegade Mineral Exploration Services Ltd. The results of the sampling are summarized as follows:

| Sample # | Location | Description               | Gold<br>opt. | Silver<br>_opt. |
|----------|----------|---------------------------|--------------|-----------------|
| 1016     | Back     | Quartz                    | 0.024        | 0.01            |
| 1017     | Wall     | Quartz                    | 0.014        | 0.14            |
| 1018     | Wall     | Quartz & sheared andesite | 0.064        | 0.03            |
| 1019     | Wall     | Sheared Andesite          | 0.128        | 0.05            |
| 1020     | Wall     | Sheared Andesite          | 0.528        | 0.10            |

The Main Shear remains untested to depth and is open on strike both to the east and west. The soil sampling grid did not extend far enough to the west to cover the zone. Further detailed soil sampling in conjunction with sampling of the working and hand-trenching of the projected strike extensions is warranted.

The North Shear zone is two meters wide and hosts two separate 15 to 30 centimeters thick quartz veins. The quartz veins are sparsely mineralized with pyrite and chalcopyrite which form selvages along the vein walls. The North Shear has been exposed in an open cut and is traceable on a bluff for ten meters before disappearing under overburden.

Soil sampling results from the North Shear zone showed a single sample to contain 528 ppm copper. The widely spaced sample sites (100 meters by 50 meters) in combination with the narrow widths of the shear zone (less than two meters) make it possible that the copper anomaly may be of greater extent. To properly trace the North Shear by geochemical techniques will require close-spaced sampling (ten meter intervals) along northerly oriented lines spaced no more than 25 meters apart. The strike extent of the vein could also be traced by hand-excavated trenches.

The writer collected two samples from the open cut on the North Shear zone. Results of the sampling are summarized below:

| <u>Sample #</u> | Type of Sample | Description         | Gold<br><u>oz per ton</u> |
|-----------------|----------------|---------------------|---------------------------|
| 11-1            | channel (1m)   | shear 0 to 1 m west | 0.001                     |
| 11-2            | channel (1m)   | shear 1 to 2 m west | 0.036                     |

#### DISCUSSION

The recent exploration program carried out on the Independance property has verified the presence of shear hosted quartz veins containing gold values up to 0.528 ounces per ton and confirmed the gold values reported by Hoadley in GSC Memoir 272.

The style of mineralization, alteration and geological setting of the Independance veins are virtually identical to the other vein systems in the Zeballos camp from which over 280,000 ounces of gold were produced. It is interesting to note that the Privateer Mine, which produced over 154,000 ounces, like the Independance property, occurred in andestic volcanic rocks.

In addition to the known gold mineralization on the Independance property, numerous copper, silver and zinc soil anomalies are present. The cause of these anomalies has not been identified. Each of these anomalous areas may be caused by gold-bearing vein systems concealed beneath overburden. Further prospecting and sampling is required to evaluate anomalous areas. The Independance property, therefore, has a good potential to host a high-grade vein-type gold-silver deposit similar to that present on the Privateer property. Future exploration of the Independance property should be designed to outline a gold deposit in narrow shear-hosted veins having a reserve in excess of 150,000 tons grading 0.4 ounces per ton.

#### G) <u>RECOMMENDATIONS</u>

A two phase exploration program is recommended to evaluate the Independance property for vein-type gold deposits. The Phase Two program would be contingent upon the success of the initial Phase One program.

#### Phase One

Phase One would be a comprehensive program of 1:5,000 scale geological mapping, prospecting, detailed soil sampling and VLF-EM surveying, rock-chip sampling and hand trenching.

Geological mapping should be carried out over the entire property and should focus on structural interpretation. A better understanding of the geology would help interpretation of both VLF-EM and soil sampling results. Prospecting should be focussed in the areas of known mineralization and in the soil anomalies. Detailed and fill in soil sampling is recommended for the vicinity of the showings and to better define the areas highlighted by anomalous silver, copper and zinc. A similar recommendation for additional VLF-EM surveying is also made. Both soil sampling and detailed VLF-EM surveying should be carried out in intervals no more than 15 meters apart along lines spaced less than 25 meters apart. The adit on the Main zone and the North Shear should be geologically mapped at a scale of 1:200. Concurrently with detailed mapping, both showings should be rock-chip and channel

sampled to establish the gold and silver grade. Hand trenching of the projected strike extensions of both shear zones should be carried out.

#### PHASE ONE COST ESTIMATE

Analyses, 300 rock, 1500 soil \$12,300 Labour, 90 days @ \$120/day 10,800 6,000 Geologist, 30 days @ \$200/day Food & Accommodation, 120 days @ \$45/day 5,400 1,000 Supplies Truck 1,000 Fuel 200 Expediting 200 Supervision & Reporting, 10 days @ \$400/day 4,000 Contingencies 4,000 \$44,900

TOTAL

#### Phase Two

Contingent on successful results of the Phase One program it is recommended that mineralized zones, outlined by Phase One be tested with 500 meters of NQ-sized diamond drilling.

## PHASE TWO COST ESTIMATE

| Analyses                                     | \$ 500   |
|----------------------------------------------|----------|
| Drilling, 500 m @ \$90/meter (all up)        | 45,000   |
| Helicopter, 40 hours @ \$550/hour            | 22,000   |
| Geologist, 20 days @ \$200/day               | 4,000    |
| Assistant, 20 days @ \$120/day               | 2,400    |
| Accommodation, 40 days @ \$45/day            | 1,800    |
| Truck                                        | 800      |
| Fuel                                         | 150      |
| Supplies                                     | 200      |
| Supervision & Reporting, 10 days @ \$400/day | 4,000    |
| Contingencies                                | 8,000    |
| TOTAL                                        | \$88,850 |

TOTAL PHASE ONE & TWO

\$133,750

John A. McClintock, P.Eng.

#### REFERENCES

British Columbia Mineral Exploration Review 1986, Ministry of Energy, Mines and Petroleum Resources

Geological Survey of Canada (1950); Map 1027.

- Hoadley J.W., (1950), Geology and Mineral Deposits of the Zeballos - Nimpkish Area, Vancouver Island B.C., Geological Survey of Canada Memoir 272.
- Stevenson J.F., (1950), Geology and Mineral Deposits of the Zeballos Mining Camp, British Columbia, B.C. Department of Mines Bulletin 27.
- Holland S.S., (1950), Placer Gold Production of British Columbia, B.C., Ministry of Energy, Mines and Resources, Bulletin 28
- Geological Survey of Canada, (1981), Economic Geology Report No. 1 Geology and Economic Minerals of Canada.

CERTIFICATION

I, John A. McClintock, of 32841 Ashley Way, in the municipality of Matsqui, in the province of British Columbia, hereby certify as follows:

- That I am a registered member of the Association of Professional Engineers of British Columbia - No. 12078 - 1980;
- 2) That I am a graduate from the University of British Columbia with a Bachelor of Science degree (honors) geology in 1973;
- That I have practised my profession continuously since graduation;
- 4) That I have no interest directly or indirectly in the Independance Property nor do I own directly or indirectly, any shares of North American Ventures Ltd.;
- 5) That the information contained in this report is based on a one day examination of the Independance claim on July 11, 1987, review of geochemical and geophysical data supplied by J. Paul Stevenson and Associates Ltd. and a review of all available government maps and reports;
- 6) That I consent to the use of this report by North American Ventures Ltd. in a Prospectus or Statement of Material Facts or any such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

John A. McClintock, P.Eng.



# VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

# ASSAY ANALYTICAL REPORT

ng agung panan panan panan panan panan panan dalah panan panan bahan panan panan panan panan panan panan panan panan

| CLIENT:  | RENEGADE MINERAL EXP. | SER | DATE:    | July 24 1987 |  |
|----------|-----------------------|-----|----------|--------------|--|
| ADDRESS: | 300-800 W. Pender St. |     |          |              |  |
| • •      | Vancouver, B.C.       |     | REPORT#: | 870793 AA    |  |
| :        | V6C 2V8               |     | JOB#:    | 870793       |  |
|          |                       |     |          |              |  |

PROJECT#: INDEPENDENCE SAMPLES ARRIVED: July 21 1987 REFORT COMPLETED: July 24 1987 ANALYSED FOR: Ag Au INVOICE#: 870793 NA TOTAL SAMPLES: 5 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 5 ROCK

SAMPLES FROM: RENEGADE MINERAL EXP. SER COPY SENT TO: RENEGADE MINERAL EXP. SER

#### PREPARED FOR: RENEGADE MINERAL EXP. SER

| ANALYSED BY: | David | Chiu | l |
|--------------|-------|------|---|
| SIGNED:      |       |      |   |

Registered Provincial Assayer

GENERAL REMARK: None

| REPORT NUMBER: 870793 AA JOB NUMBER: 870793 * RENEGADE MINERAL E |         |        |      |
|------------------------------------------------------------------|---------|--------|------|
|                                                                  | IP. SER | PAGE 1 | OF 1 |
| SAMPLE # Ag Au<br>oz/st oz/st                                    |         |        |      |
| 01016 ' .01 .024                                                 |         |        |      |
| 01017 .14 .014                                                   |         |        |      |
| 01018 .03 .064                                                   |         |        |      |
| 01019 .05 .128                                                   |         |        |      |
| .10 .528                                                         |         |        |      |

| DETECTION<br>1 Troy oz. | I ∟IMI⊤<br>/short ton = 34.28 ppm | .01<br>1 ppm = 0.0001X | ppo = parts per million | n <=less than |  |
|-------------------------|-----------------------------------|------------------------|-------------------------|---------------|--|
|                         | signed:                           |                        |                         |               |  |



·\*\*

#### VANGEOCHEM LAB LIMI ED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. VSL 1L6 (604) 251-5658

| SAMPLE *                 | Au<br>ppt |   |   |
|--------------------------|-----------|---|---|
| L534 54+00x              | , +(      |   |   |
| L534 54+50X              | :0        |   |   |
| L53W 55+50N              | nd        |   |   |
| 153W 58+50N              | 10        |   |   |
| LS3X 57+GON              | 10        |   |   |
| L50% 57+50N              | :0        |   |   |
| 1534 - 58+50N            | 5         |   |   |
| 1534 59+50N              | 5         |   |   |
| L53% 50+00%              | :0        |   |   |
| L534 50+50N              | 5         |   |   |
| 154# 5#+50N .            | 5         |   |   |
| L544 55+50N              | 5         |   |   |
| LS4N 56+00N              | 50        |   |   |
| 1544 - 55+50N            | 5         |   |   |
| LS4W S7+00N              | 15        |   |   |
| L54W 57+50N              | 5         |   |   |
| 544 58+00N               | 10        |   |   |
| L54W 53+00N              | 10        |   |   |
| 1544 59+50N              | 5         |   |   |
| .544 бо+сон              | S         |   |   |
| 134% 50+50N              | 15        |   |   |
| _55W 54+00N              | 10        |   |   |
| .554 54+50N              | 40-       |   |   |
| .55W 55+00N              | 5         |   |   |
| .354 - 55+30N            | 10        |   |   |
| 558 56+00N               | 10        |   |   |
| .554 56+50N              | 20        |   |   |
| .55W 57+00N              | 10        |   |   |
| .55W 53+00N              | 5         |   |   |
| .55W 58+50N <sup>.</sup> | 15        |   |   |
| 55W 59+00N               | 5         |   |   |
| .55W 53+50N              | 10        |   |   |
| .55W 60+50N              | 15        |   | 4 |
| .564 55+00N              | 10        | • |   |
| .564 55+50N              | กป        |   |   |
| 56W 57+00N               | 10        |   |   |
| .56W 58+00N              | 10        |   |   |
| .56¥ 50+00N              | 5         |   |   |
| .56W 60+50N              | 30 ·      | • |   |

