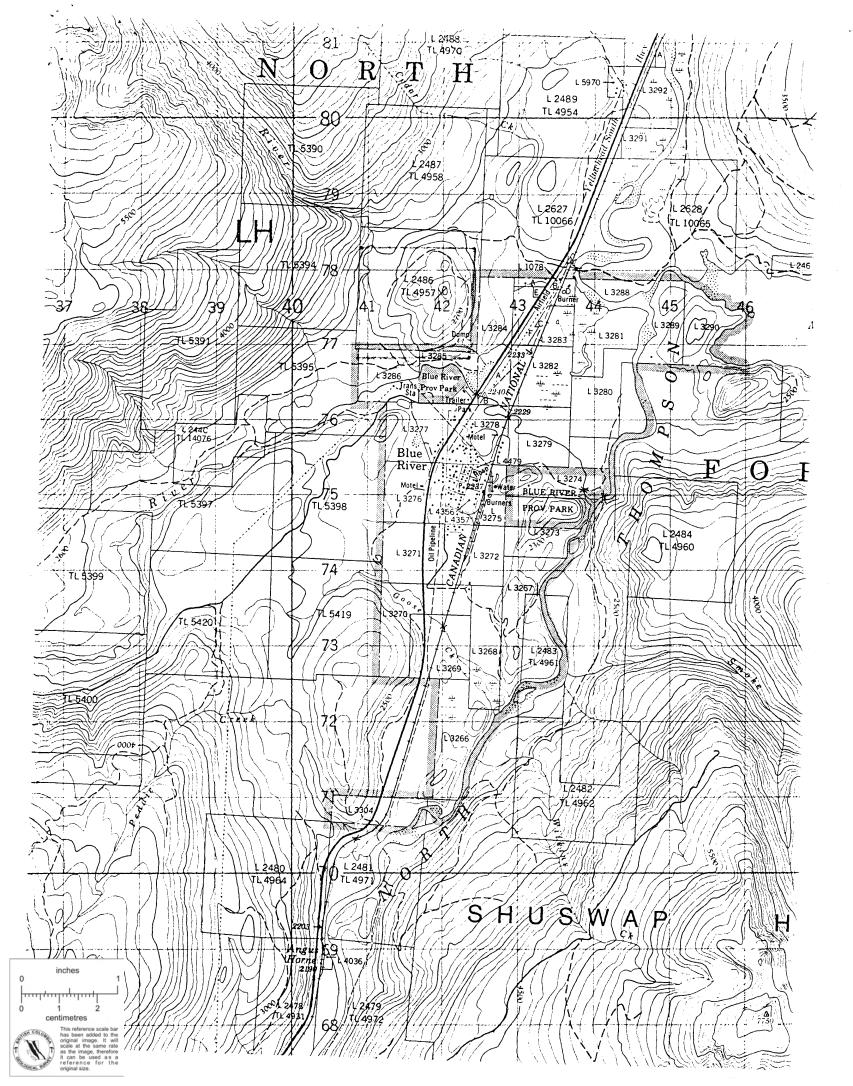
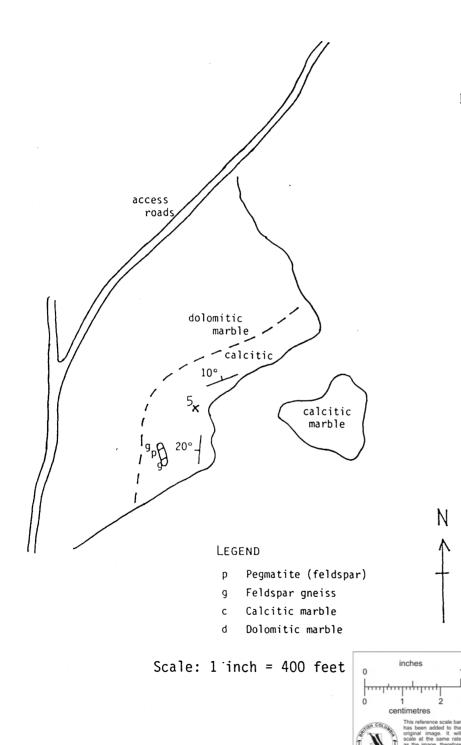
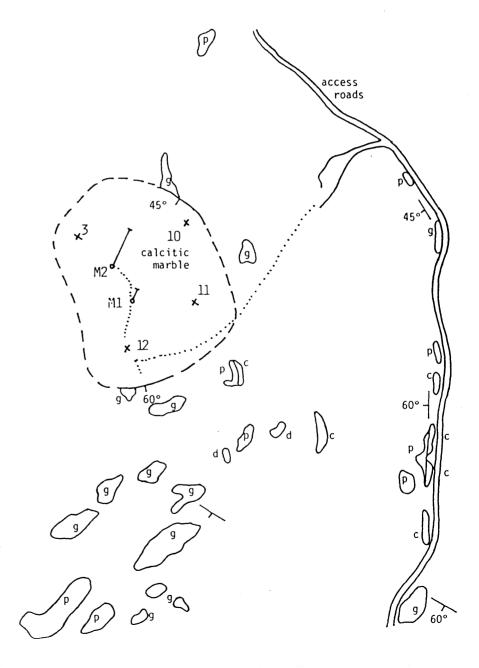
Property File 0830 044

