W.A. No.
 SUBJECT RFpores


```
F.W.Guernsey,
736 Granville Street,
Vancouver, B.C.
```

November 30, 1930.
A.S. MacCulloch, Esq., Regal Silver Mines Limited, Standard Bank Bldg., Vancouver, B.C.

Dear Sir:-
Regarding the ore available in the working of the Regal Mines Limited.

My opinion is that there has been enough work done to warrant the erection of a mill for the treatment of such ore. Sufficient openings have been made so that a production of one hundred tons per day can be maintained for a number of years.

I am also of the opinion that the values as shown on No. 3 and No. 2 levels are of a grade so that the treatment will show a profit, even at the present prices of metals, and great consideration should be given to the fact that if the construction of a mill is started in the near future, at the time such mill is completed and ready for operation, the quotations for metals will be higher than at present, with a consequent increase in profits.

Yours truly,
"F.W.Guernsey."

British Columbia, Revelstoke Mining Division, nine miles from Albert Canyon Station on the Canadian Pacific Railway, and eight miles from Silver Creek Siding, from which point a good trail, wide enough to permit the use of carts or sleighs, leads to the lower camp.

The property extends from the West slope of the East Fork of Silver Creek, across the intervening ridge to the North Fork of the Illecillaweet River. Map No. 1.

Deposits The area of the property upon which the greater portion of the work has been done in underlain by black carbonaceous slates with minor beds of black quartzite. These rocks are classed as belonging to the Selkirk series of the Pre-Cambrian Era, and the Iode depositscare believed to have been formed by solutions which came from the Magma of the granitic intrusions, possibly the granite which is exposed on the trail between the Railway and the property.

The lode deposits are represented by a series of quartz veins the outcrop of which appear on the wet slope of the East Fork of Silver Creek.

Surface prospecting has shown that several of these Veins carry amounts of silver, lead and zinc as sulphides, in the form of galena and sphalerite, and underground work on the adjoining property - the Snowflakeled to the discovery of t In in the form of stannite.

Refer to Map No. 1.
The underground work undertaken has been for the purpose of furthering prospecting and exploring the lodes, and consists of a main crosscut \rightarrow No. 3 - with drifts on No. 5 and No. 6 veins. A Raise on No. 5 vein to the intermediate level and a raise on No. 6 vein, Drifting on No. 5 vein.

Description On the "May" claim on the West slope of the Creek at an elevation of 4455 feet above sea level, a crosscut tunnel No. 3 was started to cut the downward extension of the known outcrops.

Refer to Map No. 2.
At two hundred and seventy-two feet from the portal vein designated as No. 2 - was encountered, and as it did not show any values no work was done on it.

At eight hundred feet from the portal a number of stringers of quartz were cut not showing any values and this group of stringers has been called the No. 3 vein.

At eight hundred and sixty feet No. 4 vein was cut. Samples from here only gave low values.

At a point nine hundred and forty feet from the portal No. 5 vein was reached. A section along the crosscut shows five feet of quartz called the upper No. 5 vein, then a slate parting of 3 feet, and then seven feet of quartz called the lower No. 5 vein.

A drift was started to the West -No. 5 West- and continued on the footwall side for a distance of one hundred feet, where a crosscut raise was driven to the North, showing a total width of vein of twelve feet. At this point a raise - Raise "A" - was started up the dip. The drift was continued on in the footwall and at a point of hundred and fifty feet from the main crosscut a raise to the North exposes a widh of five feet of vein.

At the two hundred foot point another crosscut was driven North showing a thickness of vein of one foot. Farther on bunches of pyrite are shown on the left side of the drift but very little galena mineralization is apparent.

The drift was continued on for fifty feet, and the face only shows a four inch streak of quartz. A crosscut was driven North with the hope of cutting No. 4 vein and a diamond drill hole run further North but nothing of importance was exposed.

From the main crosscut a drift was turned East - No. 5 East and driven on the vein, the walls not being shown. At the fifteen foot point a short crosscut was driven South, but the footwall of the vein was not reached. Here the vein shows pyrite disseminated throughout the quartz and sparse galena.

The sampling shows that for a distance of one hundred and fifty feet West of the main crosscut this vein has an average width of six feet and an average content of Silver 7.6 oz ; Lead 6.6%; Zinc 2.6% and Tin a trace. Beyond this pdint the vein narrows and splits, the assay values being low, until the face only a four inch streak is shown, with no values.

East of the crosscut for ninety feet the average width is seven and one half feet, and the content, Silver 5.2 oz ; Lead 5.3%; Zinc 0.5%; Tin 0.2%. Where the fissure fault is reached the quartz narrows the values are low, and at the face the width of vein is only two feet.

Raise "A", driven up the dip for a distance of two hundred and eight feet, shows width of vein varying from six feet to one foot. At the point one hundred and eight feet up a station was cut and the intermediate level started.

The sampling in the raise shows a low metal content. The average being Silver 1.5 oz ; Lead 1%; Zinc a trace; tin trace. The highest result was Silver 5.02 oz ; Lead 155%; Zinc 0.45%; Tin 0.43%.

The raise has been driven on the footwall of the lower No. 5 vein, and this may account for the low results of the sampling.

No. 6 vein is cut by the main crosscut about eleven hundred and forty feet from the portal, and two hundred feet beyond No. 5 vein. A section along the crosscut shows eight feet of vein lamentated quartz
slate. Drifts were turned East and West running on the foot side of the vein.

To the West at forty feet, the drift - No. 6 West - cuts the fault shown in No. 5 East. Here also quartz fills the fault fissure. The drift was continued on for seventy-five feet inthe slates, then turned to the left to crosscut the extension of the vein thrown by the fault fissure. The throw here is about seventy-five feet. The drift at first shows only a small seam of quartz which later widens, but, does not contain values. At a point two hundred and fifty feet from the crosscut bad ground is encountered with no values showing. The drift continues for one hundred and sixty feet further in broken up ground, and the face only shows seams of barren quartz.

East of the main crosscut the drift is driven on the footwall side of the vein. At a point thirty feet from the crosscut a raise, Raise "B" - was started. At seventy feet a crosscut - No. 1 North shows ten feet of vein. The drift continues on, and at one hundred and fifteen feet crosscut No. 2 North shows five feet of vein. At a point two hundred feet from the main crosscut, crosscut No. 3 North shows eight feet of vein rather banded with heavy pyrites on the hanging. At three hundred feet crosscut No. 4 North, exposes ten feet of vein, and at four hundred feet crosscut No. 5 North shows ten feet of vein rather good looking. One Hundred feet further on Crosscut No. 6 shows eight feet of vein. The vein apparently narrows here, and where exposed in the face five hundred and sixty feet from the main crosscut three and one half feet of quartz with a slate parting is shown.

An analysis of the sampling of No. 6 vein shows the following: Eight feet of vein where the drift - No. 6 West - turns off gives low values. The drift is in the footwall up to the fault fissure, and the vein cannot be sampled. Beyond the fault fissure the vein is represented by small seams with the exception of at one point where a small crosscut shows a lens of quartz with only low values.

East of the crosscut - drift No. 6 East - the average width as shown by ctosscutting is eight feet. The values are, however low, the average being about Silver 3.0 oz ., Lead 1.5%, Zinc 0.9%, Tin 0.5%. At one point about four hundred and eight feet from the crosscut two samples gave: Tin 2.9% but generally speaking the tin values are low. From a point four hundred and forty feet from the crosscut to the end of the drift - one hundred and twenty feet the metallic contents are somewhat higher, the average being: Silver 5.2 oz , Lead 4.1%, Zinc 1.2%, Tin 0.4\%.

Raise "B" was driven up the dip from No. 6 East for a distance of two hundred feet. The width of vein shown averages four and one half feet, and the face carries pyrite and galena in fair amount.

The average of all assays gives; Silver 2.4 oz . Lead 2.7%, Zinc 1.5%, Tin 0.5% for a width of 4.5 feet.

At a point one hundred and fifteen feet above the level a value of Silver $8 ; 40 z$., Lead 3.2% is shown and at one hundred and ninety feet above the level a value of Silver $7.7 \mathrm{oz}$. , Lead 11.1% is given. The general average is, however, low.

On the intermediate level one hundred and seven feet above No. 5 Level, the drift to the West of the Raise "A" has not disclosed any commercial ore. The vein is not particularly well defined, being a series of short lenses and narrow seams of quartz. At the face of the West drift five hundred and forty feet from the raise, there is a ten inch seam of quartz.

On the intermediate level the ground is more or less divturbed in this area to the West and there is no inducement to do any further work here.

East of the - raise, the drift, shows the vein to have a width of from two to three feet, with low values. At a distance of about 80 feet from the raise the vein pinches and disappears into the hanging. On the assumption that the drift was on the lower vein, a crosscut was driven North without disclosing anything. At about 80 feet the drift turns slightly to the North, and at a point 260 feet from the raise another crosscut was driven north without any result. The drift continued and at about the 380 foot point a small seam was encountered. This is rather well mineralized, but only has a maximum width of 10 inches. The drift continues until the face is reached about 540 feet from the raise.

The vein of this level does not show the widths one would expect from what is shown below, and it is a question whether the work has been done on the main vein. Crosscuts have failed to find it to the North, and it may be that this horizon is in a narrow portion of the vein. However, from an examination of the drift, and the map, it looks as if the work had been done in the hanging, and there is a possibility that a crosscut south about the 150 foot point would locate the lost vein. This work, however, is not recommended at the present.

At an elevation of 4958 feet above sea-level, on the "Helena" claim No. 2 tunnel was started in the footwall of a porminent outcrop of quartz, presumably of No. 5 vein.

At a distance of 75 feet a crosscut - No. l North was driven showing a width of vein of 15 feet. At 115 feet crosscut No. 2 North was driven, exposing 15 feet of vein. At this point a crosscut - No. 1 South - was driven 40 feet, cutting a parallel vein li $\frac{1}{8}$ to 4 feet in width.

The main drift continues on, and at 175 feet crosscut No. 3 North was driven, exposing 18 feet of vein. At about the 250 feet point the drift cuts the vein, and at the 275 feet a small stope was started. In this stope is exposed on the hanging wall of the vein about 2 feet of quartz heavily mineralized with galena, a sample of which assayed: Silver $40.0 \mathrm{oz} .$, Lead 40.0%, Zinc 4.5%, Tin 1.3%. The balance of the vein, 13 feet, being quartz with a scattered pyrite, and a little galena.

