REGAL SILVER
MINE
82NOOS ? OR 82NOO4?
PROPERTYFILE

## PROPERTY FILE 82N003004

Note: The woolsey and Snowrlake properties have been considered of interest as possible sources for tungsten and tin, and of silver, lead and zinc. Available information regarding values is from publications of the British Columbia Department of Mines, and from a report made available confidentially for this study. The report, based on examinations rade by an engineer in private practice, quotes the findings of an engineer who examined the woolsey property for the owners, and from a third engineer who examined the property for a prospeotive purchaser.

There has been controversy over values in the properties. For this reason the information available has ben set forth at length and as it is so lengthy, it has been sumarized in the following 10 pages.

Under silver-lead-zinc and under tin, estimates of grade cannot be accepted without question, and are to be regarded as the highest grades for which it is reasonable to hope, based on information available.

## SUMMARY

The Woolsey and Snowflake properties adjoin and are reached by a common road and branch trails. The road runs northerly up Silver oreek from Snowfiake Siding on the main line of the Canadian Pacific Railway about 19 䨤 miles easterly from Revelstoke. The Woolsey camp at 4450 feet elevation is about 7 miles from the railroad. Distant about 5 miles from the railway and at 3800 feet elevation, a lower camp was connected with the Snowflake mine camp (elevation about 5400 feet) and with the principal workings, by a paok trail and a surface tramway. The Woolsey has been referred to also as MortonWoolsey, Regal and Regal Silver.

Workings on the two properties prospect the same vein system. The properties are under different ownership but are considered together here. In the absence of workings actually following a vein through, correlation of a vein exposed at one point with one exposed some distance away is conjectural. The main Snowflake working, Snowflake 4 level, elevation 5550, was extended easterly into woolsey ground, no other working follows a vein across the property boundaries.

A good deal of work was done on the properties from 1936 to 1930; since 1908 , there has been renewed faterest in the Woolsey and an attemit to produce marketable scheelite oncentrate. The Snowilake was exilored by three ghort adits, elevations 5850, 5385, and 5945 deot, by No. 4, the principal level, elevation 5550 feet, and by a raise vith sone conneoted intemediate arifts between 4 and 2 levels. These workings have a combined length of about haif a mile. The woolsey has becn explored in an extension of snowilake 4 level, Lin adit levels numbered 3, elevation 5250 ft ., 5, elevation $4903 \mathrm{ft}$. , 8, elevation $4663 \mathrm{ft}$. , 9. elevation $4573 \mathrm{ft} .$, and 10 , alevstion 4455 it., by Raise A connectine 10, 9 and 3 2ovala, and by two oticur ralees. These workings have a total length of sbout $1 ;$ miles.

The veins follow the bedding of argillaceous sediments, striking northwesterly and dipping 60 to 35 degrees northeastward. Vein widths up to 20 feet are recorded, filled largely with quartz and more or less altered wall rock. original interest in both properties was in silver-lead-zinc sulphide mineralization. Later stannite, considered or interest as an ore of tin, was aiscovered; more recently scheelite - observed in 1929 in snowflake 4 level - has been the mineral of primary interest in operations at the woolsey. A mill built underground at the woolsey in 1938 desighed to make a silver-lead and a tungsten concentrate, was not an economio success, and apparently was not a metallurgical success either. pilling procedure, indicated by testing in Ottawa in IS38, would doubtiess make a better saving of the tuncsten mineral.

$$
\begin{aligned}
& \text { - -5- - } \\
& \text { Silver-lead-zinc mineralization occurs in } \\
& \text { parts of the veins and more or less stannite may } \\
& \text { be associated with it. Scheelite occurs as small } \\
& \text { masses scattered widely in the veins and as oon- } \\
& \text { centrations in pyritic lenses of some size in the } \\
& \text { veins. Kidneys of rather high grade scheelite occur } \\
& \text { within the pyritic ienses. The mineralization may } \\
& \text { be divided into three olasses, siver-iead-zinc, tin } \\
& \text { and tungsten, based on the principal values reported } \\
& \text { in particular parts of the workings. It is probable } \\
& \text { that for effeotive milling the ores would have to be } \\
& \text { segregated, similarly, to make the most economioal } \\
& \text { recovery of the principal values, while the minerals } \\
& \text { present as ninor values might be less completely } \\
& \text { recovered as bye-products. } \\
& \text { Silver-lead-zinc. Information from one private source, } \\
& \text { either not ohecked by any other evailable information, } \\
& \text { or in conflict with the limited other information } \\
& \text { available, indicates two sections of the moolsey } \\
& \text { workings in which values silver-lead and minor zinc } \\
& \text { might be considered as marginal miling ore. In } \\
& \text { addition, it is probable that selective mining of } \\
& \text { high grade pookets with sorting would produce a } \\
& \text { little crude silver-lead ore of shipping grade. }
\end{aligned}
$$

The writer considers that close examination, including check sampling, is necessary before reliable estimates can be made, and that further testing in the form of drilling or crosscutting might also be required. The most optimistic information available suggests that a length of 240 feet on No. 5 vein opened by drifts on hoolsey No. 10 level, might be aredited with 6500 tons of probable and possible ore averaging silver 6.5 oz . per ton, lead $6 \%$, zinc $1.5 \%$, tin $0.1 \%$, and might also yield a little bye-product tungsten.

The section of No. 5 vein opened by the eastern part of Moolsey No. 5 level might be oxedited with 9,000 tons of probable and possible ore, averaging Silver 5 - 6 oz. per ton, lead 4-6\%, zinc 1 - 1 告名, tin about $0.1 \%$. Crossoutting or test hole drilling to define the width might permit increasing the estimate.

No other parts of the veins exposed appear to approach this grade in silver-lead-zinc values.

Tin. Information regarding Snowflake workings is based on a report by B.T.O'Grady, published in Bulletin No. 1, 1929, British Columbia, Department of Mines. The present writer considers that more olosely spaced sampling would be desirable in order to determino grade more exactly, and that exslusion of a limited high grade section, included in O'Grady's average would probably more nearly represent average grade of any quantity of ore. o'grady's figures might be interpreted as indicating on snowflake ground, opened by 4 level drift east and the raise above it, probable and possible ore, total say 3500 tons, averacing
Silver 6.39 oz . per ton, lead $0.65 \%$, zinc $5.3 \%$, tin $0.7 \%$. Averaze of samples in the arift which did not include the high grade pocket was, silver 3.5 oz . per ton, lead nil, zinc $4.59 \%$, tin $0.28 \%$.

In the continuation of Snowflase 4 level drift easterly into woolsey ground, unohecked sarapling is reported to have averaged over widths of 17 to 41 inches, Silver 3 oz . per ton, lead $0.4 \%$, zino $1.5 \%$, tin $0.5 \%$. This might be interpreted as indicating say 2600 tons of probable and possible ore, not sillowing for atiution.
- -

Exposures on No. 6 vein, Woolsey 10 level drift east and Raise $B$, sampled by the same engineer, might be taken as indicating 20,000 tons of probable and possible ore, averaging Silver $2.5-3$ oz. per ton, lead $1.5 \%$ or better, zinc $0.9 \%$, tin $0.5 \%$. The average values are much higher than indicated by less complete sampling by another engineer.

Tin ore, subjeot to the accuracy of information available, and accepting the higher figures in the case of conflict, might amount to a total of 26,000 tons probable and possible, averaging about $0.5 \%$ tin, with sllver, lead and zinc. A tin concentrate oould probably be produced by flotation. This concentrate might assay about $20 \%$ tin, and could not be higher grade than $26 \%$ tin. It would contain substantial quantities of impurities. Metallurgical difficulties and rather high tin losses aie to be anticipated in producing refined tin fron such a conceatrate. So far as the writer has been able to learr, no tin saelter has been acoustomed to accepting material of this kind.

- -9- -

Tungstan. Information from three souroes is in much better agreement regarding the tungsten content of several sections of the Woolsey workings.

The section on 8 level east of Raise A might well be credited with 5000 tons probable and possible ore, averaging $0.25 \% W_{3}$ per ton or better.

A section on No. 9 level west of Raise A may be credited with 1150 tons of probable and possible ore, averaging $0.3 \% \mathrm{wO}_{3}$ or better.

Both estimates are for width sampled and do not allow for dilution. In both cases thare would be values in silver and lead which dould probably be recovered in a byemproduct lead concentrate,

Several other polnts in the workings where saheelite is exposed would doubtless yield moderate tonnages, but avallable information does not perroit estinates. In a few placos rather high grade scheelite is exposed and some could undoubtedly be mined selectively.

In milling the ore, sliming scheelite must be avoided, recovery of soheelite must be given precedence ove" recovery of gilver-lead values. Tests at ottawa indicated a concentrate assayins $55.9 \%$ WOz after roasting to elininate sulphur.

Selective mining of high grade kidneys or lenses to produce orude tungsten ore of shipping grade would avoid loss of scheelite in sliming and the sorted crude ore might be of higher grade than a concentrate produced by milling. Rejects from selective mining and sorting oould be rilled with ore mined from low grade sections, if in sufficient quantity. Estimates of Costs and of Net Returns

Preliminary studies suggest return from concentrates f.o.b. railway cars at Revelstoke per ton of ore milled, for silver-lead-zinc ore, and for tin ore, of about $\$ 3.50$ per ton milled; tungsten ore might yield $\$ 6.00$ to $\mathrm{p}_{\mathrm{p}} 7.00$ per ton milled. Costs are apt to be from $\$ 4.00$ to $\$ 8.00$ per ton milled. Thus sub-silver-lead-zinc, and tin mineralization are/marginal, some tungsten could probably be produced at present prioes.
H. Sargent, Mining Engineer.

Vancouver, B.C. June 23, 1942.
WOOLSSY and SHONTLAKE GROURS
Revelstoke Mning Division
2AOE
Leoation, acoest, ownerghip and mistory ..... 1-4
General geolozioal deseription ..... 4-8
SITver-1eat-zinc
saowflake ..... $8-9$woolsey
No. 5 Level. No. 5 Veln ..... 8-11
No. 10 Lovel, MO. 5 Tolis ..... 18-15
Pln
Guowrlake ..... 16-22, 001 sey
Snowflake No. 4 Level ..... 22
No. 10 Level. Wo. TVOin ..... 22-23
poneral ..... 24
*Ining and Metallurgy ..... 25-28
Tungsten
Weport by 7.3.Stwyenan ..... 27-29
zatimates, woolyey jorkings ..... 29
Stior Raports re woolsey yurtinge
General ..... 30
TMo. 3 Level ..... 31-33
Ha1se A ..... 34-35
NO. 3 Lovel
Drift west ..... 36
Drift East ..... 57
No. 10 Leval
No. 5 Vein prift Jat ..... 88
No. 5 Veln Drift tast ..... $36-40$
M1111ns ..... 40-42
3atimatad Not Ratimn Per Ton of Ore ..... $43-44$
aturated Costs ..... 45
Plan of horkings

WOOLSEY and SWOWFLATK GROWPE, SIIver Cresk, Rovelatoke Minink DLViston

Workings on two adoining properties hava explored a syate of quartz vains, whioh in general follow the bedding of rreoambrian argillites. tarly interest in both properties was directed toward values in siver. lead and zino. In 1928 stanite was reportod at the Snowflake and attraoted sone sttention. More reoently, on the woolaey property, seleelite mas been the rinemal of arinotnal intorest.

From a sidint on the antin line ot the Ganadian
 Albert gatyon, and nhout 39 m wes northeabter $2 y$ rrom tevelatoke, the honday property is reanod oy atractor road whet runs northempy up Stiver oreak about 7 miles to the noolsey oang at 4455 fept eluvation. The Jnowflake. Lyiag lamedidtaly to the wast and northwest, is reached by trali whion Uranches iros the traotor road.

Ownersmip of the woolaey group has changed several times and recently has been the aubjeot or litigation. One fomer owner wesworton-woolsey Mning Company Linited," and a core reoent one was "Regal 311 ver Hines Limited," the property has been referred to as hoolsey, kortonmoolsey, Regal and Regal silver. The present atanding of Snowflake Mining Company, whioh was and may gtili be the owner of the Snowflake property, it unknown to the writer.

The Woolsey eroug under different nataes has been rererred to in Annusl keporta, uinister of kines, British Columbla, 1918-1931, 1938, 1940 and 1941, also in Bulletin No. 10, Tungsten Deposits of British Columbia, by John S. Stevenson, 1941, pages 81-22. The Snowrlake has been refarred to in Annual Reports, Minister of tines, Buitish Columbia, 1922-1931, in a pamphlet "Reports on Snowilake and maverleymTangler Miners Properties, complled by John D. Galloway, 1088," and in "gulletin Ko. 2, 2929,", pages 52-55, in which B. T. 0 Grady gave detalled inforration about tin values. The Annual report, Hinister of Lines, British Columbia, 1929, sivea some detalle about work done after the publioation of BuLletin No. 1, 1989.

Both properties were deseribed by $\mathrm{H} . \mathrm{C}$. Ounning. Geological Survey, Canada, Suswary Eleport 102a, Part A. pases 182-187.

M111ng 士ests ashened to Lndante fiow ghaet providing for rocovory of he tungeton and lead-nilvar talues of noolsoy ore, were daseribed in "Investigutions in ore Drosening end Motallurgy, July to Decauber 1930", Canada, Departuant of Mines ad nesourows, pazes 78-82.

Another source of informstion is a raport on
 in privato practice for a prospootive purohasor. This roport quotes rasulta of amaling by an acincor ( X ) who made a regart tor the ownem the proporty, and also quotes third angineer (2) who roportad for a prospective puranasn regarding tanzetar values. Inforation rax the xalations by thesw sheineara is indioated later by the letears $(x),(X)$, or (2). There has bean controversy over the ore positione of both proparties, and the InComation avallable from several gourose is not entirely in agreamant, porticuiariy In regara to silvar-lad-zino, and tha valuas. However, the avallable inforwation indioates that the vaiues are low, and that they aproach marifinal or commercial erade in iluted parte of the velne oniy. Under silver-lead-zinc, and under tin, in regard to which the information cannot be accepted without question, the estimates must be regarded as the maximum grade for which it is reasonable to hope, based on information available.

The properties are in rusged wra whioh has Large annual snowfall. The agper part of the rosd Is oressed by tho ecurees of aeveral snow hilde The moolsey caty and othor butuing are on a narrow titabered opur between two mowsilde oourses.
 faollities and equipment auitable for developmont work. tone builaings at the snowhame ware reported to have detarlorated gince the wroperty was shut down in 1930. Concernine the woolsey, the annual Report, Minister of Mines, aritish columbia, 194, saye:

The property is equipped with a mall oomplote mining plant and a combiaation ravity and flotation mill of about 70 tons dally apaoity the latter belnt looted in ralse underground. From thirtaen to nineteen men were employed under the alrection of A.S. sooullooh. Sforts ware directed to experimental work in an attemt to proance a marktable scheelite concentrate. \& sadil roasting plant was built at silver Creek alding on the rallroad for this purpose" "
power is developed at the mine by oli-burning oncinos.
Adts on the wolaey property are between 4460 and 5249 feat elovation, and on the Bnowrlake betwem 5550 and 5045 feet elevation. The prinotpal workings are represented on a plan acoonanying the present report, oopled fros a company plan. The nomenclature is that used by ororady (Bulletin $\%$. 1, 2929) and by stevenson (Bulletin No. 10, 1941).


A Arift on Bnowflake No, 4 Level oxtende southeasterly into ${ }^{\text {Goolsey }}$ ground, following the Snowflake No. 1 veln, which hat been correlated with Woolasy ${ }^{\text {Wa }}(?)$ veln, and another vein, referred to as the Snowflaike wo. Z vain, whion has been correlated with $W 001$ gey 5b veln. other oorrelations of velus on one property with those on the other are conjoctura. In the abaenoe of ralase rollowing the velns, eorrelation of velus from one level to anotiar on the swa pronerty is oomjectural to degree.

At least five veina bave been explored on moolsey
 5, 3, 9 na 10 (alevation 4400 ft.), by sevaral retises, and by the arift on Snowiake No. 4 level. The tothl iencth of these working inoluding the long
 Snowtiate around, for adt iovalis, a ratse and a wince exploxe unect vaine, the total lansth of these worincs le bout halt alle. She mow aursoe workingo ive gome alaitional kuformation bout theze ana some other velns.


One veln on woolsey ground had been tested In surface workines berfore the frat mention or the property, in the annual सpport, Binister of Mines, gritioh Columbia, 1919. The Snowflake was not mentloned until the 192 z report. work was oarried on aotively on wach property in the period from 1927 to 1951 gince which time the Jnowrlake has been inactive. Begiming with 195s, there has boen activity at the noolsey property concerned with scheelite-bearing zineralization. $\{$ all bullt underground that year proved unatiafaotory. Acoording to regort, the rill was beine rebullt late in 1940.

Ocourring in areillaceous rocks overlaln by quartaites and underlain by interbedded ilmestone and arsillite, the veing in gensral follow the bouldng of the sediments. They are rilled with guartz and more or less altexed wall rook, and contain sulphiaes Which generally form a minor part of the vein filling. Vein widths rance up to 20 feet, but suoh widths often contain wide horses of wall rook. At some points, velns feather out into quartz stringere in the arisilite. There has been a good deal of raulting both aorosa and alone the velas. The veins strike northwesterly and dip 60 to 35 degrees northeastward.

The oulphides, whion gomeralyy form a anall part of the total vein i aniln; ooour as beatored small masea in vise and fracturoa in the quartz, as oonoentrations in orusied quarta and way rook at the footwall of veixs, as Leasas coveloped eiong fraetures in the quartz and at gome pointe ag conoentrations nas the hangine wall. At fow points, iond-zino mingralization has boen found rilline eqaotures sway frow the Lareser valno.

The sulphides, byritw, Gmiana, 3phalerite,
 viesble to tho unaded eye, but tetraherrito fa aparentily rape. maloopyrite, ruoy allver and pyrriotite have bean reoognixed under the miocoscope. Whtive sityse has also bedn reported fros morom sopge atuay.

Schealite way reognized in the gnowtake worxines in 102 an is now tavan to onour mathor widely In the woolsoy workines. stannte, recognixed In snowfiade workin;s, apparentiy occurs very aparingly. If at all. in moat of the woolsey workines, with the exoeption of the drift into woolsey ground ariven from Bnowilare 4 lovel. Soheolite la the only tuncstenbearing minewal reported to be prosont in any quantity, and stannite is the only tin-baring aineral which has beon reported.

## Silver-Lead-Zinc

Early interest in both properties was in silver-lead-zinc values, and small shipments of sorted silver-lead ore have been made from each property.