N.T.S. 8343 005233


BLUE RIVER CALCITE


This is a new deposit of white marble not previously reported or explored. It occurs on the northern fringe of the town of Blue River, British Columbia, barely a mile west of the Yellowhead South Highway (Highway 5), the Canadian National Railway, and the Blue River airstrip. Blue River is approximately midway between Vancouver and Edmonton.

The deposit is secured by a claim group comprising 9 units covering an area of about 550 acres, nearly a square mile. There are three major outcrop areas of white marble, one of which was tested by diamond drilling and surface sampling. Several surface samples were also tested from a second area.


The drilled area forms the cap of a hill 750 feet above the North Thompson River valley in which the highway, railway and town of Blue River are located. Access is easy via timber roads, and portions of the deposits have been recently exposed by clear-cutting.

The drilled area has a minimum surface exposure of 700 feet by 400 feet. Drillhole M2 intersected more than 100 feet of high purity calcitic marble, indicating a reserve potential of at least 2 million tons.

BLUE RIVER CALCITE

.

IAMO	DND I	DRILLHOLE L	.0G	COMPANY Guillet-Kr	iens-Morton		PROPER	ty name Blue R	: iver Cal	cite		ног 84	е NO. -M2	PAGE	
RILLING	COMPA	NY nd Drilling Ltd.	COLLAR ELEV.	BEARING OF HOLE 030°T	TOTAL DEPTH 162 feet		110'	N OF H	OLE f Ml; We		tral	PRO.	JECT NO.		
ATE ST	ARTED	DATE COMPLE May 198		DIP OF HOLE AT COLLAR 45°	AT COLLAR 45° AT			part of deposit Sample Interval Sample Raw					LOGGED BY G.R. Guillet nalvses		
DEP From	тн То	VISUAL QUALITY	DE	SCRIPTION		Sample Number	From	To	1	colour			A1203	Fe ₂ 0:	
feet	feet						feet	feet	feet		× -	z	×.	x	
0.0 9.0	9.0 14.0	Good	to core axis. Sever Marble: Uniform, wh	citic marble. Foliat feet of lost core. tite with patches of	ion 80° diffuse pale	M2-1	9.0	14.0	5.0	93.7	2.97	9.68	0.14	0.18	
14.0	15.0		white mica at 12'. M Gneiss: Pale grey,	rse grained, calciti Massive bedded. fine grained, biotit Mation is 30° to core	e-pyrite-										
15.0	19.0	Fair	Marble: Uniform, pa dolomitic.	ale blue-grey, coarse	grained,	M2-2	15.0	19.0	4.0	93.4	13.8	17.2	0.42	0.43	
19.0	33.0	Excellent	with rarely a trace yellow staining on faintly grey patche minerals. Last hal	te, cosrse grained, c of white mica and ve some fracture surface s. All without obvic f of core badly brok and more or less sta ⁺ and oil.	ery slight es. Occasional ous accessory ken by	M2-3	19.0	33.0	14.0	94.4	1.26	1.68	0.04	0.05	
33.0	48.0	Good		above, but slightly te. Core badly brok lers.		M2-4	33.0	48.0	15.0	94.0	1.63	1.73	0.03	0.13	
48.0	66.0	Excellent	bedded, calcitic ma	hite, coarse grained rble with only the s mica and pyrite. C	lightest	M2-5	48.0	66.0	18.0	94.6	1.71	1.52	0.13	0.1	