At 330 feet from the portal, a raise, Raise "C" was started, and at the 350 foot Point a pre-mineral fault is cut, which evidently has had an influence on the fissure, as beyond this a considerable roll is noticeable, and the vein narrows to a mere seam.

The exploration on this level has been continued on for 740 feet,
and three crosscuts made. What quartz is exposed is in the form of narrow seams and short lenses and the sampling shows only low values. The country has been much disturbed with evidence of minor faulting, and the opinion is that the numerous small fissures tend to diffuse what mineralization there may have been over too great a territory, so that the chances are poor of finding a concentration of values which might be called economic.

An analysis of the sampling shows that for a distance of 350 feet, the average of all samples are: Silver 5.0 oz ., Lead 5.0%, Zinc 1.2\%, Tin 0.1\%.

No. 1, No. 2 and No. 3 crosscuts North, show the vein to have an average width of 16 feet and channel samples cut across these average: Silver $5.0 \mathrm{oz}$. , Lead 4.2%, Zinc 1.5%, Tin a trace.

From a point 230 feet from the portal to where the vein is deflected by the fault fissure a distance of 120 feet, the average width of sample is $5 \frac{3}{4}$ feet, with Silver $5.7 \mathrm{oz.}$, Lead 5.8%, Zinc 1.4%, Tin 0.1\%.

The average of the 15 feet of the vein at the stope is about: Silver $8.0 \mathrm{oz}$. , Lead 7.0%, Zinc 1.6%, Tin 0.3%.
$120.80=40 /-3.0 \quad 105-80=25=2-\quad 24-9=15=1.154 .8-2.6=2,2=0.17$
Wherever the vein has been crosscut the upper portion appears to carry more mineral than the lower portion, although the samples taken on the upper 6 feet do not show any material increase in the value.

The parallel vein cut by crosscut No. l South was drifted on for a distance of 150 feet, exposing a width of from $1 \frac{1}{8}$ to 4 feet. At several points a quantity of pyrite is shown with scattered galena, and a sample of 3 feet at the face assayed: Silver 5.7 oz ., Lead 8.4\%, Zinc 3.1%, Tin a trace.

The Raise "C" now up 132 feet, is driven on the foot side of the vein. It has quartz in the back ail the way, and shows the lower portion of the vein to be sparsely mineralizad with pyrite and some galena.

The average of all the assays here shows: Silver $5.0 \mathrm{oz}$. , Lead 4.2%, Zinc 1.0%, Tin 0.14%.

From a point 25 feet above the level to a point 88 feet, the values are somewhat better, averaging: Silver $7.5 \mathrm{oz} .$, Lead 6.9%, Zinc 1.1\%, Tin 0.2%.

Above the portal of No. 2 tunnel an open cut has been made, exposing the hanging of the vein. Here a l2 inch streak heavily mineralized with galena is shown. A shipment of sorted ore was made from this open cut.

On the "Alice" claim, at an elevation of 5,248 feet above sea-level, No. l tunnel was ariven. The outcrop here shows 10 feet of quartz with slate parting. The original prospecting drift was driven on a small seam on the hanging of the main vein. This was
continued for eighty-five feet, the face showing a 10 inch seam with spurse mineralization.

At a point 60 feet from the portal a crosscut was started, and the main vein cut diagonally. The hanging of this carried the major portion of the mineralization. The foot side being only sparsely mineralized. Drifting was continued practically in the footwall for a distance of 45 feet, where a turn to the right was made again crosscutting the vein. A sample cut in the first crosscut covering 6 feet of the hanging side of the vein gave: Silver 2.6 oz ., Lead 3.0%, Zinc 2.3%, Tin a trace.

Farther up the hill, at an elevation of 5,610 feet, there is an outcrop showing galena. This is definitely a continuation of the "Snowflake" vein No. l, on the "Alice" ground, and presumably an outcrop of the lower No. 5 vein of the "Regal."

Drifting from the "Snowflake" workings started 14 feet east of the "Snowflake" raise to the East for a distance of 272 feet. Crosscut No. 1 East was started 70 feet from the raise, and driven to the North for 49 feet, cutting a vein between 2 and 3 feet in width. Crosscut No. 2 East was started 256 feet from the riase, and driven 39 feet to the North, cutting a vein 9 feet in width.

The drift shows the vein to vary from $1 \frac{1}{2}$ feet to $3 \frac{1}{2}$ feet in width, with low values the greater part of the way; the average content being: Silver $3.0 \mathrm{oz} .$, Lead 0.4%, Zinc 1.5%, Tin 0.5%.

From the start of the work up to a point of 74 feet from the raise 60 feet - the average content was: Silver $8.0 \mathrm{oz}$. , Lead 0.5%, Zinc 1.5%, Tin 1.3%. Stannite was noticed about 50 feet from the raise, and at a point 220 feet from the raise, a sample of an 8 -inch streak here gave: Silver $6.90 \mathrm{oz} .$, Lead 0.3%, Tin 1.4%.

Crosscut No. 2 East cut this vein where it was 9 feet wide, a section from foot to hanging being $4 \frac{1}{2}$ feet of quartz banded with 2 narrow partings of slate, and with seams of galena on the foot and hanging, and galena disseminated throughout the centre band of quartz, and $4 \frac{1}{2}$ feet of mixed quartz and slate with practically no mineral.

Samples from where the crosscuts cut the vein gave: Footside 4.5 feet, Silver $5.3 \mathrm{oz} .$, Lead 5.9%, Zinc 2.2%, Tin 0.12%.

Hanging side 4.5 feet, Silver 0.8 oz ., Lead 0.8%, Zinc 1.2%, Tin 0.1%.
Drifting is being proceeded with on twis vein to the East and a sample of the face assayed: 4.5 feet, Silver 7.4 oz , Lead 8.8%, Zinc 3.4%, Tin 0.2%.

Stannite has not been recognized in any samples from this vein, the presence of tin being shown by analysis. The face of the drift, with the seams of galena, has a very favourable appearance, resembling faces exposed while the raise was being driven, on the "Snowflake" vein.

It is estimated that by driving 350 feet on this vein the surface will be reached at a point below the outcrop mentioned on the "Alice" ground.

GENERAL REVIEN

From the foregoing it will be noted that on No. 3 level there has been developed in No. 5 vein a shoot 240 feet in length, which will average $6 \frac{1}{2}$ feet in width, and in contents: Silver $6.7 \mathrm{oz}$. , Lead 6.1%, Zinc 1.8%, Tin 0.5%.

With Silver at 34ϕ per ounce, the Montreal price of lead at $5.3 \notin$ per lb., zinc at $5 \notin$ per $1 b$. and tin at $30 \not \subset$ per $1 b$. the gross value of this will be $\$ 10.83$ per ton.
(Here it may be as well to point out that the losses in treatment and deductions in prices will reduce this to about $\$ 6.50$ per ton, and in comparison, if silver was 50ϕ per ounde, lead 6ϕ per lb., zinc $6 \not \subset$ per $1 b$., and tin $40 \not \subset$ per lb . the gross value would be $\$ 13.23$ and after losses and deductions the value would be around $\$ 9.00$ per ton).

While the development in Raise "A" and on the intermediate level does not give any data to allow an estimate of even possible tonnage, it is the opinion that quite a respectable tonnage will be developed, which will return a profit on treatment.

The work on No. 6 vein has exposed a shoot 525 feet in length, with an average width of 8 feet, and a content of Silver $3.0 .0 z .$, Lead 1.5%, Zinc 0.9%, Tin 0.5% a gross value of $\$ 6.50$ per ton.

Taking into account the rather higher values in the raise "B" the average is increased to $\$ 6.90$ per ton. Losses and deductions will reduce this to $\$ 4.25$, which would not be profitable to work except at a period of higher prices of metals.

On the No. 2 level, there is a shoot 350 feet long, with an average width of 15 feet and content of Silver 5.0 oz ., Lead 5.0%, Zinc 1.2%, Tin 0.1%. This gives a gross value of $\$ 8.80$ per ton. Losses and deductions would reduce this to $\$ 5.50$ per ton.

Raise "C" has shown this shoot to continue upwards and the great width of vein would indicate a very substantial tonnage available for treatment.

While the results of the sampling in No. I tunnel are low there has not been enough work to determine either the width or contents of the vein. There is no reason to doubt however that the shoot exposed in No. 2 will be found on the No. 1 level.

As mentioned, all the development to the West on each level shows a very much disturbed area. This has also been the experience in the "Snowflake" ground where the drift to the west encountered ground very much disturbed and twisted, and hard to hold. On the surface i.t is considered this area is indicated by a loose slatey formation shown on the ridge between the two properties, and by the path of a slide which passes near the "Snowflake" camp. The continuation of this on the Northeast side of the ridge is shown crossing the Northerly portion of the "Alice", the "Helena" and the "May" claims.

From surface observation it is deduced that this disturbed belt is from 200 to 300 feet wide, and it is considered that no further underground work should be contemplated at present in the Western area.

The development has shown that the favourable area lies within 500. feet of the surface of the hillside.

The elevation of No. 2 tunnel being about 850 feet below the "Snowflake" workings and approximately halfway between the No. 3 level of the "Regal" and "Snowflake" is the logical point to base further work on. More development should be done on No. l level, and the work of drifting on the vein from the "Snowflake" workings continued.

Further work on No. 3 level and the search for No. 5 vein on the above the intermediate level may be deferred, as the development above No. 2 level will make a tonnage available, whidh will be sufficient to supply a mill of one hundred tons capacity for a number of years.
"F.W.Guernsey."

$$
\mathrm{COPY}
$$

$$
\begin{aligned}
& 82 N / 4 w \\
& 82 N-3,4
\end{aligned}
$$

DIAMOMD DRILLING AKD SAMPLIMG AT REGAL SILVER LND GNOWFLAKE PROPBRTIES NEAR ALBMRT CANYON, BRITISH COLDMBLA.

by

C. 8. LORD GEOLOGXCAL SURVEY

CONTEMTS

Introduotion Page 1.
Diamond drilling and
sampling on 5 level Page 3.
Sampling on Snowflake level Page 5.
Conclusions Page 7.
Recommendations Pago 8.

ILLUSTRATIONS

Figure 1. Snowilake and Regal 3ilver Mines, Albert Canyon, B.C., (Plan of workings).