#### DETECTION LIMIT nd = none detected

í

VANGEOCHEM LAB LIMITE

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

≻

**SC** 

BRANCH OFFICE • 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

| REPO  | RT NUMBER: 87049 | IO SA JOB NUMBER: | 870480 | RENEGAD     | E EIPL. | serv. | LTD. |   | PAGE | 2 | OF | 4 |
|-------|------------------|-------------------|--------|-------------|---------|-------|------|---|------|---|----|---|
| SAMP  |                  | Au                |        |             |         |       |      |   |      |   |    |   |
| 1.614 | 51+00N           | ppb<br>S          |        |             |         |       |      |   |      |   |    | • |
|       | 61+50N A         | 5                 |        |             |         |       |      |   |      |   |    |   |
|       | 61+50N B         | 5                 |        |             |         |       |      |   |      |   |    |   |
|       | 62+50N           | nd                |        |             |         |       |      |   |      |   |    |   |
|       | 63+00N           | nd                |        |             |         |       |      |   |      |   |    |   |
|       |                  |                   |        |             |         |       |      |   |      |   |    |   |
| L61W  | 63+50N           | nd                |        |             |         |       |      |   |      |   |    |   |
| L61W  | 64+00N           | 15                |        |             |         |       |      |   |      |   |    |   |
| L61W  | 64+50N           | 10                |        |             |         |       |      |   |      |   |    |   |
| L61#  | K00+23           | ad                |        |             |         |       |      | • |      |   |    |   |
| L61W  | 65+50N           | :0                |        |             |         |       |      | • |      |   |    |   |
|       |                  |                   |        |             |         |       |      |   |      |   |    |   |
|       | EE+0CN           | 5                 |        |             |         |       |      |   |      |   |    |   |
|       | 5E+50N           | 5                 |        |             |         |       |      |   |      |   |    |   |
|       | 67+00N           | :5                |        | •           |         |       |      |   |      |   |    |   |
|       | 59+CON           | 5                 | ,      |             |         |       |      |   |      |   |    |   |
| LEIW  | E8+50N           | 5                 |        |             |         |       |      |   |      |   |    |   |
| 1619  | 69+50N           | 15                |        |             |         |       |      |   |      |   |    |   |
|       | 70+00N           | 10                |        |             |         |       |      |   |      |   |    |   |
|       | 70+50N           | 10                |        |             |         |       |      |   |      |   |    |   |
|       | 71+00N           | 5                 |        |             |         |       |      |   |      |   |    |   |
|       | 61+00N           | 5                 |        |             |         |       |      |   |      |   |    |   |
|       |                  | •                 |        |             |         |       |      |   |      |   |    |   |
| LS2W  | 61+5CN           | 5                 |        |             |         |       |      |   |      |   |    |   |
| LS2X  | 52+00N           | nd                |        |             |         |       |      |   |      |   |    |   |
|       | 62+50N           | nd                |        |             |         |       |      |   |      |   |    |   |
|       | 63+00N           | กป                |        |             |         |       |      |   |      |   |    |   |
| 162#  | 63+50x           | nd                |        |             |         |       |      |   |      |   |    |   |
| 1629  | 64+00N           | 5                 |        |             |         |       |      |   |      |   |    |   |
|       | 65+00N           | 10                |        |             |         |       |      |   |      |   |    |   |
| L62W  | 66+00N           | nđ                |        |             |         |       |      |   |      |   |    |   |
| 1624  | E7+50N           | nd                |        |             |         |       |      |   |      |   |    |   |
| le2¥  | 68+00N           | 10                |        |             |         |       |      |   |      |   |    |   |
|       |                  |                   |        |             |         |       |      |   |      |   |    |   |
| L624  |                  | nd                |        |             |         |       |      |   |      |   |    |   |
| L52W  | 69+50N           | 5                 |        |             |         |       |      |   |      |   |    |   |
| L52W  | 70+00N           | 10                |        |             |         |       |      |   |      |   |    |   |
|       | 70+508           | 10                |        |             |         |       |      |   |      |   |    |   |
| L62¥  | 71+00N           | nd                |        |             |         |       |      |   |      |   |    |   |
| L63W  | 61+00N           | 5                 |        |             |         |       |      |   |      |   |    |   |
| L63W  | 61+50N           | 10                |        |             |         |       |      |   |      |   |    |   |
| L63X  | 62+00N           | nd                |        |             |         |       |      |   |      |   |    |   |
| L63¥  | 62+50N           | 5                 |        |             |         |       |      |   |      |   |    |   |
| DETEC | TION LINIT       | 5                 |        |             |         |       |      |   |      |   |    |   |
|       | none detected    | = not analysed    | is = i | nsufficient | samle   |       |      |   |      |   |    |   |
|       |                  |                   | •      |             |         |       |      |   |      |   |    |   |



۹.

 $\left( \right)$ 

# VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

| SAMPLE   | :              |   | Au       |   |   |   |   |  |  |
|----------|----------------|---|----------|---|---|---|---|--|--|
|          | •              |   | ppb      |   |   |   |   |  |  |
| LSBW S   | 3+37%          |   | . :0     |   |   |   |   |  |  |
| LEEX E   | 2+50N          |   | 20       |   |   |   |   |  |  |
| 1104 6   |                |   | 15       |   |   |   |   |  |  |
| L534 6   |                |   | nd       |   |   |   |   |  |  |
| 1838 6   |                |   | nt       |   |   |   |   |  |  |
| LSON S   | 5+50N          |   | 5        |   |   |   |   |  |  |
| L534 6   | 6+00N          |   | 10       |   |   |   |   |  |  |
| 1639 5   | 5+50N          |   | 10       |   |   |   |   |  |  |
| LEGN S   | 7+001          |   | 10       |   |   |   | • |  |  |
| 163W - 5 | 7+50N          |   | 5        |   |   |   |   |  |  |
| 1827 1   | ]•].; <b>;</b> |   | nđ       |   |   |   |   |  |  |
| 1534 5   | 3+50x          |   | 5        |   |   |   |   |  |  |
| 1844 5   |                |   | ad       |   |   |   |   |  |  |
| 1544 8   |                |   | :5       |   |   |   | • |  |  |
| દક્ષય કા |                |   | 5        |   |   |   |   |  |  |
| L54W 5   | 4+50N          |   | 10       |   |   |   |   |  |  |
| L64W 6   | 5+00N          |   | ຄປ       |   |   |   |   |  |  |
| L54W 6   | 5+50N          |   | nd       |   | ÷ |   |   |  |  |
| L64W 60  |                |   | nd       |   |   |   |   |  |  |
| LEAN 6   | 5+50N          |   | 5        |   |   |   |   |  |  |
| LE#W 5   | 8+00X          |   | nđ       |   |   |   |   |  |  |
| 1544 5   | 3+50N          |   | 5        |   |   |   |   |  |  |
| 1644 E   | 3+00N          |   | ಗರ       |   |   |   |   |  |  |
| 1844 7   | )+(i):1        |   | 19       |   |   |   |   |  |  |
| L65W 61  | L+90N          |   | 10       |   |   |   |   |  |  |
| LESW 61  | 1+50N          |   | nđ       |   |   |   |   |  |  |
| L654 63  | 3+00N          |   | 10       |   |   |   |   |  |  |
| LESH 64  | +90N           |   | nd       |   |   |   |   |  |  |
| 1654 65  | 5+00N          |   | nd       |   |   | ۰ |   |  |  |
| L65W 65  | 5+50N          |   | ad       |   |   |   |   |  |  |
| LSSW 65  | 1+50N          |   | 5        |   |   |   |   |  |  |
|          | 7+0CN          |   | - กซ่    |   |   |   |   |  |  |
| L65W 67  |                |   | nd       |   |   |   |   |  |  |
|          | 9+00x          |   | ্১       |   |   |   |   |  |  |
| L65% 70  | )+00N          |   | <u> </u> |   |   |   |   |  |  |
| L65W 70  |                |   | 10       |   |   |   |   |  |  |
| L66W 61  |                | ' | 10       | • |   |   |   |  |  |
| LEEN 63  | 2+00N          |   | 5        |   |   |   |   |  |  |
| L66W 62  | 2+50N          |   | nd       |   |   |   |   |  |  |
|          | DN LINIT       |   | 5        |   |   |   |   |  |  |



٤

# VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOLVER, B.C. V5L 1L6 (604) 251-5656

. . .

| REPOR   | T NUMBER: 970480 GA | JOB NUMBER | : 870430 | RENEGADE EXPL. SERV. | LTD. | FAGE | 4 ( | )F | 4 |
|---------|---------------------|------------|----------|----------------------|------|------|-----|----|---|
| Sampli  | E \$                | Au         |          |                      |      |      |     |    |   |
|         |                     | çap        |          |                      |      | •    |     |    |   |
|         | E3+00N              | 5<br>5     |          |                      |      |      |     |    |   |
| leen    | 63+50N              |            |          |                      |      |      |     |    |   |
| Leen    | 54+50%              | a <b>:</b> |          |                      |      |      |     |    |   |
|         | 65+00N              | 5          |          |                      |      |      |     |    |   |
| L65¥    | 55+50N              | 5          |          |                      |      |      |     |    |   |
| 1654    | 55+00N              | nd         |          |                      |      |      |     |    |   |
| LS6W    | 55+50N              | nđ         |          |                      |      |      |     |    |   |
| LEEW    | 67+00N              | nd         |          |                      |      |      |     |    |   |
| LEEN    | e7+50x              | nd         |          |                      |      |      |     |    |   |
| L65¥    | 59+00N              | nd         |          |                      |      |      |     |    |   |
| .664    | 13+50N              | ta         |          |                      |      |      |     |    |   |
| 564     | 59+00N              | 20         |          |                      |      |      |     |    |   |
|         | 69+50N              | nd         |          | •                    |      |      |     |    |   |
|         | 71+90#              | 5          |          |                      |      |      |     |    |   |
|         | 51+50N              | 10         |          |                      |      |      |     |    |   |
| 574     | \$2+00N             | nd         |          |                      |      |      |     |    |   |
|         | 63+50N              | nđ         |          |                      | •    |      |     |    |   |
|         | 54+50N              | nd         |          |                      |      |      |     |    |   |
|         | SSHOON              | 10         |          |                      |      |      |     |    |   |
|         | 55+50N              | 5          |          |                      |      |      |     |    |   |
| 67:     | 65+00N              | nd         |          |                      |      |      |     |    |   |
|         | 67+00N              | 10         |          | •                    |      |      |     |    |   |
|         | 57+501              | 5          |          |                      |      |      |     |    |   |
|         | 53+001              | nd         |          |                      |      |      |     |    |   |
|         | 51+00N              | 15         |          |                      |      |      |     |    |   |
| 621     | 62+00#              | 10         |          |                      |      |      |     |    |   |
|         | 62+50X              | 10         |          |                      |      |      |     |    |   |
|         |                     |            |          |                      |      |      |     |    |   |
|         | 63+50N<br>\$4+50N   | 5          |          |                      |      |      |     |    |   |
|         |                     | 10         |          |                      |      |      |     |    |   |
| . C 6 4 | 65+00N              | at         |          |                      |      |      |     |    |   |
|         | 55+00N              | :5         |          |                      |      |      |     |    |   |
|         | 66+5()N             | กป         |          |                      |      |      |     |    |   |
|         | e7+00x              | ព៨         |          |                      |      |      |     |    |   |
|         | 57+50N              | 10         |          |                      |      |      |     |    |   |
| 834     | 63+00N              | nd         |          |                      |      |      |     |    |   |

5 -- = not analysed

۰

.

| VGC                      | VANGE<br>MAIN O<br>1521 PEMBE<br>NORTH VANCOUV<br>(804) 986-6211 | RTON AVE.    1630 PANDO      TER, B.C. V7P 2S3    VANCOLVER, B. | FFICE<br>IFA ST.<br>C. V5L 1L8 |
|--------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|
| REPORT NUMBER: 878424 GA | JUB NUMBER: 878424                                               | REMENTICES LTD.                                                 | PAGE 1 OF 3                    |
| SAMPLE #                 | Au                                                               |                                                                 |                                |
|                          | рръ                                                              |                                                                 |                                |
| L53W 61+00N              | 18                                                               |                                                                 |                                |
| L53H 63+00N              | nd                                                               |                                                                 |                                |
| L53H 63+58N              | 5                                                                |                                                                 |                                |
| L534 64+00N              | nd                                                               |                                                                 |                                |
| L53H 64+50N              | nd                                                               |                                                                 | u                              |
| L534 65+58N              | 5                                                                |                                                                 |                                |
| L534 66+00N              | nd                                                               |                                                                 |                                |
| L53H 67+08N              | 28                                                               |                                                                 |                                |
| LS3H 67+58N              | ĥ                                                                |                                                                 |                                |
| L53H 68+00N              | 5                                                                |                                                                 |                                |
| L53H 68+58N              | 5                                                                |                                                                 |                                |
| L53H 69+00N              | 15                                                               |                                                                 |                                |
| L53H 69+58N              | nd                                                               |                                                                 |                                |
| L53H 78+00N              | කි                                                               |                                                                 |                                |
| L53H 78+58N              | nd                                                               |                                                                 |                                |
| L53H 71+00N              | nd                                                               |                                                                 |                                |
| L544 63+50N              | . nd g                                                           |                                                                 |                                |
| LSAH GA+BOON             | nd                                                               |                                                                 |                                |
| L544-65+58N              | 5.                                                               |                                                                 |                                |
| L54W 66+88N              | nd                                                               |                                                                 |                                |
| L544 67+88N              | nd                                                               |                                                                 |                                |
| L55H 63+90N              | 5                                                                |                                                                 |                                |
| L55H 63+58N              | nd                                                               |                                                                 |                                |
| L55H 64+00N              | 18                                                               |                                                                 |                                |
| L55H 65+00N              | 10                                                               |                                                                 |                                |
| L55H 65+58N              | `nd                                                              |                                                                 |                                |
| L55H 66+00N              | 10                                                               |                                                                 |                                |
| L55H 66+58N              | 5                                                                |                                                                 |                                |
| L55H 67+58N              | nd                                                               |                                                                 |                                |
| L55W 68+00N              | 5                                                                |                                                                 |                                |
| L55H 68+58N              | nd                                                               |                                                                 |                                |
| L55H 69+00N              | nd                                                               |                                                                 |                                |
| L55H 69+58N              | nd                                                               |                                                                 |                                |
| L55H 78+00N              | 5                                                                |                                                                 |                                |
| L55H 78+58N              | 5                                                                |                                                                 |                                |
| L56W 61+00N              | 5                                                                |                                                                 |                                |
| LS6H 62+58N              | nd                                                               |                                                                 |                                |
| L56H 65+50N              | nd                                                               |                                                                 | J                              |
| L56H 66+50N              | 18                                                               |                                                                 |                                |

.

