PROPERTY FILE

BIUE GROUSE GROUP

OWNER: Cowichan Copper Co. Ltd. (IN.P.L.)
Claims:
Crown Grants: Blue Grouse L31G, Blue Grouse No. 2 32G, Blue Grouse No. 33G, SS 1-8 incl. Lots 34G to 41G incl.

Staked: C.C. Nos. $1,2,9,10,11,12,13,15,17,18$, $23,24,30,31,32,33,34,35,36,37,38,39,40,42,49$, $50,53,54,55,56,57,74,76,86,88,90,94,96,98$, and 100; J.D. Nos. 1 to 16 incl., Lake and Lake Nos. 1 to 5 incl., Lil. 1 and 2, Oslynn and Oslynn. 1 to 6 incl.; SS Fraction, Swedels and Swedels 2, 3, 4, 5 and 7; TT 1, 2, 3, 4, and 8.

Location: COWICHAI IAKE
Latitude: 48
Longitude: $124 \mathrm{~N} . \mathrm{E}$.
Victoria Mining Division
Author: D.C. Malcolm, B.A. Sc. P. Eng. 2568
Dates of Work:

$$
\text { July 1, } 1964 \text { to March 1, } 1965
$$

PROPERTY FILE

```
BIUE GROUSEGROUP
```

```
GEOIOGICAL REFORT
```

```
GEOIOGICAL REFORT
```


PAGE

SUMMARY 2
LCCATICN: 2
GBCLCGY 2
(a) Topocraphy 2
(b) General Geology 3
(c) Claim Geology 5
(d) Structural Xeology 5
(e) Alteration 6
(f) Mineralization 6
GEOCIDMICAL SURVEY 7
GECFITYSICS 7
map surface g iology 9

```
BLUZGROUSEGROUP
```

CWNER: COWICHAN COPPER CO. ITD. (N.P.L.)

Claims:

Crown Grants: Blue Grouse L31G, Blue Grouse No. 2 32G, Blue Grouse No. 33G, SS 1-8 incl. Lots 34G to 41 G incl.

Staked: C.C. Hos. $1,2,9,10,11,12,13,15,17,18$, $23,24,30,31,32,33,34,35,36,37,38,39,40,42,49$, $50,53,54,55,56,57,74,76,86,88,20,94,96,98$, and 100; J.D. Nos. 1 to 16 incl., Lake and Lake Nos. 1 to 5 incl., Lil. 1 and 2, Oslynn and Cslynn 1 to 6 incl.; SS Praction, Swedels and Swedels 2, 3, 4, 5 and 7; TT 1, 2, 3, 4 and 8.

Location: COWICHAI: LATE
Latitude: 48
Longitude: 124 IR.E.
Victoria Mining Division
Author: D.C. Malcclm, B.A. Sc., P. Eng. 2568
Dates of Work: July l, 1964 to March 1, 1965

Cowichan Copper Company geologists mapped the claims in 1964, soil sampled the area during the summer months and remapped and studied the surface and workings on a scale of $1^{\prime \prime}=1001$ early Previous geolocical work had been done by J.T. Fyles in 1948-1951, Don Rotherham and D.H. Simpson in 1957.

The Blue Grouse Mine has produced 273,338 tons of ore averaging 2.95\% copper from high temperature chalcopyrite replacements in altered liny nembers of a volcanic-sediment series extensively folded and faulted and intruded by irregular feldspar porphyry dikes. There are many areas on the surface where geological conditions are fovorable for other ore bodies and chalcopyrite mineralization occurs in some of these. Undercround there are two low grade ore bodies unmined and six low grade dianond drill intersections in favorable rocks which could represent mineable deposits.

LOCATICN:

Latitude $48^{\circ} 50^{\prime}$ Longitude $124^{\circ} 20^{\prime}$, Victoria Mining Division, Elevation 500 to 1700 feet. The claims are located west of Honeymoon Bay on Cowichan Lake 20 miles west of Duncan.

GEOLOGX
(a) Topocraphy

Cowichan Lake is in a broad valley several miles wide and the Blue Grouse Mine is on a rounded knoll on the south side of the
lake. The maximun relief is 2000 feet and the slopes are gentle. The climate is excellent.
(b) General Geology

The property is underlain by folded Triassic limestones, tuffs, frafmental volcanics and besic flows. Irrecular feldsnar porphyry bodies have been intruded into these rocks and a series of east striking thrust faults have pushed secments to the north east over underlying blocks. Northeact and southwest striking faults with relatively small movements have displaced some lavered rocks. The northeast claims are underlain by Cretaceous sandstones and conglomerates which overlie the Triassic rocks unconformably. The argillites, Sutton Limestone and red beds are easily recognized markers.