Figure 2. Plan of 5 level, Regal silver Mine. (Shows diamond drill holes and channel samples on 5 level).

Figure 3. Assays from drill holes from 5 level, Regal silver mine.

Flgure 4. Assay plan, part of Snowflake level, Snowilake - Regal Silver mines. (Assay results from channel samples out in vicinity of tin shoot for mili test).

Figure 5. Possible drill holes from surfece to explore downward extension of Snowflakeleval tin shoot.

Logs of diamond drill holes Nos. 1 to θ (inclusive), with analyses, accompany this report.

INTRODUCTION

Abstract

This report desoribes diamond driling and sampling done at Regal silvar and Snowflake properties, British Columbia, under instructions reeeived from the Director, Mines end Geology Branch, Dept. of Mines and Resouraes, Ottawa. The object of the work was to obtain further data on the tin content of the quartz veins on Snowflake level and 5 level. The writer did not attempt to make a complete geological axamination of the property.

Regal silver mine is about 6 miles north of Albert Canyon, which is on the main line of the Canadian Paoifia Hailway about 21 miles east of Revelstoke. Silver Creek siding is on the railway about 2 miles west of Albert canyon and a tractor read, 7 miles long, connects the siding and the mine camp. The Bnowflake property adjoins the Regal silver on the west. No work was being done at either property wen visited by the writer. slopes near the workings average about 26 degrees. Snowsildes are said to be common during the winter and spring. silver Creek siding, Regal silver camp, and Snowflake cavp are about 2,200 feet, 4,455 feet, and 5,545 feet respectively, above sea level.

Both properties are underlain by black graphitic silioeous slates that strike about northwest and dip 30 to 60 degrees northeast. They are of Precambrian age. Insofar as known no igneous rooks oocur in the vicinity of the workings. A series of quartz veins lie parallel or nearly parallel to the slate beds. In places these veins oontain abundant pyrite. Other minerals noted or reported inolude

gelena, sphalexite, stanite, soheelite, wolframite, fluorite, chalcopyrite, and cassiterite. The principal known ocourrence of stannite is in the drift on 3nowflake levelfaoutheast of the main oross-out, and in the raise therefrom. This ocourrenoe lies partly on Snowflake property and partiy on Regal silver property. The veins have been explored by five adits between elevations of 4,455 feet and 5,248 feet on the Regal silver property, and by two adits at alevetions of 5,545 reet and 5, ses feet on Snowflake property. A little schealite concontrate ia reported to have been recovered with an underground mill on the Regal property.

On October 22, 1842 , the writer recelved word from the Direotor, to carry out the following instructions:

1. "The purpose of the diamond drilling is to determine if on the level of No. 5 adit, Regel Silver ground, there exists one or more veins additional to and parallel with (No. 5) and (No. 5-A) veins and, if such veins do exist to secure samples from them in order to be able to form some idea of their tin content."
2. "--sampling is to be done on the --mnowflake level and long the raise from this level--in the tin bearing parts of the vein or veins---in order that representative material may be avallable for mill test."

Diamond drilling was started on November 8 , and all drilling and sampling was oompleted by pecamber 1, 1942. Operations on 5 level (See Figures 2 and 3) comprised: 1,061 feet of diamond drilling, collecting 66 core and aludge samples, and cutting 43 ohannel samples. All dxill core is stored in 5 adit at survey station 1B. Seventy-two channel samples were cut in Snowflake adt and raise therefrom (Soe Figure 4).

Al samples were assayed by the Bureau of Mines, Department of Mines and Resources, Ottawa. Snow rendered surface examination impracticable. Underground workings, other than 5 and Snowflake adits, were only casually inspected. Five arawings- - listed bede accompany this report. 期奴 the exeeption of Figure 2 they are based on drawings aupplied by Col. A.S. HaeOulloch. Figure 2 (of 5 level) is based on a transit and tape survey by the Writer.

DIAMOND DRILLING AND SAMPLTNG ON 5 LEVEL (Soe Figures 2 and 3 , and ar111 loge).

Blght holes, aggregating 1,081 feet, vere drilled from the adit on 5 level with the objeat of gaining further information on the tin content of veins on that level.

Drilling was done by Boyles Bros. Dxilling Company, Ltd., and was entirely satisfactory. The machine used gave a core approximately $15 / 16$ inch in diameter. Nearly 012 core was recovered. Cuttings were lost in many of the holes and, because of the good core recovery, they were collected only when they were avallable without recourse to casing or cementing of holes. Core was lald to scale. Thus a core tray with a capacity or 35 feet contains core from 35 feet of hole and any cors lost is represented in that box by langths of wooden rod placed in the tray at places corresponding to the dopths at which the losses occurred. Core for assay was split and the unused half was leit in the core trays. Sludge Was assayed wen avallable no dasirable. Sludge that was colleoted but not assayed was disearded. Holes were spotted and pointed with a transit and the writer was on hand to cheak the alignment of ach hole as it wes collared. Holes were not surveged at depth. All holes are flat and were drilled approximately normal to the strike of the veins.

The veins dip about 50 degrees northeast. In the drill logs, and in the following discussion, the length of a vein intersection refers to the length as measured on the core. To obtain true widths (as given on Figure 3) each length must be reduced to allow for the oblique intersection of vein and drill hole.

Hole No. 1 eut 1.6 feet of vein material, containing 0.62 per cent tin, at adepth of 180 feet. sludge was not available to check this tin assay. No stemite was seen.

Hole No. 2 did not intersect anything of importance.
Hole No. 3 intersected 9.4 feet of quartz between 34 and 36.4 feet. This contained one lump of stannite about finch in diameter, several smaller grains of stannite, and a little pyrite, galena, and sphelerite. The four-foot section of quartz containing the stanite assayed 0.15 per cent tin.

Hole No. 4 cut mainly quartz between 11.5 and 17.7 feet but this contained negligible quantities of tin and lead and no zinc. Four and one-half feet of nearly barren quartz was intersected at 142.5 feat. This may be NO. 6 vein that outerops on the trail about 200 feet a outh by east of 5 portal.

Holes Nos. 5 and 6 did not intersect anything of importance.

Hole No. 7 was arilled to get further information on the vein out by hole No. 1. About 3.75 feet of nearly barren quartz was intersected at a depth of 131. 2 feet but no vein was found that could be correlated with that found in hole No. 1.

Hole No. 8 was drilled to probe the southeast extension of the stannite-bearing vein out in hol No. 3. This is probably represented by the 2.75 feet of nearly barren quartz found at a depth of 39.7 feet.

Forty-three ohannel samples were cut from 5, 3-A, and nearby veins (1), to supplement samples obtained by drilling and (2), to cheok tin assays shown on an assay compiled by the Company. None contained significant amounts of tin. No samples were taken between the portal and aurvey station 9 because veins exposed there had been sampled recentiy by Dr. V. Dolmage and reported to contiain only very amall anounts of tin.

A faulted zone exposed in the arift between survey stations 7 and 9 cuts 5 vein and presumably outs 5-A and 6 veins. Although fauling within this zone seems to have silced the veing into soveral blocks it is doubtrul if the net lateral displacement within the zome, measured perpendicular to the strike of the veins, amounts to more than a few feet.

> SAMPLTNO ON SNOKFLAKT LIVEL
> (See Migure 4)

Stamite (a tin-bearing mineral) oceurs in the quartz Fein exposed in the main drift on Snowflake level southeast of the orosscut from the portal. Pyrite and sphalerite are abundant in places and galena ocoura in smaller amounts. A survey plug, in the back of the arift where it joins the erossout from the pertal, was used to locate the semples. All vein material in the drift was sampled by channel samples, out at intervals of about 5 feet, from point 3 feet nortmwest of the plug to a point 265 feet southeast of the plug. The weight of individual samples is estimated to average ten pounds. The average alp of that part of the vein sampled is 53 degrees northeast.

From 3 feet northwest of the plug to 150 feet southeast of the plug the vein is meinly quartz and metallic minerals but oontains minor partings of slate. Samples from this part
of the driet (Nos. 1651 to 1681, inclusive) includa quartz and slate partings, and only one channel was out at each 5-foot interval.

The vein splits at a point about 150 feet southeast of the plug, and irom there to a point bout 200 feet from the plug comprises two quartz veins separated by about 2 feet of slate. Semples from this part of the drift (Nos. 1882 to 2700, inclusive) were cut across quartz only, so that at each 5 fioot interval two chennela were taken: sanples 1683 , $1685,1687,1689,1691,1693,1896,2698$ and 1700 are from the hanging wall vein and contain most of the tin; samples 1682, 1684, 1686, 1686, 1690, 1892, 1694, 1695, 1697 and 1689 are from the footwall vein and contain only minor mounts of tin. Only the samples from tho hanging wall vein were used in computing the everages given below.

From 200 to 265 reot rom the plug the vein comprises quartz and one or more partings of slate. Throughout this length (except at 240 feet) only one sample was out at oach 5-foot interval. Thus samples 1701 to 1707 inclusive, and samples 1710 to 1714 inclusive, include quartz and slate partings.

Bampling and assaying indisated the following:
(1) A shoot of tin-baaring material, 185.5 feet long and averaging 1.79 feet wide, 11 es from 47 to 232.5 feet southeast of the plug. It oontains 5.5C ouncea of silvex a ton, 0.64 per oent lead, 2.15 par cont zine, and 0.71 per ceat tin.
(2) That part of the ahoot lying from 47 to 126.5 feet southeast of the plug (approximately that portion lying within Snowflake ground) is 79.5 feet long, averages 1.94 feet wide, and contains 9.40 ounces silver, 1.17 per cent lead, 2.00 per cent zino, and 1.13 per cent tin.
(3)

That portion of the shoot lying from 126.5 to 232.5 fest southeast of the plug (approximately that portion lying within Regal silver ground) is 106 feet long, averages 1.69 feet wide, and contains 2.30 ounces of silver a ton, 0.20 per cent lead, 2.28 per cent zinc, and 0.35 per cont tin.

Stannite also occurs in the same vein where exposed In the raise from the Snowilake arift. Only the lower 40 feet of the raise was considered safe and only this part was sampled. Samples were out at intervals of about 5 feet. This 40 feet of vain averages 2.34 foet wide and contains 10.54 ounces of silver a ton, 2.35 per cent lead, 1.7% per cent zinc, and 1.53 per cent tin. Most of the stannite occurs in the upper ten feet of the section samplea.