Snowflake. The following stetement by J.D. Galloway, then Provincial Mineralogist, is quoted from "Reports on Snowflake and weverley-Tangier Mineral Properties, 1923."
"So far as development has gone, no important
quantities of shipping-ore have been proven.
In the upper workings on the No, 1 vein mililing-
ore is indicated in soveral places, but as yet
no appreoiable tonnage is proven. No commeroial
ore has been found in tne No. 4 orosscut tunnel.
"The cutting of the vein in the wo. 4 crosscut
tunnel demonstrates the continuity of the vein
at that depth, but not of the vaiues. Further
development by drifting on this level, however,
may disclose shoots or gelena ore.
"The other veins on the property are similar to
the No. I vein. They are parallel veins and
oan be developed by continuation of the NO. 4
orosscut tunrel. Development of these should
be left in abeyance until the econvaic value
of No. I vein is demonstrated.
The pronerty is still a prosuect in the develop-
ment stage, with the possibility of comuercial
ore-sboots being found, where structural conditions
are favourable by reason of suificient ifacturing
of the primary quartz to permit extensive re-
placenent by metallic minerals."

Latar work wan described by B.T.0'Grady in Bullatin No. 1,1929 , and in the Annual Report, Minister of Mines, British Columbia, 1929. This work, including drifts on 4 level, and a raise driven from the east drift to 2 lavel, further explored the minerallzation but does not seem to have blooked out or indiaated any considerable tonnage of aliver-lead-zind ore. hoolsey. Available information is principally from the report of the engineer ( $x$ ) in private practice, who made examinations for prospoctive purohaser, and in his report quoted regults obealned by another enatneer ( $X$ ) who had made a report for the owners of the property.

Results of sampling by (Y) on hoolsey 5 level and in Ralse 0 driven from $1 t$, and by (X) in throe orossouts on 5 level are given in the peble I.

Table I

## Woolsey No. 5 Level and Raise $\sigma$

Woolsey Mo. 5 Level
width
Aspay
A8 or /ton
Pb
23
Sn
WO8 \$

| 5.0 | 7.5 | 5.9 | 5.0 |
| :--- | :--- | :--- | :--- |
| 4.2 | 6.0 | 5.0 | 4.2 |
| 1.0 | 1.1 | 1.8 | 1.5 |

0.14
0.2
0.1 Tr
16 t.t. $5.75 \cdot 20.0$ t. 11.6 .15 .5 T

## Yetes

sampling by ( $X$ )
A, Ralse C, 0 to 138 fo. up dig from Woolsey No. 5 Level. Average width 5 Pt.
B, In Ralse 0 , average of samples, 25 to 83 ft , sbove 5 Level.
c, Avarage for ail barples la length or 350 feet moabured from the portal.
D. Average of bomping in ino. 1, No. is and no. 3 orosscuts.

B, Average of samplen in 120 root length, 250 to 350 feot from portal.
Sazapling by ( X )
F, HO. 1 Crossout.
G. No. 2 crosscut.

H, No. 3 Crossout, combines tootwall seothon of 10 st. am haneing wall gection or 5 ft. © in.

The seotion, ineompletely explored by woolsay No. 5 loval and feise 0, with sampling data for 350 feet westerly from the portal and 132 feet up the raise, with width of 5 fset, might be oredited with 9000 tons of probable and poasible ore, averaging silver 5 oz. per ton, lead 4. $2 \%$, aine $2 \%$, tin $0.1 \%$, without allowance for dilution. This estimate is based on available information, whioh should be oheoked by detailed examination alil olose mamilinge If the average wiath is as eremt as indicated in the orosseuts, the tonnage might oe considerably greater than 9000 tons. The ralse is reported to have been adranced to a total slope aistanoe of 280 feet fron the level. The extra 08 reet of raise might poralt inoreasing the tomnage estimate sorawhat, but because of the irceguiar natare of the minernlazation, the estimato aould not be inorased greatiy.

On 10 level, No. 5 vein has been explored by drifts east and west of the erossout entry. No. 5 vein drift east follows the vein 90 feet to the main fault, beyond which the working follows the rault. No. 5 vein drift west is generaliy in the Cootwall of the vein which was arosscut by several stub raises. These exposed a vein whioh for 150 feet west of the orosscut averaged feet wide, according to ( $Y$ ), beyond that the vein was narrower and poorly mineralized. Raise A followed the vein up the dip, and had advanced 208 feet when examined by (Y), who found the veins to be 1 to 6 feet in width with low values. An intermediate level was about
driver fron $k a i s e \mathrm{~A} / 180$ feet up the alp from 10 level. This level, later oontinued easterly to the surface, is now colled No. 9 level. (Y) found the ground on it generally broken and did not find conmercial values.

Reaults of sampling by (Y) are given in Table II. Sampline of $(X)$ at one point in the 90 foot section on 5 vein drift east and at one point on 5 vein drift west are siven under $A$ and $C$ in Table VII in the saction headed. "Tungeten". Assays of samples taken by ( $X$ ) are materially below those taken by (I).

## Table II

## 10 Drifts cast and west, and Raise A

|  | A | B | 0 |
| :---: | :---: | :---: | :---: |
| Fidth | 7.5 ft. | 6.0 rt. | 1.0-6.0 |
| Assays |  |  |  |
| Ag 0x/ton | 5.2 | 7.8 | 1.5 |
| Pb | 5.3 | 6.0 | 1 |
| 2n \% | 0.5 | 2.6 | Tr |
| 8 Sn \% | 0.2 | Tr | Tr |
| $\frac{\text { Notes }}{\text { Sampling by }}$ (Y) |  |  |  |
|  |  |  |  |
| A, Drift east, average of samples $0-90$ feet from orosscut ontry. |  |  |  |
| B, Drift wost, average or samples $0-2.50$ feet west of orossout entry, vein exposed in crosseuts, and orozsoutting stub rises. |  |  |  |
| $c$ c, Vein | ed in Ral | - 203 | slope |

It seems probable that the vein is not well exposed east of the orosscut entry, and that it is exposed prinelpally in arossouts ox stub, orosaouthing, raise west of the crosacut entry. Sampling information thererore must be ineomplete. The confliot between sampling by $(X)$ and $(X)$ has been mentioned, sarpling by ( $x$ ) was probably less oompleta than by (V), whose resulita on the level for a length or 840 reet indiadtes marisinal ore; his ampling reaulte in Raise A. and $(X)$ 's reaults on the drifts on 5 vein, 10 ievel, are derinitely sub-narginal. In the drifts (X)'s reaults Indioate for a length of 240 feet an average of Silver, 6. 5 ox. per ton, lead 6\%, zinc 2.5\%, tin 0.1\%, and allowing vertieal extent of 50 feet the seetion could be estimated to contain about 6500 tona of possible ore. Contilet between resulta of the two samplings, Incomploteness of the exposure and the low reaults in the rales, throw doubts on the estimite of drade. This doubt could be redueed in part by detelled oxamInation and by check sampline.

The ralse has dince been oarried through to Ho. 8 level, on which silver-iead-zino mineralization appears to be definitely mb-marginal. Results of sampling in this and in various other workings are given in Tables in section hesded "Tin" and "Tungsten". They show values much too low to be considered as silver-lead-zinc ore. If suoh material were treated for its tin or tungsten content, bye-product silver and load would doubtless be recovered in a lead ooncetitrate. The sampling shows very little zinc to recover.

Thus it apears thet in No. 5 vein on woolsed 5 and 10 levals, there are seotions whioh may be marginal silveis-load-zino ore. If oheck examinstion and sampling contimad the results obtalaed by (y), possible ore might be eatimated at total of 15,000 tons or so, and possitily considerabiy mose, averaming silver 5 to oz. per ton, lead $4-6$, zinc 1 to 1 , and tin sbout $0.1 \%$. Material of this grade is patently marsiand, but there night be some salvage in it if a substantial part of the ovorhead and capital expense vould have to be made anywey say for tin or tancsten recovery.

It is probade thet a nall tonaze of crude allverlead ore could be won by selective mining and sorting from high grads pookets.

## In

Information on tin vilues ig prinoipaliz from mulletin $70.1,18 * 2$, allnt with the Snowrlake progert we also have sotge inforastion from the regort by ( $X$ ) about tin on the woolsoy property. wxeagt for the arift into woolegy sround


 arift ast 10 leved and in the reise from it, and Irora 0.1 to $0.2 \%$ tin from other points in the workinge. Thus for the drift and ralee on 10 level, there is marked consliot between the two anoplings but alsawere thoy arae in mowine that the tin oontont 10 nogligibly nmall.

In Bullotin \%o. I, 1939, tin asays from sootterad
 inoompletaly axposed velns, range from wh to 2 t. tin. They wre of intereat o fuldes for grocgeotine but do not indioata any quantity of tia-beaxing matarimi.

Snorrlake 4 level consiats of a arossout entry driven northeasterly from which a drift wa: drivon northwesterly along the footwall of a vein, and
another drift was exiven southeasterly along the Iootwell of the veln, about 220 feet to the boundery of the woolsey group. From this drift at a point 93 feet from the orossout entry, raise followed the Fein up the dip. This raise had been driven 180 foet the time of the examinetion reported in Bulletin No. 1, 1989. Later the raise was driven through to Mo. 2 level.

Baples taken by o.Grady in tho west faore exaotly northrest ( duft, avarakad Gold, nil, silver 0.32 oze per ton, loak nil, zino $1.42 \%$, copper nil, tin nil. (Bulletin 20. 1, 1329, p.53.

Concernins the drift east (inore exactiy southeast). the raise froa it and workings at nicher alevet on in the same seotion, otirady wrote (Malletiaduo. 1, 1829. p. 53 and 54):

MChannel samples at $20-f$ oot intervais along the east arift gave an average assay of: Gold, trace; milver 3.52 oz . to the ton; lead, nil; zinc 4.59 per cent; oopper 0.46 per cont; tin 0.28 per oent; over an average width of $27 \frac{1}{2}$ inches and a length of about 118 feet. Sampling of the raise at similar intervals gave an average agsay of: Gold, trace; silver, 8.e6 oz. to the ton; leed, 2.21 per eent; zinc. 5.62 per cent; copper, 1.35 per cent; tin, 1.13 per cent; over on average width of 43 inohes and a length of 120 feet. A vary strong development of stannite ocours 25 feet up the raise, where a sample taken aoross a width of 33 inches, and included in the above average, assayed: Gold, trace; silver, 43.5 oz. to the ton; lead, 7.5 per oent; sinc, 6 per cents oopper 6.5 per cont; tin, 6 per oent. Phe combined average of the samples taken along the east drirt and the raise therefrom is: Gold, trace; silver, 6.39 oz , to the ton; lead, 0.65 per oont; zino, 5.31 per oent; oopper, 0.94 per cent; tin, 0.73 per cent; over an average width of 34 inches. Although the samples taken in the east drift and raise were widely spaced, it appeared from an oxamination of the vein in both workinges that the samples represented a falr average, in spite of the inineralization beint of very irregular oharacter.
"The backs" on the east drift to the No. 2 level. 335 feet vertically above it, heve been estimated at about 550 feet. The ralse in the east drift on the No. 4 level will when completed connect with the westerly drift on the No. 2 level a short distanoe from the eroascut intergeotion.
mere "tin-shoot in the east arift adjoina the boundary between the Snowflake and Regal silver properties and ita extension in atrice and dip oan be expected on the latter property, as the boundary-1ine forms an aoute argle with the direction of the drift. The tinmbearing rein, with its dip of 58 degrees in the east drift, would enter hegal Silver ground in a slope-length of ebout 110 feet below the point of interseation of the orossout and drift and in few feet at the boundary line. There is. therefore, a amall blook of ground below the tin-shoot; triangular in shape, lying between the two properties. A saraple across 18 inches In the face of the aast drift adjoining the Regal silver bouncary assayed: Gold, traoes silver, 5.2 az. to the ton; lead, nil; zino, 13 per cont; copper, 2.1 per cent; tin, 0.7 por oent.
motho No. 1 and Ho. 2 lewals of the Snowtlake devolop sections of the gane No. 1 veln at clevations or 3,945 and 5,885 feet respectively, the levation of the No. 4 level contulning the tin-shoot being 5,550 feet. The westeriy drifte in the uppar two tunnels meationed are stuated approximately above the tin-shoot and, without allowances for any ra in the ore-body, might be expeated to develos tha upper paxt of the sarue ahoot. the nineralization wes not considered to be suriflaientig continuous in these uppar levols to warrant systematlo sampling, sad only few sampes were taken at promising points with view to oorrelating silver-tin values if possibie. In this oonnection three samplea wort takon in the No. 2 tunnsl westerly drift and one sample in the race or the 0 轱. 1 tumasi westemiy drift. A 64-inoh ample taken et the Interaection of the wo. Z level orasseut and drift gava an assay of: Cold, 0.02 az . to the tons Slver, 11.0 oz . to the ton; lead, nil; zine, 2 per ceat; oopaex, 0.0 per oent; tin, 0.2 per cent. A 22-1nch gample taken 25 feet long the weaterly drift from the crosecut cosayed: hold, trace; ativer, $0 . \mathbb{Z}^{W}$ oz. to the ton; leat, nil; zina, 1.3 per contri opper, ail; tin, all. A sample soroma $1 n$ inotes in the tho of the westerly dreft on the aume level agasyed: Gold, traen; gilver, 7.3 oz. to the ton; lead, 10.5 per ocant zine, 3.8 par asnt; copper, 0.1 par cant; tin, trace. A selected gasple from anarow but conthunde streak in tho sawe horvine was round if oontaln 8. 4 par covt tuangton.
" patale ncrow 24 inches in the race of the weateriy drift on tha ho. 1 level astrayed: cold, trace; sliver, 15.5 oz . to the ton; lead, 3.3 par cent; zina, 12.1 par cant; oopper, 2 per cent; tin, 2.6 per oent."

It is obvious that the aoninined average of mamples taken aiong the ast drift snd the raise therefrom," would be very seriously reduced if the sample whioh assayed $0 \%$ tin, were not included. It appears that this reprewents a looal enrichaent of which repetition is unpredietable, as the complete samping date were not published, it is ligossible to analyze the sampling results, but it seems probeble that conservative practioe would be inclined to rejeet the single high tin assay in estimating the average grade for the blook. A triangular blook of which the base mesares 112 reet along the drift, the apex is 100 feot $u$ the dip at the top of the raise and the average tilumess is 34 inohes, oontains 19,000 ouvis fat and at 12 cu . ft . par ton would amount to 1590 tons. This might be allowed as "probable ore." Ground for a saoderate depth below the drift and ground $u_{p}$ the dip from the slopinj sides of the tridaguiar blook, amountine to say an additional 2000 tons raight be consilered is possible ore. These estimates should bo checked for continuity and grade by detailed examination and chosely spisoau sumples shoulu be taken to determine the grade.
-88.
Woolsey, on Snowflake 4 Level
Under arrangament between the owners of the two propertien, the east dritt of snowrlake level was continued about 258 tot into Rooisey ground, near the ond a orosenut was ariven northeusterly about is reet and from it a arift on anothar voin was driven 140 feet or so southeasterly. An ongineer (X) roporting for the owners of the noolsay property was quoted as Giving average assays in the langth of 858 feet of Silver 3.0 ox. per ton, lead $0.4 \%$, zinc 1.54, in $0.3 \%$, ger widths ranging from 17 to 41 inches. The mean widh thon is 99 inohes. With this widtriand length, and allowing for sn extent or 50 feet on the dip, we ean estimate gay another 2600 tona of probable and possible ore. This also should be onecked by detalled examingtion and olose sampling.

10 Level
yo. Grein, drift oset
The vain is exposed in anort eroeseats driven northerly short distences frow the irrezuiar arift. It is a strong vein eparingly aincraliwed with sulphides. The voln is exilored by keise 3 , for 200 reet above the level. satuling dete ere recordea in table III.

## Table III

Ho. 6 Vein, 10 Levol, Urift east and Raige $B$


Asmay

| Au 0z/ton | 0.02 | Tr | N11 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ag oz/ton | Tr | 0.20 | Nil | 3.0 | 5.2 | 2.4 |
| Cu ${ }^{\text {\% }}$ | 111 | Nil | N11 |  |  |  |
| Pb ${ }_{0}$ | 1.28 | 1.63 | 1.63 | 1.5 | 4.1 | 2.7 |
| 2n \% | 0.81 | 0.76 | 0.40 | 0.8 | 1.2 | 1.3 |
| Sn \% | N11 | N13 | Nil | 0.E | 0.4 | 0.5 |
| ${ }^{1} \mathrm{O} / 8$ | 0.14 | N21 | $\pi$ |  |  |  |

## Notes

Samples taken by (x)
A, In crosscat to north aboat 260 feet east of crosaout entry.
B, In erosscut to the north bout 400 feet atest of crossout entry.
C. In crosscut io the north about 460 reet east of crossout entry.
Samples takan by (T)
D, merage for lengen of 580 feet, 0 to 52 feet, east of orossent entry.
m, Average tor length of 120 reet, 400 to sso feet east of cros3cat, entry.
F, Average for 200 faet up Raise 3.

Cn (X)'g ileares prooeble and possible ore aight be ostinatea at aboit, 20,000 tons averaging silver 2.5
 better, the 0.5\%. It aust be noted that the grade is oniluely out of liue with that indicated oy the less coxidete ownging by $(x)$ 。

The action opened by snowflake 4 level and the snowtlat Halse on the two properties sight be oxeated with total of about 6000 tons or probable and posuible ore, contalaing silver, lead and aino in addition to about $0.5 \%$ tin. The seotion opened by veln drift sast on $\begin{gathered}\text { noolmey } 10 \text { level, and by haise } 8 \text {, might be }\end{gathered}$ oreditod with as much as 20,000 tons of probable and possible ore of sinilar grade, making total of 26,000 tona.

The writer considers the eatimatos of grade are open to question, and that detalied examination and olose gampling are necoasary if depondable edtiantes axe requirea.

## M1111ng and Motal2ursy

In the absenco or information re miline tests, we can ondy cueas mat results would be ob"alned in millng ore containing pyrite, Ealona, shalsrite, totrahedrite, atannite, ato. It is probable thet a In concentrate could be made by llotation. From the compoaition of the mineral, it seams arobable that the fiotablity of stannite is intormedsate betwon thet of salens and sphalarite, Tetrahedrite and ohalcopyrite are sntarmedite in Rotmolity between calena and aphalerite. hooorthaly, the"tin concentrate" to be produced would probably onatain sone silena and sphalerite, aiso a littie calcopyrite, and tetracedrlea, as well as the stanite; it world also probabiy costain sone pyrite.

The analysim of the minorwl acternined as Btannite, cuoted by Guning (3.S.C.Sumary moport


```
ser cent
```

|  | 30.85 |
| :---: | :---: |
| Cu. | 51. 56 |
| Fe. | 3.85 |
| 72 | 7.78 |
| min. | nil |
| 11 | nil |
|  | 39.76 |
| Total | 29.3 |

It is apparent thet the "tin concentrste" would not oxceod 20 tis and mone probably woula be nearer 20; tin. In adition to the constituents listed in the malysis of stannite, the "tin coroen rate" would probably contain sidver, lead, and antinony.

