NOTESONATISTTTOTHEPROPERTY
 1. A visit was made to the company's property at Cowichan Lake, Vancouver Island with Messrs. O. G. MacDonald and W.P. Watson for the purpose of assessing the possibilities of making a geophysical survey to locate further ore-bodies along the south-easterly extension of the Blue Grouse ore-bodies in the the general zone of metamorphism and mineralization that has recently been recognised by Mr. MacDonald.
2. All of the workings both in the Blue Grouse and the Sunnyside areas were inspected under the guidance of Mr . MacDonald. Also the extension of the Blue Grouse zone to the south-east was examined for $4,000 \mathrm{ft}$ and a traverse made from the Sunnyside workings across the claims in an easterly direction to the new road.
3. Although the whole area is well metamorphosed due to an underlying major intrusive there is considerable evidence that the Blue Grouse ore-bodies lie in a zone of more highly metamorphosed volcanics several hundred feet wide and striking south 35° east. It contains numerous snall and apparently irregular masses of feldspar porphyry. The more intense metamorphism is characterised by the development of epidote and garmetite rocks. Whilst considerable chalcopyrite is often present in the garnetite bodies it is by no means confined to them.
4. Owing to a recent destructive fire a surface examination in the claim area is readily made of the numerous rock outcrops. The bed-rock however is concealed for a considerable pronortion of the ground and only occasional float is found to indicate the presence of the zone of the Blue Grouse mineralization.
5. It is sugeested that a self-potential geophysical survey is made along this zone in the hope of locating further bodies of copper ore.

Such a survey would cover a bel.t 1,000 ft wide and 4,000 ft long with readings taken at 50 ft intervals. It would entail setting out a grid of stations with which to locate the positions at which readings are taken. Main lines would be set out 150 ft apart with stations at 50 ft intervals and stations at 50 ft on each side of them.
6. This grid would be useful for plotting the rock exposures and ore occurrences as well.
7. Such a survey would take from 10 to 15 days to complete but the cost cannot be estimated closely although $\$ 1,000$ is a reasonable estimate as follows:

Geological Engineer as instrument man \$500
Assistant 180
Two men staking lines for five days 120
Transportation, board and lodging 100
Hire of instrument 25
Incidentals 75

TOTAL \$1,000 Signed "A.C. Skerl"

REPORTONASELFF-POTENTIALSURVEY OFPARTOFTHEPROPERTYOFTHE COWICHANCOPPER COMPANY

Dr. A. C. SKERI.

May 8, 1953.

INTRODUCTION.
This survey was undertaken to test the possibjlity of an ore zone striking south 35° east through the property as suggested by the evidence of the topography, the apparently more intensive metamorphism and a series of float fragments of ore along this direction.

SUMMARYOTRESULTS.

1. The general arrangement of the anomalies is actually along a belt 700 ft. wide running due south from the Blue Grouse workings to the Sunnyside area for $3,000 \mathrm{ft}$. although only the northern half of the distance has been covered so far.
2. The anomalies suggest the presence of ore-bodies with sharply defined ends and ranging from 250 ft . down to 75 ft . in length. 3, Trenching, diamond drilling and underground exploration will be necessary to determine the actual dimensions and grade in each case however.
3. The topographic features and the float fragments of ore now appear to be the resilt of glaciation.

RECOMMENDATIONS.
The geophysical survey should be extended to cover:

1. The ground between the Blue Grouse and Sunnyside workings.
2. The area immediately west of the Blue Grouse main working.
3. A possible extersion of the zone to the north.

FIELDPROCEDURE.
The field work consisted of setting out numbered stakes on a rectangular grid system at 50 ft . intervals and then taking self-potential readings for each position.

An arbitrary point was t ken as loo, all the values calculated in reference to it and then plotted on the accompanying plan.

40 man days were needed to stake the ground tested and a total of 1250 readings were made in 12 days by an instrument man and a helper.

The topography is quite steep, ranging from 700 to 1800 ft . in elevation. Owing to an intensive fire nearly two years ago a large proportion of the ton soil has been eroded away. This condition made it difficult at times to get a satisfactory contact.

The irregularities of the equipotential lines at 10 unit intervals away from the anomalies do not have much signifjcance because the actual differences are small and the individual readings can be considered as correct to say 5 units only.

When there is a series of concentric lines higher than 120 an anomaly can be considered appreciable.

DESCRIPTIONOFANOMALIES.
Each anomaly is identified by the letter and number of the co-ordinate nearest to its centre and marked by a stake in the ground.

1. F7. this sugests an important ore-body extending for 150 ft . N.W. from the open cut at F8.
2. A series of open cuts at 25 ft . intervals from station F 5 to F 8 should expose any ore that is present.
3. Gl2 this correspondses to the main old working under which the present adit is being driven. It shows that the mineralization could extend for 250 ft . in a N.S. direction.
4. H15. the survey is not completed here but some very high readings were obtained in conjunction with the old open cuts.
5. U25.a small but definite anomaly here corresponds to an old open cut and sugests a length of up to 75 ft . for the ore. 5. M29. here a small but sharp anomaly in a boulder strewn depression near the head of a gully indicates about 75 ft . of mineralization.
6. K 30. another short anomaly that is linked to M29 could represent a length of 50 ft . of the ore already exposed here. 7. V33. there is the beginning of an anomaly here that extends west outside of the surveyed area. No evidence of ore could be found in the outcrops and old trenches although about 50 ft . to the south chalcopyrite mineralization in lava is exposed on the west side of the new logging road. The anomaly may represent the main portion of a very flat dipping body. Further readings to the west may help.
7. Q34. this is a north trending anomaly for 200 ft . and fragments of garnetite-epidote rock with chalcopyrite suggest a disseminated type of deposit. Some trenching followed by drilling should be done to determine the quality of this ore. 9. C66, this isolated and small anomaly is of doubtful value but should be tested by a cut into the depression on the hiljside in which it occurs.

REMARKSONTHECOWICHANCOPPERCO. Dr. A. C. S K ERL. May 8, 1953.

INTRODUCTION.
This brief account is based on 16 days recently spent on the property. Most of this time was occupied conducting a selfpotential survey which is reported on separately but all of the old workings were inspected and the old maps and reports studied. CONCLUSIONS.

1. There appears to be an excellent opportunity for developing several ore-bodies of chalcopyrite all within 800 ft . of the portal of the present tunnel.
2. Other deposits are known at the Sunnyside workings and more are indicated by the geophysical work.
3. The actual sizes and grades are not known but the old records suggest that an average stoping grade of about 5% copper can be expected over widths of 3 to 15 ft . and for lengths of up to 250 ft. according to the geophysical anomalies.
4. The actual average grade will be determined by the amount of low grade material that it is found economic to mine. 5. It is expected that the ore-bodies will be pod-shaped with the longest dimension down dip but probably pitching to one side. 6. The individual ore-bodies can be expected to terminate at various depths but other blind ones will probably take their place.

RECOMMENDATIONS.