It is noted that the silver content of vein, where sampled, varies almost directly as the tin content.

CONCLUSIONS

1. No tin-bearing material of any importance was found on 5 Level.
2. Snowflake and 5 lovels are too far apart (about 800 feet measured parallel to the dip of the veins) to permit correlation of veins on 5 level with those of snowilake level.
3. The tin-bearing shoot and vein exposed on Snowflake level remains unexplored at depth. The amall amount of diamond drilling done on 5 level, about 800 feet down the dip from Snowflake level, gave no information relative to the possible dowward extension of the tin-bearing vein and shoot.
4. The tin-bearing shoot (Sce Figure 4) exposed on Snowilake level, woutheast of the main orosscut, is 185.5 foet long, averages 1.79 feet wide, and contains 5.50 ounces
silver ton, 0.64 per ant lead, 2.15 per cent zine, and 0.71 per cent tin. The northwest part of this shoot, probably lying on snowflake property, is 79.5 feet long and 2.94 feet wide, and contains 9.40 ounces silver a ton, 2.17 per cent lead, 2.00 per cent zinc, and 1.13 per cont tin. The southeast part of the shoot, probably lying on Regal Silver property, is 106 feet long and 1.80 feet wide, and contains 2.30 ounces silver a ton, 0.20 per cent lead, 2.28 per cent zinc, and 0.35 per oent tin.

RECOMTNDAPIONS

1. The following samples should be used if mill test is made on material collected from Snowflake level: Nos. 1661 to 1681 (inclusive), 1683, 1685, 1687, 1689, 1691, 1693, 1696, 1698, 1700 to 1706 (inclusive), and 1715 to 1722 (inclusive).
2. If warranted by the current demand for tin, the ground between Snowflake drift and 5 adit should be probed by diamond drill holes from the surface (See Figure (5) with the object of (1), exploring the Snowflake tin-bearing shoot below Snowflake level and (2), locating any other tin-bearing bodies that may exist in the aame vein or In nearby veing. Five preliminary holes should be spotted so as to cut the tin-bearing vein a short aistance below the shoot exposed on Snowiake level. Subsequent holes should be spotted according to results obtained in the preliminary holes, keeping in mind the pessibility of the existence of more then one tinbearing shoot. Suoh a program might involve ten to twenty holes averaging 500 to 600 feet in length. The drilling should be done in the spring or esriy sumer.

Level 5, Regal Silver Mine.
started - Nov. 8, 1942
Finished - Nor. $13,\left(4 \mathrm{p} . \mathrm{m}_{.}\right) 1942$
Depth - 201' (Nov. 13.)
Coordinates of collar - N 10,648.1, $\mathrm{F}^{2} 10,863.3$
Bearing of hole - S $55^{\circ} 10^{\prime} \mathrm{W}$
Dip of hole - flat
Logeed by - C. S. Lord.

Depth	Remarlcs	Sample		Analysis		
		No.	Length	SN	PB	ZN
0-10.5	Black slate and a little disseminated pyrite. Cave at 7 ft .					
10.5-11	Black and grey thin-banded slate with 15% disseminated pyrite	1251	0.6	nil	n11	nil
11-15	Black and grey thin bodded slate	1252	0.85	n11	n11	nil
15-16	Crumpled slate and films of quartz. A little pyrite in quartz.					
16-18	Slate and a few quartz seams with pyrite.					
18-23.5	管" slate, quartz, and pyrite at 18 ft . Remainder slate with a few $\frac{1}{4 \prime \prime}-1 / 16^{\prime \prime}$ seans of quartz and pyrite.					
23.5-25	Slate and quartz seams with pyrite. 25\% quartz.	1253	1.3	ni1	nil	nil
25-32	Thin bedded slate, and quartz seams mostly less than $1 / 8^{\prime \prime}$ wide.					
32-34	Slate					
34	0.3 feet barren white quartz.					
34-35	Slate					
35-35.5	$2^{\prime \prime}$ quartz with 30\% pyrite; remainder slate.	1254	0.35	nil	nil	nil
$35.5-67$	Slate .					
67-85	Slate and quartz seams.					
$85-85.5$	Crumpled slate; and 20% quartz with pyrite.	1255	0.45	nil	nil	nil
85.5-90	Slate					
90-91	Slate, 50% quartz, and a little pyrite	1256	1.0	nil	nil	$n 11$
91-94	Slate, 10% quartz stringers and a little pyrite.					
94-95	Slate, a little quartz \& pyrite					
95-98	Slate.					
98-101	slate, 25% quartz seams, and a little pyrite	1257	3.0	nil	$n i 1$	nil
101-105	Only 3 ft . of core recovered. Slate and 20% white quartz in seams to $2^{\prime \prime}$ wide.					

Level 5, Regal Silver Mine, Albert Canyon, B. C.
Started - Nov. 13, 1942
Finished - Nov. 16, 1942 (5:30 P.M.)
Depth
201 ft. (Nov. 16)
Coordinates of collar - N 10, 776.8, E 11,031.7
Bearing of hole

- N47 10° 思

Dip of hole
Logeed by

- flat
- C. S. Lord

Depth (feet)	Remarks	Sample	Analysis		
		$\begin{gathered} \text { Ieneth } \\ \text { feet } \\ \hline \end{gathered}$	STN		ZN
$0-10$	Thin-bedded black slate \& 3-1" white quartz seams. About $8^{\prime \prime}$ of core lost.				
10-10.5	75\% quaxtz. 2" qtz. at 10.5 contains abundant pyrite.	120\% 0.55	0.05	nil	0.05
10.5-14	slate				
14	50\% quartz with pyrite. Quartz as seams in crumpled slate.	12030.3	n11	0.54	$n i 1$
14-30	slate, with a few $1 / 16^{\prime \prime}$ to $\frac{1}{2}{ }^{\prime \prime}$ seams of quartz \& pyrite				
30	0.4 ft . barren white qtz.				
30-35	slate				
35-44.5	slate				
44.5-45	40% qtz. with pyrite and a little brown material (sphalerite ??)	12640.5	nil	0.09	0.05
45-48	40\% white qtz. with a few grains of pyrite \& a very little brownish material (sphalerite ??)	12653.0	nil	n11	0.05
48-57.7	slate with a little barren dz.				
57.7-60	slate, and 50% white qtz with a very few grains of pyrite				
60-64	slate				
64-69	crumpled slate \& $30 \% \mathrm{qtz}$				
69-70	slate				
70-72	slate				
72	3' white qtz.				
72-82	slate				
82-83	0.7 ft. white qtz				
83-85	slate				
85-87	slate with 30% qtz seams up to $\frac{1}{2} "$				

Depth	Remarks	$\frac{\text { Sample }}{\text { No length }}$	$\frac{\text { Analysis }}{\text { SN } \mathrm{PB} \text { ZN }}$
87-03	slate, and 0.7 ft , white qtz. with a little pale greenish micaceous mineral or partings		
88-95	slate, \& 15% qtz. as seams $1 / 32$ " to 木" $^{\text {wide. }}$		
95-96.5	50% qtz as irregular patches and seams.		
96.5-102	slate		
102	4" sean qtz. \& pyrite		
102-103.5	slate		
103.5-105	slate. 1-7" qtz. seam at 103.5 with a few crains of pyrite		
105-130.5	slate with a few white quartz seams up to $2^{"}$ wide.		
130.5	$2^{\prime \prime} \mathrm{qtz}$. \& pyrite		
130.5-133	slate		
133-135	```slate and a little (15%) irregular qtz.```		
135-135.5	white qtz. with a little greenish micaceous mineral		
135.5-136	slate		
136-137	slate, pyrite, \& a little qtz.	12660.4	$n i 10.110 .20$
137-140	slate		
140-	$2^{\prime \prime} \mathrm{qtz} .8$ pyrite		
140-143.5	slate		
14. 5.144	white quartz with a very littie pyrite, sphalerite (??) Ealena and a pale creenish micaceous mineral.	12670.7	nil nil nil
144-146	slate		
146	2" quartzitic rk. with abundant f.E. pyrite		
146-168	slate		
168-171	slate, \& $30 \% \mathrm{qtz}$, \& a very little pyrite.		
171-171.5	white quartz and a little pale greenish micaceous mineral.		
171.5-173.5	slate		
173.5-175	slate, \& 15% qtz.		
175-178.5	slate		

Depth	Remarks	Sample Analysis	
		No length	SN PB. ZIN
178.5-179	qtz.		
179-181	slate		
181-183	slate, and 20% qtz. stringers		
183-184.5	slate		
184.5	2" seam of qtz \& pyrite		
184.5-187	slate		
187-188	white qtz with no visible inetallics		
188-195	slate		
195-	5" qtz.		
195-201	slate		

Note - all core examined under ultraviolet light. No scheelite found.

Level 5, negal Silver Mine, Albert Canyon, British Columbia. Started - Nov. 16 (night shift) 1942. Finished - Nov. 18 (day shift). Depth - 75 feet.
Coordinates of collar - N 10,486.2; E 11,225.5. Bearing - 5.430° (bearings given to nearest 10°). Dip - flat.
Logged by - C.S. Lord.

Depth	Remarks	Sample		Analysis		
		No.	length	Sn	Pb	Zn
0-14	slate					
14	0.3 ft . grey quartz and pyrite.					
14-24	slate					
24-28	Wite quartz with a little galena, sphalerite, pyrite, and one lump of stannite about $\boldsymbol{k}^{\boldsymbol{k}}$ " diameter and sereral smaller grams. Stann1te at 26.5 ft .	1268	4.0	0.15	1.28	0.35
28-29.7	Same vein as above. White quartz with a little sphalerite and galena at 29.2 ft .	1269	1.7	0.05	1.06	nil
29.7-32.7	slate					
32.7-35	White quartz with a little galena, sphalerite \& pyrite.	1270	2.3	0.05	0.76	2.89
35-36.4	Same vein as above. White quartz with pyrite, galena, and sphalerite.	1271	1.4	0.13	1.03	0.45
36.4-42	slate					
42-44	60% white quartz. Remainder slate.	1272	2.0	nil	nil	0.20
44-54.7	slate					
54.7-55.3	White quartz, partly ribboned with graphitic partings; a little pyrite.	1273	0.6	n11	nil	nil
55.3-58.7	Slate, with a few $1 / 8^{\prime \prime}$ to $\frac{1}{2} "$ quartz seams, some of which contain a little pyrite.					
39.7-60.2	75% quartz, with a tery little pyrite.	1274	0.5	0.05	nil	nil
60.2-62	slate					
62	$2^{\prime \prime}$ grey quartz and pyrite.					
62-70	slate					
70-75	slate					

Sludges

$15-20$	for check. Should assay nil tin.	1278	5.0	nil	nil	0.05
$20-25$		1279	5.0	0.10	3.71	0.20
$25-30$	core showed stannite at 26.5	1280	5.0	0.27	12.45	0.51
$30-35$		1281	5.0	0.05	nil	nil

Water lost about here and no further sludge recovered.