Comercial amaiting of tin is based on oonoantrates of rather hiek purtty, usually oontaning bos tin or bettex, in the fors of ossaiterite. Tmparitios In the ore are apt to be reduead with and apear In the metallise tin produced. blisination of the inpuritias complaator the sratin, was to its cost, and inoreases lose or tin in whatinc. so far ge the writur hus ben able to lawn, standte bas not been aoventable at alter a mafor or conaldarable constituent of tin concentrates. It is apparent thererone that speotal provisions would nave to be made to handle tin concentraten fraz these propertiet.
pungeten
Information regarding tunssten on Snowrlake ground and on woolsey ground on snowflake 4 level is limited to brief referenoes in Bulletin No. 1. 1929, and Bullotin Mo. 10, 1042.

Conoerning tungeten in the Noolsey workings, we have stevenson"s descriptions and estimates (Bulletin Mo. 10, 2941), and the report by the engineer (X). principaliy ooncerned with tungston. THis report quoted from onginoers (Y) and (Z)。

It appears that sonesifte poours ruost abundentily in parts of the veins in leatioular mases hoavily mineralized with pyrite, which oscur within the voing. Theae lenses also oostain sone gaiena and sphalerite. Nluorite has also been roported to occur with the shecilte. stevenzon deseribes the pyrite lenses as ranging in length from fow feet to 350 fect , and in width from 1 to 13 lanes, with 0 inches a more common wiath. He also refers to kidneys of aliogt pure soheolite, whioh may ocour within pjrite lensus, and to occurrenoes of boheolite in sum masses up to $\&$ inoh dameter, usualiy assooiated with gmeli olusters of pyrite, soattered at wide intervais throughout the quartz veins. hocorting to stovenson, Woolsey No. 5 vein, explored on woolsey 3, 5, 9, 9 and 10 adits , and on Snowflake 4 ait, 13 the oniy vela in wilen scheolite has been found in arereciable smounts.

Stevenson mantioned less ingortant occurrences of scheelite, and gave asishtes of the slze of four important schedite-bearing bands or lenses oocurring in pyritio lenses. He stressed the difficulty in making quantitative astimates of the valuable oontent but presents atimaten of the tungatio oxide (WOg) content per vertioal foot. He oxpressed the opinion that the vertioal oxtent of the individual soheelite rich sections is not apt to exceed 50 feet.

His estimates are as rollows:
No. 8 level - 150 to 250 feet aast of A or Mill raise (several disconnectod short ribbons and one large kidney of geheelite)
Length 100 ft . averag width 6 in. Tungstic oxide oontent per foot of depth. 46 lb .

No. 2 level - 10 to 110 feet east of ar lill raise. Length 100 rt ., average width $6 \mathrm{in}^{\circ}$ Tungstic oxide content, 200 2b. per foot of cepth.

40 to 225 reet weet of A or Mill raise
Longth $185 \mathrm{rt}$. , average width in . Tunestic oxide content per foot of depth, 176 1b.

Ho. 10 level
At northwestern end of exposure of No. 5 veln. Length 17 ft, avarage width 7 in. Tungstic oxide aontent per foot of depth, 400 lb .

The following information, obtained from private aources, is based on sampling of widtha oonsiderably greator tana the four seotions for wifoh 3tovonson gave atitages. In connection with the resulta, it is desirable to ceep in mind the fact that tungston assays are aifrioult, and that dinfexent assaycrs may not check closely on the same aample; thererore ohemeal determination should not be regurdea as exactiy representing the tungetio oxic content. Assays for the elanent tungaten (\%) are reported by (X). Tuese have been multipiled by 1.26 to oonvert them to tuagetio oxide, and are civer as mos in the present report. Schoelito has been reportod from higher levels, but no ocourrence of inoortant ase and erade has been reported from working higher than the woblsey 8 level.

Engineer (X) reported that the best values In tungaten wore obtalned from samplas taken on 8 level. At the top of the Ralse a he took a sample (A, Table I) across 50 inohes, the width of a lens whion pinched out 30 reet west of the raise. Another lens ookes in and is 6 leet wide in the face, where he took a molled sample (B, Table I). In the section from 50 to 240 feet ast of the raise, he found muoh pyrite, some galena and some sphalerite in the vein. At 190 and 230 foet east of the raise, he found specimen soneelite; elsowhere be found it in arall anount. In the section 50 to agy reet east of the raise, he took five samples ( $C, D, E, N, O$, Tuble I). The first three asayed woll in tungetio cxide, tholr averae is given in the Table (H). In the next section of the working extending about 150 reet southeasteriy to the orosscut entry, seven samiles averag width 5if ft., were tiken, they are low in tungetic oxide, contain some silver, lead and zinc. They represent less rezular vein and two en echelon lenses in the footwall. The average of the seven is given under I. Table IV.

After reducinc the high sample (E) in the 80 to 2 s7 reet ast of Raise $A,(X)$ computed the average for five samples $(C, D, E, F, 0)$ as:

for a length of 237 feet and averaze width or 5.5 ceet. For the sarse section ( 2 ) obtained an average of $0.37 \% W_{3}$ for a length of 240 feet and average width of 4.5 feet. Stevension's eatimate, 100 feet of this section, is 48 lb . Nos per foot of depth. If we consider the sane yield from a section 5 feet wide, 100 feet long and 1 foot high , or say 8 tons, wo have a iftele better than $0.25 \%$ wh per ton. It seeme probable that there would be some soheelite outside the width of 6 inohes whioh stevenson oonsidered. Therefore in 100 feet of length at least there is fair agreement betwoen the three, and for approximataly 240 foet ther 13 better agreersent between (X) and (z). A seotion 240 feet long, 5 feet wide, and 50 feet in vortical extent would contain 5000 tons.

Table IV
Ko. 8 Level, Woolsey. Sampling by (x)

| Refer Noto | A | B | C | D | E | P | 9 | H | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Width | 2.5 ct. | 6.0 | (1) | (1) | (1) | (1) | (1) | (1) | (1) |
| Assay (2) |  |  |  |  |  |  |  |  |  |
| Aus oz/ton | Tr | Tr | Tr | Tr | 0.04 | TT | Tr |  | Tr |
| AS OZ/ton | Tr | 5.20 | 0.40 | 0.36 | 2.66 | N11 | 0.06 | 1.14 | 0.29 |
| pb \% | 4.44 | 2.33 | 1.53 | 2. 27 | 4.89 | 1.32 | 2.28 | 2.63 | 1.25 |
| 2 n | 1.86 | 0.35 | 0.67 | 0.46 | 0.93 | 0.66 | 0.86 | 0.69 | 0.72 |
| $7_{3} \%$ | 0.30 | 2.63 | 1.07 | 0.68 | 1.66 | 0.06 | 0.06 | 1.14 | 1.17 |

Notes
(1) Avernge width C - I inolusive, 5.5 ft.
(2) Copper and tin reported N11 throughout.

A, At top of taine $A$, east aide.
B. At race of drift, west of thaise A.
C) In drift 50 to 240 feet easterly from top of nalse a
E) at increasing distances from raise.
F)
a)
H. Avorage of amples C, D and E.

I, Arerage of neven sasples in 150 foet running southensterly to orossout entry.

Raise A
A 50-ton mill was installed underground in 1958 in an onlarged part of ralse $A$ between 8 and 9 levels. This part of the ratse has been called the "alll Ralse".

In cutting out for the ralle, scheelite was expoged in the footwall of the ralso. No. 5 vein is exposed in the raise from 10 level to $B$ level. slope distance 398 reet. It $1 s$ genteraliy Low erade frov 10 level to a polnt above level. Sanplins data for this raise are reoorded below in Table $\%$.

Table $Y$
Raise A, Bagplins by (X)

|  | A | B |
| :---: | :---: | :---: |
| width | 2.5 ft. | 5.7 ft |
| Assay |  |  |
| Au oz. per ton | 0.01 | 0.04 |
| Ne oz. per ton | 0.05 | 3.06 |
| Cu , | N11 | N12 |
| Pb \% | 1.22 | 2.09 |
| 2 m | 0.71 | 0.81 |
| 3 n 晨 | N11 | N11 |
| ,0\% \% | 2.80 | 0.16 |

Notes
A, Taken by ( $X$ ) at cootwall in Raise to
$B$, maken by $(X)$, east side of raise 40 ft . above 10 1evel.

The seotion represented by the upper part of ( $A$
 (A and B, wable IV) containa scheelite but on the information available, no considerable tonnage of ore can be eatimated.

## No. g Level

Westarly from Raise $A$, (X) found a band consisting of argillite and quartz with a good deal of pyrite and a good deal of graphite. At one point, there is 3 feet of quartz ribboned with wall rook and containing some pyrite. Results of composite sampling by $(x)$ of the seotion for a 0 out 150 ft . weaterly from the raise are shown under A, Table VI. Sarapling by ( 2 ) in the section extending 175 feet westerly rron the raise is shown under B, Table VI.

The value $0.96 \% \mathrm{HO}_{3}$ obtainec by ( X ) for a length of 150 feet and width of about 1 ft., is equivalent to $0.50 \% \mathrm{NO}_{\mathrm{z}}$ in width of 1.9 feet. The results of sampling by ( 2 ) are given as $0.59 \%$ Wor for length ot 175 feet, and width of 1.9 ft . Stevenaon's estimate of 17616 . Wog per vartioal root in length of 185 feet, and averege with 6 in., is equivalent to $0.3 \% w_{3}$ in an averege width of $1.9 \mathrm{ft} .$, allowing 12 oubio feet per ton. It is probable that there would be some soheelite ontside the band of whioh the average width is 6 inches. If we assume vartiael extent of 50 feet, length 150 ft., averace width $1.9 \mathrm{ft} .$, we oan aredit this section with say 1150 tons of possible ore, without allowance for allution. The mean of the three values is a 1ittile more than $0.4 \% \mathrm{wo}_{3}$.

Gasterly from the raise, the level mhows a
vein 5 feet wlae at the waiss, tapers to about 3.5 reet wide at the inst orossout, holds this width for about 40 teet and wadsestat 20 feet forth againgt the mala fault. In a length of about 40 feet near the crossout, there is a band rioh in pyrite, about 12 inches wide, at tae footwall and another 10 to 12 inches wide at the hanging wall. gamoles but by (X) across the vein $C$ wegt of the crosscut, and $D$ east of 1t, ame llated in rable VI.

Table VI
No. 9 Lequl

|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| width | 1.0 ft | 1.8 t. | 5.0 t. | 4.0 it. |
| Assay |  |  |  |  |
| Au oz/ton | Tr |  | 15 | Tr |
| A8 O2/ton | 1.40 |  | 0.04 | 0.20 |
| Cu | N11 |  | W11 | * 11 |
| Pb 8 | 0.51 |  | 1.22 | 1.53 |
| 8 n | 0.80 |  | 0.53 | 0.81 |
| Sn \% | W11 |  | N11 | $N 11$ |
| $\mathrm{WO}_{3} \%$ | 0.96 | 0.59 | 0.30 | 0.25 |

Notes
OLevel drift west of haise A. A. taken by (X), composite of channels cut across graphic pyritic band in a length of 150 feet west of raise. Average widh about 1.0 ft .
B, taken by ( 2 ), composite of ohannels cut across band in a length of 175 feet, west of raise. average width 1.2 ft.
9 Level drift east of Raise $A$.
C, fest of first crosscut.
D, Bast of first crosscut.

## Qo. 5 Vein Drift lest of grosscut Entry

The veln in exposed in the orosscut entry and in the drift to the west for about 200 feet; orosscuts show it to be up to 9 reet wide. Sampling by $(x)$ in this section is recorded under A, Table VII. Farther west, branoh drift or oroesout running nortinerly which, where it leaves the 1ine of the drirt, cuts a pyritio lens. The iens is exposed continuing in the western wall of the working. Results from assaying a composite of three channels 18 to 18 inches wide, out by (X) across the lens, are given under $B$, Table VII- Results of sampling by ( $X$ ), analyses not showing WOg, are given in Table if.

No. 5 Vein Drift East
The vein is exposed in the drift to goout 90 fest from the crossout entry, cronsonts expose a width of 10 feet, average results fram sampling by (Y) For the 90 ft . leneth are civen in Table II. A sample taken by $(X)$ midway dong this section is recorded under C, Teble VIT. The working swings northeasterly for 50 feet along fault, which is largely pillea by quartz. At the face of this drift, toward the right hand side, vein is exposed whioh was aampled by ( $X$ ); results are given under $D$ and E, Table VII..

TaDle VII
No. 10 Level

|  | A | B | C | D | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W1dth | 6.2 2 . |  | 7 ft。 | 2.5 ft 。 | 2.515 |
| Assay |  |  |  |  |  |
| Au 0z/ton | 0.02 | Tr | Tr | Tr | Tr |
| As oz/ton | (1) | 0.08 | 0.04 | N11 | 1.00 |
| Cu \% | N11 | N11 | W11 | W11 | N12 |
| Pb \% | 3.87 | 1.07 | 0.46 | 1.53 | 1.84 |
| 3 n | 0.55 | 0.55 | 0.71 | 0.73 | 0.73 |
| Sn \% | N11 | Nil | M11 | 111 | 1111 |
| $\mathrm{WO}_{3} \%$ | 0.18 | 6.02 | N11 | 0.43 | 0.40 |

## Notes

An samples taken by $(X)$
$(1)$ Sliver arratic.
Drift lest on Mo. 5 Vein
A, In firat orossout.
B, Composite of three chennels aarose lens 12 to 18 inohes wide, exposed at collar of crossout, tume north from west end of drift.

Drift East on Mo. 5 Vein C, At crosscut about 45 reet east of orosacut entry. $D$, At fane of northeast drift, breast hich. E, st lower left hana cornex of face.

Sampling results in the drift aat on 8 level, and In 5 vein duft east on 10 level, indicate mineralization of moderate grade in soheclite, but the information does not permit entimating any coneldarable tonnage. The
lens indicatea toward the west ond of 5 vein arift
west on 10 level is of quite high grade material
apparently of mall extent.

The saotions on 8 level east of Haise A, and on $g$ level west of Raise $A$, probably would yield 6000 tons averaging about $0.3 \% W_{3}$. It is likely that 5 vein at other points woula yiela a considerable sdditional tonnago.

Mineralization poorer in soheelite but rioher In tin-bearing or in silver, iead and zino minerals might yield some bye-produat saneolite.

## M1111ng

The mill built in 1938, provided for making a flotation silvar-laad oonoentrats, followed by babling flotation tailing to recovar scheelite. Hine grinding for flotation slimed the soheelite, whioh therefore was not reoovered setisfactorily on the tables.

Report 756. Investigations in ore Dressing and Metallursy, July to December 1938, Ganada, Departnant of Rines and Resouroes, deals with teats made on ma 700 pound samie of silver-lead tungsten ore. received september 6, 1936, from the Resal 312ver property." The procedure recomended is to table the ore, classified ster relatively ooarse grind, then to grind the table concentrates and from them to float first silver-lead conoentrate and then a tungsten concentrate.

## Overall Recoveries

In the tests, classified products were tabled separately to give a concentrate, middling and tailing. The concentrates from the +65 mesh products were reground before flotation, the -65 mesh products were floated without regrinding.

The feed sample assayed:

As 0.955 oz. per ton
Fe 15. $68 \%$
$\begin{array}{lll}\mathrm{Pb} 0.84 \% & \mathrm{Zn} 0.36 \% & \mathrm{WO}_{2} 2.42 \% \\ \mathrm{~S} 15.49 \% & \text { Graphite } & 1.42 \%\end{array}$

Cleaning the flotation concentrates yielded the following final product:

From reground +65 mesh material ( $75 \%$ of ore after coarse srind)


From -05 mesh material ( $24.3 \%$ of ore arter coarse grind)
Distribution


Considerable parts of the values not in final products were in middings whioh in a continuous operation would be recirculated and from whioh some recovery would be made.

The results were reported to indicate the following ovarall recoverien:

| Tungston | $81.5 \%$ |
| :--- | :--- |
| Lead | $88.5 \%$ |
| Silver | $80.4 \%$ |

The low erade of the lead cancentrate made from the +65 mesk table produots was said to be because insufficiont ilme and depressanta were used in cleaning the bulk sulphide concentrate. The grade of the lead concentrate made 1 rom the -65 mesh tabie oonomatrates was good.

A portion of the tungsten concentrate asrrying $40.2: 5 \% 103$ and $10.37 \%$ sulphuc was rousted in on oren dish at 550 degrees $C$. The oalcine was olezned by refloatlng, yieldiag a product which assaved 55. St woz, $0.30 \%$ sulphur.

Pure scheelite contains $80.6 \%$ WOB. Stevenson refers to lenses of almost pure soheelite. The difficulty in making a high grade soheelite conoentrate, and the considerable losses in milling, suggest the advisability of selective mining followed by cobbing and sorting to recover a considerable part of the goheelite as sorted crude ore. The yield would not be high but as the produet is of high value, this procedure should be considered.

## Met Return Irom ore

The Following estiwates are for not return per ton of en of three classes of ore milled, from aoncentrates $f, 0, b$. rallroad present Inited States prices for sllver, lead and zine are used, duty is deduoted, and not return is given in canadian funds. For tin the prioe $\$ 0.45$ per pound, and for tungsten the price 324,00 canadian per unit is used. Silror-lead-zine

Taking as mean frade, Silver 5.5 oz. per tom, lead $5 \%$ zinc $1.2 \%$, tin $0.1 \%$, return from silver and lead in a lead concentrate would be $\$ 3.00$ to \&3. 00 per ton milied; zino, tin and tungsten might yiela an additional mull atiount, probably not more than $\$ 0.00$ per ton. T1a
w have no proven basis for atimsiling return iscom a ina conoentrate, in winoh in values are in stannite, anu whiol kasays say son tin, and elso oontains silvor, lead and zino. Neither have we any abata on wion to prediot accurately recoveries and graces of concentrates.

Taking grade of ore to be milled an silver $3 \%$. per ton, lead $0.4 \%$, zinc $1.5 \%$, tin $0.5 \%$, assuming reeovery as payable metal, silver 65\%, iead 65\%, tin $60 \%$, and grice for tin $\$ 0.45$ can. per pound, return from tin, lead and silver would be about $\$ 3.50$ per ton raflled. Zinc and tungaten might jield an additionil few oants per ton.