1. Continue the present tunnel to the downward projection of the main ore-body which should be drifted on each way and a raise put through to the old level above.
2. Complete the geophysical survey.
3. Trench anomalies where practical.
4. Shallow X-Ray drilling.
5. Further tunnels where practical to explore other ore-bodies at say 100 ft . below surface.
6. Underground diamond drilling for deeper extensions and blind ore-bodies.
7. The question of a mill or shipping ore should be kept in abeyance until at least two or three of the deposits have been explored underground. Only development rock should be shipped unless some particularly high grade ore is encountered that would not be benefited by milling.

Mr. O. G. MacDonald,
President,
Cowichan Copper Company.
Dear Sir,
I have to report the following results as of June 201953 for the Self Potential Geophysical Survey that I am conducting over part of your property.

In a north trending belt 2500 feet and 1000 feet wide fifteen anomalies have been found that indicate possible mineralization for a total length of 2500 feet. All but one of these anomalies are shown on the accompanying plan.

The northern third of this belt includes the original main workings on Blue Grouse Mountain.

In the case of seven of the anomalies the presence of chalcopyrite is already known as indicated on the plan.

The survey is now approaching the Sunnyside workings which reach from 1000 feet to 1500 feet south of the belt mentioned above.

A campaign of bulldozing followed up by diamond drilling is recommended to test the commercial possibilities of the anomalies found so far.

> Yours Sincerely,
REPORTORASELF-POTEETIAE ETVEI

THECOWICHAHCOPPERCOMPAEIT
COWICHAIIAKE,B.E.

TABLEOTONTENTS

INTRODUCTION	1
SITUATION	2
HISTORY	2
CLAIMS	3
GEOLOGY	4
GEOPHYSICALSURVEY	
RESULTS	5
RECOMMENDATIONS	6

PLANS:

MAPSHOWINGLOCATION
SELF-POTENTIALSURVEY
RELATIONSHIPOFTHESURVEY TOTHECLAIMS.

1.

INTRODUCTION.

In April 1953 Mr . O. G. MacDonald, the President of the Cowichan Copper Company requested the writer to examine the company's claims and assess the possibilities of conducting a geophysical survey that might discover further ore-bodies.

It was recommended that a self-potential survey be made starting in the area of the known oremody and extending in the direction of the supposed belt of more intense mineralization.

A preliminary survey was therefore made by the writer over the known ore-body and a well-defined anomaly was obtained. The survey was then extended and this account is a report on the results achieved.

As indicated on the map the survey covers ground for which this work is not claimed for assessment purposes but the results are needed for the interpretation of the rest. The costs submitted by the management have been segregated so that only the work in the claims for which assessment is filed is included.

The line cutting and staking of stations continued for most of the time between May 1 st, and October 20th 1953 but the instrument work was confined to the periods l2th June to 26 th June and 1 st to 20 th October 1953 apart from the preliminary work.

> SITUATION.

The accompanying map, taken from the company's prospectus of July 1953, shows the location of the property on the south side of Cowichan Lake, Vancouver Island, B.C.

The area is one of considerable relief ranging from 500 to 1800 feet above sea level. Some of the slopes are very steep making the progress of the survey difficult and slow.

HISTORY.

The original properties were know as the Blue Grouse and Sunnyside for which the first recorded work was in 1915 and by 1919 about 2,500 tons averaging 7% copper are reported to have been shipped.

In 1920 the Consolidated Mining and Smelting Company did about 3,000 feet of diamond drilling in eight holes most of which were under the main working in the Blue Grouse claim. Several intersections of good grade and width were obtained but the company relinquished its option.

In 1928 the Pacific Tidewater Company started a projected 500 feet crossecut adit into the hillside but abandoned it at 60 feet.

In 1953 the present company extended this tunnel and by means of a raise encountered the ore that had been indicated by the diamond drilling. Two shipments of development rock in February and April respectively of 1954 totalled 1,258 tons averaging 6.3\% copper.

3

C LA IMS.

There are sixty claims altogether of which three are crown granted.

They include the Timber Block 107 totalling 600 acres for which the company has the licence to mine the base metals.

They also include the old workings known as the Blue Grouse and Sunnyside that are about 4000 feet apart.

The accompanying plan (scale $\mathbf{l n}^{\prime \prime}$ - 1500') shows the relationship of the area surveyed to some of the claims.

Of the total area covered by the geophysical survey 40\% was in the following six claims for which this report is therefore submitted as assessment works

NAME	TAG
Osslyn	B 18914
T T 3	A 86699
4	A 86700
8	A 86704
Lake 2	A 45081
5	A 45086

GEOLOGY.

There is no published account of the geology of the general area but one is expected shortly from the B.C. Department of Mines.

A limited amount of detailed geological mapping has been done by L. Gatenby and the writer. This work is now being extended.

Most of the claim area was originally underlain by volcanic rocks, largely of basaltic composition, that had one or more lenticular layers of limestone.

Strong overfolding along both northerly and westerly aligned axes was followed by the intrusion of numerous dykes of feldspar porphyry both steep and flat in attitude. This intrusive period was accompanied by intense but variable metamorphism probably due to an underlying granite mass at an unknown depth.

In places the basalts were converted to epidote rock whilst the limestone in some cases was completely changed to garnetite rock often containing economic amounts of chalcopyrite associated with minor quantities of pyrrhotite and magnetite.

Chalcopyrite mineralization also occurs as veinlets and disseminations in the epidotised basalts.

Underground a number of faults have been encountered that may be significant in the location of the ore-bodies.

The area was claciated in comparatively recent times so that fresh sulphides are found at or very near the surface.

GEOPHYSICALSURVEY.

The mineralization, the fresh sulphides at the surface and the shallow overburden in most parts of the claims determined the choice of the self-potential method for a geophysical survey of the property.

The instrument employed was constructed by Professor Clarke of the Geophysical Department of U. B. C. and it is designed to be unusually sensitive.

FIELD PROCEDURE.

Copper electrodes immersed in a saturated solution of copper sulphate in porous pots were used to make contact with the ground by placing them in shallow holes containing a little water.

The instrument was set up at one station of a 50 ft . grid and readings recorded of the potential difference for successive stations up to 500 feet away before moving to a new set-up. In this way the potential differences were determined in millivolts for nearly 3,000 stations covering an irregular area of some 170 acres.

The instrument has been calibrated so that the signs of the potentials have been reversed. Normally a strong anomaly with a negative sign is the indication of a good generator at the surface but with this instrument it is recorded as positive.

Station C.O. was considered to be some distance from any mineralization and arbitrarily assigned a value of 100
millivolts. The values for all other stations were then calculated with reference to 1 t. In this way the values for all stations are positive and plotting is simplified.

Numerous checks were made with previously determined stations and minor adjustiments made so that usually individual readines can be considered as correct to 5 units.

Owing to an extensive fire two years previous to the survey a large proportion of the top-soll has been eroded away. This condition made it difficult at times to get a satisfactory contact.

The values obtained were plotted on the accompanying map, scale 1 inch to 100 feet, on which equipotential lines have been constructed and areas of similar value coloured to show the anomalles to better advantage.