The following is a stratigraphic section of the mine rocks:

Argillite	500^{\prime}
Sutton Limestone	100^{\prime}
Amygdaloidal basalt	100^{\prime}
Red beds	150^{\prime}
Basalt	200^{\prime}
Tuffs and agglomerate	200^{\prime}
Basalt and andesite	200^{\prime}
Tuffs and agslomerate	100^{\prime}
Basalt	500^{\prime}

Porphyritic flows overlie the argillites conformably in some places and Cretaceous sandstones unconformably in others.

Permian limestones, cherty tuffs and volcanics underlie the rocks.

The followinc is a more detailed description of the rocks:

Argillites:

These are finely bedded black and dark brown soft rocks generally crushed and they contain numerous fossil casts. At the base of
the series they contain narrow continuous limostone bands and crade into the Sutton limestones. At the Sunnyside road they contain volcanic bombs. It is difficult to measure the thickness of the beds as they are crumpled but they are believed to be about 500'.

Sutton Limestone:

These are crey cristaline limestones, arcillaceous limestones and in some places a black limestone-basaltic mixture. The beds were evidently laid down in a shallow sea and are continuous. In sone areas on the claims up to 100 feet of fairly pure crey to white limestone exists. In others there are interbeds of argillite, tuff and basalt and in some sections the rock is black and is difficult to distinguish from basalt. Areas of this black limestone and limy basalts often contain intermixed volcanic bombs.

Generally, the horizon is about 100 feet in thichness.

Basalt:

Black amygdaloidal flows underlie the Sutton horizon. The rocks are dense fine grained basalts with amyedules of feldspar, edidote or quartz. Feldspar fillings are most comon and often they are grouped on rosettes or concentric circles. In some places these lavas are vessicular and in other sections they grade a basaltic to a basaltic assionerate. They sometimes contain hematite or chlorite filled vessicules. The flows vary from 100 to 350 feet in thiclmess.

Hematitic Tuffs or Red Beds:
Limy hematitic tuffs underlie the black basalt horizon on the claims. These are variable and grade from rock with 50% to 70% hematite to limestone or to bedded tuffs. There is often a 30 to 40 foot impure limestone or limestone agglomerate at the base of the formation. The
thickness of the red beds vary from 100 to over 300 feet.

Basalt:
A 200 foot thiclness of black chloritic amydaloidal basalt. This is often graphitic and is often quite soft. Sometimes it is agelomeritic.

Below the basalt or acolomerates a 100 to 250 foot thickess of limy tuff occurs. This has narrow beds of limestone in it at some horizons.

Thick beds of basalt or andesite pillow lavas underlie the tuffs and except for narrow beds of tuff and acclomerate extends to the base of the series with thickesses of at least 500 feet.

Feldspar Porphyry:

A widespread suarm of feldspar porphyry dikes and irregular sills cross the clains in a northwest direction. These can be traced to the Robertson River intrusions.

(c) Claim Geology:

The surface outcrops on the claims are generally good but often key areas are overburden covered (especially those sections underlain by tuffs and hematitic tuffs). The geology has been projected through these areas by measuring the layers from the marker beds or projecting beds from diamond drill holes or underground workings.

(d) Structural Geology:

The ore bodies occur in the limestones and tuffeceous members and these are folded in a series of overturned folds whose axes strike northwest, dip from 20 to 40 decrees to the southwest and plunge 20 to 40 degrees to the southwest.

A series of thrust faults with a general east strike and dips of 10 to 20 degrees to the south displace the beds. The 3 cross-cut fault, which displaces the main orebody, has a northeast movement (top block is displaced 1000 feet to the north and 150 to 200 feet to the east in relation to the lower segment). The thrusts are irreçular and follow the tuff beds alone their strikes and dips in many places.

A second series of reverse faults strike northeast and dip 30 to 45 degrees to the south. The lain fault in the mine has a north 60 east movement of 130 feet.

East striking normal faults with dips of 45 to 60 degrees south and small displacements.

Variable strikinc and dipping adjustments in the altered tuffs at the crests of folds. Movements are generally small.

(e) Alteration:

1. Skarn - actinolite-magnetite-carnet skarn occurs in limestone and limy tuffs near feldspar porphyry intrusives. This is a typical contact metamorehic skarn.
2. Siliceous epidote skarns occur in tuffs adjacent to feldspar porphyry bodies.
3. Crushed volcanjes and tuffe, especially near arcillaceous contacts contain chlorite and graphitic alteration.
4. Tuffs and agclomerates cenerally are manganese stained.

(f) Mineralization:

The mineralization on the claims is a high temperature replacement of skarns and crushed rock by pyrrhotite, chalcopyrite, sphalerite, magnetite and pyrite. Oiten the sulphides are bodded and have replaced
individual cpidotized layeis of tuff. The mineralization occurs in skarns in the linestone in a fow placcis but generally in slame in the liny tuffs and liny red beds. It is lator than the alteration and skarn and extends into the unaltcrod formations but the copner values are gererally lower away from tho altored zonos.