## Tunzston

Assuming srade of ore milled as $.25 \%$ to $0.3 \%$ WO $O_{3}$ and $90 \%$ resovery in ooncentrate assaying $60 \%$ $W_{3}$ at $\$ 24.00$ per unit, the tungatioxide of ore would yleld $\mathrm{z}_{\mathrm{E}}$ to $\$ 6$ per ton. silver and lead might yield a few cents per ton.

## Costa

Wiaths of ore range from less than 2 rest to more then 5 feet. Seleotive mining would be desirable. A good deal of handiling would be maired in movine ore Fron soattersd workings. killing would reoover values in three and perhaps four products, the tuagsten conoentrates would probably have to bo roasted. Traagportation to and from the rallwey, 7 to 0 miles, would be an iter of zoak iaportance. Unoertainty about those factors oombine to make it difioult to prediat costa, but the fectors mazo it gertain that coats would be hich. porating cost lieluind develortent would probaily be fron $\$ 4.00$ to $\$ 3.00$ per ton of ore allled, cosaining rate of roduction of 50 to 100 tone yer dey of mililne ore or all classes. Capital ohareter are difricult to prediot, However as the foclany is slready largely equipped, charges for extra equipment should not be great. The uncertainty of the ore position and the faot tiket total ore is apt to be less than $\mathbf{1 0 0 , 0 0 0}$ tone indicate the widom of keeping further oapital expense down even though that involven greater operating costs.

Some tungaten an probably be won at about the present prica. Silver-lead-zine and tin mineralization appears to be fuite dofinitely sub-marginal.

B. Sa gent, Mining Engineer.

## WOOLSEY GROUP

Property: Regal Silver Mines, Ltd., property, formerly Woolsey Group.

Location: On Silver Creek, a tributary of the Illicilewaet River which joins the river 2 miles west of Albert Canyon, and 17 miles east of Revelstoke. The property is $6 \frac{1}{2}$ or 7 miles from the junction of the two streams.

Access: The main line of the Canadian Pacific Railway follows the Illicilewaet eastward from Revelstoke to the divide above Glacier. The railway passes the mouth of Silver Creek on the south side of the river, at which point a siding has been installed for the use of the Regal, Snowflake and Alco, mining properties on Silver Creek. A bridge suitable for trucks crosses the river and a road over which trucks have been driven for 5 miles follows Silver Creek to the Regal Silver property.

Several snow slide areas are passed over in the upper three miles of the road. Otherwise the topography presents no difficulties in the matter of road building. On account of the snowfall the road would not be easily kept open in winter, but with a tractor for winter use and by confining haulage to certain hours of the day, year round haulage should be possible. The snow slide menaced sections of the road would present problems during the period of sliding snow, generally a matter of a month or six weeks in the early spring. Probably a route could be chosen over which an aerial tramway could be operated and the danger from slides lessened.

Topography: The elevation at the Railway is about 2, 150 feet and at the Regal Silver Camp 4,450 feet. The slide swept slopes about the camp rise two to three thousand feet higher - an area of rugged mountains. The veins of the property outcrop on the west side of the creek, and the natural slope of the mountain side affords reasonably convenient tunnel sites by means of which the veins may be opened over a vertical distance of l,l00 feet. By means of a long crosscut from the footwall side, still greater depths may be obtained.

Power: Diesel power is presently relied upon. Silver Creek has steep gradients and for a large part of the year carries much water, so is capable of development. The municipal slant of the city of Revelstoke is located on the Illicilewaet River, about 15 miles from the Silver Creek siding. A power line from it, twenty-five miles long would serve the Regal Silver property.

Timber: Cedar, spruce and fir trees are common in lower Silver Creek Valley and could be depended upon for part of the requirements.

Climate: The region is one of rather heavy rain and snow falls. Except for the limitations due to heavy snow, conditions are reasonably favorable, being comparable to the conditions at the interior camps as for temperature extremes and variations.

History: The Regal Silver or Woolsley property history is one of ups and downs, similar to that of the adjoining Snowflake Group. Early development work was done in an attempt. to make a silver-lead-zinc mine. The grade of the large quartz vein precluded this. With the discovery of stannite in the Snowflake mine about 1928, misleading publicity caused much interest to be taken in the Snowflake property and the Woolsley, altho little or no tin had been found in its ore, shared in the interest. Much work was done underground, camps were built and the road improved. The boom period ended without a silver $\theta$ lead-zinc-tin mine having been proven, but scheelite, an ore of tungsten had been detected in the Snowflake and the Regal veins and interest was kept alive and in 1938 a small underground mill was put on the Regal property. A few weeks operation showed it to be unfitted for the work and another shutdown resulted. Since that time the Regal Silver Interests have been attempting to secure capital for the further development of the Woolsley as a silver-lead-zinc-tin-tungsten mine.

Ownerglip: The ownership of the woolsley property is at this time, probably rather involved, but as the large interests are apparently cooperating the transfer of a large interest in the property can probably be made without undue trouble. At one time fifty-three claims were held, but the number is now seventeen, of which twelve are crown granted. The original group was held by David Woolsley, the staker, and now belongs to his widow. Some claims are recent stakings. At different times work has been done by the Morton-Woolsley Company, a stock company, funds having been provided by interests identified with the Revenue Mining Company, which is also closely related thru personnel to the Regal Silver Mines, Ltd.

Equipment, Camps, Etc.: The camps on the property are not suitable for permanent use, either as to location or condition. The main camp is in a strip of timber about 150 feet wide, the shrinking remnant of a wider strip upon which the snowslides are slowly encroaching. The nearest place for a camp, safe from slides, is perhaps 4,000 feet down stream from the present camp, and main portal. At the down stream site a new main level could be driven perhaps 400 feet lower than the present or No. 10 Level. To reach the most promising, and presently most developed vein No. 5, a crosscut some 3,500 feet long would be required.

There is considerable machinery on the property, placed there at various times, so possibly the property of various companies. 历n the power plant near the main portal and und er a fair roof, but subject to encroaching slides, are:

Petters vertical oil engine $36 / 42450$ RPM driving Holman vertical compressor.
Ruston-Hornby, horizontal oil engine (lcyl) driving 10 K 125 volt generator D.C.
Fairbanks-Morse vertical 3 cyl . oil engine driving 440 volt, 52.5 amp . A.C. generator.

Small gasoline engine driving startint compressor
Rix 56 Portable compressor ( 275 cu. ft.)

1 R 51 Stoper - good condition
1 R 82 Drifter " "
1 R 75 Drifter fair "
1 Sullivan sharpener
1 Tugger Hoist
1 Air Hoist at \#5 Level.
In the underground mill are the following pieces of machinery.

```
8" x 10" Jaw Crusher
12" Belt Feeder
4 x 4 Ball Mill (Union Iron Works, Spokane)
36" Wide Dorr Classifier
4 \text { Cell Mechanical flotation machine}
2 concentrator tables
Considerable air and water pipe, small tools, kitchen and
    dining room ware, mattresses, iron beds, stoves, etc., etc.
5-6 Drums fuel oil
35 boxes dynamite.
```

Geology - General: The quartz veins at the woolsley and Snowflake properties, are bedded veins in argillite of the Selkirk Series (Beltian) of Daly. As shown at the railway at Albert Canyon and along Silver Creek, the slates make a regular band a mile wide ( $2,000 \mathrm{ft}$. thick). At the railway as at the woolsley property they dip to the north east, and are overlain by Illecillewaet quartzite and underlain by thin beds of quartzite and limestone also selkirk. A great sill of biotite granite of the pre-Beltian, Shuswap serrane underlies the Selkirk rocks, unconformably.

The argillites are metamorphosed to some extent, but not to the point of making true schists. The beds vary in strike and dip locally, but in general, in the mine area, show little deformation other than the tilting. Except for the quartz veins there are no igneous rocks present in the mine, dykes so common in other western mining districts being quite lacking. Presumably at some undetermined depth, the sedimentary and earlier rocks will be cut off by granite, but there is no way of telling where that will be, and deep seated veins may be expected. Some 2,000 feet of depth of vein is now observable, from the low point on the Woolsley to high points on the same vein system, if not the same vein, on the Snowflake property.

In the Snowflake Mine, the quartz vein carries the sumphides, galena, blende, pyrite, stannite, (copper-tin sulphide) and scheelite. Silver in small amounts and traces of gold or slightly better are present. In parts of the Woolsley $\overline{m i n e}$ scheelite is present in small amounts, in other parts it is lacking and in a few places specimen ore is present. Stannite has probably been found but in very small amount. The other sulfides are present, in some cases making ore, but in general the percentages are low. Fluorite accompanies the scheelite.

Two veins have been extensively developed in the woolsley mine, and no less than 15 others have been reported as well enough determined to be given numbers, but there may be repetitions. At any rate six
veins have been noted in the long crosscut on the No. 10 Level, and Nos. 5 and 6 have been prospected on this Level and in raises from it.

Development:
Snowflake Level: The Woolsley vein system is developed by six different levels. At the top the easterly extension of Snowflake Vein workings, at 5550 elevation, crosses the common boundary of the Snowflake and Regal properties, and develops what is commonly regarded as the uppermost part of the No. 5 Woolsley (Regal.) vein. The correlation is not certain but may be correct. The workints were not visited, but samplings shown on Company maps indicate a narrow ( 1.6 to 5.5) "spotty" and average low-grade vein, in which silver lead and zinc are the worthwhile metals. Tin and copper are noted, but the percentages are so low that their values are questionable.

The easterly part of the Snowflake vein, which contains a short ore shoot on Snowflake ground is also prospected on the Regal property. Sampling here, again indicates a lowgrade narrow vein. As shown on the Company maps, the Guernsey sampling shows, $272^{\prime}$ of vein, l'-5" to 3'-5" widek which assays:

$$
\frac{\mathrm{Ag} \mathrm{Oz}}{3.0} \frac{\mathrm{~Pb} \%}{0.4} \frac{\mathrm{Zn} \%}{1.5} \frac{\mathrm{Sn} \%}{.5}
$$

A drift from Crosscut No. 2E, prospects a parallel vein which is 9 feet wide at the crosscut. The drift shows relatively good silver and lead zinc values for 80 feet. Tin and copper are also noted. The vein has not been prospected to the west of No. 2 E X-cut where it should be in the hanging wall of the Snowflake vein.

The workings at the Snowflake level, would seem to be west of the so-called "Fissure" fault which seems in some way to influence mineralization of the veins in the lower levels of the Woolsley Mine. With two or three exceptions the parts of the veins east of the fault are more regular and more uniformly mineralized than are the parts west of the fault. The Snowflake ore shoot is probably west of the fault, the existence of which in the workings at this level has not, perhaps, been established.

No. 3 Level - (old No. 1 Adit): No. 3 Level at 5,250 elevation, prospects a vein about 5' wide, which as shown on Company maps, is somewhat irregular and low grade. This vein is correlated as No. 5, and may so be, but until connections have been made, the correlation must be tentative. The workings on No. 5 Level (old No. 2) show a vein or veins that, because of position, seem unrelated to veins in the lower Levels, and veins showing above No. 5 cannot be definitely correlated with those below until connecting raises are put thru.

No. 5 Level (Old No. 2 Adit): When visited in 1922, the short No. 2
tunnel of the Woolsley property was the principal working on the claims. Since then much work has been done, without materially bettering the prospects. The vein has been
shown to have much greater lateral extent than then known but the average grade of the veins shown by the later development, is like that shown by the early prospecting, too low to warrant consideration.

Samples No. 26 to 30 inclusive were taken on this Level, and show low tungsten values. Company maps show low and somewhat erratic percentages of tin, but the samples taken at the recent examination failed to show tin. From a small stope, opened since 1929, a few tons of ore was taken and shipped; good ore, (see sample No. 26,) still shows in the east end of the stope, but the west end looks less promising due to an irregularity in the vein caused by a roll.

Raise "C" from this Level was not sampled. The Guernsey report, for 132 feet of raise, gives the average of all assays as:
$\frac{\text { Width }}{5 \text { feet }} \frac{\mathrm{Ag} \mathrm{Oz}}{5.0} \frac{\text { Lead \% }}{4.2} \frac{\text { Zinc \% }}{1.0} \frac{\text { Tin } \%}{0.14}$

The same report gives: "From a point 25' above the Level to a point 88' above, the values are somewhat better, averaging:

$$
\frac{\text { Silver Oz. }}{7.5} \quad \frac{\text { Lead \% }}{6.9} \quad \frac{\text { Zinc \% }}{1.1} \quad \frac{\text { Tin \% }}{0.2}
$$

The raise has been drifen 98 feet further up the vein since the Guernsey report was made, and the Company map says the values are the same. The Company map also reports scheelite in the raise. The Guernsey report sums up the sampling on this (No. 5) Level thus: "An analysis of the sampling shows that for a distance of 350 feet, the average of all samples is: Silver 5.0 Oz . Lead 5\%; Zinc $1.2 \%$; Tin $0.1 \%$; No. 1, No. 2 and No. 3 Crosscuts North show the vein to have an average width of 16 feet and channel samples cut across these average - "
$\frac{\text { Silver }}{5.0 \mathrm{OZ}} \frac{\text { Lead }}{4.2 \%} \frac{\text { Zine }}{1.5 \%} \frac{\text { Tin }}{\text { trace }}$

Channel samples cut under my direction at the time of the recent examination assayed

| X-Cut | Sample No. | Width | Ag Oz. | Pb\% | Zn\% | Tin \% | W \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. 1 | 30 | 1910" | 1.9 | 2.75 | 1.61 | Nil | . 05 |
| No. 2 | 29 | 11.7 | 2.80 | 4.54 | 1.56 | " | . 04 |
| No. 3 | 27 | 10'F.W. | 1.80 | 2.35 | 2.52 | \# | . 13 |
| No. 3 | 28 | 5.5 H.W. | 1.90 | 3.16 | 7.21 | " | . 08 |



No. 8 Level: No. 8 Level at 4,668' elevation is the next level below No. 5.Levels 6 and 7 are proposed, but no work has been done upon them.

No. 8 Level" was opened from "A" raise which starts at No. 10 (4,455 elevation) and follows No. 5 vein to 8 Level.

As the best assays for tungsten have been had from samples taken on this Level, the vein was sampled more or less systematically. The "fissure" fault cuts across the vein at the top of "Z" raise so that part of the Level east of the raise is east of the fault, in what has been commonly regarded as the best mineralized parts of No.s 5 \& 6 veins.

At the top of A Raise on the west side, the vein $3 \frac{1}{2}$ feet wide is largely quartz which continues to about 30' from the raise. There it pinches, but another lens like vein comes in near the floor of the drift and continues to the face of the Level where the vein is six feet wide. It contains some galena and blende, and a moil sample, \#13, showed much more tungsten than expected - $2.09 \%$.

East of the raise the drift follows the fault zone for about 50 feet at which point the drift turns to the right and for 240 feet is in the vein. The vein at this Level and east of the fault carries much iron pyrite, small percentages of galena and blende, and erratic tungsten values, - see samples 14 to 25 inclusive. The average width samples was 5.5 feet. At the easterly end the vein was left in northerly wall, as the drift was turned, for no apparent reason, to the south east. Two narrow en echelon veins of quartz show in the footwall of the main vein, but these also lead into the northerly wall of the southeasterly trending drift.

A branch drift to the southwest is said to show what may be the No. 6 vein, but ore has been stored in the dead end and the vein cannot be clearly seen.

At two places in this 8 East drift, specimen scheelite shows, in the floor at 190 feet and in the shallow underhand stope at 230 feet. At other places it may sometimes show in small amounts, but the average amounts seem to be small. It accompanies heavy yedlow iron-pyrite which, with fluorite, is a good indication of the tungsten mineral.

## ⑦ー

"A" Raise: "The 50 ton mill installed, in 1938, is in an enlarged part of "A" raise between No. 8 and 9 Levels. In cutting out for the machinery scheelite was found in the footwall side of the No. 5 vein. Sample No. 12 was taken across $18^{\prime \prime}$ behind the flotation machine. Scheelite is visible here as indicated by the sample which ran $2.22 \%$ tungsten. No. 5 vein shows in "A" raise from No. 8 Level to No. 10 a slope distance of 388 feet but from No. 10 Level to above No. 9 the vein is low grade. The Guernsey sampling of the raise from No. 10 to above No. 9 showed:
$\frac{\text { Silver } 0 z_{0}}{1.5} \frac{\text { Lead \% }}{1.0} \frac{\text { Zinc \% }}{\text { Trace }} \frac{\text { Tin } \%}{\text { Trace }}$

No. 8 sample was taken on the east side of the raise, 40 feet above No. 10 Level at which point 5.7 feet of the vein is exposed in the raise. The sample assayed:
$\frac{\text { Silver Oz. }}{3.06} \frac{\text { Gold Oz. }}{0.04} \frac{\text { Lead \% }}{2.09} \frac{\text { Zinc } \%}{.81} \frac{\text { Tin } \%}{\mathrm{Nil}} \frac{\text { Tungsten } \%}{.13}$

No. 9 Level: No. 9 Level at elevation 4,578 feet was opened from "A" Raise to the surface on the east and to the west is open for about 300 feet. The Level is in the vein at the Raise, but going westerly the vein exposed in the drift consists, essentially, of a persistent clay seam on slickensided footwall, and a heavy pyrite, graphitic slate band from 1 " to 24 " wide.

At one point there is three feet of quartz, ribboned with slate and carrying some pyrite. The west end of the Level is caved. At sample, No. 1l, of the pyrite, consisting of cuts across the iron stringer over a distance of about $150^{\prime}$ and an average width of about 12 inches, assayed:
$\frac{\text { Silver Oz. }}{1.40} \frac{\text { Gold Oz. }}{\operatorname{Tr} .} \frac{\text { Lead \% }}{.51} \frac{\text { Zinc \% }}{.60} \frac{\text { Tin \% }}{\text { Nil }} \frac{\text { Tungsten \% }}{0.76}$
"Premier" sampling for 175 feet, from the Raise westerly shows an average width of 23 " and $0.59 \% \mathrm{WO}_{3}$. The Level easterly from the "A" raise, shows a vein 5 feet wide, with iron and a little galena. This continues for about 40' (to the lst X-cut left). Then for about 40 feet the vein, 3 $\frac{1}{2}$ feet wide, carries two distinct iron bands, one on the footwall about $12^{\prime \prime}$ thick and one on the hanging wall about 10-12" - at about 60 feet from the $X$-cut the vein tapers to nil.

The "Fissure" fault is not as distinct at this Level as below and above. By projection it should be about where the vein tapers. The fault may coincide with the vein on this Level. The continuation of the vein east of the disturbance should have been intersected in the and X-cut left (north), but there is no sign of it. Samples taken near the lst $X$-cut north, where the heavy pyrite bands make up a large part of the vein assayed:


The poor vein exposed in No. 9 Level, between the No. 8 with its higher than average mineralization, and No. 10 with its strong quartz veins, is not easily accounted for, but more work should show the extent of the apparent weak area.