> RESULTS.

It can be seen on the map that the self-potential survey outlines a belt from 600 to 1000 feet wide and trending north for 6000 feet that contains over twents significant 'positive' anomalies.

A number of these anowilies are already known to have associated copper mineralization which strongthens the possibilities of the rest.

In several cases the dip of the body responsible for the anomaly is clearly indicated by a corresponding 'negative' anomaly.

In the following descriptions of the various anomalies each one is identified by means of the letter and number of the station nearest to its centre or by the stations at each end if it is a large anomaly.

1. F. 7 This suggests an important ore-body extending for 150 feet N. W. from the openmeut at $F .8$ from which ore was removed in the past. The geological mapping strongly suggests that the main body is completely cut off from the surface by a porphyry dyke. There is a strong corresponding negative anomaly 150 feet to the S. W. suggesting a normal dip of 45° in that direction.
2. F. 10 to H. 13 This anomaly that is 250 feet long corresponds to the main old workings beneath which a large ore-body is now being developed over a width of 50 feet and a length of 130 feet to date (May 20 1954). The geology indicates that it could be part of No. 1 anomaly with a large dyke between.
3. N.O to Z. 8 This, the largest known anomaly, is at least 750 feet long with two extra high sections at R. 3 and V.6. It is known to follow a contact between limestone and carbonaceous shale at least in part. A strong 'negative' anomaly at X. 0 suggests a flat dip to the west. The overburden is fairly heavy and no mineralization has actually been seen. It is a likely place for ore to occur but it is just possible that enough of the carbonaceous shale has been
converted to graphite which is known to give high anomalies. It should certainly be tested by several diamond drill holes.
4. M. 16 to S. 10 This is another large and pronounced anomaly with an easterly strike of 400 feet.

Copper ore can still be seen in the old open pit at its eastern extremity with mineralization over a width of at least ten feet. It dips here at 45° to the south and a seam of graphite associated with a little recrystallised limestone was found in the immediate hangingwall. An old diamond drill hole at -45° is reported to have intersected the ore at 130 feet below the outcrop where it assayed 3.54% copper over 3.1 feet. The average dip between the open cut and the intersection is 48°.

A steeper drill at -70° failed to find ore but a small rake to the west would account for this failure. Further diamond drilling to the east is needed.

There is a small negative anomaly at $V .20$ about 400 feet to the south that could correspond to this ore-body.
5. M. 7 This is a distinct but minor anomaly centrally located with regard to the four previously described anomalies.
6. P. 20 to R21 This is a well-defined anomaly 100 ft . long and will require testing.
7. U. 25 A small but definite anomaly here corresponds to an old open cut with copper ore exposed for a width of 3 ft . A length of 75 ft . is indicated. It is linked by a weak anomaly with No. 6 so that an overall length of 500 feet of
a structure is possible. This in turn strikes north toward the main old open pit another 500 feet north and also across the western extremity of No. 4. The possibility of a fault structure linking together all these anomalies should be born in mind.
8. K. 30 Here some sheared volcanic rock with good chalco pyrite mineralization is exposed in an outcrop and gives an anomaly that is 50 feet long.
9. M. 29 This is a small but sharp anomaly 75 feet long in a boulder strem depression at the head of a gully and 75 feet west of No. 8.
10. P. 33 to Q. 35 Here a distinct anomaly was found to represent two zones of epidotised lava with disseminated chalcopyrite about 50 feet apart and each 100 feet long.
11. W. 34 Here there are three mild anomalies just west of the logging road where some epidotised basalt with chalcopyrite is exposed in the road cut. It is possible that there is a flat area of such material 250 feet by 100 feet in extent.
12. 2. 37 This is similar to No. 11 and chalcopyrite was found at the west end of the anomaly that is 100 feet long.
13. Cw. 41 to Ew. 42 This is a strong anomaly 200 feet long where a piece of float well mineralized with chalcopyrite was found.
10.
14. X. 45 This is a small anomaly 100 feet long.
15. X. 52 This is very small and of doubtful value.
16. Fw. 64 This is a definite anomaly 125 feet long and 400 feet east of the Sunnyside workings.
17. Lw. 63 , Pw. 63 , Qw. 64 These are three small anomalies in the Sunnyside area but not directly associated with any of the old workings. Detailed mapping here may reveal their relationship.
18. Qn. 32 to Nn. 39 This in the north area and consists of three small anomalies over a distance of 350 feet that may possibly be related to each other.
11.

RECOMHENDATIONS.

Drill a series of vertical diamond drill holes at 100 feet intervals along the strike of the large anomalies that are numbered 3 and 4 above and approximately 125 ft down the dip of the supposed ore-bodies so as to cut them between 100 and 150 feet below the surface.

There will be 8 such holes for No. 3 and 4 for No. 4 anomaly. Two holes are also suggested for No. 1 anomaly.

A total of $2,500 \mathrm{ft}$ costing $\$ 10,000$ is estimated for this work.

The results obtained will guide the further drilling of these anomalies.

At a later date a number of other anomalies will require testing by shallow diamond drfilinge

Dr. A. C. Skerl, P. Eng.

```
- NOTES ON A VISIT TO -
    COWICHAN COPPER
    SEPTEMBER 28, - OCTOBER 1, 1954
    - A.C. SKERL -
```

1．At 106 ft the 1200 S cross－cut encountered the ore－body immediately in the hanging wall of the flat fault and within 15 ft of the projected position。

The grade here is excellent probably averaging 10% Copper for the 20 ft of length and 10 ft of width opened up so far．Two horizontal samples were taken from east to west both 5 ft long across the face at 126 ft but the assays are not yet available．

The full width is not exposed but may well be as much as the 50 ft average on the 1290 level above，where it was opened up for a length of 140 $f t$ 。

This new exposure enables the calculation of a probable body of ore totalling 100,000 tons and averaging 5% copper between the 1200 level and the surface using the calculated factor of 8.3 cubic feet per ton for this heavy chalcopyrite－garnetite ore。

If it proves to be as much as 140 ft long and average 50 ft wide on the 1200 level then another 33,000 tons would be added to the block above the level and a similar amount below down to an arbitrary limit of 40 ft 。 2．The 1290 sub level to the N．W．has crossed a body of garnetite 40 ft wide that appears to be the faulted portion of the main ore－body but it is only sparsely mineralized with chalcopyrite and averages 1.25% copper。

The horizontal displacement on the flat fault that dips $30^{\circ} \mathrm{S}$ is 100 ft but the true movement may be more or less according to the direction． However the evidence of＂ribbing＂on the fault plane suggests normal faulting with a movement downward of the hanging wall block of over 100 ft 。 The low grade garnetite could then correspond to the weaker south end of the present ore－body and further exploration to the north may encounter a better grade of ore corresponding with a strong self－potential anomaly．

Page 2 Cowichan Copper

A raise at 45° from the 1200 W cross-cut would make this exploration feasible.
3. To reach the projected position of the ore in the old workings further to the south which gave such a strong self-potential anomaly the 1200 s cross-cut would have to be driven to a position 600 ft south of the main cross-cut or 350 ft beyond the probable end of the present ore-body.