:

(

|            | V/GC                                  | ×          | VANGE                             |                  | 8F       | LIMITED                             |           | •   |
|------------|---------------------------------------|------------|-----------------------------------|------------------|----------|-------------------------------------|-----------|-----|
| <i>(</i> . | VGC                                   |            | NORTH VANCOUV<br>(604) 985-5211 T | ER, B.C. V7P 253 | VANCO    | UVER, B.C. VSL 1L6<br>804) 251-6656 |           |     |
| •          | REPORT NUMBER: 878424 GA              | JOB N      | UKBER: 878424                     | RENEERDE SERVI   | CES LTD. |                                     | PAGE 2 DF | 3   |
|            | SAMPLE #                              | Au         |                                   |                  |          |                                     |           |     |
|            | · · · · · · · · · · · · · · · · · · · | ррр        |                                   |                  |          | •                                   |           |     |
|            | L56H 67+50N                           | R          |                                   |                  |          |                                     |           |     |
|            | L57N 61+62N                           | 30         |                                   |                  |          |                                     |           |     |
|            | L57N 61+50N                           | nd         |                                   |                  |          |                                     |           |     |
|            | L57W 62+00N                           | nd         |                                   |                  |          |                                     |           | •   |
|            | L5711 62+58N                          | nd         |                                   |                  |          |                                     |           |     |
|            | L57H 63+00N                           | nd         |                                   |                  |          |                                     |           |     |
|            | L57W 63+58N                           | nd         |                                   |                  |          |                                     |           |     |
|            | L574 64+00N                           | nd         |                                   |                  |          |                                     |           |     |
|            | L57H 64+58N                           | <b>.</b> 5 |                                   |                  |          |                                     |           |     |
|            | L571/ 66+00N                          | nd         |                                   |                  |          |                                     |           |     |
|            | L571 67+00N                           | • 18       |                                   |                  |          |                                     |           |     |
|            | L571 67+50N                           | nd         |                                   |                  |          |                                     |           |     |
|            | L5711 68+50N                          | nd         |                                   |                  |          |                                     |           |     |
|            | L57H 69+00N                           | 18         |                                   |                  |          |                                     |           |     |
|            | L57N 69+58N                           | nd         |                                   |                  |          |                                     | •         |     |
| (          | L5711 78+00N                          | nd         |                                   |                  |          |                                     |           |     |
|            | L57H 71+00N                           | 18         |                                   |                  | :        |                                     |           |     |
|            | L584 61+00N                           | (158)      | ·                                 |                  |          |                                     |           | · · |
|            | LS8H 61+58N                           | nd         |                                   | •                |          |                                     |           |     |
|            | L58H 62+00N                           | 5          |                                   |                  |          |                                     |           | -   |
|            | L584 62+58N                           | 10         | ,                                 |                  |          |                                     |           |     |
|            | L584 63+98N                           | nd         |                                   |                  |          |                                     |           |     |
|            | L584 63+58N                           | 5          |                                   |                  |          |                                     |           |     |
|            | L58H 64+00N                           | nd         |                                   |                  |          |                                     |           |     |
|            | L58H 64+50N                           | 19         |                                   |                  |          |                                     |           |     |
|            | L58H 65+00N                           | 15         |                                   |                  |          |                                     |           |     |
|            | L58W 65+58N                           | 5          |                                   |                  |          |                                     |           |     |
|            | L584 66+80N                           | 15         |                                   |                  |          |                                     |           |     |
|            | L58W 66+58N                           | nd         |                                   |                  |          |                                     |           |     |
|            | L58H 67+00N                           | nd         |                                   | -                |          |                                     |           |     |
|            | L584 68+00N                           | 5          |                                   |                  |          |                                     |           |     |
|            | L58H 68+58N                           | nd         |                                   |                  | ·        |                                     |           |     |
|            | L58W 69+00N                           | nd         |                                   |                  |          |                                     |           |     |
|            | LS8H 69+58N                           | nd         |                                   |                  |          |                                     |           |     |
| r          | L58H 78+88N                           | nd         |                                   |                  |          |                                     |           |     |
| ,          | L584 78+58N                           | 5          |                                   |                  |          |                                     |           |     |
|            | L58H 71+88N                           | nd         |                                   |                  |          |                                     |           |     |
|            | L55H 61+00N                           | na<br>10   |                                   |                  |          |                                     |           |     |
|            | L59H 61+58N                           | 5          |                                   |                  |          |                                     |           |     |
|            |                                       |            |                                   |                  |          |                                     |           |     |
|            | DETECTION LIMIT                       | 5          |                                   |                  |          |                                     |           |     |

 $\gamma_{\rm e}$ 



Ň

# VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 253 (604) 965-5211 TELEX: 04-352578

1

BRANCH OFFICE 1630 PANDORA ST. VANCOLIVER, B.C. VSL 1L8 (504) 251-5655

•

Specie

|                          | ••••               | ••••                   |        |    |   |
|--------------------------|--------------------|------------------------|--------|----|---|
| REPORT NUMBER: 878424 GA | JUB NUMBER: 878424 | RENERADE SERVICES LTD. | PAGE 1 | OF | 3 |
| SAKPLE #                 | Au                 |                        |        |    |   |
|                          | рор                |                        |        |    |   |
| L55N 62+00N              | nd                 |                        |        |    |   |
| L55H 63+00N              | 5                  |                        |        |    |   |
| L59H 63+58N              | 5                  |                        |        |    |   |
| L59N 64+00N              | nd                 |                        |        |    |   |
| L59H 64+58N              | nd                 |                        |        |    |   |
| L59H 65+00N              | 18                 |                        |        |    |   |
| L59H 65+58N              | nd                 |                        |        |    |   |
| L554 66+00N              | 18                 |                        |        |    |   |
| L59H 67+00N              | nd                 |                        |        |    |   |
| L59H 67+50N              | 5                  |                        |        |    |   |
| L59H 68+00N              | 18                 |                        |        |    |   |
| · L594 68+58N            | nd                 |                        |        |    |   |
| L59H 69+00N              | nd                 |                        |        |    |   |
| L59H 69+50N              | 10                 |                        |        |    |   |
| L55H 78+88N              | 5                  |                        |        |    |   |
| L594 78+50N              | nd                 |                        |        |    |   |
| L59H 71+00N              | nd                 |                        |        |    |   |
| LGON 61+50N              | 28                 |                        |        |    |   |
| L68H 62+08N              | <u>∽</u> 5.′       |                        |        |    |   |
| LEAN 62+50N              | 5                  |                        |        |    |   |
| L68H 63+08N              | 5                  |                        |        |    |   |
| L68H 63+58N              | 5                  |                        |        |    |   |
| LGON GA+OON              | nd                 |                        |        |    |   |
| lgen Ga+sen              | 15                 |                        |        |    |   |
| LE&N 65+00N              | 5                  |                        |        |    |   |
| L684 65+58N              | 5                  |                        |        |    |   |
| L68H 67+58N              | nd                 |                        |        |    |   |
| LERN 69+00N              | nd                 |                        |        |    |   |
| LEOH 69+50N              | nd                 |                        |        |    |   |
| L684 78+00N              | nd                 |                        |        |    |   |
|                          |                    |                        |        |    |   |

| LDCM | 181001                                    |  |
|------|-------------------------------------------|--|
|      | 7 <del>8+50N</del><br>71+ <del>00</del> N |  |

18 nd

#### VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1521 PEMBERTON AVE. N.VANCOUVER B.C. V7P 253 PH: (604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

#### ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HMO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN.MN.FE.CA.P.CR.MG.BA.PD.AL.KA.K.V.PT AND SR. AU AND PD DETECTION IS 3 PPN. IS= INSUFFICIENT SAMPLE. ND= NOT DETECTED. -= NOT ANALTZED