No. 10 Level: No. 10 Level at 4,455 elevation is the main level in the mine. At its portal the power house and camp buildings are crowded in the narrow strip of, as yet, slide free timber. Th Level is a drift in the slates for a distance of about 200' from the portal. It then X-cuts the slates for 1,250 feet, in which distance five quartz veins are exposed. Two No. 5 and No. 6, showed enough mineralization by galena and blende €o warrant development. $^{\circ}$

No. 5 vein on which drifts are opened east and west is a large quartz vein where $X$-cut by the main adit. In the drift westerly it is exposed for about 200 feet and crosscuts show it to be up to $9^{\prime \prime}$ wide. The Guernsey Report says the vein to the west for 150 feet averages:
$\frac{\text { Silver Oz. }}{7.6} \frac{\text { Lead } \%}{6.6} \quad \frac{\text { Zinc } \%}{2.6} \quad \frac{\operatorname{Tin} \%}{\text { Trace }}$
for the six feet of width sampaed. A moil sample cut across 6.2 feet in the lst crosscut north 5 west, 10 Level assayed:
$\frac{\text { Silver Oz }}{37.98} \quad \frac{\text { Gold Oz. }}{0.02} \frac{\text { Lead \% }}{3.97} \frac{\text { Tin } \%}{\text { Nil }} \frac{\text { Tungsten }}{0.14} \frac{\text { Zinc } \%}{.55}$

The silver value is "out of line."
Going westerly the vein decreases in width and consists of quartz with slate ribbons and little sulphide at the 3 rd $X$-cut north in the 5 west drift. Between the X-cut and the forks in the drift more pyrite shows in the vein. At the forks the pyrite vein, 12-18" wide, goes into the west wall of the north fork. A sample of the heavy pyrite taken from 3 cuts across the l2-18" vein assayed - Sample No. 4:
$\frac{\text { Silver Oz. }}{0.08} \quad \frac{\text { Lead \% }}{1.07} \quad \frac{\text { Zinc \% }}{.55} \quad \frac{\text { Tin \% }}{\text { Nil }} \quad \frac{\text { Tungsten \% }}{4.78}$

No. 5 East loth Level: The quartz vein shows in the drift to the east to a point about 90 feet from the Main X-cut. At the $X$-cuts north and south it has a thickness of 10-12'. A sample in the south X -cut across $7^{\prime}$ assayed:
$\frac{\text { Silver OZ. }}{0.04} \frac{\text { Lead \% }}{.46} \frac{\text { Zinc \% }}{.71} \quad \frac{\text { Tin \% }}{\text { Nil }} \quad \frac{\text { Tungsten } \%}{\mathrm{Nil}}$

At the forks in the drift, the "Fissure" fault is encountered. The drift turns on the quartz filled "fissure" (or roll) which fills the drift for about 50 feet. At that point, (the end of the drift), in the right side of the face, a somewhat irregular vein 2 z feet wide shows. It contains little sulphide and assayed - No. 1
$\frac{\text { Silver Oz }}{\text { Nil }} \quad \frac{\text { Lead \% }}{1.53} \quad \frac{\text { Zinc \% }}{.73} \frac{\text { Tin \% }}{\mathrm{Nil}} \quad \frac{\text { Tungsten \% }}{.34}$

In the lower left corner of the face similar looking quartz shows. A sample of this assayed - No. lA
$\frac{\text { Silver Oz. }}{1.00} \frac{\text { Lead \% }}{1.84} \quad \frac{\text { Zinc \% }}{.73} \quad \frac{\text { Tin \% }}{\text { Nil }} \quad \frac{\text { Tungsten \% }}{.32}$

The 50 feet, is supposed to be the distance the No. 5 vein is thrown by the "Fissure" fault. Certainly the strong quartz vein either is cut off, or changes direction at the turn in the drift. But work needs to be done to show the true relationship of the northwest-southeast veins and the east-west "Fissure" fault vein.

The fault vein is cut thru by the main crosscut, between No. 5 and No. 6 veins. The strike is roughly east and west and the dip here is nearly vertical, tho the average dip is probably $60^{\circ}$ to the north. The fault zone is about 8 feet wide and well defined by shattered and disturbed slate and gouge seams. Thru the slate is a network of quartz seams, and minor amounts of sulphide. A sample across the vein on the northwest wall, No. 31, assayed:
$\frac{\text { Silver Oz. }}{\operatorname{Tr}} \frac{\text { Gold Oz. }}{.02} \quad \frac{\text { Lead \% }}{.92} \quad \frac{\text { Zinc \% }}{.61} \quad \frac{\text { Tin \% }}{\mathrm{Nil}} \quad \frac{\text { Tungsten \% }}{.03}$

The "Fissure" fault shows again in No. 6 West 10 Level drift. The fault here shows considerable calcite and very little sulphide. No. 6 vein, a well defined and strong quartz vein in the workings to the east of the point where intersected in the 6 west drift, practically loses its identity west of the intersection, indicating that the fault is a structural feature of some consequence, but there is some reason for questioning the idea that it is a true fault. Instead it may be a true vein which crosscuts the bedding of the slates and the more quartzose veins are bedded branches of it. The fault has not been definitely identified at No. 5 Level, but the several breaks inside of C Raise, No. 5 Level, may represent it. Certainly they disrupt the striking regularity of the large quartz vein which shows to the east of the broken zone.

No. 6 vein 10 Level: No. 6 Vein shows as a strong quartz vein in the crosscuts from the east drift. It is sparingly mineralized with sulphides and sampling No. 5, 6, \&c 7, shows low to nil values in lead, zinc and tungsten, and tin. The Guernsey report gives the average width of the vein in No. 6 East, as 8 feet, and the average value for 500 feet of length as:
$\frac{\text { Silver } 0 Z_{0}}{3.0} \frac{\text { Lead } \%}{1.5} \quad \frac{\text { Zinc } \%}{0.9} \quad \frac{\operatorname{Tin} \%}{0.5}$

The most easterly 120 feet averaged rather higher, viz:
$\frac{\text { Silver } 0 \mathrm{z}}{5.2} \quad \frac{\text { Lead \% }}{4.1} \frac{\text { Zinc } \%}{1.2} \frac{\operatorname{Tin} \%}{0.4}$

Riase "B" prospects the vein for 200 feet up the vein. The Guernsey report shows average low grade materigl in the raise over a width of 4.5 feet, viz:

$$
\frac{\text { Silver Oz. }}{2.4}
$$

$$
\frac{\text { Lead \% }}{2.7} \quad \frac{\text { Zinc \% }}{1.5} \quad \frac{\text { Tin \% }}{0.5}
$$

The data are not in complete agreement as to the metallic mineral content of No. 6 vein, but the indications are that it is too low grade to warrant more than passing attention.

General: The Woolsley (Regal) property was originally prospected as a possible silver-lead-zinc producer. Extensive sampling has shown that under ordinary operating and average marketing conditions, profitable operation as a silver-lead zinc mine is impossible.

With the discovery of stannite (tin-copper pyrites) and scheelite in the adjoining Snowflake Mine in 1928 interest in the Woolsley was revived. Scheelite had not been generally recognized at the Woolsley in 1929, tho as now known, it was then exposed in the end of No. $5 \mathrm{E}, 10$ Level, (Samples $1 \& 1$ A) and possibly in No. 6 Vein on 10 Level. No. 2 Level samples now shown small percentages (Samples 29 and 30) where its presence was not then suspected. Assaying of samples taken in 1929 and at this time, has failed to show tin, even in small amounts, in the Woolsley veins. "Company" assaying, as well as that done for the Guernsey report (By Eldridge) show widespread tho low tin values in the woolsley veins. The ore minerals which must be recovered from the Woolsley veins have the following compositions and specific gravities.

| Galena | Pb 86.6\% | S $13.4 \%$ | Sp. Gr. | 7.4 to 7.6 |
| :---: | :---: | :---: | :---: | :---: |
| Blende | Zn 67\% | S 33\% | " " | 3.9 to 4.1 |
| Scheelite | $\mathrm{WHO}_{3} 80.6 \%$ | CaO 19.4\% | " " | 5.4 to 6.1 |
| Stannite | (Cu.sn.Fe.) | $S$ Uncertain | " | 4.5 to 4.52. |
| if present |  |  |  |  |

Gangue Minerals:
$\begin{array}{lllllllll}\text { Quartz } & \text { Si } 46.7 \% & 0 & 53.3 \% & \text { Sp. } & \text { Gr. } & 2.6 & \text { to } & 2.66 \\ \text { Pyrite } & \mathrm{Fe} & 46.7 \% & \mathrm{~S} & 53.3 \% & \mathrm{~m} & \mathrm{H} & 4.9 & \text { to } \\ & 5.2\end{array}$
Argillite, graphitic and with
ferruginous carbonate " " 2.4 approx.
In the mill installed in "A" Raise in early 1938, an attempt was made to take of $f$ a sulphide concentrate, after fine ball mill grinding. The tailing from the flotation machine was then tabled to separate the heavy scheelite from the non-sulphide gangue minerals. Due to the grinding in the vall mill the scheelite was "slimed" and the "saving" on the tables was unsatisfactory. The operation ended without a correction in the flow sheet having been made.

In September 1908 a 700 lb . sample of relatively high grade ore (2.42\% WO ${ }_{3}$ ) was sent to Ottawa for testing. The report - Ore Dressing
and Metallurgycal Investigation No. 756 - indicates that the better procedure is to make a coarse primary grind, this to be followed by tabling in which a lead concentrate would be secured. The scheelite and light - or sulfides would be reground in a ball mill, the product to go to flotation cells, and a bulk concentrate made. The scheelite would go into the lst run flotation tails from which it would be recovered by another flotation operation. The tests indicate that considerable sulphur in the shape of metallic sulphides follows the scheelite so roasting is resorted to, to make a low sulphur concentrate. By refloating the grade of the tungsten, concentrate was brought up to $55.90 \% \mathrm{WO}_{3}$ and the sulphur content was $0.32 \%$.

The Ottawa tests indicated overall recoveries from the relatively high grade ore of:

| Tungsten | $81.6 \%$ |
| :--- | :--- |
| Lead | $88.5 \%$ |
| Silver | $80.4 \%$ |

Tin is not mentioned in the report.
Value of Tungsten: Tungsten is classed as a minor metal. The uses are now many, but the quantity used is small compared to so many other metals. The quantity imported into the U.S.A. varies greatly, indicating varying consumption, and, of course, a varying price results. Ordinarily China is the principal producer of tungsten, but under the protection of a tariff, the U.S.A. now supplies a fair part of its requirements, and reference to the news notes of mining magazines shows numerous prospects are in course of development.

The quetations ordinarily given, pertain to tungstic trioxide (WOZ) of $60 \%$ or better purity, and the price is for a unit of that grade, that is for 20 pounds. Current quotations are, f.o.b. New York (E. \& M.J. Nov. 1939)

Chinese, $65 \%$ duty paid per unit $\$ 23.75$
Domestic " and upward " "\$25.00
Canadian production is subject to Government regulations as for export and ultimate destination, so there is really no free market, though small lots can probably be disposed of. Shipments into the United States are subject to the import tariff of approximately $\$ 8.00$ per short ton unit, so Canadian producers would receive only $\$ 17.00$ per unit or roughly 85 cents per pound for concentrate assaying 65\% $\mathrm{WO}_{3}$.

The prices of lead and zinc are also indefinite and finally subject to Government control. "Trail," the nearest point for disposal of such products has contracted with the British Government to sell approximately $75 \%$ of its own output of zinc at 3.5 cents per pound and $60 \%$ of the lead output at 3 cents per pound. The price for zinc is much below the U.S. price, but the American market is not readily available to small Canadian producers.

As has been patent for years, the Woolsley property has at no time been, nor is it now, a potential silver-leadzinc mine. The occurrences of tungsten and possibly tin, alterthe problem somewhat, but not much, as the best tungsten values are found in these parts of the No. 5 vein where the silver, lead and zinc values are low, so the base metals and the silver increase the gross value of the ore, but little. The lead and silver would be worth saving, but the zinc would not be, under average conditions.

The best showing of tungsten is in No. 8 East, where for 237 feet the vein averages 5.5 feet wide and assays

$$
\frac{\text { Silver Oz. }}{0.5} \frac{\text { Lead \% }}{1.5 \%} \frac{\text { Zinc \% }}{0.7 \%} \frac{\text { Tin \% }}{\text { Nil }} \frac{\text { Tungsten \% }}{0.34}
$$

(The"Premier" isampling shows. $37 \%, W O_{3}$, tungsten trioxide (. $30 \%$ tungsten) over 4.5 feet averaging width, for a length of 250 feet). This oreshoot has not been found at No. 9 Level, nor has it been followed upward so no large tonnage can be definitely ascribed to it, though
$\left(\begin{array}{ccc}\text { thickness } \\ 5.5\end{array} \times \begin{array}{c}\text { length } \\ 240\end{array} \mathrm{x} \quad \begin{array}{c}\text { height } \\ 10\end{array}\right) 66,000$ tons are indicated. Should the vein be found to extend easterly of the "fault" in S.E. 10 Level, and be found on No. 9 Level, a much larger tonnage would be indicated, but as yet those possibilities remain to be determined.

The gross value of this ore, assuming $80 \%$ recovery of the silver, tungsten and lead, would be -

1.26 is the factor for converting tungsten to tungsten trioxide.

Since the cost of equipment (Est. $50 \not \subset$ to $\$ 1.00$ per ton), development (Est. \$l.00 per ton) mining (Est. \$2.50 to $\$ 3.00$ per ton) Milling (Est. $1.50-2.50$ per ton)., selling etc., (Est. $\$ 1.00$ per ton) must be borne by this gross recoverable value, it is apparent the prospect has little chance of becoming a profitable producer.

The ore in No. 9 West is higher grade than that in No. 8 East, but is very, irregular as to thickness and grade. This ore because of the narrow width and erratic grade would be expensive to mine. The ore showing in 5 West, 10 Level, at the angle in the drift may represent the downward extension of the 9 West ore. If so there is a possible ore shoot here 225 feet long, 24 inches wide and (should it go to 10 Level, 200 feet deep). The possible tonnage is $\frac{225 \times 2 \times 200}{10}=9,000$ tons.

The Premier sampling of 9 west (2l samples) shows an average thickness of 24 (as used above) and grade of $0.60 \%$ of tungstic trioxide.

The one sample taken during this examination, across an average
width of 12 " only, showed:


The gross value of such ore would be, reducing the silver values and lead somewhat on account of the greater width taken, and using the 0.6 WO3 for the tungsten.


On account of the width the mining cost would be greater than for the other ore shoot and the margin would still be too small to warrant the required expenditure.

Conclusions: At other places, such as 5 West, No. 8, 5 West No. 10 and the mill cut out in A Raise, good grade tungsten samples can be obtained, but the average grade and indicated tonnage are not such as to warrant participation in this project by outside interests, at the present price of metals, and on the terms named.

REPORT BY:

THE GRANBY CONSOLIDATED MINING, SMELTING \& POWER CO., Ltd.
CERTIFICATE OF ASSAY
Allenby, B.C. November 10, 1939
Assay of Samples from -- N.E.Nelson


## SUPPLEMENTAL

In order to be more certain that the tungsten values determined in the Allenby assay laboratory were nearly correct, two composite samples were made up and sent to Ledoux and Company for assay. The arithmetical averages of the samples, according to "Allenby" were -

$$
\frac{\text { No. } 1}{0.19 \mathrm{~W}} \quad \frac{\text { NO. } 2}{0.11 \mathrm{~W}}
$$

The Ledoux certificate shows -
After drying
No. 1
No. 2
Tungsten
Oxide (WO3) None None
Tin
$0.08 \%$
$0.12 \%$
The Allenby analysew had shown no tin.
Since these results came in the Allenby office has done more work on the composite samples and now reports

No. $1 \quad$ No. 2
Tungstic
Oxide . 24
.17
Tin
.06
.07
These results are in reasonable agreement with the arithmetical average obtained for the first Allenby determinations, but not in accord with the Ledoux assays.

A cut of the No. l composite was sent to E. Vaughn at ReliefArlington. Mr. Vaughn, who at one time worked at Allenby, worked at the Regal Prospect and had done much work on the Regal ores, in fact, is credited with first noting the general distribution of the scheelite.

Vaughn reported:
Regal No. 1 Comp.
$\frac{\mathrm{WO}_{3}}{.456 \%} \quad \frac{\mathrm{Tin}}{\mathrm{Tr}}$

Such results make for lack of confidence in all the assaying, but at best, the values in the various metals are too low to warrant outside capital joining in the enterprise on the terms outlined by Mr. McCulloch.
N.E.Nelson

NEN:m
4

# $82 N / 4 W$ <br>  <br> 82N-4 <br> $30 / 20$ 

REGAL SILVER MINE, 19 MINERAL CLAIMS

British Columbia, Revelstoke Mining Division, nine miles from Albert Canyon Station, on the Canadian Pacific Railway, and eight miles from Silver Creek Siding, from which point a good trail, wide enough to permit the use of carts or sleighs, leading to the lower camp.

The property extends from the West slope of the East Fork of Silver Creek, across the intervening valley to the North Fork of the Illecillaweet River. Map No. 1.

## Deposits:

The area of the property upon which the greater portion of the work has been done is underlain by black carbonaceous slates with miner beds of black quartzite. These rocks are classed as belonging to the Selkirk series of the PreCambrian Era, and the lode deposits are believed to have been formed by solutions which came up from the Magma of the granitic intrusions, possibly the granite which is exposed on the trail between the Railway and the property.

The lode deposits are represented by a series of quartz veins, the outcrop of which appear on the West slope of the East Fork of Silver Creek.

Surface prospecting has shown that several of the veins carry amounts of silver, lead and zinc sulphides, in the form of galena and sphalerite, and underground work on the adjoining property - the Snowflake - led to the discovery of tin, in the form of stannite.

- Refer to Map No. 1 -

The underground work undertaken has been for the purpose of furthering prospecting and exploring the lodes and consists of a main crosscut - No. 3 - with drifts on the 5 and 6 veins. A raise on the No. 5 vein to the Intermediate level and a raise on No. 6 vein. Drifting on No. 5 vein.

## Description:

On the "May" claim on the west slope of the Creek at an elevation of 4,455 feet above Sea level, a crosscut tunnel - No. 3 was started to cut the downward extension of the known outcrops.

## - Refer to Map No. 2-

At two hundred and seventy-two feet from the portal, a vein designated as No. 2 vein - was encountered, and as it did not show any values no work was done on it.

At eight hundred and sixty feet from the portal a number of stringers of quartz were cut not showing any values and this group of stringers has been called the No. 3 vein.

At nine hundred and sixty feet No. 4 vein was cut, samples from here only gave low values.