This would be 300 ft vertically below the outcrop and 170 ft below the value of 3.54% copper over 3.1 ft obtained by C.M.\&S. in hole $N^{\circ} 3$.

With the ore dipping at 48° and with an unknown rake this is too far from the surface for a connecting raise so that it would be best to check the ore by further diamond drilling from surface and then, if warranted, to drive an adit at the 1350 level to meet the ore at about 300 ft from the portal.

At 300 ft west of these old workings a bulldozer cut across the anomaly exposed a zone 40 ft wide of dark brown and black sandy clays representing highly leached and oxidized limestone with associated calcareous and carbonaceous beds. Porphyry is present on the south and lava to the north. The dip is about $50^{\circ} \mathrm{S}$.

The degree of weathering is unexpected and suggests the presence of a portion of the pre-glacial deeply weathered land surface that was not removed by the ice sheet.

It almost certainly corresponds to the ore-bearing horizon in the old working although no sulphides or limonite directly attributable to oxidized sulphides were recognised.

Page 3 Cowichan Copper
It is difficult to understand how thisweathered material alone could produce a potential of half a volt so that the fresh rock below must be tested for sulphides by diamond drilling to a depth of at least 100 ft and preferably deeper.
4. A cut across the largest anomaly that is situated fur ther west has exposed a similar zone of highly weathered sediments.

Here again diamond drilling will be necessary and if successful an adit could be driven from the northeast end of this occurrence before driving a long cross-cut from the main workings.

PROARESS RPFORT OR COMICIAL COPDTR CO. IRD.

Sentember 7, 1054.

Active exploration of your compary's holdincs on the south shore of Comichan Lake was started in Jamary 1953. The objective was to develon a mine, shipnine ore to help defray costs.

Worl done to date consists of a two mile road to rronerty, necessary nine buildings and ore bin, geologica? and toporranhical mapning of imediate mine area, self potential cechhysical survey of annoximately 100 acres and about 1600 feet of underground develonment vork. The underground deve? omment work has beon explained wuch in regard to geology and structure and has rroduced about $550,000.00$ in net smelter returns from ore, shimed. In peneral the mork both surface and underpround has nroduced data which warrants an expanded development rrogram.

GENERAL CEOLOCY:
The R. C. Dent. of llines has manned the mine area as lying on the crest of an overturned fold nlunging to the "est. Whe rocks are Franklin Creek gabbres and basalt including members of the Sutton Creek limestones. Alon the crust of the fold the limestones are isolated bloc? remnants in a zone trending north to IN. The main limestone members on the limbs of the fold outcron about $1 / 3$ mile east and $2 / 3$ mile vest of the present mine workings. An intrusive rock called feldspar porin my and probably related to Saanich eranodiorite outcrons in irregular sills and dike bodies in a zone about 1000 ft . wide and trending Test to T. Th. "his area containin the intrusive rocks cuts ohlicquely across the folded area. Conper mineralization is found in the area contained by the fold crest and the nornhyry intrusive zone.

INERALI GARIOI:

The mineralization is considered to be contact metamorrhic. It is foun chiefly in carnitite bodies which nrobably are metanorphised limestone blocls. The mineralization is chalconvrite with minor amounts of pyrite and magnetite. Chalconyrite is found disemminated throug the garnetite and in concentrated masses bordering small pre-mineral internal fractions in garnetite. Not all garnet'te is "ore" but every garnetite body discovered to date has some parts that aro "ore grade". Economically the size and distribution of these bloc's is important. Some chalconyrite mineralization has beon found in fractures or structure in the meta-basalts. This tyre of mineralization is worth of consiceration.

SURFACE MAPPJHC:

PROPGETY GIE 92con

The oripinal surface mapping established the location and trend of the garretite frament zone within the nornary zone. It was mapred for about 1500 ft . but has a probable length of more than a mile. Nuch of the surface along the trend of the mineralized zone away from the nresent morlings is overburden covered.

Small outcrops of garnetite with chalconvrite and chalconrite in meta-basalts were maped in area near present worlings. Mo through-going faulting or shearing was observed. The basalts in the neishborhood of the norynum are strongly metamornhised and fractured with development of skam minerals.

GEOP TYSICAL STRVEY:

During June and Tuly 1953 a se?f notential geoohersical surver of a block abont 1000 ft . square centered over the old workings was conducted bu Dr. A. C. Wkerl. Later in the summer G. A. lacDonald continued the survey to the nort for another 1000 ft. and to the sonth to cover the 01 sunveside worlenes a distance of about 3000 ft .

Whis type of geophysical survey measures the snontaneous polarization currents roduced by electrochemical reactions of natural conductors in the ground. This can be sulfides or graphite. A continuous conductor over a vertica? or slope depth of about 50%. is necessary for tice production of a measurable difference of notential. Denth of denosit and depth of overburden are imnortant rotentials of 100 to 700 are common over the arex of a sulfide body. Denth penetration for good sized blind sulfide bodies is probably in order of 250 f.t. Conductivjty of the wall rocls is purely electrolytic.

Results of these self notential survers is encouraging an anomaly trending north solith, over 200 ft . 7 ong and with highs about twice background was obtained over the old pit, now called East ore body. Four anomalies were produced within 700 ft . of the old pit with trends in three directions i.e. north soidth, east-west, and about north west. Readings on these anomalies ranged as high as 650 millivolts over a base of about 150. Wuch of the surface over these anomalies is overburden covered but near each some porphrry in place has been found. Nwo of the anomalies contain lnown small pads of Earnitite and conper mineralization.

Graphite which can be nroduced bunamic metamornhism (shearing, faulting) of carbonaceous rocks coul? be produced by structure in or along walls of sedimentary rocl or garnitite but should not occur jn the basalts, as seen in the underground worlings the structure along the hanging wall of the garnitite ore bodies probably contains some graphite. Kowever, the flat structure in porphyry sill of main adjt probably contains relatively easily and would be hard to find in outcrops. The
important point is ranhite is more than lilely roduced only in structures in sedimentary rocks or garnetite bodies. Geophysical anomalies wjthin the norbhyry area could be nroduced by either mineralization or structure in or along side garnetite bodies.

UNDERGROUTD DEVELOPMENT

About 1600 ft . of underground development wor? has produced about 4100 tons of conner ore grading 5.55% after minor sorting.

The main adit abovt 500 ft. long was driven along old diamond drill hole ${ }^{\text {if }}$. The adit is about 225 ft . slone distance helow the old wor? ings. All development work to date has been done from a mblevel midway between the two levels. wor on the sub level is about 50 , drifting and crosscutting ard 50% raisinध.