| COMPANY: RENEGADE MINERAL EXP.<br>ATTENTION:<br>PROJECT:                                                                                                           | REPORTN: 870424PA<br>Jubn: 870424<br>Invoicen: 870424NA                                                                                                                                                                                                                                                                                                            | DATE RECEIVED: 87/05/08<br>DATE COMPLETED: 87/05/12<br>COPY SENT TO: ANALYST_ <u>a. Puint</u> _                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                    | PAGE 1 OF 3                                                                                                                                                |
| SAMPLE NAME AG AL AS AU BA<br>PPN 2 PPN PPN PPN                                                                                                                    | DI CA CD CO CR CU FE K NG<br>PPH I PPH PPH PPH I I I                                                                                                                                                                                                                                                                                                               | 5 KU; NO KA K1 P PB PB PT SB SK SR U V ZN<br>PPH PPK 1 PPK 1 PPH PPH PPH PPH PPH PPH PPH PPH                                                               |
| LS3W 61+00N .1 6.60 N9 N9 20<br>LS3W 63+00N1 4.82 N9 N9 14<br>LS3W 63+00N .2 2.88 N9 N9 7<br>LS3W 64+00N .6 1.29 N9 N9 4<br>LS3W 64+00N .4 2.52 N9 N9 9            | N3    .19    .1    32    62    \$07]    5.30    .08    1.33      ND    .14    .1    11    63    60    7.67    .10    .48      N3    .13    .3    8    48    53    7.50    .12    .17      ND    .17    .1    12    37    30    5.49    .10    .19      ND    .20    .1    32    38    107    6.44    .10    .40                                                    | 18 151 119 .03 10 .05 8 100 109 109 109 109 10 30<br>17 102 1 .03 5 .04 5 109 109 109 109 109 109 10<br>19 97 1 .02 5 .02 8 100 109 100 1 13 109 109 15    |
| L 53M 65+50N .3 3.04 ND ND 5<br>L 53M 66+90N .1 4.74 ND ND 7<br>L 53M 67+00N .2 2.45 ND ND 6<br>L 53M 67+50N .3 1.08 ND ND 6<br>L 53M 68+60N .6 .97 ND ND 4        | ND    .12    .1    Y    36    57    5.02    .13    .20      ND    .12    .1    5    35    43    4.29    .11    .10      ND    .12    .1    7    26    24    4.05    .11    .17      ND    .14    .1    7    22    11    4.23    .11    .12      ND    .22    .1    10    23    20    3.87    .11    .13                                                            | 10 105 NJ .01 4 .04 15 ND NJ 3 NJ 11 3 NJ 15<br>17 95 ND .02 2 .04 10 ND NJ ND ND Y ND ND 17<br>12 116 1 .02 4 .01 6 ND NJ ND NJ 11 NJ ND ND 11            |
| LS3H 68+50H .6 1.51 ND ND 5<br>L53H 69+60H .4 2.95 ND ND 13<br>L53H 69+50H .5 1.51 ND ND 5<br>LS3H 70+60N .2 3.64 NO ND 10<br>LS3H 70+50H .4 2.91 ND ND 11         | ND    .17    .1    14    45    45    6.89    .12    .17      ND    .26    .1    19    55    90    5.41    .11    1.01      ND    .10    .1    11    42    44    7.96    .14    .24      ND    .13    .1    9    42    32    6.84    .12    .25      ND    .20    .1    16    51    128    6.89    .11    .60                                                       | 1 303 KD .03 2Y .03 8 KD KD KD KD KD KD KD KD KD 37<br>24 135 KD .04 & .07 4 KD KD KD KD 1 10 KD KD 19<br>25 137 KD .04 & .08 7 KD KD KD KD YD YD KD KD 28 |
| LS38 71+008 .5 1.66 ND ND 8<br>LS48 63+508 .4 1.54 ND ND 5<br>L548 64+008 .1 4.74 ND ND 7<br>L548 64+008 .8 .72 5 ND 3<br>L548 66+008 .3 2.83 ND ND 10             | ND    .15    .1    11    28    23    5.87    .14    .17      ND    .26    .1    10    38    55    4.50    .12    .25      ND    .20    .1    17    25    141    3.04    .08    .08      HD    .17    .1    12    15    34    3.70    .12    .08      HD    .15    .1    16    43    116    6.41    .11    .22                                                      | 25 155 1 .02 10 .02 10 ND ND ND 1 15 ND ND 17<br>38 269 ND .01 0 .04 12 ND ND 3 ND 0 ND ND 26<br>310 1 .02 5 .01 11 ND ND ND 1 16 5 ND 14                  |
| LS4W 87+00H .1 1.37 ND NB 4<br>LS5W 83+00H .2 1.63 ND ND 15<br>LS5W 83+50H .6 3.22 ND NJ 7<br>LS5M 84+60H <sup>27</sup> .6 3.02 ND ND B<br>LS5M 85+60H4 .71 4 ND 4 | NB  .20  .1  15  51  40  8.33  .14  .11    NB  .27  .3  20  18  62  3.12  .11  .29    ND  .22  .1  18  60  135  8.44  .13  .35    ND  .22  .1  18  58  122  8.16  .12  .36    9  .24  .3  12  20  16  1.77  .11  .00                                                                                                                                               | 78 749 1 .02 13 .04 14 NO ND ND ND 15 ND 10 46<br>35 200 1 .06 16 .04 8 ND ND ND 1 15 ND ND 38<br>36 206 2 .06 17 .04 10 ND ND ND 1 16 ND ND 36            |
| LSSH 63+SON 4 34 NB ND 1<br>LSSH 64+OON 5 60 3 NB 1<br>LSSH 64+SON 6 88 ND NB 4<br>LSSH 64+SON 8 1. 87 ND NB 4<br>LSSH 68+6ON 1 3. 09 ND NB 4                      | ND    .24    .2    6    15    8    2.16    .12    .06      ND    .24    .1    7    17    9    2.45    .12    .06      ND    .24    .1    7    17    9    2.45    .12    .06      ND    .17    1    3    33    27    4.33    .12    .14      ND    .15    .1    15    69    45    10.26    .16    .12      ND    .14    .1    16    88    59    11.58    .16    .17 | 06 75 1 .01 3 .01 10 KD KD ND 1 17 11 KD 2<br>14 82 1 .02 7 .03 12 KD N9 KD 2 14 5 KD 9<br>12 74 1 .08 4 .03 7 KD N9 KD 2 10 KD KD 8                       |
| L35H &B+SON .1 1.79 ND ND 3<br>L35H &B+SON .5 3.47 ND ND 9<br>L35H &9+SON .6 1.54 ND ND 10<br>L55H 70+SON .1 5.47 ND ND 10<br>L35H 70+SON .1 5.41 ND ND 26         | ND    .19    .1    14    52    52    0.69    .16    .15      NB*    .15    .1    13    50    123    6.73    .12    .49      NB    .16    .1    12    35    67    6.93    .12    .32      ND    .43    .4    20    63    .344    3.90    .11    .81      NU    .17    .1    33    47    238    6.53    .11    1.79                                                  | 18 201 1 .06 14 .05 9 ND ND ND ND ND ND ND ND 32<br>32 137 1 .06 9 .05 6 ND ND ND 1 11 ND ND 21<br>11 1401 1 .04 39 .08 14 ND ND ND ND ND 37 ND ND 46      |
| L344 61+00H .5 3.62 HD HD 12<br>L368 62+50H .9 1.04 HD HD 2<br>L368 65+50H .9 1.04 HD HD 2<br>L368 65+50H .93 HD 3 4<br>L368 64\30H .08 3 HD 4                     | N0  .30  .1  32  52  115  7.20  .13  .70    N0  .20  .1  12  40  26  5.03  .14  .14    11  .30  .1  13  22  31  2.12  .13    NU  .12  .1  10  37  24  4.00  .13  .2                                                                                                                                                                                                | 14 102 1 .04 6 .03 11 KD KD KD 1 17 6 P 6<br>16 1 .01 4 .01 19 KD KD KD KD 2 19 11 1 6                                                                     |

.

1

المراجع المراجع المراجع المحاجي والمراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع

Sec. .