Ì

··· ·· · · · ·

ΙΑΜ	DND	DRILLHOLE L	_OG		COMPANY		_	PROPER	TY NAME	E				-M2	PAGE 2
	G COMP			COLLAR ELEV.	BEARING OF HOLE	TOTAL DEPTH	·	LOCATI	ON OF H	OLE				JECT NO.	<u>_</u>
ATE ST	TARTED	DATE COMPL	ETED	DATE LOGGED	DIP OF HOLE			1					LOC	GED BY	
DEP	тн	1	Τ	1	AT COLLAR		Sample	Sample	Interval	Sample			analys		
From	To	VISUAL QUALITY		DE:	SCRIPTION	<u> </u>	Number	From	To	Length feet	colour	510 ₂	Mg0 %	A1203	Fe20a
feet	feet						1	feet	feet						
66.0	81.0	Good		-	ey-blue, coarse grai only rarely dissemi		M2-6	66.0	81.0	15.0	93.8	3.54	2.76	0.55	0.06
81.0	107.0	Excellent	Marble	Uniform, wh	ite with occassional	l patches of	M2-7	81.0	94.0	13.0	94.2	3.52	2.14	0.48	0.09
01.0	107.0	Licertenc	1		ained calcitic marbl		M2-8	1		13.0	95.0	1.21	1.46	0.02	0.09
			rarely	disseminated bedded. Cor	flakes of white mica e is less broken and	a and pyrite.									
107.0	116.0	Poor	with re		medium grained, un on disseminated pyr 1 fractures.		cM2-9	107.0	116.0	9.0	87.4	1.83	19.8	0.05	0.36
116.0	131.0	Good		•	ned white and pale I traces of white mic		M2-10	116.0	131.0	15.0	95.0	2.69	1.29	0.29	0.07
131.0	132.5	Poor		: White, medi inated mica an	um grained siliceou nd pyrite.	s marble with									
132.5	136.0	Good	Marble: calciti		lded, coarse grained	, grey-white,	M2-11	132.5	136.0	3.5	95.2	4.84	1.39	0.43	0.11
136.0	144.0	Poor		: Rather impu siliceous (?)	ure, coarse grained, marble.	cream-white-									
144.0	162.0		garnet		grey banded, quartz- foliation varying f										
162.0			End of	hole.											
															1

i

•.

			HOLE L	.0G		COMPANY Guillet-Kr	iens-Mo	orton		B1		<u>r Calcit</u>	e	·	84	.e no. 1-M1	PAGE 1
Phil's Diamond Drilling Ltd.					BEARING OF HO	LE	TOTAL DEPTH 32 feet		LOCATION OF HOLE On bush trail in south central						PROJECT NO.		
ATE S	TARTED		DATE COMPLE May 1984		DATE LOGGED	DIP OF HOLE	_45°				t of de					GED BY G.R. Gui	llet
	ртн	VISUAL	QUALITY	1		SCRIPTION			Sample Number	Sample		Sample			1	r	
^{From}	To feet									From	To	Length			<u> </u>		
0.0				Mixed:	Two feet of e	excellent coars	e grair	ed white		feet	feet	feet					
				calcitio	c marble follo	wed by 1 foot	of brok	en white									
				pegmati	te. Remainder	·lost.											
12.0	26.0	Fair		Marble:	Grey-white,	medium grained	, calci	tic marble	M1-1	12.0	26.0	14.0					
						te mica and py		Faint							:		
				foliatio	on is about 60)° to core axis	•										
26.0	22 0			Decretio				tood analyse				· ·					
20.0	32.0			1		lite, rather ru: Radly broken c		ined quartz-									
		1		Teruspan	pegmacice.	Badly broken c	Jre.	-									
32.0				End of 1	nole. Hole te	rminated becaus	e of d	rilling									
				difficu				j		{						1	
									ļ								
												ľ					
										ł							
										ł							
		1															
										}							
		1															