Note - All core examined under ultraviolet lights. No scheelite seen.

LOG D. D. H_{4}

```
Level 5, Regal Silver Mine, Albert Canyon, B. C.
            Started - November 18 (day shift) 1942
            Finished - November 18 (night shift) }194
                Depth - 30 ft. (deepened later)
    Coordinates of collar; N 10,508.1; E 11,151.1
                    Bearing - S 420 50' W
                    Dip - flat
                    Logged by - C. S. Lord
```

Depth	Remariss	Sample		Analysis		
		No.	Length	Sn	Pb	2n
0-11.5	Slate					
11.5-14.0	White quartz and a little slate with a few grains of pyrite. A few grains of aphalerite and galena in quartz	1275	2.5	N11	N11	Nil
14.0-15.5	80% pyrite. Remainder slate and grey quartz. A few spots fluoresce and may be scheelite	1276	1.5	0.08	0.07	Nil
15.5-17.7	60\% quartz. A iittle pyrite, mainly in slate	1277	2.2	Nil	Nil	Nil
17.7-19.0	Slate, and 1-5" band white quartz					
$29.0-25.0$	Slate					
25.0-30.0	Slate with a few seams of quartz and pyrite less then $1^{\prime \prime}$ wide					

Note: All core examined under ultraviolet light. Yossible scheelite grains between 14 and 15.5 feet

Sludge not recovered between 10 and 20 feet due to oversight on part of driller.

LOG D. D. 4 (Deepened)
See log November 18 (0-30 ft.)
Deepening started - November 27 (night shift) Deepening finished - November 29 (night shift) Depth from coller after deepening - 187 ft .

Logeed by C. S. Lord

Depth	Remarks	Sample		Analysis		
		No.	Leneth	Sn	Pb	$2 n$
30-371	Slate					
37-38	White sagary quartz, 15% pyrite 10% slate	1378	0.4	0.36	11	Nil
38-39	$\text { Black slate, } 10 \% \text { quartz }$					
39-49	Black slate					
49-51	Black slate and 10% white quartz					
$51-64 \frac{1}{2}$	Black slate					
641	3" white quartz					
642-65	Black slate					
65-93	Black slate with 10 white quartz seams averaging about $l^{\frac{1}{2}}$ " wide					
93-94	Black slate and 2-2" white quartz seams					
94-100	Slate					
100-112	Slate					
112-112 $\frac{1}{2}$	60\% white quartz; belance slate					
112 ${ }^{2}$ - $114 \frac{1}{3}$	Black slate					
114-115	Slate and 4" quartz					
115-125	Slate					
125-126 ${ }^{\frac{1}{2}}$	Slate and 30% white quartz in seams ${ }^{\frac{1}{2}}-2 \frac{1}{2}$ " wide					
1261 135	Slate					
135-142 ${ }^{\frac{1}{2}}$	Slate					
142真 147	White quartz with $1-3 "$ seam black slate and less than 1% pyrite	1379	4.5	0.08	Nil	Nil
147-149 ${ }^{\text {7 }}$	Slate, part minutely drag folded with 5% quartz, and 2% pyrite. Pyrite as seams and as disseminated grains					

Depth	Remarks
1491-150	Soft grey calcareous shele-strongly effervescent in HCl
150-151	Slate
151娄-152	Crumpled slate, 15% grey quartz 5\% pyrite
152\% - 170	Slate with a few $\frac{1}{2 \prime \prime}$ quartz seams
170-173	Grey thin laminated slate and 10% quartz as seams up to $\frac{1}{4}$
173-177	Grey-black slate
177-179	Black slate
179-180	60% white quartz, balance black slate
180-187	Black slate
Notes	All core examined ander ultraviolet light. No scheolite seen.

Level 5，Regal Silver Mine，Albert Canyon，B．C．
Started－Nov． 19 （day shift）， 42
Finished－Nov． 22 （day shift）， 42
Depth－ 76 feet
Coordinates of collar；－N 10，576．7；E 11，136．5
Bearing－$\$ 42^{\circ} 50^{\circ} \mathrm{W}$
Dip－flat
Logeed by－C．S．Lord
Note－contractors ran out of bits and no drilling was done from 10 A．M．Nov． 20 to 4 P．M．Nov． 21.3 shifts lost．Water（\＆sludge）lost at 33.5 ft ．

Depth	Remarks	Sample	Analysis	Zn
		No length		
0－23	slate，with a few qtz．stringers up to $1^{\prime \prime}$ wide			
23－231	slate，a little qtz，\＆60\％pyrite	12820.4	0.080 .15	nil
$23 \frac{1}{2}-31 \frac{1}{2}$	slate			
31－35	slate with a few qtz seams up to $\frac{1}{2} "$ wide．			
35－412	slate			
412－44	slate，with thin q tz seams comprisine 20% of core．			
44－46	slate			
46－47	qtz with greenish micaceous mineral \＆less than． 5% pyrite．	12831.0	nil nil	nil
47－481	slate，\＆ 30% q愐 seams	12841.5	0.05 nil	nil
481 ${ }^{\frac{1}{2}-57}$	slate			
57－57 $\frac{1}{\text { 咅 }}$	30\％qtz；less than 5\％pyrite； balance slate． $2^{\prime \prime}$ graund while drilling．	12850.8	0.05 nil	nil
571 -59	slate except for： $58^{\prime}, \frac{1}{4}{ }^{1}$ qtz \＆ pyrite；58．5＇，䨌 qtz \＆pyrite．			
59－591	slate； 30% qtz in irregular stringers；and a little pyrite			
5912－60	slate			
60－60 ${ }^{\frac{1}{2}}$	50% white qtz with a little greenish micaceous mineral			
601－68	slate			
68	4＂white qtz			
68－76	slate			

Note－all core checked under ultraviolet licht． No scheelite noted．

Sludges
20－25 see core sumple $\# 282$
$12885.0 \quad 0.05 \mathrm{nil} \mathrm{nil}$

```
LOG D. . /%
```

Level 5, Regal Silver Mine, Albert Canyon, B.C.
Started - Nov. 22 (night shift), 1942.
Finished - Nov. 23 (night shift), 1942.
Depth - 76 feet
Coordinates of collar: - , N 10,615.1, F 11,096.0
Bearing of hole - $\mathrm{S}^{2} 2^{\circ} 50^{\prime} \mathrm{m}$
Dip of hole - flat
Logged by - C. S. Lord.

| | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Depth | Remarks | | | |

0-11
11-13
13-14 \quad Slate with many thin seans of quartz. 30% quartz. one $z^{\prime \prime}$ sean of quartz contains 50% pyrite.
142 -23_{2}^{2}

23娄-24 $\frac{1}{2}$ Slate with 15% quartz seans
24룰 32
32-35 Slate, and 40\% quartz with less than 5% pyrite $1286 \quad 3.0$ nil nil nil

Slate with numerous quartz seams
a ounting to 10% of core.
Slate.
2 를 contains 75% quartz \& 5% pyrite
Slate.
30\% quartz as four seams. quartz contains about 5% pyrite.

1287 0.7 0.05 nil nil
Slate.
1" sean quartz and pyrite.
Slate.
Slate and 20% barren quartz.
Slate.
in quartz and pyrite.
Slate.
Slate.
2]" quartz with a little pyrite.
Slate and 10% quartz.
slate.
NOTE: All core examined under ultra-violet light. No scheelite seen.
Sludges
See core sample
\#
See 1286

1289	5.0	nil	nil	nil
1290	5.0	nil	nil	nil

Level 5，Regal Silver Mine，Albert Canyon，British Columbia．
Started－Nov． 23 （night shift）．
Finished－Nov． 27 （night shift）．
Depth－ 198 feet．
Coordinates of collar；N．10，647．7，E 10，870．2．
Bearing－s 22 ${ }^{\circ} 00^{\prime}$ W．
Dip－flat．
Logged by－C．S．Lord．

Depth	Remarks	Sample		Analysis		
		No．	Length	Sn		
0－$\frac{1}{2}$	White quartz					
妾－ $3 \frac{1}{2}$	Slate					
3歪－4震	Slate，a little pyrite，and 20% quartz．					
4震－11	Slate					
11－15	Slate－badly broken core．					
15－23	Slate					
23	2＂seam；50\％quartz and 25\％ pyrite．					
23－30	Slate；a few seams of quartz and pyrite up to $\mathrm{E}^{\prime \prime}$ ．					
30－41	Slate					
41	Quartz and 25\％pyrite．	1291	0.3	nil	nil	nil
41－45	Slate					
45－46	Slate； $1-2^{\prime \prime}$ seam of white quartz；1－2＂seam grey quartz with 25\％pyrite．	1292	0.75	0.05	n11	nil
46－47	Pitted slate．					
47－52	Slate，broken core．					
52－53	Slate and 20% quartz．l－2 $\frac{1}{8}$＂grey quartz seam contains 25% pyrite．	1293	1.0	0.13	nil	nil
53－61	Slate and 20% quartz as numerous thin seams mostly porallel to bedding．					
61－65	Slate					
65－66	Slate and 20\％thin quartz seams．					
66－70	Slate and 25% white cuartz as seams to $2^{\prime \prime}$ wide but mostly less than l＂wide．	1294	4.0	0.10	nil	nil
70－71	Slate					
71	3＂white quartz．					