•

| TUE MARE    He    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PFR    Î    PFR    PFR    Î    PFR    PFR    PFR    I    PFR     14    14    14    15    15    15    15    15    15    16    16    16    16    16    16    16    16    16    16    16    16    16    16    16    16 <th>IENT: REA</th> <th><b>IEGAD</b></th> <th>E MI</th> <th>NERA</th> <th>L.EXŁ</th> <th></th> <th>JOB#:</th> <th>870</th> <th>0424</th> <th>PRO</th> <th>JEC.</th> <th>r:</th> <th></th> <th></th> <th>REP</th> <th>ORT:</th> <th>8704</th> <th>424P/</th> <th>a d<i>i</i></th> <th>ATE:</th> <th>87/0</th> <th>5/12</th> <th>2</th> <th></th> <th>PA</th> <th>GE 2</th> <th>OF 3</th> <th>5</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IENT: REA                  | <b>IEGAD</b> | E MI         | NERA | L.EXŁ |     | JOB#: | 870  | 0424 | PRO | JEC. | r:    |       |      | REP        | ORT: | 8704 | 424P/ | a d <i>i</i> | ATE:  | 87/0 | 5/12 | 2          |        | PA    | GE 2 | OF 3 | 5        |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------------|------|-------|-----|-------|------|------|-----|------|-------|-------|------|------------|------|------|-------|--------------|-------|------|------|------------|--------|-------|------|------|----------|----------|
| 1  1.2.7  10  N  11  12  11  12  11  13  5  6.2  11  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  6.1  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLE NAVE                   |              | -            |      |       | -   |       |      |      |     |      |       |       |      |            |      |      |       |              | •     |      | •••  |            |        |       |      | •    | N<br>PPM | 11<br>P1 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # 67+50H                   | .2           | 3.57         | ND   | NQ    | ٨   | ND    | .17  | .1   | 30  | 11   | 59    | 8.55  | .07  | . 30       | 576  | WD   | .02   | 10           | .04   | J    | ND   | ND         | ND     | I     | 12   | ND   | KD       |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # \$1+00#                  | .1           | 7 71         | ¥0   | **    | 15  | 28    | 11   | 1    | 17  | 15   | 15    | 4.83  | 07   | 1 01       | 971  | 1    | 01    | 11           | 01    |      |      | ND         | ND.    | ¥6    |      | ¥9   | ND       |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27000    1    103    N0    N0    A    3    11    11    12    23    13    17    13    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10 <th10< th="">    10    10    10&lt;</th10<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |              |      |       |     |       |      |      |     |      |       |       |      |            |      | •    |       |              | • • • |      | -    |            |        | -     | 17   |      |          |          |
| 1 1 5 3 5 10    10    11    21    11    12    11    12    220    10    10    10    10    11    1    10    10    10    10    10    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11    11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} \frac{1}{2} \frac{1}{2$ |                            | -            |              |      |       |     |       |      |      |     |      | •••   |       |      |            | • ·  |      |       | •            |       | •    |      |            |        | •     |      |      |          |          |
| 1  1  0.9  10  22  10  1.0  0.9  33  71  100  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c} 33 + 36 + 36 \\ 33 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 \\ 34 + 56 + 37 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 1.1          |              |      |       |     | •     |      |      |     |      |       |       |      |            |      |      |       | •            |       | •    |      |            |        | 1     |      | - ·  |          |          |
| 14 -1000    -2    -77    100    10    -10    -11    -15    10    -10    -3    100    -10    11    15    100    100    100    11    13    4    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100    100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14-000    -2    .72    ND    ND    4    ND    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11 <th.11< th="">    .11    .11</th.11<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | -            |              |      |       |     |       |      |      |     |      |       |       |      |            |      |      |       |              |       |      |      |            |        | ND    | -    | -    |          | . 1      |
| 14-000    2    7.7    100    10    4    10    11    13    11    14    11    15    10    3    10    3    10    3    10    3    10    3    10    3    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10 <td>14-000    -2    .72    ND    ND    4    ND    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    <th.11< th="">    .11    .11</th.11<></td> <td>( 43+50N</td> <td>.1</td> <td>. 61</td> <td>ND</td> <td>ND</td> <td>5</td> <td>X B</td> <td>.19</td> <td>.1</td> <td>10</td> <td>76</td> <td></td> <td>2.90</td> <td>. 06</td> <td>.17</td> <td>107</td> <td>ND</td> <td>. 01</td> <td>,</td> <td>. 01</td> <td></td> <td>VD</td> <td>XD</td> <td>ND</td> <td>1</td> <td>13</td> <td>T</td> <td>¥0</td> <td></td> | 14-000    -2    .72    ND    ND    4    ND    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11    .11 <th.11< th="">    .11    .11</th.11<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( 43+50N                   | .1           | . 61         | ND   | ND    | 5   | X B   | .19  | .1   | 10  | 76   |       | 2.90  | . 06 | .17        | 107  | ND   | . 01  | ,            | . 01  |      | VD   | XD         | ND     | 1     | 13   | T    | ¥0       |          |
| 14 - 501    -1    -1    -1    1    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10    10 <t< td=""><td><math display="block"> \begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td></td><td></td><td>i</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |              |      |       | -   |       |      |      |     |      | -     |       |      |            |      |      |       | •            |       | •    |      |            |        | i     |      |      |          |          |
| H 4-000    -7    -77    1    H    3    10    -13    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14    -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} 4+000 \\ -2 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |              |              |      |       | i   |       |      |      | 10  |      | •••   |       |      |            |      |      |       | •            |       |      |      |            |        | :     |      |      |          | -        |
| 1 47-0001  .2  2.7.4  N0  N0  4  N0  .27  .1  19  50  71  7.00  .00  .01  231  N0  .02  23  .03  4  N0  N0  1  12  N0  10    16475001  .1  1.577  N0  N0  .13  .1  30  64  151  5.44  10  .53  54  10  131  .00  20  N0  N0  .1  8  N0  .01  31  .00  20  10  N0  .01  4  .05  34  10  .01  31  .00  20  10  N0  .01  4  .05  30  .01  4  .05  30  N0  .01  4  .05  N0  N0  .01  10  .01  11  .01  11  .01  11  .01  11  .01  11  .01  11  .01  11  .01  11  .01  11  .01  11  .01  11  .01  11  .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |              |      | -     |     |       |      |      |     |      |       |       |      |            |      |      |       | -            |       |      |      |            |        | ;     |      |      | -        |          |
| 144500  -2  2.7.58  N0  N0  5  N0  -12  1  1  5  0  2  2.6  1  0  0  1  0  0  1  0  0  1  0  0  1  0  1  0  0  1  0  1  0  1  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41-504  -2  2.539  N0  N0  5  N0  -12  -1  11  50  5.52  -06  -26  13  10  -1  0  1  0  1  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |              | •    |       | •   |       |      |      | • · | ••   | -     |       |      |            | -    |      |       | •            |       | •    |      |            |        | i     | 12   |      |          |          |
| 44+504  -2  2.7.58  N0  N0  -12  1  11  50  53  5.25  .06  .26  128  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10 </td <td>41-504  -2  2.539  N0  N0  5  N0  -12  -1  11  50  5.52  -06  -26  13  10  -1  0  1  0  1  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10</td> <td>174500</td> <td></td> <td></td> <td>wh</td> <td>**</td> <td>10</td> <td>MA</td> <td></td> <td></td> <td>10</td> <td></td> <td>154</td> <td></td> <td>10</td> <td><b>4</b>1</td> <td>140</td> <td></td> <td></td> <td>71</td> <td></td> <td>-</td> <td>~</td> <td></td> <td><math>\cap</math></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                            | 41-504  -2  2.539  N0  N0  5  N0  -12  -1  11  50  5.52  -06  -26  13  10  -1  0  1  0  1  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 174500                     |              |              | wh   | **    | 10  | MA    |      |      | 10  |      | 154   |       | 10   | <b>4</b> 1 | 140  |      |       | 71           |       | -    | ~    |            | $\cap$ |       |      |      |          |          |
| 141-0000  -1  3.77  ND  ND  21  ND  22  1  20  64  131  5.75  5.64  1.20  30  1  0.62  32  0.64  9  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  90  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14-000t  -1  5.72  NB  NB  21  NB  22  1  20  64  101  22  10  10  22  10  10  22  10  10  22  10  10  22  10  10  22  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |              |      |       |     |       |      |      |     | -    |       |       |      |            |      | •    |       |              |       |      |      |            | · ·    |       |      |      |          |          |
| 141-5000  -1  2.42  N0  N0  19  N0  -07  -1  11  -11  112  5.09  -06  -14  231  1  -01  7  -04  7  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1  2.42  ND  ND  P  ND  CO  1  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td></td><td></td><td>•</td><td>•</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |              |              |      |       | -   |       |      |      |     |      |       |       |      |            |      |      |       | •            |       | •    |      |            |        | •     | •    |      |          |          |
| 1  2.14  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10 <t< td=""><td>1  2.14  H0  H0  11  H0  104  1  9  20  43  5.53  00  2.6  2.83  1  0.01  4  0.03  0  H0  H0  H0  K0  K0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1  2.14  H0  H0  11  H0  104  1  9  20  43  5.53  00  2.6  2.83  1  0.01  4  0.03  0  H0  H0  H0  K0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |              |              |      |       |     |       |      |      |     |      |       |       |      |            |      |      |       |              |       | •    |      |            |        |       |      |      |          |          |