15 14

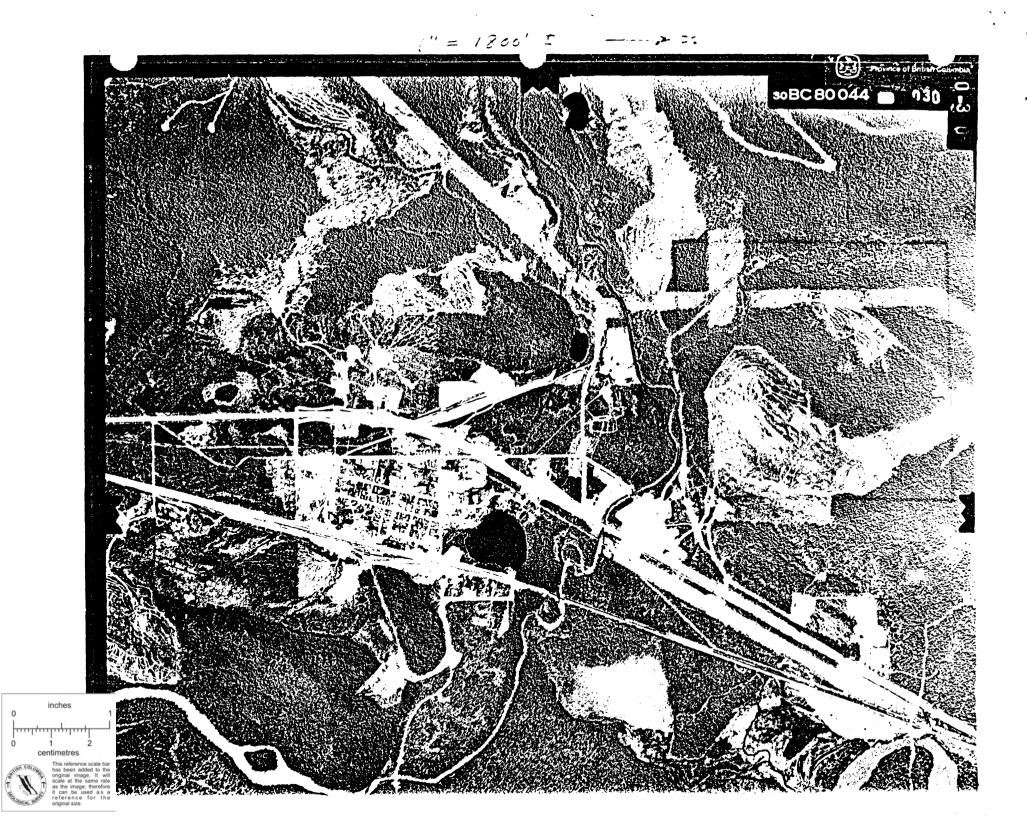
BLUE RIVER CALCITE

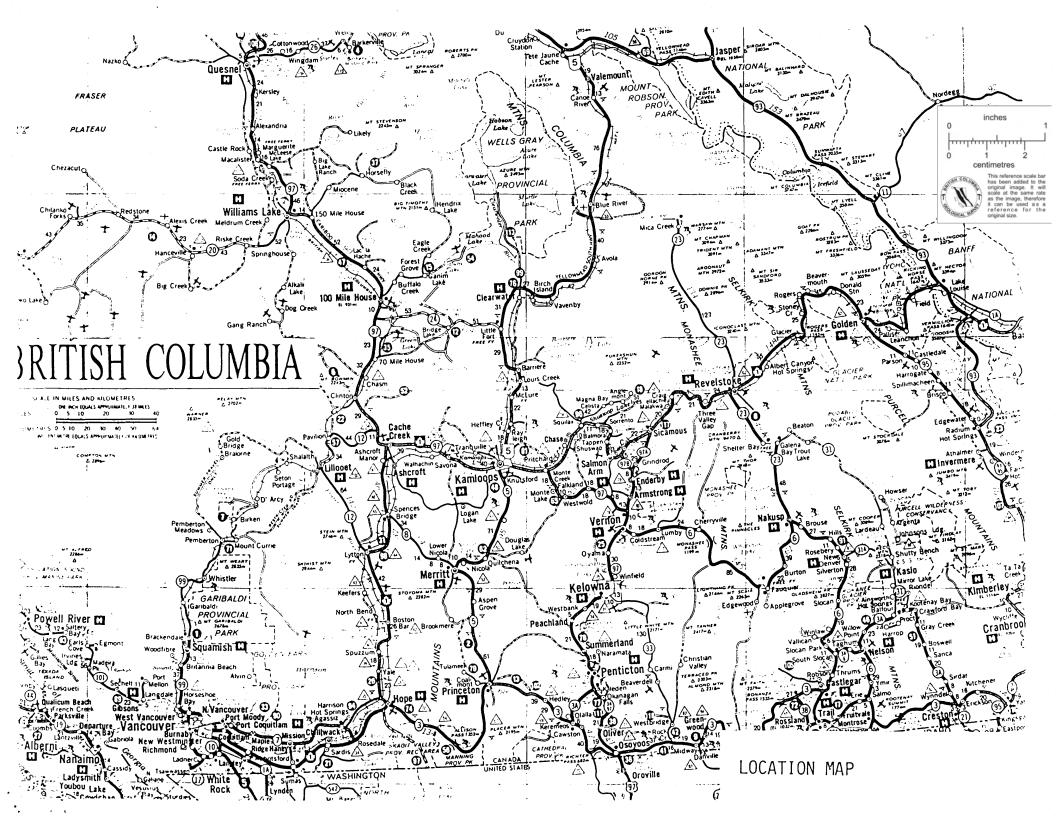
WEIGHTED AVERAGE DRILLCORE ANALYSES (Unbeneficiated marble)

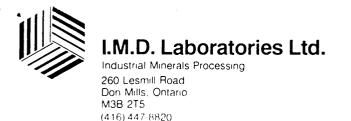
	TOP 47 FEET (19.0'-66.0')	LOWER 70 FEET (66.0'-136.0')*	AVERAGE* (19.0'-13
	%	%	%
SiO ₂	1.55	2.89	2.30
A1 ₂ 0 ₃	0.07	0.35	0.23
CaO	54.3	53.0	53.6
MgO	1.63	1.89	1.78
Na ₂ 0	0.01	0.01	0.01
К ₂ 0	0.01	0.04	0.03
Fe ₂ 0 ₃	0.10	0.08	0.09
Mn0	0.01	0.01	0.01
Ti0 ₂	0.01	0.01	Ó.01
P ₂ 0 ₅	0.04	0.04	0.04
L.O.I.	41.9	41.4	41.6
	99.6	99.7	99.7
Brightness **	94.3	94.5	94.4

* Minus 9.0' dolomite; 107'-116'

and 1.5' siliceous marble; 131'-132.5'