Ore shinments have been made from two bed tyne garnitite bodies known as the mest and East ore Bodies. A third garnitite body (porth ore body) was located under a post mineral flat falult but is not developed as yet. These three garnitite beds are probably narts of one oricinal limestone bed which has been cut by a steen dike - li e porphyry body about 30 ft . thicl, and moved by a flat fault. The ore mineralization in the garnitite is chalcopyrite diseminated and in small concentrated bodies bordering small internal fractures in the garnitite.

The development wor has delimited the Bast ore body above the flat fault and partly developed the "est ore bodr anove the failt. The west ore body is open along strike to the scuth and also down din. The north ore body is not developed.

The underground development worl has furnished a good deal of structural information about the mineral deposit as well as doing a cood sampling job. It has shown the presence of silt and dire li e feldspar porphyry intrusives with mineralization in garnitite on both sides of the di e porphyry. The foot wall and hanging wall of garnetite bed is on line through the porphyry indicating some normal faulting on the porphyry wal? s (not a straight displacement). The strong looking structure on the hancing wall has ver: little apparent movement when cutting through the norphyry di'e. The small internal fractures in the garnetite bodies are pre mineral and localize the mineralization. Two sititudes of aulting have been observed which are later than the ineralization (I) north to 1 . W. steer dinning and (2) the flat falut (seemon sub level) with striye of $\mathrm{F} 5^{\circ} \mathrm{N}$ and 30° din S.W. The nort ore bory was located beneath this flat fanl.

Sectional steel test holing has proven very valuable in this type of mineral deposit. A test hole driven Westerly from the original sub-level crosscut is reported to have returned garnetite sludge at about 40 ft. after passing through the norphyry dike. As the meta-basalt fontwall was found on both the West and Jast ore bodies, this indjcates a renetition of the garnetite beds at depth A test hole over the back of the main adit near the face gave garnetite sludge indicating the downard continuation of the north ore body, also a test hole near the
face of the main adit and below the level is renorted to have returned garnetite sludge. For grade determinations a resume' of ore shipments is included in this renort.

CONCLUSIOTS
The grade and size of the mineralized bodies located in the limited area of the underground worlings is better than original expectations. Considering the area of the potential mineralized zone and the geophysical survey results, I believe the proporty warrants an expanded develonment program on the surface and underground.

QRE SIIPIFETS DATA

West Ore Body - shipments \#1 to \# 4

$$
\begin{array}{rr}
\text { Wt }= & 4,35], 0001 \mathrm{bs} . \\
\text { Crade }= & 5.90, \%
\end{array}
$$

East Cre Boay - shipment \#5

$$
\begin{array}{cc}
\text { Nt }= & 1,866,0001 \mathrm{bs} . \\
\text { Irade }= & 4.28 \%
\end{array}
$$

PROGRESSOREORTON
THE COWICHAN COPPER MINE
\section*{26 April 1954}
D Re A。C。 SKERL。

$S U M M A R Y$ 。
The development work to－date has been eminently successful in opening up a block of probable ore of 50,000 tons averaging 5% copper that further work in the near future may well expand into 200，000 tons．

GENERAL 。
The evidence of the underground work to－date suggests that the ore－body at present being developed represents an original lens or possibly overturned，tight synclinal fold of limestone that has been completely replaced by garnetite and chalcopyrite with subsidiary amounts of pyrrnrotite and magnetite．

This ore－body has a hangingwall that dips from 45° to 60° West and a footwall that flattens from 50° to 20° West．

A pronounced rake of 30° to the south is controlled by a strong footwall fault that may represent movement along the original bedding．

At the surface the old workings，trenches and geophysical anomaly indicate a length of 300 feet with a central section of 100 feet long and 50 feet wide in which the old open－cut is situated． It narrows down to a few feet in width at the north and south ends．

On the 1290 level which is 110 feet vertically below the original outcrop a length of 90 feet of ore has been opened up over a width of 15 feet in the footwall part of the ore－body．At the

north end it is bounded by the flat dipping fault that defines the rake of the ore-body but the south end is still in ore and could continue so for 100 feet or even 200 feet if there is a corresponding rake to the upper edge of the ore-body.

A raise in the hangingwall section found the ore cut off by a porphyry dyke which also cuts off the ore on the east side of the 1290 level at the north end. This dyke is known on the old 1360 level cross-cut above where it is 35 feet wide; it appears to be 20 feet wide at the 1290 level. Underground this dyke is almost vertical and strikes north but the only corresponding dyke present on the surface would have to dip at 45° east down to the 1360 level. On the surface this dyke pinches out at its north end directly above the present north end of the 1290 level so that there is a possibility of it having a similar shape underground. At present the dyke forms a barren zone between the west ore in the workings driven by the present company and the ore originally mined east of the dyke and at a higher elevation.

From the new development work 1258 tons of ore has been shipped that averaged 6.30% copper which compares well with the 2,500 tons averaging 7.0% shipped during the first world war.

The average grade of the ore-body is probably 5% as presently developed after allowing for the low grade that was sorted out.

The present workings are not sufficient to block out much positive ore but the results can reasonably be interpreted as showing 50,000 tons of probable ore averaging 5% copper in the block developed by the 1290 and 1360 levels.

Geologically there is the reasonable possibility of 200,000 tons of 5% copper ore in this lens above the 1200 level but a considerable amount of development will be necessary to demonstrate its presence.

A combination of drifting, raising and diamond drilling would determine this ore as outlined in the following UNDERGROUND DEVELOPMENT PROGRAMME.

1. The most important work is the continuation of the 1290 level to the south to extend the known length of ore and to provide income from the development ore shipped to the smelter.
2. Outline the width of ore on the 1290 level by crosscutting to the hangingwall at 50 ft . intervals or diamond drilling every 20 feet.
3. Make a direct connection from the original raise to the north end of the 1290 level.
4. Raise to north at $+30^{\circ}$ from north end of 1290 level keeping the porphyry dyke on the east wall.
5. Raise at present position of south heading on 1290 level.
6. Raise again at 100 feet further south if ore extends that far.
7. Diamond drill a flat hole from the main cross-cut on the 1200 level at 480 feet from the portal at $S .15^{\circ} \mathrm{E}$. for $200^{ \pm}$ feet to pick up the ore-body on the level. If successful expand ore by further holes.
8. Crosscut on the 1200 level to develop any ore found by diamond drilling.

SURFACE DIAMOND DRILLING。
A programme of diamond drilling from the surface of the

4
geophysical anomalies obtained last year has already been submitted．

This work will be invaluable for determining the possible scale of operations that can be planned for the future．

Dr。A。C。Skerl，P。Eng。

COWICHAN COPPER COMPANY. MEMORANDUM ON POLICY. DR. A. C. SKERL. 26 Apr11 1954.

The following figures are significant in considerine milling the ore instead of shipping crude ore to Tacoma.