| 1  1.1  2.5.7  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11 <th< td=""><td></td><td></td><td>- 12 · · · ·</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |              | - 12 · · · · |      | -     | -   |       |      |      |     |      |       |       |      |            |      |      |       | •            |       | •    | -    |            |        |       | -    |      |          |          |
| 1  1  1  1  33  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11+0001  -1  1.89  5  80  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | ••           |              | ~    |       | ••  |       |      | ••   | ,   |      | • J   | 3.33  |      |            | 103  | •    |       | •            | .03   | •    | ~    |            | ~      | ~     | •    | ~*   | ~        | ,        |
| 1  1  3.73  H0  H0  10  2.33  .1  40  71  4.51  5.33  .00  1.73  517  0.05  7  H0  H0  H0  2.7  H0  H0  2.33  .1  40  71  4.51  5.33  .00  1.73  517  0.05  7  H0  H0  H0  1  4  3  H0  1  4  3  H0  1  4  3  H0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11:500  .1  3.73  H0  H0  .33  .1  40  71  431  5.33  .00  1.93  517  H0  H0  H0  H0  H0  27  H0  H0  H0  H0  27  H0  H0  H0  H0  1  6  1  15  53  71  431  5.33  .00  1.47  71  1  1.01  11  .04  13  H0  H0  H0  2  10  H0  H0  2  10  H0  H0  1  6  3  H0  1  1  55  37  H1  1.01  11  .04  13  H0  1  1  1  10  H0  10  H0  1  1.23  10  H0  H0  1  13  10  10  10  H0  H0  10  H0  H0  10  H0  H0  H0  10  11  10  H0  H0  H0  10  10  H0  H0  10  H0  H0  11  11  11 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>NO</td> <td></td> <td></td> <td></td> <td>12</td> <td>-</td> <td>•</td> <td>- (</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |              |              |      |       |     | -     |      |      |     |      |       |       |      |            |      | 1    |       |              |       |      | NO   |            |        |       | 12   | -    | •        | - (      |
| 14  2:001  .4  2:13  3  10  4  3:01  70  3:00  1:0  1:1  0:01  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0  1:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14  2.15  5  10  4  10  11  10  11  104  13  10  10  11  104  13  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |              |              |      | -     | ••• |       |      |      |     |      |       |       |      |            |      |      |       |              |       | •    |      |            |        |       | •    |      | NQ.      |          |
| # 42+SOH  .8  1.04  0  H9  S  3  .16  .1  15  SS  37  0.19  .13  .06  S9  1  .02  5  .02  7  H0  H0  H0  1  23  10  H0  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  11  10  10  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12450H  1  1.04  9  H9  3  3  1.1  1  15  55  37  0.19  1.0  1.0  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |              |              |      | -     |     |       |      |      |     | ••   |       |       |      |            |      |      |       | -            |       | •    |      |            |        | N)    | 27   |      | •        |          |
| M 43+60H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X3+601  .2  .77  K0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |              |              | -    |       | •   |       |      |      | •   |      |       |       |      |            |      | -    |       |              |       |      |      |            |        | 1     | •    | -    |          |          |
| 4 4350H  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4  -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33 50H  -4  -48  3  HB  2  HB  -26  -1  7  15  170  100  HD  100  HD  HD  HD  12  173  111  100  HD  100  HD  HD  HD  13  100  100  1  101  11  HD  HD  HD  13  100  1  101  11  HD  HD  HD  10  3  .03  9  HD  HD  10  3  HD  HD  10  3  HD  HD  10  3  HD  HD  HD  13  .1  9  45  21  5.44  .15  .10  .44  14550  2  .01  26  .04  17  HD  HD  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E AZ+SON                   |              | 1.04         |      | XÞ    | 5   | 2     | . 16 | .1   | 15  | 55   | 37    | 8.17  | .13  | .06        | 58   | 1    | .02   | 5            | .02   | 1    | KD   | ND         | KO     | 2     | 10   | X)   | 1.9      |          |
| MI 44+00M  .4  .84  .8  .4  .10  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11  .11 <t< td=""><td>14+00H  .4  .8  .13  .1  9  45  21  5.04  .12  .10  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1</td><td></td><td>.1</td><td>.12</td><td>KD</td><td>X)</td><td>4</td><td>3</td><td>.27</td><td>.1</td><td>6</td><td>15</td><td>11</td><td>1.98</td><td>.08</td><td>.11</td><td>115</td><td>XB</td><td>.01</td><td>2</td><td>.01</td><td>10</td><td>KD</td><td>10</td><td>ND</td><td>1</td><td>23</td><td>10</td><td>ND</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14+00H  .4  .8  .13  .1  9  45  21  5.04  .12  .10  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | .1           | .12          | KD   | X)    | 4   | 3     | .27  | .1   | 6   | 15   | 11    | 1.98  | .08  | .11        | 115  | XB   | .01   | 2            | .01   | 10   | KD   | 10         | ND     | 1     | 23   | 10   | ND       |          |
| 4 44500H  .1  4.39  HD  HD  .15  .1  28  79  2017  5.58  .10  .44  1650  2  .01  26  .06  17  HD  HD  HD  10  5  HD  .10  .44  1650  2  .01  26  .06  17  HD  HD  HD  .10  .44  1650  2  .01  24  .04  9  HD  HD  HD  .10  .44  .10  .11  .11  .11  .13  .15  .10  .44  .04  9  HD  HD  HD  .10  .4  .10  .11  .11  .11  .11  .11  .13  .15  .10  .44  .01  .01  4  .04  9  HD  HD  HD  .10  .44  .10  .01  4  .02  9  .06  15  .10  .10  .10  .10  .10  .10  .10  .10  .10  .10  .10  .10  .10  .10  .10  .10  .10  .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  4.39  ND  ND  1  4  10  1  10  1  10  1  10  1  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10 </td <td>E 63+508</td> <td>.4</td> <td>.11</td> <td>3</td> <td>ЖØ</td> <td>2</td> <td>XD</td> <td>. 26</td> <td>.1</td> <td>1</td> <td>15</td> <td>12</td> <td>1.93</td> <td>.11</td> <td>.08</td> <td>105</td> <td>1</td> <td>.01</td> <td>1</td> <td>.01</td> <td>11</td> <td>ND</td> <td>KØ.</td> <td>· ND</td> <td>1</td> <td>23</td> <td>13</td> <td>10</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E 63+508                   | .4           | .11          | 3    | ЖØ    | 2   | XD    | . 26 | .1   | 1   | 15   | 12    | 1.93  | .11  | .08        | 105  | 1    | .01   | 1            | .01   | 11   | ND   | KØ.        | · ND   | 1     | 23   | 13   | 10       |          |
| HI 45+000  .4  1.06  6  HJ  .3  HJ  .20  .1  11  43  .37  5.17  .13  .15  176  1  .01  4  .04  9  HJ  HJ<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4  1.08  6  1.9  3  1.1  1.1  4.3  37  5.87  1.3  1.15  176  1  0.1  4  0.4  9  ND  ND  1.0  6  ND    15550H  .5  5.73  ND  HD  5  HD  .16  .1  1.4  93  71  8.44  .14  .34  156  ND  .01  4  .04  9  ND  ND  1  8  ND  ND    1550H  .73  ND  1.0  7  1.42  5  ND  1.16  .1  1.4  93  71  8.44  .14  .34  156  ND  .02  9  .06  15  ND  ND <td< td=""><td></td><td>.4</td><td>. 84</td><td>•</td><td>X)</td><td>4</td><td>XD</td><td>.15</td><td>.1</td><td>,</td><td>45</td><td>21</td><td>5.44</td><td>.12</td><td>.11</td><td>90</td><td>1</td><td>.01</td><td>3</td><td>.03</td><td>1</td><td>ND</td><td>XP</td><td>3</td><td>1</td><td>10</td><td>5</td><td>¥ D</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | .4           | . 84         | •    | X)    | 4   | XD    | .15  | .1   | ,   | 45   | 21    | 5.44  | .12  | .11        | 90   | 1    | .01   | 3            | .03   | 1    | ND   | XP         | 3      | 1     | 10   | 5    | ¥ D      |          |
| M 45+50H  .5  5.73  HD  HD  5  HD  .16  .1  16  93  71  8.64  .14  .34  156  HD  .02  9  .06  15  HD  HD  1  8  HD  HD <td>SANCE  ALL  CO  MD  LO  CO  CO</td> <td># 64+50M</td> <td>.1</td> <td>6.39</td> <td>ND</td> <td></td> <td></td> <td>ND</td> <td>.15</td> <td>.1</td> <td>28</td> <td>- 71</td> <td>201 2</td> <td>5.58</td> <td>.10</td> <td>.44</td> <td>1650</td> <td>2</td> <td>.01</td> <td>26</td> <td>.06</td> <td>17</td> <td>ND</td> <td>NÐ</td> <td>хD</td> <td>ND</td> <td>1</td> <td>KD</td> <td>KØ</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                   | SANCE  ALL  CO  MD  LO  CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # 64+50M                   | .1           | 6.39         | ND   |       |     | ND    | .15  | .1   | 28  | - 71 | 201 2 | 5.58  | .10  | .44        | 1650 | 2    | .01   | 26           | .06   | 17   | ND   | NÐ         | хD     | ND    | 1    | KD   | KØ       |          |
| N 64+60H  .7  1.62  5  NB  3  NB  .11  .1  15  60  36  10.64  .15  .10  67  1  .03  2  .06  6  ND  ND <td>L4+60H  .7  1.42  5  H9  3  H8  .11  .1  15  60  36  10  67  1  .03  2  .06  6  HD  H9  3  2  6  H9  KD    L4+50H  .7  1.46  HD  HD  7  4  .22  .1  23  36  36  7.41  .13  .20  261  1  .03  2  .06  6  HD  H9  3  2  6  H9  H9  10  .03  13  ND  HD  H9  21  4  H9  ND  ND  ND  H9  2  14  H9  ND  ND  H9  2  14  H9  ND  ND  H9  ND  H9  2  14  H9  ND  H9  ND  10  .03  13  ND  H9  H9  ND  11  10  10  .02  14  .04  11  H9  H9  10  .03  10  L0  .03  10  L0  L0</td> <td># 65+00W</td> <td>.1</td> <td>1.06</td> <td>6</td> <td>K)</td> <td>. 3</td> <td>K)</td> <td>.20</td> <td>.1</td> <td>11</td> <td>43</td> <td>JÍ</td> <td>5.87</td> <td>.13</td> <td>.15</td> <td>176</td> <td>1</td> <td>.01</td> <td>4</td> <td>.04</td> <td>۲.</td> <td>CM .</td> <td>KD</td> <td>XQ</td> <td>1</td> <td>10</td> <td>6</td> <td>KD</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                   | L4+60H  .7  1.42  5  H9  3  H8  .11  .1  15  60  36  10  67  1  .03  2  .06  6  HD  H9  3  2  6  H9  KD    L4+50H  .7  1.46  HD  HD  7  4  .22  .1  23  36  36  7.41  .13  .20  261  1  .03  2  .06  6  HD  H9  3  2  6  H9  H9  10  .03  13  ND  HD  H9  21  4  H9  ND  ND  ND  H9  2  14  H9  ND  ND  H9  2  14  H9  ND  ND  H9  ND  H9  2  14  H9  ND  H9  ND  10  .03  13  ND  H9  H9  ND  11  10  10  .02  14  .04  11  H9  H9  10  .03  10  L0  .03  10  L0  L0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # 65+00W                   | .1           | 1.06         | 6    | K)    | . 3 | K)    | .20  | .1   | 11  | 43   | JÍ    | 5.87  | .13  | .15        | 176  | 1    | .01   | 4            | .04   | ۲.   | CM . | KD         | XQ     | 1     | 10   | 6    | KD       |          |