71－72	Slate					
72	3＂white quartz．					
72－73	Slate					
73	$2^{\prime \prime}$ white quartz．					
73－75	Slate					
75	2＂white quartz．					
75－76	Slate with seams grey quartz and a little pyrite．					
76	1＂grey quartz and 25\％pyrite．					
76－801	Slate．					
90글	21＂white quartz．					
90者－ 100	Black slate．					
100－103乭	Black slate with $1 / 16^{\prime \prime}-1 / 8^{\prime \prime}$ pyrite cubes．					
103委	3＂light grey and black banded calcareous rock－effervescent in HCL．					
103 $\frac{1}{2}$－ 106	Black slate vifth pyrite cubes．					
106－110	Interlayered black slate，cal－ careous bands，and $\frac{1}{4}$＂to 1 ＂ white quartz seams．					
110－114	Black slate，part finely mottled with grey．					
114－115	Grey sugary quartz with less than 5% pyrite．	1295	1.0	0.16	nil	nil
115－117	Greyish slate and 15% quartz． Pyrite cubes in slate．					
117－120 ${ }^{\frac{1}{2}}$	Grey，thin－bedded，soft，slight－ ly calcareous shale with pyrite cubes．					
120娄－124	Black slate with pyrite cubos commonly $1 / 8^{\prime \prime}$ ．					
124－125	Grey shale with a little quartz and a $2 \frac{1}{2}$ seam of pyrite．	1296	1.0	0.08	n 11	nil
125－128	Grey and black slate with sev－ eral $\frac{1}{2}$＂quartz seams．					
128－128	50% white quartz with a few specks of pyrite．Balance is slate with a little pyrite．	1297	1.0	0.10	nil	nil

		Sample	Analysis
Depth	Remarks	No * Length	$\mathrm{Sn} \quad \mathrm{Pb}$

Depth	remarks	Sample		Analysis Pb		
Sludges						
5-10		1725	5.0	0.08	nil	nil
40-45		1726	5.0	nil	nil	nil
45-50		1727	5.0	nil	nil	n 11
50-55		1728	5.0	nil	nil	n11
65-70		1729	5.0	nil	nil	nil
70-75		1730	5.0	nil	n11	n11
110-115		1731	5.0	0.10	nil	nil

All core examined under ultraviolet light. No scheelite.

Level 5 - Regal silver Mine, Albert Canyon, B.C.
Started - Nov. 30 (day shift)
Finished - Nov. 30 (night shift)
Depth - 46 feot
Coorcimates of col1ar - N 10,453.6; 311.263.1
Bearinc $-842^{\circ} 50$ W
Dip - Flat
Logged by - C. S. Lord

Depth	Remarks	Saxple		Analysis		
		NO.	Length	SII	P8	Zn
$0-42$	Black broken slate.					
4 S	$2 \%^{\prime \prime}$ quarte with 5% pyrite o less than 1\% galena.					
$4-5$	Black slate.					
5-6	Black slate \& 20% white quarts as three seams. Quartz contains lesb than 5\% pyrite.					
6-8	Slate.					
8	White quarts with a little greonish wicaceous mineral \& less than 5\% pyrite.	1380	0.5	0.05	nil	nil
6-27	Black slato with a few seans of whito quartz.					
27-27	Slate, 40, quartz tess than 5 , pyrite.					
27\%-29	slate.					
29	2^{*} grey quartz with 40% pyrito.					
29-32	Slato.					
32	2 - i^{n} geans white quartz and $1-1 / 16^{\prime \prime}$ quarta seam with two specks of possible eheelite.					
32-35	Black slate is 10\% quartz sears.					
35-39.7	Orey \% black slate \& 5\% quartz.					
$39.7-42.5$	White quartz. Wotallies, including pyrito, phazerite, and galena, occur next each wall and comprise about 2% of vein.	1381	2.75	$n i 1$	0.26	nil
42-43	Slate, 50% quartz and lese than 6% pyrito					
43-46	Slato.					

NOTS: - All core examined under ultraviolot light. A very little scheelite
Sludges

2723	5.0	nil	nil	nil
2724	5.0	nil	nil	nil

82N/4w 82N-3,4

DIAMOND DRILIING AMD SAMPIING AT REGAL SILVER AND GNOWLLAKE PROPBRTIES NEAR ALBERT CANYON, BRITISH COLURABIA.

```
by
```


C. S. LORD
 GEOLOGICAL SURVEY

CONTENTS

Introduction 1.
Diamond drilling and sampling on 5 level 3.
sampling on Snowflake level 5.
Conclusions 7.
Hecommendations 8.

ILLUSTRATIONS

Figure 1. Snowilake and Regal illver Kines, Albert Canyon, B.C., (Plan of workings).

Figure 2. Plan of 5 level, Regal Silver Mine. (Shows diamond drill holes and channel samples on 5 level).

Figure 3. Assays fram drill holes from 5 level, Regal silver mine.

Flgure 4. Assay plan, part of Snowilake level, Snowflake - Regal Silver mines. (Assay resulta from channel samples out in vioinity of tin shoot for mill test).

Figure 5. Possible drill holes Irom surface to explore downard extension of snowilakelevel tin shoot.

Logs of diamond drill holes Nos. 1 to 8 (inclusive), with analyses, accompany this report.

Abstract

This report desoribes diamond drilling and sarpling done at hegal silver and snowflake properties, isritish columbia, under instructions reoelved from the Director, Mines ond Geology Branch, Dept. of Mines and Resources, Ottawa. The objeat of the work was to obtain further data on the tin content of the quartz veins on Snowflake level and 5 level. The writer did not attempt to make a complete geologioal oxamination of the property.

Regal silver mine is about 6 miles north of Albert Canyon, which is on the main line of the Canadian Paoific Railway about 21 miles east of Revelatoce. Silver Creek siding is on the railway about 2 miles west of Albert Canyon and a tractor read, 7 miles long, conneets the siding and the mine camp. The snowilake property adjoins the Regal silver on the west. No work was being done at either property wen Visited by the writer. Slopes near the workings average about 26 degrees. Snowalides are said to be ommon during the winter and spring. Bilver Creek siding, Regal Silver camp, and Snowflake camp are about 2,200 feet, 4,455 feet, and 5,545 feet respectively, above aea level.

Both properties are underlain by black graphitio siliocous slates that strike about northwest and dip 30 to 60 degrees northeast. They are of Frecambrian age. Insofar as known no igneous rooks ooour in the vicinity of the workings. A series of quartz veins lie parallel or nearly parallel to the slate beds. In places these veins contain abundant pyrite. Other minerals noted or reported inolude

galena, sphalerite, stennite, soheelite, wolframite, fluorite, chaloopyrite, and cassiterite. The principal known ooourrence of stannite is in the drift on Snowrlake levelfsoutheast of the main cross-out, and in the raise therefrom. This ocourrenoe lies partly on Snowflake property and partiy on Regal allver property. The veins have been explored by five adits between elevations of 4,455 feet and 5,346 feet on the Regal silver property, and by two adits at elevations of 5,545 feet and 5,885 reet on Snowflake property. A little sehoelita concentrate is reported to have been recovered with an undarground mill on the Regal property.

On October 22, 1942, the writer received word from the Director, to oarry out the following instructions:

1. "The purpose of the diamond driling is to determine if on the level of No. 5 adit, Regal silver ground, there exists one or more veins additional to and parallel with (No. 5) and (No. 5-A) veins and, if suoh veins do oxist to secure samples from them in order to be able to form same idea of their tin content."
2. n--sampling is to be done on the ---Snowflake level and along the raise from this level--in the tin bearing parts of the vein or veins---in order that representative material may be avallable for a mill test."

Diamond drilling was atarted on Novembar 8, and all drilling and sampling was completed by Decamber $1,1848$. Operations on 5 level (See Fi gures 2 and 3) comprised: 1,061 feet of diamond drililing, collecting 66 core and sludge samples, and cutting 43 channel samples. All drill core is stored in 5 adit at survey station 1B. 3eventy-two chanel samples were cut in snowflake adit and raise therefrom (30e Figure 4).

All samples were assayed by the Bureau of Mines, Department of Mines and Resources, Ottawa. Snow rendered surface examination impracticable. Underground workings, other than 5 and Snowflake adits, were only casually inspected. Five drawings tratet-betan accompany this report. With the exception of Figure 2 they are based on drawings supplied by Col. A.s. MacCulloch. Figure 2 (of 5 level) is based on a transit and tape survey by the writer.

DIAMOND DRILLING AND SAMPLING ON 5 LEVEL
(see Figures 2 and 3 , and drill logs).

Eight holes, aggregating 1,061 feet, were drilled from the adit on 5 level with the object of gaining further information on the t in content of veins on that level.

Drilling was done by Boyles Bros. Drilling Corapany, Ltd., and was entirely satisfactory. The machine used gave a core approximately $15 / 16$ inch in diameter. Nearly all core was recovered. Cuttings were lost in many of the holes and, because of the good core recovery, they were collected only when they were available without recourse to casing or cementing of holes. Core was laid to scale. Thus a core tray with a capacity or 35 feet contains core from 35 feet of hols and any core lost is represented in that box by lengths of wooden rod placed in the tray at places corresponding to the depths at which the losses occurred. Core for assay was split and the unused half was left in the core trays. Sludge was assayed when available and desirable. sludge that was collected but not assayed was discarded. Holes vera spotted and pointed with a transit and the writer was on hand to check the alignment of sech holy as it was collared. Holes Here not surveyed at depth. All holes are flat and were drilled approximately normal to the strike of the veins.

The veins dip about 50 degrees northeast. In the drill logs, and in the following disoussion, the length of a vein intersection refers to the length as measured on the core. To obtain true widths (as given on Figure 3) each length must be reduced to allow for the oblique intersection of vein and drill hole.

Hole No. 1 eut 1.6 feet of vein material, containing 0.62 per cent tin, at a depth of 180 foet. sludge was not available to oheck this tin assay. No atannite was sean. Hole No. 2 did not intersect anything of importance.

Hole No. 3 intersected 9.4 feet of quartz between 24 and 36.4 feet. This contained one lump of stannite about $\frac{1}{8}$ inch in diameter, several smaller grains of stannite, and a littie pyrite, galena, and sphalerite. The four-foot section of quartz containing the stannite assayed 0.15 per cent tin.

Hole No. 4 out mainly quartz between 11.5 and 17.7 feet but this contained negligible quantities of tin and lead and no zinc. Pour and one-half feet of nearly barren quartz Was intersected at 142.5 feet. This may be NO. 6 vein that outorops on the trail about 200 feat south by east of 5 pertal.