1. Consider a block containing 50,000 tons of ore of 5% copper grade. When sorted to say 6% by discarding 25% of the tonnage averagine 2 , there would remain 37,500 tons that would net $\$ 18$ per ton at the smelter or $\$ 675,000$. Costs would bes Minine at $\$ 5 \quad \$ 250,000$ Sorting $\quad 50,000$ Froight etc. $\$ 4 \quad 150,000$ Total $\$ 450,000$

The profit from mining this block of ore woula be $\$ 225,000$.
2. Neyt consider milling the ore to give a 20% grade that nets $\$ 90$ ner ton at the smelter and assume a milling cost of $\$ 2$ per ton and in extraction of 90%. This would yield 11,250 tons of 20% concentrates, or a total of $\$ 1,012,500$.

Costs would be:

Mining e\$5	$\$ 250,000$
Milling $\$ 2$	100,000
Freight $\$ 4$	45,000
Total	$\$ 395,000$

PROPERTY FILE

Thus milline would give aore than twice the profit that shippine of crude ore does at present rates.
3. If it is assuned necessary to prove up 100,000 tons of ore to warrant a all then development and additional machinery will cost say 50,000 and a siaple mill 100,000 . To raise this money by shipole ore it would be necessary to mine 35,000 tons of oro 2π sacrilice $\$ 175,000$ of potential profit. Also it would take three years at the uresent linit set by the smelter and could also jeopardise the tax free period for milling.
4. An alternative would be to rass the necens:ry capital for further development, a mill and working capital by selling aty 400,000 shares to yield 200,000 . With escrow shares there woild then be total of $1,750,000$ shares issued as compared with 1,350,000 if the present share position was stabilised.

Thus a shareholder's present interest would be reduced by 30% permanently.
5. If it wore nossibie to ship say ${ }^{4}, 000$ tons per month then the aine could oficially go into production and within 9 months accumulate enough surplus to buy the additional equipment and mill. After allowine another 3 months for aill construction there would still be ? years of tax free period leit for the milling operation. The shareholders would have then preserved their present interect and so ultiantely reap a much larger profit in the presumably many years of production ahead.
6. A still better arraneant, if posible, would be to borrow the money on the basis of payine hack with a substantial interest withia say tweive nonths of gotng into producticn. (Ggd.)"A.C. Sker1".

February and, 1954.
Mr. Oswood MacDonald, President
Cowichan Copper Company.
Dear Sir:-

GRAVITY DETERMINATIONS ON THE COWICHAN COPPER COMPANY ORE.

Specific gravity determinations were made by J. R. Williams \& Son Ltd. on five samples selected from the list of samples taken in the northeast raise driven off of the sublevel during the period of January 8th and 21st.

The following table shows the sample numbers, the percentage of copper present, the specific gravity of the sample, the calculated number of pounds per cubic foot, the equivalent number of cubic feet of rock in place to weigh one ton, and the calculated percentages of weight of chatcopyrite, garnetite and pyrite present in the samples.

PROPERTY FILE 900 Cl

Mr. Oswood MacDonaid, prosident, Cowichan Copper Company.

COAICHAN COPRER MIUL IN JARUARY, 1954.
Dear sir:
Chip gamples were cut at 5 -foot intervals alone the northwest and southeast walls from the roof to the floor of the raise driven off the sublevel at the Cowichan Mine on January 8 th and 21st. The Ine of cutting was aporoxinately at right angles to the floor of the raise and would therefore reprecent a true cross-section of the mineral zone for the distanco covered.

The foot of the raise for descriptive purposes was assumed to bo where the raise floor starts at a 45 degree slope, from above the sublevel or at point 22.22 Leet north $51^{\circ} 20^{\prime}$ List from the station at the floor of the manway ralse which eives accoss to the sublevel. This was taven th the zero point of the raiso. Samples were cut at 5 foot intervals starting at the 11 ne 5 feet above the zero point.

The cross-soctional thickness of voin represented and the results of the sanpling are show in the followinc table:-

Locatione	Slope Distance Southeast side. zero noint	Thickness of vein represon- tede

February 2nd, 1954.

Mr. Oswood MacDonald, Vresident, Cowichan Copper Conpany.

FTPON: OM BAMPLIMO OF TW NONMEAST RAISE IN THE CONICHAN COPMER MIUE IN JANTARY, 195^{2}.

Dear sir:
Chip samples were cut at 5-foot intervals along the nortmest and southeast walls fron the roof to the floor of the raise driven oif the sublevel at the Cowichan Mine on January 8 th and 21 st. The 11 ne of cutting was aprroximately at right aneles to the floor of the raise and would therefore reprosent a true cross-section of tho mineral zone for the distanco covored.

The foot of the raise for descriptive purposes was assumed to bo where tho raise floor starts at a 45 degree slope, from above the sublevel or at a point 22.22 feet north $51^{\circ} 20^{\prime}$ East from the station at the floor of the manway raise which eives access to the sublevel. This was talen at the zero point of the raiso. Samples were cut at 5 goot intervals starting at the line 5 feet above the zero point.

The crosamsectional thickness of velin represented and the results of the sampling are show in the followine table:-

Location. Southeast side.	slope D1stance above zero nolnt	Thickness of vain represontode	Percentrate of copper in sample.
	5	5.17 reat	4.75%
	10	$5.50 \cdot 1$	9.75\%
	15	$5.80{ }^{\prime \prime}$	11.80\%
	20	$6.11{ }^{\prime \prime}$	15.15\%
	25	6.42 "	13.00\%
	30	6.42 l	Sample not takon but assurnod at 23.00%

Mr. Oswood MacDonald, President, Cowichan Copper Company.

RFPPORT ON SAMPLING OF THE NORTHEAST RAISE IN THE COWICHAN COPPER MINE IN JANUARY, 1954.

Dear Sir:
Chip samples were cut at 5-foot intervals along the northwest and southeast walls from the roof to the floor of the raise driven off the sublevel at the Cowichan Mine on January 8th and 2lst. The line of cutting was approximately at right angles to the floor of the raise and would therefore represent a true cross-section of the mineral zone for the distance covered.

The foot of the raise for descriptive purposes was assumed to be where the raise floor starts at a 45 degree slope, from above the sublevel or at a point 22.22 feet north $51^{\circ} 20^{\prime}$ East from the station at the floor of the manway raise which gives access to the sublevel. This was taken at the zero point of the raise. Samples were cut at 5 foot intervals starting at the line 5 feet above the zero point.

The cross-sectional thickness of vein represented and the results of the sampling are shown in the following table:-

Location.	Slope Distance
Southeast	above side.
	zero
	point

Thickness
of vein
represen-
ted.

Percentage
of copper
in sample.

$$
4.75 \%
$$

$$
9.75 \%
$$

11. 80%
15.15\%
13.00%
Sample not taken but assumed at 13.00%

REPORT-NASELT-POTENTIALSURVEY OFPARTOFTHEPROPERTYOTTHE COWICHANCOPPERCOMPANY Dr. A. C. SKERL. May 8, 1953.

IHTRODUCTION.
This survey was undertaken to test the possibility of an ore zone striking south 35° east through the property as suggested by the evidence of the topography, the apparently more intensive motamorphism and a series of float fragments of ore along this direction.

SUMMARYOFRESULTS.