| 1/64+00H  .7  1.62  5  HB  3  HB  .11  .1  15  60  36  10.64  .15  .10  647  1  .03  2  .06  6  HD  HD  3  2  6  HB  HD  HD  11  .1  15  60  36  10.64  .15  .10  67  1  .03  2  .06  6  HD  HD  10  2  14  HD  HD  10  10  13  HD  HD  HD  10  10  13  13  HD  HD  HD  10  11  10  10  13  10  HD  10  10  10  11  10  10  13  10  10  13  10  10  10  13  10  10  10  10  10  10  10  10  10  10  10  10  10  11  10  10  10  10  10  10  10  10  10  10  10  10  10  10 <td>L4+60H  .7  1.42  5  NB  3  NB  .11  .1  15  60  36  10.64  .15  .10  67  1  .03  2  .06  6  ND  ND  3  2  6  ND  ND  7  24  .11  .1  15  60  36  10.64  .15  .10  67  1  .03  2  .06  6  ND  ND  ND  24  ND  ND  ND  10  ND  ND  ND  24  ND  ND</td> <td>1 65+50H</td> <td>.5</td> <td>5.73</td> <td>KØ</td> <td>ND</td> <td>5</td> <td>ND</td> <td>.16</td> <td>.1</td> <td>16</td> <td>93</td> <td>71</td> <td>8.64</td> <td>.11</td> <td>.34</td> <td>156</td> <td>ND</td> <td>. 0Z</td> <td>,</td> <td>. 06</td> <td>15</td> <td>ND</td> <td>X.P</td> <td>KD</td> <td>1</td> <td>1</td> <td>KD</td> <td>X9</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                              | L4+60H  .7  1.42  5  NB  3  NB  .11  .1  15  60  36  10.64  .15  .10  67  1  .03  2  .06  6  ND  ND  3  2  6  ND  ND  7  24  .11  .1  15  60  36  10.64  .15  .10  67  1  .03  2  .06  6  ND  ND  ND  24  ND  ND  ND  10  ND  ND  ND  24  ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 65+50H                   | .5           | 5.73         | KØ   | ND    | 5   | ND    | .16  | .1   | 16  | 93   | 71    | 8.64  | .11  | .34        | 156  | ND   | . 0Z  | ,            | . 06  | 15   | ND   | X.P        | KD     | 1     | 1    | KD   | X9       |          |
| I 44+50H  .7  I.44  ND  ND  7  4  .22  .1  23  36  36  7.41  .13  .20  241  1  .02  10  .03  13  ND  ND  ND  2  14  ND  ND  ND  ND  ND  ND  2  14  ND  ND <td>14 50H  .7  1.44  ND  ND  7  4  .22  .1  23  36  36  7.41  .13  .20  241  1  .02  10  .03  13  ND  ND  ND  21  ND  ND  21  ND  ND  21  ND  ND<td>8 66+00H</td><td>.1</td><td>1.42</td><td>5</td><td>H)</td><td>3</td><td>XD</td><td>.11</td><td></td><td>15</td><td>60</td><td>36</td><td>10.64</td><td></td><td></td><td></td><td>i</td><td></td><td>2</td><td></td><td></td><td>KD</td><td>X0</td><td>3</td><td>2</td><td>i i</td><td>KU .</td><td>ю</td><td>-</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 50H  .7  1.44  ND  ND  7  4  .22  .1  23  36  36  7.41  .13  .20  241  1  .02  10  .03  13  ND  ND  ND  21  ND  ND  21  ND  ND  21  ND  ND <td>8 66+00H</td> <td>.1</td> <td>1.42</td> <td>5</td> <td>H)</td> <td>3</td> <td>XD</td> <td>.11</td> <td></td> <td>15</td> <td>60</td> <td>36</td> <td>10.64</td> <td></td> <td></td> <td></td> <td>i</td> <td></td> <td>2</td> <td></td> <td></td> <td>KD</td> <td>X0</td> <td>3</td> <td>2</td> <td>i i</td> <td>KU .</td> <td>ю</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 66+00H                   | .1           | 1.42         | 5    | H)    | 3   | XD    | .11  |      | 15  | 60   | 36    | 10.64 |      |            |      | i    |       | 2            |       |      | KD   | X0         | 3      | 2     | i i  | KU . | ю        | -        |
| N 67+6001  .1  7.00  ND  ND  12  ND  .20  .1  53  74  19  5.02  .12  .72  66  1  .02  43  .07  18  ND  ND  ND  24  ND  ND  ND  ND  ND  24  ND  ND  ND  ND  ND  ND  ND  11  12  ND  ND  12  ND  ND  20  .1  13  .44  60  8.16  .13  .44  176  1  .02  14  .04  11  ND  ND  ND  21  12  ND  ND  ND  12  ND  ND  12  ND  ND  ND  12  ND  ND  ND  21  12  ND  ND  ND  12  ND  ND  11  12  ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1  7.00  HD  HD  HD  12  HD  20  1  53  74  197  5.82  .12  .72  669  1  .02  43  .07  18  HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 44+508                   | .7           | 1.46         | KD   | KQ    | 1.  | 4     | .22  |      | 23  | 36   |       |       |      |            | 261  | · i  |       | 10           | .03   | 13   | XD   | XÔ         | XD     | ž     | 14   | ND   | 10       |          |
| I 44+00H  .6  2.27  ND  ND  7  3  .20  .1  18  64  60  8.16  .13  .46  196  1  .02  14  .04  11  ND  ND  ND  1  12  ND  ND  13  .46  10  11  .20  97  1  .01  5  .03  9  ND  ND  11  44  ND  ND  ND  11  14  40  30  4.62  .11  .48  107  ND  .01  10  ND  ND  11  14  40  .11  .48  107  ND  .01  11  .41  ND  .11  .41  .40  .11  .41  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18+001  .6  2.27  ND  ND  7  3  .20  .1  18  64  60  8.16  .13  .46  176  1  .02  14  .04  11  ND  ND  ND  ND  1  12  ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 67+008                   | .1           | 7.00         | ND   | 10    | 12  | ĸ     |      |      | 53  | 74   | 197   | 5.82  |      |            |      | i    |       | 43           |       |      | ND   | XD         | 10     | K)    | 24   | K)   | 10       |          |
| 1 41+00H  -3  1.54  HB  HB  5  HB  -1.5  -1  1.2  3.3  40  4.62  -1.1  -48  109  HB  -0.3  10  HD  HD  1  11  4  HD  1.1  -4.62  -1.1  -48  109  HD  -0.1  U  -0.3  10  HD  HD  1  11  4  HD  -1  -1.1  -1.1  -4.62  -1.1  -48  109  HD  -0.3  10  HD  HD  1  11  4  HD  -1.2  184  HD  -0.2  9  -0.6  12  HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19+00H -3 1.54 HD HD 5 HB .15 .1 12 33 40 4.62 .11 .48 109 HD .01 U .03 10 HD HD HD HD HD 1 11 4 HD<br>19+00H -2 3.90 HD HB 7 HD .15 .1 12 48 97 6.66 .10 .32 184 HD .02 9 .06 12 HD HD<br>19+00H -3 1.46 HO HD 7 HD .06 .1 10 24 45 5.27 .12 .17 92 1 .01 5 .03 10 HD HD HD HD 3 1 7 7 HD<br>10+00H -2 4.73 HD HD HD HD HD 11 .1 20 50 207 7.01 .12 .48 480 1 .02 13 .06 17 HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 48+00E                   |              | 2.27         | ND   | IJ    | 1   | 3     | . 20 |      | 18  | 64   | 60    | 8.16  |      |            | 176  | 1    | . 02  | 14           | .04   | 11   | ND   | XD         | ND     | 1     | 12   | N)   | ND       |          |
| 4 \$1+00H  .3  1.54  ND  ND  5  ND  .15  .1  12  33  40  4.62  .11  .48  109  ND  .01  0  .03  10  ND  ND  1  11  4  ND  .11  .48  109  ND  .01  0  .03  10  ND  ND  1  11  4  ND  .01  0  .03  10  ND  ND  1  11  4  ND  .11  .48  109  ND  .01  0  .03  10  ND  ND <td< td=""><td>19+00H -3 1.54 HD HD 5 HB .15 .1 12 33 40 4.62 .11 .48 109 HD .01 U .03 10 HD HD HD HD HD 1 11 4 HD<br/>19+00H -2 3.90 HD HB 7 HD .15 .1 12 48 97 6.66 .10 .32 184 HD .02 9 .06 12 HD HD<br/>19+00H -3 1.46 HO HD 7 HD .06 .1 10 24 45 5.27 .12 .17 92 1 .01 5 .03 10 HD HD HD HD 3 1 7 7 HD<br/>10+00H -2 4.73 HD HD HD HD HD 11 .1 20 50 207 7.01 .12 .48 480 1 .02 13 .06 17 HD HD</td><td>2<br/>8 68+508 <sup>1</sup></td><td></td><td>1.01</td><td>ND.</td><td>¥3</td><td>5</td><td>4</td><td>.17</td><td>_1</td><td>14</td><td>40</td><td>10</td><td>4,99</td><td>.11</td><td>. 70</td><td>94</td><td>1</td><td>. 01</td><td>5</td><td>.01</td><td></td><td>¥0</td><td><b>N 3</b></td><td>жĎ</td><td>2</td><td>13</td><td>· •</td><td>x B</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                     | 19+00H -3 1.54 HD HD 5 HB .15 .1 12 33 40 4.62 .11 .48 109 HD .01 U .03 10 HD HD HD HD HD 1 11 4 HD<br>19+00H -2 3.90 HD HB 7 HD .15 .1 12 48 97 6.66 .10 .32 184 HD .02 9 .06 12 HD HD<br>19+00H -3 1.46 HO HD 7 HD .06 .1 10 24 45 5.27 .12 .17 92 1 .01 5 .03 10 HD HD HD HD 3 1 7 7 HD<br>10+00H -2 4.73 HD HD HD HD HD 11 .1 20 50 207 7.01 .12 .48 480 1 .02 13 .06 17 HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>8 68+508 <sup>1</sup> |              | 1.01         | ND.  | ¥3    | 5   | 4     | .17  | _1   | 14  | 40   | 10    | 4,99  | .11  | . 70       | 94   | 1    | . 01  | 5            | .01   |      | ¥0   | <b>N 3</b> | жĎ     | 2     | 13   | · •  | x B      |          |
| II 49+50H .2 3.90 ND ND 7 ND .15 .1 12 49 97 4.66 .10 .32 194 ND .02 9 .06 12 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19+50H -2 3.90 HB HB 7 HB .15 .1 12 48 97 6.66 .10 .32 184 HB .02 9 .06 12 HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |              |      | -     |     | •     |      |      |     |      |       |       |      |            |      | •    |       | -            |       | •    |      |            |        | ī     |      | -    |          |          |
| H 70+00H .3 1.46 K0 KB 7 KB .06 .1 10 24 45 5.27 .12 .17 92 1 .01 5 .03 10 KD HB 3 1 7 7 KB<br>H 70+50H .2 4.73 KB KB KB .11 .1 20 50 207 ≥ 7.01 .12 .48 480 1 .02 13 .06 17 KB KB 3 KB 8 KB KD<br>H 71+00H .1 5.91 KB KB KB .12 .1 20 61 2343 6.26 .11 .69 449 1 .02 21 .08 16 KD KB KB KB 9 KB KB KB<br>H 61+00H .2 2.13 KB KB 7 KB .13 .1 14 41 75 5.85 .08 .30 199 KD .02 6 .05 9 KD KD KD KD KD KD KD KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19+00H -3 1.46 HO HB 7 HB .06 .1 10 24 45 5.27 .12 .17 72 1 .01 5 .03 10 HD HB 3 1 7 7 HB<br>10+50H -2 4.73 HB HB HB HB .11 .1 20 50 207 ≥ 7.01 .12 .48 480 1 .02 13 .06 17 HB HD 3 HB 9 HB HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              | -            |      |       | -   |       |      |      |     |      |       |       |      | • •        |      |      |       |              |       |      |      | -          |        | , iii |      | •    |          |          |
| H 70+50H -2 4.73 NB NB NB .11 .1 20 50 207≥7.01 .12 .48 480 1 .02 13 .06 17 NB NB 3 NB 8 NB ND ND NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70+50H -2 4.73 HD HD HD HD -11 ,1 20 50 207≥7.01 ,12 ,48 480 1 ,02 13 ,06 17 HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | -            |              |      |       |     |       |      |      |     |      |       |       |      |            |      | -    |       | ŝ            |       |      |      |            |        |       |      |      |          |          |
| N 61+00M -2 2.13 ND ND 7 ND .13 .1 14 41 75 5.85 .08 .30 117 ND .02 6 .05 7 ND ND ND 1 10 ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61+00M .2 7.13 ND ND 7 ND .13 .1 14 41 75 5.85 .08 .30 119 ND .02 6 .05 9 ND ND ND 1 10 ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |              |              |      | -     | I   |       |      |      | ••• | - ·  | -     |       |      |            |      | i    |       | 13           |       |      |      |            | -      | KØ    | i    | •    |          |          |
| N 61+00M -2 2.13 ND ND 7 ND .13 .1 14 41 75 5.85 .08 .30 117 ND .02 6 .05 7 ND ND ND 1 10 ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61+00M .2 7.13 ND ND 7 ND .13 .1 14 41 75 5.85 .08 .30 119 ND .02 6 .05 9 ND ND ND 1 10 ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F 71+000                   | .1           | 5.91         | 20   | 13    | 17  | ¥8    | .12  | .1   | 20  | 41   | 2341  | 4.74  | .11  | . 49       | 419  | 1    | . 07  | 21           | . 09  | 14   | 20   | <b>2</b> 0 | ¢۵     | ¥B    | •    | KQ   | ¥8       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |              |              |      | -     |     |       |      |      |     |      |       |       |      |            |      | •    |       |              |       |      |      | -          |        | 1     | 10   | -    | -        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 61+508                   |              |              |      |       | •   |       |      |      |     |      |       |       |      |            |      |      |       | 14           |       | •    |      |            |        |       |      |      |          |          |