** By tri-stimulus reflection metre CG166, performed by the research laboratories of Indusmin Limited, Toronto.


• . • •	4														
	X-RAY A	issay labi	ORATORIE	5	16-JUL-(34	R	EPORT 21	594 REI	FERENCE	FILE 173	18		PAGE 1	6.00
,	SAMPLE	Core længth	SI02	AL203	CAO	MGO	NA20	K20	FE203	HN0	T102	P205	LOI	sur	(7
	H-2-1	5'	2.97	0. 14	43. 7	9. 68	CO. 01	CO . 01	0. 18	0. 02	CO. 01	0. 02	42.9	99 . 7	9
1.5.0	H-2-2	11	13.8	0. 42	31, 3	17. 2	CO. 01	0. 12	0, 43	0. 02	CO. 01	0, 02	36. 8	100. 1	9
190 -	H-2-3	14'	1. 26	0. 04	54. 3	1. 68	CO. 01	(0. 01	0. 05	<0. 01	<0. 01	0. 04	41. 8	99. 5	9,
475	H-2-4	15'	1. 63	0. 03	53. 8	1.73	(0. 01	(0 . 01	0. 12	<0. 01	<0. 01	0.03	42.2	9 9. 8	9
	M-2-5	18'	1. 71	0, 13	54.6	1. 52	(0. 01	(0. 01	0. 11	CO. 01	CQ. 01	0. 04	41. 8	100. 1	<u> </u>
	M-2-6	15'	3, 54	0, 55	51. 8	2 76	(0. 01	0. 02	0. 06	CO. 01	. CO. 01	0, 04	40. 7	99.7	4
``	H-2-7	13'	3. 52	0. 48	52.3	2 14	0. 03	0, 09	0. 09	<0. 01	(0. 01	0. 04	41. 2	100. 1	9
59-5 /	H-2-8	13'	1. 21	0. 02	53, 9	1. 46	CO. 01	CO. 01	0. 09	<0. 01	< 0. 01	0.04	42. 2	99. 2	9
Ì	N-2-9	9'	1. 83	0. 05	33. 0	19. 8	CQ. 01	CO. 01	0. 36	0. 04	<0. 01	0.02	45.2	100. 4	2
[K-2-10	15'	2 69	0. 29	5 1 . 2	1. 29	CO. 01	0. 04	0. 07	(0. 01	(0. 01	0. 04	41.6	100. 5	9
) - د ، <i>د</i> ر	H-2-11	3.5'	4, 84	0. 43	52. 2	1. 39	<u>(0. 01</u>	0. 03	0, 11	<0. 01	(0 . 01	0. 03	40. 8	100. 1	4


X-RAY ASSAY LABOR	RATORIES	10	5-JUL-84		REP	ORT 21594	REFERENCE FILE 17318
SAMPLE	CR	RB	SR	Y	ZR	NB	
M-2-1	۲۱۵	10	330	<10	<10	30	
M-2-2	<10	20	380	<10	<10	40	
₩-2-3	۲10	C10	2320	<10	<10	30	
H-2-4	C10	<10	2620	<10	10	30	
H- 2-5	۲10	C10	2210	<10	<10	30	
Ħ-2-6	<10	10	2300	<10	10	30	
M-2-7	<10	10	1980	<10	<10	30	
M-2-8	<10	10	1940	<10	10	30	
M-2-9	<10	10	370	<10	<10	40	
M-2-10	<10	10	2080	<10	10	40	
M- 2-11	C10	<10	2080	<10	<10	30	

· · ·

PAGE 2

1983, November 24

Mr. G.R. Guillet P.O. Box 370 Mount Albert, Ontario LOG 1M0

Dear Rob:

Enclosed is a short report on the tests conducted on the calcite samples from British Columbia.

As you will see from the report, the material is of excellent chemical quality. The processed material, i.e., grinding has excellent dry brightness and low acid insoluble residues. I have not detected any fibrous minerals in these samples. I have saved the residues so you can examine them at your convenience.

A copy of this letter and the report has been forwarded to John Morton in Vancouver.

Best Regards,

I. M. D. LABORATORIES LTD.

J. Kriens

Encl. c.c. Mr. J. Morton

/vl

I.M.D. Laboratories Ltd.

Industrial Minerals Processing 260 Lesmill Road Don Mills, Ontario M3B 2T5 (416) 447-8820

EVALUATION OF FIVE CALCITE SAMPLES

Project 90008 - November 1983.

Prepared for: Mr. G.R. Guillet, P.En Consulting Geologist

Prepared by: J. Kriens I.M.D. Laboratories Lte November 23, 1983.

1.0 SUMMARY

Five samples of calcite have been processed and analyzed for chemical and mineralogical purity. Results show all of the samples to be of excellent quality, chemically and mineralogically and eminently suitable for production of a high quality mineral filler.