1. The general arrangement of the anomalies is actually along a belt 700 ft . wide running due south from the Blue Grouse workinge to the sunnyside area for 3,000 ft. although only the northern half of the distance has been covered so far.
2. The anomalies suggest the presence of ore-bodies with sharply defined ends and ranging from 250 ft . dow to 75 ft . in length.
3. Trenching, diamond drililing and underground exploration will be necessary to determine the actual dimensions and grade in each case however.
4. The topographic features and the float fragments of ore now appear to be the result of glaciation.

920017

RECOMMENDATION8.
The geophysical survey should be extended to cover:

1. The ground between the Blue Grouse and Sunnyside workings. 2. The area immediately west of the Blue Grouse main working. 3. A possible extension of the zone to the north. FIELD PROCRDURE.

The field work consisted of setting out numbered stakes on a rectangular erid system at 50 ft . intervals and then taking self-potential readings for each position.

An arbitrary point was tiken as 100 , all the values calculated in reference to $1 t$ and then plotted on the accompanying plan.

40 man days were needed to stake the ground tested and a total of 1250 readings were made in 12 days by an instrument man and helper.

The topography is quite steep, ranking from 700 to 1800 ft . In elevation. Owing to an intensive fire nearly two years ago a large proportion of the top soil has been eroded away. This condition made it difficult at times to get a satisfactory contact.

The irregularities of the equipotential lines at 10 unit intervals away from the anomalies do not have much significance because the actual differences are small and the individual readinge can be considered as correct to say 5 units only.

When there is series of concentric lines higher than 120 an anomaly can be considered appreciable.

DESCRIPTIONOFANOMALIES.
Fach anomaly is identified by the letter and number of the co-ordinate nearest to its centre and marred by state in the ground.

1. F7. this sugests an important ore-body extending for 150 ft . N. W. from the open cut at F8.
2. A series of open cuts at 25 ft . Intervals from station F5 to F 8 should expose any ore that is present.
3. G12. this corresponds to the main old working under which the present adit is being driven. It shows that the mineralization could extend for 250 ft. in a N.S. direction.
4. H15. the survey is not completed here but some very high readings were obtained in confunction with the old open cuts. 4. U25. a small but definite anomaly here corresponds to an old open cut and sugeests a length of up to 75 ft . for the ore. 5. M29. here a small but sharp anomaly in a boulder strewn depression near the head of gully indicates about 75 ft . of mineralization.
5. K 30. another short anomaly that is Inked to M29 could represent a length of 50 ft . of the ore already exposed here. 7. V33. there is the beginning of an anomaly here that extinds west outside of the surveyed area. No evidence of ore could be found in the outcrops and old trenches although about 50 ft . to the south chalcopyrite mineralization in lava is exposed on the west side of the new logeing road. The anomaly may represent the main portion of a very flat dipping body. Further readings to the west may help.
6. Q34. this is a north trending anomaly for 200 ft . and fragments of garnetite-epidote rock with chalcopyrite suggest a disseminated type of deposit. Some trenching followed by drilling should be done to determine the quality of this ore.
7. C66, this isolated and small anomaly is of doubtful value but should be tested by a cut into the depression on the hillside in which it occurs.

signed "A.C. Skerl"

REMARKS ON THE COWICHAN COPPERCO. Dr. A. C. S K E R L. May 8, 1953.

INTRODUCTION.
This brief account is based on 16 days recently spent on the property. Most of this time was occupied conducting a selfpotential survey which is reported on separately but all of the old workings were inspected and the old maps and reports studied. CONCLUSIONS.

1. There appears to be an excellent opportunity for developing several ore-bodies of chalcopyrite all within 800 ft . of the portal of the present tunnel.
2. Other deposits are known at the Sunnyside workings and more are indicated by the geophysical work.
3. The actual sizes and grades are not known but the old records suggest that an average stoping grade of about 5% copper can be expected over widths of 3 to 15 ft . and for lengths of up to 250 ft. according to the geophysical anomalies.
4. The actual average grade will be determined by the amount of low grade material that it is found economic to mine.
5. It is expected that the ore-bodies will be pod-shaped with the longest dimension down dip but probably pitching to one side. 6. The individual ore-bodies can be expected to terminate at various depths but other blind ones will probably take their place.

- 2 .

RECOMMENDATIONS.

1. Continue the present tunnel to the downward projection of the main ore-body which should be drifted on each way and a raise put through to the old level above.
2. Complete the geophysical survey.
3. Trench anomalies where practical.
4. Shallow X-Ray drilling.
5. Further tunnels where practical to explore other ore-bodies at say 100 ft . below surface.
6. Underground diamond drilling for deeper extensions and blind ore-bodies.
7. The question of a mill or shipping ore should be kept in abeyance until at least two or three of the deposits have been explored underground. Only development rock should be shipped unless some particularly high grade ore is encountered that would not be benefited by milling.

Mr. O. G. MacDonald, President,

Cowichan Copper Company.
Dear Sir,
I have to report the following results as of June 201053
for the Self Potential Geophysical Survey that I am conducting over part of your property.

In a north trending belt 2500 feet and 1000 feet wide fifteen anomalies have been found that indicate possible mineralization for a total length of 2500 feet. All but one of these anomalies are shown on the accompanying plan.

The northern third of this belt includes the original main workings on Blue Grouse Mountin.

In the case of seven of the anomalies the presence of chalcopyrite is already known as indicated on the plan.

The survey is now approaching the Sunnyside workings which reach from 1000 feet to 1500 feet south of the belt mentioned above.

A campaign of bulldozing followed up by diamond drilling is recommended to test the commercial possibilities of the anomalies found so far.

> COWICHAN COPPER COMPANY. PROGRESS REPORT.

During the month ending 17th. August 1955 the following results were obtained :

1. The 1290 level was advanced to the north in the good ore that had been indicated by previous test-holing for 34 feet of which the first 20 feet was 20 feet wide and then was reduced to 10 feet by the presence of unreplaced limestone.

At the end the face unexpectedly broke into a system of caverns formed by the action of ground-water on limestone. The main cavern is 60 feet long in a northerly direction and 15 feet wide. It is roofed on the east half by semi-oxidised ore and on the west side by porphyry. Several smaller caverns extend as far as 30 feet to the east where the limestone has been dissolved out along cross fractures. The main cavern is floored to an unknown depth with partly oxidised fragments of ore and porphyry brifught down in part at least by the blasting. It is possible that the original floor is on the flat-lying porphyry assuan to be approximately 30 feet below the level.

It seems likely that the oxidation is limited to where the limestone has been dissolved away and so ore should be found above the cavern by the raise now being driven.
2. The 950 adit was advanced to 358 feet in fresh rook although there is considerable minor faulting. In the last 100 feet there
have been four dykes of porphyry in the amygdular lava.
3. Exploratory diamond drill holes Hos. 38,39 and 40 were drilled flat to the E.N.E., E.S.E. and due E. reaectively from the north end of the main ore-body on the 1200 level. No ore intersections were obtained but the extent of the main porphyry mill was further defined.