4.5

I.

1

1

ŧ.

1

1

(

(

(

t -

t

•

(

. (

(

.

•

CLIENT: RENEGADE MINERAL EXP. JOBN: 870424 PROJECT:

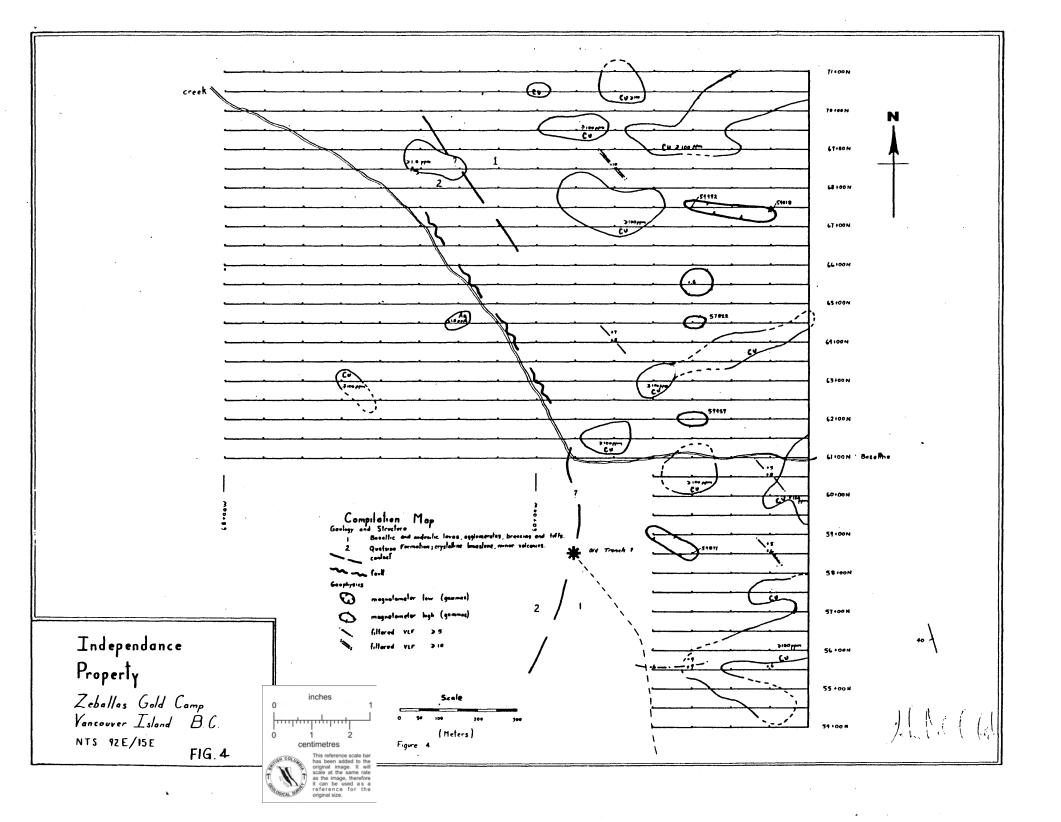
1

(

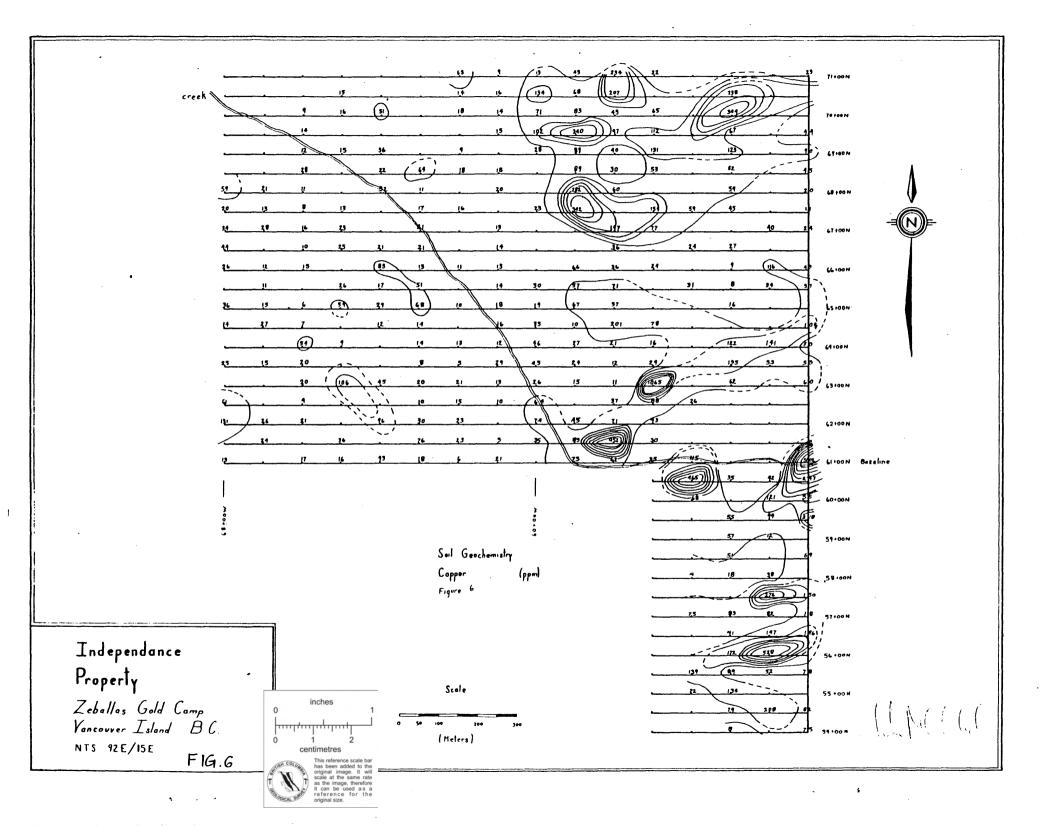
(

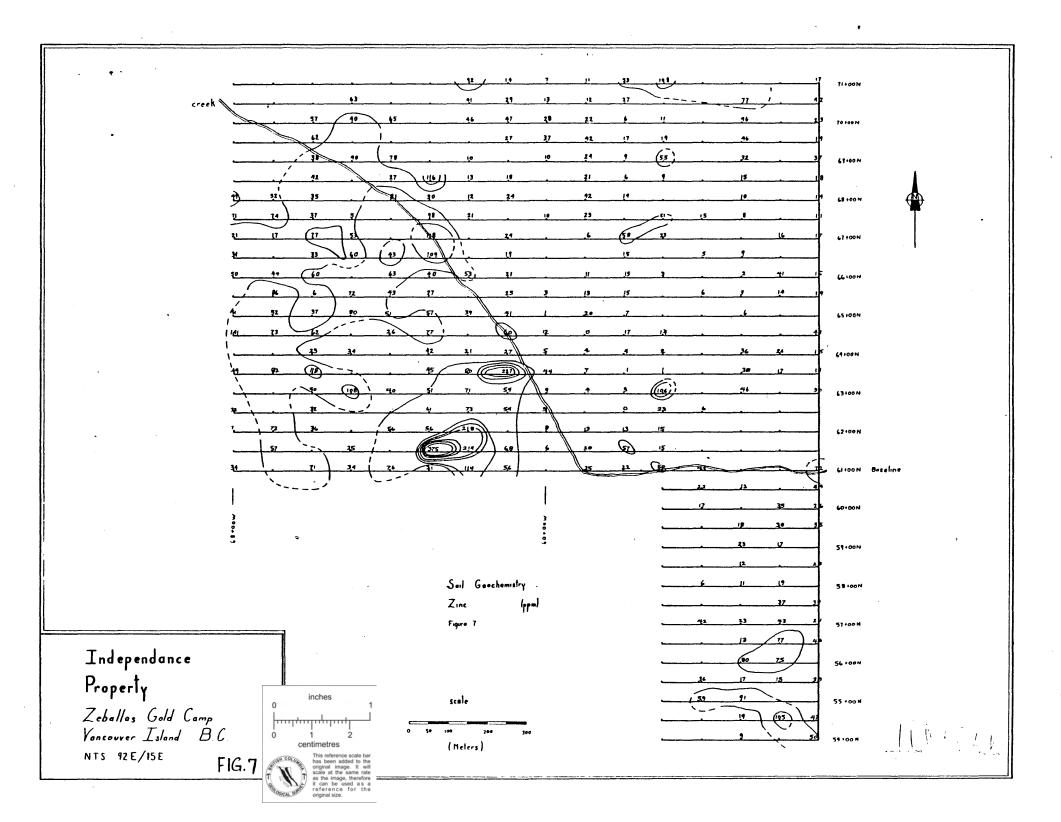
٠

C


(

| SAMPLE NAME     | AG<br>PPH   | NL<br>1 | AS<br>PFN | AU<br>FPN | BA<br>Pfn | 81<br>PPN | CA<br>1 | CD<br>PPN | CO<br>PPN | CR<br>PPM | CU<br>PPM | FE<br>1 | K<br>1 | M6<br>1 | ни<br>Рри | NO<br>PPR | KA<br>1 | NI<br>PPM | Р<br>1 | PB<br>PPN | PO<br>PF# | PI<br>PPN | SD<br>PPM  | SH<br>PPN | SR<br>PPN | U<br>PPN | N<br>· PPN | l¥<br>PPR |
|-----------------|-------------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|--------|---------|-----------|-----------|---------|-----------|--------|-----------|-----------|-----------|------------|-----------|-----------|----------|------------|-----------|
| L578 62+00N     | .1          | 2.50    | ND        | X)        |           | K)        | .13     | .1        | 13        | 39        | 45        | 6.26    | .12    | . 35    | 113       | 1         | .02     | 4         | .03    | 11        | ND        | KØ        | ND         | KD        | 10        | 3        | NO         | 13        |
| L598 43+000     | .1          | .72     | 13        | ND        | 4         | 3         | .24     | .1        | й         | 51        | 15        | 7.07    | .08    | .12     | 141       | ND        | .01     |           | .01    | 15        | KD        | ND        | ND         | 14        | 17        | i        | 4          | ï         |
| L59W 63+50W     | .1          | 1.18    | 4         | XD        | 7         | KØ        | . 20    | .1        | 13        | 39        | 24        | 4.12    | .11    | .24     | 158       | 1         | .01     | 10        | .04    | 14        | KD        | K)        | ND         | 5         | 17        | 5        | ¥D         | ,         |
| L59W 64+00M     | .4          | 1.22    | 13        | ND        | 4         | 7         | .17     | .1        | 17        | 55        | 27        | 5.25    | .12    | .16     | 13        | i         | .01     | 3         | .04    | 16        | ND        | KD.       | XD         | 10        | 12        | 3        | ND         | i         |
| LSTN 64+50K     | .7          | .26     | 12        | XB        | T         | KØ        | .12     | .1        | 1         | 51        | 10        | 3.15    | .12    | .04     | 106       | i         | . 01    | i         | .01    | 12        | KD        | ND        | ND         | 5         |           | 12       | ND         | XD        |
| LS9W 65+00#     | .4          | 3.60    | ND        | XD        | 7         | 4         | .17     | .1        | 21        | 83        | 67        | 10.19   | .16    | .46     | 191       | i         | . 03    | 15        | .05    | 17        | ND        | ND        | ND ND      | ND        | n         | NO       | XD         | 20        |
| 1591 65+50N     | .5          | 4.00    | ND        | X3        | 5         | XB        | .13     | .1        | 14        | 61        | 57        | 9.14    | .14    | .22     | 148       | Ì         | .03     | 6         | .07    | 12        | ND        | ND        | ND         | KD        |           | ND       | ND         | 13        |
| L598 66+008     | .5          | 2.54    | KD        | ND        | 6         | ND        | .15     | .1        | 14        | 68        | 66        | 1.11    | .13    | .17     | 185       | ND        | . 03    | 8         | .05    | 10        | ND        | ND        | ND         | XD        | 10        | ND       | ND         | п         |
| L398 67+008     | .1          | 1.15    | 11        | K)        | 4         | K)        | .15     | .1        | 14        | 45        | 26        | 4.73    | .10    | . 30    | + 114     | 1         | .01     | 9         | .02    | 11        | ND        | X)        | ND         | 2         | 9         | 3        | KD.        | 6         |
| L598 &7+508     | .1          | 4.98    | 7         | K)        | 21        | ND        | . 34    | .1        | 24        | . 12      | (342)     | 6.27    | .11    | 1.41    | 329       | 1         | .03     | 35        | .04    | 12        | N.D       | NÐ        | 3.         | K)        | 37        | KD       | KQ         | 42        |
| L598 68+008     | -1          | 4.57    | ND        | i ND      | 6         | ND        | .17     | .1        | 32        | 63        | 282       | 5.33    | .10    | . 81    | 687       | 2         | .02     | 20        | .03    | - 14      | ND        | N)        | )          | 10        | 10        | X        | N.D        | 21        |
| 1.571 68+50N    | .1          | 3.34    | XD        | ND        | 6         | ND        | . 24    | .1        | 14        | 81        | 99        | 9.19    | .12    | . 73    | 225       | 1         | .04     | 17        | .03    | •         | NO        | ND        | , ND       | ND        | 14        | KD       | MD         | 23        |
| L598 69+008     | .5          | 4.41    | ND        | X)        | ,         | XJ        | .15     | .1        | 16        | 51        | 87        | 8.78    | .13    | .34     | 236       | 1         | .03     | 1         | .06    | 11        | ND        | KD        | XD         | X)        | 11        | ND       | NØ.        | 24        |
| 1598 69+508     | 4           | 4.20    | N0        | ND        | 15        | ND        | . 38    |           | 25        | 56        | . 240     | 8.42    | .12    | 1.23    | 401       | i         | . 04    | 26        | .04    | 10        | ND        | ND        | KD         | XD        | ži        | N        | Ň          | 42        |
| L598 70+008     |             | 3.30    | XD        | ND        |           | N         | .13     | .1        | 17        | 54        | 83        | 8.17    | .13    | . 32    | 172       | i         | .03     | 10        | .05    | 10        | XD        | ND        | ND         | ũ         | 10        | N        | N          | 'n        |
| L598 70+50N     | .2          | 3.77    | KD        | KD        | Š         | ND        | .08     | .1        | ij        | 37        | 68        | 5.92    | .12    | .17     | 107       | i         | .02     | 5         | .04    | 17        | KQ        | K)        | 3          | N         | ï         | NO       | NO         | 12        |
| L591 71+00M     | .1          |         | KD        | XB        | Ĭ         | NJ        | .11     | .1.       | 9         | 28        | 45        | 4,94    | .10    | . 30    | 304       | ż         | .02     | i         | .05    | n         | ND        | 10        | XD         | ND        | i         | ĸ        | ND         | ii        |
| LAON &1+50N     | .1          | 1.10    | ,         | " ND      | 4         | 6         | .19     | .1        | 16        | 60        | 35        | 4.74    | .11    | .29     | 121       | 1         | .01     | •         | .03    | 11        | ND        | KĐ        | ND         | 5         | 17        | 3        | NØ         | 4         |
| L508 57+008     | .,          | 1.77    | i i       | 10        | i.        | , N       | .15     | .1        | 18        | 'n        | 74        | 9.24    | .14    | .76     | 162       | 2         | .03     | i.        | .05    |           | ND        | K)        | ND         | Ű         | ij        | N        | XD         | i         |
| L608 62+508     | .1          | 6.75    | ND        | XD        | i         | 10        | .27     |           | 17        | 76        | - 64      | 6.61    |        | .64     | 208       | KĎ        | .03     | 39        | .06    | 12        | ND        | K)        | <b>4</b> . | KO        | 20        | ND       | NØ.        | 31        |
| LSON \$3+000    | .5          | 1.70    | 3         | X)        | 5         | 5         | .29     | .1        | 17        | 90        | 26        | 3.74    | .10    | . 91    | 178       | XJ        | .01     | 58        | .03    | ,         | ND        | ND        | TO         | XD        | 26        | N        | KD         |           |
| LSON 43+50N     | .5          | 3.09    | 5         | XĐ        | Ĭ         | ND        | .32     | .1        | 19        | 50        | 45        | 7.91    | .13    | .34     | 277       | 1         | .03     | 15        | .04    | n         | ND        | HD        | ND         | ND        | ii        | ND       | ND         | - 44      |
| L608 64+008     | .7          | 2.25    | 6         | XJ        | 4         | KJ        | .17     | .1        | 17        | 41        | 46        | 10.38   | .14    | .12     | 81        | i         | .04     | 3         | .10    | 13        | ND        | KD        | ND         | Ŋ         | ,         | 10       | KD         | 5         |
| L40W 64+50W     | .3          | 2.11    | NO        | KÐ        | 7         | 5         | .11     | .1        | 17        | 43        | 35        | 6.84    | .12    | .41     | 177       | i         | .02     | Ĵ         | .07    | 13        | ND        | XD        | NO         | KD        | 11        | KD       | KD         | 12        |
| L60W 65+00W     | .1          | .78     | 15        | XJ        | 3         | K)        | .12     | .1        | 13        | 34        | 19        | 5.51    | .12    | .06     | 101       | i.        | .02     | 2         | .03    | 1         | ND        | ND        | KD         | ĸ         | 10        | 4        | X.D        | 1         |
| LAON 65+50M     | , <b>.1</b> | 1.11    | 7         | ND        | 4         | ND        | .14     | .1        | 15        | 41        | 30        | 7.84    | .12    | .15     |           | 1         | .03     | 1         | .07    | 10        | KD        | N.D       | ¥D         | ND.       | 10        | K)       | KØ         | 3         |
| L60# 67+50K     | .5          | 1.06    | 12        | X)        | 5         | ND        | .28     | .1        | 12        | 28        | 23        | 4.37    | .10    | .24     | 986       | Ì         | .01     | 10        | .03    | 8         | KD        | KD        | XĐ         | XJ        | 11        | N        | ND.        | 10        |
| L608 69+008     | .5          | .71     | 12        | X.D       | 4         | ND        | .16     | .1        | ,         | 29        | 28        | 3.41    | . 10   | . 15    | 142       | ND        | .01     | 6         | . 02   | ,         | ND        | X)        | ND         | ND.       | 10        | 4        | KØ         | 10        |
| L608 69+508     | .1          | 3.92    | KD        | K3        | 13        | N         | .20     | .1        | 23        | 76        | 102       | 6.60    | .10    | 1.61    | 882       | Í.        | .03     | - 44      | .05    | 1         | KD        | ND        | ND         | ND        | 17        | KØ       | N.O        | 37        |
| LION 70+00M     | .3          | 3.24    | ND        | ND        | 12        | XĐ        | .11     | .1        | 16        | 73        | 71        | 8.46    | .11    | .69     | 201       | 1         | .04     | 17        | .03    | •         | ND        | ND        | NO         | KØ        | 11        | KD       | XD         | 28        |
| L608 70+508     | .1          | 5.02    | XD        | K)        | 1         | ĸ         | .08     | .1        | 12        | 48        | 134       | 20.20   | .17    | , 34    | 80        | 1         | .09     | 3         | .10    | ND        | KD        | ND        | ND         | KØ        | 5         | KD       | ND         | 13        |
| L600 71+008 2   | .5          | 2.08    | 6         | XD        | 4         | XD        | .11     | .1        | 11        | 21        | 13        | 8.60    | .13    | .17     | 114       | 1         | .03     | ND        | .04    | 7         | KD        | ND        | XD         | XÐ        | ٤.        | KØ       | NO         | 1         |
| DETECTION LINET | .1          | .01     | 3         | 3         | 1         | 3         | .01     | .1        | 1         | 1         | 1         | .01     | .01    | . 01    | ł         | 1         | .01     | ı         | .01    | 2         | 3         | 5         | 2          | 2         | 1         | 5        | 3          | I         |


|                          |                                                                             | •                              |                                                                              |              |      |   |
|--------------------------|-----------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------|--------------|------|---|
| VGC                      | VANGEC<br>MAIN OFF<br>1521 PEMBERT<br>NORTH VANCOUVER<br>(604) 905-5211 TEL | ON AVE.<br>1, B.C. V7P 2S3 VAN | BRANCH OFFICE<br>1630 PANDORA ST.<br>NCOUVER, B.C. VSL 1L6<br>(604) 251-6656 | • • •<br>• • |      |   |
| REPORT NUMBER: 878479 6A | JOB NUMBER: 878479                                                          | RENEBADE EXPL. SERV            | ices ltd.                                                                    | PAGE         | 1 OF | 1 |
| Sample #                 | Au                                                                          |                                |                                                                              |              |      |   |
|                          | daa                                                                         |                                |                                                                              |              |      |   |
| 81884                    | 1968                                                                        |                                |                                                                              |              |      |   |
| R1885                    | 38                                                                          |                                |                                                                              |              |      |   |
| 61606                    | 368                                                                         |                                |                                                                              |              |      |   |
| 01007<br>01008           | 28<br>28                                                                    |                                |                                                                              |              |      |   |
| 01009                    | 148                                                                         |                                | , .                                                                          |              |      |   |
| 81818                    | (399 ) Arjin                                                                | in they is                     | e 1 .                                                                        |              |      |   |
| 01011                    | (1285 Garys Ko                                                              |                                |                                                                              |              |      |   |
| ·                        |                                                                             |                                |                                                                              |              |      |   |


(

(



.5 71+00 N .2 creek N .6 70 +00 N -----12 .3 61.00N 6 ... . 4 .1 4 68 +00 N 67 +00 N 2 (N).7 66 +00 N ..... · - - - - ' 65 100N Ð .7 6 64+00 N 63+00 N .. .1 62100 N 61+00N Baseline 60+00N 51+00N Soil Geochemistry 58+00N Silver in Soils (ppm) 57+00 N figure 5 Independance 56 + 00 N Property inches 0 55 + 00 × Scale Zeballos Gold Comp . h t t t t t Vancouver Island B.C. 0 centimetres 54 .00 (Meters) NTS 92E/15E FIG.5 reference riginal size