Holes Nos. 5 and 6 did not intersect anthing of importance.

Hole No. 7 was arilled to get further information on the vein cut by hole No. 1. About 3.75 feet of nearly barren quartz was intersected at a depth of 131.2 feet but no vein was found that could be correlated Fith that found in hole No. 1.

Hole No. 8 was drilled to probe the southeast extension of the stannite-bearing voin cut in nole No. 3. This is probably represented by the 2.75 feet of nearly barren quartz found at a depth of 38.7 feet.

Forty-three channel samples were cut from 5, 5-A, and nearby veins (1), to supplement samples obtained by drilling and (2), to chook tin assays shown on an assay compiled by the Company. None contained significant amounts of tin. Ho samples were taken between the portal and survey station 8 because veins exposed there had been sampled recently by Dr. V. Dolmage and reported to contain only very small amounts of tin.

A faulted zone exposed in the drift between survey stations 7 and 9 cuts 5 vein and presumably outs 5-A and 6 veins. Although faulting within this zone seems to have sled the veins into several blocks it is doubtful if the net lateral displacement within the zone, measured perpendicular to the strike of the veins, amounts to more than a few feet.

SAILING ON SHOTHLMEX LEVEL
(See Figure 4)

Stannite (a tin-bearing mineral) occurs in the quartz vein exposed in the main drift on Snowflake level southeast of the crosscut from the portal. Pyrite and sphalerite are abundant in places and galena occurs in smaller amounts. A survey plug, in the back of the drift where it folie the eroseout from the portal, was used to locate the samples. All vein material in the drift was sampled by channel samples, out at intervals of about 5 feet, from a point 3 feet northwest of the plug to point 265 feet southeast of the plug. The weight of individual samples is estimated to average ton pounds. The average dip of that part of the vein sampled 1353 degrees northeast.

From 3 feet northwest of the plug to 150 feet southeast of the plug the vein is mainly quartz and metallic minerals but contains minor partings of slate. Samples from this part
of the drift (NOS. 1851 to 1881, inclusive) includa quartz and slate partings, and only one channel was out at each 5-foot intervel.

The vein splits at a point about 150 feet southeast of the plug, and from there to a point about 800 feet from the plus comprises two quartz veins separated by about 2 feet of slate. Semples from this part of the drift (Nos, 1682 to 2700, inclusive) wore cut across quartz only, so that at each $5 \div f=0$ interval two channelo were taken: samples 1683, 1685, 1687, 1689, 1691, 1693, 1696, 1698 and 1700 are fram the hanging wall vein and contain most of the t in; samples 1682, 1684, 1686, 1686, 1690, 1692, 1694, 1695, 1697 and 1699 are from the footwall vein and contein only minor amounts of tin. Only the samples from the hanging wall vein were used in computing tho averages given below.

From 200 to 265 reat irom the plug the vein comprises quartz and one or more partings of slate. Throughout this length (except at 240 feet) only one sample was out at each 5-foot interval. Thus camples 1701 to 1707 inclusive, and samples 1710 to 1714 inclusive, include quartz and slate partings.

Sampling and assaying indicated the following:
A shoot of tin-boaring material, 185.5 feet long and averaging 1.79 foet wide, $110 s$ fram 47 to 232.5 foet southeast of the plug. It contains 5.50 ounces of silver a ton, 0.84 per cont lead, 2.15 per cont zino, and 0.71 per cent tin.
(2) That part of the ahoot lying from 47 to 186.5 feet southeast of the plug (approximately that portion lying within Snowflake ground) is 79.5 feet long, averages 1.94 feet wide, and contains 8.40 ounces silver, 1.17 per cent lead, 2.00 per cent zinc, and 1.13 per cont tin.

Stannite also occurs in the same vein where exposed
 of the raise was considered safe and only this part was sampled. Samples were cut at intervals of about 5 feet. This 40 feet of vein averages 2.34 feet wide and contains 10.54 ounces of silver a ton, 2.35 per cont lead, 1.72 per cont zinc, and 1.53 per cent tin. Most of the stannite occurs in the upper ten feet of the section sampled.

It is noted that the silver content of vein, where sampled, varies almost directly as the tin contents.

CONCLUSIONS

1. No tin-bearing material of any importance was found on 5 level.
2. Snowflake and 5 levels are too far apart (about 800 feet measured parallel to the dip of the veins) to permit correlation of veins on 5 level with those of Snowflake level.
3. The tin-bearing shoot and vein exposed on Snowflake level remains unexplored at depth. The small amount of diamond drilling done on 5 level, about 800 feet down the dip from Snowflake level, gave no information relative to the possible downward extension of the tin-bearing vein and shoot.
4. The tin-bearing shoot (See Figure 4) exposed on Snowflake level, southeast of the main crosscut, is 188.5 feet long, averages 1.79 feet $w 1$ de, and contains 5.50 ounces
silver a ton, 0.64 per cent lead, 2.15 per cent zine, and 0.71 per cent tin. The northwest part of this shoot, probably lying on Snowflake property, is 79.5 feet long and 1.94 feet wide, and contains 9.40 ounces silver a ton, 1.17 per cent lead, 2.00 per cent zinc, and 1.13 per cent tin. The southeast part of the shoot, probably lying on Regal Silver property, is 106 foot long and 1.69 feet wide, and contains 2.30 ounces silver a ton, 0.20 per cent lead, 2.28 per cent zinc, and 0.35 per cent tin.

BBC OMAMDDATIONS

1. The following samples should be used if a mill test is made on material collected from Snowflake level: Nos. 1861 to 1681 (inclusive), 1683, 1685, 1687, 1689, 1691, 1693, 1696, 1698, 1700 to 1706 (inclusive), and 1715 to 1722 (inclusive).
2. If warranted by the ourrent demand for tin, the ground between Snowflake drift and 5 adit should be probed by diamond drill holes from the surface (See Figure (5) with the object of (1), exploring the Snowflake tin-bearing shoot below Snowflake level and (2), locating any other tin-bearing bodies that may exist in the same vein or in nearby veins. Five preliminary holes should be spotted so as to out the tin-bearing vein a short distance below the shoot exposed on Snowflake level. Subsequent holes should be spotted according to results obtained in the preliminary holes, keeping in mind the possibility of the existence of more than one tinbearing shoot. Such a program might involve ten to twenty holes averaging 500 to 600 feet in length. The drilling should be done in the spring or early summer.

Level 5, Regal Silver Mine, Albert Canyon, B. C. Started - Nov. 13, 1942 Finished - Nov. 16, 1942 (5:30 P.M.)
Depth - 201 ft. (Nov. 16)
Coordinates of collar - N 10,776.8, E 11,031.7
Bearing of hole

- N478 $10^{\circ} \mathrm{E}$

Dip of hole - flat
Logeed by - C. S. Lord

Depth	Remarks	Sample	Analysis
		No length	SN PB ZN
27-83	slate, and 0.7 ft . white qtz. with a little pale greenish micaceous mineral or partings		
88-95	slate, \& 15% qtz. as seams $1 / 32^{\prime \prime}$ to $\frac{1}{4} "$ wide.		
- 95-96.5	50\% qtz as irregular patches and seams.		
96.5-102	slate		
102	4" sean qtz. \& pyrite		
202-103. 6	slate		
103.5-105	slate. 1-"' atz. seam at 103.5 with a rew erains of pyrite		
. 105-150.5	slate with a few white ruartz seams up to $2 "$ wide.		
130.6	2" qtz. 之 pyrite		
130.5-140	slate		
133-135	slate and a little (15%) irregular qtz.		
135-135.6	white qtz. with a little greenish micaceous mineral		
135.5-136	slate		
136-137	slate, pyrite, \& a little qtz.	12660.4	nil 0.11 0.20
137-140	slate		
140-	2" qtz. \& pyrite		
140-143.5	slate		
145.5 144	white quartz with a very little pyrite, sphalerite (??) Ealena and a pale ereenish micaceous mineral.	12670.7	nil nil nil
144-146	slate		
146	2" quartzitio rk. with abundant f.E. pyrite		
146-168	slate		
168-171	slate, \&c 30; qtz, \& a very ilttle pyrite.		
171-171.5	white quartz and a little pale greenish micaceous mineral.		
171.5-173.5	slate		
173.5-175	slate, \& 15% qtz.		
175-178.5	slate		

Note - all core examined under ultraviolet light. No soheelite found.

Level 5, regal Silver Mine, Albert Canyon, British Columbia. Started - Nov. 16 (night shift) 1942. Finished - Nov. 18 (day shift). Depth - 75 feet.
Coordinates of collar - N 10,486.2; E 11,225.5.
Bearing - S.430 W (bearings given to nearest 10°). Dip - flat. Logged by - C.S. Lord.

Depth	Remarks	Sample		Analysis		
		No.	Length	Sn	Pb	Zn
Sludges						
15-20	```for check. Should assay nil tin.```	1278	5.0	$n 11$	nil	0.05
-20-25		1279	5.0	0.10	3.71	0.20
25-30	core showed stannite at 26.5	1280	5.0	0.27	12.45	0.51
30-35		1281	5.0	0.05	nil	nil
	Water lost about here and no further sludge recovered.					

Note - All core examined under ultraviolet lights. No scheelite seen.

LOG D. D. $H 4$

```
Level 5, Regal Silver Mine, Albort Canyon, B. C.
    started - November }18\mathrm{ (day ghift) }194
        Pinishod - November 18 (night shift) }194
            Depth - }30\textrm{ft.}\mathrm{ (deepened later)
        Coordinate: of collar; N 10,508.1; E 11,151.1
            Bearing - S 420 50' W
                    Dip - flat
            Logged by - C. S. Lord
```

Depth	Remarks	Sample		Anclyale		
		No.	Length	Sn	Pb	2n
0-11.5	slate					
11.5-14.0	White quarte and a little slate with a fow grains of pyrite. A fow grains of aphalerite and galona in quarts	1275	2.5	N11	N12	N12
14.0-15.5	80\% pyrite. Remainder slate and grey quarte. A fow apote fluoresce and may be scheolite	1876	1.5	0.08	0.07	W1
15.5-17.7	60% quartz. A little pyrite, mainly in slate	1277	2.2	Nil	\$11	111
17.7-19.0	Slate, and 1-5" band white quartz					
19.0-25.0	Slate					
25.0-30.0	Slate with a few seams of quarts and pyrite less then $l^{\prime \prime}$ wide					

Note: All core examined under ultraviolet light. Possible scheelite graing between 14 and 15.5 feet

Sludge not recovered between 10 and 20 feet due to overisight on part of driller.