The ore shoots now being mined at the Cowlchan Copper mine, the G-II orebodies and the E zone, show no directly observable reasons for being where they are, considered either separately or in relationship to one another. Successful exploration for additional ore shoots requires that some predictable structural pattern be recognized. Geological mapping of the aline workings and surface has failed to disclose any marker beds or groups of beds Which can be traced far enough to illustrate the structures. There is, on the other hand, evidence to show that the more friable beds have been so broken up by rock movements that they cannot be traced continuously. A possible control of the distributions of ore shoots has been deduced from observed structural elements, and this control is thought to provide a reasonable explanation for the presently known occurrences and to indicate a basis for systematic exploretron of the property.

The general geology of the mine area is described In Bulletin 37, B.C. Department of Mines, "Geology of the Cowlchan Lake Area", by J.T. Fyles. Briefly, the rocks are FranklIn Creek basalts and Sutton sediments all overlain on the east by sediments of the Nanaimo series. The ore occurs in skarn zones (Gail orebodies), and in less well
garnotized and opidotized tuffaceous bands (L zone), interm bedded with the basalts. The skarns probably are of sedimentary and tuffaceous origin (Fyles p, 54). The principal intrusive rock is a grey feldspar porphyry which occurs in bodies of very irrecular shape. Faults are numerous but none have bee: shown to have displacenents of more than a few tens of feet.

The largest body of skarn exposed in the present mine workings is a lonticular mass up to 350 feet long and up to 60 feet wide in horizontal section and plunging 35 degrees in a direction south 30 degrees wost from surPace to the 1100 level, a vortical distance of nearly 400 foet. No other skarn body of comparable size has yet been rocognized but a number of smaller ones aro seen in the workings. In a southetronding drift on the 1100 level soveral large skarn blocks are surrounded on three sides by basalt. Parts of these blocks exhibit thin banding closely foldod. The blocks are believed to represent a boudinage structure in which the fisiable rocks have been fractured -- the fractures were filled and the blocks separated by flowage of the incompetent basalt. A similar separation of fractured skarn blocks is exposed on surface near the Sunnyside adit about one half mile south. The existence of boudinage structure offers a possible explana-
tion why the skarn beds have not been traced for appreciable distances either in the workines or diamond drill holes. The altered tuffs are continuously exposed in the "E" zone for a horizontal distance of about 300 feet on the 1340 level and for a lesser length and in an offset position on the 1100 level. They have a fairly consistent attitude, at these places, strike north 10 degrees east, dip 65 degrees west.

Two directions of shearing have been recognized in and near the principal skarn body, strike north 10 degrees west, dip 45 degrees west; strike north 80 degrees west, dip 35 degrees south. Neither is strongly developed.

The structural elements unon which the following rationalization is basod aros

1. The plunge of the principal skarn body, 35 degrees at south 30 degrees west.
2. The two shear directions, strike north 10 degrees west, dip 45 degrees west; strike north 80 degrees west, dip 35 degrees south.
3. The attitude of the E zone tuffs, strike north 10 degrees east, dip 65 degrees west.

The line of intersection of the two shear planes (Fig. 1) plunges 34 degrees in the direction south 29 degrees wast. The attitudes of the planes bisecting the angles
between the shear planes aro shom to be strike north 34 decreos east, dip 82 decrees southeast, and atrike north 40 degreos west, dip 35 degrees southwest.

If the two shoar alrections are conjucate, 1.e. formed at the same tine as a result of the sams stress, their line of intersection is the intermadiate axis of the structural systom of which they are a part. The systom may include folds as well as shear planes. Shear planes and folds bear a common relationship to one another if the line of intersection is comon to all (Fig. 2). Since the line of intersection of the two shear planes has the same orientation as the plunge of the principal skarn zone it is reasonable to suppose that the skarn plunge is related to the shear systera.

Of the two planes bisocting the angles between the shear planes, one must be the axial plane of the related folds. The two planes bisecting the angles between the shear planes (Fig. 1) are strike north 40 degrees west, dip 35 degrees southwest, and strike north 34 degrees east, dip 82 deerees southeast. The plane of the " $\mathrm{SH}^{\prime \prime}$-zone tuffs, strike north 10 degrees east, dip 65 degrees west, meets e1ther plane (Fiz. 3) on a line which plunges 34 degrees southwest on bearing south 29 degrees west. Taking either of these planes as the axial plane, which bisects the angle between the limbs of the fold, (Fig. 3) shows the attitude
of the other 14 mb of the fold must strike north 63 degrees east and dip 51 degrees southeast and that the north 34 degrees east plane must be the axial plane, because of the directions of the dip of the beds.

It is indicated, then, that the rocks in the mine area may have been compressod into a series of folds having limbs with strike north 10 degrees east, dip 65 degrees west; strike north 63 degrees east, dip 51 degrees southeast; an axial plane strike north 34 degrees east, dip 82 degrees southoast, and a plungo southwest at 35 degrees. This foldine may control the distribution of ore shoots if the mineralization 1 s alled to friable, permeable strata in the rock succession. The nost likely places for such shoots to forn would be on the crests or troughs of folds (Gmif orebody); secondarily on linbs (E zone). Either could be influanced by crosscutting shears and fractures, formed at the time of the folding or later.

On Figure 5 the folding is shown apilied to the G-ll and E zones on the 1340 level and possible limits of the strike north 10 degrees west, dip 45 degrees west zone of movement are indicated.

Similar occurrences of aineralized skarn are exposed at the Sunyside workings about one half mile south of the Cowichal workings. A garnetmepidote alteration zone has bon traced from the Cowichan toward the Sunnyside (Fig. 4).

Tils indicates that the Covichan and Sumyside probably Ile on the sam zone of aovenant in which the folding is the dominant axpression of the novenant alons the north 10 degrees wost shoar direction, 1.0. that a north 10 degrees west, 45 degrees west fault zone appoars hore as a zone of foldine and tensionnl Iracturing (irregular porphyry bodies). Noar north-south faults are shown by fyles on the north side of Cowichan Lake, so siailar structures may be expocted olsewhere.

Tho foregoing is a thooretical analysis basod on a 11 mited number of structural observations. It provides a framework which may guide exploration. Its validity should be tested. If it helps to find orebodies it serves its purpose wathor or not it proves exactly true.

This zone could be prospected by systematic drilling from both surface and underground bases. The folding pattern outlined could te applied to skarn and tuff intersections. Attempts also should be made to relate the presently isolated exposures of skarn and tuff in the underground workines to the postulatod fold pattern. It is possibly significant that the alteration zone traced from the Cowichan grows weaker to the south as aight be expected from a southerly plunging structure.

FIG. 1

Fig. 2.

ATTITUDE OF LINE OF

$" E "$ IONE AX/AL PLANE	INTERSECTION $529^{\circ} \mathrm{W}, 34^{\circ} \mathrm{SW}$
	ATTITUDE OF LIMB
	COMPLEMEMTARY TO"E" 2 ONE
	N $63^{\circ} E, 51^{\circ} S E$

Fig. 3.