GRCCIEMICAL SURVEY
Woils were tested along lines at 100 feet intervalls as shown on the enclosed map using Rhubeanic acid strips. The results were cubdivided into strons reactions, mediun reactions, weal reactions and negligible or no reaction. Some detailed testing was done in the anomalous areas but additional detailed work is necessary to fully access results. The argillites generally contain copper and the results over areas underlain by these rocks are not significant.

GECPHYSICS

Magnetic

Some magnetic anomalies were located on compass traverses and are roughly indicated on the geochemical plan. The anomaly on claim SS6 is caused by a flat lying low grade copper-zinc mineral deposit in crushed sraphitic tuffs and clcanics on the limb of an overturned syncline which does not outcrop.

Self Pontential
The Self Potential anomalies are shown on the same plan and the anomaly on the claim SS6 covers the same eraphtic mineralized zone as does the magnetic anomaly.

Self Fotential anomalies on TT 2, 3, Lake 4, Lil and SS9 follow the red bed tuff main ore horizon and conld represent a Blue Grouse type
of deposit on an overturned anticline similar to that at the mine. The anomaly on the Lake claim represents a mineralize tuff bed which continues northwest toward the lake end dips flatly to the west.

The remaining anomalies represent know ore bodies and these demonstrate the effectiveness of this geophysical method in locating deposits similar to the Blue Grouse.

CLAIM

Group - Crown Grant 33G

Lake	A45079	Feb 10	5703
Lake 1	A 45080	Feb 10	5704
Cowichan 2	$\mathrm{A}^{4} 5081$	Feb 10	5705
4	A4.5085	Feb 10	5707
TT 2	A86698	June 19	5671
TT 3	A86699	June 19	5672
TT 4	A86700	June 19	5673
Lil 1 Fr	B38051	Feb 18	6030
Lil 2 Fr	B38052	Feb 18	6031
SS 6 CG	A72420		5667
SS 8 CG	A72422		5669
CC 1	B81243	Oct 3	6443
CC 2	B81244	Sept 21	6444
CC 39 B	364553	Nov 2	9252
CC 40 B	364554	Nov 2	9253
CC 42 B	364556	Tov 3	9262

Blue Grouse
Crowa Grant 32G

OsIynn	B18914	May 25	5767
Lake 5	A45086	Feb 10	5708
CC 9	B81258	Sept 21	6435
CC 10	B81252	Sept 21	6436
CC II B	364525	Oct 9	9214
CC 12 B	364526	Oct 9	9215
CC 13 B	364527	Oct 9	9216
CC 15 B	364529	Oct 9	9218
Swedels	A87647	May 25	5760
Swedels 2	A87649	May 25	5762

Swedols 3	A87650	May 25	5763
Swedels 4	A87651	May 25	5764
Swedels 5	A87652	May 25	5765
Swedels 7	A87654	May 25	5766
Oslynn 2	A87668	May 25	5769
Cslymn 4	A87671	May 25	5771
Oslym 6	A87672	May 25	5773
CC 74 B	B68503	Nov 23	9297
CC 76 B	368505	Tov 23	9299

Millar Creek

Crown Grant 31G

CC 34
SS 5 GG
SS 7 GG
$T \mathrm{~T}$ I
Lake 3
CC 31 B
CC 32 B
CC 33 B
J 5 A
JD 6 A
Ja 7A
J 8 A
JD 9 A
JD 10 A
JD 11 A
JD 12 A
JD 14 A
JD 15 A
JD 16 A

364548
A72421
A71545
A86697
A45084
364545
364546
364547
358730
358731
358728
358729
358736
358737
358738
358739
358740
358743
358741
$\operatorname{cct} 28$
2245
5665
5668
June 19
5670
5706
$\begin{array}{ll}\text { Feb } 10 & 5742\end{array}$
Oct $28 \quad 0243$
Oct $28 \quad 2244$
July $29 \quad 9136$
July 299137

Juiy 299138
July $29 \quad 9139$
July $29 \quad 9140$
July $29 \quad 9141$
July $29 \quad 9142$
July $29 \quad 9143^{\circ}$
July $29 \quad 9145$
July 29
9146
July 29
9147

Sunnyside
TT 8
$S S 1 \mathrm{CG}$
$S S 2 C G$
SS 3 CG
SS $4 C G$
Oslynn 1
$C C 17 B$
CC 18 B
CC $23 \quad \mathrm{~B}$
CC 24 B
CC 30 B
CC 35 B
CC 36 B
CC 37 B
$\mathrm{CC}>8 \mathrm{~B}$
$S S$ Fr
JD 1 A
JD 2 A
JD 3 A
JD 4 A
A67804
June 19
5677
A76979
A76978
5662

A76992
5663

A75977
A8766?
304531
364532
364531
364538
3.54 .544

364549
364550
364551
364552
368587
358734
358735
358732
358733
os
os