At a point nine hundred and forty feet from the portal, No. 5 vein was reached. A section along the crosscut shows five feet of quartz called the upper No. 5 vein, then a slate parting of three feet, and then seven feet of quartz called the lower No. 5 vein.

A drift was started to the West - No. 5 West - and continued on the footwall side for a distance of one hundred feet, where a crosscut raise was driven to the North, showing a total width of vein of twelve feet, at this point a Raise - "Raise "A" - was started up the dip.

The drift was continued on in the footwall and at a point one hundred and fifty feet from the main crosscut a raise to the North exposes a width of five feet of vein.

At the two hundred foot point another crosscut was driven North showing a thickness of vein of one foot. Funchern
 on bunches of pyrite are shown on the left side of the drift but very little galena mineralization is apparent.

The drift was continued on for fifty feet, and the face only shows a four inch streak of quartz. A crosscut was driven North with the hope of cutting No. 4 vein and a diamond drill hole run further North but cutting nothing of importance was exposed.

From the main crosscut, a drift was turned East - No. 5 East - and driven on the vein, the walls not being shown, at the fifteen foot point a short crosscut was driven, but the footwall of the vein was not reached. Here the vein shows pyrite dissiminated throughout the quartz and sparse galena.

The sampling shows that for a distance of one hundred and fifty feet West of the main crosscut, this vein has an average width of six feet and an average content of silver 7.6 ozs ., lead $6.6 \%$, zinc $2.6 \%$ and tin a trace. Beyond this point, the vein narrows and splits, the assay values being low, until the face only a four inch streak is shown, with no values.

East of the crosscut for ninety feet, the average width is seven and one half feet, and the content, silver 5.2 oz. , lead. $5.3 \%$, zinc $0.5 \%$, tin $0.2 \%$. Where the fissure fault is reached, the quartz narrows the values are low, and at the face the width of vein is only two feet.

Raise "A", driven up the dip for a distance of two hundred and eight feet, shows width of vein varying from six feet to one foot. At this point one hundred and eight feet up a station was cut and the intermediate level started.

Sampling of the raise shows a low metal content. The average being silver 1.5 oz ., lead $1 \%$, zinc a trace, tin trace. The highest result was silver $5.20 z .$, lead $1.5 \%$, zinc $0.45 \%$, tin $0.43 \%$ 。

The raise has been driven on the footwall of the lower No. 5 vein and this may account for the low results of the sampling.

No. 6 vein is cut by the main crosscut about eleven hundred and forty feet from the portal, and two hundred feet beyond No. 5 vein. A section along the crosscut shows eight feet of vein lamenated quartz-slate. Drifts were turned East and West running on the foot side of the vein.

To the west at forty feet, the drift - No. 6 West cuts the fault shown in No. 5 East. Here also quartz fills the fault fissure. The drift was continued on for seventy-five feet in the slates, then turned to the left to crosscut the extension of the vein thrown by the fault fissure. The throw here is about seventy-five feet. The drift at first shows only a small seam of quartz which later widens, but does not contain values. At a point two hundred and fifty feet from the crosscut, bad ground is encountered with no values showing. The drift continues for one hundred and sixty feet further in broken ground, and the face only shows seams of barren quartz.

East of the main cosscut, the drift is driven on the footwall side of the vein. At a point thirty feet from the crosscut a raise - Raise "B" - was started. At seventy feet a crosscut - No. 1 North - shows ten feet of vein. The drift continues on, and at one hundred and fifteen feet crosscut No. 2 North, shows five feet of vein. At a point two hundred feet from the main cosscut, crosscut No. 3 North shows eight feet of vein rather banded with heavy pyrites on the hanging. At three hundred feet, Crosscut No. 4 North exposes ten feet of vein, and at four hundred feet crosscut No. 5 North shows ten feet of vein rather good looking. One hundred feet further on crosscut No. 6 North shows eight feet of vein. The wein apparently narrows here and where exposed in the face five hundred and sixty feet from the main crosscut three and one half feet of quartz with a slate parting is shown.

An analysis of the sampling of No. 6 vein shows the following: Eight feet of vein where the drift - No. 6 West turns off gives low values. The drift is in the footwall up to the fault fissure, and the vein cannot be sampled. Beyond the fault fissure, the vein is represented by small seams with the exception of at one point where a small crosscut shows a lense of quartz with only low values.

East of the crosscut - drift No. 6 East - the average width as show by crosscutting is eight feet. The values are, however, low, the average being about: Silver 3.0 oz., lead 1.5\%, zinc $0.9 \%$, tin $0.5 \%$. At one point about four hundred and eighty feet from the crosscut, two samples gave: Tin $2.9 \%$, but generally speaking, the tin alues are low. From a point four hundred and forty feet from the crosscut to the end of the drift, one hundred and twenty feet, the metallic contents are somewhat better, the average being: Silver 5.2oz., lead 4.1\%, zinc $1.2 \%$, tin $0.4 \%$.

Raise "B" was driven up the dip from No. 6 East for a distance of two hundred feet. The width of vein shown averages four and one half feet, and the face carries pyrite and galena in fair amount. The average of all assays gives: Silver 2.4oz., lead $2.7 \%$, zinc $1.5 \%$, tin $0.5 \%$ for a width of 4.5 feet.

At a point one hundred and fifteen feet above the level a value of silver 8.4 oz ., lead $3.2 \%$, zinc is shown and at one hundred and ninety feet above the level a value of silver, $7.7 \mathrm{oz} .$, lead $11.1 \%$ is given. The general average is, however, low.

On the intermediate level one hundred and seven feet above No. 5 level, the drift to the West of the Raise "A" has not disclosed any commercial ore. The vein is not particularly well defined, being a series of short lenses and narrow seams of quartz. At the face of the West drift five hundred and forty feet from the Raise, there is a ten inch seam of quartz.

On the intermediate level, the ground is more or less disturked, in this area to the West and there is no inducement to do any further work here.

East of the Raise, the drift shows the vein to have a width of from one to three feet, with low values. At a distance of about eighty feet from the kaise, the vein pinches and disappears into the hanging. On the assumption that the drift was on the lower vein, a crosscut was driven North without disclosing anything. At about eighty-five feet, the drift turns slightly to the North and at a point two-hundred and sixty feet from the raise another crosscut was driven North without any results. The drift continued and at about the three hundred and eighty foot point, a small seam was encountered. This is rather well mineralized, but only has a maximum width of ten inches. The drift continues until the face is reached about five hundred and forty feet from the Raise.

The vein on this level does not show the widths one would expect from what is shown below, and it is a question whether the work has been done on the main vein. Crosscuts have failed to find it to the North, and it may be that this horizon is in a narrow portion of the vein. However, from an examination of the drift, and the map, it looks as if the work had been done in the hanging, and there is a possibility that a crosscut South about the one hundred and fifty foot point, would locate the lost vein. This work, however, is not recommended at the present.

At an elevation of 4,958 feet above Sea-level, on the "Helena" claim, No. 2 tunnel was started in the footwall of a prominent outcrop of quartz, presumably of No. 5 vein.

At a distance of seventy-five feet a crosscut - No. 1 North - was driven showing a width of vein of fifteen feet. At one hundred and fifteen feet, crosscut No. 2 North was driven, exposing fifteen feet of vein. At this point a crosscut - No. 1 South - was driven forty feet, cutting a parallel vein one and one half to four feet in width.

The main drift continues on, and at one hundred and seventy-five feet crosscut No. 3 North was driven, exposing 18 feet of vein. At about the two hundred and fifty foot point, the drift cuts the vein, and at two hundred and seventy-five feet, a small stope was started. In this stope is exposed on the hanging wall of the vein, about two feet of silver $40 \mathrm{oz} .$, lead $40 \%$, zinc $4.5 \%$, tin $1.3 \%$. The balance of the vein, thirteen feet, being quartz and scattered pyrite, and a little galena.

At three hundred and thirty feet from the portal, a Raise -Raise "C" - was started, and at the three hundred and fifty foot point a premineral fault is cut, which evidently has had an influence on the fissure, as beyond this a considerable roll is noticeable, and the vein narrows to a mere seam.

The exploration on this level has been continued on for seven hundred and forty feet, and three crosscuts made. What quartz is exposed is in the form of narrow seams and short leases and the sampling shows only low values. The country has been much disturbed with evidence of minor faulting, and the opinion is that the numerous small fissures tend to diffuse what mineralization there may have been over too great a territory, so that the chances are poor of finding a concentration of values which might be called economic.

An analysis of the sampling shows that for a distance of three hundred and fifty feet, the average of all samples are: Silver $5.0 \mathrm{oz} .$, Lead $5.0 \%$, Zinc $1.2 \%$, Tin 0.1\%.

No. 1, No. 2 and No. 3, crosscuts North, show the vein to have an average width of sixteen feet and channel samples cut across these average: Silver 5.00z., Lead 4.2\%, zinc $1.5 \%$, Tin a trace.

From a point two hundred and thirty feet from the portal to where the vein is deflected by the fault fissure a distance of one hundred and wenty feet, the average width of sample is five and three quarters feet, with silver $5.7 \mathrm{oz} .$, Lead $5.8 \%$, zinc $1.4 \%$, $\operatorname{Tin} 0.1 \%$.

The average of the fifteen feet of the vein at the stope is about: Silver $8.0 \mathrm{oz} .$, Lead $7.0 \%$, Zinc $1.6 \%$, Tin $0.3 \%$.

Wherever the vein has been crosscut, the upper portion appears to carry more mineral than the lower portion, although the samples taken on the upper six feet do not show any material increase in values.

The parallel vein cut by crosscut No. 1 South was drifted on for a distance of one hundred and fifty feet, exposing a width of from one and one half feet to four feet. At several points a quantity of pyrite is shown with scattered galena, and a sample of three feet at the face assayed: Silver $5.7 \mathrm{oz} .$, Lead $8.4 \%$, Zinc 3.1\%, Tin a trace.

The Raise "C", now up one hundred and thirty two feet, is driven on the foot side of the vein. It has quartz in the back all the way, and shows the lower portion of the vein to be sparsely mineralized with pyrite and galena.

The average of all the assays here shows: Silver 5.00z., Lead 4.2\%, Zinc $1.0 \%$, Tin $0.14 \%$.

From a point twenty-five feet above the level to a point eighty-eight feet, the values are somewhat better, averaging: Silver $7.5 \mathrm{oz.} ,\mathrm{Lead} \mathrm{6.9} \mathrm{\%} ,\mathrm{Zinc} \mathrm{1.1} \mathrm{\%} ,\mathrm{Tin} \mathrm{0.2} \mathrm{\%}$.

Above the portal of No. 2 Tunnel, an open cut has been made, exposing the hanging of the vein. Here a twelve inch streak heavily mineralized with galena is shown. A shipment of sorted ore was made from this open cut.

On the "Alice" claim, at an elevation of 5,248 feet above sea-level, No. I tunnel was driven. The outcrop here shows ten feet of quartz with slate parting. The original prospecting drift was driven on a small seam on the hanging of the main vein. This was continued for eighty-five feet, the face showing a ten inch seam with sparse mineralization.

At a point sixty feet from the portal a crosscut was started and the main vein cut diagonally, the hanging of this carried the major portion of the mineralization. The foot being only sparesely mineralized. Drifting was continued practically in the footwall for a distance of forty-five feet, where a turn to the right was made again crosscutting the vein. A sample cut in the first crosscut covering six feet of the hanging side of the vein gave: Silver 2.6 oz ., Lead $3.0 \%$, Zinc, $2.3 \%$, tin a trace.

Farther up the hill at an elevation of 5,610 feet, there is an outcrop of galena. This is definitely a continuation of the "Snowflake" Vein No. I on the "Alice" ground, and presumably an outcrop of the lower No. 5 vein of the "Regal".

Drifting from the "Snowflake" working started fourteen feet East of the "Snowflake" working Raise into the "Alice" claim. The drift follows the "Snowflake" vein to the East for a distance of two hundred and seventy-two feet. Crosscut No. 1, East, was started seventy feet from the raise, and driven to the North for forty-nine feet, cutting a vein two to three feet wide. Crosscut No. 2 East was started two hundred and fifty six feet from the raise, and driven thirty-nine feet to the North, cutting a vein nine feet in width.

The drift shows the vein to vary from one and one half feet to three and one-half feet in width, with low values the greater part of the way, the average content being: Silver 3.00 oz., Lead $0.4 \%$, Zinc $1.5 \%$, Tin $0.5 \%$.

From the start of the work up to a point of seventyfour feet from the raise -sixty feet- the average content was: Silver 8.0 oz., Lead 0.5\%, Zinc 1.5\%, Tin $1.3 \%$. Stannite was noticed about fifty feet from the raise, and at a point two hundred and twenty feet from the raise, a sample of an eight inch streak here gave: Silver 6.9 oz., Lead $0.3 \%$, Tin 1.4\%.

Crosscut No. 2 East cut this vein where it was nine feet wide, a section from foot to hanging being four and one-half feet of quartz banded with two narrow partings of slate, and with seams of galena on the foot and hanging, and galene disseminated throughout the centre band of quartz, and four and one-half feet of mixed quartz and slate with practically no mineral.

Samples from where the crosscuts cut the vein gave: footside 4.5 feet: Silver 5.3 oz ., Lead $5.9 \%$, Zinc 2.2\%, Tin $0.12 \%$.

Hanging side 4.5 feet, Silver 0.8 oz. , Lead $0.8 \%$, Zinc 1.2\%, Tin 0.1\%.

Drifting is being proceeded with on this vein to the East and a sample of the face assayed: 4.5 feet: Silver $7.4 \mathrm{oz} .$, Lead 8.8\%, Zinc 3.4\%, Tin 0.2\%.

Stannite has not been recognized in any samples from this vein, the presence of tin being shown by analysis. The face of the drift, with the seams of galena, has a very favourable appearance, resembling faces exposed while the raise was being driven on the "Snowflake" vein.

It is estimated that by driving three hundred and fifty feet on this vein, the surface will be reached at a point below the outcrop mentioned on the "Alice" ground.

## General Review:

From the foregoing it will be noted that on No. 3 level, there has been developed in No. 5 vein a shoot two hundred and forty feet in length, which will average six and one-half feet in width, and in contents: Silver 6.7 oz., Lead $6.1 \%$, Zinc $1.8 \%$, Tin $0.5 \%$.

With silver at $34 \psi$ per ounce, the Montreal price of lead at $5.3 \phi$ per lb., Zinc at $5 \phi$ per 1 b ., and tin at $30 \phi$ per lb., the gross value of this will be $\$ 10.83$ per ton.
(Here it may be as well to point out that the losses in treatment and deductions in prices will reduce this to about $\$ 6.50$ per ton, and in comparison, if Silver was $50 \phi$ per ounce, Lead $6 \phi$ per $1 \mathrm{lb} ., \mathrm{Zinc} 6 \phi$ per $1 \mathrm{~b} .$, and $\operatorname{Tin} 40 \phi$ per $1 \mathrm{~b} .$, the gross value would be $\$ 13.23$ and after losses and deductions, the value would be around $\$ 9.00$ per ton.)

While the development in raise "A" and on the intermediate level does not give any data to allow an stimate of even possible tonnage, it is the opinion that quite a respectable tonnage will be developed, which will return a profit on treatment.

The work on No. 6 vein has exposed a shoot five hundred and twenty-five feet in length, with an average width of eight feet, and a content of: Silver $3.0 \mathrm{oz} .$, Lead $1.5 \%$, Zinc $0.9 \%$, Tin $0.5 \%$, a gross value of $\$ 6.50$ per ton.

Taking into account the rather higher values in the Raise "B" the average is increased to $\$ 6.90$ per ton. Losses and deductions will reduce this to $\$ 4.25$ per ton, which would not be profitable to work, except at a period of higher prices for metals.

On No. 2 level, there is a shoot three hundred and fifty feet long, with an average width of fifteen feet and content of: Silver 5.0 oz ., Lead $5.0 \%$, Zinc $1.2 \%$, Tin $0.1 \%$. This gives a gross value of $\$ 8.80$ per ton.

Raise "C" has shown this shoot to continue upwards and the great width of vein would indicate a very substantial tonnage available for treatment.

While the results of the sampling in No. 1 Tunnel are low, there has been enough work done to determine either the width or contents of the vein. There is no reason to doubt, however, that the shoot exposed in No. 2 will be found on the No. l level.

As mentioned, all the development to the West on each level, shows a very much disturbed area. This has also been the experience in the "Snowflake" ground where the drift to the West encountered ground very much disturbed and twisted, and hard to hold. On the surface it is considered this area is indicated by a loose slatey formation shown on the ridge between the two properties, and by the path of a slide which passes near the "Snowflake" camp. The continuation of this on the Northeast side of the ridge is shown crossing the Northerly portion of the "Alice", the "Helena" and "May" claims.

From surface observation it is deduced that this disturbed belt is from two to three hundred feet wide, and it is considered that no further underground work should be contemplated at present in this Western area.

The development has shown that the favourable area lies within five hundred feet of the surface of the hillside.

The elevation of No. 2 tunnel being about eight hundred and fifty feet below the "Snowflake" workings and approximately half way between the No. 3 level of the "Regal" and the "Snowflake" is the logical point to base further work on. More development should be done on the No. 1 level, and the work of drifting on the vein from the "gnowflake" workings continued.

Further work on No. 3 level and the search for No. 5 vein on and above the intermediate level may be deferred, as the development above No. 2 level will make a tonnage available which will be sufficient to supply a mill of one hundred tons capacity for a number of years.

"F.W. Guernsey"

June 30, 1930.
Vancouver, B. C.
F.W. Guernsey, Esq., 736 Granville St., Vancouver, B.C.

November 30, 1930.
A.S. MacCulloch, Esq., Regal Silver Mines Limited, Standard Bank Bldg., Vancouver, B.C.

Dear Sir:

Regarding the ore available in the workings of the Regal Mines Limited.

My opinion is that there has been enough work done to warrant the erection of a mill for the treatment of such ore. Sufficient openings have been made so that a production of one hundred tons per day ban be maintained for a number of years.

I am also of the opinion that the values as shown on NO. 3 and No. 2 levels are of a grade so that the treatment will show a profit, even at the present prices of metals, and great consideration should be given to the fact that if the construction of a mill is started in the near future, at the time such mill is completed and ready for operation, the quotations for metals will be higher than at present, with a consequent increase in profits.

> Yours truly,
"F.W. Guernsey"

## REGAL SILVER MEEK, 19 MINERAL CLAIMS

British Columbia, Revelstoke Mining Division, nine miles from Albert Canyon Station, on the Canadian Pacific Railway, and eight miles from silver Creek Siding, from which point a good trail. wide enough to permit the use of carts or sleighs, leading to the lower camp.

The property extends from the West slope of the East Fork of Silver Creek, across the intervening valley to the North Fork of the Illecillaweet River. Map Mo. 1.