LOG D．D． 4 （Deepened）

> See log November 18 ($0-30 \mathrm{ft}$.)
> Deepening atarted - November 27 (night shift) Deepening finished - November 29 (night shift) Depth from collar after deepening - 187 ft .

Logeged by C．S．Lord

Depth	Remarks	Sample		Analysis		
		No．	Length	Sn	Pb	Zn
30－371	Slate					
371 － 38	White sugary quartz， 15% pyrite 10% slate	1378	0.4	0.36	Ni	Nil
38－39	Black slate， 10% quartaj，					
39－49	Black slate					
49－51	Black slate and 10% white quarts					
51－64雱	Black slate					
64．$\frac{1}{5}$	$3{ }^{\prime \prime}$ white quarte					
64 65	Black slate					
65－93	Black slate with 10 white quarte seams averaging about $1^{\frac{1}{2}}{ }^{\text {¹ }}$ wide					
93－94	Black slate and 2－2＂white quarte seams					
94－100	Slate					
100－112	Slate					
112－112 $\frac{1}{3}$	60\％white quartr；balance slate					
112逃 1146	Black slate					
114－115	Slate and 4＂quarte					
115－125	Slate					
125－126	Slate and 30% white quarte in seams $\frac{1}{2}$－ $2 \frac{1}{2}$ wide					
126管 135	Slate					
135－142 $\frac{1}{2}$	Slate					
142 $\frac{1}{2} 147$	White quartz with l－3＂seam black slate and less than 1% pyrite	1379	4.5	0.08	Nil	Nil
147－1497	Slate，part minutely drag folded with 5% quarts，and 2% pyrite． Pyrite as seams and as dis－ seminated grains					

Level 5，Regal Silver Mine，Albert Canyon，B．C．
Started－Nov． 19 （day shift）， 42
Finished－Nov． 22 （day shift）， 42
Depth－ 76 feet
Coordinates of collar；－N 10，576．7；E 11，136．5
Bearing－ $542^{\circ} 50^{\circ} W$
Dip－flat
Logeed by－C．S．Lord
Note－contractors ran out of bits and no drilling was done from 10 A．M．Nov． 20 to 4 P．M．Nov．21． 3 shifts lost．Water（\＆sludge）lost at 33.5 ft ．

Depth	Remarks	$\frac{\text { Sample }}{\text { No } \frac{10 n g t h}{}}$	Analysis		
0－23	slate，with a few qtz．stringers up to ${ }^{\prime \prime}$ wide				
23－23	slate，a little qtz，\＆60\％pyrite	12820.4	0.08	0.15	nil
23－ 312	slate				
317－35	slate with a few qtz seams up to $\frac{1}{3}$＂wide．				
35－41	slate				
41交－44	slate，with thin qtz seans comprising 20% of core．				
44－46	slate				
46－47	qtz with greenish micaceous mineral \＆less than． 5% pyrite．	12831.0	nil	nil	n11
47－48古	slate，\＆ 30% q ${ }^{\text {c }}$ ceams	12841.5	0.05	nil	n11
4812－57	slate				
57－57 $\frac{1}{8}$	30% qtz；less than 5% pyrite； balance slate． $2^{\prime \prime}$ ereand while drilling．	12850.8	0.05	n11	nil
571 $\frac{1}{8}-59$	slate except for： $58^{\prime}, \frac{1}{4}{ }^{n}$ qtz \＆ pyrite；58．5＇，$\frac{1}{2} "$ qtz \＆$\&$ pyrite．				
59－591	slate； 30% qtz in irregular stringers；and a little pyrite				
591－60	slate				
60－601	50% white qtz with a little greenish micaceous mineral				
601－68	slate				
68	4＂white qtz				
68－76	slate				
Note－	core checked under ultraviolet licht scheelite noted．				
20－25	see core sample \＃1282 Sludges	12885.0	0.05	nil	nil

Level 5, Regel Silver Mine, Albert Canyon, British Columb Started - Nov. 23 (night shift).
Finished - Nov. 27 (night shift).
Depth - 198 feet.
Coordinates of collar; N. 10,647.7, E 10,870.2.
Bearing - $\mathbf{8} 28^{\circ} 00^{\prime} \mathrm{W}$.
Dip - flat.
Logged by - C.S. Lord.

Depth	Remarks	Sample		Analysis		
			Length	Sn		Zn
- $\frac{1}{8}$	White quartz					
- 3it	Slate					
- $\frac{1}{2}-4 \frac{1}{2}$	Slate, a little pyrite, and 20% quartz.					
$\frac{1}{8}-11$	Slate					
1-15	Slate - badly broken core.					
. $5-23$	Slate					
: 3	2" seam; 50\% quartz and 25% pyrite.					
$3-30$	Slate; a few seams of quartz and pyrite up to ${ }^{\text {n }}$.					
30-41	Slate					
11	Quartz and 25\% pyrite.	1291	0.3	nil	nil	nil
$11-45$	Slate					
15-46	Slate; 1-2" seam of white quartz; l-2" seam grey quartz with 25% pyrite.	1292	0.75	0.05	$n 11$	nil
$16-47$	Pitted slate.					
17-52	Slate, broken core.					
52-53	Slate and 20% quartz. 1-2 in n grey quartz seam contains 25% pyrite.	1293	1.0	0.13	nil	nil
$53-61$	Slate and 20% quartz as numerous thin seams mostly parallel to bedding.					
61-65	Slate					
65-66	Slate and 20% thin quartz seams.					
06-70	Slate and 25% white quartz as seams to $2^{\prime \prime}$ wide but mostly less than l" $^{\prime \prime}$ wide.	1294	4.0	0.10	n11	n11
70-71	Slate					
71	3 " white quartz.					

		Sample		Analysis		
Depth	Remarks	No．	Length	Sn	Pb	Zn
＇1－72	Slate					
＇2	3＂white quartz．					
＇2－73	Slate					
＇3	$2^{\prime \prime}$ white quartz．					
3－75	Slate					
15	2＂white quartz．					
15－76	Slate with seams grey quartz and a little pyrite．					
16	1＂grey quartz and 25\％pyrite．					
16－901	Slate．					
30 $\frac{1}{2}$	2者＂white quartz．					
301 $\frac{1}{2}-100$	Black slate．					
． $00-103 \frac{1}{2}$	Black slate with $1 / 16^{\prime \prime}-1 / 8^{\prime \prime}$ pyrite cubes．					
－03委	3＂light grey and black banded calcareous rock－effervescent in HCL．					
－03娄－ 106	Black slate with pyrite cubes．					
106－110	Interlayered black slate，cal－ careous bands，and $\frac{1}{4}$＂to $1^{\prime \prime}$ white quartz serms．		＊		－	
110－114	Black slate，part finely mottled with grey．					
114－115	Grey sugary quartz with less than 5\％pyrite．	1295	1.0	0.16	nil	nil
115－117	Greyish slate and 15% quartz． Pyrite oubes in slate．		f			
117－120 $\frac{1}{2}$	Grey，thin－bedded，soft，slight－ ly calcareous shale with pyrite cubes．					
120쥴－ 124	Black slate with pyrite cubes commonly $1 / 8^{\prime \prime}$ ．					
124－125	Grey shale with a little quartz and a $2 \frac{1}{8}{ }^{\prime \prime}$ seam of pyrite．	1296	1.0	0.08	nil	nil
125－128	Grey and black slate with sev－ eral $\frac{1}{8}$＂quartz seams．					
128－129	50% white quartz with a few specks of pyrite．Balance is slate with a little pyrite．	1297	1.0	0.10	n11	nil

Depth	Remarks	Samp No	ple Length	$\mathrm{Sn}^{\text {A }}$	$\mathrm{lysic}_{\mathrm{b}}$	Zn	\cdots
129－130	Grey and black crumpled slate．						
130－1317	50% grey and black slate with a little pyrite． 50% sugary pres seriaitic quartz with a littie pyrite．	1298	1.25	0.16	$n 11$	nil	
131才－135	Mostly white quartz．3＂grey sugary sericitic quartz at 131⿻丷木．134－135 contains 5\％ pyrite．Balance contains less than 1% pyrite and as nearly pure quartz．	1299	3.75	0.02	nil	nil	
135－135	Slate						
135 $\frac{1}{2}$－ 138	Contacted slate． 25% quartz． Quartz part brown（iron stain？） and part white and sugary．Less than 5% pyrite．	1300	2.5	0.08	$n 11$	nil	
138－155	Greyish，thinly laminated slate with pyrite oubes．A few quartz seams up to $\frac{1}{8}$＂．		\％				
155－156 $\frac{1}{2}$	Slate，and 30% intimately assoc iated quartz with less than 5% pyrite．	-1375	1.5	0.05	$n 11$	nil	
156震－160震	Slate．						
160娄－164	Thinly－bedded slate， 10% quartz seams and quartz partings．						
164－169	Black slate．						
． 68	3＂white quartz．						
．69－176	Slate						
． 76	2曾＂quartz containing 50\％pyrite						
．76－179 ${ }^{\text {d }}$	Slate．		f				
．79 $\frac{1}{k}-1: 9 \frac{1}{2}$	Slate and 30\％white quartz．						
．80－ 186	Black slate．						
． $86-192$ 䨖	Badly broken black slate．Poss－ ibly part of a fault zore． 2 啷 feet of core lost，mostly from 190－192妾．						
． $92 \frac{1}{2}-195$	Thoroughly crushed black slate of possible fault zone．About 2^{2} broken white quartz．Plot fault（if required）at 192	1376	2.5	0.05	$n 11$	nil	
． $95-196$	40% barren（？）white quartz； 60% broken slate；a few grains of pyrite．	1377	1.0	0.05	nil	nil	
． $96-199$	Slate．Bottom of hole at 199.						7

All core examined under ultraviolet light. No scheelite.

```
Level b - Regal Silver Hine, Albort Canyon. B.C.
Started - Nov. }30\mathrm{ (day shift)
Finished - Nov. 30 (night shift)
Depth - 46 freet
Coorcinates of collur - N 10,453.63 E 11,263.1
Bearing - S 42%50W
Dip - Flat
Logged by - C. S. Lord
```