The samples are low in silica and other acid insoluble substances and when ground to a fine particle size are equivalent in dry brightness to the highest quality commercially available calcite fillers.

2.0 INTRODUCTION

Five samples of calcite from a deposit in British Columbia were submitted for evaluation by Mr. G.R. Guillet, Consulting Geologist, with the request to evaluate the samples for their potential use as a filler/extender and other industrial applications.

3.0 TEST PROCEDURE

The rock samples were soaked for 24 hours in water to loosen any surface dirt. They were scrubbed clean, dried and crushed to 1/2".

The crushed products were further ground to approximately 30 mesh, after which samples were split out for fine grinding, chemical analysis, determination of acid insolubles and dry brightness.

3.1 ACID INSOLUBLE RESIDUE

Fifty (50) grams of -30 mesh material was placed in a beaker of cold water and while stirring, dilute hydrochloric acid was added to dissolve the calcite and other soluble components.

The insoluble residues were filtered off, dried and weighed. The percentage of acid insolubles was calculated as to be as follows:

Sample #	<pre>% Acid Insoluble</pre>
3	0.44
5	0.80
10	0.16
11	0.24
12	0.50

The acid insoluble residues were saved for future reference.

3.2 CHEMICAL ANALYSIS

. · .

Each sample was analyzed by x-ray fluorescence for the major elements and several trace elements of interest. The analysis showed the material to be very pure, low in silica, which is very important in filler/extender applications

			101		
Element	१ Sample 3	۶ Sample 5	१ Sample 10	۶ Sample ll	ہ Sample 12
Si02	<.01	1.18	<.01	<.01	0.15
Al ₂ ⁰ 3	<.01	0.07	<.01	<.01	<.01
Ca0	55.1	54.4	54.6	54.3	54.2
Mg O	0.32	0.31	0.33	0.95	0.96
Na20	<.01	<.01	<.01	<.01	<.01
κ ₂ 0	0.04	0.06	0.04	0.04	0.04
Fe203	0.02	0.02	<.01	0.03	0.02
Mn0	<.01	<.01	<.01	<.01	<.01
Ti0 ₂	<.01	<.01	<.01	<.01	<.01
P205	0.03	0.04	0.03	0.03	0.03
L.O.I.	43.5	42.8	43.5	43.2	43.2

CHEMICAL COMPOSITION

P.P.M.

CR.	<10	<10	<10	<10	<10
RB.	<10	<10	<10	<10	<10
SR.	2440	1190	2540	2400	2210
ZR.	<10	<10	<10	<10	<10

3.3 DRY BRIGHTNESS

High dry brightness is an important physical attribute of high quality calcium carbonate used in filler/ extender application. Dry brightness is critical in such applications as paint extenders and plastic fillers. Particle size influences the dry brightness with brightness improving with decreasing particle size, i.e., increased reflective surface.

Each of the samples was ground to 100% passing 325 mesh (44 micron). Dry brightness was determined using the tri-stimulus method. A sample of Thompson Weinman Snowflake, a 20 micron calcium carbonate considered a top quality product in the industry, was used as a comparative sample. The yellowness index (Y.1) was also determined. The brightness results were as follows:

Sample	Green Filter &	Blue Filter <u></u> %	Amber Filter <u></u> %	Dry Brightness 	Y.1 <u>%</u>
3	92.0	90.0	92.7	95.5	0.029
5	90.8	88.9	91.1	95.1	0.024
10	91.7	90.0	92.1	95.5	0.022
11	91.4	89.9	91.6	95.5	0.018
12	91.2	89.3	91.8	95.2	0.027
"Snow- flake"	91.3	89.7	91.6	95.4	0.021

The samples are as good as "SNOWFLAKE" in every respect except they have a slightly higher yellowness index. This may be attributable to a coarser grind and the fact that the samples had some surface discolouration even after scrubbing.

4.0 CONCLUSIONS

÷.

These samples are of high quality with excellent potential for filler/extender applications. The silica is so low that potential use as a paper filler or paper coating is excellent.

5.0 RECOMMENDATIONS

Further sampling, surface as well as diamond drilling.