Deposits:
The area of the property upon which the greater portion of the work has been done is underlain by black carbonaceous slates with miner beds of black quartzite. These rocks are classed as belonging to the Selkirk series of the PreCambrian Era, and the Lode deposits are believed to have been formed by solutions winch came up from the Magma of the granitic intrusions, possibly the granite which is exposed on the trail between the railway and the property.

The lode deposits are represented by a series of quartz veins, the outcrop of which appear on the west giope of the fast Fork of Silver Creek.

Surface prospecting mas shown that several of the veins carry amounts of silver, lead and zinc sulphides, in the form of galena and sphalerite, and underground work on the adjoining property - the Snowflake - Led to the discovery of tin, in the form of stannite.

$$
\text { - Refer to Map No. } 1 \text { - }
$$

The underground work undertaken has been for the purpose of furthering prospecting and exploring the lodes and consists of a main crosscut - No. 3 . With drifts on the 5 and 6 veins. a raise on the No. 5 vein to the Intermediate level and raise on No. 6 vein. Drifting on No. 5 vein.

Description:
On the "May" claim on the west slope of the Creek at an elevation of 4,455 feet above dea level, crosscut tunnel - No. 3 was started to cut the downward extension of the known outcrops.

- Refer to Map Ho. 2 st

At two hundred and seventy-two feet from the portal, vein designated as No. 2 vein - was encountered, and a it did not show any values no work was done on it.

At eight hundred and sixty feet from the portal a number of stringers of quartz were cut not showing any values and this group of stringers has been called the No. 3 vein.

At nine hundred and sixty feet, fo. 4 velafwas cute samples from here only gave low values.

At a point nine hundred and forty feet frow the portal, No. 5 vein was reached. A section along the crosscut shows fIve feet of quartz called the upper No. 5 vein, then a slate parting of three feet, and then seven feet of quartz called the lower No. 5 vein.

A drift was started to the West - No. 5 fest - and continued on the footwall side for a distance of one hundred feet, where a crosscut raise was driven to the North, showing a total width of vein of twelve feet, at this point a Raise - "Raise "A" - mas started up the dip.

The drift was continued on in the footwall and at a point one hundred and fifty feet from the main crosscut a ralse to the North exposes a wiath of five feet of vein.

At the two hundred root point another orosscut was driven North showing $s$ thicness of vein of one foot. Funther on bumehes of pyitto-ape shown-on-the foft stale of thid one foot. Fiurther on bunches of pyrite are shown on the left side of the drift but very ilttle galena minaralization is appareat.

The drift was continued on for fifty feet, and the face only shows a rour inch streak of quartz. A crosscut was driven dorth with the nope of cutting No. 4 vein and a diamond dirill hole run further worth but outting nothing of mportance eas exposed.

From the main crosscut, a drift was turned East - No. 5 East - and driven on the vein, the walls not being shown, at the fifteen foot point a short crosscut was delven, but the footwall of the vein was not reached. Here trie vein shows pyrite dissiminated throughout the quartz and sparsegalena.

The sampling shows that for a distance of one hundred and fifty feet Fest of the main crosscut, this veln has an average width of six feet and an average content of silver 7.6 ozs., lead $6.6 \%$, zinc $2.6 \%$ and tin a trace. Beyond this point, the vein narrows and splits, the assay values being low, until the face only a four inch streak is snown, with no values.

East of the crosscut for ninety feet, the average width is seven and one half foet, and the content, silter 5.2 os., lead $5.3 \%$, zinc $0.5 \%$, tin $0.2 \%$. Where the $113 s u r o$ fault is reached, the quartz narrows the values are $10 *$, and at the face the width of vein is only two feet.

Raise "A", driven up the dip for a distance of two hundred and eight feet, shows width of vein varying from six feet to one foot. At this point one hundred and oight leet up a sation was cut and the intermediate level started.

Sampling of the raise snows a low metal content The averáge bolng silver 1.5 og., lead $2 j_{0}$ sinc etrace, ein trace. The highest result was gilver $5.20 z .$, lead 1 . $\%$, zinc $0.45 \%$, in $0.43 \%$.

The raise has been driven on the footwall of the lower No. 5 vein and this may account for the low result/ of the sampling.

No. 6 vein is cut by the main crosscut libout oleven hundred and forty feet from the jortal, and two hundred feet beyond No. 5 vein. A section along the crossogt shows eight reet of vein lamenated quartz-slate. Drifts were thrned gest and west running on the foot side of the vein.

To the west at forty feet, the drift - No. 6 Vest cuts the fault shown in No. 5 East. Here also quarta fills the fault fissure. The drift was continued on for seventy-five feet in the sistes, then turned to the lef to crosscut the extension of the vein tarown by the fault fissure. The throw here is about seventy-five feet. The drift at first shows only a suall seam of quartz which later widens, but does not contain values. At point two hundred and fifty fet from the crosscut, bad ground is encountered with no values showing. The drift continues for one hundred and sixty feet furtiner in broken ground, and the face only shows seain of barren quartz.

East of the main rosscut, the drift is driven on the footwall side of the vein. At a point thirty feet from the crosscut a raise - Haise "B" - was started. At seventy feet a crosscut - No. 1 North - shows ten feet of vein. The drift continues on, and at one hundred and fifteen feet crosscut No. 2 North, shows five feet of vein. At point two hundred feet from the main cosscut, crosscut No. 3 North sinaws elght feet of vein rather banded with hoavy pyrites on the hanging. At three hundred feet, Crosscut No. 4 North exposes ten feet of vein, and at four hunared feet crosscut No. B North shows ten feet of vein rather good looking. One hundred feet further on crosscut NO. 6 North shows eight seet of vein. The tein apparently narrows here and where exposed in the fece five hundred and sixty feet from the main crosscut three and one half feet of quartz with a slate parting is shown.

An analysis of the sampling of No. 6 vein shows the following: Elght feet of vein where the drift - Mo. 6 Hest . turns off eives low values. The drift is in the footwall up to the fault ilssure, and the vein cannot be sampled. Beyond the fault fissure, the vein is represented by syall seass with the exception of at one point where a suall crosscut shows a lense of quartz witil only low values.

East of the coosscut - drift No. 6 Egst - the average width as shown by crosscutting is elght feet. The values are, however, low, the sverage being abouts silyer 8.0 oz. lead 1.54, zinc $0.9 \%$, tin $0.5 \%$. At one point ebout foif hundred and eighty feet frow the orosscut, two samples gaves In $2.9 \%$, but generally speaking, the tin alues are low. Fromapoint four hundred and forty feet from the crosscut to the end of the drift, one hundred and tweaty feet, the metalilic contents are somownat
 tin 0.48.

Haise "B" was driven up the dip fromano. 6 East for a distance of two hundred feet. The width ofvein shown averages four and one half feet, and the face carries pyrite and galena in fair amount. The average of all assays fivest silver 8.40z., lead $2.7 \%$, zinc $1.5 \%$, tin $0 . \mathrm{E}$ for a width $\mathrm{O}_{\mathrm{F}} 4.5$ feet.

At a point one hundred and iffeen fifet above the level a value of silver $8.402 .$, lead 3 . 2 , zinc 13 shown and at one hundred and ninety feet above the iovel a value of silver, $7.7 \mathrm{oz}$. , lead $11.1 \%$ is given. The general average ili, however, low.

On the intermediate level one huadred and seven feet above No. 5 level. the drift to the hest of the Ratse "A" has not disclosed any comercial ore. The vein is not particularly well defined, being serles of short lentes and narrow seasas of quartz. At the face of the West drift five hundred snd forty feet from the Ralse, there is a ten incil seam of quartz.

On the intermediate level, the ground is more or less disturhed, in this area to the wost and there is no induceaent to do any further work here.

East of the Ralze, the drift shows the vein to have a width of from one to three feet, with low values. At a distance of about eighty Heet from the faise, the vein pinches and disappears into the hanging. On the assumption that the drift was on the lower vein, a crosscut wat driven North without disclosing anything. At about eighty-five feet, the
 and sixty feet from the raise another crosecut was ariven North without any results. The drift continued and at about the three hundred and eighty foot point, a simall seak was encountered. This is rather well mineralized, but only has ancinum midth of ten inches. The drift continues until the face is reached about live hundred and forty feet from the Raise.

The vain on this level does not show the widths one would expect frow what is shown below, and it id question whether the work has been done on the asin vein. Crosscuts have failed to find it to the Morth, and it way be that ehis horizon is in a narrow portion of the vein. However, from an examination of the drift, and the map, it looka $u s$ if the work had been done in the hanging, and there is a possibility that a orosscut south about the one hundred and fifty foot point, would locate the lost vein. This work, however, ia not regpmended at tne present.

At an elevation of 4,958 feet above sea-level, on the "Helena" claim, Ho. 2 tunnel was started the footwall of a prominent outcrop of quartz, presumably of No. 5 vein.

At a distance of seventy-ifive feet crosscut - No. 1
Nortin - was driven showing a widta of veln of fifteen feet. At one hundred and fifteen feet, crosscut wo. 2 North was driven, exposing fifteen feet or vein. At this point a crosscut - No. 1 Bouth - was driven forty feetemetting paridiel vein one and one half to four feet in width.

The main drift continues on, and at one hundred and seventy-five feet crosscut No. 3 North wastrivep, exposing 18 feet of vein. At about the two hundred and fifty foot point, the drift cuts the vein, and at two hundre and seventy-fire feet, a small stope was started. In this tope 10 exposed on the hanging wall of the veln, about two feet of silver 40 oz. . lead $40 \%$, zinc $4.5 \%$ tin $1.3 \%$. Tho balance of the vein, thirteen feet, being quartz and scattered pyrite, and a little galena.

At three hundred and thirty feet rroin the portal, a Raise -Raise "C" - was started, and at the three hundrad and fifty foot point a premineral fault is cut. which ovidently has had an influence on the fissure, as beypnd this a considerable roll is noticeable, and the vin narrows to a mere seam.


On the alfeen claim, at an elevation of 5,848 feet above sea-level, Ho. 1 tumnel was driven. The outcroy here shows ten feet of quartz with slate parting. The original prospecting drift was driven on a small seam on the hanging of the main vein. This was continued for eighty-rife feet, the face showing a ten inch seam with sparse mineralization.

At a point sixty foet from the portal crosscut was started and the main vein cut diagonally, the hanging of this carried the major portion of the mineralization. The foot being oniy sparesely mineralized. Drifting was continued practicaliy in the footwall for a distance of forty-five feet, where turn to the right was made again crosscutting the vein. A sample cut in the first crosscut covering six feet of the hanging side of the veln gave: Silver 2.6 oz., Lead $8.0 \%$, Zinc, 2.3解, tin a trace.

Farther up the hill tom elevition of there is an outcrop of galena. This is definitely a continuation of the "Snowflaken Vein No. 1 on the Malice" ground. and presumably an outcrop of the lower No. 5 vein of the "Regal".

Drifting from the "Snowflake" working started fourteen feet East of the "Snowflake" working faise into the Malicew claim. The drift follows the "Snowflake" veln to the sast for a distance of two hundred and seventy-two feet. Crosscut Io. I, East, was atarted seventy feet from the raise, and driven to the North for forty-aine feet, cutting a vein two to three feet wide. Crosscut No. E Bast was started two hundred and fifty six feet from the raise, and driven thirty-nine fatt to the North, cutting a vein nine feet in width.

The drift shows the vein to vary from one and one half feet to three and one-half feet in width, with low values the greater part of the way, the average content being silver 8.00 oz., Lead 0.4\%, Zinc 1.5\%, Tin 0.5\%.

From the atart of the work up to a point of seventyfour feet from the raise -aixty feet- the average content wist 8ilver 8.0 oz., Lead $0.5 \%$, Zinc $1.5 \%$, Tin 1. $3 \%$. Stanite was notriced about fifty feet from the raise, and at a point two hundred and twenty feet from the raise, sample of an elgit inch streak here gave: Silver 6.9 oz., Lead $0.8 \%$, Tin 1.4 .

Crosscut Ho. \& East cut this vein where it was nine feet wide, section frow foot to hanging being fout and onemale feet of quartz banded with two narrow partings of date, and with seans of galena on the foot and hanging, and cilena disseminated throughout the centre band of quartz, and four and one-half feet of mixed quartz and slate with practically no mineral.

Samples from where the crosscuts cut the vein gavel footslde 4.5 foet: Silver 5.3 oz., Lesd $5.9 \%$, Lince. 2, Tin 0.122.

Hanging side 4.5 feet, 8ilver 0.8 oz., Leed $0.8 \%$, Zinc 1.2\%, Tin 0.1\%.

Drifting is being proceeded with on this vein to the sast and a sample of the face assayed: 4.5 feet: 811 ver


Stannite has not been recognized in any samples from this vein, the presence of tin being siden by analyais. The face of the drift, with the seams of galeifa, has a very favourable appearance, resembling faces exposed while the raise was being driven on ta

It is estiasted that by driving three hundred and fifty feet on this vein, the surface will be feacise at a point below the outcrop mentioned on the "Aliee" ground.

General Reviewn
Frow tre foregoing it will be noted that on Wo. 8 level, there has been developed in No. 5 vein a shoot two hundred and forty feet in leneth, which will verage six and one-half feet in width, and in contents: silfer 6.7 os., Lead 6.1\%, Zinc 1. $8 \%$, Tin 0.5\%.

With ailver at 341 per ounce, the Yontreal price of lead at 5.3 per ib., zinc at 5 par Ib., and tin at 80 per lb., the gross value of this will be $\$ 10.83$ per ton.
(Here it may be as well to point out that the losses in treatment and deductions in prices will reduce this to about $\$ 6.50$ per ton, and in comparison, if Sliver tas 50 per ounce, Lead 6 per ib., zinc 6 per ib., and in 40 per 1b., the gross value would be 818.28 and after losies and deductions, the value would be around 80.00 per ton.)

While the development in raise "A" and on the intermediate level does not give any data to alow an etimate of even possible tonnage, it is the opinion that quite a respectable tomage will be developed, which eill retura a profit on treatment.

The work on No. 6 vein has exposed shoot sive hundred and twenty-five foet in length, with fn average width of eight feet, and a content of: 8ilver 3.0 oz. , Lead $1.5 \%$, Zinc $0.9 \%$, Tin $0.5 \%$, a gross value of 6.50 per ton.

Taking into account the rather hisher values in the Faise "B" the average is increased to 80.90 per ton. Losses and deductions will reduce this to $\$ 4.85$ per ton, which would not be profitable to work, except at a period of higher prices for metals.

On No. 2 level, there is a shoot three hundred and fifty feet long, with an average width of fifteen feet and content of: Silver 5.0 oz., Lead 5.0\%, Zinc 1.8 , Tin $0.1 \%$. This gives a gross value of 88.80 per ton.

Raise "C" has shown thia shoot to continue upwards and the great width of vein would indicate very substantial tonnage avallable for traatment.

While the results of the sampling in No. 1 Tunnel are low, there has been enough work done to determine either tie width or contents of the vein. There is no reason to doubt, however, that the shoot exposed in No. 2 will be round on the No. 1 level.

As mentioned, all the development to the Fest on each level, shows a very much disturbed area. This has also been the experience in the "Snowflake" ground where the drift to the west encountered ground very much disturbed and twisted, and hard to hold. On the surface it is conspired this area is indicated by a loose slater formation show on the ridge between the two properties, and by the path of a slide which passes near the "Snowflake" camp. The continuation of this on the Northeast gide of the ridge is shown crossing the Northerly portion of the "Allen, the "ileleng" and "May" claims.

From surface observation it is deduced that this disturbed belt is from two to three hundred feet wide, and it is considered that no further underground wok should be contemplated at present in this Western areal

The development has shown that the favourable arad lies within five hundred feet of the surface of the hillside.

The elevation of No. 2 tunnel being about eight hundred and fifty feet below the "Bnowflakemworkings and approximately half way between the lo. 3 level of the wiegaln and the "Snowflake" is the logical point to base further work on. More development should be done on the Wo. 1 level, sad the work of drifting on the vein from the menowflake workings continued.
$\frac{4}{8}$
$\frac{8}{4}$
Further work on lo. 3 level and the search for No. 5 vein on and above the intermediate level be deferred, as the development above No. 2 level will male a tonnage available which will be sufficient to supply a mill of one hundred tons capacity for a number of years.

MF. W. Guernsey"

June 30, 1930.
Vancouver, B. C.

F．W．Guerasey，Bsq．， 736 Granville St．， Vancouver，B．C．

November 20,1830 ．
A．S．MscCulloch，Esu．，
Regal Silver Mines Limited，
8 tandard Hank indg．， Vancouver，B．C．

Dear Sir：

Regardiag the ore avallable in the workings of tae negal tines Limited．
dy oplaion 13 that taere has beea
enouen work done to warrant the erection of a mill for the treatment of such ore．Sufficient openings have been maje so tiat a production of one hundred tons per day ban be maintained for a number of years．

I an also of the oplaion that the values as siowa on fio． 3 and Ho． 2 levels are of a grade so that the treatment illi show a profit， even at the present prices of metals，awd great consideration should ke sivea to the fact thet if the construction of mill is started if the near future， at the time sucn mill is compieted and ready for operation，the quotations for metals will befingher tnan at present，with a consequent increase in profits．

M．费．Guernsey＂
momeroxal．

Yours truly，

# 82w/4w <br> 82N-4 

## REGAL SILVER HEAR. 19 MINERAL CLALMS

British Columbia, Revelstoke Mining Division, nine miles from Albert Canyon Station, on the Canadian Pacific Railway, and eight miles from Silver Creek Siding, from which point a good trail, wide enough to permit the use of carts or sleighs, leading to the lower camp.

The property extends from the West slope of the East Fork of Silver Creek, across the intervening valley to the North Fork of the Illecillaweet River. Map No. 1.

## Deposits:

The area of the property upon which the grater portion of the work has been done is underlain by black carbonaceous slates with miner beds of black quartzite. These rocks are classed as belonging to the Selkirk series of the Pre-Caabrian Era, and the lode deposits are believed to have been formed by solutions which came up from the Magma of the granitic intrusions, possibly the granite which is exposed on the trail between the Railway and the property.

The lode deposits are represented by a series of quartz veins, the outcrop of winch appear on the west slope of the East Fork of Silver Creek.

Surface prospecting has shown that several or the veins carry amounts of silver, lead and zinc sulphides, in the form of galena and sphalerite, and underground work on the adjoining property - the Snowflake - lea to the discovery of tin, in the form of stannite.

- Refer to Map No. 1 -

The underground work undertaken has been for the purpose of furthering prospecting and exploring the lodes and consists of a main crosscut - No. 3 - with drifts on the 5 and 6 veins. a raise on the No. 5 vein to the Intermediate level and a raise on No. 6 vein. Drifting on No. 5 vein.

## Description:

On the "May" claim on the west slope of the Creek at an elevation of 4,455 feet above Sea level, a crosscut tunnel - No. 3 was started to cut the downward extension of the known outcrops.

- Refer to Map Mo. a -

At two hundred and seventy -two feet from the portal, a vein designated as No. 2 vein - was encountered, and as it did not snow any values no work was done on it.

At eight hundred and sixty feet from the portal a number of stringers of quartz ere cut not showing any values and this group of stringers has been called the No. 3 vein.

At nine hundred and sift feet, o. 4 vein was cut, samples from here only gave low values.

At a point nine hundred and forty feet from the portal, No. 5 vein was reached. A section along the crosscut shows five feet of quartz called the upper No. 5 vein, then a slate parting of three feet, and then seven feet of quartz called the lower No. 5 vein.

A drift was started to the West - No. 5 rest - and continued on the footwall side for a distance of one hundred feet, where a crosscut raise was driven to the North, showing a total wata of vein of trelve feet, at this point a Raise - "Raise "A" - was started up the dip.

The drift was continued on in the footwall and at a point one hundred and filfty feet from the main crosscut a raise to the North exposes a with of five reet of vein.

At the two hundred joot point another crosscut mas driven North showing is trackness of vein of one foot. Further on bunehes of pyite shem on the left shue of the one foot. Further on bunches of pyrite are shom on the left side of the drift but very iftile ealena mineralization is appareat.

The drift was continued on for flity feet, and the face only shows a four inch streak of guartz. A crosscut elas driven forth with the hope of cutting No. 4 vein and a diamond drill hole run further Norti but cutting nothing of importance was exposed.

From the main crosscut, a drift was turned East - No. 5 East - and driven on the vein, the walls not being shown, at the fifteen foot point a short crosscut was driven, but the footwall of the vein was not reached. Here tine vein shoms pyrite dissiminated throughout the quartz and sparse galena.

The sampling shows that for a distance of one hundred and fifty feet west of the main crosscut, this vein has an average width of six feet and an average content of silver 7.6 ozs., lead 6.6\%, zinc 2.6\% and tin a trace. Beyond this poiat, the vein narrows and splits, the assay values being low, until the face only a four inch streak is snow, with no values.

East of the crosscut for ninety feet, the average wiath is seven and one half feet, and the content, silver 5.2 oz., lead $5.3 \%$, zinc $0.5 \%$, tin $0.2 \%$. where the $11 s s u r e$ fault is reacaed, the quartz narrows the values are low, end at the face the wida of vein is only two feet.

Raise "A", driven up the dip for a distance of two hundred and eight feet, shows width of vein varying from six feet to one foot. At this point one hundred and elght leet up a station was cut and the intermediate level started.

Sanpling of the raise snows a low metal content. The average belng silver 1.5 oz., lead lo, zinc trace, tin trace. The highest result was silver 5.202. lead 1.5 , zinc 0.45 N , tin $0.43 \%$.

The raise has been driven on the footwall of the lower No. 5 vein and this may account for the low results of the sawpling.

No. 6 vein is cut by the main crosscut about eleven hundred and forty feet from tae portal, and two hundred feet beyond No. 5 vein. A section along the crosscut shows eight feet of vein lamenated quarta-slate. Drifts were turned East and west runing on the foot slie of the vein.

To the west at forty feet, the drift - No. 6 fest cuts the fault shown in No. 5 Last. Here also quartz fills the fault ifssure. The drift was continued on ior seventy-five feet in the slates, then turned to the left to crosscut the extension of the vein thrown by the fault fissure. The throw here is about seventy-five feet. The drift at first shows only a saall seam of quartz wich later widens, but does not contain values. At a point two hundred and ifity feet from the crosscut, bad ground is encountered with no values showing. The drift continues for one hundred and sixty feet further in broken ground, and the face only shows seans of barren quartz.

Edst of the main rosscut, the arift is driven on the footwall side of the vein. At a point thirty feet fron the crosscut a raise - haise "B" - was started. At seventy ieet a crosscut - No. 1 North - shows ten feet oi vein. The drift continues on, and at one hundred and fifteen feet crosscut No. 2 North, shozs five feet of vein. at a point two hundred feet from the main rosscut, crosscut ho. 3 North shows eight feet of vein rather banded with heavy pyrites on the hanging. At three hundred feet, Crosscut No. 4 North exposes ten feet of vein, and at four hunared feet crosscut No. 5 North shows ten feet of vein rather good looking. Dne hundred feet further on crosscut No. 6 North soows eignt Seet of veth. The vein apparently narrows here and where exposed in the face five hundred and sixty feet fron the amin crosscut three and one half feet of quartz with a slate parting is shown.
an analysis of the sampling oi No. 6 vein shows the following: Eight feet of vein where the drift - Mo. 6 Fest turns off gives low values. The drift is in tae footwall up to the fault ilssure, and the vein cannot be sampled. Beyond the fault fissure, the vein is represented by sadil seams with the exception of at one point where a sasll crosscut shows a lense of quartz wita only low values.

East of the coosscut - drift No. G East - the average width as shown by crosscutting is elght feet. The values are, however, low, the average being about: Silver 3.0 oz., lead $1.5 \%$, zinc $0.9 \%$, tin $0.5 \%$. At one point about four hundred and eignty feet from the crosscut, two samples gave: in $2.9 \%$, but generally speaking, the tin wiues are low. From a point tour hundred and forty feet from the crosscut to the end of the drift, one hundred and twenty $\mathbb{f}$ eet, the metallic contents are somat
 $\operatorname{tin} 0.4$.

Rasse "B" was driven up the dip from No. e Eest for a distance of two hundred feet. The width of vein shown averages four and one half feet, and the face carries pyrite and galena in rair amount. The average of all assays gives: silver 2.40z., lead 2.7 , zinc 1.5 , tin 0.5 for a widit of 4.5 feet.

At a point one hundred and fifteen feet above the level a value of silver 8.4 oz ., lead $3 . \operatorname{dig}$ zinc is shown and at one hundred and ninety feet above the level a value of silver, $7.7 \mathrm{oz} .$, lead ll.ly is given. The general average is, however, low.

On the intermediate level one hundred and seven feet above No. S level, the drift to the gest of the Rase "A" has not aisclosed any commercial ore. The vein is not particularly well defined, being a serles of short lenses and narrom seass of quartz. At the face of the west arift five hundred and forty feet from the Raise, there is a ten inch seam of quartz.

On the intermediate level, the ground is nore or less disturded, in this area to the west and there is no induceaent to do any furthar work here.

East of the Ralse, the arift shows the vein to have a wath of from one to three reet, with low values. At a distance of about eighty qeet from the Rsise, the vein pinches and disappears into the hanging. On the assumption that the drift was on the lofer vein, a crosscut was driven North without disclosing anything. At about elenty-five feet, the drift turns slightly to the North and at point two-hundred and sixty ieet from the raise another crosscut was ariven North without any results. The drift continued and at about the tiree hundred and eighty foot polnt, a sall sean was encountered. This is rather well mineralized, but only nas a maximum widh of ten inches. The drift continues until the face is reached about five hundred and forty feet from the Raise.

The vein on this level does not show the wiatns one would expect from what is saow below, and it is a question wether the work has been done on the alnvein. Crosscuts have falled to find it to the North, and it may be that this horizon is in a narrow portion of the vein. However, from an examination of the drift, and the map, it looks as if the work had been done In the hanging, and tiere is a possibility that a crosscut south about the one hundred and fifty foot point, would locate the lost vein. This work, however, is not recomended et tie present.

At an elevation of 4,958 feet above Sea-level, on the "Helena" clajm, Ho. 2 tunnel was started in the footwall of a prominent outcrop of quartz, presumably of No. 5 vein.

Lt a distance of seventy-ifve freet a crosscut - No. 1 North - was driven showing a widt of vein of fliteen feet. At one hundred and fifteen feet, crosscut No. 2 North was driven, exposing fifteen feet of vein. At this point a crosscut - No. 1 south - was driven forty feet, cutting a parallel vein one and one half to four feet in widh.

The main drift continues on, and at one hundred and seventy-five feet crosscut No. 3 North was driven, exposing 18 feet of vein. At about the two hundred and fifty foot point, the drift cuts the veln, and at two hundred and seventy-five feet, a small stope was started. In this stope is exposed on the hanging wall of the veln, sbout two feet of gilver 40 oz. . lead 40\%, zinc $4.5 \%$, tin $1.3 \%$. The balance of the veln, thirteen feet, being quartz and scattered pyrite, and a little galena.

At three hundred and thirty feet from the portal, a Raise -Raise "CM - was started, and at the three hundred and fifty foot point a premineral iault is cut, wich evidentiy has had an influence on the ilssure, as beyond this a considerable roll is noticeable, and the vein narroas to a mere seam.

The exploration on this level has been continued on for seven hundred and forty feet, and three crosscuts made. What quartz is exposed is in the form of narron seans and short leasea and the sampling shows only low values. The country has been much disturbed with evidence of minor faulting, and the opinion is that the numerous small fissures tend to diffuse what mineralization there may have beea over too great a territory, so that the chances are poor of finding a concentration of values whicn alght be called economic.

An analysis of the sampling shows that for a distance of three hundred and fifty feet, the average of all samples are: Silver 5.0 oz., Lead $5.0 y, 21 n c 1.20$, Th 0.1 .

No. 1, No. 2 and No. 3, crosscuts North, show the vein to have an average wida of sixteen feet and channel samples cut across these average: Silver 5.0pz., Lead 4.2\%, zinc 1.5\%, Tin a trace.

From a point two hundred and thirty feet from the portal to where the vein is deflected by the fault fissure a distance of one hundred and wenty ieet, tae average width of sample is five and three quarters ieet, with silver 5.7 oz ., Lead $5.8 \%$, zinc 1.4\%, Tin 0.1\%.

The average of the filteen feet of the vein at the stope is about: Silver 8.0 oz., Lead 7.0, Zinc 1.6㯰, In 0.3 .

Wherever the vein has been crosscut, the upper portion appears to carry more anneral than the lo er portion, although the samples taken on the upper six feet do not show any material increase in values.

The parallel vein cut by crosscut No. 1 South was drifted on for a distance oi one hundred and fifty feet, exposing a width of from one and one helif feet to four feet. At several points a quantity of pyrite is shown with gcattered galena, and a sample of three feet at the face assayed: Silver 5.7 oz, Lead $8.4 \%$, zinc $3.1 \%$, Tin a trace.

The kaise "C", now up one pundred and thirty two feet, is driven on the foot side of the vein. It has quartz in the back all the way, and shows the lower portion of the vein to be sparsely mineralized with pyrite and galena.

The average of all the assays here shows: 8ilver 5.00z., Lead 4. 2\%, Zinc 1.0\%, In 0.14,

From a point twenty-five feet above the level to a point elghty-eicht feet, the values are somewhat better, averaging: Silver 7.5 oz., Lead 6.9\%, Zinc 1.1\%, In 0.2\%.

Above the portal of No. 2 Tunnel, an open cut has been made, exposing the hanging of the vein. Here a twelve inch streak $h$ heavily mineralized with galena is shom. A shipment of sorted ore was made from this open cut.

On the "Alleen claia, at an elevation or 5,248 feet above sea-level, No. 1 tunnel ws driven. The outcrop here 3hows ten feet of quartz with slato parting. The original prospecting arift was driven on small sean on the hanging of the maln vein. This was continued for elghty-five feet, the face showing a ten inch sean ith sparse mineralization.

At a point sixty feet from the portal a crosscut was started and the main vein cut diagonally, the hanging of this carried the major portion of the mineralization. The foot being on y sparesely mineralized. Driftiag was coatinued practically in the footwall for a distance of forty-five feet, where a tura to the right was made again crosscutting the veln. A sample cut in the lirst crosscut covering six feet of the hanging side of the veln gave: Silver 2.6 oz, Lead $3.0 \%, 21 n c$, 2.3\%, tin a trace.

Farther up the hill at an elevation of 5,810 feet, there is an outcrop of galena. This is defindtely a continuation of the Maoflaken Vein No. 1 on the Mallce" ground, and presumably an outcrop of the lower No. 5 vein of the "Regal".

Drifting from the "Snowlake" rorking started fourteen feet East of the "Snowflake" workiag faise into the NAlice" claim. The drift follows the msnowflake" vein to the East for a distance of two hundred and seventy-two feet. Crosscut No. 1, East, was started seventy feet from the raise, and driven to the for for forty-nine feet, cutting a vein two to three feet wide. Crosscut No. E East was gtarted two hundred and filty six feet from the raise, and driven thirtymine feet to the North, cutting a vein nine feet in width.

The drift shows the veln to vary iroa one and one half feet to taree and one-half feet in width, with low values the greater part of the way, the average content being: Bilver 3.00 oz., Lead $0.4 \%$, Zinc $1.5 \%$, In $0.5 \%$.

From the start of the work up to a point of seventyfour feet from the raise -sixty feet- the average content was: Silver 8.0 oz., Lead $0.5 \%$, Zinc $1.5 \%$, Tin 1.3\%. Stannite was notreed about fifty feet from the raise, and at a point two hundred and twenty feet from the ralse, a sample of an elightinch streak here gave: Silver 6.3 oz., Lead $0 . z_{\text {\% }}$, $\operatorname{Tin} 1.4 \%$.

Crosscut No. 2 East cut this vein where it was nine feet wide, a section from foot to hanging belng four and one-half feet of quartz banded with two narrow partings of slate, and with seang of galena on the foot and hanging, ang galeaa disseminated throughout the centre band of quartz, and four and one-half feet of mixed quartz and slate with practically no mineral.

Samples from where the crosscuts cut the vein gaver footside 4.5 feet: Silver 5.3 oz., Lesd $5.9 \%$, Line 2. 2, , Tin $0.12 \%$.

Hanging side 4.5 feet, Sllver 0.8 oz., Lead $0.8 \%$, Zinc 1.2\%, Tin $0.1 \%$.

Drifting is being proceeded ith on this vein to the gast and sample of the face essayed: 4.5 feet: silver 7.4 oz., Lead 8.8\%, Zinc 3.4\%, Tin 0.2\%.

Stannite has not been recognized in any samples from this vein, the presence of tin being shem by analysis. The face of the drift, with the seams of galena, has a very favourable appearance, resembllag faces exposed while the raise was being driven on the "Snowfaken vein.

It is estimated that by driving three hundred and fifty feet on this vein, the surface will be reacsed at a point below the outcrop mentioned on the "Alice" ground.

## General Reviem:

From the foregoing it will be noted that on No. 3 level, there has been developed in No. 5 vein a shoot two hundred and forty feet in length, which 111 average six and one-half feet in width, and in contents: Silver 6.7 oz., Lead 6.1\%, Zinc 1.8\%, Tin 0.5\%.

Wita silver at 34 per ounce, the Montreal price of lead at 5.34 per 1 b, , 2 inc at 5 per $1 \mathrm{~b} .$, and tin at 304 per lb., the gross value of this will be 10.88 per ton.
(Here it may be as well to point out that the losses in treataent and deductions in prices will reduce this to about 8.50 per ton, and in comparison, if Silver was 50 per ounce, Lead $6 \phi$ per $1 \mathrm{~b} ., \mathrm{Zinc} 6 \phi$ per 1 b. , and Tin $40 \phi$ per $1 \mathrm{~b} .$, the gross value would be $\$ 13.83$ and after losses and deductions, the value would be around $\$ 0.00$ per ton.)

While the devalopment in ralse "A" and on the intermediate level does not give any ata to alow an stiate of even possible tomage, it is the opinion that quite a respectable tonnage will be develo, ed, winch will return a profit on treatnent.

The work on No. 6 vein has exposed a shoot five hundred and twenty-five feet in length, with aa average width of elzht feet, and a content of: Silver 3.0 oz., Lead $1.5 \%$, Zinc $0.9 \%$, Tin $0.5 \%$, a gross value of 6.50 per ton.

Taking into account the rather hlyner values in the Raise "B" the averafe is increased to 6.90 per ton. Losses and deductions will reduce this to 4.85 per ton, which would not be profitable to work, except at period of higher prices for metals.

On No. Z level, there is a shoot three hundred and fifty feet long, with an average width of fifteen feet and
 This gives a gross value of 88.80 per ton.

Haise 0 Ch has shown this shoot to continue upwards and the great ridth of vein would indcate a very substantial tonnage avallable for treatment.

While the results of the sampling in io. 1 Tunnel are low, there has been enough work done to deteralne eitner the widh or contents of the vein. There is no reason to doubt, however, that the shoot exposed in No. 2 will be round on the No. 1 level.

As mentioned, all the development to the west on each level, shows a very auch disturbed area. This has also been the experience in the "Snowflake" ground where the arift to the west encountered ground very auch disturbed and twisted, and hard to hold. On the surface it 13 considered this area is indicated by a loose slatey formation showa on the ridge between the two properties, and by the path of a slide whica passes near the "Snowflaise" camp. The continuation of this on the Northeast side of the ridge is shown crossing the Northerly portion of the "Allace", the "lelena" and "Hay" clalas.

From surface observation it is deduced that this disturbed belt is from two to three hundred feet wide, and it is considered that no further underground work should be conteaplated st present in tais western area.

The development has shown that the ravourable area lies within five hundred feet of the surface of the hillside.

The elevation of No. 2 tunnel being about elcht hundred and fifty feet below the "Snowrlake" workings and approximately half way between the No. 3 level of the mregaln and the "Snowflake" is the logical point to base further work on. More development should be done on the No. 1 level, and the work of driftiag on the vein from the "Gnowflaken workings continued.

Further work on No. 3 level and the search for No. 5 vein on and above the interinediate level may be deferred, as the development above No. $z$ level wll make a tonnage avallable which will be sufficient to supply a mill of one hundred tons capacity for a number of yeais.

"F. 7. Guerasey"

June 30, 1930.
Vancouver, $B . C$.
F.W. Guernsey, Esq.,

736 Granville St.,
Vancouver, B.C.
November z0, 1930.
A.S. Macculloch, Esa.,

Regal Silver Mines Limited,
Standard Bank Elde.,
Vancouver, R.C.
Dear Sir:

Regardiag the ore avallable in the
workiags of the regal tines Linited.
dy oplaion is taat tase $1 . \sin$ been
enough wort done to warrant the erection of a
mill for the treatment of such ore. Sufficient openings have been made so that a production of one hundred toas per day ban be maintalned for a number of years.

## I an also of the oplaion that the

 values as showa on Ro. 3 and No. 2 levels are of a grade so that the treatment 1111 show a profit, even at the present prices of metals, and great consideration should be givea to the fact that if the construction of mill is started in the near future, at the time such mill is competed and ready for operation, the quotations for metals will be aigher than at present, with a consequent increase in profits.
## Yours truly,

"F. 7 . Guernsey"

